Coelomocytter fra vanlig korstroll (Asterias rubens) som modell: bruk i testing av fremmedstoffer

Henriette Ruud

Masteroppgave i Toksikologi, Biologisk institutt

UNIVERSITETET I OSLO

September, 2011

© Henriette Ruud

2011

Coelomocytter fra vanlig korstroll (Asterias rubens) som modell: bruk i testing av fremmedstoffer

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo

Forord

Denne masteroppgaven i toksikologi ble utført ved Biologisk institutt ved Universitetet i Oslo som en del av min master i biologi. Oppgaven har blitt veiledet av professor Ketil Hylland og doktorgradsstipendiat Kathrin Ellesat.

Takk for all hjelp Ketil. Til tross for at du alltid har mye å gjøre, har du bestandig vært tilgjengelig til å hjelpe og svare på spørsmål.

Jeg vil spesielt takke deg Kathrin for god støtte og hjelp under arbeidet med hele masteroppgaven. Som alltid tar seg tid til å hjelpe en fortvilet masterstudent. Hva skulle jeg gjort uten deg?

Takk til Hans Erik Karlsen ved Biologisk stasjon i Drøbak og Sondre Ski for hjelp med innsamling av sjøstjerner til oppgaven.

Må også få takke alle mine medstudenter. Spesielt takk til Polina og Camilla for godt samarbeid og moralsk støtte gjennom mastertiden.

Jeg vil takke min familie. For at dere har stilt opp og hjulpet til med det meste den siste tiden. Vet Thora har kost seg masse sammen med Mormor og tante Caroline. Takk for hjelp med gjennomlesning av oppgaven Kristoffer, at du tok deg tid til det satte jeg utrolig stor pris på. Sist men ikke minst vil jeg takk deg Erlend, for all støtte og hjelp med annet praktisk arbeid sånn at jeg har hatt mulighet og tid til å fullføre denne oppgaven. Jeg hadde ikke klart dette uten deg!

Oslo, september 2011

Henriette Ruud

Sammendrag

Utslipp av nye fremmedstoffer til det akvatiske miljø, som ulike legemidler og personlig pleieprodukter, er økende og er funnet i blant annet avløpsvann fra renseanlegg, kystvann, slam og biota. In vitro toksisitetstester er nyttige modellsystemer som kan gi viktig informasjon om mulige effekter av miljøgifter. Denne studien undersøkte toksisiteten av utvalgte fremmedstoffer for coelomocytter fra vanlig korstroll (Asterias rubens). Målet med oppgaven var å kvantifisere eventuelle effekter av utvalgte fremmedstoffer på coelomocytter fra vanlig korstroll in vitro. Coelomocytter ble ekstrahert fra kroppshulen ved bruk av sprøyte og eksponert for ulike konsentrasjoner av kobber (0,3-40 µM), atorvastatin og simvastatin (3,1-400 µM), oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5) (0,03-491 μ g/l), sukralose (2-4374 μ g/l) og akrylamid (0,1-7812 μ g/l) i 48 timer. For siloksanene, sukralose og akrylamid tilsvarte laveste konsentrasjon nivåer målt i miljøet. Cytotoksisitet ble målt som metabolsk aktivitet og membranintegritet med de fluorescerende probene alamar blue (AB) og 5-carboksyfluorescein diacetate acetoxymethylester (CFDA-AM). Membranpumpeaktivitet ble målt som rhodamin B-akkumulering med og uten inkubering med MK 571 (0,1 µM). Kobbereksponering førte til konsentrasjonsavhengig nedgang i metabolsk aktivitet og membranintegritet og viste at coelomocytter kan benyttes som testsystem ved toksisitetstesting. Eksponering for statiner førte til dose-avhengig cytotoksisitet. Det var kun den høyeste simvastatin lakton konsentrasjonen som førte til endring i akkumulering av rhodamin B ved måling av membranpumpeaktivitet. Simvastatin var mer toksisk enn atorvastatin, og laktonformen toksisk var mer toksisk enn syreformen. Siloksaner, sucralose og akrylamid hadde ingen innvirkning på coelomocytter fra vanlig korstroll ved konsentrasjonene som ble testet i denne studien.

Innholdsfortegnelse

1	Inn	nledning1				
2	Eksponeringsstoffer					
3	Materialer og metoder 1					
	3.1	.1 Innsamling av forsøksdyr				
3.2 Prøvetaking			vetaking	. 12		
	3.3	Met	odeutvikling	. 13		
3.4 In vitro eksponering			<i>itro</i> eksponering	. 13		
	3.4	.1	Cytotoksisitetsanalyse	. 15		
	3.4	.2	MXR-akkumuleringsanalyse	. 15		
	3.5	Data	abehandling	. 16		
4	Res	sultat	er	. 18		
	4.1	Met	odeutvikling	. 18		
	4.2	Cyte	otoksisitet	. 19		
	4.2	.1	Kobber	. 19		
	4.2.2		Statiner	. 20		
	4.2.3		Siloksaner	. 23		
	4.2.4		Sukralose	. 24		
	4.2	.5	Akrylamid	. 25		
	4.3	Akt	ivitet av membrantransportører (MXR)	. 25		
	4.3	.1	Statiner	. 25		
	4.3.2		Siloksaner	. 28		
	4.3.3		Sukralose	. 30		
	4.3.4		Akrylamid	. 31		
5	Dis	skusjo	on	. 32		
	5.1	Met	odeutvikling	. 32		
	5.1	.1	Valg av medie	. 32		
	5.2	Cyte	otoksisitet	. 32		
	5.2	.1	Kobber	. 32		
	5.2	.2	Statiner	. 33		
	5.2	.3	Siloksaner	. 34		
	5.2.4		Sukralose	. 35		

	5.2.5	Akrylamid	36			
5	.3 Akt	ivitet av membrantransportører (MXR)	37			
	5.3.1	Statiner	37			
	5.3.2	Siloksaner, sukralose og akrylamid	38			
6	Konklus	sjoner	40			
Ref	Referanser					
Vedlegg 1: Kjemikalieliste						
Vedlegg 2: Utstyrsliste						
Vec	Vedlegg 3: Rådata					

Forkortelser

Forkortelser	Fullt navn
AB	alamar blue
ABC-familie	ATP-binding cassette familie
BCF	Biokonsentrasjonsfaktor
BCRP	Brystkreft resistens protein eller ABCG-familien
CF	5-carboxyfluorescein
CFDA-AM	5-carboksyfluorescein diacetate acetoxymethylester
D4	Oktametylsyklotetrasiloksan
D5	Dekametylsyklopetasiloksan
DMSO	Dimetylsulfoksid
EDTA	Ethylendiamintetrasyre
GGPP	Geranylgeranyl pyrofosfat
GSH	Glutation
HMGR	3-hydroxymetylglutaryl coenzym A reduktase
L-15	Leibovitz-15 medium
LDH	Laktatdehydrogenase
mBCI	Monochlorobimate
MRP	Multidrug resistens protein eller ABCC familien
MXR	Multixenobiotisk resistens
OATP	Organisk anion transporterende polypeptider
PBS	Fosfatbufret saltløsning
PEC	Predicted effect concentration
PNEC	Predicted No Effect Concentration
PFOS	Perfluorooktan sulfonat
P-gp	Poly-glykoprotein eller ABCB familien
TCDD	Tetraklor dibenzo-dioksin

Tabell A: Forkortelser brukt i oppgaven.

1 Innledning

Det blir stadig utviklet og produsert nye syntetiske kjemikalier og bruken av disse i industri, husholdning og landbruk er økende. Mange av disse stoffene ender i det marine miljø og blir lagret i sediment og kan tas opp i bunnlevende organismer. Organismer som lever i forurensede områder blir kontinuerlig eksponert for en blanding av slike organiske forbindelser. Mange organiske kjemikalier er svært lipofile forbindelser og tas derfor lett opp av organismer.

Det er gjort lite forskning på mange av disse nye stoffene og deres påvirkning på akvatiske organismer. Dermed vet man lite om potensielle toksikologiske effekter på celle, organ og/eller individnivå som følge av eksponering av disse forbindelsene.

Slike potensielle toksikologiske effekter kan identifiseres gjennom laboratorie-analyser, med påfølgende ekstrapolering til feltforhold. Bruk av *in vitro* teknikker for toksisitetstesting er nyttige siden dette kan gi kunnskap om blant annet stoffers potensielt skadelige virkning og virkningsmekanisme. Man kan dessuten undersøke vev og målspesifikke effekter.

Identifisering av toksikologiske effekter på celle og vevsnivå vil i tillegg kunne fungere som en tidlig advarsel om at eventuelle effekter på individ- eller populasjonsnivå kan oppstå (Fossi et al., 1997). *In vitro* studier tar derimot ikke hensyn til biokjemiske interaksjoner inni organismen.

Selv om effekter blir oppdaget ved *in vitro* studier er det likevel ikke sikkert at man vil få de samme resultater ved bruk av *in vivo* metoder eller i en feltstudie (Reid and MacFarlane, 2003). I økotoksikologisk forskning er likevel studier av cellulære og biokjemiske reaksjoner like viktige som studier av hele organismen, siden de primære interaksjonene mellom kjemikalier og organismer foregår på cellulært og molekylært nivå (Fent, 2003).

I denne studien ble det benyttet sirkulerendeceller (coelomocytter) fra vanlig korstroll (*Asterias rubens*) for å undersøkte giftigheten av kobber, de kolesterol senkende legemidlene atorvastatin og simvastatin, oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5) som blant annet blir benyttet i personlig pleie produkter, søtningsstoffet sukralose og akrylamid etter eksponering *in vitro*. Pigghuder (echinodermata) er marine organismer og inkluderer blant annet sjøstjernen *Asterias rubens* (vanlig korstroll). Man finner dem i alle hav og på alle dyp og de kan dekke hele 90% av den bentiske biomassen i dypet. Deres posisjon som predator i næringsnettet, gjør at de strukturerer flere marin-bentiske økosystemer (Saier, 2001).

Vanlig korstroll lever for det meste i eller på overflaten av hardbunn og sediment. Det gjør at de kan oppleve relativt høy eksponering for miljøgifter som akkumuleres i sedimentet. De fleste sjøstjerner er predatorer som spiser bløtdyr som blant annet blåskjell, krepsdyr og andre evertebrater. Dette eksponerer dem for ytterligere miljøgifter gjennom dietten (Matranga, 2005).

Sirkulasjonssystemet er lite utviklet og coelomvæsken bader de indre vevene. Coelomvæsken inneholder sjøvann, proteiner og celler kalt coelomocytter (Chia and Xing, 1996). Coelomocytter er blant annet ansvarlig for immunforsvaret, koagulering, transport av næringsstoffer og gassutveksling i pigghuder (Edds, 1993).

Fire morfologisk ulike coelomocytter er beskrevet for sjøstjerner. Det er fagocytter, amoebocytter, vibratile celler og hemocytter. Av disse er fagocyttene dominerende og utgjør 95% av den totale coelomocyttpopulasjonen (Pinsino et al., 2007). Fagocyttene utgjør den viktigste indre forsvarsmekanismene hos pigghuder (Smith and Davidson, 1992). Disse kan feste seg og danne nettverk når de går gjennom en morfologisk transformasjon fra petaloid til filopidial (Pinsino et al., 2007). Ved studering av endring i fagocyttene kan man få indikasjoner på skadelige effekter i blant annet immunforsvaret. Per dags dato er det begrenset forskning og informasjon om hvordan pigghuder håndterer fremmedstoffer og coelomocyttenes rolle i dette (Doussantousse et al., 2011).

Det at vanlige korstroll har en vid geografisk utbredelse langs kysten av hele Europa, gjør dem til en fordelaktig forsøksorganisme. Medlemmer av samme slekt finner man langs kysten av Nord-Amerika (*A. vulgaris*) og Øst Asia (*A. forbesi*) (den Besten, 1991). Dette gjør at tester på disse organismene vil være relevante i mange ulike land. Siden vanlig korstroll lever bentisk, kan den benyttes som biomonitoring-organisme. Akkumulering av forurensning via maten kan studeres, siden vanlig korstroll er på toppen i næringskjeden (den Besten, 1991). Vanlig korstroll kan forholdsvis lett bli holdt i laboratoriet og coelomocytter kan prøvetas på en relativt enkel måte ved å trekke ut coelomicvæske fra kroppshulen hos individer uten at organismen blir skadet. Dette gjør at samme individ kan bli prøvetatt flere ganger. Det kan benyttes ulike metoder for å undersøke stoffers virkning på celler. Med cytotoksisitetstester kan forandringer i ulike cellulære funksjoner måles direkte i cellekulturer etter eksponering for ulike kjemikalier (Tollefsen et al., 2008). Man kan blant annet teste celleviabilitet ved å bruke ulike fluorescerende prober som alamar blue (AB) og 5carboksyfluorescein diacetate acetoxymethylester (CFDA-AM) som er mål for cellulær metabolisme og membranintegritet (Schirmer et al., 1998). AB reduseres av esteraser i mitokondriene til det fluorescerende røde fargestoffet resorufin, via elektrotransportkjeden (Schirmer et al., 1998). CFDA-AM er et ikke-fluorescerende esterasesubstrat som diffunderer raskt inn i celler og omdannes til et ikke-polart fluorescerende fargestoff, 5carboxyfluorescein (CF) av uspesifikke esteraser i cellens cytosol (Schirmer et al., 1998). Måling av CFDA-AM blir ofte beskrevet som et indirekte mål på membranintegritet, men CFDA-AM ble observert å lekke ut fra celler også ved en intakt cellemembran (Schirmer et al., 1997). Dette kan indikere at CFDA-AM heller er et spesifikt mål for cellulær esteraseaktivitet (Dayeh et al., 2005) og en nedgang i CF fluorescens kan derfor indikere en nedgang i esterasefunksjon. Ved hemming av esteraseaktivitet eller ikke-intakte cellemembraner, blir ikke utgangssubstratet spaltet. En reduksjon i fluorescens lesning relativ til kontroll indikerer derfor cytotoksisitet (Schirmer et al., 1997).

Akvatiske organismer har utviklet en rekke ulike forsvarssystemer for at de skal kunne leve og reprodusere som normalt i forurensede miljøer. Et av disse forsvarssystemene er membranefflukstransportører, som transporterer giftstoffer ut av celler. Dette gjør at organismer er mer motstandsdyktige mot skadelige stoffer. Organismer som lever på forurensede steder har ofte økt antall og aktivitet av efflukstransportører. Fenomenet er kalt multixenobiotisk resistens (MXR) (Kurelec, 1992).

ABC-transportører er en stor gruppe transmembranproteiner som bruker energien fra adenosin triphosfat (ATP) hydrolyse for å transportere ioner og mindre molekyler over membraner (Epel, 1998). ABC-transportører har en vid substratspesifisitet (Lodish et al., 2003). De mest studerte ABC-subfamiliene (membranefflukstransportører) i miljøsammenheng er P-glykoproteiner (Pgp) og multidrug resistens protein (MRP) (Epel et al., 2008). Det er tidligere blant annet vist at MXR-aktivitet finnes i coelomocytter fra kråkebolle (*Strongylocentrotus droebachiensis*), sjøstjerne (*Leptasterias polaris*) og sjøpølse (*Cucumaria frondosa*) (Doussantousse et al., 2011).

Enkelte stoffer ("chemosensitizers") kan hemme transportørene til MXR-medierte membranpumper. En konsekvens av dette kan være økning i intracelluær kjemikaliekonsentrasjon og toksisitet (Smital and Kurelec, 1998; Szakacs et al., 2006). Ved høye konsentrasjoner av et substrat eller en stoffblanding kan substratet hemme membranpumpen direkte, eller membranpumpeaktiviteten kan bli mettet. Det vil si at membranpumpene ikke har mulighet til å pumpe ut mer stoff, noe som vil føre til opptak og samling av stoff i cellen (Epel et al., 2008). Dette kan igjen føre til at et stoff øker sin toksiske virkning i cellene ved å reagere med andre molekyler. Derfor kan det forventes at økende eksponeringskonsentrasjon vil gi økende akkumulering av modellsubstrat i cellene. Substraters molekylære struktur påvirker også effekten av membranpumpene (Epel et al., 2008).

En slik hemming av membranpumper har blitt indikert i coelomocytter fra vanlig korstroll, etter eksponering for perfluorooktan sulfonat (PFOS) og tetraklor dibenzo-dioksin (TCDD) (Rønning, 2006).

ABC-transporørtaktivitet kan bestemmes med en akkumuleringsmetode som måler den intracellulære konsentrasjonen av et substrat som de fluorescerenede stoffene Calcein AM og Rhodamin B. Celler med hemmet ABC-transportør aktivitet, vil transportere mindre substrat ut av cellene, enn celler med vanlig transportøraktivitet. En kombinasjon av substrat og hemmer blir ofte brukt for å indikere MXR-aktivitet (Cornwall et al., 1995; Marin et al., 2004). Forskjell i substratkonsentrasjon gir et kvantitativt mål på transport-aktivitet.

Både rhodamin B og calcein-AM har vist seg å være substrater for ABC-transportører i coelomocytter fra sjøstjernen L. *polaris*, og verapamil, cyclosporin- A og MK 571 har vist seg å være hemmere i samme system (Doussantousse et al., 2011). Rhodamin B er et fluorescerende fargestoff som akkumulerer i celler og kan måles ved hjelp av et fluorescens-spektrofotometer.

Plasseringen av Pgp i membranen tilsier at substratet blir fjernet før det kommer inn i cytoplasma (Epel et al., 2008). For å undersøke Pgp-aktivitet kan proben calcin-AM benyttes. Calcin-AM ester er et ikke-fluorecerende Pgp-substrat som ved spalting i cytoplasma produserer fluorescerende calcein (Homolya et al., 1993). Hamdoun et al. (2004) fant i sine studier at calcin-AM har vist seg å være et bra substrat i kråkebolleembryoer (S. *purpuratus*). Kråkebolleembryoer viste seg å akkumulerte lite calcein-AM men ved tilstedeværelse av Pgphemmeren PSC883, økte akkumuleringen 20 ganger. MK 571 økte akkumulering av calcein 80 ganger. Dette indikerer tilstedeværelsen av efflukspumper og at hovedaktiviteten av efflukspumper var fra en eller flere MRP-lignende transportører (Hamdoun et al., 2004). MK 571 er en reseptorantagonist og er selv et glutationkonjugat (Haimeur et al., 2004) som har blitt vist å være en spesifikk hemmer for MRP-familien (Leier et al., 1994; Gekeler et al., 1995).

Siden substratspesifisiteten til ABC-transportører er så stor, kan hemming av MRP-lignende pumper føre til økt effektivitet av Pgp. Det er vist at Pgp-aktivitet i respons til ulike toksiske stoffer kun oppreguleres 50-60% (Smital et al., 2003). For å kompensere for dette, har organismer flere ulike membrantransportører. Eksempelvis har det blitt funnet at kråkeboller har 35 ulike ABCC (MRP) transportører i sitt genom (Goldstone et al., 2006). I coelomocytter fra pigghuder har det blitt oppdaget både Pgp og MRP ved western blot-analyse (Doussantousse et al., 2011).

Statiner er legemidler som reduserer produksjonen av kolesterol, og brukes blant annet for å forebygge hjerte-karsykdommer. PECs (Predicted effect concentration) har blitt estemert til 0,25 μ g/l for atorvastatin og 0,63 μ g/l for simvastatin for ulike akvatiske miljøer i Norge (Grung et al., 2008).

Sykliske siloksaner som oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5) benyttes blant annet i personlig pleie produkter. Dette er stoffer som er lite nedbrytbare og kan bioakkumulere i akvatiske organismer (Graiver et al., 2003). I sjøvann er det målt konsentrasjoner opp til 0,09 µg/l for D4 og opp til 0,05 µg/l for D5 (Schlabach et al., 2007).

Sukralose er et kunstig søtningsstoff som er brytes langsomt ned i miljøet og konsentrasjoner er målt opp mot 7 μ g/l i avløpsvann (Green et al., 2008).

Akrylamid er et industrikjemikalie som benyttes i produksjonen av polyakrylamid kjemikalier. Akrylamid har lavt bioakkumuleringspotensiale, men kan være skadelig for vannlevende organismer ved høye konsentrasjoner. Ved kronisk eksponering i sjøvann er det beregnet en PNEC (predicted no-effect concentration) på 40,8 µg/l (Sverdrup et al., 1999).

Målet med oppgaven var å kvantifisere eventuelle effekter av utvalgte fremmedstoffer på coelomocytter fra vanlig korstroll (*Asterias rubens*) *in vitro*.

Hovedmålet kan deles i følgende delmål:

Videreutvikle betingelser for primærcellekultur av coelomoytter fra vanlig korstroll ved testing av ulike medier og coelomocyttenes levedyktighet i disse.

H₀: det er ingen forskjell mellom coelomocytters levedyktighet i de ulike mediene.

H₀: det er ingen forskjell i coelomocytters levedyktighet over tid.

Kvantifisere effekter av siloksaner, statiner, sukralose og akrylamid på coelomocytter, målt som cytotoksisitet eller aktivitet av ABC-transportere.

H₀: det er ingen effekt av statiner, siloksaner, sukralose, akrylamid eller kobber på metabolskaktivitet (målt som alamar Blue fluorescens) i coelomocytters fra vanlig korstroll.

H₀: det er ingen effekt av statiner, siloksaner, sukralose, akrylamid eller kobber på membranintegritet (målt som CF-fluorescens) i coelomocytter fra vanlig korstroll.

H₀: det er ingen effekt av statiner, siloksaner, sukralose eller akrylamid på aktiviteten til membranpumper (målt med MK 571 som hemmer) i coelomocytter fra vanlig korstroll.

2 Eksponeringsstoffer

I dette studiet ble coelomocytter fra vanlig korstroll benyttet som testsystem for å undersøke giftigheten av kobber, atorvastatin, simvastatin, oktametylsyklotetrasiloksan (D4), dekametylsyklopentasiloksan (D5), sukralose og akrylamid ved *in vito* testmetoder.

Kobber

Kobber er et essensielt metall og tilføres naturen blant annet ved avrenning fra gruvedrift, bunnstoff, kunstgjødsel, avfallsforbrenning og metallindustri.

Ved dannelse av frie radikaler (ROS) gjennom Haber-Weiss reaksjonen, og peroksidasjon av membran lipider, er kobber toksisk for celler (Chan et al., 1982; Britton, 1996). Mitokondriene har vist seg å være et mål for kobbertoksisitet (Krumschnabel et al., 2005) og bidrar til oksidativt stress. Det er tidligere sett en sammenheng mellom metallindusert radikalt stress og mitokondriefunksjon (Pourahmad and O'Brien, 2000; Zhao et al., 2003). Oksidasjon av membran lipider har i rottelever ført til direkte skade på mitokondrieintegritet *in vitro* (Kowaltowski et al., 1996; Kowaltowski et al., 2001).

Kobber er giftig for mange marine organismer og bindes i marine sedimenter spesielt til jernoksider og sedimenters organiske fraksjon (Bjerregaard, 2005). Det er vist at salinitet også kan påvirke kobbers toksisitet ovenfor enkelte akvatiske organismer (Bryan, 1976).

Statiner

Statiner er legemidler som reduserer produksjonen av kolesterol, og brukes til forebygging av hjerte- og karsykdommer. Statiner virker ved å hemme 3-hydroxymetylglutaryl coenzym A reduktase (HMGR) som er ansvarlig for det begrensende trinnet i kolesterolsyntesens omdanning av HMG-CoA til mevalonate (Goldstein and Brown, 1990; Liao and Laufs, 2005). Bruken av statiner i Europa har økt kraftig og i 2005 hadde statiner en markedsandel på over 90% av reseptbelagte kolesterol dempende legemidler i Norge.

Statiner passerer kloakksystemet og har blitt påvist å nå det akvatiske miljøet i økende konsentrasjoner (Walley et al., 2005). Det er få data tilgjengelig på statiners innvirkninger på ikke-målorganismer i akvatiske systemer. Statiner er blitt oppdaget (ng/l-µg/l) i prøver fra renseanlegg i Norge og Sverige (Grung et al., 2008) og i Canada (Miao and Metcalfe, 2003; Miao and Metcalfe, 2003). Statiner er ikke persistente, men på grunn av kontinuerlige tilførsel til vannet er de stadig til stede og kan innvirke på ikke-målorganismer i vannet.

Atorvastatin blir gitt i den biologiske aktive syreform, mens simvastatin blir gitt som prodrug, som i kroppen omdannes til et aktivt enzymhemmende stoff (Fujino et al., 2004). Det laktonske prodruget har generelt høyere toksisitet enn den biologisk aktive syreformen av statiner. Dette kan komme av at laktonformen har et høyere potensiale for passiv diffundering over cellemembraner og derfor når HMGR enzymet i større konsentrasjoner enn syreformen (Skottheim et al., 2008). Den aktive transporten av statiner blir i hovedsak utført av transportere i ABC-superfamilien og solute carriers (SLs) (Shitara and Sugiyama, 2006).

Akutt-toksisk terskelverdi for amfipoden *Hyalella azteca* (LC50 1,5 mg/l) og fjærmygglarven *Chironomus tentans* (LC50 14,3 mg/l) ved ti dagers overlevelse- og vekstanalyse, lå høyt over miljøkonsentrasjonene, noe som førte til lav farekoeffisient (HQ<1) (Dussault et al., 2008). Atorvastatin viser altså lav risiko for bentiske invertebrater (Dussault et al., 2008). Klumpandemat (*Lemna gibba*) indikerer også lav risiko ved atorvastatineksponering ved relevante miljøkonsentrasjoner (Brain et al., 2004; Brain et al., 2006).

PECs (Predicted effect concentration) har blitt estemert til 0,25 μ g/l for atorvastatin og 0,63 μ g/l for simvastatin for ulike akvatiske miljøer i Norge (Grung et al., 2008). Det er også funnet aktive metabolitter av statiner i Oslofjorden (Langford and Thomas, 2011).

Siloksaner

Siloksaner er en stoffgruppe med alternerende silisium- og oksygenatomer der hvert silisiumatom er bundet til en eller flere organiske grupper (Huse and Aas-Aune, 2009). De har mange ulike bruksområder og blir benyttet både i industrielle- og forbruksprodukter på grunn av deres unike egenskaper og siden det er en relativt billige råvare (Grung et al., 2008). Dette gjør at bruken av siloksaner i produkter er utstrakt, noe som igjen fører til at det slippes ut store mengder i miljøet.

Sykliske siloksaner som oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5) finner man blant annet i innsatskjemikalie for produksjon av polymere siloksaner, i kosmetikk og personlig pleieprodukter samt vaske- og rengjøringsmidler. D4 og D5 er lite nedbrytbare i vann og sediment, og har blitt påvist i prøver fra luft (høyest forekomst av D4),

avløpsvann fra kloakkrenseanlegg, kystvann, slam, sediment og biota (Kaj et al., 2005; Schlabach et al., 2007; Blytt, 2010). Dette indikerer en generell forurensning av siloksaner i det nordiske miljøet.

D4 og D5 er flyktige og kan spres over store avstander. D4 er klassifisert som reproduksjonsskadelig og skal i tillegg merkes med "kan forårsake uønskede langtidseffekter i vannmiljø" (Kaj et al., 2005). D5 brytes langsomt ned i naturen og har blitt funnet i mange deler av miljøet i relativt høye konsentrasjoner, blant annet i torsk (*Gadus morhua*) fra indre Oslofjord (Schlabach et al., 2007). D4 og D5 kan bioakkumuleres i akvatiske organismer (Graiver et al., 2003). Høye biokonsentrasjonsfaktorer (BCF), mer enn 7000 ved 6 dagers eksponering og 12 400 ved 28 dagers eksponering, har blitt funnet i eksponeringsstudie med fathead minnows (*Pimephales promelas*) (Fackler et al., 1995).

Målte konsentrasjoner av stoffene i avløpsvann fra renseanlegg i Norge og de andre nordiske landene ligger på samme nivå. Avløpsrensing reduserer konsentrasjonen av D4 og D5 (Kaj et al., 2005) ved at stoffene adsorberes til suspendert matriale og sediment som felles ut i slammet (Blytt, 2010).

PEC verdier for D4 og D5 i Svensk akvatisk miljø har blitt estimert til 0,8 μ g/l (D4) og 2,9 μ g/l (D5) (Grung et al., 2008). Slam som inneholder siloksaner kan spres over store områder, ved at det brukes som jordforbedringsmiddel. På den måten kan det være en kilde til defuse utslipp av siloksaner (Huse and Aas-Aune, 2009).

D5 ble oppført på myndighetenes prioritetsliste høsten 2006, målet er å redusere utslippene vesentlig innen 2020. Ingen tiltak er iverksatt foreløpig (Sørensen, 2011).

Studier viser at nivåene av D5 er høyere i akvatiske prøver enn nivåene av D4. En grunn til dette kan være at bruken av D4 i stor grad er erstattet av D5 i blant annet personlig pleieprodukter (Kaj et al., 2005), på grunn av D4s reproduksjon- og akvatisk toksisitetrisiko (Hobson and Silberhorn, 1995; Sousa et al., 1995; He et al., 2003; Meeks et al., 2007; Siddiqui et al., 2007).

Sukralose

Sukralose (komersielt kaldt Splenda) er et kunstig søtningsstoff som blir framstilt av sukrose ved at man selektivt bytter ut tre hydroksyl grupper med tre kloratomer. Denne prosessen gjør at stoffet blir veldig stabilt og tåler både varme og kuldebehandling. Sukralose er 600 ganger søtere enn vanlig sukker og blir ikke brukt som energikilde i kroppen, noe som gjør stoffet egnet som søtningsstoff i lett- og sukkerfrie produkter som lettbrus og sukkerfri ketchup (Grice and Goldsmith, 2000). Sukralose har blitt brukt som søtningsstoff i nesten 30 år og er tillatt i over 80 land. I Norge har sukralose vært godkjent siden juni 2005 (Green et al., 2008). Sukralose har ikke blitt påvist å være skadelig for mennesker og 90% eller mer skilles uforandret ut av kroppen (Grice and Goldsmith, 2000).

Renseanlegg greier ikke å fjerne sukralose fra avløpsvannet, så det meste av sukralosen som blir utskilt vil ende opp i miljøet. Sukralose er et hydrofilt stoff, med en betydlig vannløslighet og en octanol/vann fordelingskoffisient (K_{ow}) på 0,3 (Grice and Goldsmith, 2000). Det er blitt påvist sukralose i sjøvann og sjøbunnen utenfor renseanlegg og i sjøvann opptil to kilometer utenfor utløpet fra renseanlegget (Mead et al., 2009). Nedbrytningen av sukralose i miljøet går veldig sakte og den forventede halveringstiden i norske vann er 5-10 år (Green et al., 2008). Stoffet er persistent i miljøet og man har foreløpig liten kunnskap om hvordan stoffet påvirker akvatiske organismer.

Resultater fra norske og svenske studier viser konsentrasjonsområder av sukralose opp mot 7 μ g/l i avløpsvann (Green et al., 2008).

Kun et fåtall rapporter som har påvist toksisk effekt på organismer forårsaket av sukralose (Grice and Goldsmith, 2000). Abou-Donia et al. (2008) viste at sukralose reduserte tarmfloran og økte membrantransportproteiner (Pgp) hos rotte. Det har også blitt påvist negative effekter av sukralose på mage-tarmkanalen hos kanin og rotte (Goldsmith, 2000; Kille et al., 2000). Sasaki et al (2002) fant at sukralose induserte DNA skade i tykktarm og lunger, ved inntak av 2000 mg/kg, 3 og 24 timer etter behandling.

Akrylamid

Akrylamid er et industrielt stoff som blant annet blir brukt for å framstille polyakrylamider i produksjon av plast og papir, petroleumsindustri, rensing av avløps- og drikkevann, lekkasjetetting i tunneler (varemerke Rhoca-Gil) og biokjemiske analyser. Man har også funnet akrylamid i kaffe, sigarettrøyk og det dannes naturlig i matvarer med høyt stivelseinnhold, som varmebehandles ved temperaturer over 120 grader (Tareke et al., 2000; Tareke et al., 2002) Akrylamid har høy vannløselighet, lavt bioakkumuleringspotensial og bindes dårlig til sedimentet (Sverdrup et al., 1999). Dette gjør at akrylamid ender opp i vannfasen ved sedimenteringsprossesser. I et aerobt miljø og ved tilstedeværelse av mikroorganismer er akrylamid biologisk nedbrytbart. Etter en akklimatiseringsperiode venter man at akrylamid er fullstendig nedbrutt etter 5-10 dager, avhengig av temperatur og miljøforhold (Sverdrup et al., 1999). Akrylamid kan være giftig for vannlevende organismer og beregnet terskelverdi for at det ikke skal oppstå noen biologiske skader (predicted no-effect concentration; PNEC) for marine organismer er 40,8 mg/l ved kronisk eksponering. For akutt eksponering er PNEC beregnet til 720 mg/l (Sverdrup et al., 1999).

Akrylamid har vist seg å være kreftfremkallende i mus og rotter (Rice, 2005), *in vivo* epoxideres akrylamid til glycidamid som så reagerer med arvestoffet og kan forårsake mutagene effekter samt skade forplantningsevnen(Besaratinia and Pfeifer, 2005). I april 2010 ble akrylamid tatt inn på kandidatlista til godkjenningsordningen i REACH.

3 Materialer og metoder

3.1 Innsamling av forsøksdyr

Vanlig korstroll (*Asterias rubens*) ble plukket av dykkere på 4-6 meters dyp langs kysten av Drøbak (utenfor biologisk stasjon, Drøbak). Forsøksdyrene benyttet i metodeutviklingsdelen av oppgaven ble samlet inn november 2009 og juni 2010. Disse ble holdt på biologisk stasjon i Drøbak, i store kar med sirkulerende vann fra innsamlingsområdet.

I januar 2011 ble det samlet inn forsøksdyr til toksisitets-eksperimenter. Disse ble holdt i 50liters plastdunker med bobling på klimarom på Universitetet i Oslo. Klimarommet holdt en temperatur på 5-10 °C. Salinitet ble målt til 34 ‰. Vannet ble jevnlig skiftet med vann fra innsamlingsområdet. Fra forsøksdyrene ble samlet inn, til de første prøvene ble tatt, gikk det fire dager. Til det var tatt prøver av de sisite individene, gikk det åtte dager.

3.2 Prøvetaking

Prøvetakingteknikken var lik for alle forsøkene. Individer som så ut til å være i dårlig form eller som ikke hadde fem intakte armer, ble ikke benyttet i forsøkene.

Coelomvæske, inneholdende coelomocytter, ble ekstrahert fra vanlig korstroll til 1 ml kanyle med 23 gauge sprøytespiss forhåndsbehandlet med iskald antikoaguleringsbuffer (PBS (NaCl; 21,5 g/l, Na₂HPO₄; 1,48 g/l, KH₂PO₄; 0,43 g/l) tilsatt 10 mM EDTA (3,72 g/l PBS), pH ca 7,4, 23 ‰). Sprøytespissen ble ført inn midt på oversiden av armen, og inn i kroppshulen. Ekstraktet fra individene ble overført til et 50 ml plastikkrør, blandet 1:1 med antikoaguleringsbuffer og satt på is. Prøvene ble holdt på is og forsiktig vendt hvert femte minutt.

Det ble benyttet forsøksdyr med armlengde fra 6-9 cm, målt fra tuppen av armen til midten av sentralskiven. Det ble tatt ut ca 1-3 ml coelomvæske fra hvert forsøksdyr. I metodeutviklingen ble det brukt enkeltindivider, mens det ble brukt samleprøver fra fem individer ved toksisitettesting for å få nok celler til hvert forsøk. Prøvene ble tatt på morgenen for å unngå daglig fysiologisk variasjon og alle eksperimentene ble repetert fire ganger. Celletettheten ble bestemt ved bruk av tellekammer (Bürker-Türk, Marienfeld, Germany) og prøvene ble fortynnet til ønsket tetthet (40 000 celler/ 200 µl) i Leibovitz L-15 medium (L-15) (eller PBS, Leibovitz L-15 medium med PSA, RPMI for medium testing). To hundre µl ble tilført hver av brønnene på en 96-brønns miktrotiteterplate. Platene ble innkubert i mørket ved 10 °C i 24 timer, slik at cellene kunne synke og feste seg i et lag på bunnen av brønnene.

3.3 Metodeutvikling

Fire ulike medier ble testet; fosfatbufret saltløsning (PBS), Leibovitz L-15 (L-15), Leibovitz L-15 med PSA (500 ml L-15, 5 ml L-glutamine, 5 ml PSA (Penicillin Streptomycin amphotericin) og 2,5 ml NaHCO₃) (L-15+) og RPMI. Det ble benyttet fire replikater for hvert medium fra fem ulike individer. Coelomocyttene ble inkubert i mørket ved 10 °C i 24, 48, 96 eller 192 timer (1,2, 4 eller 8 døgn). Deretter ble celleviabilitet for de ulike mediene testet på tilsvarende måte som beskrevet under 3.4.1 cytotoksisitetsanalyse.

Resultatene er uttrykt som stigningstall.

3.4 In vitro eksponering

Laveste eksponeringskonsentrasjonen ble bestemt ut i fra konsentrasjoner målt i miljøet for siloksanene, sukralose og akrylamid. Deretter ble det benyttet en faktor på 3 for sukralose, 4 for siloksanene og 5 for akrylamid. For statiner og kobber ble det benyttet tilsvarende konsentrasjoner som ved forsøk utført på leverceller fra regnbueørret (*Oncorhynchus mykiss*) (Ellesat et al., 2010) og humane muskelceller (Skottheim et al., 2008). Coelomocytene ble eksponert for åtte (cytotoksisitetsanalyse) eller fem (MXR-analyse) ulike konsentrasjoner av eksponeringsstoffene (Tabell 3.1). Ved eksponering ble det fjernet 100 µl fra hver av brønnene. Deretter ble det tilført 100 µl eksponeringsmedium (L-15 med ulik konsentrasjon av eksponeringsstoffene) til de brønnene, der det ble benyttet tre replikater for cytotoksanalyene og åtte replikater for MXR-analysene. Platene ble innkubert i mørket ved 10 °C i 48 timer. Denne prosedyren var lik for alle forsøkene. Ved cytotoksisitetsanalyse ble kobber også brukt som positiv kontroll. Figur 3.1 viser kontrollplott av kobber for testing av cytotoksisitet.

Videre prosedyre for cytotoksanalyse og MXR-analyse er beskrevet i avsnittene 3.4.1 cytotoksanalyse og 3.4.2 MXR-analyse nedenfor.

Eksponerings stoffer	Konsentrasjoner							
	8*	7	6*	5*	4*	3	2	1*
Atorvastatin syreform (mM)	400	200	100	50	25	12,5	6,25	3,125
Stock: 44,69 mg/(ml DMSO)								
Atorvastatin laktonform (mM)	400	200	100	50	25	12,5	6,25	3,125
Stock: 43,25 mg/(ml DMSO)								
Simvastatin syreform (mM)	400	200	100	50	25	12,5	6,25	3,125
Stock: 34,88 mg/(ml DMSO)								
Simvastatin laktonform (mM)	400	200	100	50	25	12,5	6,25	3,125
Stock: 33,49 mg/(ml DMSO)								
Oktametylsyklotetrasiloksan (µg/l)	0,03	0,12	0,48	1,92	7,68	30,7	123	491
Stock: 4,92 mg/(10 ml DMSO)								
Dekametylsyklopentasiloksan(µg/l)	0,03	0,12	0,48	1,92	7,68	30,7	123	491
Stock: 4,92 mg/(10ml MQ)								
Sukralose (µg/l)	2	6	18	54	162	486	1458	4374
Stock: 4,37 mg/(ml MQ)								
Akrylamid (µg/l)	0,1	0,5	2,5	12,5	62,5	312	1562	7812
Stock: 7,81 mg/(ml MQ)								
Kobber (mg/ml)	0,020	0,039	0,078	0,156	0,313	0,625	1,250	2,500
Stock: 5 mg/(ml L-15)								

Tabell 2.1: Eksponeringsstoffene og deres konsentrasjoner. Konsentrasjoner merket med * ble brukt i MXRanalyse.

Figur 2.1: Kontrollplott med EC_{50} -verdier av kobber som gikk igjen på cytotoksisitetanalyse-platene med metabolsk aktivitet (venstre) og membranstabilitet (høyre) de ulike dagene. Stiplet linje viser gjennomsnittlig EC_{50} verdi (n=4).

3.4.1 Cytotoksisitetsanalyse

Cytotoksisitet ble målt ved bruk av probene alamar blue (AB) for metabolsk aktivitet og 5carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) for membranintegritet som beskrevet av Schirmer et al. (1997). Intracellulær GSH konsentrasjon ble målt ved bruk av proben monochlorobimate (mBCl), og sier noe om cellenes forsvar mot oksidativt stress og uskadeliggjøring av frie radikaler. Resultater med proben mBCI blir ikke omtalt videre i denne oppgaven.

Etter at coelomocyttene hadde vært eksponert for de ulike eksponeringsstoffene i 48 timer, ble 200 µl eksponeringsmedium forsiktig fjernet fra brønnene. Deretter ble det tilført 100 µl reaksjonsløsning (PBS (pH7,5, 25 ‰); 11 ml, AB; 579 µl, CFDA-AM; 11,6 µl og mBCI; 22 µl) og coelomocyttene ble innkubert i mørket, ved romtemperatur på orbital ristemaskin (75 rpm). Etter 30 minutter ble konsentrasjonen av fluorescensmetabolittene til AB, CFDA-AM og mBCI målt samtidig med Bio-tek FLx800 fluorescens plateleser (Bio Tek Instruments Inc., USA) ved eksitasjon og emisjon bølgelengdepar på 530-589 nm (alamar blue), 485-530 nm (CFDA-AM) og 405-485nm (mBCI). Sensitiviteten ble satt til 80%. Gen 5 ble brukt for å samle dataene (Gen5 Data Analysis Software, Bio Tek Instruments Inc., USA).

Resultatene ble uttrykt som prosent av kontroll.

3.4.2 MXR-akkumuleringsanalyse

Bestemmelse av MXR-aktivitet er basert på bruken av modell hemmere og egent substrat. I bioakkumuleringsanalyser benyttes ofte fluoresceren substrater for å måle akkumulering. Man kan for eksempel bruke et rhodaminfargestoff som blir målt med eller uten en konkurrerende hemmer tilstede (Bard, 2000). Metoden brukt i denne studie er beskrevet av Smital og Kurelec (1997), og senere modifisert og optimalisert for *in vitro* forsøk (Rønning, 2006). Rhodamin B ble benyttet som MXR-substrat og MK 571 som hemmer etter optimaliseringsforsøk gjort av Rønning (2006).

Etter 48 timers eksponering for de ulike eksponeringsstoffene ble det fjernet 100 μ l eksponeringsmedium fra hver av brønnene og 50 μ l rhodamin B (0,1 μ M) ble tilført samtlige brønner. Deretter ble det tilført enten 50 μ l Mk 571 i L-15 (0,1 μ M) eller 50 μ M kontroll (DMSO eller MQ i L-15) til brønnene. Platene ble inkubert i mørket på orbital ristemaskin (75 rpm) ved romtemperatur. Etter en times inkubasjon ble coelomocyttene vasket to ganger

ved forsiktig å fjerne innkubert medium fra brønnene og deretter tilsette 100 μ l PBS (pH 7,5, 25 ‰). Deretter ble alt medium fjernet fra brønnene og 100 μ l 0,1% TritonX-100 i MQ ble tilsatt for å lysere coelomocyttene. Alt arbeidet ble utført i mørket. Rhodamin B fluorescens ble målt (eksitasjon 540 nm, emisjon 625 nm) med Bio-tek FLx800 fluorescens plateleser (Bio Tek Instruments Inc., USA). Sensitiviteten ble satt til 80 %. Gen 5 ble brukt for å samle dataene (Gen5 Data Analysis Software, Bio Tek Instruments Inc., USA).

MXR-aktivitet er uttrykt som rhodamin B fluorescens eller rhodamin B-akkumuleringsratio (ratio av fluorescensmålinger når ingen modell MXR-hemmer (MK 571) var tilstede og rhdamin B fluorescens etter inkubering med MK 571).

3.5 Databehandling

De statistiske analysene ble utført med statistikkprogrammene Statistica software (versjon 7, Statsoft, Tulsa, USA) og GraphPad Prism 5 (GraphPad Software, Inc., USA). Homogen varians ble undersøkt med Levenes test (også for log-transformerte data).

Ingen av testene hadde homogen varians mellom gruppene og ikke-parametriske Kruskal-Wallis-test ble benyttet for å undersøke om det var forskjeller mellom gruppene (Zar, 1999). Videre ble det benyttet en ikke-parametrisk Mann-Whitney-test for å finne hvilke behandlinger som var forskjellige fra kontroll (Zar, 1999; Løvås, 2004). Signifikans ble angitt med $p \le 0,05/n$ med Bonferroni-korreksjon (Fisher and Van Belle, 1993). Ved cytotoksanalyse var n=8 (p \le 0,006), og ved MXR-akkumuleringsanalyse var n=5 (p \le 0,01).

Stigningstall ble beregnet fra fluorescensverdiene etter måling av kinetikk i en time, med avlesning hvert femte minutt, ved bruk av lineær trendlinje.

Cytotokdataene ble presentert som prosent av kontroll og ble beregnet fra fluorescensverdiene til coelomocytter eksponert for løsningsmiddelkontroll (minimum respons) og høyeste kobberkonsentrasjonen (maksimum respons):

 $100 \times (pr \phi ve - h \phi yeste \ kobberkonsentrasjon) / (l \phi semiddelkontroll - h \phi yeste \ kobberkonsentrasjon)$

Effektkonsentrasjoner (EC) der 20, 50 eller 80 prosent av maksimaleffekt ble observert (EC₂₀, EC₅₀ og EC₈₀) ble bestemt med beregning av en sigmoidal dose-responskurve. 1500 X-Y verdier langs dose-responskurven ble beregnet. Gjennomsnitt av de to verdiene nærmest

effektkonsentrasjoner på 20%, 50% og 80% av kontroll ble avlest og transformert fra logverdi til konsentrasjon (μ M). EC-verdier kunne bare beregnes for behandlinger der kurven nådde 20%, 50% og 80% respons i forhold til kontroll.

4 Resultater

4.1 Metodeutvikling

Det var ingen signifikante forskjeller i metabolsk aktivitet for coelomocytter holdt i fosfatbufret saltløsning (PBS), RPMI, Leibovitz L-15 medium (L-15) og Leibovitz L-15 medium med PSA (L-15+) (Kruskal-Wallis, p >0,05) (Figur 4.1). Membranintegriteten var signifikant lavere for RPMI ved alle målte tidspunkt, sammenlignet med de andre cellemediene (Kruskal-Wallis, p <0,05). Celleviabiliteten sank signifikant over tid for de ulike cellemediene, både ved metabolsk aktivitet (Kruskal-Wallis, p <0,01; Figur 4.1) og membranintegritet (Kruskal-Wallis, p <0,0001; Figur 4.2).

Figur 4.1: Metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) holdt i ulike cellemedier i angitt tidsrom. PBS (hvite bokser), Leibovitz L-15 medium (rutete bokser), RPMI (grå bokser), Leibovitz L-15 medium+ (skraverte bokser) (n=5); median, kvartiler samt maks- og minimumsverdi.

Figur 4.2: Membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) holdt i ulike cellemedier i angitt tidsrom. PBS (hvite bokser), Leibovitz L-15 medium (rutete bokser), RPMI (grå bokser), Leibovitz L-15 medium+ (skraverte bokser) (n=5); median, kvartiler samt maks- og minimumsverdi.

4.2 Cytotoksisitet

4.2.1 Kobber

Det var en konsentrasjons avhengig nedgang av metabolsk aktivitet og membranintegritet i coelomocytter eksponert for kobber fra konsentrasjoner høyere enn 1,24 mM (Figur 4.3). EC_{50} verdier ble beregnet til 4,9 mM for metabolsk aktivitet og 2,1 mM for membranintegritet (Tabell 4.1).

Figur 4.3: Metabolsk aktivitet (venstre) og membranintegritet (høyre) i coelomocytter fra vanlig korstroll (*Asterias rubens*) eksponert for ulike konsentrasjoner av kobber i 48 timer *in vitro* (gjenomsnitt ±SEM, n=4). Fluorescens blir uttrykt som prosent av kontroll.

Kobber (µM)	EC_{20}	EC_{50}	EC_{80}
Metabolsk aktivitet	1950	4956	12308
Membranintegritet	1966	2102	2329

Tabell 4.1: Gjennomsnittlig EC_{20} , EC_{50} og EC_{80} verdier for metabolsk aktivitet og membranintegritet i coelomocyter fra vanlig korstroll (*Asterias rubens*) etter eksponering for kobber i 48 timer *in vitro*.

4.2.2 Statiner

Det var signifikant forskjell i metabolsk aktivitet i atorvastatin syre eksponerte coelomocytter (Kruskal-Wallis, p=0,0041; Figur 4.4 A). Atorvastatin lakton eksponering førte ikke til signifikant endring i den metabolske aktiviteten til coelomocyttene (Kruskal-Wallis, p=0,24; Figur 4.4 B). Coelomocytter eksponert for simvastatin syre og -lakton hadde en dose-avhengig nedgang i metabolsk aktivitet (Kruskal-Wallis, p<0,0001; Figur 4.4 C og D) Eksponering for simvastatin syre førte til signifikant nedgang i metabolsk aktivitet etter eksponering for 400 μ M sammenlignet med kontroll (Mann Whitney, p<0,0001; Figur 4.4 C). En signifikant nedgang i metabolsk aktivitet ble også observert hos coelomocytter etter eksponering for 12,5 μ M simvastatin lakton (Mann Whitney, p<0,0001). Deretter stabiliserte den metabolske aktiviteten seg på rundt 60-70% (Figur 4.4 D).

Det var en dose-responsavhengig nedgang i membranintegritet ved eksponering for økende konsentrasjoner av statiner (Figur 4.4). Det var signifikant forskjell i membranintegritet i atorvastatin syre og -laktoneksponerte coelomocytter (Kruskal-Wallis, p<0,0001). Membranintegriteten sank signifikant med 50- 60% ved eksponering for de høyeste atorvastatin syre konsentrasjonene (Mann Whitney, p<0,0001). Atorvastatin laktoneksponering førte også til signifikant nedgang i membranintegritet hos coelomocytter etter eksponering for 25 μ M (Mann Whitney, p<0,0001; Figur 4.4 A og B). Det var også signifikant forskjell i membranintegritet i simvastatin syre og -lakton eksponerte coelomocytter (Kruskal-Wallis, p<0,0001). Coelomocytter eksponet for 400 μ M simvastatinsyre ga minimum respons av membranintegrit. Lignende effekt ble observert for simvastatin lakton ved eksponering fra 50 μ M (Figur 4.4 C og D). Simvastatin lakton var mest toksisk for coelomocytter og førte til tydlig dose-respons (Figur 4.4 D).

Gjennomsnittlige EC verdier for membranintegritet viste at atorvastatin lakton hadde ca. tre ganger lavere EC_{50} verdi enn atorvastatin syre. Simvastatinlakton har ca. 14 ganger lavere

 EC_{50} verdi enn simvastatin syre (Tabell 4.2). Membranintegritet var signifikant forskjellig i EC_{50} ved eksponering for simvastatin syre og simvastatin lakton (Kruskal-Wallis, p= 0,0082)

Notstion (historius) etter ensponering for unite studier i to unier ut turo.							
Stoff	EC ₂₀	EC ₅₀	EC ₈₀				
Atorvastatin syre							
(µM)	49	147	-				
Atorvastatin lakton							
(µM)	14	44	160				
Simvastatin syre							
(µM)	196	209	227				
Simvastatin lakton							
(µM)	12	15	21				

Tabell 4.2: Gjennomsnittlig EC_{20} , EC_{50} og EC_{80} verdier for membranintegritet i coelomocyter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike statiner i 48 timer *in vitro*.

- :ingen EC verdi kunne beregnes

Figur 4.4: Metabolsk aktivitet (venstre) og membranintegritet (høyre) i coelomocytter fra vanlig korstroll (*Asterias rubens*) eksponert for ulike konsentrasjoner av A, atorvastatin syre; B, atorvastatin lakton; C, simvastatin syre; D, simvastatin lakton i 48 timer *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi. Fluorescens blir uttrykt som prosent av kontroll. * Signifikant forskjell fra kontroll (Mann Whitney test * p < 0,05, **p < 0,01, *** p < 0,001).

4.2.3 Siloksaner

Siloksanene oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5) var ikke cytotoksisk for coelomocytter fra vanlig korstroll (*Asterias rubens*) målt som metabolsk aktivitet og membranintegritet ved konsentrasjonene testet i dette forsøket (Kruskal-Wallis, D4: metabolsk aktivitet p=0,25, membranintegritet p=0,98 og D5 metabolsk aktivitet p=0,34 membranintegritet p=0,97) (Figur 4.5).

Figur 4.5: Metabolsk aktivitet (venstre) og membranintegritet (høyre) i coelomocyter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av A, oktametylsyklotetrasiloksan (D4); B, dekametylsyklopentasiloksan (D5) i 48 timer *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi. Fluorescens blir uttrykt som prosent av kontroll.

4.2.4 Sukralose

Sukralose var ikke cytotoksisk for coelomocytter fra vanlig korstroll målt som metabolsk aktivitet og membranintegritet ved konsentrasjonene testet i dette forsøket (Kruskal-Wallis, metabolsk aktivitet p=0,78 og membranintegritet p=0,89; Figur 4.6).

Figur 4.6: Metabolsk aktivitet (venstre) og membranintegritet (høyre) i coelomocyter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose i 48 timer *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi. Fluorescens blir uttrykt som prosent av kontroll.

4.2.5 Akrylamid

Akrylamid var ikke cytotoksisk for coelomocytter fra vanlig korstroll målt som metabolsk aktivitet og membranintegritet ved konsentrasjonenem testet i dette forsøket (Kruskal-Wallis, metabolsk aktivitet p=0,21 og membranintegritet p=0,66) (Figur 4.7).

Figur 4.7: Metabolsk aktivitet (venstre) og membranintegritet (høyre) i coelomocyter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid i 48 timer *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi. Fluorescens blir uttrykt som prosent av kontroll.

4.3 Aktivitet av membrantransportører (MXR)

4.3.1 Statiner

Ingen signifikant forskjell ble funnet i akkumulering av Rhodsmin B i coelomocytter eksponert for ulike konsentrasjoner av atorvastatin syre og atorvastatin lakton (Kruskal-Wallis, atorvastatin syre p= 0,20, atorvastatin lakton p= 0,27; Figur 4.8 A og B). Det var signifikante forskjeller i rhodamin B akkumulering etter eksponering for simvastatin syre (Kruskal-Wallis, p= 0,0002) og simvastatin lakton (Kruskal-Wallis, P<0.0001). Ingen av simvastatin syrekonsentrasjonene var signifikant forskjellig fra kontroll (Mann-Whitney, p> 0,010; Figur 4.8 C). Coelomocytter eksponert for 400 μ M simvastatin lakton hadde signifikant høyere akkumulering av Rhodamin B sammenlignet med kontroll (Mann-Whitney, p<0,0001; Figur 4.8 D).

Ingen signifikant forskjell ble funnet i akkumulering av rhodamin B i coelomocytter eksponert for MK 571 og ulike konsentrasjoner av atorvastatin syre og –lakton (Kruskal-Wallis, atorvastatin syre p= 0,27, atorvastatinlakton p= 0,15; Figur 4.8 A og B). Coelomocytter eksponert for simvastatin syre og MK 571 ga signifikant forskjell i rhodamin B akkumulering (Kruskal-Wallis, p= 0,010). Ingen av konsentrasjonene var signifikant forskjellig fra kontroll (Mann-Whitney, p> 0,010; Figur 4.8 C). MK 571- og simvastatin laktoneksponerte coelomocytter ga også signifikant forskjell i rhodamin B akkumulering (Kruskal-Wallis test, p<0.0001). Akkumulering av rhodamin B var signifikant lavere ved 25 og 50 μ M simvastatin lakton- og MK 571-eksponering (Mann Whitney, 25 μ M p=0,0048 og 50 μ M 0,0034; Figur 4.8 D). Ved eksponering for 400 μ M simvastatin lakton og MK 571, var rhodamin B akkumuleringen signifikant høyere sammenlignet med kontroll (Mann-Whitney, p=0,0001; Figur 4.8 D).

Akkumuleringsratio var ikke signifikant for atorvastatin syre konsentrasjonene testet i dette studie (Kruskal-Wallis, p= 0,083; Figur 4.9 A). Det var signifikante forskjeller i akkumuleringsratio etter eksponering for atorvastatin lakton (Kruskal-Wallis, p= 0,033), simvastatin syre (Kruskal-Wallis, p= 0,0046) og simvastatin lakton (Kruskal-Wallis, p=0,0086). Det var signifikant lavere rhodamin B akkumuleringratio i coelomocytter eksponert for 400 μ M atorvastatin lakton (Mann-Whitney, p=0,0028), 3,125 μ M simvastatin syre (Mann-Whitney, p=0,0083) og 25 μ M og 100 μ M simvastatin lakton (Mann-Whitney, 25 μ M p= 0,0038 og 100 μ M p=0,0021) sammenlignet med kontroll (Figur 4.9 B-D).

Figur 4.8: Rhodamin B akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av A, atorvastatin syre; B, atorvastatin lakton; C, simvastatin syre; D, simvastatin lakton uten (venstre) og med (høyre) inkubering med MK-571 i 1 time *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi. * Signifikant forskjell fra kontroll (Mann Whitney test * p < 0,05, **p < 0,01, *** p < 0,001).

Figur 4.9: Ratio av Rhodamin B akkumulering med og uten inkubering av MK-571 hos coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for A, atorvastatin syre; B, atorvastatin lakton; C, simvastatin syre; D, simvastatin lakton ved ulike konsentrasjoner *in vitro* (n= 4); median, kvartiler samt maks- og minimumsverdi. * Signifikant forskjell fra kontroll (Mann Whitney test * p < 0,05, **p < 0,01, *** p < 0,001).

4.3.2 Siloksaner

Ingen signifikant forskjell ble funnet i akkumulering av Rhodsmin B i coelomocytter eksponert for ulike konsentrasjoner av D4 og D5 (Kruskal-Wallis, D4 p=0,27 og D5 p=0,25; Figur 4.10).

Ingen signifikant forskjell ble funnet i akkumulering av rhodamin B i coelomocytter eksponert for MK 571 og ulike konsentrasjoner av D4 (Kruskal-Wallis, p= 0,70; Figur 4.10 A) eller D5 Kruskal-Wallis test, p= 0,61; Figur 4.10 B).

Akkumuleringsratio var ikke signifikant for D4- og D5-konsentrasjonene testet i dette studie (Kruskal-Wallis, D4 p=0.81 og D5 p=0.058; Figur 4.11).

Figur 4.10: Rhodamin B akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av A, oktametylsyklotetrasiloksan (D4); B, dekametylsyklopentasiloksan (D5) uten (venstre) og med (høyre) inkubering av MK-571 i 1 time *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi.

Figur 4.11: Ratio av rhodamin B akkumulering med og uten inkubering av MK-571 hos coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for A, oktametylsyklotetrasiloksan (D4); B, dekametylsyklopentasiloksan (D5) ved ulike konsentrasjoner *in vitro* (n= 4); median, kvartiler samt maks- og minimumsverdi.

4.3.3 Sukralose

Sukraloseeksponerte coelomocytter var ikke signifikant forskjellige med hensyn til rhodamin B akkumulering (Kruskal-Wallis, p= 0,48). Det ble heller ikke funnet signifikante forskjeller av rhodamin B akkumulering i coelomocytter eksponert for sukralose og MK (Kruskal-Wallis, p= 0,15) (Figur 4.12).

Det var ingen signifikante forskjeller i fluorescensratio etter eksponering for sukralose (Kruskal-Wallis, p=0,11; Figur 4.13).

Figur 4.12: Rhodamin B akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose uten (venstre) og med (høyre) inkubering av MK-571 i 1 time *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi.

Figur 4.13: Ratio av rhodamin B akkumulering med og uten inkubering av MK-571 hos coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for sukralose ved ulike konsentrasjoner *in vitro* (n= 4); median, kvartiler samt maks- og minimumsverdi.

4.3.4 Akrylamid

Det var ingen signifikante forskjeller i rhodamin B akkumulering for akrylamid konsentrasjonene testet i dette studiet (Kruskal-Wallis, p= 0,627). Det ble heller ikke funnet signifikante forskjeller av rhodamin B akkumulering i coelomocytter eksponert for akrylamid og MK (Kruskal-Wallis, p= 0,46) (Figur 4.14).

Akkumuleringsratio etter eksponering for akrylamid var heller ikke signifikant (Kruskal-Wallis, p= 0,15; Figur 4.15).

Figur 4.14: Rhodamin B akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid uten (venstre) og med (høyre) inkubering av MK-571 i 1 time *in vitro* (n=4); median, kvartiler samt maks- og minimumsverdi.

Figur 4.15: Ratio av rhodamin B akkumulering med og uten inkubering av MK-571 hos coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for akrylamid ved ulike konsentrasjoner *in vitro* (n= 4); median, kvartiler samt maks- og minimumsverdi.

5 Diskusjon

5.1 Metodeutvikling

5.1.1 Valg av medie

I dette studiet ble coelomocytters overlevelsesevne i fire ulike medier undersøkt; RPMI, fosfatbufret saltløsning (PBS), Leibovitz -15 (L-15) og L-15 med antibiotika. Resultatene viste signifikant nedgang i coelomocyttenes levedyktighet over tid for samtlige medier. Membranintegriteten hos coelomocytter i RPMI var lavere enn i coelomocytter inkubert i de andre mediene, så dette mediet ble derfor ikke vurdert videre. Forskjellene i metabolsk aktivitet og membranintegritet hos coelomocytter i PBS og L-15 med og uten antibiotika var minimale. Siden PBS er en saltløsning og ikke et cellemedium ble ikke PBS valgt videre, selv om det ved tilsvarende studier med coelomocytter fra sjøstjerne har blitt benyttet filtrert saltvann (Doussantousse et al., 2011) og PBS (Rønning, 2006). Tidligere har coelomocytter fra sjøpølse (*Apostichopus japonicus*) blitt dyrket i modifisert L-15 medium (Gu et al., 2010), men for å unngå unødvendig innvirkning på coelomocyttene, ble det valgt å benytte L-15 uten antibiotika videre i denne oppgaven. Bruken av antibiotika var ikke nødvendig i dette forsøket da primærcellekulturene benyttet eksponeres over en kort periode, og eventuelle påvirkninger fra bakterier var forventet å ha liten innvirkning på cellekulturen.

5.2 Cytotoksisitet

5.2.1 Kobber

Målingene av metabolsk aktivitet og membranintegritet ga klar dose-responssammenheng ved kobbereksponering, noe som viser at kobber er cytotoksisk i coelomocytter fra vanlig korstroll. Dette kan skyldes dannelse av frie radikaler ved kobbereksponering, som igjen kan føre til peroksidasjon av membranlipider (Chan et al., 1982; Britton, 1996) og induksjon av apotose (Bopp et al., 2008).

Sammenlignet med andre studier var coelomocytter fra vanlige korstroll mindre følsomme ovenfor kobbereksponering. EC_{50} verdiene beregnet for vanlig korstroll var 33 ganger høyere

med tanke på metabolsk aktivitet og 17 ganger høyere ved membranintegritet sammenlignet med studiet av Dayeh et al. (2005). Dette studiet så på celleviabilitet i cellelinjer (RTgill-W1 and RTL-W1) fra regnbueørret (*Oncorhynchus mykiss*) og ciliaten *Tetrahymena thermophila* ved 24 timer kobbereksponering.

Også andre studier med regnbueørret ga EC_{50} verdier ($EC_{50}=29,2 \ \mu M$) for membranintegritet som ligger lavere (Bopp et al., 2008). Her ble reduksjon i membranintegritet etter kobbereksponering observert i gjelleceller fra regnbueørret, ved konsentrasjoner på 5 μM eller høyere. Kobber reduserte også celleviabilitet i leverceller fra regnbueørret, ved eksponering for 200 μM i 48 timer (Feng et al., 2003).

Cytotoksisitetstesting med alamar Blue (AB) og CFDA-AM har tidligere vist seg å være sensitive i ulike organismer, som regnbueørret (Schirmer et al., 1997). Selv om kobberresultatene indikerer at disse fluorescensanalysene også kan benyttes i coelomocytter fra vanlig korstroll, ser coelomocytter ut til å være mindre sensitive.

5.2.2 Statiner

Eksponering av coelomocytter med statiner førte til dose-avhengig nedgang i både metabolsk aktivitet og membranintegritet. Dette kan indikere at statiner er cytotoksisk for coelomocytter fra vanlig korstroll. Denne nedgangen i metabolsk- og cytosolisk esteraseaktivitet har tidligere blitt observert i leverceller fra regnbueørret ved eksponering for tilsvarende statinkonsentrasjoner (Ellesat et al., 2010). Esteraseaktivitet kan være hemmet av statinene eller senket ved endringer i membransammensetning og kolesterolinnhold i cellene. Ved hemming av kolesterolsyntesen kan cellens permeabilitet endres og utlekking av cytosolisk esterase fra ødelagt cellemembran forekomme (Dayeh et al., 2005). Dette kan være årsaken til at det ble observert signifikant nedgang i membranintegritet etter atorvastatin syre og -lakton eksponering.

Simvastatin lakton og -syreeksponering førte til senking av både metabolsk aktivitet og membranintegritet. Det var større effekt på membranintegriteten enn på metabolsk aktivitet og mulig apotose i coelomocyttene vil kunne forklare dette. Ved apotose (kontrollert celledød) vil den metabolske aktiviteten fortsatt holdes oppe for å hindre andre nærliggende celler i inflammatorisk respons. Det er ikke kjent om statiner kan indusere apotose i coelomocytter fra vanlig korstroll, men hemming av HMGR etterfulgt av nedgang i geranylgeranyl pyrophosphate (GGPP) har vist seg å føre til apotose i humane leverceller etter eksponering for simvastatin (Kubota et al., 2004).

De beregnede EC_{50} verdiene indikerer at simvastatin lakton var mer toksisk enn atorvastatin lakton og atorvastatin syre ser ut til å være mer toksisk enn simvastatin syre. Toksisiteten var høyere for simvastatin lakton enn simvastatin syre. Dette samsvarer med funn i leverceller fra regnbueørret (Ellesat et al., 2010) og humane muskelceller (Skottheim et al., 2008). Der ble det benyttet tilsvarende statinkonsentrasjoner. Ved lave konsentrasjoner av atorvastatin syre og simvastatin syre ble det observert en metabolsk aktivitet over 100 %, noe som eventuelt kan skyldes hormese (stimulert respons ved lave doser) (Calabrese and Baldwin, 2002).

Selv om det i denne studien kun ble observert effekt på coelomocytter fra vanlig korstroll etter eksponering for høye statinkonsentrasjoner, kan man ikke utelukke at ikkemålorganismer blir påvirket av det økende utslippet av statiner til havet. I dette *in vitro* forsøket blir det blant annet ikke tatt hensyn til langtidseffekter eller blanding av stoffer i miljøet. Selv om EC₅₀ verdiene lå høyt over nåværende miljøkonsentrasjon, kan man ikke fastslå at det ikke vil være effekt ved lavere konsentrasjoner i miljøet. Tidligere er det rapportert utviklingsforstyrrelser i embryo fra sebrafisk (*Danio rerio*) etter eksponering for 10 μ M atorvastatin (Thorpe et al., 2004). Også andre organismer har vist negativ effekt av statineksponering. *In vivo* studier har vist at statiner kan være fytotoksisk i klumpandemat (*Lemna gibba*) (Brain et al., 2004) og reddik (*Raphanus sativus*), samt hemme sterolbiosyntese i planter (Bach and Lichtenthaler, 1983). I klumpandemat forårsaket statiner konsentrasjonsavhengig toksisitet via reduksjon av mevalonat, stigmasterol og â-sitosterol (Brain et al., 2006).

5.2.3 Siloksaner

Det ble ikke observert toksisitet på coelomocyttenes metabolske aktivitet eller membranintegritet ved eksponering for siloksanene oktametylsyklotetrasiloksan (D4) og dekametylsyklopentasiloksan (D5). Dette kan skyldes for lav effektkonsentrasjon. I et studie på makrofager fra mus har det blitt påvist at 15 µM resulterte i nedgang av cytosolisk laktatdehydrogenase (LDH) og glutation (GSH) ved eksponering for tetravinyl D4 *in vitro* (Felix et al., 1996). Dette kan føre til membranskader og samtidig tap av cytosolisk GSH, noe som kan indikere induksjon av ROS i respons til siloksaneksponering (Felix et al., 1996). Effektkonsentrasjonen benyttet av Felix et al. (1996) ligger ti ganger over høyeste konsentrasjon benyttet i dette studiet.

Det er ingen tidligere studie som har omhandlet effekter av siloksaner på coelomocytter fra pigghuder (echinodermata).

I et overlevelsesstudie med regnbueørret ble det observert narkoselignende symptomer på forgiftning etter sammenhengende D4 eksponering i 7 til 14 dager. NOEC (No Observed Effect Concentration) ble beregnet til 4,4 μ g/l (Hobson and Silberhorn, 1995). Denne konsentrasjonen av siloksaner ligger på nivåer testet i dette studiet.

Også ved D4 eksponeringsnivåer tilsvarende funksjonell vannløselighet (ferskvann 14-30 μ g/l og sjøvann 6,0-9,0 μ g/l) som tilsvarer konsentrasjoner testet i dette studiet, er det ikke funnet akutt giftighet for vannloppen D. *magna*, *Mysidopsis bahia* eller sheepshead minnow (*Cyprinodon variegatus*) (Sousa et al., 1995). Heller ikke D4 eksponering av fjærmygglarven *Chironomus tentans*, ga toksisk effekt etter vanneksponering med konsentrasjoner opp til 15 μ g/l (Kent et al., 1994). Derimot ble overlevelse av vannloppen *Daphnia magna* redusert med 16% (sammenlignet med kontroll) etter eksponering for 15 μ M D4 i 21 dager in *vivo* (Sousa et al., 1995). Dette viser en sammenheng mellom siloksankonsentrasjon og effekt.

Økende forbruket av siloksaner i industrielle- og forbruksprodukter fører til at store mengder når det akvatiske miljøet. Dette kan påvirke ikke-målorganismer som for eksempel fisk og sjøstjerner. Selv om dette *in vitro* studiet ikke påviste effekt av D4 og D5 på coelomocytter fra vanlig korstroll, kan det ikke utelukkes at siloksaner kan påvirke disse eller andre bentiske evertebrater. Det er funnet sykliske siloksaner i prøver (fra 5-2200ng/g ww) av marin- og ferskvannsorganismer i Skandinavia (Kaj et al., 2005). Blant annet er det påvist nivåer av D5 og D6 i leverprøver fra fisk i Advent- og Kongsfjorden, hvor D5 var dominerende (Warner et al., 2010). Tilsvarende nivåer er funnet i torsk (*Gadus morhua*) fra Indre Oslofjord (Schlabach et al., 2007). Det er behov for videre studier av effekter siloksaner kan ha på lang sikt, som for eksempel innvirkning på adferd og reproduksjon.

5.2.4 Sukralose

Sukraloseeksponering førte ikke til negativ effekt på metabolsk aktivitet eller membranintegritet i coelomocytter fra vanlig korstroll. Selv om dette er et stoff man har bekymret seg for de siste årene, blant annet på grunn av sin likhet med sukrose, er det kun få studier som har vist at stoffet har negativ effekt på organismer. Enkelte studier med planter, har vist at sukralose kan innvirke i sukkeropptaket gjennom konkurrerende hemming med sukrose-transportenzymer, og på den måten forstyrre den naturlige balansen (Reinders et al., 2006). Og i et langtidsstudie med gammarider (*Gammarus zaddachi*) førte 500 µg/l sukralose til økt dødelighet av nyklekkede gammarider (Adolfsson-Erici et al., 2008).

I det akvatiske miljøet er sukralose persistent, men bioakkumulerer ikke (Grice and Goldsmith, 2000). På grunn av høy vannløselighet, er sannsynligheten stor for at sukralose blir fraktet gjennom renseanlegg til overflate- og grunnvann (Soh et al., 2011). Selv om sukralose i hovedsak vil skilles uforandret ut av kroppen (Grice and Goldsmith, 2000), er det kun funnet konsentrasjoner opp til 7 μg/l i det akvatiske miljøet (Green et al., 2007). Målte konsentrasjoner av sukralose i kyststrøk i Europa og USA var lavere enn konsentrasjonene testet i dette studiet (Loos et al., 2009; Mead et al., 2009). Muslinger (*Anodonta cygnea*) i bur viste ingen spor av sukralose etter åtte ukers eksponering for avløpsvann fra Henriksdal renseanlegg i Stockholm (Brorström-Lunden et al., 2008). Heller ikke muskel- eller leverprøver fra abbor (*Perca fluviatillis*) inneholdt sukralose (Brorström-Lunden et al., 2008). Videre er det ikke funnet bevis for at sukralose bioakkumulerer i ferskvannsalgen *Pseudokirchneriella subcapitat*, vannloppen *Daphnia magna* eller sebrafisk. De ble eksponert i 48 timer for 10 og 100 mg/l sukralose *in vivo* (Lillicrap et al., 2011). Vekst av klumpandemat ble heller ikke negativt påvirket etter eksponering for 0,1-1000 mg/l sukralose i et syv dagers *in vivo* forsøk (Soh et al., 2011).

Selv om sukralose ikke ser ut til å akkumuleres i akvatiske organismer, er det ikke utelukket at negative effekter kan oppstå etter eksponering. Langtids *in vivo* studier er nødvendige for å teste om sukralose kan være toksisk mot akvatiske organismer som for eksempel vanlig korstroll.

5.2.5 Akrylamid

Akrylamid hadde ingen signifikant innvirkning på coelomocyttenes metabolske aktivitet og membranintegritet ved konsentrasjoner testet i dette studiet. Tidligere har akrylamidmonomer-konsentrasjoner høyere enn 25 mg/l ført til histologiske lesjoner i lever fra regnbueørret etter eksponering i 14 dager *in vivo* (Petersen and Lech, 1987), altså ved 3 ganger høyere konsentrasjoner enn testet i dette studiet. Kronisk toksisitet-testing med M. *bahia* viste at skadelige effekter på reproduksjon og vekst kan forårsakes i vannlevende organismer ved kontinuerlig lave nivåer av akrylamideksponering (Walker, 1991). Konsentrasjoner på 4,4 mg/l, som tilsvarer de høyeste konsentrasjonene testet i dette forsøket, førte til reduksjon i antall nye individer. Overlevelsesevnen sank også signifikant for M. *bahia* etter en dags eksponering med tilsvarende konsentrasjon (Walker, 1991).

5.3 Aktivitet av membrantransportører (MXR)

Stoffene testet i dette studiet ser ikke ut til å hemme aktiviteten til membranefflukstransportører i utslagsgivende grad. Det var forventet å se en økende akkumulering av substrat ved økende konsentrasjoner av eksponeringsstoffene, fordi effekten til membranpumper kan påvirkes av toksisk-konsentrasjon. Ved for lave konsentrasjoner vil man ikke få en metting av membranpumpeaktiviteten, som kan være tilfellet i dette studiet. En annen mulighet kan være at konsentrasjonen av hemmer var for lav til å gi merkbar effekt. I forsøk utført av Doussantousse et al. (2011) ble det observert effekt på membranefflukstransportører i sjøstjernen *Leptasterias polaris* ved 1 µM rhodamin B og 5 µM MK 571, altså vesentlig høyere konsentrasjoner enn hva som ble benyttet i dette forsøket (0,1 µM rhodamin B og 0,1 µM MK571).

5.3.1 Statiner

Coelomocytter eksponert for atorvastatin syre og -lakton ga ingen signifikant endring i akkumulering av rhodamin B i forhold til kontroll. Heller ikke simvastatin syre eksponering ga signifikant endring i rhodamin B-akkumulering. Dette indikerer at konsentrasjoner av atorvastatin og simvastatin syre testet i denne studien, ikke innvirker i signifikant grad på coelomocyttenes membranefflukstransportøraktivitet. Eventuelt kan konsentrasjoner av statinene ha ført til aktivering av RNA-transkripsjon. Dermed kan flere transportører ha blitt dannet slik at ingen rhodamin B-akkumulering ble målt.

Høyeste eksponeringskonsentrasjon av simvastatin lakton førte til signifikant økning i rhodamin B-akkumulering. Dette kan skyldes hemming av membranefflukstransportører. Laktonformen av statiner er mer lipofil enn statiners syreform. Det gjør at de har ulik tilgjengelighet for celler (Yamasaki et al., 2009) og det kan også være en av årsakene til at simvastatin lakton øker akkumuleringen av rhodamin B. Eventuelt kan økte konsentrasjoner av simvastatin lakton hemme efflukspumper som P-glykoprotein (Pgp) og multidrug resistens protein (MRP). Hemming av organisk anion-transporterende polypeptider (OATP) som blant annet transporterer substrat inn i celler, kan føre til lavere akkumulering av rhodamin B enn forventet. Det er vist at simvastatin og atorvastatin både er substrat og hemmer for Pgp og MRP samt for ulike OATPer. Disse transportørene er kritisk involvert i absorpsjon og fordeling av statiner (Ehrhardt et al., 2004; Rodrigues, 2010).

Eventuelt kan høye konsentrasjoner av simvastatin lakton være toksisk for DNA transkripsjon i coelomocytter slik at nye transportere ikke blir dannet av cellene. Dette kan føre til økning i rhodamin B-akkumulering. Tidligere har det derimot vist seg at konsentrasjoner av simvastatin lakton opp til 30 μ M, har sterk induktiv effekt på mRNA uttrykk for MDR1 og CYP3A på en doseavhengig måte (Yamasaki et al., 2009). Dette er konsentrasjoner som ligger langt under konsentrasjoner testet i dette studiet.

Atorvastatin syre og -laktoneksponerte coelomocytter inkubert med MK 571 ga ingen signifikant forskjell fra kontroll. Heller ikke simvastatin syre eksponering førte til signifikant endring i rhodamin B-akkumulering (sammenlignet med kontroll) etter inkubering med MK 571. Det kan tyde på at membranefflukspumper som ikke hemmes av MK 571 verken oppeller nedregulerer aktiviteten av pumpene, ved konsentrasjoner benyttet i denne studien.

Etter inkubering med hemmeren MK 571, økte rhodamin B-akkumuleringen signifikant ved 400 μM simvastatin laktoneksponering. Dette kan indikere senking av total membranefflukstransportaktivitet ved blant annet hemming av membranefflukspumper. Økning i fluorescens kan skyldes både Pgp-lignende og MRP-lignende proteiner, siden rhodamin B antagelig blir transportert av begge disse proteinene. I sjøstjernen L. *polaris* har økt akkumulering av rhodamin B forekommet i coelomocytter ved inkubering med MK 571 (Doussantousse et al., 2011).

Signifikant nedgang i rhodamin B-akkumuleringsratio ved eksponering for statiner kan komme av hemming av MRP-lignende membranproteiner. Det vil si økt effluks i coelomocytter eksponert for statiner. Økt effluks kan komme av en eventuell genregulering som har ført til produksjon av membranefflukspumper (Yamasaki et al., 2009).

5.3.2 Siloksaner, sukralose og akrylamid

Generelt var det små forskjeller for akkumulering av rhodamin B i coelomocytter eksponert for siloksaner, sukralose og akrylamid. Tidligere har sukralose vist seg å være substrat for Pgp og andre ABC-transportere i tarmmembraner hos rotte, også etter fase I metabolisme (Abou-Donia et al., 2008). MRP-lignende transportere kjenner blant annet igjen konjugerte, negativt ladde molekyler, og frakter disse ut fra cellene (Deeley et al., 2006). Sukralose kan dermed vise seg å være et substrat for MRP-lignende transportører. Det ble sett liten effekt av siloksanene (D4 og D5) og akrylamid i dette studiet, noe som indikerer at disse stoffene ikke hemmer membranefflukstransportaktivitet.

6 Konklusjoner

Coelomocytter fra vanlig korstroll (*Asterias rubens*) kan holdes i primærcellekultur med mediene testet i denne oppgaven. RPMI førte til signifikant lavere overlevelse av coelomocytter i forhold til PBS, L-15 og L-15 PSA ved måling av membranintegritet. Videre i oppgaven ble det valgt å bruke L-15 medium. Hypotesen om at det ikke er forskjell mellom coelomocytters levedyktighet i de ulike mediene kan forkastes når det gjelder membranintegritet, men ikke for metabolsk aktivitet. Både metabolsk aktivitet og membranintegritet sank signifikat over tid i de ulike cellemediene. Dette gir grunnlag for å forkaste nullhypotesen om at det ikke var forskjell i coelomocytters levedyktighet over tid.

Både kobber og statiner førte til doseavhengig nedgang i metabolsk aktivitet og membranintegritet hos coelomocytter fra vanlig korstroll. Av statinene var simvastatin mer toksisk enn atorvastatin, og laktonformen toksisk ved lavere konsentrasjoner enn syreformen. Sammenlignbare effekter er observert ved tilsvarende statinkonsentrasjoner i leverceller fra regnbueørret. Siloksaner-, sukralose- og akrylamideksponering førte ikke til signifikant endring i metabolsk aktivitet eller membranintegritet, noe som kan komme av lavere eksponeringskonsentrasjoner. Hypotesene om at det ikke er effekt av eksponeringsstoffene på metabolsk aktivitet (målt som alamar blue-fluorescens) og membranintegritet (målt som CFfluorescens) i coelomocytter må forkastes når det gjelder statiner og kobber, men ikke for siloksaner, sukralose og akrylamid. Kobber og statin resultatene indikerer at coelomocytter fra vanlig korstroll kan benyttes i *in vitro* toksisitestesting, men at det ikke er et spesielt følsomt testsystem.

Kun simvastatin lakton hemmet membranefflukstransportøraktiviteten. Nullhypotesen om at det ikke er effekter av statiner på membranpumper (målt med MK 571 som hemmer) i coelomocytter fra vanlig korstroll må dermed forkastes. Skadede cellemembraner i følge cytotoksisitet kan føre til falske antagelser om at membranpumpene ikke blir hemmet. Lav konsentrasjon av hemmer, MK571, kan ha ført til for liten hemming av MRP-lignende membranpumper som kan være en årsak til at hypotesen om at det ikke er effekt av siloksaner, sukralose og akrylamid ikke kan forkastes.

Referanser

- Abou-Donia, M. B., E. M. El-Masry, A. A. Abdel-Rahman, R. E. McLendon and S. S. Schiffman (2008). "Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats." Journal of Toxicology and Environmental Health-Part a-Current Issues 71(21): 1415-1429.
- Adolfsson-Erici, M., A.-K. E. Wiklund, T. Alsberg, M. Breitholtz, C. Ek and J. Minten (2008). Undersökning av det syntetiska sötningsmedlet sukralos med avseende på eventuella ekotoxikologiska effekter. Stockholm, Institutionen för tillämpad miljövetenskap. ITM-rapport 181.
- Bach, T. J. and H. K. Lichtenthaler (1983). "Inhibition by mevinolin of plant-growth, sterol formation and pigment accumulation." <u>Physiologia Plantarum</u> 59(1): 50-60.
- Bard, S. M. (2000). "Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms." <u>Aquatic Toxicology</u> 48(4): 357-389.
- Besaratinia, A. and G. P. Pfeifer (2005). "DNA adduction and mutagenic properties of acrylamide." <u>Mutation Research-Genetic Toxicology and Environmental Mutagenesis</u> 580(1-2): 31-40.
- Bjerregaard, P. (2005). Økotoksikologi. København, Gyldendal.
- Blytt, L. D. (2010). Undersøkelse av miljøgifter ved fire norske renseanlegg PFOA, Bisfenol A, Triklosan, Siloksan (D5), Dodecylfenol og 2,4,6-Tri tert.betylfenol, Klima- og forurensningsdirektoratet. TA-2636: 18.
- Bopp, S. K., H. K. Abicht and K. Knauer (2008). "Copper-induced oxidative stress in rainbow trout gill cells." <u>Aquatic Toxicology</u> 86(2): 197-204.
- Brain, R. A., D. J. Johnson, S. M. Richards, M. L. Hanson, H. Sanderson, M. W. Lam, C.
 Young, S. A. Mabury, P. K. Sibley and K. R. Solomon (2004). "Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes *Lemna gibba* and *Myriophyllum sibiricum*." Aquatic Toxicology **70**(1): 23-40.
- Brain, R. A., T. S. Reitsma, L. I. Lissemore, K. Bestari, P. K. Sibley and K. R. Solomon (2006). "Herbicidal effects of statin pharmaceuticals in *Lemna gibba*." <u>Environ Sci</u> Technol **40**(16): 5116-5123.
- Britton, R. S. (1996). "Metal-induced hepatotoxicity." Seminars in Liver Disease 16(1): 3-12.
- Brorström-Lunden, E., A. Svenson, T. Viktor, A. Woldegiorgis, M. Remberger, L. Kaj, C. Dye, A. Bjerke and M. Schlabach (2008). Measurements of sucralose in the Swedish

screening program 2007- PART 2: Sucralose in biota samples and regional STP samples, Swedish Environmental Research Institute, Stockholm, Sweden. **IVL Report B1795**.

- Bryan, G. W. (1976). Heavy metal pollution in the sea. <u>Marine pollution</u>. R. Johnston. London, Academic Press: 185-302.
- Calabrese, E. J. and L. A. Baldwin (2002). "Defining hormesis." <u>Human & Experimental</u> <u>Toxicology</u> **21**(2): 91-97.
- Chan, P. C., O. G. Peller and L. Kesner (1982). "Copper(II)-catalyzed lipid-peroxidation in liposomes and erythrocyte-membranes." <u>Lipids</u> 17(5): 331-337.
- Chia, F. S. and J. Xing (1996). "Echinoderm coelomocytes." <u>Zoological Studies</u> **35**(4): 231-254.
- Cornwall, R., B. H. Toomey, S. Bard, C. Bacon, W. M. Jarman and D. Epel (1995).
 "Characterization of multixenobiotic multidrug transport in the gills of the mussel *mytilus-californianus* and identification of environmental substrates." <u>Aquatic Toxicology</u> 31(4): 277-296.
- Dayeh, V., K. Schirmer, L. Lee and N. Bols (2005). Rainbow Trout Gill Cell Line Microplate Cytotoxicity Test <u>Small -Scale Freshwater Toxicity Investigations</u>, Vol 1 - Toxicity <u>Test Methods</u>. C. Blaise and J. F. Ferard, Springer, Po Box 17, 3300 Aa Dordrecht, Netherlands: 473-503.
- Dayeh, V. R., D. H. Lynn and N. C. Bols (2005). "Cytotoxicity of metals common in mining effluent to rainbow trout cell lines and to the ciliated protozoan, *Tetrahymena thermophila*." <u>Toxicology in Vitro</u> **19**(3): 399-410.
- Deeley, R. G., C. Westlake and S. P. C. Cole (2006). "Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins." <u>Physiological Reviews</u> 86(3): 849-899.
- den Besten, P. J. (1991). Effects of Cadmium and PCBs on reproduction of the sea star <u>Asterias rubens</u>.
- Doussantousse, E., E. Pelletier, L. Beaulieu, L. C. Rainville and C. Belzile (2011).
 "Multixenobiotic resistance in coelomocytes from three echinoderm species." <u>Aquatic</u> <u>Biology</u> 12(1): 81-96.
- Dussault, E. B., V. K. Balakrishnan, E. Sverko, K. R. Solomon and P. K. Sibley (2008).
 "Toxicity of human pharmaceuticals and personal care products to benthic invertebrates." <u>Environmental Toxicology and Chemistry</u> 27(2): 425-432.

- Edds, K. T. (1993). "Cell biology of echinoid celomocytes. 1. Diversity and characterization of cell-types." Journal of Invertebrate Pathology **61**(2): 173-178.
- Ehrhardt, M., H. Lindenmaier, J. Burhenne, W. E. Haefeli and J. Weiss (2004). "Influence of lipid lowering fibrates on P-glycoprotein activity *in vitro*." <u>Biochemical Pharmacology</u> 67(2): 285-292.
- Ellesat, K. S., K. E. Tollefsen, A. Asberg, K. V. Thomas and K. Hylland (2010).
 "Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (*Oncorhynchus mykiss*) hepatocytes." <u>Toxicology in Vitro</u> 24(6): 1610-1618.
- Epel, D. (1998). "Use of multidrug transporters as first lines of defense against toxins in aquatic organisms." <u>Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology</u> **120**(1): 23-28.
- Epel, D., T. Luckenbach, C. N. Stevenson, L. A. Macmanus-Spencer, A. Hamdoun and T. Smital (2008). "Efflux transporters: Newly appreciated roles in protection against pollutants." <u>Environmental Science & Technology</u> 42(11): 3914-3920.
- Fackler, P. H., E. Dionne, D. A. Hartley and J. L. Hamelink (1995). "Bioconcentration by fish of a highly volatile silicone compound in a totally enclosed aquatic exposure system." <u>Environmental Toxicology and Chemistry</u> 14(10): 1649-1656.
- Felix, K., S. Janz, J. Pitha, J. A. Williams, E. B. Mushinski, G. W. Bornkamm and M. Potter (1996). Cytotoxicity and membrane damage *in vitro* by inclusion complexes between gamma-cyclodextrin and siloxanes. <u>Immunology of Silicones</u>. M. Potter and N. R. Rose. Berlin 33, Springer-Verlag Berlin. **210**: 93-99.
- Feng, Q., A. N. Boone and M. M. Vijayan (2003). "Copper impact on heat shock protein 70 expression and apoptosis in rainbow trout hepatocytes." <u>Comparative Biochemistry</u> <u>and Physiology C-Toxicology & Pharmacology</u> 135(3): 345-355.
- Fent, K. (2003). "Ecotoxicological problems associated with contaminated sites." <u>Toxicology</u> <u>Letters</u> **140**: 353-365.
- Fisher, L. D. and G. Van Belle (1993). <u>Biostatistics: a methodology for the health sciences</u>. New York, John Wiley & Sons.
- Fossi, M. C., L. Marsili, M. Junin, H. Castello, J. A. Lorenzani, S. Casini, C. Savelli and C. Leonzio (1997). "Use of nondestructive biomarkers and residue analysis to assess the health status of endangered species of pinnipeds in the south-west Atlantic." <u>Marine Pollution Bulletin</u> 34(3): 157-162.

- Fujino, H., T. Saito, Y. Tsunenari, J. Kojima and T. Sakaeda (2004). "Metabolic properties of the acid and lactone forms of HMG-CoA reductase inhibitors." <u>Xenobiotica</u> 34(11-12): 961-971.
- Gekeler, V., W. Ise, K. H. Sanders, W. R. Ulrich and J. Beck (1995). "The leukotriene LTD(4) reseptor antagonist MK571 specifically modulates MRP associated multidrugresistance." <u>Biochemical and Biophysical Research Communications</u> 208(1): 345-352.
- Goldsmith, L. A. (2000). "Acute and subchronic toxicity of sucralose." <u>Food and Chemical</u> <u>Toxicology</u> **38**: \$53-\$69.
- Goldstein, J. L. and M. S. Brown (1990). "Regulation of the mevalonate pathway." <u>Nature</u> **343**(6257): 425-430.
- Goldstone, J. V., A. Hamdoun, B. J. Cole, M. Howard-Ashby, D. W. Nebert, M. Scally, M. Dean, D. Epel, M. E. Hahn and J. J. Stegeman (2006). "The chemical defensome: Environmental sensing and response genes in the *Strongylocentrotus purpuratus* genome." <u>Developmental Biology</u> 300(1): 366-384.
- Graiver, D., K. W. Farminer and R. Narayan (2003). "A review of the fate and effects of silicones in the environment." Journal of Polymers and the Environment 11(4): 129-136.
- Green, N. W., M. M. Schlabach, T. Bakke, E. Brevik, C. Dye, D. Herzke, M. Schøyen, H. Uggerud, S. Huber, B. Plosz and M. Remberger (2008). Screening of selected metals and new organic contaminants 2007. Phosphorus flame retardents, polyfluorinated organic compounds, nitro-PAHs, silver, platinum and sucralose in air, wastewater treatment falcilities, and freshwater and marine recipients. Oslo, Statens forurensningstilsyn. TA-2367: 104.
- Grice, H. C. and L. A. Goldsmith (2000). "Sucralose An overview of the toxicity data." <u>Food and Chemical Toxicology</u> **38**: S1-S6.
- Grung, M., E. S. Heimstad, M. Moe, M. Schlabach, A. Svenson, K. Thomas and A. Woldegiorgis (2008). Human and Veterinary Pharmaceuticals, Narcotics, and Personal Care Products in the Environment, Statens forurensningstilsyn. TA 2325/2007: 98.
- Gu, M., H. M. Ma, K. S. Mai, W. B. Zhang, Q. H. Ai, X. J. Wang and N. Bai (2010).
 "Immune response of sea cucumber *Apostichopus japonicus* coelomocytes to several immunostimulants *in vitro*." <u>Aquaculture</u> **306**(1-4): 49-56.

- Haimeur, A., G. Conseil, R. G. Deeley and S. P. C. Cole (2004). "The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation." <u>Current Drug Metabolism</u> 5(1): 21-53.
- Hamdoun, A. M., G. N. Cherr, T. A. Roepke and D. Epel (2004). "Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (*Strongylocentrotus purpuratus*)." <u>Developmental Biology</u> 276(2): 452-462.
- He, B., S. Rhodes-Brower, M. R. Miller, A. E. Munson, D. R. Germolec, V. R. Walker, K. S. Korach and B. J. Meade (2003). "Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ER alpha." <u>Toxicology and Applied Pharmacology</u> 192(3): 254-261.
- Hobson, J. F. and E. M. Silberhorn (1995). "Octamethylcyclotetrasiloxane (OMCTS), a casestudy - summary and aquatic risk assessment." <u>Environmental Toxicology and</u> <u>Chemistry</u> 14(10): 1667-1673.
- Homolya, L., Z. Hollo, U. A. Germann, I. Pastan, M. M. Gottesman and B. Sarkadi (1993).
 "Fluorescent cellular indicators are extruded by the multidrug-resistance protein."
 Journal of Biological Chemistry 268(29): 21493-21496.
- Huse, A. and S. B. Aas-Aune (2009). Kartlegging av siloksaner. Kartlegging av bruk i Norge i 2008. Oslo, Statens forurensningstilsyn. TA-2557: 48.
- Kaj, L., M. Schlabach, J. Andersson, A. P. Cousins, N. Schmidbauer and E. Brorström-Lundén (2005). Siloxanes in the Nordic Environment. Copenhagen, Nordic Council of Ministers. TemaNord report 2005:593 97.
- Kent, D. J., P. C. McNamara, A. E. Putt, J. F. Hobson and E. M. Silberhorn (1994).
 "Octamethylcyclotetrasiloxane in aquatic sediments toxixity and risk assessment."
 <u>Ecotoxicology and Environmental Safety</u> 29(3): 372-389.
- Kille, J. W., J. M. Tesh, P. A. McAnulty, F. W. Ross, C. R. Willoughby, G. P. Bailey, O. K. Wilby and S. A. Tesh (2000). "Sucralose: Assessment of teratogenic potential in the rat and the rabbit." <u>Food and Chemical Toxicology</u> 38: S43-S52.
- Kowaltowski, A. J., R. F. Castilho, M. T. Grijalba, E. J. H. Bechara and A. E. Vercesi (1996).
 "Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions A proposed model for phosphate-stimulated lipid peroxidation." Journal of Biological Chemistry 271(6): 2929-2934.
- Kowaltowski, A. J., R. F. Castilho and A. E. Vercesi (2001). "Mitochondrial permeability transition and oxidative stress." <u>Febs Letters</u> **495**(1-2): 12-15.

- Krumschnabel, G., C. Manzl, C. Berger and B. Hofer (2005). "Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes." <u>Toxicol Appl</u> Pharmacol **209**(1): 62-73.
- Kubota, T., K. Fujisaki, Y. Itoh, T. Yano, T. Sendo and R. Oishi (2004). "Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors." <u>Biochemical</u> <u>Pharmacology</u> 67(12): 2175-2186.
- Kurelec, B. (1992). "The multixenobiotic resistance mechanism in aquatic organisms." Critical Reviews in Toxicology **22**(1): 23-43.
- Langford, K. and K. V. Thomas (2011). "Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment." <u>Journal of Environmental Monitoring</u> 13(2): 416-421.
- Leier, I., G. Jedlitschky, U. Buchholz, S. P. C. Cole, R. G. Deeley and D. Keppler (1994).
 "The MRP gene encodes an ATP-dependent export pump for leukotrine C-4, and structurally related conjugates." Journal of Biological Chemistry 269(45): 27807-27810.
- Liao, J. K. and U. Laufs (2005). "Pleiotropic effects of statins." <u>Annual Review of</u> <u>Pharmacology and Toxicology</u> **45**: 89-118.
- Lillicrap, A., K. Langford and K. E. Tollefsen (2011). "Bioconcentration of the intense sweetener sucralose in a multitrophic battery of aquatic organisms." <u>Environmental</u> <u>Toxicology and Chemistry</u> **30**(3): 673-681.
- Lodish, H., A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky and J. Darnell (2003). Transport of Ions and small molecules across cell membranes. <u>Molecular cell biology</u>. New York, W. H. Freeman and Company: 245-255.
- Loos, R., B. M. Gawlik, K. Boettcher, G. Locoro, S. Contini and G. Bidoglio (2009).
 "Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method." <u>J Chromatogr A</u> 1216(7): 1126-1131.

Løvås, G. G. (2004). Statistikk for universiteter og høgskoler. Oslo, Universitetsforlaget.

Marin, M., H. Legros, A. Poret, F. O. Leboulenger and F. Le Foll (2004). "Cell responses to xenobiotics: Comparison of MCF7 multi-drug- and mussel blood cell multi-xenobiotic-defense mechanisms." <u>Marine Environmental Research</u> 58(2-5): 209-213.

Matranga, V. (2005). Echinodermata. Berlin, Springer.

- Mead, R. N., J. B. Morgan, G. B. Avery, R. J. Kieber, A. M. Kirk, S. A. Skrabal and J. D.
 Willey (2009). "Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States." Marine Chemistry 116(1-4): 13-17.
- Meeks, R. G., D. G. Stump, W. H. Siddiqui, J. F. Holson, K. P. Plotzke and V. L. Reynolds (2007). "An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D₄) in female rats using multiple and single day exposure regimens." <u>Reproductive Toxicology</u> 23(2): 192-201.
- Miao, X. S. and C. D. Metcalfe (2003). "Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography-electrospray ionization tandem mass spectrometry." Journal of Chromatography A 998(1-2): 133-141.
- Miao, X. S. and C. D. Metcalfe (2003). "Determination of pharmaceuticals in aqueous samples using positive and negative voltage switching microbore liquid chromatography/electrospray ionization tandem mass spectrometry." <u>Journal of Mass</u> <u>Spectrometry</u> **38**(1): 27-34.
- Petersen, D. W. and J. J. Lech (1987). "Hepatic-effects of acrylamide in rainbow-trout." <u>Toxicology and Applied Pharmacology</u> **89**(2): 249-255.
- Pinsino, A., M. C. Thorndyke and V. Matranga (2007). "Coelomocytes and post-traumatic response in the common sea star *Asterias rubens*." <u>Cell Stress & Chaperones</u> 12(4): 331-341.
- Pourahmad, J. and P. J. O'Brien (2000). "A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+." <u>Toxicology</u> **143**(3): 263-273.
- Reid, D. J. and G. R. MacFarlane (2003). "Potential biomarkers of crude oil exposure in the gastropod mollusc, *Austrocochlea porcata*: laboratory and manipulative field studies." <u>Environmental Pollution</u> 126(2): 147-155.
- Reinders, A., A. B. Sivitz, A. Hsi, C. P. L. Grof, J. M. Perroux and J. M. Ward (2006).
 "Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose." Plant Cell and Environment 29(10): 1871-1880.
- Rice, J. M. (2005). "The carcinogenicity of acrylamide." <u>Mutation Research-Genetic</u> <u>Toxicology and Environmental Mutagenesis</u> **580**(1-2): 3-20.
- Rodrigues, A. C. (2010). "Efflux and uptake transporters as determinants of statin response." <u>Expert Opinion on Drug Metabolism & Toxicology</u> **6**(5): 621-632.
- Rønning, I. (2006). Echinoderm coelomocytes as a cellular model in toxicity testing and biomonitoring. Oslo, Universitetet i Oslo.

- Saier, B. (2001). "Direct and indirect effects of seastars *Asterias rubens* on mussel beds (*Mytilus edulis*) in the Wadden Sea." Journal of Sea Research **46**(1): 29-42.
- Sasaki, Y. F., S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K. Iwama, K. Taniguchi and S. Tsuda (2002). "The comet assay with 8 mouse organs: results with 39 currently used food additives." <u>Mutation Research-Genetic Toxicology and Environmental</u> <u>Mutagenesis</u> 519(1-2): 103-119.
- Schirmer, K., A. G. J. Chan, B. M. Greenberg, D. G. Dixon and N. C. Bols (1997).
 "Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture." <u>Toxicology in Vitro</u> 11(1-2): 107-+.
- Schirmer, K., D. G. Dixon, B. M. Greenberg and N. C. Bols (1998). "Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill." <u>Toxicology</u> 127(1-3): 129-141.
- Schlabach, M., M. S. Andersen, N. Green, M. Schøyen and L. Kaj (2007). Siloxanes in the Environment of the Inner Oslofjord. Oslo, Statens forurensningstilsyn. TA-2269/2007.
- Shitara, Y. and Y. Sugiyama (2006). "Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drugdrug interactions and interindividual differences in transporter and metabolic enzyme functions." <u>Pharmacology & Therapeutics</u> 112(1): 71-105.
- Siddiqui, W. H., D. G. Stump, K. R. Plotzke, J. F. Holson and R. G. Meeks (2007). "A twogeneration reproductive toxicity study of octarnethylcyclotetrasiloxane (D-4) in rats exposed by whole-body vapor inhalation." Reproductive Toxicology 23(2): 202-215.
- Skottheim, I. B., A. Gedde-Dahl, S. Hejazifar, K. Hoel and A. Asberg (2008). "Statin induced myotoxicity: the lactone forms are more potent than the acid forms in human skeletal muscle cells *in vitro*." <u>Eur J Pharm Sci</u> 33(4-5): 317-325.
- Smital, T. and B. Kurelec (1997). "Inhibitors of the multixenobiotic resistance mechanism in natural waters: *In vivo* demonstration of their effects." <u>Environmental Toxicology and</u> <u>Chemistry</u> 16(10): 2164-2170.
- Smital, T. and B. Kurelec (1998). "The chemosensitizers of multixenobiotic resistance mechanism in aquatic invertebrates: a new class of pollutants." <u>Mutation Research-</u> <u>Fundamental and Molecular Mechanisms of Mutagenesis</u> **399**(1): 43-53.
- Smital, T., R. Sauerborn and B. K. Hackenberger (2003). "Inducibility of the P-glycoprotein transport activity in the marine mussel *Mytilus galloprovincialis* and the freshwater mussel *Dreissena polymorpha*." <u>Aquatic Toxicology</u> 65(4): 443-465.

- Smith, L. C. and E. H. Davidson (1992). "The echinoid immune-system and the phylogenetic occurrence of immune-mechanisms in deuterosmes." <u>Immunology Today</u> 13(9): 356-362.
- Soh, L., K. A. Connors, B. W. Brooks and J. Zimmerman (2011). "Fate of Sucralose through Environmental and Water Treatment Processes and Impact on Plant Indicator Species." <u>Environmental Science & Technology</u> 45(4): 1363-1369.
- Sousa, J. V., P. C. McNamara, A. E. Putt, M. W. Machado, D. C. Surprenant, J. L. Hamelink,
 D. J. Kent, E. M. Silberhorn and J. F. Hobson (1995). "Effects of
 octamethylcyclotetrasiloxane (OMCTS) on fresh-water and marine organisms."
 <u>Environmental Toxicology and Chemistry</u> 14(10): 1639-1647.
- Sverdrup, L., E. A. Vik, M. Weideborg, A. Kelley, C. Fürst, T. Källqvist, J. Molvær and K. Ødegård (1999). Sluttrapport. Utslipp knyttet til bruk av kjemiske injeksjonsmidler i Romeriksporten. Oslo, Aquateam 99-010: 57.
- Szakacs, G., J. K. Paterson, J. A. Ludwig, C. Booth-Genthe and M. M. Gottesman (2006).
 "Targeting multidrug resistance in cancer." <u>Nature Reviews Drug Discovery</u> 5(3): 219-234.
- Sørensen, P. (2011). Prioriterte miljøgifter. Nasjonale utslipp status 2008. Oslo, Klima- og forurensningsdirektoratet. **TA-2738**.
- Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson and M. Tornqvist (2000). "Acrylamide: A cooking carcinogen?" <u>Chemical Research in Toxicology</u> 13(6): 517-522.
- Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson and M. Tornqvist (2002). "Analysis of acrylamide, a carcinogen formed in heated foodstuffs." <u>Journal of Agricultural and Food Chemistry</u> 50(17): 4998-5006.
- Thorpe, J. L., M. Doitsidou, S. Y. Ho, E. Raz and S. A. Farber (2004). "Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation." <u>Developmental Cell</u> 6(2): 295-302.
- Tollefsen, K. E., C. Blikstad, S. Eikvar, E. F. Finne and I. K. Gregersen (2008). "Cytotoxicity of alkylphenols and alkylated non-phenolics in a primary culture of rainbow trout (*Onchorhynchus mykiss*) hepatocytes." <u>Ecotoxicology and Environmental Safety</u> 69(1): 64-73.
- Walker, J. D. (1991). "Ecological effects testing under the toxic-substances control act acrylamide." <u>Environmental Toxicology and Water Quality</u> 6(4): 363-369.

- Walley, T., P. Folino-Gallo, P. Stephens, E. Van Ganse and G. EuroMedStat (2005). "Trends in prescribing and utilization of statins and other lipid lowering drugs across Europe 1997-2003." <u>British Journal of Clinical Pharmacology</u> **60**(5): 543-551.
- Warner, N. A., A. Evenset, G. Christensen, G. W. Gabrielsen, K. Borga and H. Leknes
 (2010). "Volatile Siloxanes in the European Arctic: Assessment of Sources and Spatial Distribution." <u>Environmental Science & Technology</u> 44(19): 7705-7710.
- Yamasaki, D., T. Nakamura, N. Okamura, M. Kokudai, N. Inui, K. Takeuchi, H. Watanabe,
 M. Hirai, K. Okumura and T. Sakaeda (2009). "Effects of acid and lactone forms of 3hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on the induction of MDR1 expression and function in LS180 cells." <u>European Journal of Pharmaceutical Sciences</u> 37(2): 126-132.
- Zar, J. H. (1999). <u>Biostatistical analysis, 4 ed.</u> Upper Saddle River, New Jersey., Prentice-Hall.
- Zhao, M., F. Antunes, J. W. Eaton and U. T. Brunk (2003). "Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis." <u>European</u> <u>Journal of Biochemistry</u> 270(18): 3778-3786.

Vedlegg 1: Kjemikalieliste

Tabell 1A: Oversikt over kjemikalier med produkt- eller CAS-nummer og levrandør.

Kjemikalier	Produkt nummer	Leverandør
Akrylamid	CAS 79-06-1	MERCK-Sehuchardt
Alamar Blue	CAS 550-82-3	Molecular Probes
Amphotericin	CAS 1397-89-3	Cambrex
Atorvastatin lakton	CAS 125995-03-1	Toronto Research Chemicals
Atorvastatin syre	CAS 134523-03-8	Toronto Research Chemicals
Copper(II) sulfat pentahydrat CuSO ₄ x 5H ₂ O	CAS 7758-99-8	Sigma Aldrich
Decamethylcyclopentasiloxan	CAS 541-02-6	Sigma Aldrich
Dimethyl sulfoxide (DMSO) (CH ₃) ₂ SO	CAS 67-68-5	Sigma-Aldrich
Dinatriumhydrogenfosfat vannfri (Na ₂ HPO ₄)	7558-79-4	Sigma
Etylenediaminetetraeddiksyre (EDTA)	60-00-4	Sigma
Kaliumdihydrogenfosfat (KH ₂ PO ₄)	104873	MERCK
Leibovitz L-15 Medium	12-700F	Lonza
L-glutamine	CAS 56-85-9	Cambrex
MK-571 (Sodium salt)	70720 / L 660711	Cayman chemical
monochlorobimane (mBCl)	CAS 76421-73-3	Molecular Probes TM
Natriumklorid (NaCl)	106404	MERCK
Octamethylcyclotetrasiloxane	CAS 556-67-2	Sigma Aldrich
Penicillin	CAS 69-57-8	Cambrex
Rhodamine B	81-88-9	Sigma
RPMI		
Simvastatin lakton	CAS 79902-63-9	Toronto Research Chemicals Inc.

Simvastatin syre	CAS 139893-43-9	Toronto Research Chemicals
		Inc.
streptomycin	CAS 3810-74-0	Cambrex
Sukralose	CAS 56038-13-2	Sigma Aldrich
Triton [®] X-100 solution	9002-93-1	Sigma
Trypan Blue	30,264-3	Sigma Aldrich
5-carboxyfluorescein diacetate, acetoxymethyl ester (5-CFDA, AM)	CAS 124412-00-6	Molecular Probes TM

Vedlegg 2: Utstyrsliste

Tabell 2A: Oversikt over utstyr/ instrumenter/ software og levrandør.

Utstyr/ instrumenter/ software	Leverandør
Plastrør 50ml	Sarstedt
Sprøyte 1 ml, BD Plastipak TM	Becton Dickinson S.A
Kanyle 23G, BD Microlance [™] 3	Becton Dickinson S.A
96-brønns cellekulturplate	Corning Incorporated
Nunc MicroWell TM Plates	Nunc TM
Synergy [™] Mx , Multi-Mode Microplate Reader	BioTek®Instruments
Gen5 Data Analysis Software	BioTek®Instruments
Bio-tek FLx800 fluorescens plateleser	Bio Tek Instruments Inc., USA
Mikroskop: Nikon TMS	Nikon instruments Europe B.V.
Tellekammer: Bürker-Türk	Marienfeld
Data analyse: GraphPad Prisma5	GraphPad Software, Inc., USA
Data analyse: Statistica software, versjon 7	Statsoft, Tulsa, USA

Vedlegg 3: Rådata

Dato	Stoff	Plate		Konsentrasjon (µM)								
			3,125	6,25	12,5	25	50	100	200	400		
14.01.2011	Atorvastatin syre	1	1793	1536	1473	1580	1747	1741	1567	1536		
14.01.2011	Atorvastatin syre	1	1454	1423	1431	1499	1450	1489	1388	1272		
14.01.2011	Atorvastatin syre	1	1480	1449	1614	1654	1607	1560	1387	1360		
15.01.2011	Atorvastatin syre	5	1342	1291	1310	1287	1271	1270	1219	1203		
15.01.2011	Atorvastatin syre	5	1501	1395	1427	1362	1296	1339	1303	1252		
15.01.2011	Atorvastatin syre	5	1588	1451	1525	1371	1349	1355	1369	1343		
16.01.2011	Atorvastatin syre	9	1398	1552	1449	1488	1466	1446	1409	1336		
16.01.2011	Atorvastatin syre	9	1394	1419	1405	1402	1367	1385	1333	1323		
16.01.2011	Atorvastatin syre	9	1406	1416	1442	1416	1464	1418	1452	1355		
17.01.2011	Atorvastatin syre	13	1596	1434	1392	1344	1307	1313	1287	1363		
17.01.2011	Atorvastatin syre	13	1556	1521	1406	1370	1343	1335	1331	1419		
17.01.2011	Atorvastatin syre	13	1518	1534	1408	1370	1323	1348	1303	1376		
14.01.2011	Atorvastatin lakton	1	1616	1549	1552	1451	1433	1683	1253	1242		
14.01.2011	Atorvastatin lakton	1	1871	1785	1720	1394	1489	1469	1228	1170		
14.01.2011	Atorvastatin lakton	1	1741	1541	1621	1589	1491	1586	1553	1560		
15.01.2011	Atorvastatin lakton	5	1277	1262	1290	1251	1242	1232	1190	1203		
15.01.2011	Atorvastatin lakton	5	1262	1255	1277	1268	1231	1227	1211	1234		
15.01.2011	Atorvastatin lakton	5	1279	1248	1259	1221	1191	1217	1267	1251		
16.01.2011	Atorvastatin lakton	9	1296	1392	1398	1356	1333	1335	1293	1337		
16.01.2011	Atorvastatin lakton	9	1416	1391	1369	1398	1373	1116	1282	1297		
16.01.2011	Atorvastatin lakton	9	1341	1365	1284	1311	1349	1336	1277	1350		
17.01.2011	Atorvastatin lakton	13	1411	1305	1287	1254	1267	1301	1266	1482		
17.01.2011	Atorvastatin lakton	13	1513	1380	1359	1318	1314	1333	1326	1438		
17.01.2011	Atorvastatin lakton	13	1436	1303	1286	1279	1254	1246	1300	1488		

Tabell 3A: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av atorvastatin syre og -lakton i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon (µM)								
			3,125	6,25	12,5	25	50	100	200	400		
14.01.2011	simvastatin syre	2	1518	1493	1471	1663	1438	1418	1332	1138		
14.01.2011	simvastatin syre	2	1599	1655	1547	1475	1422	1484	1369	1187		
14.01.2011	simvastatin syre	2	1915	1829	1481	1483	1466	1442	1451	1225		
15.01.2011	simvastatin syre	6	1213	1288	1244	1250	1266	1249	1231	1015		
15.01.2011	simvastatin syre	6	1257	1498	1434	1350	1353	1323	1311	1099		
15.01.2011	simvastatin syre	6	1272	1395	1321	1318	1363	1355	1331	1139		
16.01.2011	simvastatin syre	10	1381	1366	1430	1608	1390	1436	1412	1125		
16.01.2011	simvastatin syre	10	1465	1366	1391	1446	1263	1281	1263	1115		
16.01.2011	simvastatin syre	10	1411	1557	1572	1606	1456	1466	1467	1182		
17.01.2011	simvastatin syre	14	1316	1320	1330	1388	1523	1429	1252	1198		
17.01.2011	simvastatin syre	14	1494	1460	1498	1519	1316	1382	1217	1198		
17.01.2011	simvastatin syre	14	1282	1268	1354	1367	1263	1262	1170	1120		
14.01.2011	simvastatin lakton	2	1756	1655	1258	1199	1241	1227	1190	1149		
14.01.2011	simvastatin lakton	2	1552	1653	1295	1167	1209	1220	1240	1250		
14.01.2011	simvastatin lakton	2	1754	1712	1384	1156	1207	1218	1130	1115		
15.01.2011	simvastatin lakton	6	1277	1411	1254	1138	1159	1159	1137	1138		
15.01.2011	simvastatin lakton	6	1220	1324	1204	1116	1151	1135	1123	1111		
15.01.2011	simvastatin lakton	6	1248	1344	1205	1093	1179	1177	1106	1096		
16.01.2011	simvastatin lakton	10	1347	1584	1324	1253	1242	1295	1245	1153		
16.01.2011	simvastatin lakton	10	1307	1435	1283	1209	1192	1170	1195	1106		
16.01.2011	simvastatin lakton	10	1319	1486	1222	1233	1163	1190	1277	1217		
17.01.2011	simvastatin lakton	14	1263	1272	1254	1162	1186	1183	1156	1166		
17.01.2011	simvastatin lakton	14	1309	1279	1211	1186	1179	1188	1135	1153		
17.01.2011	simvastatin lakton	14	1302	1284	1193	1174	1165	1207	1148	1190		

Tabell 3B: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av simvastatin syre og -lakton i 48 timer *in vitro*.

Dato	Stoff	Plate	Konsentrasjon (µg/l)									
			0,03	0,12	0,48	1,92	7,68	30,7	123	491		
14.01.2011	D4	3	1575	1563	1525	1585	1537	1630	1481	1540		
14.01.2011	D4	3	1691	1696	1654	1579	1495	1354	1423	1489		
14.01.2011	D4	3	1767	1941	1952	1778	2038	1627	1690	1649		
15.01.2011	D4	7	1308	1341	1344	1287	1291	1326	1447	1472		
15.01.2011	D4	7	1489	1371	1536	1327	1292	1480	1622	1581		
15.01.2011	D4	7	1320	1348	1297	1290	1262	1320	1447	1520		
16.01.2011	D4	11	1437	1444	1391	1460	1428	1327	1366	1361		
16.01.2011	D4	11	1523	1493	1479	1358	1342	1290	1477	1483		
16.01.2011	D4	11	1477	1357	1456	1368	1375	1326	1432	1429		
17.01.2011	D4	15	1303	1276	1288	1441	1274	1282	1269	1266		
17.01.2011	D4	15	1279	1256	1284	1294	1287	1250	1261	1259		
17.01.2011	D4	15	1357	1312	1308	1357	1328	1360	1320	1289		
14.01.2011	D5	3	1904	1884	1698	1578	1602	1508	1499	1480		
14.01.2011	D5	3	1710	1897	1760	1740	1546	1469	1424	1494		
14.01.2011	D5	3	1853	1829	1530	1556	1472	1385	1424	1459		
15.01.2011	D5	7	1340	1315	1273	1268	1246	1352	1433	1420		
15.01.2011	D5	7	1395	1316	1268	1277	1315	1329	1441	1296		
15.01.2011	D5	7	1314	1287	1279	1276	1219	1322	1539	1642		
16.01.2011	D5	11	1365	1342	1360	1340	1256	1294	1454	1463		
16.01.2011	D5	11	1381	1351	1282	1306	1266	1294	1372	1423		
16.01.2011	D5	11	1695	1694	1579	1729	1436	1516	1422	1479		
17.01.2011	D5	15	1505	1317	1371	1376	1388	1304	1350	1342		
17.01.2011	D5	15	1420	1477	1354	1333	1385	1301	1349	1289		
17.01.2011	D5	15	1373	1315	1283	1291	1472	1367	1443	1273		

Tabell 3C: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av oktametylsyklotetrasiloksan (D4), oktametylsylopentasiloksan (D5) i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon (µg/l)									
			2	6	18	54	162	486	1458	4374			
14.01.2011	Sukralose	4	1878	1708	1647	1600	1570	1599	1586	1606			
14.01.2011	Sukralose	4	1559	1542	1583	1569	1596	1540	1506	1600			
14.01.2011	Sukralose	4	1567	1594	1812	1542	1616	1527	1498	1589			
15.01.2011	Sukralose	8	1387	1316	1260	1253	1274	1314	1262	1258			
15.01.2011	Sukralose	8	1274	1310	1275	1287	1320	1341	1330	1287			
15.01.2011	Sukralose	8	1300	1299	1257	1278	1320	1325	1306	1263			
16.01.2011	Sukralose	12	1532	1312	1300	1385	1345	1330	1357	1357			
16.01.2011	Sukralose	12	1414	1303	1325	1396	1402	1407	1326	1449			
16.01.2011	Sukralose	12	1514	1360	1354	1410	1464	1453	1340	1389			
17.01.2011	Sukralose	16	1301	1300	1378	1327	1346	1369	1281	1311			
17.01.2011	Sukralose	16	1412	1384	1375	1299	1340	1313	1285	1276			
17.01.2011	Sukralose	16	1408	1360	1339	1305	1287	1278	1235	1309			

Tabell 3D: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon (µg/l)									
			0,1	0,5	2,5	12,5	62,5	312	1562	7812			
14.01.2011	Akrylamid	4	1889	1857	1828	1686	1665	1599	1631	1570			
14.01.2011	Akrylamid	4	1939	1685	1769	1570	1632	1672	1588	1533			
14.01.2011	Akrylamid	4	1721	1554	1596	1698	1634	1596	1592	1558			
15.01.2011	Akrylamid	8	1261	1274	1209	1199	1256	1345	1247	1194			
15.01.2011	Akrylamid	8	1628	1551	1329	1274	1300	1341	1291	1267			
15.01.2011	Akrylamid	8	1313	1303	1259	1250	1267	1285	1250	1229			
16.01.2011	Akrylamid	12	1468	1340	1273	1465	1453	1421	1232	1324			
16.01.2011	Akrylamid	12	1515	1364	1299	1428	1496	1430	1351	1391			
16.01.2011	Akrylamid	12	1600	1351	1362	1586	1446	1482	1417	1382			
17.01.2011	Akrylamid	16	1687	1612	1717	1588	1547	1576	1403	1657			
17.01.2011	Akrylamid	16	1464	1451	1518	1459	1451	1439	1368	1481			
17.01.2011	Akrylamid	16	1338	1327	1366	1337	1340	1342	1285	1364			

Tabell 3E: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon (µM)								
			3,125	6,25	12,5	25	50	100	200	400		
14.01.2011	Atorvastatin syre	1	1206	1129	1308	1380	1167	764	658	583		
14.01.2011	Atorvastatin syre	1	1678	1158	803	1446	1793	1096	986	746		
14.01.2011	Atorvastatin syre	1	1184	846	1202	1416	1900	837	608	555		
15.01.2011	Atorvastatin syre	5	760	653	971	871	1172	985	1081	771		
15.01.2011	Atorvastatin syre	5	403	651	739	752	965	670	880	614		
15.01.2011	Atorvastatin syre	5	421	493	357	631	957	927	905	405		
16.01.2011	Atorvastatin syre	9	1229	1053	980	1136	768	974	710	582		
16.01.2011	Atorvastatin syre	9	960	976	1028	714	692	638	788	764		
16.01.2011	Atorvastatin syre	9	1296	963	960	734	641	928	802	585		
17.01.2011	Atorvastatin syre	13	1508	727	882	1150	1093	799	718	456		
17.01.2011	Atorvastatin syre	13	1268	986	760	981	771	901	526	466		
17.01.2011	Atorvastatin syre	13	984	925	849	945	838	877	575	394		
14.01.2011	Atorvastatin lakton	1	1339	1318	1170	792	436	508	285	372		
14.01.2011	Atorvastatin lakton	1	1030	1109	1218	1079	689	349	191	190		
14.01.2011	Atorvastatin lakton	1	2386	1599	1674	1097	627	536	273	295		
15.01.2011	Atorvastatin lakton	5	790	674	549	495	460	336	456	351		
15.01.2011	Atorvastatin lakton	5	871	576	564	715	502	384	377	354		
15.01.2011	Atorvastatin lakton	5	898	904	540	590	426	353	351	337		
16.01.2011	Atorvastatin lakton	9	526	553	748	501	292	345	234	350		
16.01.2011	Atorvastatin lakton	9	939	947	737	760	393	395	305	333		
16.01.2011	Atorvastatin lakton	9	794	1073	637	631	498	389	321	367		
17.01.2011	Atorvastatin lakton	13	692	997	1104	712	508	368	292	570		
17.01.2011	Atorvastatin lakton	13	759	972	937	773	493	378	276	574		
17.01.2011	Atorvastatin lakton	13	1044	1193	1353	940	609	438	416	717		

Tabell 3F: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av atorvastatin syre og -lakton i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon (µM)								
			3,125	6,25	12,5	25	50	100	200	400		
14.01.2011	simvastatin syre	2	1676	1403	1243	1186	1320	1257	884	66		
14.01.2011	simvastatin syre	2	1750	2320	2117	1444	2286	2588	1354	145		
14.01.2011	simvastatin syre	2	1443	1300	1075	1231	1325	1135	931	139		
15.01.2011	simvastatin syre	6	558	665	808	741	1001	1207	746	42		
15.01.2011	simvastatin syre	6	611	491	514	1500	1163	1214	585	79		
15.01.2011	simvastatin syre	6	736	500	605	1292	1288	810	604	87		
16.01.2011	simvastatin syre	10	992	923	807	1488	1231	1467	777	72		
16.01.2011	simvastatin syre	10	844	1404	1208	986	722	868	875	73		
16.01.2011	simvastatin syre	10	862	1074	1030	1256	1201	1101	517	113		
17.01.2011	simvastatin syre	14	792	690	959	1078	1485	1162	660	144		
17.01.2011	simvastatin syre	14	753	705	927	870	1746	1232	700	136		
17.01.2011	simvastatin syre	14	1032	1303	1712	1610	1395	1666	848	93		
14.01.2011	simvastatin lakton	2	1595	1285	770	90	57	46	41	34		
14.01.2011	simvastatin lakton	2	1058	983	490	90	50	38	42	47		
14.01.2011	simvastatin lakton	2	1871	1472	996	119	75	47	41	36		
15.01.2011	simvastatin lakton	6	585	443	392	90	59	36	33	30		
15.01.2011	simvastatin lakton	6	593	515	390	76	55	38	32	30		
15.01.2011	simvastatin lakton	6	583	390	419	89	69	38	31	31		
16.01.2011	simvastatin lakton	10	709	690	601	151	83	101	85	61		
16.01.2011	simvastatin lakton	10	591	1021	570	167	84	68	73	62		
16.01.2011	simvastatin lakton	10	870	949	471	192	74	73	112	89		
17.01.2011	simvastatin lakton	14	777	970	794	221	99	54	37	43		
17.01.2011	simvastatin lakton	14	979	1045	1169	220	88	54	43	47		
17.01.2011	simvastatin lakton	14	909	974	1044	218	93	68	46	46		

Tabell 3G: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av simvastatin syre og -lakton i 48 timer *in vitro*.

Dato	Stoff	Plate	Konsentrasjon (µg/l)								
			0,03	0,12	0,48	1,92	7,68	30,7	123	491	
14.01.2011	D4	3	2721	1572	1573	1678	1478	1768	1355	1279	
14.01.2011	D4	3	1450	1170	1064	1644	1198	1216	1390	1421	
14.01.2011	D4	3	827	1742	1661	1716	1936	1464	1134	1098	
15.01.2011	D4	7	768	827	501	888	625	1029	418	515	
15.01.2011	D4	7	410	586	553	660	730	605	1733	655	
15.01.2011	D4	7	709	440	810	616	589	801	552	568	
16.01.2011	D4	11	1095	1039	1106	981	1182	974	1388	1142	
16.01.2011	D4	11	1368	1160	1478	1031	806	836	1002	946	
16.01.2011	D4	11	1657	972	1241	1299	1162	935	1214	1575	
17.01.2011	D4	15	947	1136	1243	1207	1746	1250	1737	1425	
17.01.2011	D4	15	1065	1128	1221	1211	1125	1213	1265	1390	
17.01.2011	D4	15	1525	1464	1533	1370	1847	2053	1838	1537	
14.01.2011	D5	3	1084	1936	1721	2033	1800	1468	1375	1689	
14.01.2011	D5	3	895	1178	1071	1320	1214	1375	1361	1302	
14.01.2011	D5	3	1248	1466	1433	1915	1452	1096	1443	1532	
15.01.2011	D5	7	568	635	762	561	588	876	504	521	
15.01.2011	D5	7	587	987	533	813	734	986	721	788	
15.01.2011	D5	7	1289	851	529	774	893	975	1023	970	
16.01.2011	D5	11	1075	1038	913	1000	816	783	1131	812	
16.01.2011	D5	11	1417	995	965	999	945	1080	985	1861	
16.01.2011	D5	11	1230	840	850	1077	1041	1261	1178	1102	
17.01.2011	D5	15	857	1570	1841	1855	2391	1339	1809	1397	
17.01.2011	D5	15	1409	2702	1429	1582	2102	1344	1753	1422	
17.01.2011	D5	15	1363	2121	1523	1923	2240	1177	1196	1712	

Tabell 3H: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av oktametylsyklotetrasiloksan (D4), oktametylsylopentasiloksan (D5) i 48 timer *in vitro*.
Dato	Stoff	Plate		Konsentrasjon (µg/l)							
			2	6	18	54	162	486	1458	4374	
14.01.2011	Sukralose	4	897	1111	936	1512	1402	1366	1221	1384	
14.01.2011	Sukralose	4	1470	1525	1427	1623	1400	1353	1342	1350	
14.01.2011	Sukralose	4	1220	1265	1324	2015	1505	1456	1313	1188	
15.01.2011	Sukralose	8	884	582	581	451	1020	702	608	586	
15.01.2011	Sukralose	8	898	558	471	493	738	495	535	630	
15.01.2011	Sukralose	8	746	700	494	541	710	514	474	587	
16.01.2011	Sukralose	12	1409	577	703	1113	879	978	978	922	
16.01.2011	Sukralose	12	1128	581	664	2115	1159	1351	1134	1676	
16.01.2011	Sukralose	12	1063	873	995	1189	1516	1516	1203	1048	
17.01.2011	Sukralose	16	1308	1684	1691	1531	1617	2072	1757	1585	
17.01.2011	Sukralose	16	1615	1425	1475	1617	1852	1710	1632	1552	
17.01.2011	Sukralose	16	1980	1819	1792	1571	1584	1537	1462	1755	

Tabell 3I: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose i 48 timer *in vitro*.

Dato	Stoff	Plate				Kor	nsentrasjon (µ	∖g/l)		
			0,1	0,5	2,5	12,5	62,5	312	1562	7812
14.01.2011	Akrylamid	4	1270	906	1430	1930	2149	1923	1573	1192
14.01.2011	Akrylamid	4	1112	1388	1129	1468	2174	1797	1283	1093
14.01.2011	Akrylamid	4	1746	1504	1836	2588	2201	1953	1531	1525
15.01.2011	Akrylamid	8	840	978	630	661	846	632	618	679
15.01.2011	Akrylamid	8	522	445	519	563	748	538	581	601
15.01.2011	Akrylamid	8	985	544	527	587	893	661	613	569
16.01.2011	Akrylamid	12	1738	1089	776	2268	1338	1867	792	1419
16.01.2011	Akrylamid	12	1289	1062	904	2131	1227	1820	1013	1816
16.01.2011	Akrylamid	12	841	674	890	972	752	1030	1762	1060
17.01.2011	Akrylamid	16	1239	1420	1949	1408	1040	1571	1635	1780
17.01.2011	Akrylamid	16	2270	1563	1984	1241	1151	1131	1686	1382
17.01.2011	Akrylamid	16	1685	1455	1666	1603	1450	1739	1686	1739

Tabell 3J: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid i 48 timer *in vitro*.

Dato	Plate				Konsentra	sjon (µM)			
		0,31	0,62	1,24	2,48	4,96	9,92	19,84	39,68
14.01.2011	1	1832	1714	1808	1231	1164	1071	967	845
14.01.2011	1	1536	1560	1571	1118	1097	1017	903	747
14.01.2011	1	1668	1680	1616	1135	1066	970	792	144
14.01.2011	2	1696	1620	1384	1148	1142	1109	1005	731
14.01.2011	2	1435	1595	1367	1137	1107	1085	976	842
14.01.2011	2	1425	1548	1497	1085	1050	1003	868	253
14.01.2011	3	1828	1745	1617	1144	1083	1028	964	915
14.01.2011	3	1863	1896	1762	1176	1124	1086	1012	928
14.01.2011	3	1666	1681	1555	1168	1144	1007	922	888
14.01.2011	4	1437	1388	1419	1104	1110	1029	953	766
14.01.2011	4	1761	1777	1615	1168	1149	1087	1012	957
14.01.2011	4	1997	1831	1795	1167	1163	1148	1074	972
15.01.2011	5	1261	1193	1248	1082	1035	1023	928	915
15.01.2011	5	1257	1172	1228	1048	1015	985	939	864
15.01.2011	5	1206	1183	1226	1044	1017	997	943	895
15.01.2011	6	1262	1419	1333	1061	1057	1021	895	831
15.01.2011	6	1198	1241	1245	1039	1039	994	937	911
15.01.2011	6	1217	1278	1295	1045	1054	1033	986	940
15.01.2011	7	1337	1337	1368	1078	1032	1016	773	128
15.01.2011	7	1324	1504	1362	1098	1081	1051	871	760
15.01.2011	7	1704	1286	1232	1055	1005	1011	895	868
15.01.2011	8	1235	1262	1226	1036	1051	989	858	813
15.01.2011	8	1650	1570	1384	1050	1102	937	756	656
15.01.2011	8	1284	1304	1252	1270	1034	1114	897	832
16.01.2011	9	1426	1397	1466	1171	1101	1076	1010	999
16.01.2011	9	1227	1283	1390	1116	1154	1117	1001	943
16.01.2011	9	1451	1548	1450	1099	1088	1062	964	865
16.01.2011	10	1266	1296	1304	1113	1066	1026	995	946
16.01.2011	10	1631	1438	1486	1146	1095	1096	961	922

Tabell 3K: Rådata metabolsk aktivitet (alamar blue fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av kobber i 48 timer *in vitro*.

16.01.2011	10	1269	1219	1287	1094	1061	980	941	912
16.01.2011	11	1412	1392	1388	1179	1101	1060	1004	843
16.01.2011	11	1499	1420	1360	1130	1140	1094	1065	991
16.01.2011	11	1688	1647	1593	1157	1139	1068	1039	782
16.01.2011	12	1425	1344	1391	1243	1146	1058	913	733
16.01.2011	12	1665	1446	1440	1204	1139	1091	1003	945
16.01.2011	12	1693	1383	1378	1168	1074	1040	983	905
17.01.2011	13	1245	1165	1191	1104	1072	1043	959	913
17.01.2011	13	1365	1230	1228	1063	1056	1016	1007	923
17.01.2011	13	1489	1300	1264	1118	1043	1014	887	72
17.01.2011	14	1191	1340	1295	1124	1111	1046	968	342
17.01.2011	14	1404	1341	1422	1102	1086	1031	949	858
17.01.2011	14	1274	1255	1331	1096	1056	1027	987	835
17.01.2011	15	1270	1246	1263	1099	1137	1028	967	946
17.01.2011	15	1486	1286	1395	1097	1138	1031	989	877
17.01.2011	15	1161	1153	1200	1064	1058	1040	973	925
17.01.2011	16	1370	1299	1307	1124	1072	1039	968	902
17.01.2011	16	1264	1272	1343	1082	1077	1006	953	869
17.01.2011	16	1274	1244	1318	1091	1027	1009	953	913

Dato	Plate				Konsentra	asjon (µM)			
		0,31	0,62	1,24	2,48	4,96	9,92	19,84	39,68
14.01.2011	1	995	1165	1109	92	62	49	23	29
14.01.2011	1	1381	1277	1598	77	53	39	29	19
14.01.2011	1	960	1176	1026	80	51	41	34	21
14.01.2011	2	1009	1201	905	60	44	46	35	30
14.01.2011	2	999	1005	708	61	46	47	30	23
14.01.2011	2	1551	1822	1444	63	49	36	28	9
14.01.2011	3	900	1329	1954	84	57	47	31	24
14.01.2011	3	1011	1421	835	87	52	32	32	23
14.01.2011	3	888	1401	1641	79	53	40	32	34
14.01.2011	4	1474	1277	1473	63	45	42	31	17
14.01.2011	4	994	1444	1281	73	48	42	28	29
14.01.2011	4	934	847	1440	77	56	38	31	27
15.01.2011	5	665	658	765	48	38	29	24	26
15.01.2011	5	799	446	802	52	37	30	22	23
15.01.2011	5	853	946	1170	57	43	37	24	27
15.01.2011	6	686	504	691	60	37	28	22	16
15.01.2011	6	713	623	1028	63	41	36	23	25
15.01.2011	6	779	806	909	47	42	43	28	15
15.01.2011	7	755	697	632	67	41	45	21	20
15.01.2011	7	630	624	511	64	41	37	34	22
15.01.2011	7	959	880	749	60	47	29	26	22
15.01.2011	8	1026	546	509	55	38	34	26	22
15.01.2011	8	481	564	514	66	50	37	28	22
15.01.2011	8	989	1019	1034	1472	46	72	29	16
16.01.2011	9	986	977	1248	87	70	63	53	42
16.01.2011	9	520	832	923	79	74	69	45	51
16.01.2011	9	1192	1641	1426	93	73	63	50	42
16.01.2011	10	976	778	659	94	71	60	52	34
16.01.2011	10	722	1314	1068	98	78	58	55	42

Tabell 3L: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av kobber i 48 timer *in vitro*.

16.01.2011	10	582	679	1112	93	64	53	47	40
16.01.2011	11	1162	1044	779	105	73	69	56	40
16.01.2011	11	1425	1036	1206	89	74	61	59	46
16.01.2011	11	1433	879	902	115	80	67	53	37
16.01.2011	12	1530	1117	1223	121	73	68	51	41
16.01.2011	12	914	1272	1421	115	64	65	56	43
16.01.2011	12	1570	1210	1572	119	66	68	76	52
17.01.2011	13	733	649	600	64	55	50	38	28
17.01.2011	13	537	676	884	72	50	53	40	22
17.01.2011	13	859	591	535	68	50	55	33	28
17.01.2011	14	692	951	717	94	64	49	39	25
17.01.2011	14	1023	1057	1143	93	71	57	31	26
17.01.2011	14	1049	1081	1453	84	64	61	40	24
17.01.2011	15	978	1245	917	78	64	55	37	33
17.01.2011	15	1058	1230	1035	93	61	55	36	34
17.01.2011	15	1000	805	1231	82	56	51	37	34
17.01.2011	16	1443	1454	1543	98	67	65	43	23
17.01.2011	16	1630	1537	1811	101	60	54	48	27
17.01.2011	16	1348	1400	1536	104	63	53	33	30

Dato	Plate	MQ 2 µl	DMSO 2 µl	Plate	DMSO 10 µl
14.01.2011	3	1239	1281	1	1612
14.01.2011	3	1260	836	1	1396
14.01.2011	3	1496	1055	1	1174
14.01.2011	3	1494	1174	1	1470
14.01.2011	3	1168	1395	1	1367
14.01.2011	3	1975	1370	1	1517
14.01.2011	4	668	700	2	1004
14.01.2011	4	1479	1178	2	1872
14.01.2011	4	1543	1259	2	1288
14.01.2011	4	597	639	2	999
14.01.2011	4	1135	1421	2	1989
14.01.2011	4	1523	1409	2	1116
15.01.2011	7	525	1065	5	824
15.01.2011	7	559	551	5	975
15.01.2011	7	955	881	5	624
15.01.2011	7	904	523	5	748
15.01.2011	7	621	647	5	903
15.01.2011	7	795	517	5	476
15.01.2011	8	536	772	6	661
15.01.2011	8	526	531	6	583
15.01.2011	8	592	940	6	563
15.01.2011	8	492	613	6	837
15.01.2011	8	729	693	6	732
15.01.2011	8	791	1079	6	481
16.01.2011	11	1064	1578	9	1035
16.01.2011	11	1148	1185	9	1584
16.01.2011	11	1123	971	9	1302

Tabell 3M: Rådata membranintegritet (CF-fluorescens) i coelomocytter fra vanlig korstroll (*Asterias rubens*) målt i kontroll (MQ eller DMSO i L-15 medium) data etter 48 timer *in vitro*.

16.01.2011	11	1274	1530	9	1277
16.01.2011	11	1298	1115	9	1710
16.01.2011	11	1294	1097	9	1692
16.01.2011	12	1018	1390	10	1471
16.01.2011	12	777	613	10	1108
16.01.2011	12	970	771	10	912
16.01.2011	12	1535	1513	10	1440
16.01.2011	12	926	1266	10	925
16.01.2011	12	920	1012	10	1091
17.01.2011	15	1215	1714	13	1296
17.01.2011	15	1498	1526	13	1371
17.01.2011	15	1363	2239	13	949
17.01.2011	15	1723	1650	13	1425
17.01.2011	15	1677	1633	13	1471
17.01.2011	15	1661	1599	13	1233
17.01.2011	16	1766	1703	14	790
17.01.2011	16	1670	1508	14	818
17.01.2011	16	1812	1536	14	615
17.01.2011	16	1446	1902	14	886
17.01.2011	16	1498	1583	14	954
17.01.2011	16	1355	1348	14	965

Dato	Stoff	Plate		Konsentrasjon					
			3,125	25	50	100	400		
14.01.2011	Atorvastatin syre	17	24	17	18	22	11		
14.01.2011	Atorvastatin syre	17	45	11	21	16	13		
14.01.2011	Atorvastatin syre	17	14	16	15	16	11		
14.01.2011	Atorvastatin syre	17	15	16	17	14	13		
15.01.2011	Atorvastatin syre	21	52	54	27	31	26		
15.01.2011	Atorvastatin syre	21	78	78	40	34	29		
15.01.2011	Atorvastatin syre	21	184	40	67	26	47		
15.01.2011	Atorvastatin syre	21	44	40	11	38	39		
16.01.2011	Atorvastatin syre	25	22	27	11	14	19		
16.01.2011	Atorvastatin syre	25	23	27	22	24	21		
16.01.2011	Atorvastatin syre	25	22	26	17	19	19		
16.01.2011	Atorvastatin syre	25	19	23	18	22	19		
17.01.2011	Atorvastatin syre	29	21	21	23	29	19		
17.01.2011	Atorvastatin syre	29	39	26	25	22	25		
17.01.2011	Atorvastatin syre	29	26	22	33	21	22		
17.01.2011	Atorvastatin syre	29	19	14	19	24	9		
14.01.2011	Atorvastatin lakton	17	11	14	13	9	19		
14.01.2011	Atorvastatin lakton	17	14	19	21	17	36		
14.01.2011	Atorvastatin lakton	17	15	18	15	12	22		
14.01.2011	Atorvastatin lakton	17	17	18	27	14	8		
15.01.2011	Atorvastatin lakton	21	35	48	20	30	23		
15.01.2011	Atorvastatin lakton	21	33	37	26	36	20		
15.01.2011	Atorvastatin lakton	21	28	27	14	12	18		
15.01.2011	Atorvastatin lakton	21	20	19	12	18	29		
16.01.2011	Atorvastatin lakton	25	17	20	14	26	19		

Tabell 3N: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av statiner i 48 timer *vitro*.

16.01.2011	Atorvastatin lakton	25	20	25	19	25	21
16.01.2011	Atorvastatin lakton	25	19	21	23	18	18
16.01.2011	Atorvastatin lakton	25	17	12	19	11	12
17.01.2011	Atorvastatin lakton	29	21	16	16	12	44
17.01.2011	Atorvastatin lakton	29	16	11	17	17	17
17.01.2011	Atorvastatin lakton	29	18	12	21	17	47
17.01.2011	Atorvastatin lakton	29	15	19	17	15	31
14.01.2011	Simvastatin syre	18	19	16	19	11	13
14.01.2011	Simvastatin syre	18	18	15	21	21	13
14.01.2011	Simvastatin syre	18	21	18	21	21	9
14.01.2011	Simvastatin syre	18	14	24	33	17	13
15.01.2011	Simvastatin syre	19	26	49	34	20	16
15.01.2011	Simvastatin syre	19	19	26	16	17	13
15.01.2011	Simvastatin syre	19	24	47	24	18	22
15.01.2011	Simvastatin syre	19	53	22	24	15	11
16.01.2011	Simvastatin syre	20	16	17	18	21	17
16.01.2011	Simvastatin syre	20	15	19	22	33	16
16.01.2011	Simvastatin syre	20	29	21	24	17	8
16.01.2011	Simvastatin syre	20	24	25	23	17	12
17.01.2011	Simvastatin syre	21	15	13	25	31	16
17.01.2011	Simvastatin syre	21	16	20	19	17	13
17.01.2011	Simvastatin syre	21	18	17	20	17	19
17.01.2011	Simvastatin syre	21	14	21	12	15	13
14.01.2011	simvastatin lakton	18	20	10	14	36	41
14.01.2011	simvastatin lakton	18	21	18	11	23	38
14.01.2011	simvastatin lakton	18	27	13	12	25	44
14.01.2011	simvastatin lakton	18	15	9	28	28	64
15.01.2011	simvastatin lakton	19	20	12	21	19	31
15.01.2011	simvastatin lakton	19	32	47	17	15	21

15.01.2011	simvastatin lakton	19	18	22	29	13	27
15.01.2011	simvastatin lakton	19	14	15	8	27	27
16.01.2011	simvastatin lakton	20	22	15	9	20	96
16.01.2011	simvastatin lakton	20	18	19	5	15	81
16.01.2011	simvastatin lakton	20	17	23	13	20	86
16.01.2011	simvastatin lakton	20	13	11	9	15	116
17.01.2011	simvastatin lakton	21	30	18	16	18	23
17.01.2011	simvastatin lakton	21	32	24	17	24	17
17.01.2011	simvastatin lakton	21	38	24	13	18	44
17.01.2011	simvastatin lakton	21	21	18	15	14	27

Dato	Stoff	Plate		Konsentrasjon						
			0,03	1,92	7,68	30,7	491			
14.01.2011	D4	19	23	14	30	19	56			
14.01.2011	D4	19	16	18	19	27	13			
14.01.2011	D4	19	21	14	16	19	14			
14.01.2011	D4	19	16	21	15	15	10			
15.01.2011	D4	23	34	44	35	26	15			
15.01.2011	D4	23	26	63	9	41	43			
15.01.2011	D4	23	21	39	16	50	45			
15.01.2011	D4	23	31	32	19	55	28			
16.01.2011	D4	27	19	14	12	18	17			
16.01.2011	D4	27	17	11	17	16	21			
16.01.2011	D4	27	25	13	24	11	15			
16.01.2011	D4	27	12	14	12	15	23			
17.01.2011	D4	31	20	17	14	23	28			
17.01.2011	D4	31	18	20	15	25	26			
17.01.2011	D4	31	13	12	23	18	24			
17.01.2011	D4	31	21	28	21	16	26			
14.01.2011	D5	19	15	11	46	17	18			
14.01.2011	D5	19	53	19	25	14	14			
14.01.2011	D5	19	16	14	11	8	25			
14.01.2011	D5	19	8	8	26	12	18			
15.01.2011	D5	23	33	12	23	38	18			
15.01.2011	D5	23	38	18	29	33	26			
15.01.2011	D5	23	22	6	27	40	84			
15.01.2011	D5	23	40	10	27	29	18			
16.01.2011	D5	27	19	22	10	20	20			

Tabell 3O: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av oktametylsyklotetrasiloksan (D4), oktametylsylopentasiloksan (D5) i 48 timer *in vitro*.

16.01.2011	D5	27	21	16	18	23	25
16.01.2011	D5	27	31	33	13	17	14
16.01.2011	D5	27	16	21	16	20	9
17.01.2011	D5	31	15	35	30	21	20
17.01.2011	D5	31	26	16	21	21	46
17.01.2011	D5	31	23	20	33	18	17
17.01.2011	D5	31	25	23	42	16	17

Dato	Stoff	Plate			Konsentrasjon		
			2	54	162	486	4374
14.01.2011	Sukralose	20	16	21	22	13	15
14.01.2011	Sukralose	20	31	20	10	17	11
14.01.2011	Sukralose	20	32	28	54	34	41
14.01.2011	Sukralose	20	37	18	17	71	16
15.01.2011	Sukralose	24	34	30	48	27	22
15.01.2011	Sukralose	24	52	28	18	10	16
15.01.2011	Sukralose	24	50	21	31	38	20
15.01.2011	Sukralose	24	37	21	42	29	23
16.01.2011	Sukralose	28	20	19	12	20	17
16.01.2011	Sukralose	28	27	16	20	12	23
16.01.2011	Sukralose	28	11	13	18	21	36
16.01.2011	Sukralose	28	13	18	22	12	32
17.01.2011	Sukralose	32	22	12	20	12	16
17.01.2011	Sukralose	32	16	14	16	20	21
17.01.2011	Sukralose	32	13	10	14	13	27
17.01.2011	Sukralose	32	18	13	8	11	14

Tabell 3P: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose i 48 timer *in vitro*.

Dato	Stoff	Plate			Konsentrasjon		
			0,1	12,5	62,5	312	7812
14.01.2011	Akrylamid	20	20	15	21	26	24
14.01.2011	Akrylamid	20	27	17	14	13	21
14.01.2011	Akrylamid	20	28	57	26	29	28
14.01.2011	Akrylamid	20	12	18	18	13	31
15.01.2011	Akrylamid	24	30	31	24	28	22
15.01.2011	Akrylamid	24	30	28	29	22	31
15.01.2011	Akrylamid	24	33	35	39	27	25
15.01.2011	Akrylamid	24	157	31	24	60	29
16.01.2011	Akrylamid	28	20	24	18	19	21
16.01.2011	Akrylamid	28	27	19	13	18	19
16.01.2011	Akrylamid	28	25	18	18	20	16
16.01.2011	Akrylamid	28	19	25	10	12	14
17.01.2011	Akrylamid	32	14	17	20	12	17
17.01.2011	Akrylamid	32	12	17	15	18	13
17.01.2011	Akrylamid	32	20	18	12	6	21
17.01.2011	Akrylamid	32	19	19	9	24	9

Tabell 3Q: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid i 48 timer *in vitro*.

Dato	Stoff	Plate		Konsentrasjon					
			3,125	25	50	100	400		
14.01.2011	Atorvastatin syre	17	17	8	10	15	4		
14.01.2011	Atorvastatin syre	17	20	19	8	16	7		
14.01.2011	Atorvastatin syre	17	23	18	12	15	16		
14.01.2011	Atorvastatin syre	17	18	20	28	17	16		
15.01.2011	Atorvastatin syre	21	15	21	9	12	15		
15.01.2011	Atorvastatin syre	21	16	47	18	11	15		
15.01.2011	Atorvastatin syre	21	40	36	20	84	19		
15.01.2011	Atorvastatin syre	21	22	25	32	37	16		
16.01.2011	Atorvastatin syre	25	12	6	11	5	14		
16.01.2011	Atorvastatin syre	25	18	14	16	13	22		
16.01.2011	Atorvastatin syre	25	24	15	15	11	20		
16.01.2011	Atorvastatin syre	25	14	24	22	14	19		
17.01.2011	Atorvastatin syre	29	13	11	11	9	13		
17.01.2011	Atorvastatin syre	29	25	12	24	22	19		
17.01.2011	Atorvastatin syre	29	32	26	22	17	22		
17.01.2011	Atorvastatin syre	29	25	20	19	23	18		
14.01.2011	Atorvastatin lakton	17	8	13	15	25	11		
14.01.2011	Atorvastatin lakton	17	18	7	21	13	19		
14.01.2011	Atorvastatin lakton	17	13	7	6	14	9		
14.01.2011	Atorvastatin lakton	17	10	27	28	13	45		
15.01.2011	Atorvastatin lakton	21	10	14	17	6	10		
15.01.2011	Atorvastatin lakton	21	16	83	23	12	10		
15.01.2011	Atorvastatin lakton	21	24	23	16	12	11		
15.01.2011	Atorvastatin lakton	21	25	14	33	14	11		
16.01.2011	Atorvastatin lakton	25	14	15	7	13	20		

Tabell 3R: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av statiner i 48 timer og inkubering med MK 571 *in vitro*.

16.01.2011	Atorvastatin lakton	25	23	16	19	23	22
16.01.2011	Atorvastatin lakton	25	19	17	19	18	22
16.01.2011	Atorvastatin lakton	25	19	22	20	28	18
17.01.2011	Atorvastatin lakton	29	13	17	17	9	10
17.01.2011	Atorvastatin lakton	29	18	17	20	19	14
17.01.2011	Atorvastatin lakton	29	18	13	20	13	14
17.01.2011	Atorvastatin lakton	29	14	14	21	29	12
14.01.2011	Simvastatin syre	18	18	12	9	27	5
14.01.2011	Simvastatin syre	18	9	12	9	16	14
14.01.2011	Simvastatin syre	18	12	20	15	20	13
14.01.2011	Simvastatin syre	18	11	13	18	22	14
15.01.2011	Simvastatin syre	19	7	4	19	27	7
15.01.2011	Simvastatin syre	19	21	15	22	15	8
15.01.2011	Simvastatin syre	19	19	13	19	15	22
15.01.2011	Simvastatin syre	19	28	17	17	22	10
16.01.2011	Simvastatin syre	20	6	10	15	31	18
16.01.2011	Simvastatin syre	20	12	17	15	18	15
16.01.2011	Simvastatin syre	20	18	17	21	20	20
16.01.2011	Simvastatin syre	20	20	24	12	16	13
17.01.2011	Simvastatin syre	21	9	16	18	22	15
17.01.2011	Simvastatin syre	21	14	22	25	25	14
17.01.2011	Simvastatin syre	21	21	16	24	21	18
17.01.2011	Simvastatin syre	21	16	19	17	13	15
14.01.2011	simvastatin lakton	18	8	17	11	9	45
14.01.2011	simvastatin lakton	18	9	12	5	5	32
14.01.2011	simvastatin lakton	18	30	4	13	30	27
14.01.2011	simvastatin lakton	18	6	2	8	13	43
15.01.2011	simvastatin lakton	19	15	9	16	13	35
15.01.2011	simvastatin lakton	19	20	11	17	12	30

15.01.2011	simvastatin lakton	19	16	11	4	13	24
15.01.2011	simvastatin lakton	19	19	22	16	17	42
16.01.2011	simvastatin lakton	20	15	11	16	6	118
16.01.2011	simvastatin lakton	20	19	10	10	6	73
16.01.2011	simvastatin lakton	20	17	10	9	19	39
16.01.2011	simvastatin lakton	20	25	10	11	18	72
17.01.2011	simvastatin lakton	21	27	9	12	17	23
17.01.2011	simvastatin lakton	21	21	15	16	11	24
17.01.2011	simvastatin lakton	21	26	17	14	6	18
17.01.2011	simvastatin lakton	21	9	18	17	13	35

Dato	Stoff	Plate			Konsentrasjon		
			0,03	1,92	7,68	30,7	491
14.01.2011	D4	19	16	11	26	12	36
14.01.2011	D4	19	8	15	12	9	11
14.01.2011	D4	19	6	18	19	24	10
14.01.2011	D4	19	25	21	25	18	18
15.01.2011	D4	23	26	23	15	30	23
15.01.2011	D4	23	35	33	40	20	16
15.01.2011	D4	23	43	15	36	26	36
15.01.2011	D4	23	15	46	15	36	27
16.01.2011	D4	27	12	13	14	15	13
16.01.2011	D4	27	18	22	16	24	16
16.01.2011	D4	27	21	20	24	21	18
16.01.2011	D4	27	18	16	19	19	20
17.01.2011	D4	31	2	8	9	8	5
17.01.2011	D4	31	8	13	15	20	17
17.01.2011	D4	31	17	20	20	25	21
17.01.2011	D4	31	18	17	11	23	19
14.01.2011	D5	19	13	11	9	11	14
14.01.2011	D5	19	12	21	7	12	12
14.01.2011	D5	19	14	26	28	13	26
14.01.2011	D5	19	18	27	14	30	17
15.01.2011	D5	23	32	18	22	16	7
15.01.2011	D5	23	41	12	30	20	90
15.01.2011	D5	23	22	14	21	30	16
15.01.2011	D5	23	28	18	27	35	19

Tabell 3S: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av oktametylsyklotetrasiloksan (D4), oktametylsylopentasiloksan (D5) i 48 timer og inkubering med MK 571 *in vitro*.

16.01.2011	D5	27	17	22	17	11	24
16.01.2011	D5	27	38	23	19	15	44
16.01.2011	D5	27	18	31	10	13	34
16.01.2011	D5	27	19	14	16	20	26
17.01.2011	D5	31	13	13	15	12	18
17.01.2011	D5	31	17	27	16	9	12
17.01.2011	D5	31	23	33	19	17	18
17.01.2011	D5	31	33	32	25	22	20

Dato	Stoff	Plate			Konsentrasjon		
			2	54	162	486	4374
14.01.2011	Sukralose	20	13	9	13	10	13
14.01.2011	Sukralose	20	14	19	22	10	9
14.01.2011	Sukralose	20	27	10	17	70	14
14.01.2011	Sukralose	20	15	19	22	17	14
15.01.2011	Sukralose	24	14	9	23	14	17
15.01.2011	Sukralose	24	24	24	19	14	16
15.01.2011	Sukralose	24	25	25	46	24	10
15.01.2011	Sukralose	24	59	54	35	21	11
16.01.2011	Sukralose	28	13	3	17	13	35
16.01.2011	Sukralose	28	16	16	14	12	12
16.01.2011	Sukralose	28	21	18	15	12	20
16.01.2011	Sukralose	28	18	16	16	16	35
17.01.2011	Sukralose	32	5	8	8	7	8
17.01.2011	Sukralose	32	12	7	1	15	13
17.01.2011	Sukralose	32	14	17	12	14	19
17.01.2011	Sukralose	32	11	19	17	13	9

Tabell 3T: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av sukralose i 48 timer og inkubering med MK 571 *in vitro*.

Dato	Stoff	Plate			Konsentrasjon		
			0,1	12,5	62,5	312	7812
14.01.2011	Akrylamid	20	16	5	11	10	4
14.01.2011	Akrylamid	20	15	7	19	18	23
14.01.2011	Akrylamid	20	16	17	20	14	11
14.01.2011	Akrylamid	20	19	18	33	16	26
15.01.2011	Akrylamid	24	21	10	9	17	12
15.01.2011	Akrylamid	24	29	21	22	13	20
15.01.2011	Akrylamid	24	28	21	20	19	23
15.01.2011	Akrylamid	24	29	29	19	34	32
16.01.2011	Akrylamid	28	13	6	4	11	7
16.01.2011	Akrylamid	28	19	18	9	15	26
16.01.2011	Akrylamid	28	13	22	14	15	22
16.01.2011	Akrylamid	28	17	21	15	18	16
17.01.2011	Akrylamid	32	6	9	14	10	11
17.01.2011	Akrylamid	32	9	29	11	14	15
17.01.2011	Akrylamid	32	11	23	10	13	15
17.01.2011	Akrylamid	32	15	14	14	10	24

Tabell 3U: Rådata rhodamin B-akkumulering i coelomocytter fra vanlig korstroll (*Asterias rubens*) etter eksponering for ulike konsentrasjoner av akrylamid i 48 timer og inkubering med MK 571 *in vitro*.