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Sammendrag 
 

Dette studiet er gjort for å undersøke cytotoksiske og inflammatoriske effekter av 

mykotoksinet, enniatin B (EnnB) på makrofager av museopphav (RAW 264.7 celler). EnnB 

produseres av forskjellige stammer av muggsoppen Fusarium og finnes som en hyppig 

forekommende kontaminant i kornblandinger som benyttes til mat for mennesker og dyr. For 

dette studiet er EnnB produsert fra F. avenaceum-kulturer benyttet. De cytotoksiske 

egenskapene til EnnB skyldes mest trolig evnen til å danne porer for transport av kationer i 

biologiske lipidmembraner. Undersøkelser er gjort i forhold til karakterisering av celledød, 

påvirkning av celleproliferasjon og produksjon av cytokiner (betennelsesmarkører) utløst av 

ulike nivåer mykotoksin.  

 

Resultatene viser at EnnB eksponering fører til en opphopning eller arrest av celler i G1-fasen 

av cellesyklus, dette ble undersøkt ved bruk av flow cytometri og ved analyse av 

cellesyklusrelaterte proteiner ved Western blotting. Bruk av fluorescence mikroskop viste at 

celler eksponert for EnnB får morfologiske trekk assosiert med apoptose, i tillegg ble skader 

på lysosomene observert ved bruk av elektron mikroskop. Videre vises en oppregulering av 

aktivert caspase-1 og i celler preinkubert med lipopolysakkarid (LPS) etterfulg av EnnB 

eksponering ble det målt høye verdier av interleukin-1 beta (IL-1β) ved bruk av ELISA. Ved å 

benytte en caspase-1 spesifikk hemmer ble denne utskillelsen av cytokiner redusert. På 

bakgrunn av disse resultatene antar vi at EnnB fører til en aktivering av et proteinkompleks, 

inflammasomet, etterfulgt av caspase-1 aktivering og utskillelse av IL-1β.  
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Aims of study 
 

The aim of this study was to characterize the effects of Enniatin B on the murine macrophage 

cells line, RAW 264.7. In order to better understand the mechanism of cytotoxicity several 

different assays have been used to investigate: 

 

- Cell death and cell proliferation 

- DNA damage response (DDR) 

- Cell cycle regulation 

- Production of cytokines 

 

This master thesis is a part of a project funded by the Norwegian Research Council, Toxicological 

characterization of selected secondary fungal metabolites in Norwegian grain (grant number 

185622), which is managed by Gunnar Sundstøl Eriksen. The project was started in 2008 and 

some preliminary work had been done before I started working with the thesis. This work include 

the TUNEL assay (fig. 4D and 4E) and the alkaline comet assay (fig. 8A and 8B), both done by 

Dr. Anita Solhaug. In addition, the GM1 Immunofluorescence assay (fig. 9A and 9B), and 

electron microsocopy pictures (fig. 10A and 10B) done by Béatrice Dendelé, Dr. Dominique 

Lagadic-Gossmann, Inserm U620, Université Rennes  and Dr. Anita Solhaug. 
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Abbreviations 
 

ATM, Ataxia telangiectasia mutated; 

ATR, Ataxia telangiectasia and Rad3-related protein; 

CDK, Cyclin dependent kinase; 

CDKI, Cyclin dependent kinase inhibitor;  

Chk, Checkpoint kinase; 

DAMP, Danger associated molecular patterns; 

EnnB, Enniatin B; 

IL-1β, Interleukin-1 beta; 

LPS, Lipopolysaccharide;  

PAMP, Pathogen associated molecular pattern;  

PRR, Pattern recognition receptor; 
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Background 
 

1.1 Mycotoxins 

 

Mycotoxins are secondary metabolites produced under appropriate environmental conditions by 

filamentous fungi, mainly Aspergillus spp., Penicillum spp., and Fusarium spp. Mycotoxins are 

common contaminants of grains like wheat, barley, maize, and rice, and they can evoke a broad 

range of toxic effects, including carcinogenicity, neurotoxicity, as well as reproductive and 

developmental toxicity. Mycotoxins are also found in the soil and indoor environments, 

especially water-damaged buildings provide excellent growth conditions for several mold species 

[1,2]. For these reasons, mycotoxins pose a health risk to both humans and animals. The total 

number of potential toxic metabolites of fungi has been estimated to be in the thousands [6]. 

 

Annual economical losses are caused by mycotoxins all over the world, in the grain trade and to 

the marketing of foods and feeds. In the US losses in wheat and barley attributable to the 

Fusarium-mycotoxins have been estimated to about 2900 million dollars each year [7]. In 

addition, there are financial losses due to decreased productivity of farm animals [8]. 

 

The most common mycotoxin producing fungi in the northern temperate regions are Fusarium 

spp. The genus Fusarium includes several species, which are pathogens of maize and small 

grains, causing stem and ear rot with severe crop yield reduction. In addition to their patogenicity, 

some Fusarium strains are also capable of producing mycotoxins, which can accumulate either 

preharvest or in stored grains [9]. Mycotoxins produced by Fusarium spp., include trichothecenes 

and zearalenone, and the emerging mycotoxins fusaproliferin, beauvericin, enniatins, and 

moniliformin. In the Nordic countries the most prevalent Fusarium species, F. avenaceum, is 

known to produce emerging mycotoxins like beauvericin, enniatins, and moniliformin [10]. 
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1.2 Cell death 

 

In order to accurately classify different forms of cell death, various characteristics may be used; 

morphological appearance (which may be apoptotic, necrotic, autophagic, or associated with 

mitosis); enzymatic criteria (with and without involvement of nucleases or distinct classes of 

proteases, such as caspases, calpains, cathepsins, and transglutaminases); functional aspects 

(programmed or accidental, physiological or pathological); or immunological characteristics 

(immunogenic or non-immunogenic) [11]. Based on criteria formulated by the Nomenclature 

Committee on Cell Death (NCCD) any of the following features should be observed in cells 

classified as dead: (I) the loss of plasma membrane (PM) integrity, defined by uptake of vital 

dyes (.i.e. PI) in vitro; (II) complete cellular fragmentation into apoptotic bodies; or (III) in vivo, 

engulfment by an adjacent cells [12]. Described below is apoptotic, necrotic, and autophagic cell 

death, which are morphological distinctive forms of cell death  

 

Apoptosis.  Apoptosis is a form of cell death was first termed by Kerr et al. [13], apoptosis and 

programmed cell death (PCD) is not synonymous because PCD occurring in the physiological 

development can have non-apoptotic features [14]. It has been estimated that ~100 000 cells are 

produced every second through mitosis, and about the same number die every second by 

apoptosis in a human being [15]. Apoptosis is therefore essential in maintaining homeostasis in 

multicellular organisms. During development, apoptosis is an active form of cell death which is 

genetically timed [16]. 

 

Apoptosis is accompanied by rounding-up of the cell, retraction of pseudopodes, reduction of 

cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), little 

or no ultrastructural modifications of cytoplasmic organelles, blebbing of the PM (PM integrity 

maintained until the final stages of the apoptotic process), and engulfment by nearby phagocytes 

(in vivo) [12]. 

 

Both external stimuli, such as cell death ligands released during inflammation, and intrinsic 

stimuli, caused by alteration of cellular function and metabolism can trigger apoptosis. Generally, 

the cellular membrane of apoptotic cells remains intact and the process causes less inflammation 

than, i.e. necrosis [17]. 
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Apoptosis is executed by involvement of several enzymes activated through signalling pathways. 

Proteolytic activation of caspases (cystein aspartyl-specific proteases) is a typical biochemical 

feature of apoptosis [18]. Caspases are a family of proteases and are synthesized as proenzymes, 

which are activated by proteolytic cleavage or by interactions with an allosteric activator. The 

caspases involved in execution of apoptosis may be divided into initiator caspases (caspase-2, -8, 

-9, -10) and effector caspases (caspase-3, -6, -7) [19].  

 

Caspase activation can be carried out by either the extrinsic (death-receptor mediated) or the 

intrinsic (mitochondria mediated) pathway [16]. The extrinsic pathway is triggered by binding of 

cell surface receptors and the ligands, such as tumor necrosis factor (TNF) or Fas ligand (FasL). 

The death receptors mediate apoptotic signals through death domains and death effectors domain 

modular protein motifs. Activated death receptor induces formation of the death-inducing 

signalling complex (DISC), which activates multiple procaspase-8 molecules through the adaptor 

molecule Fas-associated death domain protein [20]. Further, activated caspase-3 triggers enzymes 

responsible for apoptosis, which result in phosphatidylserine externalization, nuclear 

condensation, and DNA fragmentation [21]. 

 

The intrinsic apoptotic pathway is triggered in response to intracellular stress, such as cytokine 

deprivation, ionizing radiation, and chemotherapeutics [21]. This pathway is characterized by 

permeabilization of the outer mitochondrial membrane, and is regulated by the B cell lymphoma 

(Bcl)-2 family of proteins [20]. The permeabilization of the outer mitochondrial membrane leads 

to apoptosis either through release of mitochondrial molecules, such as cytochrome c, or as a 

result of lost mitochondrial function [22]. Cytosolic cytochrome complexes with apoptosis 

protein factor-1 (APAF-1) and caspase-9, in a complex called the apoptosome, resulting in 

activation of caspase-9 and caspase-3 [20]. The mitochondria are also involved in caspase 

independent cell death, in which apoptose-inducing factor (AIF) and endonuclease G are major 

players [23]. 

 

Recently, another form of cell death, pyroptosis, has been characterized. This novel form of cell 

death is induced by infection with Salmonella and Shigella species [24]. Pyroptotic cell death is 

caspase-1 dependent and involved in activation of a multiprotein complex called the 

inflammasome, which results in release of inflammatory cytokines [25]. Macrohages undergoing 

pyroptosis are described to exhibit some features typical of apoptosis and some traits associated 

with nerotic cell death [26]. 
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Necrosis. A necrotic cell death is morphologically characterized by gain in cell volume (oncosis), 

swelling of organelles, plasma membrane rupture followed by loss of intracellular contents. 

Necrosis is by Kroemer and Martin [21] regarded as an accidental cell death, and occurs when 

cells are exposed to high concentrations of detergents, oxidants, ionophores, or severe 

pathological insults [17]. Processes implicated to be involved in necrotic cell death are 

mitochondrial alterations (uncoupling, production of reactive oxygen species (ROS), and 

mitochondrial membrane permeabilization), lysosomal changes (ROS production, lysosomal 

membrane permeabilization), nuclear changes, lipid degradation, and increase in the cytosilic 

Ca2+ concentration resulting in mitochondrial overload and activation of non-caspase proteases 

(calpains and cathepsins) [12]. In absence of common biochemical features, necrotic cell death is 

mostly identified in negative terms by absence of apoptotic or autophagic markers [12]. 

 

Autophagy and autophagic cell death. There is a difference between the process of autophagy 

and an autophagic cell death. Autophagy is essential for the removal of damaged organelles and 

long-lived cytosolic macromolecules to maintain energy homeostasis, and hence cell survival, 

during starving conditions. However, when excessive, autophagy results in autophagic cell death 

[27]. 

 

An autophagic cell death is morphologically defined (by transmission electron microscopy) as a 

type of cell death that occurs in the absence of chromatin condensation, and is accompanied by 

massive autophagic vacuolization of the cytoplasm [28]. Cytoplasmic material is sequestered 

within autophagosomes for degradation by the lysosomes, and the following fusion between 

autophagosomes and lysosomes.  

 

Autophagy can be triggered in infected host cells, presumably as a host defence mechanism for 

eliminating the pathogen without disposing of the entire cell [29].  

 

Different pathways of cell death are shown in Figure 1. 
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Figure 1. Pathways leading to cell death. Shown are the different forms of cell death initiated by death 
stimuli, apoptosis, autophagy, and necrosis. The caspase-1 dependent pyroptotic cell death is also shown. As 
the figure indicates, other undescribed pathways may also exist  [4]. 
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1.3 DNA-damage response (DDR) 
 

DNA damage may arise from errors during the process of DNA replication, as well as through 

genotoxic stress from reactive cellular metabolites and exogenous stimuli, i.e. ionising radiation, 

ultraviolet light, or cigarette smoke [30]. In response to DNA damage cells will respond by 

activating DNA repair and DNA damage signalling pathways [31]. Different types of DNA 

damage trigger different damage responses through activation of specific protein kinases [32]. 

The kinase ATM (ataxia-telangiectasia mutated) is a major sensor of double-strand (ds) DNA 

breaks and larger chromatin alterations. ATR (ATM and Rad3-related) is the main sensor of 

single-strand (ss) DNA breaks and is activated most strongly by stalled replication forks [33].  

ATM and ATR initiate cell cycle arrest by activating specific checkpoint kinases (Chk), Chk2 

and Chk1, respectively, allowing time for DNA repair. ATM and ATR may also phosphorylate 

the tumor suppressor p53 directly or indirectly through Chk1/2. Phosphorylation of p53 by 

Chk1/Chk2 is followed by p53 translocation from cytosol to the nucleus. Nuclear p53 promotes 

the transcription of cell cycle arresting genes, allowing for DNA repair, and or transcription of 

pro-apototic genes [19]. The tumor suppressor protein p21 (Waf1/Cip)1 (p21) is one such protein, 

and it acts as an inhibitor of cell cycle progression. This protein is associated with G1-arrest in the 

cell cycle [34], and phosphorylated p53 upregulates p21 transcription via a p53 responsive 

element [35]. 
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Figure 2. The stages of the cell cycle. Shown are the activity sites of cyclins and cyclin dependent kinases 
(CKDs)  [3]. 
 
 

1.4 Cell cycle and cell cycle regulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cell division consists of two consecutive processes, the replication of DNA and segregation of 

replicated chromosomes into two separate cells. Originally, cell division was divided into two 

stages: the mitosis (M), which is the process of nuclear division and the interphase, the interlude 

between two M phases (Figure 2). The mitosis includes the stages prophase, metaphase, 

anaphase and telophase, where the interphase includes the G1, S, and G2 phases [36] [3]. The G1 

phase, where the cell is preparing for DNA synthesis is followed by the S phase in which the 

actual DNA replication occurs. In the G2 phase the cell is preparing for mitosis. Cells can in G1, 

before commitment to DNA replication, enter a resting state called G0. In humans, cells in G0 

accounts for the major part of the non-growing and non-proliferating cells [3]. 

 

The progression of cells through the cell cycle is regulated by different cyclin and cyclin-

dependent kinase (CDK) complexes. Nine different CDKs have been identified, with five of these 

active during the cell cycle; G1 (CDK4 and CDK6), S (CDK2), G2 and M (CDK1) [3]. The levels 
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of CDK proteins remain stable during the cell cycle, while the levels of most cyclins rise and fall 

as they are periodically activated [37]. The D-type cyclins (D1, D2, and D3) bind to CDK4 and 

CDK6 and are essential for entry in G1. In contrast to the other cyclins, the D-type is not 

expressed periodically, but is synthesized as long as growth factor stimulation persists [38]. 

Cyclin E, another G1 cyclin, associates with CDK2 to regulate progression from G1 into the S 

phase [39], while binding of cyclin A with CDK2 is required for S phase progression [40]. In late 

G2 and early M, cyclin A complex with CDK1 to promote entry into M. The mitosis (M) is then 

further regulated by cyclin B in complex with CDK1 [41].  

 

The activity of CDKs can be counteracted by cell cycle inhibitory proteins, called CDK inhibitors 

(CDKI). The CDKIs bind to CDKs alone or to the CDK-cyclin complex and regulate CDK 

activity. Two distinct families of CDKIs have been identified, namely the INK4 family and the 

Cip/Kip family [42]. The INK4 family consists of p15 (INK4b), p16 (INK4a), p18 (INK4c), p19 

(INK4d), which inactivate CDK4 and CDK6 of G1. The second family of inhibitors, the Cip/Kip 

family, includes p21 (Waf1/Cip1), p27 (Kip1), and p57 (Kip2), which inhbit CDK2 of G1, and to 

a lesser extent, CDK1-cyclin B complexes [43]. In addition, p21 also inhibits DNA synthesis by 

binding to and inhibiting the proliferating cell nuclear antigen (PCNA) [44].    
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1.5 Inflammatory response and the NLRP3 inflammasome 
 
 
In correlation with Matzingers’s “danger hypothesis”, proposed for adaptive immune responses 

[45], emerging literature suggest that innate immunity serves as a system for sensing signals of 

“danger”, such as pathogenic microbes or host-derived signals of cellular stress, while remaining 

unresponsive to non-dangerous motifs, such as normal host molecules, dietary antigens, or 

commensal gut flora [5]. Innate immunity has a wide range of germline-encoded pattern 

recognition receptors (PRRs) in order to detect invariant microbial motifs. PRRs are expressed by 

cells at the front line of defence against infection, consisting of macrophages, monocytes, 

dendritic cells, neutrophils, and epithelial cells, as well as cells of the adaptive immune system. 

The PRRs include the transmembrane associated Toll-like receptors (TLRs) [46], the C-type 

lectin receptors (CLRs) [47], the RIG-like helicases (RLHs) [48], cytosolic DNA sensors (DAI 

and AIM2) [49,50], and members of the NOD-like receptor (NLR) family [51]. The individual 

PRRs recognize products and elements of all the major microbial pathogens; bacteria, viruses, 

yeast, and parasites. In addition, the PRRs are able to sense endogenous products, or danger 

associated molecular patterns (DAMPs) that are released from damaged or dying cells [52]. 

Examples of DAMPs are nucleic acids, ATP, and uric acid crystals, which trigger many of the 

same responses that are induced upon detection of microbes during innate immunity [52]. 

However, these responses are detrimental to the host, often contributing to inflammation.  

 

The NLRs, which are cytosolic sensors, are characterized by the presence of a nucleotide-binding 

oligomerization (NACHT) domain, which is commonly flanked by C-terminal leucine-rich 

repeats (LRRs) and a N-terminal caspase recruitment domain (CARD or a pyrin domain 

(PYD).The NLRP3 inflammasome, which is the currently most characterized inflammasome, 

consists of the NLRP3 scaffold, the apoptotic speck protein containing a C-terminal caspase 

recruitment domain (ASC), and caspase-1. Other inflammasomes are made up of similar 

constituents (Figure 3) [5].  
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Figure 3. Constituents of unoligomerized 
inflammasomes. Processing of the caspase-1 by 
autocleavage at the sites indicated (black arrows), results 
in formation of the active caspase-1 p10/p20 tetramer. 
Domains: CARD, caspase recruitment domain; FIIND, 
domain with function to find; HIN, HIN-200/IF120x 
domain; LRR, leucine rich-repeat domain; NACHT, 
nucleotide-binding and oligomerization domain; PYD, 
pyrin domain [5]. 
 

Figure 4. NLRP3 inflammasome activation. Three major 
models of inflammasome activation: (1) The NLRP3 
agonist, ATP, triggers P2X7-dependent pore formation by 
the pannexin-1 hemichannel, allowing extracellular 
NLRP3 agonists to enter the cytosol and directly engage 
NLRP3. (2) Crystalline or particulate NLRP3 agonists are 
engulfed, and their physical characteristics lead to 
lysosomal rupture. The NLRP3 inflammasome senses 
lysosomal content in the cytoplasm, for example, via 
cathepsin-B-dependent processing of a direct NLRP3 
ligand. (3) All danger-associated molecular patterns 
(DAMPs) and pathogen-associated molecular patterns 
(PAMPs), including ATP and particulate/crystalline 
activators, trigger the generation of reactive oxygen 
species (ROS). A ROS-dependent pathway triggers 
NLRP3 inflammasome complex formation. Caspase-1 
clustering induces autoactivation and caspase-1-dependent 
maturation and secretion of proinflammatory cytokines, 
such as interleukin-1β (IL-1β) and IL-18 [5]. 
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The main function of the NLRs has been indicated to be regulation of the pro-inflammatory 

cytokine production of cytokines interleukin-1 beta (IL-1β) and interleukin-18 (IL-18). Release 

of IL-1β is an important mediator of inflammation during infection [53]. Interleukins are a group 

of cytokines, or secreted signalling molecules, produced by a variety of cells. The interleukins 

promote development and differentiation of T, - B and hematopoetic cells, and are essential for 

both innate and adaptive immunity [54]. Due to possible detrimental effects of released IL-1β, the 

synthesis, processing and release is tightly controlled. The mechanisms involved in transcription 

of pro-IL-1β are now thought to involve signalling of nuclear factor kappa B (NFκB) and 

mitogen activated protein (MAP) kinases [55]. This signalling causes accumulation of 

intracellular stores of pro-IL-1β, and is followed by cleavage and release of the mature cytokine. 

The cleavage and release require to distinct stimuli. First an initial through innate PRRs, like the 

transmembrane TLR4, causes the accumulation. Second, cleavage is made possible by assembly 

of an inflammasome, like the NLRP3 inflammasome [54]. 

 

Caspases are cystein proteases that initiate or execute cellular programs, leading to inflammation 

or cell death. They are synthesized as inactive zymogens and controlled by proteolytic activation. 

Caspases are categorized as either pro-inflammatory or pro-apoptotic. The pro-inflammatory 

caspases are comprised of caspases-1, -11 and -12 in mice and caspase-1, -4, and -5 in humans [5, 

56]. The catalytic activity of caspase-1 is regulated by signal-dependent auto activation within the 

inflammasome, which further results in processing of cytokines, like IL-1β [57]. 

 

Different models for activation of the NLRP3 inflammasome have been suggested. Three major 

models for activation will be described below, see also Figure 4. In the first model extracellular 

ATP stimulates the P2X7 ATP-gated ion-channel, triggering K+ efflux, and inducing gradual 

recruitment of the pannexin-1 membrane pore. Formation of the pore allows extracellular 

DAMPs/PAMPs to access the cytosol and directly activate the NLRP3 inflammasome [58]. The 

second model proposes that engulfment of crystalline or particulate structures, such as silica and 

asbestos, by phagocytes leads to lysosomal damage. Lysosomal damage will further result in 

release of lysosomal contents that are sensed by the inflammasome as a DAMP [54,59]. The 

lysosomal protease, cathepsin B, was also suggested as a NLRP3 ligand by this mechanism. In 

the third model, all NLRP3 agonist trigger the generation of reactive oxygen species (ROS), and 

this common pathway triggers the inflammasome [60]. However, it is unclear how NLRP3 can 

detect such a diversity of stimuli, and there is no evidence that any ligands bind directly to the 
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complex. It has therefore been proposed an indirect activation, but this has yet to be determined 

[54]. 

 

Upon NLRP3 activation, the NLRP3 oligomerize which leads to clustering of the PYD domains 

of NLRP3 and the PYD domains of the adaptor ASC. In addition, the CARD domains of ASC 

will recruit the CARD domains of pro-caspase-1. Clustering of pro-caspase-1 allows for 

autocleavage and formation of the active units of caspase-1, namely the p10/p20 tetramer. 

Activated caspase-1 is then able to process proforms of cytokines IL-1β and IL-18 and generate 

active molecules for secretion [5], Figure 4. 
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Abstract 
 

The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, 

and is one of the emerging Fusarium mycotoxins reported to be found at high concentrations in 

Norwegian grain. The cytotoxic effect of EnnB is thought to be caused by the ability to form 

ionophores in cellular lipid membranes. In the present study, RAW 264.7 macrophages of mouse 

origin were exposed to EnnB followed by the use of different assays in order to characterize the 

effect on cell death, cell proliferation, differentiation and potential inflammatory response. 

Exposure to EnnB arrested the cells in the G1-phase of the cell cycle after 24 hr exposure, and 

induced morphological features related to apoptosis in cells examined by fluorescence 

microscope. Damaged lyosomes were also observed on micrographs. Elevated levels of activated 

caspase-1 were observed after exposure, and cells primed with lipopolysaccharide (LPS) in 

addition to EnnB secreted significantly higher levels of interleukin-1 beta (IL-1β), compared to 

the controls. Treatment with the caspase-1 specific inhibitor, ZYVAD-FMK, prior to exposure 

with both LPS and EnnB inhibited this cytokine release. Activation of the inflammasome, 

followed by cleavage of caspase-1 and processing and release of IL-1β is proposed as a 

mechanism of action for EnnB. 
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Introduction 
 

Enniatin B (EnnB) is a mycotoxin/secondary metabolite produced predominantly by species of 

the Fusarium genera [1]. The enniatins belong to a group of cyclohexadepsipeptides, and are 

commonly composed of three D-α-hydroxyvaleric acids linked with three L-configured N-methyl 

amino acids joined together in a ring by peptide and ester bonds (for EnnB, fig. 1). The lipophilic 

nature of enniatins might therefore lead to accumulation in animal tissue. [2]. The molecular 

weight of EnnB is 639 [3]. 

 

Grain in Northern Europe is found to be contaminated with the enniatin producing fungus 

Fusarium Avenaceum in high numbers, and field studies have shown that the field conditions in 

Scandinavia seem to favour enniatin production [4]. In Norwegian grain samples it has been 

reported enniatin concentrations of up to several mg/kg [5], and even higher concentrations have 

been found in analysis of Finnish grains. EnnB has been present in 99% of the different grain 

samples reported by studies in Finland, Norway, and Italy [4]. F. avenaceum is also known to 

produce other mycotoxins in addition to enniatins, namely beauvericin (BEA) and moniliformin 

(MON) [4].  

 

Enniatins have been reported to have a wide range of effects in vitro, and have been described to 

have ionophoric, phytotoxic, insecticidal, and antibacterial properties [1]. At physiological ion 

concentrations, the primary mechanism triggering  toxicity is its effects as an ionophore, by 

forming channels in cellular lipid membranes [6, 7]. Both mono-and divalent cations are affected, 

with the effects on K+ and Ca2+ being the most described [8]. In addition to inhibition of acyl-

COA:cholesterol acyltransferase (ACAT) activity [9], the hypolipidaemic action of EnnB is 

thought to be caused by a reducation of triglyceride synthesis and diminishing of the free fatty 

acid pool in the cells [10].  Studies have also shown enniatins to have toxic effects on several 

cancer cell lines, and they are considered used as anti cancer drugs [11,12]. Additional studies 

have shown enniatins to interact with the multidrug protein Pdr5p in Saccharomyces cerevisiae at 

non-toxic concentrations, and with the human P-glycoprotein (Pgp) in MRP2 and BCRP  [13-15]. 

 

Data from in vivo studies of enniatins is sparse, with only one report of in vivo toxicity caused by 

the effects of enniatins [16-18]. However, since contamination in cereals is found and enniatins 
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are co-occurring with other mycotoxins, especially deoxynivalenol (DON) and MON, further 

research is needed. 

 

Innate immunity, the first line of defence against pathogens, is in part activated via Toll-like 

receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) [19]. 

Lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, is principal in 

the role of inflammatory responses [20]. In response to LPS stimulation via TLR4, mononuclear 

phagocytes produce proinflammatory cytokines (e.g. IL-1 and TNf-α), bioactive lipids (e.g. 

prostaglandins), and reactive oxygen species. It has been shown that the toxicity of other 

mycotoxins like DON and T-2 (type A trichothecene) have been potentiated by priming (pre-

treatment) with LPS [21, 22].  

 

Enniatins have in other studies been indicated to exert their cytotoxic activities, in addition to 

being ionophores, through the induction of mitochondrial modifications and cell cycle disruption, 

resulting in apoptotic cell death [11, 12, 23]. The apoptotic cell death is reportedly not induced by 

generation of reactive oxygen species (ROS) or by damaging the DNA [11]. The morphological 

features of apoptosis observed after exposure to enniatins are chromatin condensation and 

formation of apoptotic bodies. Other apoptotic features are reduction of cellular and nuclear 

volume, DNA-fragmentation, and exposure of phosphatidylserine on the extracellular side of the 

plasma membrane. Related to the effects on the cell cycle, enniatins have been described to 

induce a cell cycle arrest in the G0/G1 phase by activation of early working cell cycle inhibitors 

[11]. 

 

The aim of this study was to characterize the effects of EnnB on cell death, cell proliferation 

differentiation and potential inflammatory effects in RAW 264.7 machrophages of mouse origin. 
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Materials and methods 

 
 
Reagents and chemicals 
 
EnnB was purified from F.avenaceum cultures as described in Ivanova et al. [3], Alamar Blue 

were from Biosource (Nivelles, Belgum), the Neutral Red kit from Xenometrix (Allschwil, 

Switzerland) the Annexin V kit from BD Biosciences Pharmingen (San Diego, CA, USA), the 

Tunel Assay (In Situ Cell Death Detection Kit, TMR red) were from Roche Diagnostics 

(Indianapolis, Indiana, USA) and the IL-1beta ELISA kit were from R&D Systems (Minneapolis, 

Minnesota 55413, USA) (Mouse IL-1 beta/IL-1F2 DuoSet, DY401, LOT 1210432). Propidium 

iodide (PI, 1.0 mg/mL), Hoechst 33342 (10 mg/mL), DAPI, Cholera toxin subunit B 

(recombinant) Alexa Fluor 488 conjugate, RNAse (Purelink™ RNase A), LMPA (low melting 

point agarose) and NMPA (Normal melting point agarose), Bovin Serum Albumin (BSA) were 

purchased from Invitrogen. Gels and buffers for Western blotting (NuPAGE system) were all 

purchased from Invitorgen. FPG (formamidopyrimidine DNA glycosylase) was kindly provided 

by Andrew Collins (University of Oslo, Norway). 

 

The Caspase-1 inhibitor ZYVAD-FMK were from EMD Chemicals, Inc., (Gibbstown, USA), 

Dimethyl sulfoxide (DMSO), Lipopolysaccharide (LPS from E. coli O26:B6), Triton X-100,  

Paraformaldehyde were purchased from Sigma-Aldrich Chemical Company (St Louis, MO, 

USA), Silica nano particles (amorphous, monodisperse, d=100 nm) from Kisker Biotech 

(Steinfurt, Germany), Lysisbuffer (#9803) from Cell Signaling,  Dulbecco’s Modified Eagle 

Medium (DMEM), Penicillin/Streptomycin and Fetal bovine serum (FBS) were from Lonza 

(Verviers, Belgium), Bio-RAD DC protein assay from Bio-Rad Laboratories Inc (Hercules, CA). 

All other chemicals were purchased from commercial sources and were of analytical grade. 
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Antibodies 

 

P27 Kip1 (#3698), phospho-p53 (ser15) (#9284), phospho-p53 (ser392) (#9281),Phospho-

Histone H2A.X (Ser139) –Alexa Fluor 488 conjugate (#9719), Phospho-NF-κB p65 (Ser536) – 

Alexa Flour 488 conjugate (4886), Cleaved Caspase 3 (#9661), Cyclin D1 (#2922), Cyclin E 

(#4129), Caspase 1 (#2225), IkBα (#9242), β-Actin Rabbit mAb HRP Conjugate (#5125), Anti-

Mouse IgG HRP-linked Anti body (#7076), Anti-Rabbit IgG HRP-linked Antibody (#7074) were 

purchased from Cell Signaling (Beverly, MA, USA). p21 Alexa Flour conjugate (#sc-6246), 

CD163 (K-18;  #sc-18796) were from Santa Cruz Biotecnology (Santa Cruz, CA, USA) anti-

rabbit Alexa Flour 488, anti-rabbit Alexa Flour 647 and anti-goat Alexa Flour 488 were from 

Molecular Probes, (Eugene, OR, USA). 

 

 

Cell Culture and Treatments 

 

Both the murine macrophage cell line RAW264.7 and J774A.1 was obtained from European 

Collection of Cell Culture (ECACC) and grown in DMEM containing 4,5 g/L glucose 

supplemented with 10% heat inactivated FBS  penicillin (100 U/ml), and streptomycin (100 

µg/ml). The cells were cultured at 37°C under 5% CO2 in a humidified incubator and routinely 

kept in logarithmic growth phase at 3 x 106 – 20 x 106 cells/75 cm2 by splitting the cells by 

scraping twice a week. Fresh medium was added before scraping. The passage number was kept 

below 25.  

 

If not otherwise stated, the cells were seeded at a density of 35 000 cells/cm2 and allowed to 

adhere over night before exposure. In experimental setups were the integrity of the plasma 

membrane and plasma membrane associated proteins (annexin V, CD163) were important,  

UpCell™  cell culture dishes were used. The surface of these dishes is temperature responsive 

and allows cells to detach without the use of cell scrapers in temperatures below 32°C. For 

harvesting, the dishes were therefore put on ice for 10 min to allow the cells to detach. 

 

For treatment with ZYVAD-FMK, a specific caspase-1 inhibitor [24], the cell culture medium 

was replaced with fresh medium containing the inhibitor. The cells were pre-incubated with the 

inhibitor for 30 min, followed by the treatment with EnnB at the concentrations and time points 

as indicated. EnnB were dissolved in DMSO and the final concentration of DMSO in the cell 
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cultures was 0,1%. Appropriate controls containing the same amount of solvent were included in 

each experiment. These controls will be referred to as DMSO or simply controls. This 

experimental setup was used if nothing else is described. 

 

 

Cell viability 

 

Following EnnB exposure, the metabolic activity of the RAW 264.7 cells was measured using 

alamar blue assay according to manufacturer (Biosource, Nivelles, Belgium). The dark blue 

oxidized form of alamar blue, resazurin, has little fluorescence. When taken into cells resazurin is 

reduced to resorifon, which is highly fluorescent. This reaction occurs in cells with actively 

working mitochondria [25] and the measured fluorescence intensity is proportional to number of 

cells. The fluorescence (585 nm) of resorufin was quantified using a Victor2 Multilabel Counter 

(PerkinElmer, Boston, MA, USA).  

 

Cell viability of the Raw 264.7 cells was also measured with a neutral red (NR) assay, which is a 

colormetric assay for the quantification of membrane permeability and lysosomal activity in the 

cells. Measurements were done according to the manufacturer’s procedure (Xenometrix, 

Allschwil, Switzerland). The NR assay is based on the ability of viable cells to incorporate and 

bind NR within lysosomes. The quantity of dye incorporated into cells is directly proportional to 

the number of cells with an intact lysosomal membrane. The absorbance of NR (540 nm) was 

measured using a Victor2 Multilabel Counter (PerkinElmer, Boston, MA, USA).  

 

 

Cell death observed with microscopy 

 

Changes in nuclear morphology and plasma membrane damages were evaluated after staining 

cells (~0,5 x 106 cells) with PI (10 µg/ml) and Hoechst 33342 (5 µg/ml) for 30 min. Stained cells 

suspended in FBS were smeared on slides and air dried quickly. Nuclear morphology associated 

with necrosis and apoptosis were determined using a Nikon Eclipse E400 fluorescence 

microscope. Cells with distinct condensed nuclei, segregated nuclei, and apoptotic bodies were 

counted as apoptotic, and cells with half-condensed “donut-like” nucleus were counted as early 

apoptotic (apo*). Non-apoptotic cells, excluding PI, were categorized as viable cells. And cells 

with an increased cellular volume, stained with PI were termed necrotic. The fraction of cells in 
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each category was compared to the total number of cells. A minimum of 300 cells per slide were 

counted.  

 

 

Changes in cell morphology observed with microscopy 

 

The cells were seeded and exposed as described above. 300 cells in 5 sectors of each cell culture 

dish were counted using a light microscopy (Leica DMIL), and the fraction of elongated cells was 

compared to the total number of counted cells. Pictures were taken with a Moticam 1000. 

 

 

Cell Cycle analysis by flow cytometry 

 

Following drug exposure the cells were harvested by scraping, washed with PBS and fixed with 

ice-cold 70% EtOH over night at -20°C. The cells were then incubated with PI (10 µg/ml) and 

RNase A (100 µg/ml) in PBS for 30 min at 37°C before analysis on a flow cytometer, Accuri C6 

or LSRII (BD). Single cells were gated and a minimum of 10 000 events were analyzed in each 

sample. The percentages of cells in the different phases of the cell cycle as well as apoptotic cells 

were estimated from DNA histogram using the Multicycle Program (Phoenix Flow system, San 

Diego, CA, USA). Apoptotic index was determined as the percentage of signals between the G1 

peak and the channel positioned at 20% of the G1 peak, Sub-G1.  

 

 

Measurement of apoptosis by flow cytometry 

 

In early apoptotic cells, the membrane of phospholipids phosphatidylserine (PS) is translocated 

from the inner to the outer leaflet of the plasma membrane, thereby exposing phosphatidylserine 

(PS) to the extracellular environment [26]. Annexin V is a Ca2+ dependent phospholipid-binding 

protein with high affinity for PS. Annexin V will bind to cells exposing PS to the extracellular 

side of the plasma membrane. Annexin V coupled to FITC in combination with PI, which is 

excluded by viable cells, is used as staining to determine different phases of apoptosis. Cells 

considered as viable are both annexin V FITC and PI negative, early apoptotic cells are annexin 

V FITC positive and PI negative, late apoptotic or necrotic cells are both annexin V and PI 

positive. For the annexin V asay, the cells were plated on UpCell™ plates (Nunc) and exposed to 
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EnnB as described above. Exposed cells were harvested and washed twice in cold PBS, and 1 x 

105 cells were stained and incubated according to the procedure described by the manufacturer of 

the FITC Annexin V apoptosis detection kit I (BD Biosciences, San Diego, CA, USA). The cells 

were then analyzed by flow cytometry with a LSRII (BD Biosciences) or an Accuri C6. 

 

One of the later steps in apoptosis is DNA fragmentation, a process which results from the 

activation of endonucleases during the apoptotic program. Those DNA strand breaks can be 

detected by enzymatic labelling of the 3`-OH termini with modified nucleotides. This end-

labelling method has been termed the TUNEL (Terminal deoxynucleotidyl transferase dUTP nick 

end labelling) Assay. For the TUNEL assay, the cells were harvested by scraping, washed once in 

PBS, fixed in 1% PFA in PBS 15 min on ice, and post-fixed/permeabilized in 90% ice cold 

methanol for at least 2 days at -20°C. DNA fragmentation were then identified by using the 

TUNEL Assay (In Situ Cell Death Detection Kit, TMR red, from Roche Diagnostics) according 

to the procedure described by the manufacturer.  

 

 

Measurement of surface proteins, CD163 by flow cytometry 

 

CD163 is a transmembrane protein found exclusively on macrophages and monocytes, and is a 

marker of activated macrophages, type M2 [27]. The cells were plated on UpCell™ plates (Nunc) 

and exposed to EnnB as described above. Harvested cells were then washed once in 5% 

BSA/PBS, 6 x 105 cells were incubated with CD163 antibody in the dark for 1 hr, washed twice 

in 0,5% BSA/PBS, and incubated with secondary antibody, a-goat Alexa Flour 488 for 30 min. 

The cells were then washed twice in in 0,5% BSA/PBS, resuspended in PBS and analyzed with a 

flow cytometer, Accuri C6. Single cells were gated and a minimum of 10 000 cells were 

analyzed.  

 

 

Measurement of intracellular proteins by flow cytometry 

 

The cells were harvested, washed once in PBS, fixed in 1% PFA in PBS on ice for 15 min, and 

post-fixed/permeabilizated in 90% ice cold methanol for at least 2 days at -20°C.  For staining 

with antibody, 5 x 105 cells were washed two times in 5% BSA in PBS and incubated with 

primary antibody or direct conjugated antibody in 5% BSA/PBS/0.2% Triton X-100 overnight at 
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4°C or 30 min - 2 hrs at room temperature. If direct conjugated antibodies not were used, the cells 

were rinsed twice in 5% BSA/PBS/0.2% Triton X-100 and incubated with secondary antibody 

conjugated to Alexa Fluor 488  for 2 hrs at room temperature in the dark. The cells were then 

analyzed with an Accuri C6 or a LSRII (BD) flow cytometer.  Single cells were gated and a 

minimum of 10 000 cells were acquired and analyzed. 

 

 

Western Blotting 

 

Differences in expression of cellular proteins were compared by Western immunoblot analysis. 

After exposure the cells were washed twice in ice-cold PBS and placed at -70°C for a minimum 

of 24 hrs, treated with lysis buffer (Cell signalling), and centrifuged at 14000 x g. Protein 

concentration of the supernatant was measured using a Bio-RAD DC protein assay kit, and the 

protein concentrations of the samples were equally adjusted by adding lysis buffer. The Western 

blotting was performed using Invitrogen NuPage Novex Bis-Tris gels according to the procedure 

described by the manufacturer (Invitrogen). After blotting membranes were stained with Ponceau 

S dye, and blots with equal protein loading were used. The membranes were then blocked with 

5% non-fat milk in Tris Buffered Saline (TBS) or 5% BSA in TBS for 30 min, and incubated 

with primary antibodies over night at 4°C (or 3 hrs at room temperature. The primary antibodies 

were diluted in either 5% BSA in TBS-Tween (TBST) or 5% non-fat milk in TBST. Incubation 

was followed by washing of the blots in TBST, and incubating with secondary HRP-conjugated 

antibodies diluted in incubation buffer for 1 hr. After incubation with secondary antibodies the 

membranes were again washed, and immunoreactive proteins were detected using a 

chemiluminescence system according to the manufacturer’s instructions (Super signal west dura 

chemoluminiscence system, Thermo Scientific, IL). Pictures were taken with a ChemiDoc XRS+ 

(Bio-Rad), and images analyzed with Image Lab 3.0 (Bio-Rad Laboratories, California, USA). 

 

 

Immunocytochemistry 

 

To investigate presence of proteins associated with elongation (differentiation) cells were stained 

with antibodies for CD163 after 6 hr EnnB and DMSO exposure. Exposed cells were washed 

with PBS and fixed in methanol for 3 min before over night incubation with primary antibody, 

polyclonal goat anti-CD163 (working dilution of 1:50 and 1:100) at room temperature. After 
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washing and incubation with anti-goat Alexa Flour 488 conjugated antibody for 3 hrs, the 

preparations were mounted and visualized using a Nikon Eclipse E400 microscope and a SPOT 

diagnostic instruments digital camera. As controls, the secondary antibody was omitted (not 

shown). 

 

 

Alkaline Comet Assay 

 

The comet assay was essentially performed as described previously by Collins et al. [28]. Brifely, 

the cells were resuspended in 75 µl 1% low melting point agarose at 37°C, applied onto glass 

slides (pre-coated with 1% normal melting point agarose and dried), and covered with cover slips. 

Two equal gels were made on each slide. The slides were placed at 4°C for 10 min to allow the 

gel to set, then immersed in pre-chilled lysis buffer (2,5 M NaCl, 0,1 M EDTA, 10 mM Tris-HCl, 

pH 10, 1% Triton X-100) and incubated at 4°C for 1 hrs. The slides were then washed three times 

in washing-buffer (40 mM HEPES, 0,1 M KCl, 0,5 mM EDTA, 0,2 mg/ml BSA pH 8) at 4°C 5 

min. One of the two gels at each slide were treated with formamidopyrimidineglycosylase (fpg; 

1:3000), and the other gel was treated with washing buffer only, for 30 min, 37°C in a humidity 

chamber. After enzyme treatment the slides were immersed in a cold alkali solution (0,3 M 

NaOH, 1 mM EDTA pH>13) for 30 min following electrophoresis in a pre-chilled alkali solution 

(0,3 M NaOH, 1 mM EDTA pH>13) on 1V/cm 30 min and air-dried on the bench. The slides 

were stained with SYBR green (1:10 000) for 10 min and images were visualized under a 

fluorescence microscope (Olympus BX51, Olympus Europe, Hamburg, Germany) and acquired 

with a  Olympus DP70 camera. A minimum of 100 comets each slides were analyzed using the 

TriTek CometScoreTM Freeware (www.tritekcorp.com). The differences in tail intensity between 

Fpg-treated cells (total DNA damage) an untreated cells (basic DNA damage) were considered as 

8-oxodGuo (oxidative DNA damage) in a single cell.  
 

 

GM1 Immunofluorescence assay 

 

GM1 is a type of ganglioside found in the plasma membrane and acts as the site of binding for 

cholera toxin. Cells were fixed for 30 min at 4°C with 4% PFA in PBS. After washing, the cells 

were incubated for 1 hr with blocking solution (2% BSA in PBS), followed by FITC-coupled 

choleratoxin (Ctx) B  (Invitrogen) (0.5 µg/ml) for 1 hr. Pictures of fluorescent-labelled cells were 



 

 35 

captured with a DMRXA Leica microscope and a COHU high performance CCD camera using 

Metavue software. In a variation of the assay described above, the cells were let to incubate with 

FITCH-coupled Ctx B for 2 hrs before fixation in order to observe any potential effect of EnnB. 

 

 

Cytokine Measurement, ELISA 

 

Secreted cytokines were measured with the enzyme linked immunosorbent assay (ELISA). The 

cells were plated in 24-well plates with a density of 4x105 cells/well (~135 000/cm2). All cells 

were let to adhere overnight, and fresh medium were added before Lipopolysaccaride (LPS) 

priming. A 3 hour LPS priming was followed by a 6 hour EnnB or DMSO exposure. The medium 

was then harvested and centrifuged (300 x g, 4°C, 10 min) to remove cell debris and the 

supernatant stored at -70 °C until use. Levels of IL-1β in cell medium were measured by ELISA 

Duoset (R&D systems, Minneapolis MN, USA) according to the manufacturers’ guidelines. The 

absorbance levels were measured and quantified using a plate reader (TECAN Sunrise, Phoenix 

Research Products, Hayward, CA, USA) equipped with analyzing software (Magellan VI ).  

 

 

Electron Microscopy 

 

The cells were fixed by drop-wise addition of glutaraldehyde and analysed according to standard 

conditions. After fixation, the specimens were made as described by Asare et al.[29]. Briefly the 

specimens were rinsed with PBS, followed by post-fixation with 1% osmium tetroxide in 

phosphate buffer for 1 hr. After further rinsing with PBS for 15 min, the specimens were 

dehydrated through a series of graded ethyl alcohols from 70% to 100%. Cells were then 

embedded in DMP30 Eponate for 2 days at 37°C and then for 24 hrs at 60°C. Thin sections (70 

nm) were collected onto copper grids and counterstained with lead citrate before examination 

with a Philips transmission electron microscope. 
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Statistical analysis 

 

The unpaired t-test was used for statistically comparison of two groups, and the data was assumed 

to follow a Gaussian distribution. The compared results are presented as mean ± SEM, and the 

probability values were considered significant when p<0,05. The p values of <0,05 , <0,01 ,  and 

<0,0001 are represented as *, **, and *** , respectively. Graphpad Prism 5.0 was used for all 

calculations.  
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Results 
 

Cell viability and Cell death 

 

By using the alamar blue (AB) and neutral red (NR) assay the cell viability of Raw 264.7 cells 

exposed of EnnB was measured compared to control (fig. 2A and 3B). Both assays are product of 

cell proliferation and cell function. With AB more specifically the mitochondrial metabolic 

activity is assessed [25], while the NR assay measure lysosomal function. The cells were exposed 

for 24 hrs with concentrations of EnnB in the range of 0,05 µM to 100 µM. Interestingly the 

lowest value of AB obtain is approximately 50% of control, while NR is going down to 0%. 

Thus, although not directly comparable these values were used to find the LC50 value of EnnB in 

both assays; which were calculated to be ~2,6 µM for AB and ~4,7 µM for NR, respectively. 

These values were used to find the relevant concentration range for the following experiments. In 

order to further characterize cell death, we next exposed cells in ordinary culture dishes for 

various concentrations of EnnB for 24 hrs, and scraped the loosely attached cells with a rubber 

policeman as suggested done by supplier. The cells were thereafter stainined with Propidium 

Iodide (PI) and Hoechst 33342 and analysed by fluorescence microscopy. As can be seen in 

figure 3B, a concentration dependent increase in apoptotic/early apoptotic cells were obtained at 

the concentration of approximately 2,5 µM EnnB, reaching a maximum level of approximately 

15%. A very high level of necrotic cells (~50%) was obtained for DMSO treated; and no clear 

concentration dependent increase due to EnnB could be observed. 

 

To check whether the level of necrotic cells could be an artefact due to the scraping of cells for 

microscopic preparation, we next tried out some UpCell™ dishes (used as described in materials 

and methods). By placing these dishes on ice, the cells were easily detached without damaging 

the plasma membrane. In the following preparation of the samples, the number of necrotic cells 

in the control was reduced to approximately 3%, which would be as expected (fig. 3C). Based on 

microscopy observations of dyed cells, the cells were divided into groups of necrotic, apoptotic, 

and early apoptotic (apo*). Typically, the early apoptotic cells have some morphological 

characteristics of apoptotic cells. Instead of having fully condensed nuclei, they have rather a 

donut-like chromatin condensation. The total number of cells with apoptotic morphological 

features was observed to be significant in cells exposed of 5 µM and 10 µM EnnB and was 6% 

and 11% respectively, compared to 1% observed in control. Also the number of necrotic cells 
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were increased following exposure with Enn , from 3% in the control up to 7% in cells exposed 

to 10 µM Enn B.   

 

A similar trend was observed while analyzing apoptosis by flow cytometry after 24 hr exposure 

to EnnB. In this assay apoptotic cells with condensed chromatin would be less stained with PI 

than viable cells and thus appear as a Sub-G1 peak in an analysis by flow cytometer. A 10-20% 

increase in the sub-G1 population was measured in cells exposed with EnnB compared to the 

control, with the higher percentage in cells exposed of 5 and 10 µM (fig. 3D). 

 

 The annexin V assay was used to further characterize cell death. Together with PI staining the 

difference in phosphatidyl serine (PS) distribution was used to divide the cells into viable (not 

shown), (early) apoptotic, and late apoptotic or necrotic cells (fig. 4A and 4B). This analysis 

revealed an increase in the number of apoptotic cells after 24 hrs of exposure, and was measured 

to 20% in the cells exposed with 10 µM EnnB, compared to 5% apoptotic cells in the control. 

There is no significant increase in the number of cells with late apoptotic or necrotic features, and 

neither in the level of cleaved caspase 3 in cells exposed for 24 hrs. To measure secondary DNA 

damage due to DNA fragmentation during the apoptotic process, we used the TUNEL analysis, a 

method often used to detect apoptotic cells (fig. 4D and 4E). In cells exposed for 24 hrs there is a 

minor increase in levels of detected dUTP, compared to the control .TUNEL positive cells were 

increased to 6% after exposure to 2,5 µM EnnB, while only 2% could be seen in controls 

receiving DMSO only.  

 

 

Effects on cell cycle 

 

The effects on the cell cycle were analyzed after both 8 and 24 hr exposures (fig. 5A and 5B). In 

contrast to the control, cells exposed of EnnB for 24 hrs show an arrest in the G1-phase of the cell 

cycle when exposed of 1,25 µM EnnB or higher concentrations. In the cells exposed of EnnB, the 

number of cells in the G1 phase was increased to 75-85% compared to approximately 50% found 

in the control. In cells exposed for 8 and 4 hrs (4 hrs not shown) no significant increase in G1 

could be observed. 

 

To further characterize these alterations in the cell cycle progression the protein levels of the cell 

cycle associated proteins, cyclin D1 and cyclin E, were measured with Western blotting in cells 
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exposed of EnnB for 24 hrs. The blots revealed a marked down-regulation of cyclin D1, while 

cyclin E was up-regulated (fig. 6A and 6B). EnnB also slightly up-regulated the levels of p27 

Kip1 (6C).  

 

 

Changes in morphology 

 

During regular microscopy observations of cells after exposure it seemed to be a difference 

between cells exposed of EnnB and DMSO (fig. 7A). This observation was further investigated 

by counting cells with a stretched, elongated morphology in cells exposed of 10 µM EnnB and 

control cultures (fig. 7B). A difference was observed already at 4 hrs, and after 24 hrs 15% 

elongeated cells was observed after EnnB exposure versus 5% in cells exposed of DMSO.  

 

As this type of morphology has been suggested to be caused by a differentiation to M2 

macrophages, often characterized by increased levels of the CD163 transmembrane protein. Thus, 

the expression of CD163 in RAW cells exposed to EnnB for either 6 or 24 hrs was analyzed both 

with flow cytometry and fluorescence microscopy, (fig. 7C and 7D). Compared to the control the 

cells exposed of 10 µM EnnB showed no difference in the expression of CD163 using either of 

the two methods. However, cells with the characteristic elongated morphology were also 

observed in the samples fixed for fluorescence microscope. 

 

 

DNA damage and DNA damage response (DDR) 

 

Single cell electrophoresis (comet assay) was used to measure DNA damage, detecting single-

stranded DNA breaks (SSB) and/or alkali labile sites measured as an increase in the percentage of 

DNA in the tail (comets). Cells exposed of 2,5 µM and 5 µM EnnB for 24 hrs showed no 

increase in DNA damage compared to the DMSO control (fig. 8B). Furthermore, no increase in 

tail moment was seen after addition of fpg, an enzyme that converts 8-oxo-7,8-dihydro-2’-

guanosine (8-oxodGuo) to SSB.  

 

To measure any possible DNA damage not detected by the comet assay, we measured the levels 

of some central proteins involved in the DNA damage response by Western blotting and flow 

cytometry.  However, cells exposed to EnnB (2,5 , 5 and 25 µM) for 24 hrs, showed no marked 
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changes in the levels of  p-p53 (Ser 15 and Ser 392) and p21 measured by either of the two 

methods, when compared to controls, as can be seen in figures 8C-8F. Analysis of γH2A.X was 

performed with flow cytometry only, and a slight up-regulation of the phosphorylated form of 

H2A.X was observed in cells exposed of 5 µM EnnB for 24 hrs (fig 8G). 

 

 

Effect on Endocytosis 

 

The organization of membrane microdomains were studied by use of fluorescence microscope. A 

difference in this organization was observed when exposed cells were fixed promptly after 

incubation with FITC coupled CTX subunit B (Ctx B) (fig. 9A), compared to the cells fixed after 

incubation with FITC coupled Ctx B for 2 hrs (fig. 9B). Prior to fixation the cells were exposed 

with EnnB (10 µM) or DMSO for 24, and the cells exposed of EnnB show an inhibition in the 

internalization of the Ctx B  in contrast to the control (fig. 9B) 

 

 

Lysosomal damages 

 

To investigate the possible involvement of lysosomes in the EnnB induced effects on exposed 

cells, micrographs of these and DMSO exposed cells were prepared. (fig. 10A and 10B) After 24 

hr exposure these revealed some accumulation of lipids inside the lysosomes (fig. 10B; white 

arrows), which is a sign of lysosomal dysfunction. 

 

Activation of caspase-1 

 

As EnnB has been suggested to act as a cation ionophore and seems to cause lysosomal damage, 

both known to trigger an activation of the inflammasome, the role of caspase-1 in EnnB-induced 

cell death was investigated with its inhibitor ZYVAD-FMK. Cells were exposed with ZYVAD-

FMK (10 µM) for 30 min prior to the 24 hr long EnnB (10µM) exposure, and cell death was 

characterized with a fluorescence microsope (10A). The addition of the inhibitor reduced the total 

amount of apoptotic cells from from 5% to less than 1%. ZYVAD-FMK seems, however, to have 

no or little effect on the number of necrotic cells. 
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Further analysis of caspase-1 activation was done by Western blotting (fig. 10B). In cells exposed 

of EnnB (2,5, 5 and 10 µM) for 24 hrs a down-regulation of caspase-1 (48 kDA) and an up-

regulation of  its cleaved form (p20) is observed.  

 

 

Cytokine response 

 

As a next step, in order to further examine any possible activation of the inflammasome after 

exposure to EnnB, we pretreated the cells with LPS, which is known to cause accumulation of 

pro-IL-1β and  measured the IL-1 β release in cells exposed to EnnB and compared with DMSO 

controls. First we did some preliminary experiments with various LPS / cell concentration. (fig. 

11A and 11B). These results revealed that an LPS-concentration of 25 ng/mL in addition to 

seeding 500 000 cells per mL (~135 000/cm2) gave the most optimal experimental conditions. 

Based on published literature [30] the cells were primed for three hrs with LPS prior to exposure 

with EnnB and DMSO, and the release of IL-1 β measured after 6 hrs. 

 

This was followed by exposing both un-primed and LPS-primed cells with DMSO and different 

concentrations of EnnB (2,5 , 5 and 10 µM). As shown in figure 11C the amount of IL-1β 

released from LPS-primed cells exposed of EnnB was all in the range of 125-190 pg/mL, 

compared to (>20 pg/mL) in the cells exposed of DMSO, and as expected, even lower (>10 

pg/mL) in the un-primed cells. 

 

Pro-IL-1β is cleaved to its active form (IL-1β) by caspase-1. The effect of caspase-1 was 

demonstrated by treatment with ZYVAD-FMK prior to EnnB (10 µM) exposure in cells already 

primed with LPS. The results is shown in figure 11D, where a significant difference is observed 

in the amount of IL-1β released from cells with inhibition of caspase-1. In addition to exposure 

with EnnB cells primed with LPS were also exposed of 100 nm silica particles (500 µg/mL) and 

MinUsil (500 µg/mL). These particles were used as positive controls and gave a release of 

cytokines in similar amounts of EnnB (data not shown).  
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Activation of NF-κB 

 

Activation of NF-κB can lead to accumulation of pro-IL-1β. In figure 13A, cells exposed with 5 

µM of EnnB for 24 hrs show an up-regulation in the levels of NF-κB, compared to the control. 

IκBα is a cytosolic inhibitor of NF-κB and is phosphorylated and degraded in response to 

activation. (fig. 13B and 13C) A down-regualtion of IκBα was observed with Western blotting in 

cells exposed of EnnB (1,25, 2,5 and 5µM), compared to the control. The cells analyzed in figure 

13B were primed for 3 hrs with LPS followed by exposure to EnnB or DMSO. The results 

presented in figure 13C come from cells exposed for either EnnB or DMSO for 24 hrs. 
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Supplementary results 
 

As for the RAW 264.7 the release of IL-1β was measured in J774A.1 cells, in order to examine 

activation of the inflammasome.The secretion of IL-1β in the collected supernatant of exposed 

cells was analyzed using ELISA. In the preliminary experiments done with the J774A.1 cells we 

found that pre-treatment for three hrs a LPS concentration of 25 ng/mL accompanied with 

seeding 600 000 cells/ml (160 000/cm2) gave the most optimal experimental conditions (sup. fig. 

IV and V). In the following experiments primed and un-primed J774A.1 cells were exposed with 

different concentrations of EnnB (2,5 , 5 and 10 µM) or DMSO for 6 hrs. As expected, the results 

showed that cells without pre-treatment secreted IL-1β in minor amounts (>10 pg/mL) , and in 

the pre-treated cells a significant enhancement in the release was observed in cells exposed of 

EnnB (sup. fig. VI). The release in the primed cells was measured to approximately 140, 100, 

and 90 pg/mL in the cells exposed of 2,5 , 5 and 10 µM EnnB, respectively. 

 

Further, we analysed the effect on IL-1β release in primed J774A.1 cells treated with ZYVAD- 

FMK (caspase-1 inhibitor) prior to exposure with EnnB (10 µM) (6 hrs). Again a significant 

difference in the amount of IL-1β secreted was observed in cells treated without and with the 

inhibitor of caspase-1 (sup. fig.VII). 

 

Hence, the release of IL-1B in LPS-primed cells indicates that EnnB is able to activate the 

inflammasome mediated inflammatory response in both RAW 264.7 and J774A.1 cells. 

 

The J774A.1 cells were also arrested in the G1- phase of the cell cycle (sup. fig. I). In cells 

exposed with EnnB (1,25 , 5 and 10 µM) or DMSO, approximately 88% of the cells where 

analysed to be in G1, already in response to 1,25 µM of EnnB. 

 

In contrast to the results found concerning expression of CD163 in the RAW 264.7 cells, we 

found an increase in expression of the transmembrane protein in the J774A.1 cells after exposure 

with EnnB. In the analysis done with flow cytometry the cells were exposed with either EnnB (5 

µM) or DMSO for 24 hrs, as shown in supplementary figure II an increase in CD163 expression 

is observed. A similar result was found when exposing cells for 6 hrs with either EnnB (10 µM) 

or DMSO followed by fluorescence microscopy observations (sup. fig. III). 
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Discussion 
 

It is hypothesized that the cytotoxic effect of enniatins are caused by its ability to function as an 

ionophore, forming channels in cellular lipid membranes [6,7]. Here we report that EnnB reduce 

proliferation by a G1-arrest in RAW 264.7 cells, and induced some caspase-1 dependendent 

apoptosis. No or little primary DNA–damage/DNA-damage response was observed. The most 

noteworthy finding was that EnnB exposure in combination with lipopolysaccharide (LPS) 

resulted in inflammasome activation, possibly the NLRP3 inflammasome, followed by secretion 

of IL-1β.  

 

The toxicity tests alamar blue (AB) and neutral red (NR) are simple to perform and may give 

information regarding effects on cell proliferation as well as mechanisms involved. In the AB 

assay (fig. 2A) functional mitochondria are needed to reduce the substrate giving off 

fluorescence, and the measured fluorescence is proportional to the number of viable cells [25] 

The IC50 value of EnnB in this assay was calculated to 2,6 µM. Interestingly, the measured signal 

stabilized in the range of 50-40%, compared to the control, for concentrations up to 100 µM. This 

reduction in fluorescence intensity might be a result of a G1-cell cycle arrest (fig. 5B) rather than 

any primary mitochondrial damage, as fewer cells by it self will reduce the fluorescence 

signalling. In contrast when using the NR assay (fig. 2B), measuring the membrane permeability 

of lysosomes, a more pronounced effect was observed after EnnB exposure. At the highest 

concentrations, the NR-values were reduced to values close to zero suggesting that the lysosomes 

were highly damaged. Thus, these experiments suggest that the lysosomes may be an important 

primary site of EnnB toxicity. In the NR assay the IC50 of EnnB was calculated to 3,4 µM. In a 

study by Ivanova et al. [3] with MRC-5 cells, the IC50 of EnnB was in the range of 1,9-to 6,9 µM. 

By using the MTT cell viability assay, another study has shown IC50 values for a mixture of 

enniatins to be in the range from 7,9 to >10 µM [11]. In a study on the mitochondrial effects of 

mixtures of enniatin and EnnB alone, the enniatin mixture was shown to be more damaging to the 

mitochandria than EnnB [8]. Thus, the cytotoxicity of EnnB observed with AB and NR assays 

was well agreement with previous studies. 

 

Microscopic examinations of cell stained with PI and Hoechst revealed that EnnB induced 

morphological features associated with apoptosis and necrosis (fig. 3A). EnnB induced cells with 

a reduced cellular volume, condensed and fragmented nuclei, defined as apoptotic, and PI 
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positive cells with increased cellular volume as necrotic. Some cells with morphological 

characteristics similar to the apoptotic but with a ring shaped chromatin condensation were 

defined as early apoptotic (apo*). This type of apoptosis could  be the result of incomplete DNA-

fragmentation and may involve other proteases than the classic apoptotic caspases [31]. In our 

first sets of experiments very high numbers of necrotic cells were counted both in the controls 

and in the exposed cells (fig. 3B). As control cells in the culture dish seemed viable when 

examined by light microscopy, we anticipated that this could be due to an artefact. More 

specifically that we induced membrane effect when preparing the cells for nuclear staining, as the 

procedure suggested that the cells should collected by scraping with a rubber policeman.  Indeed, 

by modifying this procedure by using the UpCell dishes it which cells automatically detached 

when placed on ice (fig. 3C), the percentage of necrotic cells where reduced from 50% to 3% and 

from 56% to 6% for DMSO and EnnB (10 µM), respectively. After the EnnB exposure around 

12% of the cells showed morphological features of apoptosis.  

 

There are several morphological and biochemical methods that can be used to characterize 

apoptosis. In this study we have also determined apoptosis by analysis of the sub-G1 peak, 

annexin V staining after externalization of phosphatidylserine (PS), the activation of caspase-3 

with specific antibodies and quantification of TUNEL-stained cells by flow cytometric analysis. 

In combination with the cell cycle analysis, we observed a sub-G1 peak. This smaller peak in the 

cell cycle profile is caused by less PI staining of the DNA, due to chromatin condensation and 

nuclear fragmentation. The sub-G1 signal is detected when the DNA dye is incorporated to 

apoptotic bodies, smaller than the viable cells observed in the cell cycle profile. EnnB is clearly 

giving such an effect (fig. 3D), but an accurate quantification of the chromatin condensation can 

not be measured by this method as more than one apoptotic body could have originated from a 

single viable cell. In viable cells the distribution of PS is asymmetric, with PS found in the inner 

leaflet of the plasma membrane. Exposure of PS on the surface of apoptotic cells seems to be one 

of the most important (“eat-me”) signals for recognition by neighbouring macrophages [32]. 

Using the annexin V assay this biochemical feature of apoptosis could be investigated (fig. 4A), 

and the cells could be divided into early apoptotic or late apoptotic/necrotic cells. Again EnnB 

induced an increase in the number of (early) apoptotic cells, while the number of necrotic cells 

were unaffected, compared to the control. Interestingly, translocation of PS to the outer leaflet of 

the plasma membrane is also described as an early marker of caspase-3 activation during 

apoptosis [33]. Therefore, we also measured the intracellular levels of cleaved caspase-3, which 

was observed to be somewhat increased after EnnB exposure (fig. 4C). The TUNEL assay is a 
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method for detecting apoptotic cells that exhibit DNA fragmentation. Cleavage of caspase-3 is 

often found to be central in the apoptotic process and mediate the activation of DNA 

endonucleases resulting in DNA fragmentation [34]. The DNA fragmentation observed with the 

TUNEL assay is a result of the apoptotic signalling cascade, and may be referred to as a 

secondary DNA damage. We have observed condensed nuclei and apoptotic bodies as an effect 

of EnnB in examinations with microscopy and in determination of the sub-G1 peak. We have also 

seen flipping of PS and some fragmentation caused by the apoptotic cascade, both as a result of 

activated caspase-3. In addition to the presented results, it would be of future interest to use these 

assays to follow the apoptotic process induced by EnnB over time 

 

The cell death analysis have shown that EnnB induce apoptosis in approximately 6-20% of the 

cells, depending on the assay used. The induced apoptosis seems to be independent of the much 

more significant cell cycle arrest (described below), The cell cycle arrest in G1 was found in cells 

exposed with EnnB for 24 hrs (fig. 5B and supp. fig. I) is in accordance with the restrained 

proliferation suggested by the AB assay and by visual examinations of exposed cells (fig. 7A). 

Progression in the cell cycle is regulated by cyclins and cyclin dependent kinases (CDK), and 

cyclin-CDK complexes are in turn regulated by cyclin-dependent kinase inhibitors (CDKI), 

which generally inhibit cell cycle progression [35]. The progression from G1 to S, in the cell 

cycle, is regulated by cyclin D (1,2,3) and cyclin E, with their respective partners CDK4/6 and 

CDK2. Normally, in the progression of the cell cycle, pairing of the D-type cyclins with their 

catalytic partners CDK4 and CDK6 happens early in G1 and inactivates CDKIs, like p27 (Kip1) 

(p27), a CDKI from the Cip/Kip family [36]. The cyclin D-CDK complex will in addition 

activate the transcription factor E2F by phosphorylation of retinoblastoma (Rb), resulting in an 

increase of cyclin E and cyclin A (cyclin A is a S-phase cyclin). In the EnnB exposed cells the 

levels of cyclin D1 were reduced, while the protein levels of p27 were increased (fig. 6A and 

6C). The western analysis of cells exposed with EnnB also revealed an up-regulation in the levels 

of cyclin E. Since p27 is working downstream of cyclin D1, diminished levels of cyclin D1 and 

an increase in the p27 levels seems to fit with the current model of transition from G1 to the S-

phase of the cell cycle [36]. At first, we would also expect a down-regulation in the cyclin E 

levels, but since we are looking at a “snap-shot” of the protein levels after 24 hrs of EnnB 

exposure it is not possible to predict whether the levels are on the rise or on the fall. EnnB might 

cause an arrest late in the G1-phase. Further research is needed to fully understand the 

background of the G1-arrest, and the levels of cyclins, CDKs and their inhibitors should be 
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analysed and followed over time. In a study of a mixture of enniatins [11], the levels of cyclin D1 

was also reported to decrease. 

 

An inhibition of cell proliferation is often associated with a differentiation process. In a previous 

study, we found that expure to chemicals (phthalates) may induce morphological differentiation 

of macrophages [34]. Thus, we closer analyzed the morphology of EnnB-exposed cells with light 

microscopy and observed that some of the Raw 264.7 cells displayed an elongated morphology 

suggestion some kind of differentiation (fig. 7A and 7B). Interestingly, another mycotoxin 

Alternariol (AOH) is found to cause differentiation of RAW 264.7 cells into round cells with 

tentacle like elongations, suggested to be dendritic-like cells (Solhaug et al. – manuscript in 

preparation).  Activated macrophages have been shown to be polarized in response to different 

inducers, thereby acquiring different functional properties. The macrophages have been suggested 

to be classified into M1 and M2 (2a, 2b, 2c) based on inducer and the following response [27]. 

Often M1 is associated with dendritic like cell morphology and pro-inflammatory properties, 

whereas anti-inflammatory M2 cells often are found to be of the elongated type, as those seen 

after EnnB exposure [37]. CD163 is a transmembrane protein found to be expressed on M2-like 

macrophages, which is generally involved in immuno-regulation, killing of parasites, and tissue 

remodelling [27]. According to the results (fig. 7C and 7D), there is no difference in the levels of 

CD163 found in the EnnB exposed cells, versus the controls. However, in experiments done with 

our second cell line, the J774A.1 mouse macrophages, EnnB caused an up regulation of CD163 

(sup.fig. II and III). To further investigate this interesting issue of potential macrophage 

differentiation, other markers of M1 and M2 should be used in addition to CD163. 

 

In response to DNA-damage a cell might be arrested in the cell cycle, giving time for promotion 

of the DNA repair machinery. An activation of p53, “the guardian of genome”, often results in an 

arrest in the G1/S transition phase [38]. Thus, we used the comet assay to find out if EnnB caused 

any primary DNA damage. The Comet assay detects alkali labile sites, single and double stranded 

DNA breaks, and DNA unwinding as a result of DNA repair. The tail (comet) intensity is 

measured as a parameter for the DNA damage. In accordance with other studies [11, 39], we 

found no difference in the intensity measured in cells exposed of EnnB, compared to the control 

(fig. 8B). Phosphorylation of p53 is connected to cell cycle arrest and apoptosis [40], and 

activated p53 promotes transcription of, among others, the tumor suppressor protein p21 

(Waf1/Cip1) (p21) which is associated with G1-arrest in the cell cycle [41]. Histone H2A.X, a 

member of the H2A family, is also involved in checkpoint mediated cell cycle arrest and DNA 
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repair following dsDNA breaks, which is a highly lethal DNA damage [42]. Phosphorylated 

H2A.X (γH2A.X) is also formed as a consequence of DNA fragmentation during apoptosis [43]. 

Based on the results showing a G1-arrest and some fragmentation of DNA after exposure to 

EnnB, the protein levels of p-p53, p21 and γH2A.X were analysed by flow cytometry and/or 

Western blotting after 24 hrs exposure. The data on p-p53 (fig. 8C and 8E) and the unchanged 

levels of p21 after exposure to EnnB (fig. 8D and 8F), suggests none or a minimal effect on the 

activation of p53, while. This is well in agreement with the study on mixtures of enniatins [11], 

concluding that the cytotoxic effects of enniatins are mediated by a p53 independent mechanism. 

Interestingly, the levels of γH2A.X was unregulated (fig. 8G), which support the (slight) increase 

in cells with DNA fragmentations found in the TUNEL analysis (fig. 4D and 4E). In contrast to a 

rapid phosphorylation of H2A.X caused by primary induced double stranded DNA-breaks, 

reported in response to the mycotoxin satratoxin G [34], an increase in γH2A.X after 24 hrs in 

combination with increased TUNNEL, suggest DNA fragmentation caused by the apoptotic 

process.  

 

The NR assay (fig. 2B), and the ionophoric properties of EnnB [6,7] suggested that the cellular 

plasma membranes and lysosome activity could be affected. In a study by Tekpli et al. [44] 

plasma membrane remodelling, more specifically disruption of membrane rafts, were found to be 

an important early apoptotic effect. Membrane rafts are plasma membrane microdomains 

containing cholesterol, spingolipids and saturated acyl chains, and have been reported to be 

implicated in cell death [45]. In the present study we show that EnnB had no effect on the 

integrity of the plasma membrane rafts as marked with cholera toxin subunit B (Ctx B) (fig. 9A) . 

However, we found that EnnB inhibited the endocytosis/membrane recycling process of 

receptors, as the endocytotic processes of Ctx B were markedly inhibited (fig. 9B).  Furthermore, 

electron microscopic examination of cells exposed to EnnB showed damages to the lysosomes as 

phospholipidosis, or lipid accumulation [46], which is a sign of lysosomal damage was observed 

(fig. 10B). The effect of EnnB on lysosomes, as discussed earlier, together with EnnB working as 

K+ ionophore led us to the hypothesis that EnnB could trigger an activation of caspase-1 through 

these mechanisms. The NLRP3 inflammasome is reported to be activated by a K+ efflux, 

triggered by pore-forming bacterial toxins [47]. Furthermore, in a recent paper by Kankkunen  

and coworkes [48] the mycotoxins, satratoxins and T-2 toxin were shown to activate caspase-1 in 

an inflammatory response involving the NLRP3 inflammasome in (human) macrophages  
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Inflammasomes, such as NLRP3, are multi protein complexes that mediate caspase-1 dependent 

processing of cytokines such as IL-1β [49]. To investigate the possible involvement of caspase-1 

in the EnnB-induced apoptotic process, cells treated with an inhibitor of caspase-1 (ZYVAD- 

FMK) and examined in microscopy after nuclear staining. By inhibition of caspase-1 the 

percentage of cells with apoptotic features were significantly decreased (fig. 11A). Caspase-1 is 

synthesized as an inactive zymogen and controlled by proteolytic activation, i.e. by reduced 

intracellular K+ or and intracellular acidification / leakage of cathepsin-B from damaged 

lysosomes [50]. Furthermore, analysis done by Western blotting indeed revealed a decrease in the 

levels of pro-caspase-1 and an increase in cleaved caspase-1 (p20) after exposure to EnnB (fig. 

11B), suggesting that these could be likely explanations. A similar activation of caspase 1 has 

been reported in response to trichothecenes [48]. Interestingly, ZYVAD-FMK did not inhibit 

EnnB-induced necrosis, showing that the necrotic cell death is independent of caspase-1 

activation and are probably related to direct membrane damage. 

 

NALP3 belongs to a class of NOD-like receptors (NLRs), which are a type of intracellular pattern 

recognition receptors (PRR), and are one of several proteins found in the inflammasomes. The 

NLR recognize pathogen-associated molecular patterns (PAMPs) and host-derived danger signals 

(danger-associated molecular patterns, DAMPs) [51]. Ionophoric properties, and NR assay 

indicated lysosomal activity, the micrographs of EnnB exposed cells showing EnnB affecting the 

lysosomes of the cell verified this suggestion (fig. 10B). Damages in the lysosomes have been 

proposed as a mechanism activating the inflammasomes, where the inflammasome recognize 

components of lysosomes as endogenous danger signals, or DAMPs [52]. In another model the 

inflammasome is activated by K+ efflux, as shown by a stimulation of the ATP-gated P2X7R by 

extra-cellular ATP; A limited efflux seems to triggering IL-1β release, whereas larger efflux 

triggering the apoptotic process [53].  

 

To further clarify any possible inflammasome activation we measured secretion of mature IL-1β 

as a marker of activation. Priming with LPS causes activation of NF-κB in response to stimuli of 

the membrane bound toll-like receptor 4 (TLR4), and results in accumulation of intracellular pro-

IL-1β [52]. Most interestingly, the LPS-primed cells had a marked increased in secretion of IL-1β 

after exposure with EnnB (fig. 12A-12C) when compared with the various controls. Furthermore, 

the LPS/EnnB-induced IL-1β release could be considerably reduced by the caspase-1 inhibitor 

(fig. 12D), strongly suggesting that an activation of caspase-1 is involved in the process. The 

mechanisms for inflammasome activation described above, all concerns activation of the NLRP3 
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inflammasome (also called NALP3 or cryoporin). The NLRP3 inflammasome consists of the 

PRR NLRP3, apoptotic speck protein containing a C-terminal caspase recruitment domain 

(ASC), and caspase-1. There have been reports concluding that RAW 264.7 cells lack the adaptor 

protein ASC, and should not be able to process and release mature IL-1β [54]. Our results show 

an activation of caspase-1 and secretion of IL-1β, but we can not say for certain whether this is 

caused by activation of the NALP3 inflammasome. Other inflammasomes, like NLRP1 and 

IPAF, are also able to active caspase-1 [51]. On the other hand, data from Sandberg et al. 

(manuscript in preparation) have shown activation of the NALP3 inflammasome in RAW 264.7 

cells by exposure to non-crystalline silica nonoparticles, as a reduced IL-1β released were 

observed in cells with reduced NALP3 using specific siRNA. An important issue to consider is 

that the effect seemed to be highly dependent on cell concentration needed for proper 

measurements of IL-1β secretion. This could indicate that EnnB causes a primary effect on the 

cells, and when the cells are grown close enough secreted cytokines or other signal molecules 

(DAMPs) cause an activation of the inflammasome – as a secondary effect. However, another 

explanation could be the limited sensitivity of the assay used for IL-1β detection. Both 

explanations should be further clarified, possibly by using another method for detection of 

cytokines (i.e. Bio-Plex). We have also shown similar effects of LPS/EnnB on secretion of IL-1β 

in J774A.1 cells (sup. fig IV-VII), with reported ASC activity [54].  

 

NF-κB is a transcription factor held in the cytosol in an inactive state by the inhibitory IκB 

proteins. Activation of NF-κB is mediated through a phosphorylation of IκBα followed by 

proteasome-mediated degradation of the inhibitor. The result is translocation of active NF-κB. 

NF-κB is activated by a highly diverse group of extracellular signals including inflammatory 

cytokines, growth factors, and chemokines. [55]. Both NF-κB and mitogen activated protein 

(MAP) have been implicated in regulation of pro-IL-1β transcription. [56,57]. We have shown 

increased levels of NF-κB after 24 hr exposure to EnnB (fig. 13A), and a downregulation of the 

inhibitory IκBα (fig. 13B and 13 C). The effect on the inhibitor, IκBα, was seen after 24 hrs 

exposure to EnnB and after priming with LPS followed by 6 hrs EnnB exposure. Thus,   an 

activation of NF-κB seems to be implicated in the LPS/EnnB-induced IL-1β release; whereas the 

activation observed after EnnB exposure for 24 hr would suggest that EnnB by itself can result in 

the triggering of cytokines/chemokines. This possibility should be further explored. However, it 

is interestingly to note that some other enniatins have been reported to moderately inhibit  tumor 

necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation [12]; thus having an anti-
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inflammatory response more in accordance with our observation of apparent M2-cell like 

differentiation. 

 

In conclusion, EnnB cause a G1-cell cycle arrest, morphological features related to apoptosis, and 

inflammasome activation in combination with LPS. An overall evaluation of results suggests that 

the apoptotic effect in cells exposed of EnnB seems to be triggered by activation of the 

inflammasome. The results show activation of IL-1β and caspase-1. EnnB show a synergic effect 

with LPS in cells primed prior to exposure and may potentially activate the inflammasome by 

working as a K+-ionophore in the plasma membrane, or by causing damage to the lysosomes. The 

implicated synergic effect of EnnB in combination with LPS is of concern in relation to 

undesirable inflammatory response. More complex test systems would be of interest for future 

studies. 
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Figure Legends 
 
 
Figure 1. The chemical structure of EnnB.  
 
 
Figure 2. Cell viability/density. RAW 264.7 cells were exposed to various concentrations of 
EnnB for 24 hrs. Relative cell viability/density (% optical density in exposed groups versus 
control groups) was measured by Alamar Blue (AB) (2A) and Neutral Red (NR) (2B) as 
described in Materials and Methods. The graphs shown are dose/response curves from three 
independent experiments, with means represented as dots (AB) or squares (NR). 
 
 
Figure 3. Cell death determined by microscopy and flow cytometry. Raw 264.7 cells treated 
with different concentrations of EnnB or DMSO for 24 hrs. (A) Cells cultured in ordinary dishes, 
stained with PI/Hoechst and examined by fluorescence microscope. Representative pictures of 
various types of cells exposed of 10 µM of EnnB are shown. Original magnification, 60 x. (B) 
Cells from experiments done in ordinary culture dishes presented as mean ± SEM of three 
independent experiments. (C) Cells grown in UpCell™ dishes were exposed to EnnB for 24 hrs 
and stained with PI/Hoechst before analysis. Presented data is mean ± SEM of three independent 
experiments. (D) Cells grown in ordinary dishes and analyzed with flow cytometer. Presented 
data is mean of Sub-G1 ± SEM of 4 independent experiments. 
 
 
Figure 4. Characterization of cell death with annexin V, TUNEL and caspase-3. Raw 264.7 
cells were treated with different concentrations of EnnB or DMSO for 24 hrs. (A) Cells grown in 
UpCell™ dishes were exposed, stained with FITC Annexin V, and analyzed with flow cytometry. 
Presented data is mean ± SEM of 4 independent experiments. (B) Dotplots from one 
representative experiment, with cells exposed of EnnB (10 µM) and DMSO are presented. (C) 
The results from one out of two measurements of cleaved caspase-3 by using flow cytometer are 
presented; DMSO (black); EnnB 5 µM (red). (D,E) Cells were exposed to EnnB (2,5 µM) and 
DMSO for 24 hrs and analyzed for DNA fragmentation  with TUNEL assay. 

 
 
Figure 5. Cell cycle analysis. Raw 264.7 were exposed to different concentrations of EnnB or 
DMSO (A = 8 hrs, B = 24 hrs). Attached and floating cells were stained with PI and analyzed 
with flow cytometer. Presented data is mean ± SEM of 4 independent experiments.  

 
 
Figure 6. Characterization of changes in proteins involved in cell cycle regulation. (A-C). 
Raw 264.7 cells exposed to different concentrations of EnnB or DMSO for 24 hrs and analyzed 
for expression of Cyclin D1, Cyclin E, and p27 by Western blotting. A minimum of two 
independent experiments were done in regard of each protein, and one representative experiment 
is shown. 
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Figure 7. Effect on morphology. Raw 264.7 cells were exposed to EnnB (10 µM) or DMSO. 
(A) Pictures taken at 0 hrs and 24 hrs, original magnification, 20 x. (B) Cells with stretched 
morphology counted at 0 hrs, and after 2, 4, 6, and 24 hrs. The presented data show mean ± SEM 
of 300 cells counted in 5 sectors (per cell dish) after different exposure periods. (C) Cells grown 
in UpCell™ dishes, exposed of EnnB (10 µM) and DMSO for 24 hrs, stained with AF488 
coupled AB for CD163, and analyzed by flow cytometry; DMSO (black), EnnB (red). (D) Cells 
exposed of EnnB (10 µM) and DMSO for 6 hrs, stained with AF488 coupled AB for CD163, and 
observed with fluorescence microscopy. Original magnification, 100 x.  

 
 
Figure 8. DNA damage and DNA damage response (DDR). RAW 264.7 cells exposed of 
EnnB and DMSO for 24 hrs and analyzed by single cell gel electophoresis (alkaline comet assay) 
(A and B). (A) Pictures show cells with and without DNA damage (ssDNA breaks). (B) The data 
show DNA damage measured as percentage of DNA in tail for -/+ fpg treated cells, and are 
presented as mean ± SEM of three independent experiments. (C,D) Cells exposed to different 
concentrations of EnnB or DMSO for 24 hrs were analyzed for expression of p-p53 (S392) and 
p21 by Western blotting. Results from one out of two Western blottings are shown. (E-G) Cells 
exposed of EnnB and DMSO for 24 hrs, stained with AF488 coupled AB for p-p53 (SER15) and 
γH2A.X or stained with FITC coupled AB for p21; and than analyzed by flow cytometry. The 
presented results comes from one out of two experiments; DMSO (black), EnnB 5 µM (red).  

 

Figure 9. Endocytosis, CTX. RAW 264.7 cells exposed of EnnB 10 µM or DMSO for 24 hrs. 
(A) Shown are pictures of fixed cells incubated with FITC coupled cholera toxin subunit B (Ctx 
B) (to visualize ganglioside GM1; green and  co-stained with DAPI (blue) to detect nuclei (B) 
Pictures of cells incubated with FITCH coupled  Ctx B for two hrs before fixation. Original 
magnification, 200 x.  

  

Figure 10. Characterization by electron microscope. Lysosomal and autophagosomal changes 
induced by EnnB. Transmission electron microscopic micrographs of RAW 264.7 cells exposed 
of  DMSO (A) or EnnB ( 10 µM; B) for 24 hrs. Examples of dysfunctional lysosomes are 
indicated with white arrows. 

 

Figure 11. Role of caspase 1 activation. RAW 264.7 cells were exposed to EnnB (10 µM; B) 24 
hrs while controls were given DMSO only. (A) Some of the cells were treated with Caspase1 
inhibitor, ZyVAD-FMK (10 µM), 30 min prior to 24 hr exposure with EnnB and DMSO. Cell 
death were measured by staining the cells with PI/Hoechst and analyzed by use of fluorescence 
microscope. Presented data is mean ± SEM of three independent experiments. (B) Picture and 
analysis of the protein levels of caspase1 and its cleaved form (p20) in cells exposed of EnnB and 
DMSO. Samples analyzed by Western blotting. One representative experiment out of three 
independent experimental setups is shown.  

 

Figure 12. Cytokine release (IL-1β). (A). Raw 264.7 cells seeded at 400 000 cells/mL, grown 
overnight, primed for three hrs with different concentrations of LPS, and exposed for 6 hrs with 
EnnB (5 µM) or DMSO. Medium analyzed by ELISA. (B) Cells seeded at different cell 
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concentrations, grown overnight, primed for three hrs with LPS (25 ng/mL), and exposed for 6 
hrs with EnnB (5 µM) and DMSO. Medium analyzed by ELISA. One representative experiment 
out of three independent experiments is presented. (C and D) Cells seeded at 500 000 cells/mL, 
grown overnight, primed for three hrs with LPS (25 ng/mL), and exposed for 6 hrs with various 
concentration of EnnB (2,5, 5 and 10 µM; D) and DMSO.  Medium analyzed by ELISA. (D) 
Some cells (+/- LPS) were also treated with ZYVAD-FMK (10 µM), 30 min prior to exposure to 
EnnB (5 µM) or DMSO. One representative experiment out of three independent experiments is 
presented, with replicates are shown as means ± SEM. 

 

Figure 13. Role of NF-κB activation. RAW 264.7 cells were exposed to EnnB for 24 hrs while 
controls were given DMSO only. (A) After exposure cells were stained with AF488 coupled AB 
for NF-κB (p65), and analyzed by flow cytometry. Results from one of two experiments are 
shown. DMSO (black), EnnB 5 µM (red). The intracellular protein levels of IκBα were measured 
by Western blotting. (B)  Shown are results from cells exposed with various concentrations of 
EnnB (1,25, 2,5 and 5 µM) and DMSO for 24 hrs, experiment done twice. (C) Cells primed with 
LPS for three hrs, followed by 6 hrs exposure with either EnnB (1,25, 2,5 and 5 µM) or DMSO. 
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FIGURE 2 
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FIGURE 8 
 
 

8A     8B 
 

  
 
 

 
 
 
 

 
 

 
 
 
 
 
8C 

 
 
 

 
 
8D 
 

 

 
 
 

 
 
 



 

 71 

p-p53 p-21 γH2A.X 

 
8E      8F     8G 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 72 

FIGURE 9 
 
9A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9B 
 
 
 
 
 

DMSO       EnnB 10 µM 

DMSO       EnnB 10 µM 



 

 73 

FIGURE 10 
 
 
 

10A       10B 

 



 

 74 

FIGURE 11 
 
 
 

11A 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
11B 
 

 
 

 
 

 
 

 
 



 

 75 

FIGURE 12 
 

 
12A       
   
 
 
 
 
 
 
 
12B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12C 
 
 
 

 
 
 
 
 

12D 
 

 
 

 



 

 76 

NF-κB 

FIGURE 13 
 
 
13A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13B 
 

 
 
 

 
 
13C 
 
 

 
 
 

 



 

 77 

Figure legends, supplementary results 
 

 

Figure I. Cell cycle analysis. J774A.1 cells cultured in UpCell dishes and exposed with different 
concentrations of EnnB (1,25, 5, 10 µM) or DMSO for 24 hrs. All cells were stained with PI and 
analyzed with flow cytometer. Presented data is mean ± SEM of three independent experiments. 

 

Figure II and III. Changes in morphology. (VI) J774A.1 cells grown in UpCell™ dishes, 
exposed of EnnB (5 µM) and DMSO for 24 hrs, stained with AF488 coupled AB for CD163, and 
analyzed by flow cytometry; DMSO (black), EnnB (red). The results from one out of two 
experiments are presented (VII) Cells exposed of EnnB (10 µM) and DMSO for 6 hrs, and 
stained with AF488 coupled AB for CD163. Original magnification, 100 x.  

 

 

Figure IV, V, VI and VII. Cytokine release (IL-1β). (IV). J774a.a cells seeded at 400 000 
cells/mL, grown overnight, primed for three hrs with different concentrations of LPS, and 
exposed for 6 hrs with EnnB or DMSO. Media analyzed by ELISA. (V) Cells seeded at different 
cell concentrations, grown overnight, primed for three hrs with LPS (25 ng/mL), and exposed for 
6 hrs with EnnB and DMSO. Medium analyzed by ELISA. One representative experiment out of 
three independent experiments is presented. (VI) Cells seeded at 600 000 cells/mL, grown 
overnight, primed for three hrs with LPS (25 ng/mL), and exposed for 6 hrs with EnnB and 
DMSO.  Medium analyzed by ELISA. (VII) Some cells (+/- LPS) were also treated with 
ZyVAD-FMK (10 µM), 30 min prior to exposure to EnnB (5 µM) or DMSO. One representative 
experiment out of three independent experiments is presented and the replicates are shown as 
means ± SEM. 
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