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AB   Alamar BlueTM, dye used in metabolic activity assay 

CFDA-AM  5-carboxyfluorescein diacetate acetoxymethyl ester 

HBCD   Hexabromocyclododecane 

MDR    Multidrug resistance 

MRP Multidrug resistance- associated protein 

MXR   Multixenobiotic resistance 

PBS   Phosphate buffered saline 

PFNA   Perfluoronononaic acid 

PFOS   Perfluorooctane sulfonate 

P-gp  Poly-glycoprotein, common mediator of multixenobiotic resistance 

TBBPA  Tetrabromobisphenol-A 

TBT   Tri-n-butyltin
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In the studies described in this manuscript, a new cellular model system has been developed 

and two fluorometric assays have been assessed for their applicability in biomonitoring and 

in vitro toxicity testing. Echinoderm coelomocytes were chosen as the cellular system because 

of their ease of sampling, and because their immunofunction makes effects on these cells 

likely to cause adverse effects on the host organism. Primary cell cultures of coelomocytes 

were established in the 96-well microtiter plate format by removal of coelomic fluid, dilution 

to suitable cell density in culture medium phosphate buffered saline and application in wells 

without further processing. The 96-well format is suitable for high sample number and small 

sample size, thus allowing the high throughput screening that is desirable in biomonitoring 

and toxicity testing. Two fluorometric assays, the alamar BlueTM and CFDA-AM cytotoxicity 

assay and the multixenobiotic resistance (MXR) accumulation assay, were optimised and 

applied on the cultured coelomocytes. MXR is believed to serve as a cellular first line of 

defence against numerous substances, and is therefore expected to be highly relevant for cell 

viability and function. The biomonitoring study was conducted in Kaštela Bay, Croatia, on 

coelomocytes from the sea cucumber Holothuria tubulosa. Cells taken from individuals 

collected at a heavily polluted site was compared to cells taken from individuals at a 

relatively pristine site. In the toxicity testing study, Asterias rubens coelomocytes in culture 

were exposed to different toxicants for 96 hours, before the assays were run. Both assays 

provided significant results in biomonitoring and toxicity testing. 

Used in combination, coelomocyte primary culture and the two fluorometric assays may 

constitute a rapid, cost-effective, easily performed procedure for biomonitoring and toxicity 

testing.
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Since the early 1960s, the presence and potentially harmful effects of man-made chemicals in 

the environment has recieved increasing attention both in the scientific community and the 

general public. After years of using and releasing such substances, surprisingly little is known 

about many of them. It is not known how they are spread and transformed in the environment 

or how they are taken up by living organsisms. Nor is the effects of the substances on man or 

other biota known. For instance, up until the implementation of the new EU chemicals 

legislation (The European Commission 2001), 100106 different chemicals have been used in 

Europe without any demands for testing of their effects on man or the environment (ECB). At 

the same time the number and amounts of chemicals used is steadily increasing. 

When released, the chemicals may be transported (some across large distances) and many of 

them with lakes and oceans as the final recipient, where they can be taken up by aquatic 

organisms. The presence of a specific chemical in the environment or in biota is not in itself 

indicative of adverse effects of that chemical. Therefore a number of techniques have been 

established to measure and quantify the responses to chemicals in organisms. A biomarker 

may be defined as a biological response related to exposure to or toxic effects of 

environmental contaminants at the sub-individual level (Van Gestel and Van Brummelen 

1996). This study aimed to develop new biomarker techniques. The techniques were later 

applied in a biomonitoring study and in toxicity tests of different well known contaminants, to 

assess their value in these contexts.  

Certain criteria have been proposed for good biomarkers. First, the assay to quantify the 

biomarker should be robust, relatively cheap and easy to perform and the biomarker response 

should be sensitive to pollutant exposure in order to serve as an early warning parameter. 

Baseline data of biomarker should be well defined in order to distinguish between natural 

variability (noise) and contaminant induced stress. The impacts of confounding factors to the 

biomarker response and the toxicological significance of the biomarker should be known. 

Finally, the underlying mechanism of the relationship between biomarker response and 

pollutant exposure should be well established (van der Oost et al. 2003). It has also been 

suggested that the technique applied should be non-invasive or non-destructive (Fossi et al. 

1997). Using a non-invasive sampling technique will allow for the same individuals to be 

sampled repeatedly and decrease the number of animals required in the assay and allow the 

monitoring to continue over a period of time. It also allows for biomonitoring in protected 

species. 
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Biological monitoring is a repetitive observation for defined purposes, of one or more 

chemical or biological elements according to a prearranged schedule over time and space, 

using comparable and standardized methods (definition by the United Nations Environmental 

Program (UNEP)). When biomarkers are used in biological monitoring, the respons to the 

total environmental stress experienced by feral or caged organisms is assessed. Biomarkers 

are sensitive indicators of the presence and toxic effects of contaminants at a critical target. 

This is because the primary interaction between a toxic chemical and biota occurs at the 

cellular (or sub-cellular) level. Implicitly, one can expect changes at the cellular level to occur 

before changes in a tissue or organism (Fent 2003). Thus, the use of biomarkers in monitoring 

have the advantage of being early warning signals towards more deliterious effects (e.g. 

individual death or eradication of a population) (Bucheli and Fent 1995).  

Another approach towards identifying toxic effects is the use of laboratory assays, with 

subsequent extrapolation to field conditions. Toxicity testing in laboratories may provide 

information about the potential toxicity of substances and about their mode of action. In vitro 

techniques for toxicity testing are valuable because they can allow assessment of tissue and 

target specific effects. They are also well suited for analysis of mechanisms and dose and time 

dependencies. It should be noted, however, that the complexity of toxicokinetics and 

interactions between different chemicals inside an organism are factors that are not accounted 

for in in vitro toxicity testing (nor are general effects of the cells being removed from their 

host organisms). 

The echinoderms is a group of animals that include, among others, the starfish (Asteroidea), 

sea urchins (Holothuroidea) and sea cucumbers (Echinoidea). They have a free-swimming 

(pelagic) larval stage, but the adult forms are sedentary. They are therefore expected to 

experience relatively high exposure to the many environmental contaminants that tend to 

accumulate in sediments. Many echinoderms also have a diet that probably make them 

exposed to high levels of contaminants, for instance as deposit-feeders (such as the sea 

cucumber Holothuria tubulosa) or as predators on mussels and other filter-feeders that are 

known to accumulate contaminants (such as the starfish Asterias rubens). Additionally 

echinoderms are invertebrate deuterostomes, they thus represent the phylogenetic link 

between chordates and invertebrates, and may provide information regarding the relationships 

and differences between these two groups. The sea urchins are used today for toxicity testing 

(sea urchin fertilisation test), but other groups of echinoderms have rarely been used or 

assessed in toxicity testing or biomonitoring perspectives.  
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Coelomocytes are circulating cells in the fluid filled body cavity of echinoderms. They have 

been ascribed a number of different functions, including digestion, storage and transport of 

food materials, oxygen transport, pigment biosynthesis and excretion (Boolootian 1966). 

Several morphogically different types of coelomocytes may be found in an echinoderm 

species, but in starfish the phagocytic amoebocytes are predominant, and these cells are also 

common in the sea cucumber coelomic fluid (Boolootian 1966). The phagocytes are the main 

immune effector cells in echinoderms (Smith and Davidson 1992; Gross et al. 1999), effects 

on phagocytes therefore may predict harmful effects on the immune system and therefore 

impairment in the organisms resistance to deseases. 

Multixenobiotic resistance (MXR) is analogous to the multidrug resistance (MDR) described 

for human cancer cells and different pathogens (Kessel et al. 1968; Borst and Ouellette 1995; 

George 1996). MDR is caused by energy dependent pumping of drugs out of target cells 

(Endicott and Ling 1989), and is mediated by different ATP-dependent transmembrane 

proteins with an unusually broad substrate specificity (Juliano and Ling 1976; Cole et al. 

1992). It has proven a major obstacle in cancer chemotherapy, therefore several agents 

(chemosensitisers) have been developed to reverse or inhibit the mechanism. MXR was first 

described in the freshwater clam Anodonta cygnea by Kurelec and Pivcevic (1989), and has 

later been identified in numerous aquatic organisms. MXR has been shown to lower 

intracellular concentrations of many toxins (as shown by e.g. Galgani et al. (1996) and 

Toomey et al.(1993)), it has therefore been proposed that MXR corresponds to a widespread 

defence mechanism to lower intracellular concentrations of environmental stressors (Epel 

1998). MXR is found inherently, but may be induced or inhibited upon exposure to different 

agents (Minier et al. 1993; Kurelec 1995; Kurelec et al. 1996; Toomey et al. 1996). Because 

of the assumed protective role of MXR, agents that are able to inhibit the resistance are of 

great concern. Inhibition causes increased accumulation of several other toxicants, which then 

may exert effects at environmental levels that are not expected to be harmful (Kurelec 1992; 

Kurelec et al. 1992; Waldmann et al. 1995).  

In the studies herein, an accumulation assay based on the procedure described by Smital and 

Kurelec (1997) is applied. The principle for this assay is fluorometric measurements of the 

accumulation of a fluorescent dye and MXR-substrate inside cells. 

Cytotoxicity may easily be measured by using the alamar BlueTM (AB) and 5-

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) assays. These assays involve 

the addition of a non-fluorescent dye to cells in culture. The dyes are enzymatically converted 
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to highly fluorescent metabolites, and the extent of this conversion, which can be quantified 

by the metabolite’s fluorescence, is a reflection of metabolic activity (AB) or membrane 

stability (CFDA-AM) (Schirmer et al. 1997). Compared to other classical cell viability assays 

(such as reduction of tetrazolium compounds or staining with fluorescent DNA-specific dyes) 

such fluorometric assays are simple to use. They are non-toxic to the user, they do not require 

any special handling or disposal methods since no radioactive nor toxic materials are used 

(which also makes them less costly). Finally, the assays are homogeneous in nature and can 

thus be adapted for large scale in vitro screening (Nakayama et al. 1997). In this study the AB 

assay and the CFDA-AM assay were combined by the adding of both dyes simultaneously to 

the same cells as described by (Schirmer et al. 1997). The combination of the two gives the 

possibility of assessing the connection between metabolic activity and membrane integrity of 

a cell, and could give a clearer picture of the cells’ overall health/ viability. Additionally the 

time and cost of the assays are reduced.  

Fluorometric assays performed with the 96-well microtiter plate format allows for rapid 

screening of numerous samples and may therefore be particularly useful in biomonitoring and 

toxicity testing. The AB/CFDA-AM cytotoxicity assay and the MXR- assay were therefore 

examined for compatability with coelomocyte primary cultures in 96-well microtiter plates. 

The model cell system and the above mentioned assays were evaluated in a toxicity testing 

perspective. In order to do so a range of different (but relevant) substances were chosen as 

model toxicants. These toxicants include two representative brominated flame retardants 

(HBCD and TBBPA), two perfluorinated substances (PFNA and PFOS) and TBT. 

Additionaly two environmental samples, with previously described toxic potentials were 

applied.  

The curious reader is referred to chapter 2 (Background) for a more comprehensive account  

of echinoderm coelomocytes, the MXR- and cytotoxicity assays and the substances tested in 

the toxicity tests. 

This study aimed to develop and assess the suitability of a novel in vitro cell system for use in 

biomonitoring and toxicity testing. The objectives was therefore to establish a protocol for 

echinoderm coelomocyte sampling and conditions for coelomocyte primary cultures, to adapt 

cell-based bioassays with MXR activity and cell viability as endpoints for echinoderm 

coelomocytes, to assess the value of the methods in a biomonitoring and a toxicity testing 

context, and finally; to enhance the understanding of echinoderm coelomocyte responses to 

certain model toxicants  
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The work described in this manuscript was separated into three parts. First, several 

experiments that aimed to develop techniques for establishing coelomocyte cell cultures and 

preliminary screening for the applicability of two different assays were conducted. Second, 

the techniques and assays were applied in a field study to assess their value as tools in 

biomonitoring. Finally, in vitro toxicity tests on various well-known toxicants were conducted 

using the same techniques. The method development studies are described in this manuscript, 

while the biomonitoring and toxicity testing descriptions can be found in the article 

manuscripts.
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2.1 Echinoderms and coelomocytes 

Many echinoderms have characteristics that are wanted for toxicity testing and biomonitoring 

organisms. They are geographically widespread, easily sampled and identified, relatively 

hardy against sampling, and they have a suitable size for laboratory maintenance. As 

biomonitoring species they have the additional advantages of being longlived, having 

sedentary behaviours and a sufficient adult size for analysis of tissue samples. The starfish 

Asterias rubens and the sea cucumber Holothuria tubulosa are considered key species in 

several communities (Zavodnik 1971; den Besten et al. 1990; Coulon 1992; Temara et al. 

1996). As bottom-dwellers and suspension feeders or predators on filter-feeding organisms, 

many echinoderms would be expected to experience relatively high exposures to hydrophobic 

contaminants. Echinoderms are deuterostomes, thus they represent the phylogenetic link 

between chordates and evertebrates. Echinoderm responses may be a useful in elucidating the 

relationship between responses in the two respective groups. Despite of the above mentioned 

advantages, the starfish (Asteroidea) and sea cucumbers (Holothuroidea) have rarely been 

utilised in an ecotoxicological perspective.  

Asterias rubens has been demonstrated cabable of accumulating several contaminants, among 

them polychlorinated biphenyls (PCBs) (den Besten et al. 1990; den Besten et al. 2001), 

metals (den Besten et al. 1989; Sørensen and Bjerregaard 1991; Coteur et al. 2003) polycyclic 

aromatic hydrocarbons (PAHs) (den Besten et al. 2001) and organochlorine pesticides (den 

Besten et al. 2001). While the starfish species Leptasterias polaris, Asteria pectinifera and 

Asterias amurensis accumulated tributyltin (TBT) (Bekri and Pelletier 2004; Shim et al. 

2005). 

Effects after contaminant exposure that have previously described in echinoderms include 

alkaline phosphatase activity (Temara et al. 1997), speed and quality of arm regeneration 

(Temara et al. 1997), effects on early development (Coteur et al. 2003), inhibition of 

amoebocyte reactive oxygen species (ROS)- production (Coteur et al. 2003), effects on the 

cytochrome P450 system (den Besten et al. 1991; den Besten et al. 1991; den Besten et al. 

1993) and effects on gametogenesis (den Besten et al. 1990).  

Coelomocytes are circulating cells in the coelomic fluid of the echinoderm body cavity. The 

coelomocytes may consist of a mixture several morphologically different types, depending on 

species. Asteroids have four coelomocyte types, phagocytes, colourless morula cells, small 
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pigment cells and hyaline plasma cells (Boolootian 1966). However, cell types other than 

phagocytes are not frequent in the coelomic fluids of starfish (Boolootian 1966). Numerous 

cell types have been described in the holothuroid coelomic fluid, but it is probable that only 

four basic types are common to all species; lymphocytes, phagocytes, colourless morula cells 

and fusiform cells (Boolootian 1966). Four additional coelomocyte types are found in some 

groups; coloured morula cells, haemocytes, crystal cells and vibratile cells (Boolootian 1966). 

The coelomocytes have been ascribed a number of different functions, including digestion, 

storage and transport of food materials, oxygen transport, pigment biosynthesis and excretion 

(Boolootian 1966). Main focus have been on the phagocytic ability, and coelomocytes are 

considered to be the main effector cells of the echinoderm immune system (Wardlaw and 

Unkles 1978; Smith and Davidson 1992; Gross et al. 1999). Studies of echinodermal immune 

responses by Ilya Metchnikoff was the beginning of the field of comparative cellular 

immunology (Gross et al. 1999) and he was awarded the Nobel Prize in 1908 (together with 

Paul Ehrlich) for his ground breaking work on echinodermal models. Through introduction of 

rose prickles and glass rods into bipinnaria larvae of starfish, Metchnikoff could observe that 

mesodermal cells migrated to the injury site and encapsulated the prickle. He also 

demonstrated that this phenomenon occured when bacteria were introduced into the larva, and 

the bacteria would be neutralised by phagocytosis (Gross et al. 1999).  

Pyloric caeca is the echinoderm digestive system and is the compartment most commonly 

studied in the existing reports on starfish (e.g. Everaarts (1998), den Besten (2001) and 

Temara (1998). This compartment may be expected to have higher concentrations of 

lipophilic xenobiotics than the coelomic fluid because or a higher lipid content. Butyltin (BT) 

concentrations in coelomic fluid were in fact below detection limits in a study by Bekri and 

Pelletier (2004). Yet, these authors were able to detect effects on immunotoxicological 

parameters (phagocytic activity and lysosomal stability in amoebocytes) associated to BT-

accumulation in surrounding tissues. For use in biomonitoring and toxicity testing the 

coelomocytes have some important advantages above other tissues/cell types: They may be 

sampled by withdrawal of coelomic fluid, which is a very simple sampling technique 

compared to the dissection necessary to sample other tissues. This sampling is also non-

destructive and the same animal may be sampled repeatedly (provided that the animal is given 

sufficient time to replace removed coelomic fluid and coelomocytes). Because the 

coelomocytes are the immune effector cells in echinoderms, effects on these cells may be 

expected to have an adverse influence on the organism.  
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2.2. Cytotoxicity 

Cytotoxicity in these studies was evaluated with the two fluorescent dyes alamar BlueTM and 

5-carboxyfluorescein diacetate acetoxymethyl ester. 

Resazurin is the functional dye in the commercial reagent alamar Blue TM (AB). Resazurin is 

the blue and non-fluorescent oxidised form of the dye, while the reduced form is the pink and 

highly fluorescent resorufin (Figure 1). The conversion of rezasurin is catalysed by cellular 

reductases. The location of the responsible reductases is debated. According to some authors, 

the enzymes catalyzing this reaction are mitochondrial oxyreductases and AB fluorescence is 

therefore a measure for mitochondrial function (Springer et al. 1998). However, O’Brien et al. 

(2000) found no evidence for a mitochondrial location of the reduction. Whichever reductase 

is responsible for the reduction of AB, there is a broad agreement on the applicability of AB 

as a metabolic activity and cell viability reporter (Page et al. 1993; Nakayama et al. 1997; 

O'Brien et al. 2000). Herein AB fluorescence will be referred to as a measure of metabolic 

activity. The AB assay is as sensitive as thymidine and tetrazolium reduction assays (Page et 

al. 1993; Ansar Ahmed et al. 1994). It should be noted that the assay has been reported to be 

cytotoxic (Squatrito et al. 1995) and fluorescence intensity is sensitive to temperature 

(Nakayama et al. 1997). 

5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) is a non-fluorescent dye, 

commonly used in cell membrane integrity assessments. It is hydrolysed by intracellular non-

specific esterases, to form the highly fluorescent 5-carboxyfluorescein (CF) (Figure 2). Cells 

with an intact membrane maintain a cytoplasmic environment that supports esterase activity, 

and a decline in fluorescence readings is interpreted as a loss of membrane integrity and/or 

cell viability (Schirmer et al. 1997).  

 

 

Figure 1. The enzymatic conversion of rezasurin to resorufin. Rezasurin is the functional dye within the 
commercial dye alamar BlueTM. 
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Figure 2. The enzymatic conversion of CFDA-AM to 5-carboxyfluorescein. 

 

2.3. Multixenobiotic resistance 

Multidrug resistance (MDR) was first described in mammalian tumor cell lines which were 

selected for resistance against a single cytotoxic agent, but showed cross resistance against a 

wide variety of antineoplastic drugs such as anthracyclines, Vinca alkaloids, 

epipodophyllotoxins, taxol and actinomycin D (Kessel et al. 1968; Biedler and Riehm 1970; 

Kessel and Bosmann 1970). MDR has later been described in numerous pathogens, among 

them bacteria (George 1996), protozoans (Borst and Ouellette 1995) and fungi (Prasad et al. 

1995).  Analysis of the drugs in MDR have revealed no common structural features, but they 

are often positively charged at physiogical pH and have hydrophobic regions (Gottesman and 

Pastan 1988; Fardel et al. 1996). 

MDR was found to be mediated by certain transmembrane proteins, that catalysed an ATP-

dependent efflux of the diverse drugs/xenobiotics, thus lowering their intracellular 

concentrations (Endicott and Ling 1989). The most common of these transport proteins are 

the P-glycoproteins (Juliano and Ling 1976), which belong to the ABC (ATP-binding 

cassette) superfamily of traffic ATPases (Doige and Luzzi Ames 1993). The multidrug 

resistance-assosiated protein (MRP) is another MDR-active ABC superfamily member 

indentified in mammalian cells (Higgins 1992).  

The first evidence of a MDR-like mechanism in aquatic organisms was found in freshwater 

mussel Anodonta cygnea (Kurelec and Pivcevic 1989) and this finding may be concidered the 

introduction of a new field of research within ecotoxicology. Through their pionering work 

Kurelec and co-workers were able to define such MDR-like mechanisms in a number of 

different aquatic species (Appendix 4 provides an overview on observations of MXR features) 

and concluded that this resistance corresponds to a widespread defence mechanism. Kurelec 

(1992) proposed the term multixenobiotic resistance (MXR), as the resistance observed in 

these organisms was not confined to therapeutic agents, but also a range of contaminants. 
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Several naturally occurring substances are also MXR-substrates and MXR is believed to serve 

as a first line of defence against environmental stressors in organisms (Epel 1998).  

Induction of MXR/MDR has been shown through a range of studies (e.g. Minier et al. (1993), 

Kurelec et al. (1995), Kurelec et al. (1996) and Minier and Moore (1996)), and may occur via 

multiple mechamisms including gene amplification (Roninson et al. 1986), transcriptional 

(Shen et al. 1986) and post-transcriptional controls (Ratnasinghe et al. 1998). The inducers of 

MXR-activity may or may not be substrates for the MXR-mediating proteins (Chaudhary and 

Roninson 1993) and MXR induction might in fact be part of a generalized defense mechanism 

against cell injury or DNA damage caused by cytotoxic xenobiotics (Chaudhary and 

Roninson 1993; Fardel et al. 1998). MXR has also been shown to increase with increasing 

stresses from UV radiation (Uchiumi et al. 1993) or heat shock (Chin et al. 1990).  

The regulation pathways for MXR-mediating proteins are not fully understood. Deng (2001) 

and Mathieu (2001) demonstrated the involvement of ROS generation in MXR induction after 

treatment with 3-methylcholanthrene (3-MC), benzo[a]pyrene (BaP) or 2-

acetylaminofluorene (2-AAF). The regulatory mechanism in mammals thus seemed to involve 

ROS generated via CYP1A after exposure to aryl hydrocarbon receptor (AhR) ligands. 

However, reports are conflicting when it comes to the involvement of AhR (Gant et al. 1991; 

Teeter et al. 1991; Bard et al. 2002). Several recent studies suggest that Pgp expression may 

be regulated by protein kinase C (PKC) mediated phosphorylation (Chambers et al. 1990; Ma 

et al. 1991);(Kurelec 1995; Miller et al. 1998). Both positive and negative correlations 

between PKC- and MXR activity have been reported. Nishio et al. (2005) presented results 

suggesting that thyroid hormone induces Pgp expression. 

Multidrug resistance has been an important impedement in cancer chemotherapy, and 

conciderable efforts have been made to battle the phenomenon. Numerous drugs, termed 

chemosensitisers,  have been developed to inhibit the unwanted efflux of chemotherapeutic 

agents, e.g. verapamil (Tsuruo et al. 1981; Yung et al. 1991), cyclosporin A (Twentyman et 

al. 1987; Foxwell et al. 1989) and MK-571 (David Chauvier 2002). Inhibition of the efflux of 

dyes that are MXR substrates (e.g. rhodamine) by these agents has been used in assays as 

evidence of a MXR mechanism (Figure 3). At high concentrations, the inhibitors have been 

reported to be cytotoxic. 
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Figure 3: MXR rhodamine accumulation assay. Inhibition of MXR protein causes decreased cellular 

efflux of rhodamine. Intracellular rhodamine may be quantified fluorometrically, and the difference in 

fluorescence between non-inhibited (left) and inhibited (right) may serve a measure of MXR activity.  

Modified from invitrogen.com (2005). 

 

In a rhodamine efflux assay Toomey and Epel (1993) found that bacterial metabolites from 

the gut of the marine worm Urechis caupo were also able to inhibit MXR. MXR-inhibitory 

potential was later found for different pesticides and 2-AAF (Toomey et al. 1996) at 

concentrations similar to what animals would be exposed to in the aquatic environment 

(Cornwall et al. 1995; Galgani et al. 1996). MXR inhibition by polluted sea- or river-water 

was confirmed by Smital and Kurelec (1997). Kurelec et al. (1998) were able to demonstrate 

that MXR inhibitory potential in muncipal wastewaters was correlated to dissolved organic 

carbon, but not to neither mutageneity nor levels of 48 identified polyaromatic hydrocarbons 

(PAHs) of the extracts. From this study, it may be interpreted that organic substances that are 

a part of household waste, but are  not concidered to be pollutants today, have potential to 

disrupt MXR. Inhibition may enhance the accumulation of substances that are MXR 

substrates (Kurelec et al. 1995; Toomey et al. 1996). Several studies have already provided 

results that indicate possible ecotoxicological effects of MXR inhibitors, in which toxicity of 

different substances were enhanced by the presence of a MXR inhibitor (Kurelec 1992; 

Kurelec et al. 1992; Kurelec 1995; Waldmann et al. 1995; Kurelec et al. 1996; Kurelec et al. 

1998). In sea urchin embryos, the apoptotic potency of etoposide was enhanced when it was 

combined with the model MXR inhibitors verapamil or reversine 205 (Smital 2004). As is the 

case with MXR inducers, the chemosensitisers are not necessarily substrates for MXR 

proteins. Examples are the PKC inhibitor staurosporine (Kurelec 1995), ATPase inhibitors 

and membrane fluidizers/permeabilizers (Sharom 1997). Also it is important to keep in mind 
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that toxic effects of a substance in the presence of a MXR inhibitor would be unexpected, 

because the levels of the known toxicant could be below what is established threshold values. 

(Smital 2004) 

Assays for studies on MXR may be diveded in two categories, immunochemistry and activity 

assays (Bard 2000). The most common immunochemistry assay is an immunoblot assay using 

the murine monoclonal antibody C219 (IgG2a). This antibody recognises a highly conserved 

amino acid sequence common to all Pgp isoforms whose sequence is known (Kartner et al. 

1985; Bard et al. 2002). This implies that it will be impossible to distinguish, not only 

between different MXR-mediating Pgps, but also between these and Pgps with other 

functions, such as transport of bile acids. The second category are assays based on 

measurements of transport of fluorescent dyes that are known to be substrates for MXR-

mediating proteins. Kurelec et al. (1996) and Smital et al. (2000) argue that MXR activity 

assays are superior to the immunoblot assays for several reasons. First, no specific antibodies 

for Pgp in aquatic organisms are developed (as of 2005). Secondly, the existing Pgp 

antibodies have a relatively low affinity (Epel 1998) and finally the amount of work required 

in immunoblots makes less suited for routine application.  

The reports on MXR in echinoderms are few and ambiguous. Epel and co-workers 

investigated eggs of sea urchins (Strongylocentrotus purpuratus and Lytechinus pictus) and 

starfish (Pisaster ochraceous), but found no evidence for a MXR-mediating protein after 

activity analysis nor after immunological cross-binding analysis (Epel 1998). These authors 

did not look at adult tissues. However, Eufemia et al. (2002) showed vinblastine-sensitive 

effects on cell division in Lytechinus pictus embryos. Effects that were enhanced by model 

MXR inhibitor verapamil. Using a calcein-AM transport assay, and inhibition by the inhibitor 

MK-571, Smital et al. (2004) were able to detect MXR activity in sea urchin embryos. In 

mammalian cells calcein-AM and MK 571 are selective for the multidrug resistance-

associated proteins (MRPs). In summary, MXR features (proteins, genes and/or activity) have 

been described in a variety of aquatic organisms, also in echinoderms (Eufemia et al. 2002; 

Smital et al. 2004), but to the knowledge of this author, never before in starfish or sea 

cucumber.  
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2.4. Model contaminants investigated 

Brominated flame retardants (Hexabromocyclododecane and tetrabromobisphenol-A) 

Tetrabromobisphenol-A (TBBPA; figure 4) and hexabromocyclododecane (HBCD, figure 5) 

are the two most commonly used brominated flame retardants (BFRs) in Europe, with 

consumption volumes of 7800 tons (TBBPA)(BSEF 2004) and 9500 tons (HBCD)(BSEF 

2003) as of 2002 . Recently, the use of penta- and octamixtures of polybrominated diphenyl 

ethers (PBDEs) has been restricted in Europe, and there are indications that HBCD is being 

used as a replacement for these BFRs (Janak et al. 2005).  

The majority of adverse effects of TBBPA have been found in vitro. TBBPA is a halogenated 

phenolic substance, and effects on biological membranes have been found (Inouye et al. 1979; 

IPCS 1995; Birnbaum and Staskal 2004). In one study TBBPA exposure resulted in 

haemolysis of human erythrocytes and uncoupling of the oxidative phosphorylation in rat 

mitochondria (Inouye et al. 1979; IPCS 1995). Also the structure of TBBPA closely 

resembles the structure of thyroxin (Figure 6) and endocrine effects have been described by 

Kitamura et al. (2002; 2005) and Meerts et al. (2000).  

 

 

 

 

 

Figure 4. Hexabromocyclododecane (HBCD) Figure 5. Tetrabromobisphenol-A (TBBPA) 
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Yamada-Okabe et al. (2005) found an enhancement of thyroxin receptor-mediated gene 

transcription and suggested that HBCD can act as an endocrine disrupter in humans and other 

animals, despite of lack of structural relationship with thyroxin. Mariussen and Fonnum 

(2003) showed inhibition of glutamate and dopamine uptake in rat brain synaptosomes after in 

vitro exposure to HBCD at 1 µM (significant) and 4±1 µM (IC50), proposed a neurotoxic 

effect for both HBCD and TBBPA. Dopamine is readily oxidised in the cytoplasm and may 

give rise to increased oxidative damage (Cubells et al. 1994; Mariussen and Fonnum 2003). 

Pullen et al. (2003) found a NOAEL of 3 µM TBBPA on cytotoxicity in splenocytes from 

female rats, using MTT colorimetric assay.  

 

 

Figure 6. Thyroxin 

 

Perfluorinated substances (Perfluorononanoic acid and perfluorooctane sulfonate) 

In contrast to most contaminants, which tend to accumulate in the fatty tissues of biota, 

previous studies have shown that PFOS (figure 7) and related fluorochemicals (e.g. PFNA, 

figure 8) concentrate in both liver and in blood. (Kannan et al. 2001). Perfluorinated acids 

have no known route of biotic or abiotic degradation in the environment, and they are 

bioaccumulative when the perfluorinated chain reaches a length of between 6 and 7 carbons 

(Martin et al. 2003). 

Certain perfluorinated acids inhibit of gap-junction intercellular communication (Upham et al. 

1998) and some are tumour promoters (Biegel et al. 2001). Two other effects that are 

proposed to contribute to PFOS’ toxicity is induction of membranous damage and disruption 

of the equilibrium between DNA damage and its repair processes (Hoff et al. 2003). 

Matsubara et al. (Matsubara et al. 2006) found effects from both PFOS and PFNA on 

backward swimming in Paramecium caudatum. This model system is considered to be 

sufficient for predicting the potential toxicities on ion channels. PFOS is a peroxisomal 

proliferator (Sohlenius et al. 1993; Berthiaume and Wallace 2002), and may interfere with the 

thyroid hormone economy (Thibodeaux et al. 2003). 
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Figure 7. Perfluorooctanoic sulfonate (PFOS) Figure 8. Perfluorononanoic acid (PFNA) 

 

Tributyltin 

Tributyltin (TBT) is a well-known endocrine disrupter (see da Silva de Assis et al. (2005) for 

a review on this subject), and is considered to be the main effector for the imposex observed 

in several marine invertebrates (Gibbs and Bryan 1986). It is suggested that TBT-induced 

imposex is caused by an inhibition of the CYP dependent aromatase system leading to an 

increase in the androgen (testosterone) level in the gastropods (Folsviksrk et al. 1999). 

TBT may induce apoptosis, possibly through opening of the permeability transition pore with 

subsequent releasing of cytochrome c (Nishikimi et al. 2001), as well as necrosis (da Silva de 

Assis et al. 2005). However, the cytotoxic effect seems to occur at relatively high doses. Cell 

viability in sponge cells, was unaffected after 12 h incubation with 0.5 µg/mL TBT (Fafandel 

et al. 2003). TBT was found to induce apoptosis in blue mussel (Mytilus galloprovencialis) 

gills after in vivo exposure to a single dose 3 µg/g, but not 1 µg/g, TBT (Micic et al. 2001). In 

trout hepatocytes, apoptosis was not detected after exposure to 1 µM TBT for 90 minutes 

(Reader et al. 1999) 

 

Figure 9: Tributyltin 

 

For an overwiew of the environmental occurance and toxic effects of the different model 

toxicants, the reader is referred to appendix 2 and 3.
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These experiments have focused on the use of cells from echinoderms in the toxicological 

applications toxicity testing and biomonitoring. Two different assays, both based on 

fluorescence measurements on primary cell cultures, have been used in the studies. Neither of 

the assays has, to the knowledge of this author, been performed previously on starfish or sea 

cucumbers. Therefore a series of experiments that aimed to develop techniques for non-

invasive cell sampling, to establish primary cell cultures of coelomocytes and to 

accommodate the assays to the coelomocytes from these species were performed. The method 

development and toxicity testing experiments took place in Norway, with coelomocytes from 

the starfish species Asterias rubens. The biomonitoring experiments were conducted in 

Kaštela Bay, Croatia. Here coelomocytes from the sea cucumber Holothuria tubulosa were 

used. An optimalisation for the multixenobiotic resistance- (MXR-) assay was performed for 

this species, while cell culture conditions (cell density and culture medium) were adopted 

from the pilot studies on Asterias rubens. Both species are native and quite common in the 

respective study areas. 

3.1 Collection of animals and sampling areas 

Oslofjord 

Method development experiments were performed in November 2004 (water temperature at 5 

meters depth was between 8.8°C and 11.3°C) on cells from starfish collected in September 

that year. Individuals of the starfish species Asteria rubens were hand picked at 1-2 meters 

depth. Toxicity testing experiments took place in June 2005 (water temperature between 

7.0°C and 7.5°C), on animals hand picked by divers between 1 and 10 meters depths in 

February and March the same year. The animals were kept at NIVAs marine research station 

in Solbergstrand in 300 litre tanks with circulating water taken from the sampling area at 5 m 

depth. During this period the animals were fed ad libitum on mussels (Mytilus edulis). In both 

studies specimens between 5 and 10 cm measured from the base of one arm to the arm tip 

were used and sampling area was the same; along the shore close to Drøbak, Norway. The 

MXR activity level in other species has been shown to be induced with increased 

environmental stress. The water in which the animals were collected and kept has a relatively 

low pollution load. The coelomocytes from the starfish were therefore assumed to express a 

low, inherent level of MXR activity at the beginning of the study.  
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Kaštela Bay 

The biomonitoring experiments took place in October 2004 in and around Kaštela Bay (total 

area 60 km2, average depth 23 meters (Ujevic et al. 2000)), near Split on the coast of southern 

Croatia. The area of the Kaštela Bay is known as one of the most polluted areas along the 

eastern Adriatic coast. The environmental pollution is a consequence of fast industrialisation 

and urbanisation without development of appropriate urban infrastructure, in particular of a 

wastewater collection and disposal system (Margeta and Baric 2001). According to estimates, 

the highly eutrophic Kaštela Bay annually receives 32 million m3 of untreated municipal 

wastewater and 20 million m3 of partially treated industrial wastewater. (Ujevic et al. 2000). 

The bay is contaminated by heavy metals, particularly mercury (Margeta and Baric 2001) but 

also lead, cadmium and manganese (Ujevic et al. 2000).The study period is outside the H. 

tubulosa spawning season (Despalatovic et al. 2004). While the water inside the bay is 

heavily polluted, as described above, the area around the island Šolta outside the bay is 

regarded to have a relatively low pollution load and served as a control site in the experiment. 

The collection of animals at Šolta station was done by bottom trawling between 40 and 50 m 

depths, while trawling inside the bay was between 30 and 40 m depths. Upon collection, the 

animals were put in tanks with aerated sea surface water from the sampling site and kept there 

until sampling of the coelomic fluid. Sampling of coelomic fluid took place within 24 hours 

from capture of the animals. 

3.2 Sample preparations 

Coelomic fluid sampling technique and primary cell culture establishment was similar for all 

experiments, also for the biomonitoring experiments using sea cucumbers. The sample 

preparations are described below, with specifications for the different studies where 

necessary. Individuals that were suspected to be in bad condition, e.g. individuals that had low 

tube foot activity upon examination, were excluded from the study.  

Coelomic fluid was extracted from the animals, using a 1 mL syringe with a 23 gauge needle. 

In starfish, the needle was inserted into the distal third of one arm into the coelomic cavity, an 

extraction technique previously described by (Bekri and Pelletier 2004). In sea cucumbers the 

needle was inserted directly into the body cavity at the anterior end of the animal. Both needle 

and syringe were pre-treated with cold phosphate buffered saline ( PBS - pH=7.8; 0.1 M; 8.5 

mL NaH2PO4 (stock 0.2 M dissolved in distilled water); 91.5 mL Na2HPO4 (stock 0.2 M 

dissolved in distilled water) in 100 mL water and adjusted for the salinity in the sampling area 
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with 2.4% or 3.6% w/v NaCl) as an anticoagulant buffer. The volume of fluid extracted was 

adjusted for individual size of the animal. Typically 0.5 mL was taken from smaller starfish 

and 1 mL was taken from larger starfish. 3-5 mL coelomic fluid was extracted from sea 

cucumbers. The extracts from each individual were mixed with cold culture medium (PBS or 

alternatively cold Leibowitz’s L-15 medium for the culture medium experiment) by a ratio of 

about 1:3 (coelomic fluid:PBS) in a glass tube (all method development and optimalisation 

was performed on pooled samples). To further prevent aggregation of the coelomocytes, the 

tube was kept on ice at all times and gently turned every few minutes.  

The cell density in diluted A. rubens samples was determined by counting particles between 

11 µm and 20µm in a Coulter counter® (MultisizerTM 3, from Beckman CoulterTM).  The 

extract then diluted in a culture medium (PBS or alternatively L-15) to obtain the final wanted 

cell densities for the experiment. The diluted H. tubulosa samples were directly applied to the 

wells of a microtiter plate. Cell density was not established for each sample, however, in four 

samples cell density was determined by microscopy counting, assuring that the cell density 

did not exceed the interval that yielded linear fluorescence results as determined for starfish 

coelomocytes. The cell content was later quantified by protein measurements, using the 

Bradford reagent and procedure.  

Two hundred µL of the cell suspension was applied to each well of a 96-well microtiter plate 

and the plate was incubated in the dark 24 hours (at 15°C for experiments conducted in 

Norway, and at room temperature in the field study in Croatia). This would allow for the cells 

to sink and form a confluent monolayer at the bottom of the well. 

3.3 Cytotoxicity 

The cytotoxicity assay was applied both during establishment of cell culture conditions 

(method development) and for the biomonitoring and toxicity testing studies. The procedure 

was the same for all experiments and is described below.  

The principle of the assays is the intracellular conversion of the dyes into fluorescent 

products. The conversion of alamar BlueTM (AB) is catalysed by reductases, and the rate of 

the conversion is commonly used as a measure of metabolic activity in the cell. 5-

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) is hydrolysed by intracellular 

esterases to 5-carboxyfluorescein (CF). Cells with an intact membrane maintain a cytoplasmic 

environment that supports esterase activity. CF-fluorescence is therefore interpreted as a 

measure of membrane integrity and/or cell viability (Schirmer et al. 1997). 
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The protocol is adapted from (Schirmer et al. 1998): Dye working solutions were prepared by 

adding 11.6 µL CFDA-AM stock solution (4 mM in DMSO) and 579 µL AB to every 11 mL 

PBS. Cell suspension was carefully removed from each well, before 100 µL of dye working 

solution was added. The microtiter plate was incubated for 30 minutes in room temperature on 

an orbital shaker set at 100 rpm. Fluorometric measurements were made on a microtiter plate 

reader (Cytofluor™ 2300, Millipore). Excitation and emission wavelengths were 485 nm and 

530 nm respectively for CF and 530 nm and 590 nm respectively for AB. The dyes are light 

sensitive, and every step of the protocol was carried out in the dark. 

Cell density and culture medium 
Leibowitz’s L-15 medium has been widely used to culture fish cells as well as cells from 

other aquatic species such as mussel (Mytilus galloprovencialis) (Takeuchi et al. 1999), 

shrimp (Penaeus monodon) (Jiraporn and Raewat 1999), and Dublin Bay prawn (Nephrops 

norvegicus) (Mulford and Austin 1998). In order to determine whether a modified L-15 

medium or PBS should be used for the coelomocyte primary cultures and to define a range of 

cell densities in which fluorescence yield would be linear to cell density, the following 

experiment was performed.  

A pooled coelomocyte sample was divided in two groups. One group was diluted in PBS, the 

other in modified L-15 medium (L-glutamine; penicillin; streptomycin; fungizone; NaHCO3), 

as describe above, to densities of (104 - 2*104 - 4*104 - 8*104) cells/200 µL with each density 

in 21 replicates. However, a large part of the L-15 diluted suspension had later to be 

discarded, and final replicate number for this sample is therefore lower and different for the 

different cell densities (5, 3, 3 and 7 respectively). 

The microtiter plates with the cells were incubated in the dark and 15˚C for 7 days. After the 

incubation period, cell viability was assessed using the AB/ CFDA-AM assay described 

above. 

Results are expressed as fluorescence units and as fluorescence divided by cell density 

(fluorescence per cell). 

Time series 
One experiment was performed to follow cell viability over a period, so as to assure that the 

application of a 4-day exposure period in the toxicity testing was appropriate. Using the 

combined AB/CFDA-AM assay, coelomocyte viability was assessed regularly over 11 days. 
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The sample preparations were as described above, using PBS as the culture medium and a cell 

density of 40000 cells/200 µL. The assay was conducted by the procedure described above.  

Results were expressed as fluorescence units. 

Cytotoxicity pilot study 
Cytotoxicity is often expressed relative to a standard curve derived from exposure to a known 

cytotoxic agent such as phenol. To assess the applicability of a phenol standard curve for 

cytotoxicity in coelomocytes, the cells were exposed to phenol in 8 different concentrations, 

before a cytotoxicity assay was run.  

The exposure to phenol was semi-static and performed as follows: Cells in a pooled sample 

were applied to the wells of a 96-well microtiter plate as described above, at a density of 

40000 cells/200 µL. A phenol standard was prepared by diluting phenol stock solutions 

(dissolved in dimethyl sulfoxide DMSO) in PBS to final concentrations between 200 mM and 

0.06 mM. 75 µL of cell suspension was removed from each well of the microtiter plate. 125 

µL of each of the concentrations of phenol was applied to designated wells, each 

concentration in 5 replicates, to obtain final phenolic exposure concentrations of (30 – 100 – 

300 – 103 – 3*103 – 104 – 3*104 – 105) µM in the wells. Some samples were later discarded 

and final replicate number was 3-5. 

The plates were then incubated in the dark and 15˚C for 48 hours. After incubation, the cells 

were re-exposed by removing 125 µL from each well, adding 125 µL of the same phenol 

concentration as previously, and incubated for another 48 hours under the same conditions.  

Results were expressed as fluorescence units. 

3.4 Multixenobiotic resistance 

The multixenobiotic resistance (MXR) assay was used to examine the existence of an MXR 

mechanism in coelomocytes, and later optimalised for both species used. Finally the 

optimalised assay was applied in biomonitoring and toxicity testing experiments. The 

procedure was similar for all experiments, and the procedure for the MXR pilot study is 

described below. Specifications for the two optimising experiments are described in the 

following paragraphs. 

MXR pilot study 
The competitive inhibition of rhodamine efflux in a model cellular system by the addition of 

verapamil is considered one evidence of MXR (Bard 2000). The MXR pilot study was 
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performed to investigate whether or not an inherent MXR mechanism exists in Asterias 

rubens, and if so, it can be measured using an assay based on rhodamine accumulation inside 

cells. 

The principle for the assay is fluorescence measurements of intracellular concentrations of a 

MXR substrate (e.g. rhodamine 123). In cells with MXR activity, a certain amount of 

substrate will be transported out of the cells. When this transport is inhibited by verapamil (or 

other model MXR inhibitors), the intracellular concentration of substrate increases. The 

difference in rhodamine concentration when MXR activity is intact and when it is inhibited, 

will provide a quantitative measure for MXR activity in the cells. The procedure is based on a 

method described by Smital and Kurelec (1997). The original procedure described an assay 

for accumulation of dye in whole specimens of animals, and had to be modified for in vitro 

accumulation of dyes. Rhodamine 123 working solution was prepared by dilution of stock 

solution (5 mM in DMSO) in PBS, to concentrations of 0.08, 0.4 and 2 µM. Verapamil 

working solution concentrations were 2, 10 and 20 µM (prepared from a 5 mM stock solution 

in distilled water). Cell suspension was carefully removed from the wells, leaving the cell 

layer at the bottom. One hundred µL rhodamine 123 working solution and 100 µL verapamil 

(alternatively PBS for control cells) working solution in different concentrations was added to 

designated wells. The cells were incubated for one hour in the dark at room temperature on an 

orbital shaker set at 100 rpm. After incubation, extracellular rhodamine 123 was removed 

from the wells by the careful removal 100 µL incubation media from each well and adding 

100 µL of PBS. This washing step was repeated once. Subsequently all liquid was removed 

from all wells and 100 µL triton x-100 (0.1% in PBS) was added to lyse the cells. 

Fluorescence was measured in the microtiter plate reader Cytofluor™ 2300 (Millipore). 

Excitation and emission wavelengths were 485 nm and 530 nm, respectively.  

This pilot study was performed on a pooled coelomocyte sample, applied to a microtiter plate 

with a cell density of 40000 cells/200 µL. For each concentration of rhodamine 123, each 

concentration of inhibitor was tested twice. Controls were in 6 replicates. 

Results were expressed as fluorescence units. 

Optimisation of MXR for Holothuria tubulosa 
A number of different reagents have previously been proved useful for the MXR 

accumulation assay for different species. Both the fluorescent substrates and the MXR 

inhibitors are expected to have species-specific properties, and in mammals they have been 
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shown to respond differently to different MXR-mediating proteins. Before the biomonitoring 

experiment was started, a preliminary test was conducted to determine which of the MXR 

reagents available, and at which concentrations, would provide the clearer results on 

coelomocytes from Holothuria tubulosa. Only animals from the reference station were 

included in this test. 

The two dyes rhodamine B and calcein AM and the three inhibitors verapamil (non-specific), 

cyclosporine A (selective inhibitor of MDR-like proteins in mammals) and MK-571 (selective 

inhibitor of MRP-like proteins in mammals) were included in this test. Stock solutions were 

diluted in PBS to final concentrations of 0.1 µM for both dyes and 0, 0.1, 1 and 10 µM for all 

inhibitors. The optimisation was performed on a pooled sample with coelomic fluid from 

about 10 animals. The sample was applied to two different microtiter plates, in 36 wells on 

each plate. Thus the two dyes were kept on different plates. The MXR assay procedure was 

similar to the one described above, but with one modification: One hundred µL of incubation 

suspension was removed from the 72 wells, 50 µL of dye and 50 µL of inhibitor was added.  

Also the fluorometric readings were performed with a different microtiter plate reader, the 

Fluorolite 1000 (Dynatech) with excitation and emission wavelengths at 535 nm and 590 nm, 

respectively, for rhodamine B and 485 nm and 530 nm for calcein AM. 

Every combination of dye and inhibitor was tested in triplicate. This would leave a total of 18 

wells without inhibitor (9 wells for each dye). Fifty µL PBS was added to these wells, so that 

they served as controls.  

Results were expressed as fluorescence units. 

Optimisation of MXR-assay for Asterias rubens 
In November 2004 coelomic fluid was extracted, pooled and seeded onto microtiter plates as 

described for the method development experiments. 

The dyes rhodamine B and rhodamine 123 and the inhibitors verapamil, MK-571 and 

cyclosporine A were tested in the optimising study. Concentrations were as follows: 

Rhodamine B and rhodamine 123 0.1 µM. Verapamil, MK-571 and cyclosporine A each in 

0.1, 1 and 10 µM. The procedure for the assay was as described above, with one modification: 

One hundred µL of the cell suspension in the well was removed and 50 µL of dye and 50 µL 

of the chosen inhibitor added to achieve the wanted final concentrations in the designated 

wells. The fluorescent substrates were added to 48 wells each. Each inhibitor was added to 12 

of the 48 wells, with the three different concentrations in 4 replicates. Wells with only dye 



Materials and methods 

26 

and no inhibitor (50µL of PBS added) was in 12 replicates per dye. Excitation and emission 

wavelengths were 485 nm and 530 nm, respectively for rhodamine 123 and 535 nm and 590 

nm, respectively for rhodamine B.  

Results were expressed as fluorescence units. 

3.5 Data/statistical analysis 

Statistical analyses were performed with Statistica software (version 6.1; Statsoft Inc.). 

Data from the MXR optimisations were checked for homogeneity of variances using Levene's 

test and for normality of error in a normal-probability plot before ANOVA was applied. 

Dunnett's test was applied as the post-hoc test. In the case of non-homogeneity of variances, 

data were log-transformed and Levene's test and further analyses run on the log-transformed 

data.  

Significance level was set at p<0.05.
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4.1 Cytotoxicity 
Cell density and culture medium 
Only very small differences could be observed between cells cultured in PBS and cells in L-

15 medium. This was true for both membrane stability (CF fluorescence) (Figure 10) and 

metabolic integrity (AB fluorescence) (Figure 11) at all the tested cell densities. At the cell 

density of 40000 cells/200 µL, CF fluorescence was slightly higher in the L-15 group. 

Regardless of culture media used, both CF and AB fluorescence were evaluated to increase in 

a linear manner when cell density increased in the interval 10000 to 40000 cells/200 µL. 

Fluorescence per cell declined in a linear manner with increasing cell density up to 

40000cells/200 µL (Figure 12 and 13).  
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Figure10. CF fluorescence in coelomocytes cultured at different cell densities in PBS (hatched bars) or 

modified L-15 medium (cross-hatched bars). Depicted in plot: Median, quartiles, 10 and 90 percentiles.  
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Figure 11. AB fluorescence in coelomocytes cultured at different cell densities and in PBS (hatched bars) 

or modified L-15 medium (cross-hatched bars). Median, quartiles, 10 and 90 percentiles.  
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Figure 12. CF fluorescence per cell in coelomocytes cultured at different cell densities and in PBS (hatched 

bars) or in modified L-15 medium (cross-hatched bars). Median, quartiles, 10 and 90 percentiles.  
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Figure 13. AB fluorescence per cell in coelomocytes cultured at different cell densities and in PBS (hatched 

bars) or in modified L-15 medium (cross-hatched bars). Median, quartiles, 10 and 90 percentiles. 
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Time series 
Cell viability measured as metabolic activity and membrane integrity, was time-dependent 

(Figure 14). The decrease in membrane integrity was evaluated to be stable in the time 

interval 1-11 days. The metabolic activity had a decrease between day 1 and day 2, and was 

then stable through day 6. On day 11 metabolic activity increased, and was quite similar to 

day 1.  
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Figure 14. AB (hatched bars) and CF (cross-hatched bars) fluorescence in coelomocytes cultured for 

different periods of time. Depicted in plot: median, quartiles and 10 and 90 percentiles. 
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Cytotoxicity pilot study 
Cell viability seemed negatively affected by phenol exposure. Both membrane integrity 

(Figure 15) and metabolic activity (Figure 16) decreased after exposure to the highest 

concentration of phenol applied. The other concentrations had less effect on metabolic 

activity, while membrane integrity was lower than control also for these cells.  
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Figure 15. CF fluorescence in coelomocytes after exposure to different concentrations of phenol for 2*48 

hours. Median, quartiles and 10 and 90 percentiles. Note scale break from 0 to 1000 on y-axis. 
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Figure 16. AB fluorescence in coelomocytes after exposure to different concentrations of phenol for 2*48 

hours. Median, quartiles and 10 and 90 percentiles.  Note scale break from 0 to 2500 on y-axis. 
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4.2 Multixenobiotic resistance 
MXR pilot study 
Intracellular rhodamine 123, measured as fluorescence, was not detectable after incubation 

with 0.04 µM dye (rhodamine 123). Cells incubated with 0.2 µM or 1 µM dye had rhodamine 

123 fluorescence larger than control. However, fluorescence in the 0.2 µM incubated group, 

was not higher when cells were co-incubated with MXR-inhibitor (verapamil). Cells co-

incubated with 1 µM dye and either 1 µM or 5 µM verapamil, had the expected higher 

fluorescence compared to cells incubated with 1 µM dye alone. Cells co-incubated with 10 

µM verapamil had a lower fluorescence (comparable to control cells).  

Optimisation of MXR-assay for Holothuria tubulosa coelomocytes 
There was a slight, but not significant increase in rhodamine B accumulation when cells were 

incubated with lower concentrations of the MXR-inhibitors verapamil or cyclosporine A 

(Figure 17). At higher concentrations, fluorescence decreased. When calcein AM was used as 

the fluorescent dye, results were highly variable and the model MXR-inhibitors used in this 

test did not seem to affect calcein-AM accumulation (Figure 18).  
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Figure 17. Rhodamine B (0.1 µM) accumulation in coelomocytes after co-incubation with the model 

inhibitors verapamil (hatched bars), cyclosporine A (cross-hatched bars) or MK-571 (dotted bars).  

Median, quartiles and 10 and 90 percentiles. 
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Figure 18. Calcein AM (0.1 µM) accumulation after co-incubation with the model inhibitors verapamil 

(hatched bars), cyclosporine A (cross-hatched bars) or MK-571 (dotted bars). Shown in plot: Median, 

quartiles and 10 and 90 percentiles. 

 
Optimisation of MXR-assay for Asterias rubens coelomocytes 
Comparing the two dyes, rhodamine B fluorescence was less variable (Figure 19) than 

rhodamine 123 fluorescence (Figure 20). When cells were incubated with 0.1 µM of either 

cyclosporine A or MK-571, rhodamine B accumulation was significantly higher then in cells 

that had not been incubated with MXR-inhibitor (ANOVA, p<0.05). Other differences were 

not significant.  
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Figure 19. Rhodamine B (0.1 µM) accumulation after co-incubation with the model inhibitors 

cyclosporine A (hatched bars), MK-571 (cross-hatched bars) or verapamil (dotted bars). Median, quartiles 

and 10 and 90 percentiles. 
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Figure 20. Rhodamine 123 (0.1µM) accumulation after co-incubation with the model inhibitors 

cyclosporine A (hatched bars), MK-571 (cross-hatched bars) or verapamil (dotted bars). Median, quartiles 

and 10 and 90 percentiles.
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From the preliminary studies it was concluded that coelomocytes may be cultured in 

microtiter plate wells and that coelomocytes respond to the AB and CFDA-AM cytotoxicity 

assay. Furthermore, MXR activity was found in both echinoderm species in these studies. It 

is, to the knowledge of this author, the first time MXR activity is shown for A. rubens and H. 

tubulosa, or for any starfish or sea cucumber species. 

CF fluorescence was slightly higher in the L-15 group at the cell density of 40000 cells/well. 

Nevertheless it was decided to culture the cells in PBS. This medium provided satisfactory 

results in the cytotoxicity assay, and was chosen for its simplicity and low cost. Although 

fluorescence per cell decreased, a higher cell density yielded higher total fluorescent values, 

which is desirable because it is expected to increase the sensitivity of the test. The subsequent 

cytotoxicity development was therefore conducted with a cell density of 40000 cells/200 µL, 

which provided the maximal total fluorescence within the linear area of the fluorescence 

graph. 

Up until day 6, cell viability followed the expected pattern. On day 11, an unexpected 

increase in metabolic activity occurred. The reason for this increase is unknown, but one 

possibility is a high occurrence of apoptotic cells with high metabolic activity. Regardless of 

reason for the increase, it may not be recommended to use coelomocyte primary cultures older 

than 6 days for future assessments. 

Cell viability was negatively affected by phenol exposure. However, because of the poor 

dose-dependency for the intermediate phenol concentrations, it was decided not to use this 

phenolic standard curve to quantify cytotoxicity, but to apply the highest (105 µM), the lowest 

(30 µM) and one intermediate phenol concentration (300 µM) as quality assessment. Viability 

would then be expressed as fluorescence relative to control cells.  

It was indicated in the preliminary MXR study that coelomocytes Asterias rubens possess an 

inherent MXR activity, and that this activity may be measured using a rhodamine 

accumulation assay. Verapamil is a non-specific MDR inhibitor (chemosensitiser) in 

mammalian cells, and is expected to affect all MXR mediating proteins similarly. The nature 

of the MXR mediating proteins that are present in echinoderms is therefore not indicated in 

this test. The decrease in intracellular rhodamine 123 at higher concentrations of inhibitor is 

interpreted as a cytotoxic effect of the inhibitors. 
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It was decided to use rhodamine B as the dye in MXR assay of coelomocytes from Holothuria 

tubulosa, and to apply the dye in combination with the inhibitor 0.1 µM verapamil. MXR 

activity in H.tubulosa was sensitive to both verapamil and cyclosporine A, indicating the 

existence of MDR-like proteins in this species. The lack of sensitivity to MK-571 and the 

calcein AM data is an indication that this species do not possess MRP-like proteins, or that 

they have low levels of this protein (/these proteins) compared to other MXR mediating 

proteins. The decrease in intracellular rhodamine B at higher concentrations of inhibitor is 

most likely due to cytotoxic effects of the inhibitors, as proposed above. 

It was decided to use rhodamine B in combination with the inhibitor 0.1 µM MK-571 for the 

MXR assays on coelomocytes from A. rubens. All three model inhibitors were able to alter 

rhodamine B accumulation in this species, indicating the presence of both MDR-like and 

MRP-like proteins in A. rubens coelomocytes The decrease when higher concentrations of 

MXR inhibitor was used, is most likely due to cytotoxic effects. 

In the toxicity testing experiments, MXR activity was altered after treatment with any of the 

six test substances. Cytotoxicity parameters were altered for three (metabolic activity) and 

two (membrane stability) substances. Although direct comparisons are difficult to make, the 

assay seems to be as sensitive as reported for other cell systems. A notable exception is for 

perfluorinated substances, which induced alterations at concentration lower than previously 

reported. 

MXR-activity was significantly higher in cells from polluted sites in the biomonitoring 

experiment. Metabolic activity in mussel haemocytes was lower at contaminated sites, while 

membrane integrity was less sensitive; one of the contaminated sites had lower haemocyte 

membrane integrity. The results for sea cucumber coelomocytes were probably influenced by 

different trawling times during collection of animals; apparently cells from the reference site 

had lower cell viability. 

In summary, the method development, toxicity testing and field studies demonstrated the 

applicability of the coelomocytes for use in cell based bioassays. The cytotoxicity and MXR 

assays may be rapid, inexpensive and easily performed alternatives in biomonitoring and 

toxicity testing. Both assays have provided results in a biomonitoring setting and in toxicity 

testing, but generally the MXR assay seems to be the more sensitive assay. However, the 

cytotoxicity assay may provide important information on the test system as a whole, and the 

importance of applying several endpoints in toxicity tests is emphasised by these authors
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The results presented here (including those described in the article manuscripts) holds 

promise for the coelomocyte model system and the cytotoxicity and MXR activity assays as 

tools in toxicity testing and biomonitoring. However, these studies are preliminary in nature 

and further caracterisations of both cells responses and methods are needed before such 

implementation may take place.  

Firstly, the coelomocytes need to be characterised by their baseline levels and variability of 

MXR activity, and the  proteins mediating the resistance should be identified. Although 

induction of activity have been described numerous times for individuals in polluted areas, no 

attempts have been made (to the knowlegde of this author) to relate the activity to pollution 

gradients. Also dose-dependencies after in vitro exposure should be assessed.  

It is recommended to use inhibitor/non-inhibitor ratios when applying MXR-assays, as 

alterations in metabolic activity or membrane permeability may be confounding variables. 

One also avoids the possibility of reduced intracellular rhodamine being simply due to lower 

numbers of viable cells. Even when the ratio of MXR activity is applied (so that the number 

of viable cells at the end of the assay/incubation period is accounted for), the combination 

with a cytotoxicity assay offers the advantage of a more complete picture of the toxic effects 

on the cells. 

Finally, the findings of possible adverse effects of PFNA and PFOS at extremely low (and 

environmentally exceeded) concentrations should be an incentive for further reasearch on 

perfluorinated substances.  
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Abstract 

Within biomonitoring the common practice is to analyze the concentrations of pollutants 

in the organisms. However, focus is shifting towards an approach which combines such 

chemical analyses with measurements of effects of the contaminants in the organisms. In 

this study, the objective has been to develop methods for such monitoring of effects in cells 

from two aquatic organisms, the blue mussel Mytilus edulis and the sea cucumber 

Holothuria tubulosa. Both species are sedentary, common and widely distributed, but 

differ in habitat and feeding habits. The blue mussel inhabitates rocky bottoms and is a 

filter-feeder, while the sea cucumber often is found in muddy/sandy areas and is a deposit-

feeder. The blue mussel is commonly used in environmental monitoring. The sea cucumber 

has not previously been used in a monitoring perspective. Haemocytes and coelomocytes 

from these species were used as biomarkers on pollution. Cell viability and MXR-activity 

bioassays were adapted and evaluated for use in this cell model in a field study in Kaštela 

Bay, Croatia. The cell viability was assessed with the two parameters metabolic activity 

(measured as alamar Blue-reduction capacity) and membrane integrity (measured as 

CFDA-AM-conversion capacity). MXR-activity is measured as capacity to extrude a 

fluorescent model substrate from the cell. Pollution load has previously been shown to 

change MXR-activity and reduce cell viability in many aquatic organisms, although the 

assays have not yet been incorporated in environmental monitoring practice. The study 

area is known to be one of the most polluted areas along the eastern Adriatic coast. 

Organisms in this area are expected to experience severe environmental stress from a 

range of different pollution categories, such as industrial waste, pesticides, heavy metals 

and untreated sewage. Both assays gave significant results, but the MXR-activity assay 

appeared to be more sensitive. However, the importance of measuring several parameters 

simultaneously is emphasised, as this increases the understanding of the model system as 

a whole. 
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Introduction 
Biomonitoring is a collective term for techniques that use living organisms to produce 

information about biotic and abiotic components of an environment. The basis for 

environmental monitoring today is the determination or prediction of contaminant levels in 

the environment, in animals and in their organs, and a comparison of these levels with 

threshold values and their known effects. This will provide information about which 

pollutants are present in the environment/ indicator species, at which concentrations and 

where it can be found. But the presence of pollutants in an aquatic ecosystem does not by 

itself indicate deleterious effects on living organisms. Measurement of biological responses to 

an environmental chemical at individual level or below might provide such information (van 

der Oost et al. 2003). A response to a chemical at this level has been defined as a biomarker 

by Walker et al. (2001). The notion that chemical approaches should be combined with an 

effect-based biomarker approach, has been promoted for more than 25 years (Alabaster and 

Lloyd 1980; Sarakinos et al. 2000). Yet, this has still not been fully implemented. 

As the interest in an effect-based approach has increased, so have efforts to develop new and 

reliable biomarkers. There are certain criteria which are important when choosing a 

biomarker. First, the assay to quantify the biomarker should be robust, relatively cheap and 

easy to perform and the biomarker response should be sensitive to pollutant exposure and 

effects in order to serve as an early warning parameter. Baseline data of biomarker should be 

well defined in order to distinguish between natural variability (noise) and contaminant 

induced stress. The impacts of confounding factors to the biomarker response, underlying 

mechanism of the relationship between biomarker response and pollutant exposure and 

toxicological significance of the biomarker and organism should be well established (van der 

Oost et al. 2003). It has also been suggested that the biomarker should be non-invasive or 

non-destructive to allow or facilitate biological monitoring in protected or endangered species 

(Fossi et al. 1997). Using a non-invasive sampling technique will allow for the same 

individuals to be sampled repeatedly and decrease the number of animals required in the assay 

and allow the monitoring to continue over a period of time. 

When biomarkers are used in risk assessment, ideally the same biomarker should be measured 

in different species to obtain insight in the variation in sensitivity (den Besten 1998). 

Therefore, the implementation of biomarkers in environmental monitoring requires the 

selection of vertebrate  and invertabrate species which can be regarded as representative of the 
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diversity in life strategies that are found in nature (den Besten 1998). In addition to this, the 

species should be relatively stationary, robust against handling and culture keeping and well 

characterized in terms of biology and physiology so that the pattern of exposure is known and 

sources of uncontrolled variation can be minimized. 

Bivalves are dominant members of coastal and estuarine communities and have a widespread 

geographical distribution. They are sedentary and relative tolerant to a wide range of 

environmental conditions. The populations are large and can bear repeated sampling, and they 

can easily be transplanted into areas of interest.  Mussels are also filter feeders that pump 

large volumes of water and concentrate pollutant in their tissues and make it available to other 

trophic level in the aquatic community. They play an important part of the food supply in the 

predator community (Widdows and Donkin 1992). 

Holothuria tubulosa inhabitates muddy, corse and fine sands and detritic bottoms, and 

dominates the soft-bottom community in shallow areas in the Adriatic (Zavodnik, 1971). H. 

tubulosa is a deposit feeder and by its occurence in coastal and estuarine waters it is directly 

exposed to anthropogenic contaminants. The contaminant exposure is expected to differ from 

the exposure in blue mussels: while the mussels will be exposed to the water-fraction and the 

dissolved organic matter (DOM)-fraction of contaminants, sea cucumbers will to a greater 

degree be exposed to the sediment fraction (note that this fraction also will contain DOM 

from the water column). 

For the cell based assays in this study, hemocytes and coelomocytes were chosen as model 

cells. Haemocytes and coelomocytes represent the most important internal defence 

mechanism in marine bivalves (Gosling 2003) and echinoderms (Smith and Davidson 1992), 

respectively. Haemocytes are not confined to the hemolymph system, but moves freely in and 

out of the sinus into surroundings connective tissues, mantle cavity and gut lumen. The 

hemolymph also plays an important role in gas exchange, osmoregulation, nutrient 

distribution and elimination of wastes. The cells react to foreign substances and by 

phagocytosis or encapsulation, and infection is generally accompanied by intense proliferation 

of haemocytes. It is suggested that the intensity of the proliferation could be used as a 

quantifiable determination of the immunodefence response to physiological or pathological 

stress. Various pollutants are known to exert adverse effect on the immunity, and this can 

affect resistance to infection and thus influencing survival (Gosling 2003). Coelomocytes are 

circulating cells in the echinoderm body cavity. Sea urchin coelomocytes have been shown to 

respond to stress conditions (Matranga et al. 2000) and has also been used as indicators of 
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pollution (Matranga et al. 2000). To our knowledge, coelomocytes from holothurians have not 

previously been used as models for contamination effects. 

Assays of cell viability assays have a broad application both within cell culturing and in the 

use of in vitro toxicology. In this experiment, the two molecular probes alamar BlueTM and 

CFDA-AM were used in a cell viability assay. Alamar BlueTM is reduced by cellular 

reductases, possibly by diaphorases or by NADH dehydrogenase (O'Brien et al. 2000) to form 

a fluorescent product. The reduction has been believed to take place on the mitochondria of 

the cells, but no evidence for this was found by O’Brien et al (2000). The probe is water 

soluble and can diffuse freely along the concentration gradient in both reduced and oxidized 

form. Herein, alamar BlueTM fluorescence will be referred to as the metabolic activity of the 

cells. The esterase activity is measured by the molecular probe 5-carboxyfluorescein 

diacetate, acetoxymethyl ester, CFDA-AM. This probe is converted by non-specific esterases 

in living cells to a non-polar, fluorescent dye. The substrate thus diffuses rapidly into the cell 

while the product diffuses slowly out of the cells and the amount of product can be read 

fluorometrically. The fluorescence readings will reflect the membrane integrity of the cells. 

This is either because of reduced esterase activity when the cytoplasmic environment is 

disturbed in cells with lower membrane stability, or because metabolised CFDA-AM diffuses 

more rapidly from cells with lower membrane integrity. Because the two probes are measured 

at different emission wavelengths both dyes can be added together to perform the assay in one 

single step, and provide a measure for cell viability. This will both reduce time and cost spent 

on the assay. The probes do not have to be removed from the wells, and the assay may be 

conducted immediately after the incubation without further procedures (Ganassin 2000). 

The ability of aquatic organism to live and reproduce in polluted areas, and hold cell and 

tissue levels of contaminants below observed concentration in the surrounding environment 

indicates a well working defence system. It has been shown that aquatic organisms possess a 

mechanism similar to the multidrug resistance phenomenon observed in tumour cells resistant 

to anti-cancer drug (Kurelec and Pivcevic 1991; Kurelec 1992; Minier and Galgani 1995; 

Keppler and Ringwood 2001). Induction of this mechanism, named multixenobiotic resistance 

(MXR), has been reported in numerous studies of aquatic organism after exposure in 

laboratory or in environment by anthropogenic contaminants or natural stress (Kurelec et al. 

1995; Minier and Moore 1996; Eufemia 2000; Minier 2000; Smital et al. 2003). If the cells 

have a mechanism to remove harmful compounds from their environment it might prevent 

injurious effects. MXR is caused by energy-dependent pumping of substances out of the cells. 
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This removal is conducted by certain transmembrane proteins, probably can several different 

proteins act at the same time in one cell and the substrates are both endogenous chemicals and 

xenobiotics. The accumulation and toxic effects of substances in the cells, can thus be 

prevented (Kurelec 1992). The protective role of the defence appears to be fragile: As 

opposed to MXR induction, it is also demonstrated that there are many classes of chemicals 

which are capable of inhibiting the MXR function. These are referred to as chemosensitisers, 

and can be environmentally hazardous chemicals, because they may lead to accumulation of 

xenobiotics and elevate internal levels of toxins in organisms (Smital and Kurelec 1998). 

Elevated MXR-activity might occur via multiple mechanisms, and the factors to explain it are 

not fully understood (Bard 2000). The induction or inhibition of MXR has not yet been 

established as a biomarker on environmental pollution (van der Oost et al. 2003). 

The objectives of this study were to develop non-invasive biomonitoring techniques, using 

coelomocytes from echinoderms and haemocytes from bivalve molluscs as models and to 

adapt cell-based bioassays with MXR-activity and cell viability as endpoints. 

Materials and methods 

Study area 

The study took place in October 2004 in and around Kaštela Bay (Figure 1). Kaštela Bay 

is the largest bay in the central part of Croatian coast with a total surface area of 60 km2 

and an average depth 23 meters Annual mean salinity is around 34‰ in the surface layer 

and 37‰ in bottom layers and the water renewal period of the entire bay is 1 month 

(Ujevic et al. 2000). The bay is known as one of the most polluted areas of the eastern 

Adriatic coast, largely as a consequence of fast industrialization and urbanization without 

development of appropriate urban infrastructure, in particular of a wastewater collection 

and disposal system (Margeta and Baric 2001). Today approximately 32 million m3 of 

untreated municipal waste water and 20 million m3 of partially treated industrial waste 

waters are discharged into the bay annually (Ujevic et al. 2000). Major industries located 

along the coast are shipbuilding, cement production, chemical factories and metal 

processing. In the towns of Kaštela and Trogir only 25% of the inhabitants are served by 

municipal sewage treatment works. The bay is contaminated by heavy metals, particularly 

mercury (Margeta and Baric 2001), but also by lead, cadmium and manganese (Ujevic et 

al. 2000). After chemical analysis of the tissues from M. galloprovincialis from the bay, 

high concentrations of heavy metals, PCBs and PAHs were found (Ruus, personal 
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communication). While the water inside the bay is heavily polluted, the area around Šolta 

is viewed as having a relatively low pollution load and served as a control site for the 

study. 

Collection of blue mussels and sea cucumbers 

Mytilus galloprovincialis were collected at five different locations inside and outside the 

Kaštela Bay (figure 1). The shipbuilding yard in Trogir, Adriavinil, which is close to an old 

factory believed to be a source of mercury, and Vranjic, close to the main sewage discharge 

from Split. All three stations are located inside the bay. Mussels from these places would be 

exposed to a range of pollutants such as mercury and lead, antifouling containing organic tin 

compounds, pharmaceuticals and halogenated hydrocarbons. Outside the bay, cultured 

mussels from a shellfish farm and from the island of Šolta were used. Ten mussels were 

sampled from each station. At the shipbuilding yard in Trogir only five were sampled because 

of high mortality among the caged animals. The study period was outside the spawning 

season for M. galloprovincialis. The sizes of the mussels were 4-8 cm. The mussels were kept 

in big tanks with aerated surface water from the Šolta sampling site overnight. 

Sea cucumbers (Holothuria tubulosa) were collected by bottom trawling at two locations, one 

inside Kaštela Bay and one close to the island Šolta (Figure 1). The study period is outside the 

H. tubulosa spawning season (Despalatovic et al. 2004). The collection of animals at Šolta 

station was done between 40 and 50 m depth. In Kaštela Bay, collection was done at 30-40 

meters. The animals were kept in tanks with aerated surface water from the respective sites 

until sampling of the coelomic fluid. 
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Figure 4: Kaštela Bay and surroundings, Croatia; sampling locations are indicated by stars (mussels) and 

circles (sea cucumbers). 

 

Sample preparations 

Sampling of hemolymph from blue mussels and coelomic fluid from sea cucumbers took 

place within 24 hours from collection of the animals. The sampling was done using a 1 ml 

syringe with a 23 gauge needle, both pre-treated with cold PBS (36‰ w/v NaCl). 

Hemolymph from the blue mussels was withdrawn from the posterior adductor muscle and 

put in individual glass tubes containing 1 ml PBS (36‰ w/v NaCl) and the sample was 

further diluted with an equal amount of PBS (36‰ w/v NaCl). From the sea cucumbers, 3-5 

mL of coelomic fluid was withdrawn from each individual and the coelomic fluid diluted 1:4 

in cold PBS in separate glass tubes. Cell suspension from each individual was seeded into the 

wells of 96 well microtiter plates, with 200 µl pr well, in 8 replicates pr. individual. The cells 

in the microtiter plates were then incubated in the dark at room temperature for 24 h to 

achieve a confluent monolayer at the bottom of each well. 

Quantification of haemocytes 

Each individual sample was fixed in paraformaldehyde (50:150 µl) and stored in 1.5 mL 

eppendorf tubes. Quantification of the haemocytes in this fixed cell suspension was done 

using a MultisizerTM 3 Coulter counter with size settings ranging from 3-15 μm. 

Quantification of coelomocytes 
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Coelomocytes were quantified using the commercial kit Quick StartTM Bradford protein assay 

from Biorad using Bovine serum albumin standards (Bradford 1976). 

Cytotoxicity assay 

Cell viability was assessed by the assay simultaneously using alamar BlueTM for metabolic 

integrity and CFDA-AM for membrane integrity. The protocol is adapted from (Schirmer et 

al. 1998): After 72 hours the media was carefully removed from the wells and 100 µl PBS 

(36‰ w/v NaCl) containing 4µM CFDA-AM and 5% (v/v) alamar BlueTM was added to each 

well. The microtiter plates were incubated for 30 minutes in room temperature in the dark. 

The fluorometric readings were performed on the plate reader Fluorolite 1000 Dynatech. 

Excitation and emission wavelengths were 485nm and 530nm respectively for CFDA-AM 

and 530 nm and 590 nm respectively for alamar BlueTM. The dyes are light sensitive, and 

every step of the protocol was carried out in the dark. 

Results were expressed separately for the two probes, and on the mean of replicates for each 

individual. Different parameters for membrane integrity and metabolic integrity can be 

derived from the fluorometric readings. For blue mussels the parameters used are fluorescence 

values relative to the median of the fluorescence values for cells from the control site Šolta. 

For sea cucumbers the parameters used are fluorescence relative to protein content of the 

individual samples. 

Quality control of the cytotoxicity assay 

An internal standard followed all microtiter plates for the cytotoxicity assay, so that variation 

between different plates could be monitored. 

 

Multixenobiotic resistance assay 

In order to find the most suitable MXR reagents among the reagents available for the species 

in this study, as well as the best suited concentration of inhibitor, a preliminary test was 

conducted. The three dyes rhodamine B, rhodamine 123 and calcein AM and the three MXR-

inhibitors verapamil, cyclosporine A and MK571 were included in this test. Final 

concentrations were 0.1 µM for all three dyes and 0.1 µM, 1 µM and 5 µM, respectively, for 

all three MXR-inhibitors. The test was conducted on pooled hemolymph from the shellfish 

farm and pooled coelomic fluid from sampling site Šolta. All combinations of dye and 

inhibitor were tested in triplicates. 
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The preliminary tests lead to the decision to use different procedures for the MXR-assay for 

the two model species. For blue mussels preliminary testing resulted in the use of 

rhodamine123 (0.1 µM) as a dye, and no MXR-inhibitor. The assay was performed on 

individual samples. 20 µl media from each well was removed and replaced with 20 μL 

rhodamine 123 to obtain final wanted concentrations in the wells. After 1 hour incubation in 

the dark at room temperature, the cells were washed by removing 100 μL solution from each 

well and replace it with 100 μL PBS (36 ‰ w/v NaCl). This washing step was repeated. After 

the second washing step, all solution was carefully removed from each well, and 100 µL 

triton X-100 (0.1% v/v in PBS) was added. Fluorescence measurements were performed on 

the fluorescence plate reader, with excitation and emission wavelengths of 485 nm and 

530 nm, respectively. MXR-activity was expressed relative to the reference site Šolta, which 

was done by dividing the median of fluorescence values for individuals by a random chosen 

value originating from the control site Šolta. 

For sea cucumbers the assay on was performed on individual samples, using 0.1µM 

rhodamine B and 0.1 µM cyclosporine A. One hundred µL of the cell suspension in the well 

was removed and 50 µl of dye and 50 µl of the chosen inhibitor were added to achieve the 

wanted final concentrations in the designated wells. The rinsing and fluorometric readings 

were as described for blue mussels. Fluorescence measurements were adjusted for protein 

content in the respective sample. Some samples had to be discarded and the final number of 

individuals was 10 from Šolta and 5 from Kaštela. Each individual was analysed in four 

replicates, and analyses are performed on the mean of these replicates. MXR-activity is 

expressed as the ratio of fluorescence measurements when no model Pgp-inhibitor is present 

and measurements with the model Pgp-inhibitor cyclosporine A present. 

Quality control for the MXR-assay 

An internal standard followed all microtiter plates for the MXR-assays, so that variation 

between different plates could be monitored. 
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Statistical analysis 

Statistical analyses were performed with Statistica 6.0 from StatSoft, Inc. 

H0a: “There are no differences between cells originating from blue mussels sampled at the 

different stations”. The data were analysed with Kruskall-Wallis analysis. Significant level for 

the rejection of H0 was set to p≤0.012 according to Bonferroni correction with n equals 5 

(Fisher and van Belle 1993) . 

H0b: "There are no differences between cells originating from sea cucumbers collected near 

Šolta and in Kaštela". Level of significance for the rejection of H0 was set to p<0.05. 

Normality of distribution for each sampling station was assessed in a normal-probability plot. 

Data that were found to be normally distributed were analysed using t-test. Data that were 

found not to be normally distributed were log-transformed and log-transformed data assessed 

for normality of distribution prior to t-test. 

 

Results 

Quantification of haemocytes 

All results for haemocyte content and shell size were expressed relative to values from 

randomly chosen individuals collected at the reference site Šolta. The cultured mussels 

from the shellfish farm had a significantly higher concentration of haemocytes in their 

hemolymph compared to Šolta mussels (Kruskall-Wallis test, p=0.0009) and the highest 

median concentration of all stations (figure 3). These mussels also had a significantly 

larger shell size (figure 2) (Kruskall-Wallis test, p= 0.0006). The animals from Adriavinil 

were significantly smaller than the Šolta mussels (Kruskall-Wallis test, p=0.0013) 

Concentration of haemocytes in the hemolymph did not show any significant differences. 

Animals from Vranjic had a significantly higher concentration of haemocytes (Kruskall-

Wallis test, p=0.0012). The size was not significantly different from the reference. From 

the shipbuilding yard in Trogir no significant differences in size or concentration 

compared to reference were found. 
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Figure 5. Length of the shell from mussels (Mytilus edulis) collected at five different sampling sites 

(n=10, except from Trogir station: n=5). Lines are median length, boxes are quartiles and whiskers 

are 10 and 90 percentiles. Scale break from 0.5 to 4.0 cm on the Y-axis. 
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Figure 6. Concentration of haemocytes in the hemolymph in animals from five different sampling 

sites. Lines are median concentration, boxes are quartiles and whiskers are 10 and 90 percentiles. 

Scale break from 1 to 12 cm on the Y-axis. 

 

Quantification of coelomocytes 

No significant differences between stations in protein content in the samples were found in 

this experiment (figure 4). 
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Figure 7: Protein content in sea cucumber (Holothuria tubulosa) coelomic fluid samples taken from 

individuals at sampling station Šolta (n=10) and sampling station Kaštela (n=5). Lines are medians, 

boxes are quartiles and whiskers are 10 and 90 percentiles. 
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Cell viability assay 

Results for the cell viability assay on mussels are expressed relative to the median values 

from the reference site Šolta. Haemocytes from the mussels collected at the island of  

Šolta (figure 5) had the highest metabolic integrity, and haemocytes from animals 

collected at Adriavinil showed the lowest activity with 0.6 of the activity compared to 

Šolta (Significantly different, Kruskall-Wallis test, p=0.0002). From the shipbuilding yard 

in Trogir haemocytes had 0.7 metabolic integrity compared to Šolta (Kruskall-Wallis test, 

p=0.0002) At the site Vranjic the haemocytes had an activity at 0.8 (Significantly 

different, Kruskall-Wallis test, p=0.0001).There were not found any significant differences 

in metabolism were between haemocytes from cultured mussels from the shellfish farm 

and mussels from Šolta. 
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Figure 8: Metabolic integrity measured at five different sampling sites. Metabolic integrity in 

haemocytes was measured by the molecular probe alamar Blue. Lines are medians, boxes are 

quartiles and whiskers are 10 and 90 percentiles. 

 

Membrane integrity had a large variation from in the four sites Adriavinil, Šolta, Shellfish 

farm and Vranjic, but only in the haemocytes sampled from the caged mussels in Trogir 

had a significant lower integrity compared with integrity in mussels from Šolta (Kruskall-

Wallis test, p=0.001) The membrane integrity being 0.2 of the values from Šolta (figure 

6). 
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Figure 9: Membrane integrity measured at five different sampling sites. Membrane integrity in 

haemocytes was measured by the molecular probe CFDA-AM. Lines are medians, boxes are quartiles 

and whiskers are 10 and 90 percentiles. 

 

Metabolic integrity in sea cucumber coelomocytes have been expressed as alamar BlueTM 

fluorescence units relative to protein content of the individual samples (figure 7). 

Metabolic integrity in sea cucumber coelomocytes was found to be normally distributed in 

a normal-probability plot. Metabolic integrity was significantly higher in Kaštela 

cucumbers compared to Šolta cucumbers (t-test; p=0.000002). 
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Figure 10: Metabolic integrity measured in sea cucumber (Holothuria tubulosa) cells taken from 

individuals sampling station Šolta (n=10) and sampling station Kaštela (n=5). Metabolic integrity 

given as alamar Blue fluorescence units per protein content in the sample. Lines are medians, boxes 

are quartiles and whiskers are 10 and 90 percentiles. 
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Membrane integrity in sea cucumber coelomocytes is expressed as CFDA-AM 

fluorescence units relative to protein content of the individual samples (figure 8). 

Membrane integrity in sea cucumber coelomocytes was found to be normally distributed 

in a normal-probability plot. Membrane integrity was significantly higher in Kaštela 

cucumbers (t-test: p=0.000007). 
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Figure 11: Membrane integrity measured in sea cucumber (Holothuria tubulosa) cells taken from 

individuals sampling station Šolta (n=10) and sampling station Kaštela (n=5). Membrane integrity 

given as CFDA-AM fluorescence units per protein content in the sample. Lines are medians, boxes are 

quartiles and whiskers are 10 and 90 percentiles. 

 

Multixenobiotic Resistance Assay 

Fluorescence of the accumulated substrate rhodamine 123 in haemocytes is related to 

MXR activity with high fluorescence in cells with high concentration of substrate 

rhodamine 123 and low MXR activity (figure 9).  Mussels from the unexposed island 

Šolta had the highest accumulation of the substrate rhodamine 123 in the haemocytes. The 

mussels from Trogir had accumulated an average about 0.6 of the possible substrate, and 

was significantly different from control cells (Kruskall-Wallis test, p= 0.001). The 

cultured shell from the shellfish farm had a MXR activity ratio at 0.4 compared to control 

(Kruskall-Wallis test, p= 0.001), the mussels from Adriavinil had 0.3 compared to control 

(Kruskall-Wallis test, p= 0.001) and from Vranjic 0.2 compared with control (Kruskall-

Wallis test, p= 0.001). There were no differences in the ratio of substrate in the four sites 

Shellfish farm, Adriavinil, Vranjic or Trogir. 
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Figure 12: Accumulated rhodamine 123 in mussels from five different sampling sites. Content of 

rhodamine indicates degree of MXR activity with low content of rhodamine 123 as a response to high 

MXR activity. The fluorescence from accumulated rhodamine 123 was related to the median 

accumulated rhodamine 123 in mussels from Šolta. Lines are medians, boxes are quartiles and 

whiskers are 10 and 90 percentiles. 

 

Significant differences were found in median rhodamine B fluorescence values in sea 

cucumber coelomocytes between different stations (figure 10). Both fluorescence 

measurements with inhibitor present and the ratio of the two fluorescence measurements 

showed significant differences between stations. Fluorescence with inhibitor was 

significantly higher at the Kaštela station compared to the Šolta station (t-test; 

p=0.028187). No significant differences were found in fluorescence without Pgp-inhibitor 

present. 
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Figure 13: Rhodamine B fluorescence measurements on sea cucumber (Holothuria tubulosa) cells 

taken from individuals sampling station Šolta (n=10) and sampling station Kaštela (n=5). 

Fluorescence measurements with Pgp-inhibitor present (open boxes) and fluorescence measurements 

without Pgp-inhibitor present (shaded boxes). Lines are median fluorescence values, boxes are 

quartiles and whiskers are 10 and 90 percentiles. 

 

The ratio of the two fluorescence measurements (figure 11) was significantly lower at the 

Kaštela station compared to the Šolta station (t-test; p=0.020010). The inversion of this 

ratio provides a measure of MXR-activity in the organisms at the stations, this activity 

thus being higher in the Kaštela station compared to the Šolta station. 
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Figure 14: The ratio of Rhodamine B fluorescence measurements made on sea cucumber (Holothuria 

tubulosa) cells taken from individuals from station Šolta (n=10) and station Kaštela (n=5) without 

Pgp-inhibitor present and fluorescence measurements with Pgp-inhibitor present, respectively. Lines 

are median fluorescence values, boxes are quartiles and whiskers are 10 and 90 percentiles. 
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Discussion 

The objective of this study was to develop non-invasive biomonitoring techniques, using 

coelomocytes from echinoderms and haemocytes from bivalve molluscs as model and to 

adapt cell-based bioassays with MXR-activity and cell viability as endpoints. 

Concentration of cells 

Haemocytes have been found to proliferate upon infection (Arala-Chaves and Sequeira 

2000). Different pollutants have been known to act cytotoxic, and the haemocytes will 

undergo necrosis or apoptosis (Sokolova et al. 2004). In the hemolymph samples there 

were significant differences between the stations in haemocyte concentration. The 

concentration did not correlate with expected pollution load or mussel size. Data for size 

and haemocyte concentration did not show any significant correlation, which is in 

accordance with previous studies (Carballal et al. 1998). 

Cell viability measures 

Viability measurements of haemocytes from Mytilus galloprovincialis showed significant 

differences. The animals collected from Šolta had a significant higher metabolic activity 

than the more contaminated sampling sites. This could be due higher degree of 

environmental stress or lowered metabolic activity in haemocytes from the contaminated 

areas as enzyme inhibition or increased mortality among haemocytes. Enhanced metabolic 

activity has been shown in M. edulis after exposure to cadmium and in anoxic condition  

(Zwaan et al. 1995). Other studies have shown decreased metabolic activity after exposure 

to metals in Anodonta cygnea (Mouraa et al. 2000)  and decreased phagocyte activity 

(Cajaraville et al. 1996). Apoptosis in haemocytes are suggested due to inhibition of  

ATPase and/or mitochondrial ADP/ATP or substrate transport (Sokolova et al. 2004). The 

results indicates that metabolic integrity might be a sensitive measure in haemocytes as 

biomarkers as there were significant differences between the non-polluted area and 

polluted areas. The membrane integrity was lower at the Trogir station only, and there 

were no significant differences between mussels collected at Šolta and mussels collected 

at the other stations. At Trogir the mussels were caged and there was high mortality in the 

group. Chemical analysis has earlier shown high concentrations of contaminants at this 

site. The mortality could be due to lethal concentrations of these contaminants. The lower 

integrity did not relate to a lower metabolic activity compared with the other polluted 

areas. The lack of lowered metabolism compared to the other polluted areas might be 
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caused by programmed cell death, apoptosis. Apoptosis is an energy-dependent process. 

Another possibility is higher haemocyte concentration in the haemocytes. This possibility 

was rejected by the cell counting. Membrane integrity has been shown to be disrupted in 

M. edulis after exposure to copper (Brown et al. 2004). Exposure to high concentration of 

chemicals may result in increased lysosomal destabilization (Hwang et al. 2002). 

Both alamar BlueTM fluorescence and CFDA-AM fluorescence in coelomocytes was 

higher at the Kaštela sampling station than in the reference site Šolta. CFDA-AM 

fluorescence is a result of esterase-catalysed biotransformation. It is usually interpreted as 

the membrane stability of the cells. In this case, the assumption that esterases are in 

surplus to the amount of CFDA-AM added in the assay is made. This would imply higher 

membrane stability in the cells from the contaminated site. There are certain possible 

mechanisms that could cause such an increase in membrane stability, i.e., elevated levels 

of membrane stabilising factors, such as HSP, estrogenic compounds, cholesterol, Vitamin 

E or cellular or external antioxidants. Generally, the opposite results have been found with 

a reduction of membrane stability upon environmental stress measured in different assays 

(Schirmer et al. 2001). Similarly, alamar BlueTM fluorescence has been interpreted as a 

measure of metabolic activity (Goegan et al. 1995). When fluorescence measurements are 

interpreted as metabolic activity and membrane integrity, respectively, and the two taken 

together as a measure of cell viability, one gets the unexpected result of higher cell 

viability in cells from the contaminated site. A feasible explanation is that the Šolta 

individuals experienced more stress during sampling. The trawling period was somewhat 

longer at this station, approximately 40 minutes at the Šolta station and approximately 20 

minutes at the Kaštela station. The stress could further have led to cell mortality during the 

incubation period and therefore decreasing the total response in each sample. This would 

also explain the results of rhodamine B fluorescence, which also showed higher levels in 

Kaštela. Alternatively one could imagine a genetic adaptation of the population of Kaštela 

to higher environmental stress, with cells that in some respect are hardier to the strain of 

the handling in the assay. This could, for instance, result in a high detoxification activity in 

these cells. However, the sea cucumber larvae are part of the pelagic plankton, and 

disperse outside the parent range. The adult sea cucumber populations in Kaštela and Šolta 

are most likely not genetically isolated from each other, because of the pelagic larval 

stage. And again, this would be in contrast to results from previous studies, where 

environmental stress has been found to decrease cell viability in other models. 
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MXR-activity 

In haemocytes the level of accumulated rhodamine 123 was highest in the haemocytes 

from reference site, indicating a low MXR activity. The lower accumulated substrate at the 

other sites could be due to a higher MXR activity which removes the substrate from the 

haemocytes. If there was lowered membrane integrity at these sites, the lowered 

accumulation could be a consequence of substrate leaching out because of membrane 

disruption. Only at Trogir there was significant lowered membrane integrity. As no 

lowered membrane integrity was detected in this assay, there is more likely to be a higher 

MXR activity at these sites. A higher MXR activity could be due to genetic adaptation 

among the mussels at polluted areas with higher levels of these proteins, or induction as a 

result of pollution. Also blue mussels have a pelagic larval stage which might exclude the 

possibility of genetic adaptation. Several studies have shown a higher degree of MXR 

activity in animals living in polluted areas. In transplant experiments a change in MXR 

activity has been shown after the moving of animals from polluted to unpolluted areas 

(Smital et al. 2000; Keppler and Ringwood 2001; Smital et al. 2003). 
 
Sea cucumber cells had a cyclosporine A sensitive ability to extrude rhodamine B. To the 

knowledge of these authors, this is the first time MXR-activity is shown for H. tubulosa, 

or for any holothurians. MXR-activity measurements in coelomocytes showed a 

significantly higher MXR-activity in cells from individuals sampled at the Kaštela station, 

compared to individuals sampled at the Šolta station. These results are in accordance with 

studies on other models, showing induction of MXR-activity in individuals at polluted 

sites. Notably, the rhodamine B fluorescence was higher for the Kaštela samples 

(compared to the Šolta samples) when the protein pump was inhibited by cyclosporine A, 

indicating a higher intracellular concentration of rhodamine B for the Kaštela cells. This 

could be due to a lower activity of drug transporting membrane proteins other than the one 

inhibited by cyclosporine A. The presence of several different such proteins are known 

from other species, through transport-studies, immunolabeling studies etc. This would 

imply that in this model system one (or several) MXR-active protein in the sea cucumbers 

was inhibited at the same time as others were induced (as shown by the ratio (R)) in this 

study. Another option is that cells from Kaštela had higher cell viability than the Šolta 

cells, which is supported by the cell viability assay. Cell death during the incubation 

period of the assay, would lead to lower total intracellular rhodamine concentrations at the 

end. Such cell death would be expected to influence both the fluorescence with MXR-
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inhibitor and without MXR-inhibitor similarly, leaving the ratio of these two 

measurements as an applicable measure of MXR-activity in the cells. 

MXR compared to cell viability 

Significant differences between groups were found for all biomarkers measured in this 

study, i.e. differences in membrane integrity, metabolic activity and MXR activity in 

haemocytes from M. galloprovincialis originating from different stations and in 

coelomocytes from H. tubulosa originating from different stations. In haemocytes the 

metabolic activity was a sensitive measure, and showed large variation between the 

different stations. MXR activity also differed as predicted according to presumed pollution 

load. The membrane integrity did not differ to the same extent as the two other 

parameters, but was useful when considering the MXR activity in the same haemocytes. 

Of the parameters measured in sea cucumbers, membrane integrity showed the largest 

difference between locations, with the activity at Kaštela being 10-fold the activity at 

Šolta. Metabolic activity at Kaštela was 2.5-fold the Šolta activity, and MXR-activity was 

0.5 times higher at Kaštela than at Šolta. 

Conclusions 

Blue mussel haemocyte viability can be impaired by contamination with a lower metabolic 

activity at contaminates sites. Membrane integrity was lower only at a very contaminated 

site, in which several animals died. There was significant higher MXR activity at polluted 

sites than the reference. The sea cucumber Holothuria tubulosa possesses a MXR-

mechanism, and the MXR-activity can be induced by contamination. The cell viability 

was lower in cells from the reference site; this was probably due to the sampling 

technique. 

 

MXR-activity holds promise as a possible biomarker of exposure. High MXR-activity is 

not in it self a deleterious effect and it should therefore not be used as a biomarker of 

effect.  The mechanisms of induction and inhibition of MXR are not fully understood, nor 

are the transport-proteins characterised in these species. These points should be clarified 

before MXR-activity is implemented as a biomarker. With the non-consistent results for 

cell viability found in this study, there is reason to call for caution when applying this 

method in future studies. However, the importance of measuring several parameters 
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simultaneously is emphasised, as this increases the understanding of the model system as a 

whole. 
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Abstract 

The use of in vitro toxicity testing is expected to increase in the future, as the sheer number of 

chemicals makes in situ assessment complex and difficult, and in vivo laboratory testing 

practically (and ethically) challenging. This study describes the applicability of new cellular 

methods, with echinoderm coelomocytes, applying two fluorometric assays, the alamar 

BlueTM and CFDA-AM assay to score cell viability and a multixenobiotic resistance (MXR) 

assay. Coelomocytes were exposed to different well-known toxicants for 96 hours, before the 

assays were run. Sediment extracts from the contaminated Tromsø harbour was also tested. 

The toxicants included two brominated flame retardants (hexabromocyclododecane, HBCD, 

and tetrabromobisphenol-A, TBBPA), two perfluorinated substances (perfluorononanoic acid, 

PFNA, and perfluorooctanesulfonate, PFOS) and tributyltin (TBT). Whereas all five toxicants 

induced significant effects on MXR, cell viability parameters/variables were significantly 

altered after exposure to two of the chemicals (HBCD and TBBPA). The sediment extract 

significantly altered one cell viability variable (metabolic activity) and MXR. The results 

demonstrate that the cell viability and MXR fluorescence assays are rapid, inexpensive and 

easily performed alternatives in toxicity testing. Echinoderm coelomocytes respond in the 

assays at concentrations similar to, or lower than, concentrations reported for other test 

systems, and may serve as a cellular model in future toxicity testing.  

Introduction 

The number of chemicals used and released into the environment is high (well above 100000 - 

(The European Commission 2001)) and increasing. The aquatic environment will be the final 

recipient of many of these chemicals. Still only a small proportion of them have been 

adequately described in terms of their potential toxicity to aquatic organisms and ecosystems. 

One approach towards identifying toxicological effects is the use of laboratory assays, with 
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subsequent extrapolation to field conditions. Toxicity testing in laboratories is useful to assess 

the potential toxicity of substances and to characterise their mode of action. In vitro 

techniques for toxicity testing are useful because they can provide knowledge about tissue and 

target specific effects, and they are well suited for analysis of mechanisms and dose and time 

dependencies. In addition Fent (2003) argued that studies of cellular and biochemical 

responses are equally important to whole-organism studies in an ecotoxicological perspective. 

This is because the primary interaction between a toxic chemical and biota occurs at the 

cellular (or sub-cellular) level. Implicitly, one can expect changes at the cellular level to occur 

before changes in a tissue or an organism. It should be noted, however, that the complexity of 

toxicokinetics and interactions between different chemicals inside an organism are factors that 

are not accounted for in in vitro toxicity testing.  

In this study the use of a new cell model in in vitro toxicity testing, echinoderm coelomocytes 

has investigated. Echinoderms are deuterostome invertebrates and therefore belong to a 

phylogenetic group that could provide information about the relationship between 

invertebrates and vertebrates. Coelomocytes are circulating cells in the echinoderm body 

cavity. The coelomocytes will be of several morphologically different types depending on 

species, however, in asteroids (starfish), the phagocytic amoebocytes are predominant 

(Boolootian 1966). Coelomocytes were chosen as the cell model for several reasons. Firstly, 

they can easily and repeatedly be sampled by withdrawal of coelomic fluid from an 

individual. They can also easily be kept in the laboratory. Finally, coelomocytes are the 

effector cells of the echinoderm immune system (Gross et al. 1999) and are expected to be 

highly relevant to the health and survival of individuals.  

A 96-well microtiter plate format was used for the different assays. Coelomocytes from the 

starfish species Asterias rubens were exposed to the environmental contaminants 

hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA), perfluorononanoic 

acid (PFNA), perfluorooctanesulfonate (PFOS) and tributyltin (TBT). Additionally some cells 

were exposed to sediment extracts from a contaminated area. Multixenobiotic resistance 

(MXR) and cytotoxicity bioassays were run on the exposed cells. The cytotoxicity assay was 

conducted using the two molecular probes alamar BlueTM and 5-carboxyfluorescein diacetate 

acetoxymethyl ester (CFDA-AM) to assess metabolic activity and membrane integrity, 

respectively. Resazurin is the functional dye in the commercial reagent alamar BlueTM. It is 

non-toxic and redox-active. Resazurin is the blue and non-fluorescent oxidised form of the 

dye, while the reduced form is the pink and highly fluorescent resorufin. The conversion can 
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be monitored by fluorometric measurement, and will herein be referred to as a measure of 

metabolic activity. CFDA-AM is converted by non-specific esterases in living cells to form 5-

carboxyfluorescein (CF). The substrate (CFDA-AM) is non-fluorescent and non-polar, 

whereas the product (CF) is fluorescent and polar. Cells with an intact membrane maintain a 

cytoplasmic environment that supports esterase activity, and a decline in fluorescence 

readings is interpreted as a loss of membrane integrity (Schirmer et al. 1997). Because the two 

probes are measured at different emission wavelengths both dyes can be added to perform the 

assay in one single step, and provide a combined measure for cell viability. This will both 

reduce time and costs spent on the assay. The probes do not have to be removed from the 

wells of the microtiter plate, and the assay may be conducted immediately after the incubation 

without further procedures (Ganassin 2000). 

Multixenobiotic resistance (MXR) has been identified in a range of aquatic organisms (e.g. 

mussels (Kurelec and Pivcevic 1989), sponges (Kurelec et al. 1992), oysters (Minier et al. 

1993), marine worms (Toomey and Epel 1993) and fish (Chan et al. 1992)). MXR is 

analogous to the multidrug resistance (MDR) described for cancer cells and various pathogens 

in medical literature (Kessel et al. 1968; Borst and Ouellette 1995; George 1996). MXR/MDR 

result in dramatically reduced intracellular concentrations of a range of cytotoxic substances. 

Therefore it has been proposed that MXR serves as a “first line of defence” in the cells (Epel 

1998). The causative agents of MXR/MDR are a variety of transmembrane transport proteins, 

the most common among them being P-glycoproteins (P-gps) (Bard 2000). The MXR 

proteins act as energy-dependent pumps and have a broad spectrum of substrates (Ambudkar 

et al. 1999; Bard 2000). Examples of substrates have been found within both drugs, natural 

products (Gottesman and Pastan 1988) and anthropogenic compounds (Cornwall et al. 1995; 

Bain and Leblanc 1996). Although the basis for this low specificity is not known, the 

substrates seem to share the properties of moderate hydrophobicity, positively charged 

domains and similar size (see Bard (2000) for review).  

The MXR activity may increase or be inhibited in response to different agents. Populations 

originating from polluted areas have been found to have higher activity (Minier et al. 1993; 

Kurelec 1995; Kurelec et al. 1995), and both natural products and anthropogenically 

introduced chemicals (Bard 2000) may induce the activity as shown after ex situ exposure. 

Induction of MXR activity may also be a generalised response to stressful conditions, such as 

cellular injury  (Chaudhary and Roninson 1993). MXR inhibition causes increased 

bioaccumulation of xenobiotics (Kurelec 1995; Waldmann et al. 1995) and therefore elevated 
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internal levels of substances that can exert toxic effects at levels not otherwise considered 

harmful. Evidence for such effects have been provided by Kurelec (1992), Waldmann et al. 

(1995), Toomey and Epel (1993) and Schröder et al. (1998). Many classes of chemicals, and 

among them many contaminants, are capable of such inhibition. The induction or inhibition of 

MXR has not yet been widely established as a biomarker of environmental pollution (van der 

Oost et al. 2003).  

In this study, the MXR activity was measured using the rhodamine B accumulation assay. 

Rhodamine B is a fluorescent substrate for MXR proteins, its intracellular concentration can 

therefore be measured fluorometrically. Cells were exposed to different known toxicants, and 

for the assay incubated with rhodamine B with or without the presence the model MXR 

inhibitor MK-571. In mammalian cells, MK-571 selectively inhibits the MXR protein 

multixenobiotic resistance-associated protein (MRP) (Gekeler et al. 1995). The difference 

between the rhodamine B accumulations in these two treatments will be a measure of the 

amount of rhodamine B transported out of the cells by MRP-like proteins, i.e. a measure of 

MRP-mediated MXR in the cells. When the fluorescence in toxicant-treated cells that were 

not incubated with MK-571, is compared directly to control cells, the total activity of different 

MXR proteins (including MK-571 insensitive proteins) is indicated. And when cells that were 

incubated with MK-571 are compared to their respective control cells, the activity of MK-571 

insensitive proteins is indicated. 

In order to characterise the model system and assays across a range of different substances, 

cells were exposed to two representative brominated flame retardants (HBCD and TBBPA), 

two perfluorinated substances (PFNA and PFOS) and TBT, as well as a sediment extract from 

a contaminated harbour.  

The objective of this study was to develop a model system for toxicity testing, by using cell-

based assays with in vitro exposure, and to clarify effects of selected environmental 

contaminants.  

 

Materials and methods 

Animals 

Specimens of Asterias rubens between 5 and 10 cm (measured from the base to the tip of the 

arm), were hand-picked by divers at depths from 1-10 meters. Sampling took place in Norway 
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from February to March 2005, in an area close to Drøbak. The animals were kept at NIVAs 

marine research station in Solbergstrand in 300 litre tanks with circulating water taken from 

the sampling area at 5 m depth and fed ad libitum on mussels (Mytilus edulis). The water in 

the sampling area has a low pollution load. The coelomocytes from the starfish were therefore 

assumed to express a low inherent level of MXR activity at the beginning of the study. 

Coelomocyte preparation 

In June 2005 coelomic fluid was extracted from the cultured animals. Specimens that were 

suspected to be in a bad condition, e.g. individuals that had low tube foot activity upon 

examination or had recently lost one arm, were excluded from the study. Water temperature at 

5 meters depth at the time was between 7.0˚C and 7.5˚C. Coelomic fluid was extracted from 

the animals using a 1mL syringe with a 23 gauge needle, both pre-treated with cold phosphate 

buffered saline (PBS, pH 7.8; 0.1 M; 8.5 mL NaH2PO4 (stock 0.2 M dissolved in distilled 

water); 91.5 mL Na2HPO4 (stock 0.2 M dissolved in distilled water) in 100 mL water and 

adjusted for the salinity in the sampling area with 2.4% w/v NaCl). The needle was inserted at 

the distal third of one arm into the coelomic cavity, an extraction technique previously 

described by Bekri and Pelletier (2004). The volume of fluid extracted was adjusted for the 

individual size of the animal. Typically 0.5 mL was taken from smaller individuals and 1 mL 

was taken from larger individuals. The extracts from each individual were mixed with cold 

PBS by a ratio of 1:3 in separate glass tubes. The tubes were kept on ice at all times and 

gently turned every few minutes. The cell density in diluted A. rubens samples was 

determined by counting particles between 11 µm and 20µm in a Coulter counter® 

(MultisizerTM 3, from Beckman CoulterTM).  The extract then diluted in PBS to obtain the 

final wanted cell densities for the experiment. Two hundred µL of the diluted samples to be 

used in the MXR-assay were seeded into the wells of 96 well microtiter plates (40000 

cells/well) in 8 replicates per individual. Those to be used cytotoxicity assay were seeded in 4 

replicates on one microtiter plate and in 4 replicates on a separate microtiter plate. The 

microtiter plates with the cells were then incubated at 15˚C and in the dark for 24 hours to 

allow the coelomocytes to sink and attach to the bottom of each well. 

In vitro exposure 

Samples to be used in the MXR assay and samples on one of the microtiter plates for the 

cytotoxicity assay were exposed to selected environmental contaminants. Cells on the other 
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microtiter plate for the cytotoxicity assay were exposed to different concentrations of the 

model cytotoxicant phenol, to serve as a quality control.   

Exposure media were prepared by diluting the model toxicants from stock solution in PBS 

into three different concentrations. Cells from five individuals were assigned to each of the 

toxicants (except from HBCD cytotoxicity assay, in which n=10). Samples to be used in the 

MXR assay were in 8 replicates, and each of the toxicant-concentrations was added to two of 

the replicates, with the last two replicates to serve as controls. The cytotoxicity samples were 

in four replicates, here each toxicant dilution was added to one replicate, and the last replicate 

served as control. Phenol was diluted in three concentrations, and was added to wells on the 

quality control plate in the same manner. The final exposure concentrations for the cells were 

as described in Table 1. The exposure to the different substances was semi static with a 48 

hour incubation period, re-exposure and another 48 hours incubation before the assays were 

performed.  

Table 1. Exposure concentrations for toxicity study. Toxicant stock solutions were prepared in acetone or 

dimethyl sulfoxide (DMSO). 

Toxicant Stock solution Exposure concentrations µg/mL (with concentrations in 

µM given in parenthesis) 

TBBPA 1mg/(mL DMSO) 2.67  (5) 5.35 (10) 10.69 (20) 

HBCD 4mM (in DMSO) 3.21  (5) 6.42 (10) 12.83 (20) 

PFOS 10mg/(mL DMSO) 5*10-5  (1.9*10-6) 5*10-4  (1.9*10-5) 5*10-3  (1.9*10-4) 

PFNA 20mg/(mL acetone) 10-6  (2.2*10-6) 10-5  (2.2*10-5) 10-4  (2.2*10-4) 

TBT 2mg/(mL DMSO) 1  (0.0031) 10  (0.031) 100 (0.31) 

Phenol in DMSO 2.823 (30) 28.23 (300) 9410 (100000) 

 

In addition, one group of samples was exposed to organic extracts (extracted by Accelerated 

Solvent Extraction, ASE) of sediments from a harbour area in Tromsø, Norway (Hylland et al. 

2003). Two different extracts were tested, one originating from an area in which sediments 

had previously been characterised as highly toxic (sample 1043) (Hylland et al. 2003), the 

other (sample 1045) had uncertain toxicity (Hylland et al. 2003), but with some contamination 

of benzo[a]pyrene and Indeno[1,2,3-cd]pyrene (Ruus 2005).  
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Cytotoxicity assay 

Cell viability was assessed by the assay simultaneously using alamar BlueTM for metabolic 

activity and CFDA-AM for membrane integrity. The protocol was adapted from Schirmer et 

al. (1998): After 72 hours the exposure media was carefully removed from the wells and 100 

µl PBS (24‰ w/v NaCl) containing 4 µM CFDA-AM and 5% (v/v) alamar BlueTM  was 

added to each well. The microtiter plates were incubated for 30 minutes in room temperature 

in the dark, before fluorometric readings were performed on the plate reader CytofluorTM 

2300 (Millipore). Excitation and emission wavelengths were 485 nm and 530 nm respectively 

for CF (the CFDA-AM metabolite) and 530 nm and 590 nm respectively for alamar BlueTM. 

The dyes are light sensitive, and every step of the protocol was carried out in the dark. The 

assay was also run on the phenol-exposed cells.  

Results are expressed separately for the two probes. Metabolic activity is expressed as the 

ratio of alamar BlueTM fluorescence in the sample and alamar BlueTM fluorescence in the 

respective control well (which was set at 1). Membrane integrity is expressed as the ratio of 

CF fluorescence in the sample and CF fluorescence in the respective control well (set at 1).  

MXR assay 

The assay was performed using 0.1 µM rhodamine B (Sigma Aldrich, St. Louis, MO, USA) 

as the model MXR-substrate and dye and 0.1 µM MK-571 (Cayman Chemical, Ann Arbor, 

MI, USA) as the model MXR-inhibitor, as determined after pilot studies. Sixty µL of the cell 

suspension in the well was removed and 50 µL of dye was added to achieve the wanted final 

concentration in the wells. To 4 of the 8 replicates for each individual, 10µL model MK-571 

was added so that final concentration in the wells was 0.1 µM. To the remaining replicates, 10 

µL PBS was added. After 1 hour incubation in the dark at room temperature, the cells were 

washed by removing 100 μL solution from each well and replace it with 100 μL PBS. This 

washing step was repeated. After the second washing step, all solution was carefully removed 

from each well, and 100 µL triton X-100 (0.1% v/v in PBS) was added. Fluorescence 

measurements were performed in the fluorescence plate reader, with excitation and emission 

wavelengths of 485 nm and 530 nm, respectively. MXR activity is expressed as the ratio of 

rhodamine B fluorescence when no model MXR inhibitor (MK-571) was administered and 

rhodamine B fluorescence after incubation with MK-571. Rhodamine B fluorescence is also 

expressed relative to respective controls (set at 1), both for measurements after incubation 

with MK-571 present, and after incubation without MK-571 present.  
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Statistical methods 

Statistical analyses were performed with Statistica software (version 6.1; Statsoft Inc.). 

For measurements of alamar BlueTM fluorescence, CF fluorescence, and rhodamine B 

fluorescence, student’s t-test was applied to detect differences from control group (t-test 

against the fixed value 1). Normality of data was assessed in a normal-probability plot. 

MXR activity was analysed in ANOVA, after Levene’s test for homogeneity of variances. 

Dunnett’s test was applied as a post-hoc test to determine which treatment groups that was 

different from control. 

Level of significance was set to p<0.05 for all analyses. 

Results 

Cytotoxicity assay 

There were no significant differences in membrane integrity or in metabolic activity for cells 

exposed to PFNA (Figure 1), PFOS (Figure 2) or TBT (Figure 3) at the concentrations tested 

in this study. 
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Figure 1. Membrane integrity (left) and metabolic activity (right) in coelomocytes exposed to different 

concentrations of PFNA in vitro (n=5, note logarithmic scale on x-axes). Fluorescence has been expressed 

relative to control cells (cells exposed to 0µM PFNA).  Presented in plot: Median, quartiles and 10 and 90 

percentiles. 
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Figure 2. Membrane integrity (left) and metabolic activity (right) in coelomocytes exposed to different 

concentrations of PFOS in vitro (n=5, note logarithmic scale on x-axes). Fluorescence has been expressed 

relative to control cells (cells exposed to 0µM PFOS). Median, quartiles and 10 and 90 percentiles. 
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Figure 3. Membrane integrity (left) and metabolic activity (right) in coelomocytes exposed to different 

concentrations of TBT in vitro (n=5, note logarithmic scale on x-axes). Fluorescence has been expressed 

relative to control cells (cells exposed to 0µM TBT). Median, quartiles and 10 and 90 percentiles. 

 

Cells exposed to HBCD had a lower metabolic activity compared to control cells (Figure 4). 

The decrease was dose-dependent and significant for cells exposed to all of the concentrations 

of HBCD tested in this experiment. A significantly higher membrane integrity was found in 

all HBCD exposed groups compared to control (Figure 4). 
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Figure 4. Membrane integrity (left) and metabolic activity (right) in coelomocytes exposed to different 

concentrations of HBCD in vitro (n=5). Fluorescence has been expressed relative to control cells (cells 

exposed to 0µM HBCD). Median, quartiles and 10 and 90 percentiles. 

 

Cells exposed to 10 µM and 20 µM TBBPA had significantly lower metabolic activity 

compared to control cells (Figure 5). The decrease after exposure to 5µM TBBPA was not 

significant. There were no significant differences in membrane integrity after TBBPA 

exposure in this study (Figure 5). 
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Figure 5. Membrane integrity (left) and metabolic activity (right) in cells exposed to different 

concentrations of TBBPA in vitro (n=5). Fluorescence has been expressed relative to control cells (cells 

exposed to 0µM TBBPA). Median, quartiles and 10 and 90 percentiles. 
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Cells exposed to sediment extracts from station 1043 in Tromsø harbour had a significantly 

lower metabolic activity compared to control cells. The difference in membrane integrity was 

not significant. No significant differences in metabolic activity or in membrane integrity were 

found in cells exposed to sediment extracts from station 1045 (Figure 6). 
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Figure 6. Membrane integrity (left) and metabolic activity (right) in cells exposed to sediment extracts 

from different stations. Fluorescence has been expressed relative to control cells. Median, quartiles and 10 

and 90 percentiles.  

MXR assay 

Both cells that had not been incubated with MXR inhibitor and cells in which MRP-mediated 

MXR activity was inhibited by MK-571, had significantly different rhodamine B 

accumulation compared to control cells (Figure 7). Exposure to 5 µM HBCD (with MK-571) 

significantly increased accumulation, whereas treatment with 10 µM HBCD lowered 

accumulation. Cells treated with 5 µM and 10 µM HBCD had significantly higher rhodamine 

B accumulation than control cells after incubation without MK-571. Also accumulation ratio 

differed significantly between treatment groups (Figure 8). The accumulation ratio was 

significantly higher for 10 µM HBCD exposed cells and significantly lower for 20 µM HBCD 

exposed cells compared to control.   
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Figure 7. Rhodamine B accumulation relative to control in cells exposed in vitro to HBCD at different 

concentrations after incubation with (left) and without (right) model MXR-inhibitor MK-571 (n=10). 

Presented in plot: Median, quartiles and 10 and 90 percentiles. 
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Figure 8. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to HBCD at different concentrations (n=10). Median, quartiles and 10 and 90 percentiles. 

 
Treatment with PFNA significantly altered rhodamine B accumulation, both when no MXR 

inhibitor was administered and when MRP-mediated MXR activity was inhibited by MK-571 

(Figure 9). Accumulation after incubation with MK-571 was significantly lower compared to 

control cells at any of the PFNA concentrations tested. Accumulation without model inhibitor 

was significantly higher compared to control for cells exposed to 10 ng/L and 100 ng/L 

PFNA. The accumulation ratio was significantly higher than control for cells exposed to any 

of the tested concentrations of PFNA, with an apparent dose-dependent increase (Figure 10).  
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Figure 9. Rhodamine B accumulation relative to control in cells exposed to PFNA at different 

concentrations after incubation with (left) and without (right) model MXR-inhibitor MK-571 (n=5, note 

logarithmic scale on x-axes). Median, quartiles and 10 and 90 percentiles.  
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Figure 10. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to PFNA at different concentrations (n=5, note logarithmic scale on x-axis). Median, quartiles and 10 and 

90 percentiles. 



There were significant differences in rhodamine B accumulation in cells exposed to different 

concentrations of PFOS compared to control cells. Accumulation without incubation with 

MK-571 was significantly higher for cells exposed to 5000 ng/L PFOS compared to control 

cells (Figure 11). Accumulation after incubation with MK-571 was higher in cells exposed to 

any of the tested concentrations of PFOS compared to control cells (Figure 12). No significant 

differences were found in the accumulation ratio for any of the PFOS concentrations tested in 

this study (Figure).  
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Figure 11. Rhodamine B accumulation relative to control in cells exposed to PFOS at different 

concentrations after incubation with (left) and without (right) model MXR inhibitor MK-571 (n=5, note 

logarithmic scale on x-axes). Presented in plot: Median, quartiles and 10 and 90 percentiles. 
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Figure 12. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to PFOS at different concentrations (n=5, note logarithmic scale on x-axis). Median, quartiles and 10 and 

90 percentiles. 

There were significant differences in rhodamine B accumulation between cells exposed to 

different concentrations of TBBPA compared to control cells. Accumulation with no model 
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MXR inhibitor present was significantly higher in cells exposed to 10 µM and 20 µM TBBPA 

(Figure 13). Accumulation in the presence of MK-571 was significantly higher in cells 

exposed to 20 µM TBBPA (Figure 13). No significant differences in the rhodamine B 

accumulation ratio in cells exposed to different concentrations of TBBPA were found (Figure 

14). 
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Figure 13. Rhodamine B accumulation relative to control in cells exposed to TBBPA at different 

concentrations after incubation with (left) and without (right) model MXR inhibitor MK-571 (n=5). 

Median, quartiles and 10 and 90 percentiles. 
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Figure14. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to TBBPA at different concentrations (n=5). Median, quartiles and 10 and 90 percentiles. 

 

Cells exposed to TBT had a rhodamine B accumulation significantly different from control 

cells, both for cells exposed to TBT without administration of model MXR inhibitor and for 

cells incubated with MK-571 for the assay (Figure 15). Also accumulation ratio differed 

significantly from control (Figure 16). Rhodamine B accumulation decreased in a dose-
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dependent manner when no MXR inhibitor had been administered. In that case, cells exposed 

to 100 µg/L TBT had significantly lower fluorescence than control cells, whereas exposure to 

lower concentrations yielded no significant deviations from control. Accumulation after 

incubation with MK-571 decreased in a dose dependent manner, with a significantly lower 

fluorescence for all of the tested concentrations of TBT. Accumulation ratio decreased in a 

dose-dependent manner, the decrease was significant compared to control cells for all of the 

TBT concentrations tested in this study.  

1 10 100

TBT concentration (µg/L)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Fl
uo

re
sc

en
ce

 re
la

tiv
e 

to
 c

on
tro

l

1 10 100

TBT concentration (µg/L)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Fl
uo

re
sc

en
ce

 re
la

tiv
e 

to
 c

on
tro

l

Figure 15. Rhodamine B accumulation relative to control in cells exposed to TBT at different 

concentrations after incubation with (left) or without (right) model MXR-inhibitor MK-571 (n=5, note 

logarithmic scale on x-axes). Median, quartiles and 10 and 90 percentiles. 
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Figure 16. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to TBT at different concentrations (n=5, note logarithmic scale on x-axis). Median, quartiles and 10 and 

90 percentiles. 
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In cells exposed to sediment extracts from Tromsø harbour, rhodamine B accumulation was 

significantly lower than control after incubation with MK-571 (Figure 17). For station 1043, 

accumulation was higher when no MK-571 had been administered. There were significant 

differences in MRP-mediated MXR activity in cells exposed to sediment extracts from 

different stations, compared to control cells (Figure 18).  

1043 1045

Station

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Fl
uo

re
sc

en
ce

 re
la

tiv
e 

to
 c

on
tro

l

1043 1045

Station

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Fl
uo

re
sc

en
ce

 re
la

tiv
e 

to
 c

on
tro

l

Figure 17. Rhodamine B accumulation relative to control in cells exposed to sediment extracts from 

different stations after incubation with (left) or without (right) model MXR-inhibitor MK-571 (n=5).  

Median, quartiles and 10 and 90 percentiles. 
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Figure 18. Ratio of rhodamine B accumulation with and without incubation with MK-571 of cells exposed 

to sediment extracts from different stations (n=5). Median, quartiles and 10 and 90 percentiles. 
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Discussion 

Cytotoxicity 

Any concentration of HBCD significantly altered all variables measured in this study. The test 

concentrations exceed those found in starfish pyloric caeca by Morris et al. (2004), but match 

lipid contents found in fish and marine invertebrates (Sellstrom et al. 1998; Morris et al. 2004) 

The membrane integrity appeared to be higher in cells exposed to HBCD, whereas metabolic 

activity decreased in a dose-dependent matter. It may therefore not be concluded that 

exposure to HBCD lead to decreased cell viability, but it did affect both membrane integrity 

and metabolic activity. An increase in CF fluorescence after treatment with triton X-100 at a 

concentration that proved cytotoxic in other assays was observed by Dayeh et al. (2004), and 

Zucker et al. (1989) found increases in CF fluorescence after exposure to different alkyltins. 

In the latter report, it was concluded that the increase was due to alterations in membrane 

properties (decreased membrane permeability to leakage of CF). An alternative explanation 

for the increase is the up-regulation of the responsible esterase, as previously shown for 

carboxyl esterase activity subsequent to exposure to different toxicants (peroxisomal 

proliferators) (Yan et al. 1995; Parker et al. 1996). However, this experiment was not 

designed to determine the up- or down-regulation of enzymes, and the increase in CF 

fluorescence may equally well be due to alterations in membrane properties. As all of the 

concentrations applied here induced significant effects, lower concentrations of HBCD should 

also be assessed, and preferably among them concentrations similar to those reported in 

starfish pyloric caeca. At present, the cytotoxicity assay on coelomocyte seems to be at least 

as sensitive as that found by Yamada-Okabe et al. (2005) who studied TR-mediated luciferase 

activity in the transfected HeLaTR cell line. 

No significant differences in cell viability parameters were detected after exposure to either of 

the perfluorinated compounds in this assay. Hu et al. (2003) reported effects on membrane 

fluidity to occur at 16.5 mg/L in fish leukocytes, and increases in membrane 

tetrachlorodibenzodioxin (TCDD) permeability for the PLHC-1 cell line when cells were 

exposed to TCDD in combination with 0.05 mg/L PFOS. Membrane fluidity/permeability 

alterations seem therefore to occur at higher concentrations of PFOS than applied in this 

study. 

TBBPA has previously been described as a membrane disrupter (Inouye et al. 1979), but at 

higher concentrations (50µM) than applied in this study, and such effects were not detected 
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here. Exposure to TBBPA resulted in lower metabolic activity, but did not significantly alter 

membrane integrity in the coelomocytes. Previous studies have also found a higher sensitivity 

for the alamar BlueTM assay, than for the CFDA-AM assay (Schirmer et al. 1997; Schirmer et 

al. 2001; Dayeh et al. 2004; DeWitte-Orr and Bols 2005). Schirmer et al. (1997) concluded 

that the two probes measured the same damage in their experiment, with the alamar BlueTM 

assay being a more sensitive indicator. Other possibilities include effects on metabolic activity 

before any membrane alterations, or because alamar Blue and CFDA-AM may respond 

differently to different types of cell death, such as apoptosis or autophagy, compared to 

necrosis. Canesi et al. (2005) studied effects on mussel haemocyte function, and found 

significant effects after exposure to 5 µM TBBPA, but not after exposure to 1 µM. 

No effects on cell viability after exposure to TBT were found in this study, with 

concentrations similar to those found in some bivalves (Shim et al. 2005) and dog whelk 

(Folsviksrk et al. 1999) (expressed relative to dry weight), but larger than what was reported 

in A. rubens pyloric caeca (Stronkhorst et al. 2003). In a study by Bekri and Pelletier (2004), 

no cytotoxic effects on coelomic amoebocytes from TBT were detected in the polar sea star 

Leptasterias polaris after in vivo exposure to different butyltins (BTs). TBT body burdens 

were between 1.26 µg and 2.35µg (body weight 132-247 g) and total BT body burden was 

between 4.97µg and 7.17µg. These authors did not detect any BTs in coelomic fluid at the end 

of the experiment, only in gonadal and pyloric caeca tissue. In our study, coelomocytes were 

exposed to 1 µg/L, 10 µg/L and100 µg/L TBT in vitro, most likely exceeding the exposure in 

Bekri and Pelletiers study. Still at these exposure conditions, no effects on cell viability could 

be found. Previously TBT has been reported to both induce apoptosis (Micic et al. 2001; 

Nishikimi et al. 2001) and necrosis (da Silva de Assis et al. 2005) and to decrease CF 

membrane permeability before a break point interpreted as the viability breakpoint (Zucker et 

al. 1989). However, the apoptotic/cytotoxic effects seem to occur at higher concentrations of 

TBT than those used here, and apoptosis may even be inhibited by low concentrations of TBT 

(Yamanoshita et al. 2000). Membrane alterations on the other hand, were observed down to 

0.1µM TBT (Zucker et al. 1988; Girard et al. 1997). Coelomocytes seems therefore to be 

relatively robust to the membrane destabilising effects of TBT. 

While no differences in membrane integrity could be found after exposure to the 

environmental samples, metabolic activity was significantly lower for cells exposed to 

sediment extract from station 1043, but not from station 1045. These findings are consistent 

with the characterisation of 1043 as the highly toxic extract. Previous studies have also found 
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a higher sensitivity for the alamar BlueTM assay, than for the CFDA-AM assay, as discussed 

for the results after treatment with TBBPA. 

MXR 

Total MXR activity in HBCD exposed cells, seemed to increase with increasing doses of 

HBCD. The MRP-mediated MXR activity was biphasic with HBCD-dose, with an apparent 

decrease at lower doses, and increase at higher doses. The MXR activity by MK-571 

insensitive proteins followed a different pattern, with an increase followed by an inhibition at 

higher doses. Surprisingly, accumulation of rhodamine in some cells (the 10 µM group) was 

lower after incubation with MK-571, than it was when all of the MXR-active proteins were 

active. This indicates that the extrusion of rhodamine was more efficient when part of the 

MXR proteins (the MRPs) were inhibited. The results for the MXR assay in HBCD-treated 

cells were complex in total, and may seem conflicting. Combined with an increased 

membrane stability and reduced metabolic activity, as observed in the cytotoxicity assay in 

this study, the MXR response may follow a number of different mechanisms. However, the 

echinoderm MXR proteins have not yet been characterised, and the reasons for the complex 

MXR response in HBCD-exposed cells may not at this point be fully explained. 

The amphiphilic nature of PFNA (and also PFOS) suggests a possible MXR substrate, in 

which case rhodamine B efflux could be competitively inhibited by PFNA. In fact PFNA 

exposure appeared to inhibit MRP-mediated MXR activity (higher accumulation ratio) at all 

concentration tested. The extrusion activity of MK-571 insensitive MXR proteins seemed to 

increase. Yet, total MXR activity was inhibited. With significant effects down to a 

concentration of 10-6 µg/mL (0.0022 pM), the environmental occurrences of PFNA should be 

a cause for concern. Even though they have generally been found to be lower than PFOS 

concentrations by 3- and 20-fold in most animals (Martin et al. 2004), observed PFNA 

concentrations in biota (Martin et al. 2004; Taniyasu et al. 2005) is well within the 

concentration range tested in this study. Previously effects on fecundity have been described 

down to 1 nM PFNA in a four generation study on Caenorhabditis elegans (Tominaga et al. 

2004). Further studies on MXR with even lower concentrations of PFNA are needed to 

determine any threshold value for activity.  

Both total MXR activity and MXR activity mediated by MK-571 insensitive proteins seemed 

significantly lower in cells exposed to PFOS, while the ratio of the two did not change 

significantly. Also, the ratio did not differ significantly from one, meaning that inhibition of 
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MRP-like proteins had little effect on rhodamine B extrusion from cells in PFOS exposed 

cells. PFOS did therefore not significantly alter MK-571 sensitive MXR activity, but the 

inhibition total MXR activity is indicated. Provided that both PFOS (as indicated in this 

study) and TCDD (not previously assessed) are MXR-substrates, the enhanced effects of 

TCDD after co-exposure with PFOS (Hu et al. 2003) may be explained by reduced cellular 

extrusion of TCDD, and not because of increased influx due to reduced membrane stability. 

The most sensitive study of PFOS today (as of 2005), is to the knowledge of these authors 

that by Tominaga et al. (2004), who found effects on  Caenorhabditis elegans fecundity after 

exposure to 10 pM PFOS. It appears therefore, the sensitivity of the assay described in this 

article (effects at 0.0019 pM) is higher than to the most sensitive system previously described 

for PFOS. Also the concentrations applied in this study appear to be lower than levels found 

in several environmental compartments (Kannan et al. 2002; VandeVijver et al. 2005). 

TBBPA seemed to significantly inhibit both total MXR activity and MK-571 insensitive 

MXR activity, while the decrease in MRP-mediated MXR activity was not significant.  

MXR activity appeared to be induced by TBT-exposure at all concentrations tested. These 

results support the reports on TBT as a potent toxicant with effects down to nanomolar 

concentrations (Gibbs and Bryan 1986). Tujula at al.(2001) found effects on phenoloxidase 

activity in tunicate haemocytes after exposure to 1µg/L TBT, and membrane permeability in 

sea urchin embryos have been reported to increase at an even lower concentration (0.1µM). 

The fluorescence measurements for control cells show higher fluorescence without MK-571 

present, than with MK-571 present. The reason for this result is unclear.  

The sediment extracts from Tromsø harbour both apparently inhibited MRP-mediated MXR 

activity. Similar results after exposure to environmental samples have been provided by 

Toomey et al. (1996), Smital and Kurelec (1997) and Kurelec et al. (1998)  in natural (non-

concentrated) polluted seawater. Both sediment extracts seemed to induce MK-571 insensitive 

proteins, whereas total MXR activity seemed to be inhibited by sediment extracts from station 

1043, but not station 1045. Notably, the sediment extracts seemed to have a slight (and with 

one exception not significant) negative effect on cell viability variables. And an alternative 

explanation to lower rhodamine B accumulation in MK-571 incubated cells is a therefore a 

decrease in cell viability in sediment exposed cells.  

The data presented here demonstrate the applicability of the coelomocyte cell model for use in 

cell based bioassays. Using relatively low concentrations, all of the five toxicants and the 

sediment extracts significantly altered MXR activity. Generally, the MXR activity seems to 
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be the more sensitive parameter, with cytotoxicity parameters showing significant effects for 

3 (metabolic activity) and 2 (membrane stability) of the substances tested here. However the 

cytotoxicity assay may provide important information on the test system as a whole, and the 

importance of applying several endpoints in toxicity tests is emphasised by these authors. 

Because studies of the MXR activity is a relatively new field in ecotoxicology, results are 

more difficult to interpret (for instance because MXR active proteins in aquatic organisms are 

not well characterised). In this study, coelomocytes in coelomic fluid were applied in testing 

without further clean-up or preparation. Combined with the employment of the 96-well 

microtiter plate format, this model allows for a very simple, high through-put system for 

toxicity testing.  

The MXR assay also appears to be relatively sensitive compared to other assays in previous 

reports. Effects are noted at similar concentrations in comparable systems for most 

substances, however for the perfluorinated substances, effects are found at lower 

concentrations than previously reported. Additionally the effect found is the potential harmful 

effect of MXR inhibition, and the presence of perfluorinated substances in the environment 

may already represent a threat to aquatic organisms.  

As previously noted coelomocytes are the immune effector cells in echinoderms and would be 

especially suitable for studies on immunotoxic effects. The induction of MXR activity does 

not necessarily imply a harmful effect on the cells, whilst the inhibition of MXR activity and 

decreased cell viability should be considered harmful. However, the effect on 

immunofunction from changes in immune cell MXR activity has not yet been investigated. 

Note also that in starfish, the coelomic fluid has been shown to contain lower levels of at least 

one of the model toxicants in this study (TBT), compared to pyloric caeca (Bekri and Pelletier 

2004). Cytotoxic effects on coelomocytes may also be indicative of possible cell damage in 

other echinoderm cell types.  

Despite these considerations, effects on coelomocytes as described in this study can be an 

early warning signal on the potential toxicity of chemicals, as well as providing knowledge 

about toxicity mechanisms of different substances. 
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Chemicals and equipment 
 
Beckman CoulterTM 
MultisizerTM 3, Coulter counter® 
 
BioSource Europe S.A., Nivelles, Belgium 
alamar BlueTM 
 
Biowhittaker Inc., Walkerswille, Maryland, USA  
L-15 (Leibowitz) medium  
 
Cayman Chemical, Ann Arbor, MI, USA 
MK 571 
 
Chiron Corporation, Emeryville, CA , USA  
1,2,5,6,9,10-hexabromocyclododecane (HBCD)  
Tetrabromobisphenol A (TBBPA )  
 
Dynatech (Chantilly, Virginia, USA) 
Fluorolite 1000 
 
Fluka, Buchs SG, Switzerland 
Cyclosporin A  
 
Merck, Whitehouse Station, New Jersey, USA 
NaCl 
Na2HPO4·12H2O 
NaH2PO4·12H2O  
 
Millipore, Billerica, Massachusetts, USA 
CytoFluorTM 2300 Fluorescence Measurement System 
 
Molecular probes, Leiden, the Netherlands 
CFDA-AM  
Calcein AM  
Rhodamine 123  
 
Rathburns Chemicals, Walkerburn, Scotland 
Acetone 
 
Sigma Aldrich, St. Lous, Missouri, USA   
Tri-n-Butyltin cyanid (TBT)  
Heptadecafluorooctanesulfonic acid tetra ethylamonium salt (PFOS)  
Triton X-100  
Verapamil  
Rhodamine B  
Phenol  
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Heptadekafluorononanoic acid (PFNA)  
Rhodamine 123  
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Appendix 2  
Selected observations of toxicants 
Substance Place Compartment Level Ref. 
HBCD Viskan river, Sweden Freshwater fish 4000-8000 ng/g lipid weight (l.w.) (Sellstrom et al. 1998) 
HBCD Viskan river, Sweden Sediment B.D.L-7600 ng/g ignition loss (Sellstrom et al. 1998) 
HBCD Ebro river, Spain Sediment B.D.L.-513,6 ng/g dry weight (d.w.) (Eljarrat et al. 2004) 
HBCD Ebro river, Spain Freshwater fish (Barbus graellsi), muscle B.D.L.-1127 ng/g wetweight (w.w.) (Eljarrat et al. 2004) 
HBCD Ebro river, Spain Freshwater fish (Barbus graellsi), liver B.D.L.-1172 ng/g w.w. (Eljarrat et al. 2004) 

HBCD 
Western Scheldt Estuary, the 
Netherlands Marine fish (several species), muscle and liver 9-1110 ng/g l.w. (Janak et al. 2005) 

HBCD Swedish lakes Eel and pike 65-1808 ng/g l.w. (Remberger et al. 2004) 

HBCD 
Western Scheldt Estuary, the 
Netherlands Starfish (Asterias rubens), digestive system <30-84 µg/kg l.w. (Morris et al. 2004) 

HBCD North Sea Common whelk (Buccinium undatum) 29-47 µg/kg l.w. (Morris et al. 2004) 
HBCD North Sea Harbour porpoise (Phocoena phocoena) (blubber) 440-6800 µg/kg l.w. (Morris et al. 2004) 

HBCD 
Western Scheldt Estuary, the 
Netherlands Sediment <0,6-99 µg/kg d.w. (Morris et al. 2004) 

HBCD Sweden Peregrine falcon (Falco peregrinus) eggs 34-2400 ng/g l.w. (Lindberg et al. 2004) 
TBBPA Sweden Sediment, downstream from plastics industry 430 ng/g ignition loss (Sellstrom and Jansson 1995) 
TBBPA North Sea Common whelk 5,0-96 ng/kg l.w. (Morris et al. 2004) 
TBBPA North Sea Harbour porpoise (blubber) 0,1-418 ng/kg l.w. (Morris et al. 2004) 
TBBPA Western Scheldt Sediment <0,1-3,2 ng/kg d.w. (Morris et al. 2004) 
TBBPA England Sediment, estuarine and riverine <2,4-9750 ng/kg d.w. (Morris et al. 2004) 
PFOS Greenland Polar bear (Ursus maritimus), liver 1245 and 1325 ng/g w.w. (Bossi et al. 2005) 
PFOS Greenland Shorthorn sculpin (Myoxocephalus scorpius), liver nd-18 ng/g w.w. (Bossi et al. 2005) 
PFOS Michigan waters, USA Chinook salmon, muscle 7-190 ng/g w.w. (Giesy and Kannan 2001) 
PFOS Michigan waters, USA Chinook salmon, liver 33-170 ng/g w.w. (Giesy and Kannan 2001) 
PFOS Baltic Sea Atlantic salmon (Salmo salar), liver <8 ng/g w.w. (Kannan et al. 2002) 
PFOS Western Scheldt Plaice (Pleuronectes platessa) , liver <10-111 ng/g w.w. (Hoff et al. 2003) 
PFOS Western Scheldt Bib (Trisopterus luscus), liver <10-87 ng/g w.w. (Hoff et al. 2003) 

PFOS 
Gulf of Mexico and 
Chesapeake Bay, USA Oyster (Crassostrea virginica) <42-1125 ng/g d.w. (Kannan et al. 2002) 

PFOS Tokyo Bay, Japan Flatfish (Pleuronectiformes pleuronectidae), liver 158-198 ng/g w.w. (Taniyasu et al. 2003) 
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PFOS Tokyo Bay, Japan Flatfish (Pleuronectiformes pleuronectidae), blood 74-194 ng/mL (Taniyasu et al. 2003) 
PFOS Japan waters Marine fish (several species), liver 3-7900 ng/g w.w. (Taniyasu et al. 2003) 
PFOS Japan waters Marine fish (several species), blood 1-834-ng/mL (Taniyasu et al. 2003) 

PFOS 
Western Scheldt Estuary, the 
Netherlands Starfish (Asterias rubens), soft tissue 9-176 ng/g w.w.  (Van de Vijver et al. 2003) 

PFOS 
Western Scheldt Estuary, the 
Netherlands shrimp (Crangon crangon), soft tissue 19-520 ng/g w.w. (Van de Vijver et al. 2003) 

PFOS 
Western Scheldt Estuary, the 
Netherlands crab (Carcinus maenas), soft tissue 24-877 ng/g w.w. (Van de Vijver et al. 2003) 

PFOS Tokyo Bay, Japan water sample 338-57700 pg/L (Yamashita et al. 2005) 
PFNA Kuujjuarapik, Canada white sucker (Catostomus commersoni), liver 0,61-1,7 ng/g (Martin et al. 2004) 
PFNA Kuujjuarapik, Canada brook trout (Salvelinus fontinalis), liver 5,9-6,5 ng/g (Martin et al. 2004) 
PFNA Kuujjuarapik, Canada northern pike (Esox lucius), liver <0,5 ng/g (Martin et al. 2004) 
PFNA Kuujjuarapik, Canada Arctic sculpin (Myoxocephalus scorpioides), liver 2,2 ng/g (Martin et al. 2004) 
PFNA Sanikiluaq, Canada Polar bear (Ursus maritimus), liver 108-230 ng/g (Martin et al. 2004) 
PFNA Dutch Wadden Sea Harbour seal (Phoca vitulina), liver <LOD-14,00 ng/g w.w. (VandeVijver et al. 2005) 

PFNA 
Blokkersdijk, The 
Netherlands Wood mouse (Apodemus sylvaticus), liver <LOD-0,27 ng/g w.w. (Hoff et al. 2004) 

PFNA Tokyo Bay, Japan water sample 163-71000 pg/L (Yamashita et al. 2005) 
PFNA New York, USA Human plasma,  0.1-2 ng/mL (Kannan et al. 2004) 
PFNA Atlanta, USA Human serum 1.3-4.4 ng/mL (Kuklenyik et al. 2004) 
PFNA Poland Beaver, liver 1,34 ng/g w.w. (Taniyasu et al. 2005) 
PFNA Poland Human, blood 3,84 ng/mL (Taniyasu et al. 2005) 
TBT German Northern Sea Sediment 80-720 ng/g d.w. (Biselli et al. 2000) 
TBT German Baltic Sea Sediment 570-17000 ng/g d.w. (Biselli et al. 2000) 
ΣBT US, West coast Sediment n.a.-1600 ng ΣBTs/g w.w. (Krone et al. 1996) 
ΣBT US, West coast Fish, liver n.a.-1600 ng ΣBTs/g w.w. (Krone et al. 1996) 
ΣBT US, East coast Sediment n.a.-310 ng ΣBTs/g w.w. (Krone et al. 1996) 
ΣBT US, East coast Fish, liver n.a.-970 ng ΣBTs/g w.w. (Krone et al. 1996) 
TBT Mediterranean Sea, Spain Sediment 59-6860 ng/g d.w.  (Diez et al. 2002) 
TBT Greenland Blue mussel (Mytilus edulis) 0,2-1,2 µg(Sn)/kg w.w. (Jacobsen and Asmund 2000) 
TBT Iceland Blue mussel (Mytilus edulis) 14,7-122,6 ng/g w.w. (Skarphedinsdottir et al. 1996) 
TBT Iceland Dogwhelk (Nucella lapillus) 8,5-61,9 ng/g w.w. (Skarphedinsdottir et al. 1996) 
TBT Korea Starfish (Asteria pectinifera) n.d.-323 ng(Sn)/g d.w. (Shim et al. 2005) 
TBT Korea Starfish (Asterias amurensis) 14-685 ng(Sn)/g d.w. (Shim et al. 2005) 
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TBT Korea Bivalves (Mytilus edulis and Crassostrea gigas) 16-1610 ng(Sn)/g d.w. (Shim et al. 2005) 
TBT Japan waters Sea star (Ctenodiscus crispatus),  1,9 ng/g w.w. (de Brito et al. 2002) 
TBT North Sea Sea star (Asterias rubens), pyloric caeca 4,7-8,5 ng/g w.w. (Stronkhorst et al. 2003) 
TBT Norwegian coast Dogwhelk (Nucella lapillus) <7-1096 ng/g dryweight (Folsviksrk et al. 1999) 
TBT Japan waters Sun star (Solaster uchidai) 22 ng/g w.w. (Takahashi et al. 1997) 
TBT Japan waters Goniasterid star (Ceramaster japonicus) 5,5 ng/g w.w. (Takahashi et al. 1997) 
TBT Japan waters Echinothuirid sea urchin (Phormosona bursarium) 11 ng/g w.w. (Takahashi et al. 1997) 
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Appendix 3  
Selected effects observations of toxicants 
Substance Compartment Effect Parameter Level Notes Ref. 

HBCD 
Rat brain 
synaptosomes Glutamate uptake 26±9% inhibition 1µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

HBCD 
Rat brain 
synaptosomes Dopamine uptake IC50 4±1µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

HBCD Rainbow tout, liver Catalase activity Sign. increase 50mg/(kg bw) 

Intraperitoneal (i.p.) injection, 
once.  
5 days incubation (Ronisz et al. 2004) 

HBCD Rainbow tout, liver LSI Sign. increase 50mg/(kg bw) 
I.p. injection, once.28 days 
incubation (Ronisz et al. 2004) 

HBCD Rainbow tout, liver EROD-activity Sign. decrease 500mg/(kg bw) 
I.p. injection, once.28 days 
incubation (Ronisz et al. 2004) 

HBCD HeLaTR cells 

TR-mediated gene 
transcription (luciferase 
activity) Sign. increase 3,12µM 

In vitro,  days pre-incubation with 
HBCD 

(Yamada-Okabe et al. 
2005) 

HBCD Algae  EC50 0,37-9,3 µg/L  

KEMI 1999, OECD 2003, 
(Birnbaum and Staskal 
2004) 

HBCD Daphnia  Life-cycle NOEC 3,1µg/L  
OECD 2003, (Birnbaum 
and Staskal 2004) 

HBCD Rainbow trout  EC50 2,5µg/L  
OECD 2003, (Birnbaum 
and Staskal 2004) 

HBCD 
Mammalian celline, 
Sp5 and SPD9 Growth IC50 0,03mM  (Helleday et al. 1999) 

TBBPA Mouse lymphocytes Cytotoxicity NOEC 3µM  (Pullen et al. 2003) 

TBBPA 
Rat brain 
synaptosomes Glutamate uptake IC50 6±1µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

TBBPA 
Rat brain 
synaptosomes Dopamine uptake IC50 9±2µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

TBBPA 
Rat brain 
synaptosomes GABA uptake IC50 16±2µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

TBBPA 
Rat brain 
synaptosomes 

Membrane potensial (3H+-
TPP uptake) IC50 16±6µM 

In vitro, 15 min pre-incubation 
with HBCD 

(Mariussen and Fonnum 
2003) 

TBBPA Rat brain vesicles Dopamine uptake IC50 3±1µM In vitro, 15 min pre-incubation (Mariussen and Fonnum 
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with HBCD 2003) 

TBBPA MtT/E-2 cells 

Thyroid hormone 
homeostasis (T3 and TTR 
binding Sign. inhibition 10-6  - 10-4 M In vitro, 40 min (Kitamura et al. 2002) 

TBBPA GH3 cells 

Thyroid hormone 
homeostasis (growth 
increase) Sign. Induction 10-6  - 10-4 M In vitro, one week (Kitamura et al. 2002) 

TBBPA MtT/E-2 cells 
Estrogen homeostasis 
(Inhibition of ER-binding) Sign. inhibition 10−5 - 10−4 M In vitro, 40 min (Kitamura et al. 2002) 

TBBPA Rat hepatocytes 

Thyroid hormone 
homeostasis (T4 and TTR 
binding) IC50 7,7±0,9 nM In vitro, overnight (Meerts et al. 2000) 

TBBPA 
Mammalian celline, 
Sp5 and SPD8 Growth inhibition IC50 0,08-0,09 mM  (Helleday et al. 1999) 

TBBPA 
Mammalian celline, 
Sp5 and SPD8 Colony formation IC50 >0,07-0,18 mM  (Helleday et al. 1999) 

TBBPA Rainbow tout, liver EROD-activity Sign. decrease 100mg/kg/bw/day I.p. injection, once, 4 days (Ronisz et al. 2004) 
TBBPA Rainbow tout, liver GR-activity Sign. increase 100mg/kg/bw/day I.p. injection, once, 4, 14 days (Ronisz et al. 2004) 

TBBPA 
Human neutrophil 
granulocytes ROS-production Sign. increase 2µM  In vitro, 60 min (Reistad et al. 2005) 

TBBPA Mussel hemocytes 
Lysosomal membrane 
stability Sign. decrease 5µM In vitro, 30 min (Canesi et al. 2005) 

TBBPA Mussel hemocytes MAPK phosphorylation Sign. increase 5µM In vitro, ≤60 min (Canesi et al. 2005) 
TBBPA Mussel hemocytes PKC phosphorylation Sign. increase 5µM In vitro, ≤60 min (Canesi et al. 2005) 

TBBPA Mussel hemocytes 
Immune function (several 
parameters) Sign. effect 5µM In vitro, ≤60 min (Canesi et al. 2005) 

TBBPA 
Freshwater fish 
(Carassius auratus) ROS-production Sign. increase 100mg/kg I.p. injection, once (Shi et al. 2005) 

TBBPA MCF-7 cells Cell growth Sign. induction 10-5 M 6 days (Olsen et al. 2003) 

PFOS Rat, liver LSI Sign. increase 100 mg I.p. injection, once. 
(Berthiaume and Wallace 
2002) 

PFOS Rat, liver Body weight Sign. decrease 100 mg I.p. injection, once. 
(Berthiaume and Wallace 
2002) 

PFOS Rat, liver Peroxisomal β-oxidation Sign. increase 100 mg I.p. injection, once. 
(Berthiaume and Wallace 
2002) 

PFOS Carp 
 membrane disrupting 
potential (serum ALT Sign. increase 561ng/g liver I.p. injection, once (Hoff et al. 2003) 
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activity) 

PFOS Carp 

 membrane disrupting 
potential (serum AST 
activity) Sign. increase 864ng/g liver I.p. injection, once (Hoff et al. 2003) 

PFOS Rat WB-534 cells 
Gap junction intercellular 
communication NOEL 6,25µM 30 min  (Hu et al. 2002) 

PFOS Dolphin kidney cells 
Gap junction intercellular 
communication NOEL 6,25µM 31 min  (Hu et al. 2002) 

PFOS Carp leukocytes Membrane fluidity Sign. increase 33µM In vitro, 15 min (Hu et al. 2003) 

PFOS Carp leukocytes 
Mitochondrial membrane 
potential Sign. increase 33µM In vitro, 15 min (Hu et al. 2003) 

PFOS Rats L-FABP-DAUDA-binding IC50 4,9µM  (Luebker et al. 2002) 

PFOS 
Paramecium 
caudatum KNZ 82  Backwards swimming Sign. effect 5µM  (Matsubara et al.) 

PFOS 
Female pregnant 
rats Serum T3 levels Sign. effect 1mg/kg In vivo, daily, 18 gestational days (Thibodeaux et al. 2003) 

PFOS 

Nematode 
Caenorhabditis 
elegans fecundity 

Multi-generation, number of 
worms Sign. decrease 10pM Four generations (Tominaga et al. 2004) 

PFOS 

Nematode 
Caenorhabditis 
elegans acute 
toxicity Mobility EC50 2,22mM 48 hours (Tominaga et al. 2004) 

PFNA Rat, liver 
acyl-CoA elongations 
(palmotoyl-CoA) Sign. effect 10mg/kg In vivo, daily, 5 days (Toyama et al. 2004) 

PFNA Rat, liver activity of palmitoyl-CoA 
Dose-dependent 
effect  In vitro (Toyama et al. 2004) 

PFNA 
Paramecium 
caudatum KNZ 82  Backwards swimming EC50 98,7±20,1µM  (Matsubara et al.) 

PFNA Rat, liver Peroxisomal β-oxidation 
Dose-dependent 
effect 2,5-20mg/kg I.p. injection, daily, 5 days (Kudo et al. 2000) 

PFNA Rat hepatocytes acyl-CoA oxidase Sign. increase 100µM In vitro, 72 hours (Kudo et al. 2000) 

PFNA 

Nematode 
Caenorhabditis 
elegans fecundity Multi-generation egg-laying Sign. decrease 1nM Four generations (Tominaga et al. 2004) 

TBT 
Sea star, 
Leptasterias polaris Cell viability No effect 

2,35±0,86 µg(Sn) 
body burden TBT-diet, 56 days (Bekri and Pelletier 2004) 

TBT Sea star, Lysosomal membrane Sign. increase 1,41±0,99 µg TBT-diet, 42 days (Bekri and Pelletier 2004) 
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Leptasterias polaris stability (Sn) body burden 

TBT 
Sea star, 
Leptasterias polaris Phagocytic activity Sign. decrease 

1,41±0,99 µg 
(Sn) body burden TBT-diet, 42 days (Bekri and Pelletier 2004) 

TBT 

Sea urchin, 
Parocentrotus 
lividus embryonic development NOEC 0,1µg/L 48 hours (Bellas et al. 2005) 

TBT 

Sea urchin, 
Parocentrotus 
lividus embryonic development LOEC 0,2µg/L 48 hours (Bellas et al. 2005) 

TBT Ciona intestinalis embryonic development NOEC 2µg/L 24 hour (Bellas et al. 2005) 
TBT Ciona intestinalis embryonic development LOEC 4µg/L 24 hour (Bellas et al. 2005) 

TBT Rat Hemoglobin level Sign. decrease 2µg/kg gavage, weekly, 30 days 
(da Silva de Assis et al. 
2005) 

TBT Rat Erythrocyte level Sign. decrease 2µg/kg gavage, weekly, 30 days 
(da Silva de Assis et al. 
2005) 

TBT Rat 
Resident mononuclear 
peritoneal cells Sign. decrease 2µg/kg gavage, weekly, 30 days 

(da Silva de Assis et al. 
2005) 

TBT Rat thymocytes ROS-production Sign increase 1µM 5 min (Gennari et al. 2000) 

TBT 

Sea urchin, 
Parocentrotus 
lividus eggs 

Membrane destabilising 
(Ca2+-permeability) Sign. increase >7µM 10 min (Girard et al. 1997) 

TBT 

Sea urchin, 
Parocentrotus 
lividus eggs 

Membrane destabilising 
(Na+-permeability) Sign.increase 0,1µM 20 min (Girard et al. 1997) 
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Appendix 4 
Multixenobiotic resistance in taxons 
Taxonomical 
group 

Organism Reference 

Bacteria Clostridium (George 1996) 
Bacteria Staphylococcus (George 1996) 
Bacteria Streptococcus (George 1996) 
Protozoa Plasmodium spp. (Borst and Ouellette 1995) 
Protozoa Entamoeba spp. (Borst and Ouellette 1995) 
Protozoa Leishmania spp. (Borst and Ouellette 1995) 
Fungi Candida (Prasad et al. 1995) 
Fungi   
Sponge Geodia cydonium (Kurelec et al. 1992) 
Sponge Verongia aerophoba (Kurelec et al. 1992) 
Mussel Mytilus californianus (Cornwall et al. 1995) 
 Mytilus galloprovincialis (Galgani et al. 1996) 
 Mytilus edulis (Minier et al. 1993) 
Clam Corbicula fluminea (Waldmann et al. 1995) 
Oyster Crassostrea gigas (Minier et al. 1993) 
 C. virginica (Keppler and Ringwood 2001) 
Marine worm Urechis caupo (Toomey and Epel 1993) 
Marine snails Monodonta turbinata (Kurelec et al.) 
Fish Pleuronectes 

americanus 
(Chan et al. 1992) 

 Scaphthalmus maximus (Tutundjian et al. 2002) 
 Fundulus heteroclitus (Bard et al. 2002) 
Frog Xenopus laevis, (Bonfanti et al. 1998) 
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