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Abstract  

Although the production and use of the insecticide DDT have been restricted or banned since 

the 1970s, DDT and its metabolites are persistent in the environment and may still pose a 

hazard of toxic effects in wildlife and humans. One area, which has been given increasing 

attention in the past years, is the possible link between exposure to pesticides and disturbance 

of endocrine functions including reproductive functions. The present study investigated the 

direct effect of two DDT metabolites and one synthetic DDE-analogue on basal testicular 

steroidogenesis in primary neonatal porcine Leydig cells in vitro. The two DDT metabolites, 

3-MeSO2-DDE and o,p’-DDD, as well as the synthetic DDE-analogue, 3,3’-(bis)MeSO2-

DDE, do all have known endocrine effects as they exert toxic effects towards the adrenal 

cortex in humans and several species. Because of these properties, o,p’-DDD is in fact the 

main drug for adrenocortical carcinoma and Cushing’s syndrome.   

Neonatal Leydig cells were obtained from castrations, purified by a discontinuous Percoll 

gradient and the purity of Leydig cells was determined by staining for 3β-hydroxysteroid 

dehydrogenase. The primary cultures of purified Leydig cells were then exposed to six 

different concentrations of each compound up to 20 µM and solvent control (0.1% DMSO) 

for 48 hours. The aim was to assess the compounds’ effect on cell viability, hormone 

production (testosterone, estradiol, progesterone and cortisol) and expression of 16 genes 

involved in testicular steroidogenesis. Only samples exposed to the next highest concentration 

(10 µM) were used in the gene expression analysis. The expression in the 10 µM samples was 

then compared against the solvent controls.  

The results for cell viability showed that only o,p’-DDD was cytotoxic at the highest 

concentration. For hormone production, all three compounds stimulated testosterone secretion 

with most effect for 3-MeSO2-DDE and o,p’-DDD exposure. 3,3’-(bis)MeSO2-DDE caused 

only an increase at the highest concentration. Estradiol production was not much altered in 

comparison, but a stimulatory effect was seen for 3-MeSO2-DDE and o,p’-DDD, and a 

decrease was seen with 3,3’-(bis)MeSO2-DDE. The Leydig cells did not produce progesterone 

and cortisol. The results for gene expression showed that the three compounds were able to 

alter the effect of some genes. All genes altered were down-regulated with the exception of 

one gene and o,p’-DDD exerted most effect with down-regulation of eight genes in total. 

Since 3-MeSO2-DDE and o,p’-DDD caused an increase in hormone secretion at 10 µM, 

especially for testosterone, the reduction seen in mRNA levels does not explain the 
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mechanism behind the stimulatory effect. This might indicate that the compounds interact at 

the protein level. Taken together, the results suggest that the compounds are able to exert 

effect on basal testicular steroidogenesis and the possible endocrine effects on the male 

reproductive tract are thus concerning. 
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1.0 Introduction and background 

Today, there is a growing concern about xenobiotic compounds in the environment because of 

their reproductive and endocrine-disrupting effects for both human and wildlife. The 

European Commission set up a Working group on Endocrine Disrupters under the Scientific 

Committee on Toxicity, Ecotoxicity and the Environment (CSTEE) and the CSTEE working 

group agreed on the definition of the International Programme on Chemical Safety (IPCS) 

Steering Group that met at the joint IPCS/Organisation for Economic Co-operation and 

Development (OECD) Scoping Meeting on Endocrine Disrupters, March 16 to 18, 1998 in 

Washington, DC; 

“An endocrine disrupter is an exogenous substance or mixture that alters function(s) of the 

endocrine system and consequently causes adverse health effects in an intact organism, or its 

progeny, or (sub)populations” (Vos et al., 2000). 

Endocrine disruption has been identified as a potential global problem (Vos et al., 2000) and 

there is reported a need for greater awareness about the long-term health consequences 

associated with exposure to endocrine-disrupting chemicals during early life (Colborn et al., 

1993). The pesticides are among one of the groups of chemicals which cause concern with 

regard to endocrine-disrupting effects (Colborn et al., 1993; Vos et al., 2000). In the past 

years, effect on the male reproductive system has attracted increasing attention. The reduced 

male fertility seen in the general population can be caused by many factors, but there exist 

some indications that pesticides affect sperm quality (Bretveld et al., 2007; Jurewicz et al., 

2009).  

This study investigated the effect of three compounds on the male reproductive system which 

all have unknown effect regarding testicular toxicity; two metabolites of the known 

environmental pollutant and pesticide dichlorodiphenyltrichloroethane (DDT), namely 2-(3-

methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene (3-MeSO2-DDE) and  

2-(2-chloro-phenyl)-2-(4-chlorophenyl)-1,1-dichloroethane (o,p’-DDD), and the synthetic 

compound 2,2’-bis(3-methylsulfonyl-4-chlorophenyl)-1,1-dichloroethene (3,3’-(bis)MeSO2-

DDE) was also included. Specifically, these three compounds were evaluated for their effect 

on cell viability, hormone production and gene expression in primary cultures of porcine 

Leydig cells. 
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1.1 DDT and its environmental relevance  

The organochlorine p,p’-DDT was used extensively as an agricultural insecticide in the 

1940s-1960s. It was discovered that DDT and its metabolites posed a threat to wildlife and 

especially birds due to eggshell thinning (Blus et al., 1997; Faber and Hickey, 1973). As other 

organochlorine compounds, they also possess endocrine disrupting properties with o,p’-DDT 

being the most estrogenic isomer (Fry and Toone, 1981). However, the use of DDT was 

banned in Europe and many countries in the 1970s, and consequently, the levels have 

decreased in these areas (Chu et al., 2003; Noren et al., 1996; Weistrand and Noren, 1997). A 

restricted use of the insecticide is thus allowed in areas where malaria is a considerable 

problem (Cupul-Uicab et al., 2008; Longnecker, 2005). Despite a restricted use, there is 

evidence that DDT is transported via the atmosphere (Rapaport et al., 1985; Wang et al., 

2010) and DDT can therefore reach remote regions where it never has been used. The 

previous and the present use of the insecticide are still relevant mainly because it is 

recognized as a very persistent chemical. The biodegradation half life in soil varies from 2 to 

30 years, depending on the conditions (CDC, 2009; Dimond and Owen, 1996).  

1.2 Metabolites of DDT 

In nature, DDT is degraded to dichlorodiphenyldichloroethylene (DDE) and 

dichlorodiphenyldichloroethane (DDD) and these stable metabolites are formed by 

dehydrochlorination or dechlorination of the ethane side chain of DDT (Jonsson et al., 1994). 

These hydrocarbons have relatively low toxicity, but their lipophilic nature facilitates their 

accumulation along food chains and the highest levels are therefore found in top-predators 

(Clarkson, 1995). p,p’-DDE, the primary product by degradation, is thus one of the most 

abundant persistent halogenated hydrocarbons present in human blood and milk worldwide 

(Smith, 1999). Due to its lipophilic property, animals will tend to excrete DDE by 

metabolizing it to a more hydrophilic substance; methyl sulphone-containing metabolites of 

DDE (MeSO2-DDEs) were first discovered in blubber of Baltic grey seals showing symptoms 

of adrenocortical hyperplasia in 1976 (Jensen and Jansson, 1976). Hence, MeSO2-DDEs do 

also possess hydrophobic properties and can thus be accumulated in the body of mammals 

and humans (Bergman et al., 1994; Jensen and Jansson, 1976; Lechter et al., 1995). 

Furthermore, the lipophilic character of both DDE and MeSO2-DDEs make them capable of 

transfer from mother to offspring via milk (Azeredo et al., 2008; Jonsson, 1994; Jonsson et 

al., 1992; Kismul, 2009; Noren et al., 1996). Today, levels of DDE and MeSO2-containing 
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metabolites of DDE are therefore still detectable in humans, especially in areas where DDT is 

still used (Bergonzi et al., 2009; Longnecker, 2005).  

1.3 Compounds 

The present study aimed to investigate the effect of the two DDT-metabolites 3-MeSO2-DDE 

and o,p’-DDD on primary neonatal porcine Leydig cells in vitro. The effect of another DDE-

analogue is also included; 3,3’-(bis)MeSO2-DDE is made from 3-MeSO2-DDE by adding an 

extra methyl-sulphonyl group to the molecule. The three compounds are presented in Figure 

1. 

 

 

Figure 1. Chemical structures of the compounds used in this study 
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3-MeSO2-DDE 

In mammals, formation of methyl sulphone metabolites of DDE results from arene-epoxide 

conjugation with glutathione and subsequent metabolism via the mercapturic acid pathway 

(Bakke et al., 1982; Brandt et al., 1992; Preston et al., 1984). The toxicological potential of 

MeSO2-containing metabolites has been demonstrated by the adrenocorticolytic toxicity 

induced by 3-MeSO2-DDE in mice in vivo/in vitro after bioactivation by the mitochondrial 

enzyme 11β-hydroxylase (CYP11B1) expressed specifically in the adrenal cortex (Jonsson, 

1994; Jonsson et al., 1992; Jonsson et al., 1991; Lund et al., 1988; Lund and Lund, 1995). It is 

metabolized to a reactive and cytotoxic intermediate that binds covalently to the adrenal 

cortex. Bioactivation of CYP11B1 results in inhibition of the enzyme which gives a decrease 

in plasma corticosterone levels. Neither 2-MeSO2-DDE nor p,p’-DDE have shown to give 

similar effect, indicating that the presence and position of the MeSO2- moiety is crucial (Asp 

et al., 2009). Besides the toxicity shown for the mouse adrenal cortex, adrenal interrenal cells 

from chicken (Brandt et al., 1992; Jonsson et al., 1994), human adrenal tissue slices (Lindhe 

et al., 2002) and the human adrenocortical H295R cell line (Johansson et al., 2002) are also 

sensitive. However, there is no conclusive evidence that 3-MeSO2-DDE is toxic in the human 

adrenal in vivo, but the findings indicate that 3-MeSO2-DDE may be a highly toxic endocrine 

disrupter in humans and mammals. 

3,3’-(bis)MeSO2-DDE 

The synthetic DDE-analogue, 3,3’-(bis)MeSO2-DDE, also inhibits steroidogenesis and thus 

decreases corticosterone production in the mouse adrenocortical cell line Y-1 (Asp et al., 

2009). As 3-MeSO2-DDE, the compound produces CYP11B1-dependent cytotoxicity in Y-1 

cells, but it is a less potent inhibitor of steroidogenesis and less toxic than 3-MeSO2-DDE and 

o,p’-DDD (Asp et al., 2009; Lund et al., 1988).  

o,p’-DDD 

The DDD isomer, o,p’-DDD (sold under the name mitotane, lysodren), is a tissue-selective 

toxicant after being metabolic activated locally in the adrenal cortex and it was shown to exert 

toxicity to the adrenal cortex in dogs as early in 1949 (Nelson and Woodard, 1949). Toxicity 

to mink adrenal cortex has also been demonstrated (Jonsson et al., 1993). o,p’-DDD is also 

toxic to humans; it is the main drug for adrenocortical carcinoma (ACC) and Cushing’s 

syndrome (overproduction of glucocorticoids due to a pituitary tumor) due to drug-induced 
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cell death in the adrenal cortex after a CYP-catalyzed reaction to a reactive acyl chloride 

which binds covalently to the adrenal cortex (Cai et al., 1995; Martz and Straw, 1980). The 

compound blocks cortisol synthesis by inhibiting cholesterol side-chain cleavage enzyme 

(CYP11A1) and CYP11B1 (Martz and Straw, 1980). In contrast to 3-MeSO2-DDE, mouse 

adrenal cortex is not sensitive to o,p’-DDD (Lund et al., 1988), but the compound is also toxic 

to adrenal interrenal cells (Brandt et al., 1992; Jonsson et al., 1994). Evaluations of the 

medical treatment with o,p’-DDD show that the compound gives several severe side effects, 

such as gastrointestinal irritation and central nervous system (CNS) toxicity (Ahlman et al., 

2001). There is also a low clinical response with only 35% of patients responding to treatment 

(Wooten and King, 1993). As ACC is a rare disease, little research has been focused on 

developing new therapeutic alternatives, but 3-MeSO2-DDE has been proposed as a possible 

alternative for the treatment (Lindhe et al., 2002).  

1.4 Porcine Leydig cells as a model for testicular steroidogenesis 

Testis tissue is organized into two compartments: the tubular compartment and the 

interstitium. The Leydig cells, discovered by Leydig in 1850, are confined to the interstitial 

tissue together with macrophages, fibroblasts and blood vessels and the seminiferous tubules 

are formed by the Sertoli cells (Gnessi et al., 1997). Figure 2 presents an anatomical 

arrangement of the testis. 

 

Figure 2. Representation of the anatomical arrangement of an adult testis (rat) (Gnessi et al., 

1997). 
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The boar testis is recognized by a highly developed interstitial tissue and only the stallion 

shows a comparable abundance of Leydig cells in the interstitium, suggesting a high capacity 

for steroid secretion (Fawcett et al., 1973; Raeside et al., 2006). In mammals, Leydig cell 

development is characterized by two well-defined periods of proliferation and differentiation 

with the first occurring in the fetal life and the second occurring during prepubertal 

development (Lejeune et al., 1998a). The boar does also have these two waves, but the pig 

testicle is unique because of an additional transient wave occurring between 2½ weeks before 

until 2½ weeks after birth characterized by a large volume of well differentiated cells (Van 

Straaten and Wensing, 1978). A similar series occurs also in the development of the human 

and the primate testis (Griswold and Behringer, 2009). In addition, neonatal porcine testes are 

regarded as a superior system for the study of testicular steroidogenesis: the cell cultures 

contain a high volume of Leydig cells and they also retain their specific functions in culture 

for relatively long periods (Mather et al., 1981).  

The porcine Leydig cells produce a remarkable list of steroids (Raeside et al., 2006). The 

testosterone secretion is an essential requirement for spermatogenesis (Ge et al., 2008), for 

development of the Wolffian duct system during embryonic growth (Ostrer, 2000), the 

maintenance of accessory sex glands (Thompson et al., 1980) and also for sexual behavior 

(Cohen-Bendahan et al., 2005). Hence, the male reproductive system is dependent on the 

secretion of testosterone. In mammals, the synthesis of testosterone proceed either via ∆5-

metabolites or via ∆4-metabolites (Conley and Bird, 1997). ∆5-metabolites predominates in 

the testis of humans and pigs (Ruokonen and Vihko, 1974a; Ruokonen and Vihko, 1974b), 

thus making pig Leydig cells a good model for studying testicular steroidogenesis. 

In addition, the testes do also produce estrogens. Estrogens are essential for normal testicular 

development where it is involved in regulation of luminal fluid and ion transport (Hess and 

Carnes, 2004) and the synthesis in boars is much higher than in males of other species (Claus 

and Hoffmann, 1980; Velle, 1966). Like the adult Leydig cells, neonatal Leydig cells do also 

produce testosterone and estrogen and a peak in plasma levels occur 2-4 weeks after birth 

(Colenbrander et al., 1977; Raeside et al., 2006; Schwarzenberger et al., 1993). The 

luteinizing hormone (LH) is the primary hormone controlling Leydig cell activity and the 

Leydig cells contain specific LH receptors (Lejeune et al., 1998b; Mather et al., 1982). 

Binding of the hormone to the receptor causes an increase in cyclic adenosine monophosphate 

(cAMP) levels followed by secretion of androgens and estrogens.  
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1.4.1 Testicular steroidogenesis 

There are many important aspects regarding testicular steroidogenesis. Gene expression for 

the cytochrome P450 hydroxylases involved is regulated at the transcriptional level by 

steroidogenic factor-1 (SF-1; coded by NR5A1) which mediates transcriptional activation in 

response to cAMP stimulation (Mendelson et al., 2005; Parker et al., 2002; Sandhoff et al., 

1998; Sugawara et al., 1996). Dosage-sensitive sex reversal-adrenal hypoplasia congenita
 

critical region on the X chromosome, gene-1 (Dax-1; coded by NR0B1), another transcription 

factor whose expression is mostly restricted to steroidogenic tissues (Ikeda et al., 1996), 

represses SF-1-mediated transactivation of StAR-gene, thus blocking steroidogenesis 

(Zazopoulos et al., 1997). The presence of ferritin in the cell is also important for 

steroidogenesis since this protein stores and releases iron in cells and therefore plays a central 

role in many essential cellular functions (Hentze and Kuhn, 1996). It is composed of two 

subunits, the ferritin light chain (FTL) and ferritin heavy chain (FTH) (Sammarco et al., 

2008). 

The production of testosterone starts from cholesterol and involves a number of enzymatically 

catalyzed steps (Figure 3). There is an extensive documentation confined to the expression    

and presence of the steroidogenic enzymes in the pig testis (Clark et al., 1996; Conley et al., 

1996; Hall, 1991; Inano et al., 1981; Moran et al., 2002; Sasano et al., 1989; Suzuki et al., 

1992). Many enzymes are involved in the biosynthesis of cholesterol like lanosterol 14α-

demethylase (CYP51) (Debeljak et al., 2003), but the rate-limiting enzyme is 3-Hydroxy-

3methylglutaryl-CoA reductase (HMGR) which catalyzes the conversion of HMG-CoA to 

mevalonate (Rodwell et al., 1976). The first rate-limiting step from cholesterol to testosterone 

is the transfer of cholesterol from the outer mitochondria membrane to the inner 

mitochondrial membrane, a process mediated by the action of steroidogenic acute regulatory 

protein (StAR) (Stocco, 2001). Further, CYP11A1 converts cholesterol to pregnenolone 

(Miller, 1995). From here, there are two alternative metabolic routes of pregnenolone 

utilization to testosterone; either to 17α-hydroxypregnenolone and dehydroepiandrosterone 

(DHEA)  (∆5-pathway) or to 17α-hydroxyprogesterone and androstenedione (∆4-pathway) 

(Conley and Bird, 1997). One enzyme having two catalytic activities catalyzes the steps in the 

∆4- and ∆5-pathway; cytochrome P450 c17 (CYP17A1) has both 17α-hydroxylase and 17,20-

lyase activity (Hall, 1991; Nakajin and Hall, 1981). It has been demonstrated that cytochrome 

b5 (CYB5) is involved with porcine CYP17A1 in the andien-β synthase system (Nakajin et 

al., 1985). Andien-β synthase activity thus decreases the production of 17α-
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hydroxypregnenolone, but it has been shown that CYB5 also increases the 17,20-lyase 

activity of CYP17A1 (Katagiri et al., 1982; Nakajin et al., 1985) which will lead to increased 

DHEA levels. Further in the steroidogenesis, the action of 3β-hydroxysteroid dehydrogenase 

(3β-HSD) (Conley and Bird, 1997) is needed to convert DHEA to androstenedione which is 

then synthesized to testosterone by the action of 17β-hydroxysteroid dehydrogenase (17β-

HSD) (Inano et al., 1981). Estrogens are synthesized from the aromatization of androgens by 

cytochrome P450 aromatase (CYP19A1) (Conley et al., 1996). In addition, isoforms of 17β-

HSD perform reduction of estrone to estradiol and likewise the reverse reaction (Adamski et 

al., 1992; Luu-The, 2001). To prevent excess circulation of steroid hormones, active 

androgens and estrogens are converted to inactive metabolites by the aldo-keto reductases 

(AKR1C1-AKR1C4), making the steroids substrates for conjugation reactions (Penning et al., 

2000). 
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Figure 3. Testicular steroid biosynthesis (A) in porcine Leydig cells.  A schematic illustration of the potential pathways from cholesterol to 

production of testosterone is presented. Part of the adrenocortical steroidogenesis (B) is included to show the potential pathway towards 

corticosteroids.
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1.5 Steroid metabolism in testis tissue and adrenal glands 

The three compounds used in this study do all exert toxic properties towards the adrenal 

cortex. Leydig cells and adrenal cells have tissue-restricted expression of cytochrome-P450 

enzymes which accounts for production of distinct steroids in the two tissues (Val et al., 

2006). Both are regulated by pituitary hormones and share a common pathway from 

cholesterol to progesterone (Hu et al., 2007). One of the differences between the cell types is 

expression of 21-hydroxylase (CYP21) and CYP11B1 in the adrenal cortex which allows 

secretion of corticosteroids while Leydig cells secrete androgens and estrogens by the 

presence of CYP17, 17β-HSD (Hu et al., 2007) and CYP19 (Conley et al., 1996). However, in 

many higher mammals, some regions in the adrenal cortex like zona fasciculata and zona 

reticularis also expresses CYP17 and the adrenals and gonads are thus capable of synthesizing 

similar steroid intermediates (Conley and Bird, 1997).  

Expression studies also indicate that Leydig and adrenal cells are derived from a common 

primordium that divides into separate tissues during embryogenesis (Hatano et al., 1996). 

Data from real-time polymerase chain reaction (PCR) studies have detected expression of 

CYP11B1 in fetal and neonatal testis and CYP21 in fetal and adult testis of mouse (Hu et al., 

2007). Expression of both have been detected in fetal testis of humans (Pezzi et al., 2003). 

Activity of CYP21 protein has also been detected in fetal and neonatal mouse testis (Hu et al., 

2007) and expression of CYP11B1 has been found in adult rat Leydig cells (Wang et al., 

2002). One study has performed a similar expression study on porcine testis where expression 

of CYP21 was detected (Grindflek et al., 2010). It is discussed, however, if the expression of 

the two enzymes derives from Leydig cells or from a small population of adrenal-like cells in 

the interstitium in the developing testis (Hu et al., 2007; Val et al., 2006). Nonetheless, these 

findings support the link between adrenal cells and Leydig cells.  
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1.6 Aims of study 

Because of the extensive use of the insecticide DDT in the past and the persistency of the 

mother compound and its metabolites, these halogenated hydrocarbons are still ubiquitous in 

the environment. Since pesticides have drawn increasing attention towards the reduced male 

fertility seen in the past years, this study aimed at evaluating the effect of two DDT 

metabolites (3-MeSO2-DDE and o,p’-DDD) and one synthetic DDE-analogue (3,3’-

(bis)MeSO2-DDE) in vitro on neonatal Leydig cells from porcine testicles. The endocrine 

disrupting effects of the two DDT-metabolites 3-MeSO2-DDE and o,p’-DDD towards humans 

and animals are well known. Both compounds interact with steroidogenic enzymes which 

make them toxic to the adrenal cortex and also able to inhibit steroidogenesis, albeit with 

species differences. Further, o,p’-DDD is currently the main drug for andrenocortical 

carcinoma (ACC) and Cushing’s syndrome, but treatment is combined with severe side 

effects and a low response rate. Due to the known effects 3-MeSO2-DDE and o,p’-DDD pose 

on adrenal cells and the fact that adrenal and Leydig cells are both steroid producing cells, we 

wanted to evaluate the effects of the these compounds on testicular steroidogenesis in vitro. 

Part of the study was also to contribute to new information about 3-MeSO2-DDE effect in 

other areas since this compound has been proposed as an alternative drug for o,p’-DDD. The 

synthetic and structurally related DDE-analogue, 3,3’-(bis)MeSO2-DDE, was also included in 

the study to see if an extra methyl sulphonyl group could give a different response. To our 

knowledge, this is the first time the effect of these three compounds has been evaluated on 

porcine Leydig cells. 

The overall objective in this thesis was to clarify the effect of 3-MeSO2-DDE, 3,3’-

(bis)MeSO2-DDE and o,p’-DDD on the mammalian male reproductive system by 

evaluating the compounds’ effect on testicular steroidogenesis. 

 To achieve information about the three compounds’ effect on neonatal porcine Leydig cells, 

three experiments were performed in order to;  

- Quantify the compounds’ effect on cell viability  

- Quantify the effects on the production of the following hormones; testosterone, 

estradiol, progesterone and cortisol. 

- Quantify the effects on gene expression by using 16 genes involved in testicular 

steroidogenesis  
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2.0 Materials and Methods 

For a detailed list about materials, chemicals and preparation of media and solutions see 

appendix 7.0. 

2.1 Chemicals 

2-(3-methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene (3-MeSO2-DDE) 

and 2,2’-bis(3-methylsulfonyl-4-chlorophenyl)-1,1-dichloroethene (3,3’-(bis)MeSO2-DDE) 

(purity  > 99%) were synthesized by Synthelec AB, Ideon (Lund, Sweden). 2-(2-chloro-

phenyl)-2-(4-chlorophenyl)-1,1-dichloroethane (o,p’-DDD) (purity > 99%) were obtained 

from Sigma-Aldrich (Stockholm, Sweden).  

2.2 Preparation of Cell culture 

2.2.1 Collection of Porcine Testicular Tissue  

Testis tissue was obtained from male offspring (Suidae, Sus scrofa) in approximately 8-12 

days old litters from Norwegian Landrace breeding units. Testicles obtained at each collection 

ranged from 50-90 testicles. The castration was performed by veterinarians from Norwegian 

School of Veterinary Science (NVH) same morning as the isolation of the Leydig cells took 

place. Local anaesthesia, 1% Lidocain without adrenalin was given on both sides 

subcutaneous in the scrotum and in the inguinal string. The skin was washed and then 

disinfected with 70% ethanol. Standard surgical procedure for castration of male piglets was 

followed on both sides. Testicles were then immediately placed on ice in a bottle of collection 

medium (see appendix 7.3 for details on media composition) and transported to NVH. After 

intervention, 6 mg ketoprofen/kg bodyweight was injected intra muscular as a single 

treatment. The procedure was always completed within three hours.  

 

2.2.2 Isolation and Purification of neonatal Porcine Leydig cells 

The methods for isolation, subsequent purification and culture of neonatal porcine Leydig 

cells were adapted from the protocols described by (Bernier et al., 1983; Lejeune et al., 

1998b).  

All work was performed in a laminar flow hood in a sterile fashion and all glass ware and 

tools needed were autoclaved beforehand (see appendix 7.2 for details on autoclaved 

materials). About 12 testicles were collected in a petri dish (VWR, International AS, Oslo, 
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Norway) containing collection medium. The epididymus and skin of each testicle was peeled 

off with tweezers and scissors, and then decapsulated by cutting the testicles almost in half 

with a razor blade (sterile). The parenchyma was scraped off from the skin holding the testicle 

together and then finely minced with scissors. Collection medium was added and the minced 

tissue was collected into 50 ml tubes (BD Falcon via VWR). The pellet was left for 

sedimentation before it was washed several times with collection medium in order to wash out 

the blood. When a clear supernatant was obtained, about 30 testicles were divided into 50 ml 

tubes. Further, dissociation medium (refer to appendix 7.3 for details on composition) of 90 

ml was put in 500 ml bottle. The bottle was preheated in a waterbath to 34°C (1 bottle per 30 

testicles is needed). To these bottles, testis tissue was added and the solution was put on 34°C 

bath with agitation. During the agitation time the extracellular matrix in the tissue was broken 

down and cells were freed from the tissue.  

 

After 45 minutes of agitation we harvested collection 1. 50 ml of the supernatant from each 

bottle was pipetted over a metal filter into a clean beaker. The decanted volume was replaced 

with new collection medium and put back for further incubation for 45 minutes. The cell 

suspension was poured into 50 ml tubes and centrifuged for 10 minutes at 1080 Revolutions 

Per Minute (RPM). The supernatant was discarded, the pellet resuspended and up to 50 ml of 

collection medium was added. The suspension was left for sedimentation for 5 minutes. Then 

the supernatant was transferred with a pipette to a new 50 ml tube and left for 15 minutes of 

sedimentation. After sedimentation the supernatant was transferred to a new tube 50 ml tube 

and centrifuged for 10 minutes at 1080 RPM. The supernatant was discarded and the pellet 

resuspended with a little collection medium. Pellet from each 50 ml tube was collected into 

one 50 ml tube. All tubes were washed with a little media before collecting the pellet together. 

Collection 1 is now finished and kept in the fridge (4°C).  

 

After the start of the agitation we harvested the solution 3 times in total. We repeated the 

same procedure each time. Collection 2 is to be harvested after 90 minutes of agitation and 

collection 3 after 120 minutes. When we harvested collection 3, we poured everything of the 

testis suspension mix into the metal filter. When finished with collection 3, collections 1, 2 

and 3 were pooled together. 5 ml of the pooled cell suspension was then divided on top of the 

Percoll gradients (Figure 4). The percoll gradients were made the same morning as the 

isolation (see appendix 7.3 for details on Percoll gradient composition and layering). The 

suspension was applied slowly. The break was set on 1 and the gradients were centrifuged for 



22 

 

30 minutes (4°C) at 2140 RPM. After the centrifugation the top layers (21% fraction and 26% 

fraction) were aspirated with a pipette till about the 12, 5 ml mark of a 50 ml tube. Then we 

recovered the Leydig cells from the 34% fraction (around 10-7 ml mark).  

 

Figure 4. Discontinuous Percoll density gradient. 5 ml of cell suspension is added and after 

centrifugation the Leydig cells can be obtained from the 34% fraction.  

The 34% fraction was transferred to a new 50 ml tube, diluted with collection medium and 

centrifuged for 20 minutes at 1080 RPM. The supernatant was discarded and resuspended in 

20 ml collection medium for about 60 testicles. The cells were filtered through a cell strainer, 

70 µm, white (BD Bioscience via VWR, International AS, Oslo, Norway) into another 50 ml 

tube and then counted in a Bürker Hematocytometer chamber (Superior, Marienfeld, 

Germany)  

2.2.3 Plating of cells 

The cells were plated out in sterile 24-well primaria plates (for hormone readouts and 

preparation of RNA) (BD Falcon via VWR, International AS, Oslo, Norway) and 96-well 

MicroWell-plates (for cell viability test) (VWR, International AS, Oslo, Norway). The total 

number of cells needed per 24-well plate is: 150 000 cells/cm
2
 x 2 cm

2
 x 24 = 7.2 x 10

6
 

cells/plate and per 96-well plate: 150 000 cells/cm
2 
x 0.32 cm

2
 x 96 = 46.08 x 10

5
 cells/plate. 

Before plating out the cells, we diluted the cells with complete plating medium (see appendix 

7.3 for details on media composition) to 300 000 cells/ml. 1 ml of this suspension was then 

added to each well in a 24 plate and 100 µl in a 96 plate. The plates were incubated for 72 

hours in a humidified incubator at 34°C and 5% CO2 to form a monolayer. 
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2.2.4 3β-hydroxysteroid dehydrogenase staining for assessment of cell 

identity 

For assessment of cell identity, one round with cytochemical staining for 3β-HSD was 

performed on two separate Leydig cell isolations. The Leydig cells turn blue due to reduction 

of tetrazolium blue dye by the enzyme and this technique is considered specific for Leydig 

cells in the testis (Huang et al., 2001; Levy et al., 1959). Isolation of Leydig cells were 

performed as previously described. Cells were plated out in multiwell primaria 6-well plates 

(BD Falcon via VWR, International AS, Oslo, Norway) and left in the incubator for 72 hours 

at 37°C and 5% CO2.  Medium was removed and cells were washed with phosphate buffered 

saline (PBS) 0.15 M, pH 7.4. Then 500 µl trypsin was added for two minutes in order to 

detach cells from the wells. The trypsin was removed and then 5 ml Ham’s F12 and 

Dulbecco’s modified Eagle’s medium (DMEM) 1:1 supplemented with 1.2 mg/ml sodium 

bicarbonate and 15 mM Hepes, pH 7.4 (DMEM/F12) containing 10% foetal calf serum (FCS) 

was added to inactivate trypsin. The wells were washed with this medium and then medium 

with cells was transferred to a tube and centrifuged at 1500 RPM for five minutes. Medium 

was removed and the cells (300 000 cells/ml) were respuspended and incubated with 2 ml of a 

solution containing 0.2 mg/ml nitro blue tetrozolium, 0.12 mg/ml 5-androstane-3β-ol-one and 

1 mg/ml NAD+ in 0.05 M PBS, pH 7.4 at 37°C in a waterbath for 90 minutes (Huang et al., 

2001). Upon development of the blue formazan deposit sites of 3β-HSD activity, the 

abundance of Leydig cells was determined with a hemocytometer.  

2.3 In vitro exposure of cells 

2.3.1 Exposure with 3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE and o,p-DDD   

The test compounds were diluted to 20 mM/ml in dimethyl sulfoxide (DMSO), divided into 

50 µl aliquots and stored at -20°C until use. Before the exposure, the incubation medium was 

replaced with fresh complete plating medium of 1 ml per well in a 24 plate and 100 µl per 

well in a 96 plate. The stock solutions were diluted in DMSO and complete plating medium to 

yield the final exposure concentrations of 0.625, 1.25, 2.5, 5, 10 and 20 µM for each 

compound. The final exposure concentrations were decided due to a study done by (Asp et al., 

2009). Control cells were exposed to 0.1% DMSO. Three triplicates for each concentration 

were used, with three wells left blank with medium only (Figure 5). The cells were incubated 

at 34°C (5% CO2) for 48 hours. At the end of the incubation period, the medium from the 24-

well plates was collected (for hormone readouts) and stored at -75°C until use. The plates 
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were then wrapped in parafilm and quickly stored at -75°C to avoid degradation of 

ribonucleid acid (RNA).  

Medium 

Blank 

Medium 

Blank 

Medium 

Blank 

Solvent Control 

0.1% DMSO  

 

Solvent Control 

0.1% DMSO 

 

Solvent Control 

0.1% DMSO 

20 µM 10 µM 5 µM 2.5 µM 1.25 µM 0.625 µM 

20 µM 10 µM 5 µM 2.5 µM 1.25 µM 0.625 µM 

20 µM 10 µM 5 µM 2.5 µM 1.25 µM 0.625 µM 

 

Figure 5: Experimental design of plate lay-out for 3-MeSO2-DDE, o,p’-DDD and 3,3’-(bis)MeSO2-

DDE.  

2.4 Cell viability test with AlamarBlue  

After the exposure, assessment of cell viability in the individual wells of the 96-well plates 

was performed by using AlamarBlue, a redox indicator. In each well the incubation medium 

was replaced with 100 µl complete plating medium containing 10% AlamarBlue. The plates 

were let to incubate in 34°C (5% CO2) in a humified atmosphere for three hours. Resazurin is 

the non-fluorescent compound that gives the blue color. Living cells will take this up in the 

mitochondria and reduce this to resorufin which produces red fluorescence. After incubation 

100 µl aliquote from each well was collected into a 96-well transparent well plate (Falcon, 

Franklin Lakes, NJ). The samples were measured in a Victor
3
 1420 Multilabel Counter 

Spectrophotometer (Perkin Elmer, Shelton, CT, USA) by absorption at 570 and 600 nm 

wavelength. All 24-well plates were also treated with 10% AlamarBlue for one hour (Due to 

short incubation time, the readings from 24-well plates were not used) 

2.5 Hormone analysis 

Frozen medium was thawed and hormones in culture medium were measured by a solid phase 

radioimmunoassay (RIA) kit. The kit was modified by replacing the standard curve in serum 

with standards prepared in complete plating medium. The assay under the new conditions was 

then validated for each hormone and all samples were measured in duplicates. For 

measurement of estradiol, testosterone and cortisol, Coat-a-CountR kits (Diagnostic Products 

Corporation, Los Angeles, CA, USA), were used. For estradiol, the standard curve range was 

0-4000 pg/ml and the sensitivity of the assay was 9 pg/ml corresponding to 95% binding of 

the labeled hormone. The interassay variation coefficients (low and high) for estradiol were 

6.7%  (650.8 pg/ml) and 10.6% (1744.5 pg/ml), respectively. The sensitivity of the 
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testosterone assay was 0.1 ng/ml, the standard curve ranged from 0-20 ng/ml and the 

interassay coefficients were 11.7% (2.4 ng/ml) and 14.1% (9.5 ng/ml), respectively. For 

cortisol, the sensitivity of the assay was 3 ng/ml, the standard ranged from 0-500 ng/ml and 

the variation coefficients were 9.8% (57.7 ng/ml) and (210.2 ng/ml), respctively. For 

measurement of progesterone, solid phase radioimmunuassay kit (Spectria, Orion 

Diagnostica, Espoo, Finland) was used. The sensitivity of the assay was 0.08 ng/ml, standard 

curve ranged from 0-40 ng/ml and the intervariation coefficients were 5.4% (0.3 ng/ml) and 

24.6 (1.5 ng/ml). Hormone levels were measured in Wallac 1470 Wizard gamma-counter 

(Perkin Elmer, Shelton, CT, USA)  

2.6 Gene expression analysis   

2.6.1 RNA isolation  

The cells were kept in -75°C until isolation of RNA. Total RNA from all 24-well plates was 

isolated using the Qiagen RNeasy Mini Kit (Qiagen, Crawley, UK) and manufacturer’s 

protocol was followed. The plates were brought in to the lab on ice and 200 µl RLT buffer 

(lysis buffer) was added to each well. 1000 µl tips were used to scrape off cells and transfer 

cell lysate to a QIAshredder spin column (Qiagen) in a 2 ml collection tube. Three replicate 

wells for each sample were pooled into one spin column. (Pooling of three replicate wells was 

necessary in order to get enough RNA for gene expression analysis). After spinning for 2 

minutes at 13000 RPM, 600 µl 70% ethanol was added and mixed well with the homogenized 

lysate (flow through). Lysate was then transferred to an RNeasy spin column in a 2 ml 

collection tube, and spun for 15 seconds (1300 RPM). RNA was washed with 350 µl RW1 

buffer and centrifuged for 15 seconds (13000 RPM). Prior to further purification, each RNA 

sample was treated with 80 µl DNase I mixture (10 µl DNase I and 70 µl RDD buffer; 

Qiagen) to remove deoxyribonucleic acid (DNA) contamination. The DNase I mixture was 

washed off with 350 µl of RW1 buffer and centrifuged for 15 seconds (13000 RPM). RPE 

buffer of 500 µl was added with spinning of 15 seconds, this was repeated once more with 

centrifugation for 2 minutes (13000 RPM). Collection tubes were removed and RNA was 

eluted with 55 µl RNase-free H2O (Qiagen) in 1.5 ml tubes. After spinning for 1 minute 

(13000 RPM), samples were set on ice and 5 µl from each tube was transferred to new tubes 

which were used for quantitative and qualitative check of the RNA. Samples were stored at -

75°C until required. 
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2.6.2 RNA quantity and quality 

The quantity of RNA was determined with a NanoDrop ND-1000-Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE) were 1 µl of purified RNA sample was added to 

the instrument. Mean concentrations of purified RNA isolated from neonatal porcine Leydig 

cells ranged between 94 – 241 ng/µl for solvent control samples and 52 – 198 ng/µl for 10 

µM samples. The quality was examined with Agilent Bioanalyzer (Agilent Technologies, CA, 

USA) using the Agilent RNA 6000 Nano LabChip Kit. The bioanalyzer indicated that all 

RNA samples were of high quality. The samples had all satisfactory ratios of ribosomal RNAs 

(28S/18S) and RNA Integrity Numbers (RIN) values, with mean of 1.7 and 8.8, respectively. 

An electropheregram with RNA of high quality from an o,p’-DDD exposure is presented in 

Figure 6. 

 

Figure 6. An electropheregram of a RNA sample from Leydig cells exposed to 1.25 µM o,p’-DDD 

by using Agilent 2100 Bioanalyzer. The x axis shows the integrety time (seconds) and y axis 

reprensents the fluoroscence. Ribosomal RNA peaks of 28S and 18S are indicated in the figure. 

A gel- image of the RNA products is shown to the right. 

2.6.3 Reference genes 

In order to have accurate gene expression measurements, it is important to normalize results 

from the Real-Time Reverse Transcriptase-PCR (Real-Time RT-PCR) experiments to a 

reference gene that is not affected by the experimental conditions. Six housekeeping genes 

(PGK1, HPRT, S18, GAPDH, ACTB and PPIA) were analyzed using the geNorm-software 

(PrimerDesign Ltd, Southampton, UK) in order to predict the most stable reference genes. All 

genes tested had an M-value of 0.9 or less. The two most stable genes, ACTB (cytoskeletal 

beta actin) and PPIA (cyclophilin A), had M-values of 0.27 and were selected as reference 

genes in this study (Figure 7). 
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Figure 7. Average expression stability values of six housekeeping genes. The most stable 

reference genes are centered to the right. ACTB and PPIA (cyclo A) were most stable and 

chosen as reference genes. 

The expression of ACTB and PPIA were also reasonable stable, which indicates that exposure 

with 10 µM of either compounds did not have an effect on expression of the two 

housekeeping genes (Figure 8).   

 

Figure 8. Variation in cycle threshold value (CT-value) for housekeeping genes ACTB and PPIA 

in DMSO and 10 µM samples for the three compounds. Mean CT-value ± SE is shown (n=3). 
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2.6.4 Primer design 

In total, 16 genes involved in testicular steroidogenesis were analyzed. Gene names and 

primer sequences are listed in Table 1. Primer sequences for HMGR, CYP51, StAR, CYP11A1, 

CYP17A1, HSD3B, CYP19A1, HSD17B1, HSD17B4, CYP21, CYP11B1, CYB5, FTL, 

AKR1C4, NR5A1, NR0B1, PGK1 and S18-primers were designed using Primer express 1.5 

(Applied Biosystems, Foster City, CA, USA) and obtained from Sigma-Aldrich. Specificities 

of all primers were checked using nuclotide BLAST and primer BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). HPRT, GAPDH, ACTB, and PPIA were derived from 

(Duvigneau et al., 2005). All primer pairs used for the present study were already in house 

before the experiment started.  
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TABLE 1   Real-Time RT-PCR primer sequences for genes analyzed 

 

 

 

Gene abbreviation    Gene name Forward primer, 5’-3’ Reverse primer, 5’-3’ 

ACTB (reference gene) 
PPIA (reference gene) 
HMGR 
CYP51 
StAR 
CYP11A1 
CYP17A1 
HSD3B 
CYP19A1 
HSD17B1 
HSD17B4 
CYP21 
CYP11B1 
CYB5 
FTL 
AKR1C4 
NR5A1 
NR0B1 

Cytoskeletal beta actin 
Peptidylprolyl isomerase A (cyclophilin A) 
3-hydroxy-3-methylglutaryl-coenzyme A reductase 
Cytochrome P450, family 51, subfamily A, polypeptide 1 
Steroidogenic acute regulatory protein 
Cytochrome P450 cholesterol side chain cleavage 
Cytochrome P450 17A1 
Hydroxy-delta-5-steroid dehydrogenase 
Cytochrome P450 19A1 
Hydroxysteroid (17 beta) dehydrogenase 1 
Hydroxysteroid (17 beta) dehydrogenase  4 
Cytochrome P450, family 21, subfamily A, polypeptide 2 
Cytochrome P450, family 11, subfamily B, polypeptide 1 
Cytochrome b-5 
Ferritin, light polypeptide 
Aldo-keto reductase family 1, member C4 
Nuclear receptor subfamily 5, group A, member 1 
Nuclear receptor subfamiliy 0, group B, member 1 

CTCGATCATGAAGTGCGACGT  
TGCTTTCACAGAATAATTCCAGGATTTA 
CTCGTGGCCAGCACCAATA 
TATGTGCCATTTGGAGCTGG 
AGAGCTTGTGGAGCGCATG 
CACCCCATCTCCGTGACC 
AGCCAAGACGAACGCAGAA 
GGAGGAAGCCAAGCAGAAAA 
AAAGCACCCCCAGGTTGAA 
TCGGGTCGCATATTGGTGA 
TTGCCATGAGAGTTGTGAGGAA 
CCATAGAGAACAGGGACCACCT 
GGAGCACTTTGAGGCCTGG 
TCAAAGATTGCCAAGCCTTCG 
TTCCTGGATGAGGAGGTGAAGC 
AAGTACAAGCCCGTCTGCAAC 
GCCAGGAGTTCGTCTGCCT 
GACCGTGCTCTTTAATCCGGA 

GTGATCTCCTTCTGCATCCTGTC 
GACTTGCCACCAGTGCCATTA 
GGAAAACGTACCACTGGAGTCAT 
CGAAGCATAGTGGACCAAATTG 
CATGGGTGATGACTGTGTCTTTTC 
GCATAGACGGCCACTTGTACC 
CCCCAAAGATGTCCGCAAC 
TTTTCAGCGCCTCCTTGTG 
CCACCACTTCGAGTTTTTGCA 
GCGCAGTAAACAGCGTTGAA 
GTCTTACAAGGGCTCCAAGGG 
TAGTCCAGCATGTCCCTCCAC 
CGCTGTAGTGCCACGGATG 
ACAACCAGTGCTGAGATGGCTG 
CTTTCGAAGAGGTACTCGCCCA 
TCCTTGGACTTGCAAAACTCC 
GTTCGCCTTCTCCTGAGCG 
TCCTGATGTGTTCGCTAAGGATC 



30 

 

2.6.5 Real-Time RT-PCR 

Real-Time RT-PCR was used in order to investigate if selected genes were up- or down 

regulated in cells exposed to test compounds of 10 µM compared to solvent control. The 

assay was already optimized with respect to primer annealing temperatures where a range of 

temperatures were tested and the lowest CT value was selected.  The reaction products were 

also run beforehand in the lab on an agarose gel to ascertain the presence of a single clear 

band of the correct size per primer pair.  

 

Initially, the assay was optimized with respect to complementary DNA (cDNA) 

concentrations and amplification efficiency. A two-fold dilution series was run, where all 

primers were tested with cDNA concentrations of 5, 2 and 1 ng/µl. The 1 ng/µl dilution gave 

satisfactory CT values (17-30) for all primers and was chosen as the optimal cDNA 

concentration. A ten-fold dilution series was also performed to evaluate amplification 

efficiency of each primer pair. Two samples were used; a solvent control sample (DMSO) and 

a sample representing the three different exposure scenarios pooled together. The cDNA was 

diluted to concentrations of 30, 3, 0.3, 0.03 and 0.003 ng/µl. For each primer pair, a standard 

curve was made. The slope of this curve was used to calculate the efficiency. For all primers 

the amplification efficiency was between 1.80 and up to 1.99 which means that the amplicon 

copy number increased 1.80- fold or that 80% of the template was amplified. 

First-strand cDNA synthesis by Reverse Transcriptase and quantitative PCR (qPCR) were 

done using the Superscript III Platinum Two-step qRT-PCR kit with SYBR green (Invitrogen, 

Carlsbad, CA, USA) and manufacturer’s recommendations were followed. The following 

components were combined to a master-mix enough for 1 reaction: 10 µl 2xRT Reaction Mix, 

2 µl RT Enzyme Mix, 2 µl diethylpyrocarbonate (DEPC) and 6 µl RNA sample. This gave an 

input of RNA of 300, 480 or 600 ng in a total reaction volume of 20 µl. The different amounts 

of RNA input were due to the variation of the RNA concentrations in the samples obtained 

from the RNA isolations. All RNA samples were split into technical duplicates prior to cDNA 

synthesis. For each RNA sample a control with no added reverse transcriptase was included to 

check for genomic DNA contamination in the qPCR reactions. Negative controls without 

template and a positive control (with unexposed sample) were included on each plate. The 

cDNA was synthesized in 96 well PCR plates in a Peltier Thermal Cycler-225 (MJResearch, 

Waltham, MA, USA) with following configurations: 
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 25°C for 10 minutes 

 42°C for 50 minutes 

 85°C for 5 minutes 

After the incubation in the PCR machine, the plate was chilled on ice. To remove possible 

traces of RNA, 1 µl of RNase H was added and the plate was incubated at 37°C for 20 

minutes, cDNA was diluted to 1 ng/µl with DEPC water and stored at -20°C until use.  

In the real-time RT-PCR reactions, we used half of the amounts recommended in the protocol 

by the manufacturer. A master-mix containing 12.5 µl Platinum SYBR Green qPCR 

supermix-UDG, 2 µl DEPC and 5 µl cDNA was prepared. In order to correct for no-

amplification related fluorescence, 0.5 µl of Rox dye (diluted 10 times) was also added to the 

reaction mixture. This master-mix (20 µl) was added to each well in addition to 5 µl diluted 

primers. The primers had a final working concentration of 200 nM and the resulting cDNA 

amount was 5 ng (assuming full RT efficiency) in a total reaction volume of 25 µl. Negative 

controls without RT, positive controls and negative controls without template were also 

included on each PCR plate. The real-time RT-PCR reactions were run in a DNA Engine 

Thermal Cycler with Chromo 4 Real-Time detector (MJResearch) and its software Opticon 

Monitor 3 (Bio-Rad Laboratories, Hercules, CA, USA) with following configurations: 

 50°C for 2 minutes (UDG incubation) 

 95°C for 2 minutes (enzyme activation) 

Followed by 40 cycles of 

 95°C for 15 seconds (denaturation) 

 62°C for 30 seconds (annealing) 

 72°C for 30 seconds (elongation)  

 

The absence of primer-dimers, genomic DNA and other DNA contaminations was also 

monitored during the experiment by including a melting curve from 65 – 90°C, read for 1 

second every 0,3°C at the end of each run.  
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2.7 Statistical analysis  

Data were analyzed by JMP 8 software (SAS Institute Inc, Cary, NC, USA) and Microsoft 

Excel 2007. Two cell viability experiments, three hormone experiments and three qRT-PCR 

experiments were performed. Where analysis of variance (ANOVA) and multiple comparison 

tests were used, the three underlying assumptions were required:  

 Independent observations  

 Normally distribution of data 

 Homogeneity of variance  

The Shapiro-Wilk’s test was used on the observed values for hormone and cell viability data 

to test for normality. Levene’s test was used to evaluate the homogeneity of variances within 

the observations. In case of non-normality in the dependent variables, a logarithmic or square 

root transformation was performed to obtain a better fit to the normal distribution. Data were 

transformed for statistical analysis only.  

Due to time limits, cytotoxicity was tested in two independent experiments. The first 

experiment consisted of three replicates and the second of one replicate for each compound 

(n=4). Viability measured by fluorescence in the three well triplicates on each plate were 

combined to one replicate and expressed as percentage of control (=100%). 3,3’-(bis)MeSO2-

DDE data (logarithmic transformed) were normally distributed and 3-MeSO2-DDE data were 

close to a normal distribution. The variances for both were homogenous and analyzed with 

one-way ANOVA. Cell viability data for o,p’-DDD failed Levene’s test and Kruskal-Wallis 

test was used as a non-parametric alternative. The medium blank replicates were used as a 

control against the solvent control replicates to validate the effect on DMSO on viability with 

a paired two-tailed t-test. Since the solvent controls are not affected by the exposure, the 

plates within each replicate were combined together as one unit (n=3). 

For hormone data, the mean hormone concentrations of nine replicates obtained from three 

experimental runs were used in the statistical analysis (n=9). A logarithmic transformation 

was done for estradiol data from the 3-MeSO2-DDE exposure and a square root 

transformation was performed for o,p’-DDD exposure. The data were normally distributed, 

except for 3,3’-(bis)MeSO2-DDE (close to a normal distribution) and the variances were 

homogenous. For testosterone, 3,3’-(bis)MeSO2-DDE data were logarithmic transformed to 
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obtain homogenous variance and a better fit to the normal distribution. These data for 

estradiol and testosterone were tested with two-way ANOVA and the experimental run was 

incorporated in the analysis as an independent variable in the regression model together with 

the exposure groups to explain the response variable. To further include both the exposure 

groups and the experimental runs in the statistical analysis, the Tukey-HSD test was used to 

compare the exposure groups against the controls. Linear regression was used to check if the 

response in hormone production followed a significant trend and the concentration was set as 

an independent variable. 

Testosterone data for 3-MeSO2-DDE and o,p’-DDD failed the Levene’s test. The data were 

prior to statistical analysis expressed as percentage of control in order to remove possible 

variance in solvent control that could be explained by the experimental run. Kruskal-Wallis 

test was used for analysis of the data and if significant outcome, each exposure group was 

then tested against the control with the use of the Bonferroni correction method.  

For analysis of qPCR data, the CT values from the analysis were exported from instrument 

software to Excel, where the 2
^-ΔΔCt

 method was used to create fold changes, and these ratios 

were log2 transformed prior to statistical analysis. Expression of the genes was normalized to 

ACTB and PPIA. Due to few replicates, it was difficult to detect any alteration on gene 

expression with Kruskal-Wallis. The log2 transformed fold change values (ΔΔCt*(-1)) of 

genes expressed in cells exposed to the test compounds were therefore analyzed by Student t 

test.  

P- values < 0.05 were regarded as statistically significant. In the cases were the Bonferroni 

correction was used, the P- value was reduced six times: 0.05/6 = 0.0083   
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3.0 Results 

3.1 3β-HSD staining- purity of Leydig cells 

The 3β-HSD staining was performed to ascertain that cells isolated with a discontinuous 

Percoll gradient were primary neonatal porcine Leydig cells. Our two preparations with 

purified cells from testis tissue contained approximately 80% of neonatal porcine Leydig 

cells.  

3.2 Cell viability 

Effect on cell viability by 3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE and o,p’-DDD was tested 

with AlamarBlue against the solvent control (0.1% DMSO) after 48 hours incubation. All of 

the six exposure concentrations were included. Two independent experiments were performed 

where plates 1-3 belonged to the first experiment and plate 4 to the second experiment.  

Since all test compounds were diluted in DMSO, the effect of DMSO on cell viability was 

also examined (Figure 9). There was no apparent effect that 0.1% DMSO exposure reduced 

cell viability, but experiment 4 caused a small significant increase (P=0.02).* 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Percent viable Leydig cells exposed to 0.1% DMSO (solvent control) after 48 hours. 

Viability in controls (medium blank) was set to 100%. The plot shows two independent 

experiments; the first include replicate 1-3 and the second replicate 4. Mean values with SE are 

shown for three plates within the replicates (n=3) (paired two-tailed t-test; p<0.05).  
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In Leydig cells, no significant change in viability was associated with 3-MeSO2-DDE and 

3,3’-(bis)MeSO2-DDE exposure compared to the solvent control (Figure 10A and B, 

respectively). Both data sets were influenced with some variation between the four plates.  

o,p’-DDD (Figure 10C) exposure affected cell viability in Leydig cells. It reduced the 

viability at the highest concentration (20 µM) to -1.1 ± 3.3% (mean ± SE) from solvent 

control. There was a significant difference in the dataset (Kruskal-Wallis, p < 0.05) which 

probably could be explained by the reduction at 20 µM. It is therefore likely to assume that 

only 20 µM exposure with o,p’-DDD impair cell viability.  
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Figure 10. Box plot showing percent viable primary neonatal porcine Leydig cells exposed to 

A) 3-MeSO2-DDE (red), B) 3,3-(bis)MeSO2-DDE (blue) and C) o,p’-DDD (grey) after 48 hours 

incubation. All six exposure concentrations are expressed as percentage of solvent control 

and compared to solvent control (100%). Results are shown for independent two experiments 

(four plates) taken together (n=4). Shown are minimum, first quartile, median, third quartile and 

maximum values. 
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3.3 Hormone production in primary neonatal porcine Leydig cells 

exposed to test compounds 

Hormone production in neonatal porcine Leydig cells exposed the three test compounds was 

measured in three independent experimental runs after 48 hours incubation. Replicates for 

each exposure concentration on the 24-well plates were treated as biological replicates. The 

Leydig cells did not produce detectable levels of cortisol and progesterone, so results for these 

two hormones are not presented. Generally, the compounds caused an increase in hormone 

production, particularly testosterone. 

3.3.2 Testosterone production 

In general, the testosterone production increased with increasing concentrations for all three 

compounds (Figure 11). The testosterone levels in the solvent controls ranged from 0.09-0.6 

ng/ml.  

3-MeSO2-DDE exposure increased the testosterone production in a significant concentration-

dependent manner (Figure 11A) and all exposure groups were significantly higher than cells 

exposed to the solvent control (Table 2). 20 µM exerted most effect with almost ten-fold 

increase from solvent control. 

3,3’-(bis)MeSO2-DDE exposure had less effect on testosterone production compared to 3-

MeSO2-DDE and o,p’-DDD (Figure 11B). Only 20 µM was significantly different from 

solvent control (Table 2) and it gave a three-fold increase in production. There were 

significant differences between both groups and experimental runs (two-way ANOVA, p < 

0.0001). 

With o,p’-DDD, all concentrations gave a significant increase (Table 2) from solvent control 

in a significant concentration-dependent manner (Figure 11C). 1.25 µM exerted most effect 

with a 21-fold increase from solvent control while 10 µM and 20 µM leveled it down to 

almost 19-fold increase and 14-fold in production, respectively.  
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Figure 11. Testosterone production in primary neonatal porcine Leydig cells exposed to A) 3-

MeSO2-DDE (red), B) 3,3’-(bis)MeSO2-DDE (blue) and C) o,p’-DDD (grey) after 48 hours 

incubation. Testosterone was measured in ng/ml. The plots show minimum, first quartile, 

median, third quartile and maximum values. Points more than 1.5 times the interquartile range 

above/below the quartiles are defined as outliers and plotted individually. The data represents 

three independent experiments, each performed in triplicates (n=9). The statistics are shown in 

Table 2.  
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Table 2. Statistical results for testosterone data from Tukey-HSD test after exposure to 3,3’-

(bis)MeSO2-DDE (p<0.05) and for Kruskal-Wallis test with Bonferroni correction after exposure 

to 3-MeSO2-DDE and o,p’-DDD (p<0.0083). Each exposure group was compared against solvent 

control (non-significant groups are denoted with n.s). 

Compound 0.625 µM 1.25 µM 2.5 µM 5 µM 10 µM 20 µM 

3-MeSO2-DDE p<0.0083 p<0.0083 p<0.0083 p<0.0083 p<0.0083 p<0.0083 

3,3’-(bis)MeSO2-DDE n.s n.s n.s n.s n.s p<0.05 

o,p’-DDD p<0.0083 p<0.0083 p<0.0083 p<0.0083 p<0.0083 p<0.0083 

 

3.3.1 Estradiol production  

Estradiol production was not affected in the same magnitude as testosterone production 

(Figure 12). The three solvent controls for the compounds are presented with a large box plot 

caused by variation between the three isolations (51 – 428 pg/ml). There were significant 

differences between both exposure groups and experimental runs for all three compounds 

(two-way ANOVA, p < 0.0001). 

3-MeSO2-DDE exposure gave an increase in estradiol production in a significant 

concentration-dependent manner. 20 µM exerted most effect which resulted in almost two-

fold increase compared to cells exposed to solvent control (Figure 12A). All exposure groups 

except 0.625 µM were significantly different (Table 3).  

3,3’-(bis)MeSO2-DDE had the opposite effect of 3-MeSO2-DDE and it decreased the estradiol 

production in a significant concentration-dependent manner (Figure 12B). 10 µM had most 

effect and the estradiol production was reduced to circa half of the solvent control. The only 

concentration which did not cause a significant reduction from solvent control was 0.625 µM 

(Table 3).  

Exposure with o,p’-DDD gave a bell-shaped curve response in estradiol production (Figure 

12C). All concentrations caused a significant increase in production from solvent control 

(Table 3). The first concentrations from 0.625 – 5 µM increased the production; 5 µM gave 

nearly a two-fold increase from solvent control. 10 µM and 20 µM did not give any further 

increase and the production was reduced to one and a half-fold of solvent control at 20 µM.  



40 

 

 

 

Figure 12. Estradiol production in primary neonatal porcine Leydig cells exposed to A) 3-

MeSO2-DDE (red), B) 3,3’-(bis)MeSO2-DDE (blue) and C) o,p’-DDD (grey) after 48 hours 

incubation. The estradiol levels were measured in pg/ml. The plots show minimum, first 

quartile, median, third quartile and maximum. Points more than 1.5 times the interquartile 

range above the first quartile are defined as outliers and plotted individually. The data 

represents three independent experiments, each performed in triplicates (n=9). The statistics 

are shown in Table 3. 
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Table 3. Statistical results for estradiol data from Tukey-HSD test after exposure to 3-MeSO2-

DDE, 3,3’-(bis)MeSO2-DDE and o,p’-DDD (p<0.05). Each exposure group was compared against 

solvent control (non-significant groups are denoted with n.s). 

Compound 0.625 µM 1.25 µM 2.5 µM 5 µM 10 µM 20 µM 

3-MeSO2-DDE n.s p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 

3,3’-(bis)MeSO2-DDE n.s p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 

o,p’-DDD p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 

3.4 Gene expression results 

Gene expression analysis was performed on solvent control samples and 10 µM samples from 

3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE and o,p’-DDD exposure. The expression of genes was 

normalized to ACTB and PPIA and the 10 µM samples were then compared to solvent control. 

The goal was to investigate if 48 hours of exposure with 10 µM by either compound could up 

or down regulate genes involved in testicular steroidogenesis. Three independent 

experimental runs were performed in total.  

3.4.4 Effect on gene expression in primary neonatal porcine Leydig cells by 

test compounds 

The test compounds altered the expression of some genes involved in testicular 

steroidogenesis (Figure 13). Most genes altered were down-regulated while only one gene 

was up-regulated.  

3-MeSO2-DDE affected the expression of three genes only (Figure 13A). The compound 

caused a significant reduction in gene expression of CYP11A1, HSD3B and CYB5 with most 

effect on HSD3B which was down-regulated three times from solvent control.  

CYB11B1, HSD3B, NR5A1 and FTL were significantly altered by 10 µM exposure with 3,3’-

(bis)MeSO2-DDE (Figure 13B).  Expression of FTL was strongest altered and up-regulated 

three times while the others showed a reduction in expression.  

Exposure with o,p’-DDD had most effect on expression of genes involved in testicular 

steroidogenesis (Figure 13C) and eight genes were significantly down-regulated: CYP11A1, 

CYP17A1, CYP19A1, CYP21, HSD17B4, StAR, CYB5 and HMGR. The most dramatic 

alteration was seen in the expression of CYP19A1, which was down-regulated 12 times. 
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Figure 13. Gene expression of 16 steroidogenic genes in primary neonatal porcine Leydig cells 

exposed to 10 µM of A) 3-MeSO2-DDE (red), B) 3,3’-(bis)MeSO2-DDE (blue) and C) o,p’-DDD 

(grey) relative to the expression in cells treated with solvent control (set to 1 – dotted line) after 

48 hours incubation. The box plots are presented with median (n=3) and the data are shown as 

fold change (2
^-ΔΔCt

). Fold change values above 1 represent up regulation, while values below 1 

represent down regulation. Genes significantly regulated from solvent control are denoted 

with* (Student’s t-test; *P<0.05). 
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4.0 Discussion 

To the best of our knowledge, the three compounds, 3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE 

and o,p’-DDD, used in the present study have not been tested experimentally on primary 

porcine Leydig cells in vitro. This study identified effects by test compounds on basal 

testicular steroidogenesis in porcine Leydig cells during neonatal development. o,p’-DDD 

was found to be toxic at the highest concentration (20 µM), test compounds were overall able 

to alter hormone production and they were also able to regulate the expression of some genes 

involved in testicular steroidogenesis. The causes behind these responses in Leydig cells are 

not known, but this study provides a contribution to reveal what effects the three compounds 

may have on Leydig cells and the male reproductive system.  

4.1 Purity of Leydig cells 

To be certain that the majority of cells isolated indeed were Leydig cells, a cytochemical 

staining for 3β-HSD was performed. Purity of Leydig cells by our protocol was found to be 

approximately 80% and this is in agreement with previous reports (Geiger et al., 1999; 

Lejeune et al., 1998b). Cells not identified as Leydig cells could perhaps represent Leydig cell 

precursors, fibroblasts, macrophages, sertoli cells, peritubular cells and endothelial cells. 

There is also a possibility that some of the cells isolated have mixed adrenal and Leydig cells 

properties, as the presence of a mixed cell type have been confirmed in the interstitium of 

embryonic and adult mouse testis (Val et al., 2006). Staining was performed once on two 

separate Leydig cells isolations, so the purity of Leydig cells obtained from each collection is 

not known. Although the same protocol was followed each isolation some variability is to be 

expected. One of the most critical steps during the isolation is making up the Percoll gradient. 

Since many persons were involved in the project, the gradient was not made by the same 

person each time. This could possibly be one source of variation. Also, depending on how 

many testes used and the age of the piglets (8-12 days), the percentage obtained from the 

different collections could vary. This might partly explain why we obtained different amounts 

of hormone levels and gene expression levels in each experiment. It is well known that 

isolated primary cultures do vary in their biological responses from batch to batch and to a 

greater extent than established cell lines.       
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4.2 Cytotoxicity 

Test compounds were diluted in 0.1% DMSO and the effect of DMSO on Leydig cells was 

therefore evaluated. DMSO gave no significant decrease in cell viability, although one plate 

seemed to give a small increase. The plates within the first replicate showed some variation 

from each other, probably due to pipetting errors with a step pipette. No studies have so far 

evaluated the effect on DMSO on porcine Leydig cells, but it is likely to assume that the 

concentrations used does not impair cell viability in a considerable manner (Da Violante et 

al., 2002). 

Both 3-MeSO2-DDE and 3,3’-(bis)MeSO2-DDE did not give any significantly reduction in 

cell viability. In contrast, it is certain that the highest concentration for o,p’-DDD was 

cytotoxic because it gave a very strong reduction in cell viability.  

The cytotoxic properties of the test compounds have previously been investigated in other cell 

lines in vitro. These studies have mainly focused on adrenal cells due to 3-MeSO2-DDE and 

o,p’-DDD known cytotoxic properties on the adrenal gland. 3-MeSO2-DDE, 3,3’-

(bis)MeSO2-DDE and o,p’-DDD have all been tested with same concentrations as used in the 

current study in Y-1 cells (Asp et al., 2009). MTT cytotoxicity assay was used instead of 

AlamarBlue and cells were incubated with test compounds for 72 hours. Here, 3-MeSO2-DDE 

and 3,3’-(bis)MeSO2-DDE caused a significant concentration-dependent cytotoxicity with 20 

µM more potent with 3-MeSO2-DDE than 3,3’-(bis)MeSO2-DDE, with reduction to 12 and 

66%, respectively. o,p’-DDD did not impact cell viability. Effects of 3-MeSO2-DDE and o,p’-

DDD on cytotoxicity has also been studied in human adrenocortical cell line H259R (Asp et 

al., 2010) with same use of concentrations except for 0.625 µM (MTT assay and 72 hours 

incubation). Here, both compounds decreased cell viability in a concentration-dependent 

manner with a approximately decrease at 20 µM to 20% with 3-MeSO2-DDE and 15% with 

o,p’-DDD.  

The highest concentration with o,p’-DDD exposure on H295R cells is in agreement with 

current study, but the result for 3-MeSO2-DDE is not. The results for 3-MeSO2-DDE, 3,3’-

(bis)MeSO2-DDE and o,p’-DDD on Y-1 cells are not in compliance either. This could be due 

to the fact that adrenal cells and Leydig cells are two different cell types and it could be 

expected that the compounds will behave differently. On the other hand, it would be likely 

that the compounds do behave in the same manner, since both Leydig cells and adrenal cells 

capable of synthesizing similar steroid intermediates (Conley and Bird, 1997). Previous 
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studies performed with test compounds give a reasonable explanation for the mechanism 

behind the decrease in cell viability in adrenal cells. As mentioned, it has been shown that 3-

MeSO2-DDE is bioactivated to a reactive intermediate by CYP11B1 in the adrenal cortex of 

mice in vivo and that the reactive intermediate affects the adrenocortical region zona 

fasciculate where CYP11B1 is expressed (Jonsson et al., 1991; Lund et al., 1988; Lund and 

Lund, 1995). The reactive intermediate causes formation of irreversible binding to adrenal 

protein and gives rise to extensive cell death (Lund et al., 1988; Lund and Lund, 1995).  

Mouse Y-1 cells and H295R cells do also express CYP11B1 (Gazdar et al., 1990; Rice et al., 

1989). It is a mitochondrial enzyme catalyzing the final step in the glucocorticoid synthesis 

with production of cortisol. Although 3-MeSO2-DDE is toxic in adrenal cortex in mice, the 

toxicity in the adrenal cortex exhibits considerable species variation (Lindstrom et al., 2008). 

It binds for instance extensively to hamster and mouse adrenal cortex while guinea pig 

adrenals were devoid of binding. In rat, only weak binding was observed in the adrenal 

cortex. 3-MeSO2-DDE was also reported to be activated and bound by a human adrenal 

preparation (Jonsson and Lund, 1994) and in zona fasciculate and zona reticularis region in 

human adrenal tissue slice culture where CYP11B1 is expressed (Lindhe et al., 2002). 

However, in an unpublished study referred to by Jonsson et al (Jonsson et al., 1991) no 

binding of 3-MeSO2-DDE was observed in mouse testicles.  

It should be noted that in H295R cells the specific inhibitor of CYP11B1, etomidate, did not 

affect either cytotoxicity or protein binding of 3-MeSO2-DDE (Asp et al., 2010). This 

inhibitor did decrease both irreversible binding and cytotoxicity of 3-MeSO2-DDE in Y-1 

cells (Asp et al., 2009; Hermansson et al., 2007). Since 3-MeSO2-DDE is bound to 

adrenocortical regions where human CYP11B1 is expressed (Lindhe et al., 2002), the 

question was raised whether it is the parent molecule that binds proteins in human cells or if 

bioactivation is performed by other enzyme(s) in addition to CYP11B1. There are no studies 

which have confirmed the presence of CYP11B1 enzyme in Leydig cells. It is therefore not 

likely to assume that 3-MeSO2-DDE could reduce cell viability in porcine Leydig cells via 

this enzyme. However, if bioactivation is performed by other enzyme(s) in addition to 

CYP11B1 in adrenal human cells, it should not be ruled out if unknown enzymes could 

bioactivate 3-MeSO2-DDE and cause reduction in cell viability in pig Leydig cells as well. 3-

MeSO2-DDE had a non-significant reduction at 20 µM to 70%, but with only two 

independent experiments performed, we need more replicates to clarify if this compound can 

impair cell viability in Leydig cells.  
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In contrast, 3,3’-(bis)MeSO2-DDE did not show the same capacity as 3-MeSO2-DDE to 

accumulate in the adrenal cortex in mice (Lund et al., 1988). It might be that this compound 

has less affinity for CYP11B1 and the extra methyl-sulfonyl group could possibly give 3,3’-

(bis)MeSO2-DDE the ability to be less cytotoxic than 3-MeSO2-DDE, for example by steric 

hindrance of enzyme binding. This could perhaps be one explanation for why 3,3’-

(bis)MeSO2-DDE did not show any capacity to reduce cell viability in Leydig cells and was 

less potent than 3-MeSO2-DDE in mouse Y-1 cells.  

o,p’-DDD is known to be toxic in the adrenal cortex of bovine, dogs, minks, chickens and 

humans through a CYP-catalyzed reaction to a reactive acyl chloride which binds covalently 

to primarily mitochondrial proteins (Brandt et al., 1992; Cai et al., 1995; Hart et al., 1973; 

Martz and Straw, 1980). As mentioned previously it is therefore the main drug for Cushing’s 

syndrome and ACC. It blocks cortisol synthesis by inhibiting CYP11A1 and CYP11B1 

(Martz and Straw, 1980). Mice do not respond with toxicity in adrenal cortex after a single 

dose (Lund et al., 1988; Lund et al., 1986). Surprisingly, o,p’-DDD was demonstrated to be 

bioactivated and bound in the Y-1 cell line (Hermansson et al., 2007), but as mentioned, cell 

viability is not affected (Asp et al., 2009).  It did also become activated and covalently bound 

in the mouse lung (Lund et al., 1986). o,p’-DDD seems therefore to be activated in different 

tissues within same species and toxicity within the adrenal gland seems also to be species 

dependent. The mechanism behind toxicity in porcine Leydig cells is not known, but it could 

be possible that enzymes may convert it to a reactive metabolite since this is shown for 

enzymes in the adrenal gland. It should be noted that conclusive evidence for which or what 

enzymes responsible for the bioactivation in adrenal cells is lacking (Ahlman et al., 2001; 

Hart et al., 1973). 

4.3 Effect on basal testicular steroidogenesis 

4.3.1 Hormone production 

The present study evaluated effects of the compounds on basal estradiol and testosterone 

production in primary neonatal porcine Leydig cells. We found that the test compounds 

showed a capacity to alter hormone production, particularly testosterone.  

The change in hormone production in Leydig cells could be caused by several mechanisms. 

However, since the compounds are shown to interfere at the protein level in adrenal cells, it is 

likely to assume that they would behave in the same manner in Leydig cell as well. Due to the 

fact that the three compounds showed an overall ability to stimulate basal steroidogenesis, it 
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is a possibility that the activity of the enzymes involved in testicular steroidogenesis was not 

inhibited, but stimulated. A reduction in enzyme activity would most likely give a decrease in 

testosterone and estradiol secretion as this is confirmed in other exposure studies on Leydig 

cells (Akingbemi et al., 2000; Murugesan et al., 2008; Ohno et al., 2005). Thus, stimulation in 

activity of one or more enzymes could be true for 3-MeSO2-DDE since this compound caused 

an increase in production for both hormones, particularly for testosterone. 3,3’-(bis)MeSO2-

DDE exposure had least effect on hormone secretion; the increase seen for testosterone was 

much less potent than with 3-MeSO2-DDE and this difference in response is probably because 

of the extra methyl sulphonyl group. For estradiol, however, the effect was opposite and a 

decrease was seen. o,p’-DDD exposure did as 3-MeSO2-DDE cause a stimulatory effect on 

testosterone secretion. It also stimulated estradiol secretion, but to a lesser extent and the 

response seemed to fit a bell-shaped curve more than a straight line. For both hormones, low 

concentrations of o,p’-DDD seemed to stimulate hormone secretion, but the production did 

not increase further with higher concentrations which could suggest that the stimulatory effect 

ceased off. The least increase in hormone production was seen at 20 µM, but since 20 µM was 

toxic for the cells it is difficult to interpret the cells ability to produce hormones at this 

concentration. 

The test compounds’ effect towards adrenal cells is well known. The adrenal gland secrete 

mainly corticosteroids and as expected, the compounds give mostly a decrease in basal 

glucocorticoid secretion in Y-1 cells and H295R cells which is caused by their known 

interactions with CYP11B1 and CYP11A1 (Asp et al., 2009; Asp et al., 2010). The three 

compounds had different ability to reduce hormone secretion, but 3,3’-(bis)MeSO2-DDE was 

less potent than 3-MeSO2-DDE which is in agreement with current study. Since CYP11B1 is 

not involved in synthesis of testosterone and estradiol or is not to our knowledge present in 

porcine Leydig cells, the mechanism behind the decrease in glucocorticoid secretion in 

adrenal cells is consequently not related to an increase or decrease in hormone secretion in the 

Leydig cells. No detectable levels were found of cortisol either, which also confirms that this 

protein is not strongly expressed in neonatal porcine Leydig cells.  

The activity of enzymes involved in testicular steroidogenesis are all important for the 

synthesis of androgens and estrogens and if the activity of one of these enzymes become 

affected due to exposure this will disturb the steps further down in the steroidogenic pathway 

(Figure 3). The first crucial step involves StAR which transports cholesterol from the outer to 

inner mitochondrial membrane (Stocco, 2001). This step is dependent of the presence of 
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cholesterol and also the presence and activity of the StAR protein. Hence, a blocking of StAR 

activity would thus prevent further conversion of cholesterol while stimulation in activity 

would give more substrate for the next rate-limiting enzyme CYP11A1 which converts 

cholesterol to pregnenolone (Miller, 1995). Due to the fact that o,p’-DDD inhibits CYP11A1 

in adrenal cells, it is possible that it could inhibit CYP11A1 in porcine Leydig cells as well. 

This would prevent the conversion of cholesterol and thus suppress testosterone secretion. An 

interaction with CYP11A1 could perhaps explain why the stimulatory effect of o,p’-DDD 

ceased off at the highest concentrations. 

Porcine Leydig cells utilize pregnenolone mostly via the ∆5-pathway to 17α-

hydroxypregnenolone and DHEA (Ruokonen and Vihko, 1974b), but fluxes through ∆4-

pathway to progesterone and then to 17α-hydroxyprogesterone and androstenedione may also 

occur (Conley and Bird, 1997; Nakajin et al., 1981). Since no detectable levels of 

progesterone were found in this study, this suggests that the testosterone production occurred 

via the ∆5-pathway. It is the presence of CYP17 which directs the synthesis towards 

androgens via the ∆4-and ∆5-pathways (Fluck et al., 2003) and the activity of this enzyme is 

thus crucial for the secretion of sex steroids. The 17,20-lyase activity of CYP17 is also 

dependent on CYB5 which has been shown to increase this activity (Katagiri et al., 1982). 

CYB5 is also involved in the andien-beta synthase system together with porcine CYP17A1 

which stimulates synthesis of androstenone from pregnenolone and progesterone (Figure 3), a 

phermonal hormone responsible for boar taint (Nakajin et al., 1985).  

Another important enzyme, 3β-HSD, is involved in both the production of androstenone (Moe 

et al., 2007) and in testosterone synthesis where it converts DHEA to androstenedione 

(Conley and Bird, 1997). Androstenedione is the substrate for testosterone and one enzyme 

that might explain the increase seen in testosterone secretion for all the compounds, though 

only at 20 µM for 3,3’-(bis)MeSO2-DDE, is 17β-HSD which converts androstenedione to 

testosterone (Inano et al., 1981). The 17β-HSDs consist of a large family; it is 17β-HSD type 

3 (in testis only) that catalyzes the conversion from androstenedione to testosterone, type 1 

catalyzes the reduction of estrone to estradiol while type 4 catalyzes the oxidation of estradiol 

to estrone (Luu-The, 2001; Whitehead and Rice, 2006). The activity of 17β-HSD type 3 is 

important and if inhibited this would seriously impact testosterone production (Ohno et al., 

2005). CYP19 catalyzes the synthesis of estrogens to androgens (Conley et al., 1996); it 

produces both estrone and estradiol from androstenedione and testosterone, respectively 

(Figure 3). Thus, the activity of both 17β-HSD type 1 and CYP19 determines the amounts 



49 

 

estradiol produced by the testis. The enzymes which convert active androgens and estrogens 

to inactive metabolites, AKR1C1-AKR1C4 (Penning et al., 2000), could also explain the 

response in hormone production since reduced activity of these enzymes would lead to an 

excess of circulating hormones.  

4.3.2 Gene expression 

In samples exposed to 10 µM of either compound, the expression of 16 genes was evaluated 

to determine if the test compounds could exert effect at the transcriptional level as well. 

Unfortunately, this study did not evaluate the effect by the compounds on HSD17B3 since 

primer pairs were not in house before the experiment was started. The expression of CYP21 

and CYP11B1, whose corresponding enzymes are adrenal cortex specific, was evaluated and 

we found that they were expressed in neonatal pig Leydig cells. This is in consistency with 

previous results where CYP11B1 was expressed in fetal and neonatal testis and CYP21 in fetal 

and adult testis of mouse (Hu et al., 2007). Both have also been found to be expressed in fetal 

testis of humans (Pezzi et al., 2003). The expression of CYP21 and CYP11B1 in neonatal pig 

Leydig cells is further evidence for a link between adrenal and Leydig cells, but the question 

remains if the expression is caused by a mixed cell type of adrenal and Leydig cells or by a 

subpopulation of Leydig cells (Hu et al., 2007; Val et al., 2006). However, alteration in 

expression of these genes will not be discussed because the presence of the enzymes would 

not affect the synthesis of androgens and estrogens, nonetheless. 

Both 3-MeSO2-DDE and 3,3’-(bis)MeSO2-DDE were less potent than o,p’-DDD;  3-MeSO2-

DDE down-regulated three genes (CYP11A1, HSD3B and CYB5) while 3,3’-(bis)MeSO2-

DDE caused down-regulation of three (CYB11B1, HSD3B, NR5A1) and up-regulation of gene 

(FTL) (Figure 13). o,p’-DDD caused significant down regulation of eight genes (CYP11A1, 

CYP17A1, CYP19A1, CYP21, HSD17B4, StAR, CYB5, HMGR). This suggests that the 

compounds also interfere at mRNA level. Since the altered genes were mostly down-

regulated with the exception of one gene, the compounds did probably somehow reduce the 

transcription rates or cause a decrease in mRNA stability.  

Due to the response seen in hormone secretion there is a possibility that the compounds could 

interfere with the regulation of LH concentrations and receptor binding since this is the 

primary hormone regulating Leydig cell activity (Lejeune et al., 1998b; Mather et al., 1982). 

However, if this was the case then this interference probably did not have a stimulatory effect 

due to decreased mRNA levels. Binding of LH to its receptor activates synthesis of cAMP 
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and levels of cAMP are involved in maintaining and stimulate the expression of enzymes 

involved in testicular steroidogenesis (Clark et al., 1996; Mason et al., 1984; Nakajima et al., 

2005). It has for instance been shown in neonatal pig Leydig cells that CYP17A1 mRNA level 

induced by LH stimulation decreases with tributyltin chloride (TBT) exposure (Nakajima et 

al., 2005).   

Since 3-MeSO2-DDE only had an impact on three genes, it is reasonable to assume that this is 

not caused with interference with LH. At 10 µM, 3-MeSO2-DDE showed a stimulatory effect 

on testosterone secretion. It is therefore interesting that the mRNA levels of CYP11A1, 

HSD3B and CYB5 were decreased since the presence of the corresponding enzymes is 

important for the synthesis of testosterone. A possible decrease in mRNA levels would 

probably lead to less translation into protein, reduced protein levels and reduced conversion of 

steroids to androgens and estrogens. The gene expression results for 3-MeSO2-DDE did 

therefore not explain the increase seen in hormone secretion at 10 µM.  

3,3’-(bis)MeSO2-DDE significantly affected the expression of four genes which might also 

suggest that the compound did not interfere with LH. 3,3’-(bis)MeSO2-DDE did not exert 

stimulatory effect on testostrone secretion at 10 µM, but it caused a decrease for estradiol. 

The fact that it did cause reduction in mRNA levels for CYB11B1, HSD3B and NR5A1 

seemed not to exert an impact on the production of testosterone. SF-1 (coded by NR5A1), one 

of the transcription factors investigated, is involved in mediating transcriptional activation in 

response to cAMP which will lead to an increase in mRNA levels, normally of CYP11A1, 

HSD3B, CYP17, CYP19, CYP21 and StAR (Mendelson et al., 2005; Parker et al., 2002; 

Sadovsky and Dorn, 2000; Sandhoff et al., 1998; Sugawara et al., 1996). However, the 

reduced mRNA levels for NR5A1 caused by 3,3’-(bis)MeSO2-DDE did not seem to affect 

mRNA levels for the other genes, except for HSD3B. CYP19A1 had though a non-significant 

reduction (Figure 13) which could perhaps explain the decrease seen in estradiol production, 

but more experimental runs would be needed to associate reduced estradiol levels with 

reduced mRNA levels for CYP19A1. 3,3’-(bis)MeSO2-DDE did also significantly up-regulate 

FTL. Increased mRNA levels of FTL could suggest that sustainable amounts of ferritins were 

made, thus increasing the iron storage capacity of the cell (Hentze and Kuhn, 1996). If the 

iron storage capacity was increased, it might be one explanation for why the cell viability was 

sustained with 3,3’-(bis)MeSO2-DDE.  
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o,p’-DDD had most impact at mRNA level due the strongly reduction in mRNA levels seen 

for many of genes at 10 µM (Figure 13). An interference with the regulation of LH is perhaps 

more likely for this compound since many of the cytochrome P450 steroid hydroxylases and 

StAR mRNA were down-regulated (Clark et al., 1996; Sugawara et al., 1996). Since 

CYP11A1, CYP17A1, CYP19A1, CYP21, HSD17B4, StAR, CYB5 and HMGR were 

significantly affected and because of the importance of the corresponding enzymes in 

testicular steroidogenesis, the reduced mRNA levels would suggest low levels of testosterone 

and estradiol secretion. However, neither of the hormones had decreased production 

compared to solvent control at 10 µM, so the reduced mRNA levels did not seem to affect the 

response seen in hormone secretion. Dax-1 (coded by NR0B1) is known to repress SF-1-

mediated transactivation of StAR (Zazopoulos et al., 1997), but since NR0B1 mRNA levels is 

unaffected by o,p’-DDD exposure we cannot link reduced levels of StAR mRNA to this 

transcription factor. o,p’-DDD did affect mRNA levels of HMGR. HMGR is the rate-limiting 

enzyme in cholesterol synthesis (Rodwell et al., 1976) and the activity of the corresponding 

enzyme thus determines the cholesterol levels in the cell. This enzyme is therefore often 

targeted to treat hypercholesterolemia (Pak et al., 2008) and since o,p’-DDD reduced HMGR 

mRNA levels it should be further looked in to if this down-regulation could affect the 

amounts of the cholesterol produced by the cell.   

The reduction seen in mRNA levels did not explain the response in hormone levels at 10 µM 

for the three compounds. This leads to the suggestion that the compounds’ effect is caused by 

interaction at the protein level. However, it has been discovered that mRNA expression 

patterns are not necessarily consistent with protein expression patterns. The differential 

expression of mRNA and protein from neonatal and prepubertal pig testes has been evaluated 

for CYP11A1, CYP17, CYP19, 3β-HSD and 17β-HSD 4 (Choi et al., 2009) and except in the 

cases of CYP19, changes of protein abundance during early neonatal development were not 

consistent with the patterns of mRNA expression. For prepubertal testis the mRNA 

expression pattern consisted with protein expression patterns. Hence, these results suggested 

the existence of posttranscriptional regulatory mechanisms on the expression of steroidogenic 

enzymes in the pig testis during early neonatal development which results in the increases of 

plasma and testicular steroid hormone concentrations during early neonatal development 

(Choi et al., 2009). If posttranscriptional regulatory mechanisms do occur in neonatal pig 

Leydig cells, it should be considered when effect by compounds is to be evaluated on 

testicular steroidogenesis. 
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4.4 Basal versus LH stimulated steroidogenesis  

This study evaluated the effect of the 3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE and o,p’-DDD 

on basal steroidogenesis. However, the effect on LH-mediated testosterone and estradiol 

synthesis was also evaluated in the same study by another fellow masterstudent (Tanum, 

2010). The results from this study confirmed the stimulating effect of LH as the hormone 

levels in the solvent controls were much higher compared to unstimulated cells. LH did also 

stimulate the cells to produce progesterone, but to a lesser extent than testosterone and 

estradiol.  

In LH-stimulated cells, all three compounds managed to reduce progesterone, testosterone 

and estradiol production from solvent control with the highest concentrations, and mRNA 

levels for most of the genes were also reduced at 10 µM. In fact, this suggests that all three 

compounds inhibit LH stimulated hormone secretion, but it is interesting that the overall 

effect on basal hormone synthesis was opposite. Another study with similar results can thus 

give a suggestion for the mechanism behind the stimulation on basal hormone secretion: 

myxothiazol exposed to rat Leydig cells was found to inhibit LH-mediated testosterone 

synthesis, but a stimulating effect was observed for basal steroidogenesis (Midzak et al., 

2007). These results indicated that inhibition of the mitochondrial electron transport chain 

blocked LH-stimulated testosterone production through suppression of a number of steps in 

the steroidogenic pathway and that basal steroidogenesis was stimulated through a calcium-

mediated mechanism. Other known electron transport chain inhibitors did also stimulate basal 

testosterone production in the same study. The stimulatory effect was linked to the fact that 

inhibition of the electron transport chain has been shown to increase intracellular calcium 

levels in a number of cell types (Duchen et al., 1990; Midzak et al., 2007). Further, Ca
2+

 

concentrations have been demonstrated to increase in parallel with testosterone production 

and Ca
2+

 -dependent stimulation of testosterone is also cAMP independent (Sullivan and 

Cooke, 1986).  

4.5 Possible reasons for concern? 

Due to the extensive use of DDT in the past and also because of the restricted use today, 

levels of DDE and 3-MeSO2-DDE are present in milk and tissues of both humans and 

mammals. Consequently, there is a chance that these metabolites are transferred from mother 

to offspring via milk. A recent study showed an expressed 3-MeSO2-DDE excretion via milk 

in lactating minipig sows and concentrations in milk were 30-40 times the concentration of 
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the maternal plasma (Kismul, 2009). These sows were given a single dose of 3-MeSO2-DDE 

(15 mg/kg body weight) two days post partum which caused the piglet plasma concentrations 

of 3-MeSO2-DDE to be 3 times higher than in the sows. Because of these findings, it was 

postulated that milk secretion is the only efficient elimination pathway of 3-MeSO2-DDE and 

suckling offspring is therefore at risk for being highly exposed.  

Both 3-MeSO2-DDE and o,p’-DDD accumulate in fat tissues, but elimination of 3-MeSO2-

DDE is slow compared to o,p’-DDD although plasma concentration of 3-MeSO2-DDE 

reaches higher levels than o,p’-DDD (Hermansson et al., 2008). These findings confirm that 

there are no other efficient elimination pathways for 3-MeSO2-DDE besides milk. In addition, 

o,p’-DDD is much less common than p,p’-DDD in soil (Pazou et al., 2006; Ssebugere et al., 

2010) and it is also not biomagnified in a considerable manner (Falandysz et al., 1999). 3-

MeSO2-DDE is found in human tissues (Chu et al., 2003) and breast milk (Noren et al., 1996; 

Smith, 1999) and it is isolated from large marine mammals (Jensen and Jansson, 1976; 

Lechter et al., 1995). Of the two DDT metabolites, 3-MeSO2-DDE is the one which should be 

given increasing focus with regard to risk assessments. Leydig cells play a central role in male 

reproductive function with the secretion of testosterone and estradiol and the new knowledge 

of 3-MeSO2-DDE effect on Leydig cells is especially concerning due to the fact that 

disturbances during early stages of life can affect further development and male fertility. 

Furthermore, since 3-MeSO2-DDE is proposed as an alternative drug for o,p’-DDD for 

treatment of ACC and Cushing’s syndrome, the compound’s effect on the Leydig cells should 

be considered when it is to be evaluated for treatment.   

The effect 3,3’-(bis)MeSO2-DDE posed on the Leydig cells is not environmentally relevant, 

but we confirmed that the extra methyl sulphone group gave a different response in the 

Leydig cells compared to 3-MeSO2-DDE. This may be of importance for the search of a new 

drug candidate for ACC and Cushing’s syndrome. Although there is a possibility that the 

current drug for ACC and Cushing’s syndrome may be replaced in the future, we have 

discovered that o,p’-DDD not only possesses toxic properties towards the adrenal cortex, but 

also towards Leydig cells. 
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5.0 Conclusions and future work 

The described study was carried out to determine the effect of 3-MeSO2-DDE, 3,3’-

(bis)MeSO2-DDE and o,p’-DDD on testicular steroidogenesis in neonatal porcine Leydig 

cells. 

The compounds exerted different effects on cell viability. 3-MeSO2-DDE and 3,3’-

(bis)MeSO2-DDE did not impair cell viability while o,p’-DDD was cytotoxic at the highest 

concentration. All three compounds increased testosterone production, but 3,3’-(bis)MeSO2-

DDE caused only effect at the highest concentration. Hence, it appears that the extra methyl 

sulphonyl group of 3,3’-(bis)MeSO2-DDE makes the compound to a less potent stimulator of 

testosterone production than 3-MeSO2-DDE in porcine Leydig cells. Estradiol production was 

also altered for all three compounds, but not in the same magnitude as testosterone. Both 3-

MeSO2-DDE and o,p’-DDD seemed to have a stimulatory effect, while 3,3’-(bis)MeSO2-

DDE caused a decrease. The Leydig cells did not produce progesterone and cortisol. The 

compounds exerted effect on gene expression and the genes altered were all down-regulated 

with the exception of one with 3,3’-(bis)MeSO2-DDE. o,p’-DDD caused most effect with 

down-regulation of eight genes, all important for testicular steroidogenesis. 3-MeSO2-DDE 

and 3,3’-(bis)MeSO2-DDE caused reduction in expression of three genes each. However, with 

the use of two replicates only for cell viability where three of the four plates are from the 

same batch of cells, the evidence for the compounds’ effect on cell viability is not fully 

conclusive. The dataset for the hormone results, especially estradiol, and the gene expression 

results were influenced with large spread between the three experimental runs. More 

experimental runs would therefore have given the results even more strength, especially for 

the cell viability results.  

Due to the results obtained, further studies should be conducted. With regard to cell viability, 

it should be examined if o,p’-DDD could exert cytotoxicity in same manner as it does in 

adrenal cells at 20 µM. More replicates for 3-MeSO2-DDE could also clarify if this compound 

could be cytotoxic at 20 µM as well. As for hormone and gene expression results, the 

reduction in mRNA levels cannot be linked to the response seen in hormone secretion at 10 

µM. Because of the compounds’ overall ability to stimulate hormone secretion, stimulation in 

enzyme activity should be investigated. It would for instance be interesting to see whether the 

three compounds were capable of stimulating basal steroidogenesis through increased levels 

of Ca
2+

 by inhibition of the mitochondrial electron transport chain. If the compounds do 
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interfere at the protein level, protein expression should also be examined. The mRNA product 

for the protein involved in the making of testosterone (17β-HSD 3) was unfortunately not 

included in this study. The expression of this gene should therefore be included in the future. 

It is also important to evaluate effect on cAMP levels because the amount of cAMP in the cell 

determines the amounts of hormones produced. In addition, due to the interference with the 

LH-stimulation it would be interesting to include mRNA product for the LH receptor and to 

investigate if the compounds are able to interact with the LH receptor. 

Taken together, the results suggest that 3-MeSO2-DDE, 3,3’-(bis)MeSO2-DDE and o,p’-DDD 

are capable of disturbing the male reproductive system by affecting basal testicular 

steroidogenesis in neonatal porcine Leydig cells, with 3,3’-(bis)MeSO2-DDE being the least 

potent. 
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7. Appendix 

7.1 Chemicals and solutions 

Chemical Product information  

3-MeSO2-DDE Synthelec AB, Ideon, Lund, Sweden 

3,3’-(bis)MeSO2-DDE Synthelec AB, Ideon, Lund, Sweden 

o,p’-DDD Sigma-Aldrich, Stockholm, Sweden 

Dimethyl sulfoxide  Sigma-Aldrich, Oslo, Norway  

Ham’s F12 and Dulbecco’s modified 

Eagle’s medium (DMEM) 1:1 

supplemented with 1.2 mg/ml sodium 

bicarbonate and 15 mM Hepes, pH 7.4 

(500 ml) 

Gibco Invitrogen, Carlsbad, CA, USA 

F-10 Nutrient Mixture (Ham’s) (10X) Biological Industries, Kibbutz Beit Haemek, 

Israel 

Percoll  (500 ml) Sigma-Aldrich, Oslo, Norway  

NuSerum BD Bioscience via VWR, International AS, 

Oslo, Norway 

ITS + Premix BD Bioscience via VWR, International AS, 

Oslo, Norway 

Foetal calf serum  Fisher Scientific, Pittsburgh, PA, USA 
 

Collagenase-dispase (500 mg) Vibrio algionolyticus/Bacillus polyxema, 

Roche Neuss, Germany 

Pencillin/streoptomycin/neomycin Invitrogen, Carlsbad, CA, USA 

AlamarBlue Invitrogen, Carlsbad, CA, USA 

Diethylpyrocarbonate  Sigma-Aldrich, Oslo, Norway AS 

Lidocain Haukeland Hospital Pharmacy, Bergen, 

Norway 

Ketoprofen Merial SAS, Lyon, France 

Trypsin EDTA Gibco Invitrogen, Carlsbad, CA, USA 

Nitro blue tetrozolium Sigma-Aldrich, Oslo, Norway AS 

5-androstane-3β-ol-one Sigma-Aldrich, Oslo, Norway AS 

NAD+ Sigma-Aldrich, Oslo, Norway AS 
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7.2 Materials 

Autoclaved materials needed for Leydig cell isolation 

6 tea or steal filter 

4 pinsettes 

3 bottles (500 ml) 

3 glass containers 

2 big scissors 

3 small scissors 

 

7.3 Solutions and media 

Solutions and media used in isolation and culture of Leydig cells 

Collagenase/Dispase Stock 

500 mg collagenase was dissolved in 10 ml of DMEM/F12. The collagenase stock solution 

(50 mg/ml) was divided into 1 ml aliquots in nuc cryo tubes and stored at -20°C.  

Collection Medium 

The medium was made from DMEM/F12 (500 ml) with 10 ml of added 

penicillin/streptomycin/neomycin (PSN). 5 bottles were made. 2 bottles (about 300 ml of 

media) were needed for the collection of testicles and were put in a box for the castration 

team. 

Dissociation Medium                                                                                                                                                         

75 ml DMEM/F12 and PSN (10 ml PSN to 500 ml DMEM/F12) was put in a sterile bottle. 2 

ml of the Collagenase stock was diluted with 8 ml of the DMEM/F12 and 5 ml of FCS was 

added. This solution was filtered through a 0.2 µm sterilized filter and added to the remaining 

DMEM/F12. The amount made is enough to digest about 30 testicles in a 500 ml bottle. The 

dissociation medium was kept at 4°C until use and before starting up the testicle 

decapsulation it was heated up to 34°C. 

Complete Plating Medium  

To 500 ml of DMEM/F12, 10 ml of PSN, 12.5 ml of NuSerum, and 5 ml ITS + Premix was 

added. The medium was stored at 4°C.  
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Percoll solutions 

Percoll 90% isosmotical solution was made by mixing 13 ml F-10 Nutrient Mixture (Ham’s) 

with 117 ml of undiluted Percoll. Four 75 cm
2
 bottles (T75) (BD Falcon, New Jersey, USA) 

were marked from I-IV and with final density concentrations (see Table 4). To each tube the 

required amount of Percoll 90% and the required amount of DMEM/F12 was added. The 

Percoll dilutions were stored at 4°C before the layering of the Percoll solutions into a 

discontinuous gradient. 

Table 4. Required amounts of Percoll 90% and DMEM/F12 for 12 gradients 

Final Density (%) Percoll 90% (ml) DMEM/F12 (ml) 

21% 24.5 82.1 

26% 18.1 45.8 

34% 40.5 66.1 

60% 42.7 21.3 

 = 125.8 = 215.3 

 

Percoll gradient 

 

 

Figure 14. Layering of the Percoll solutions into a discontinuous gradient 

The gradients were prepared on the day of isolation. One 50 ml Falcon tube is needed per 

gradient (about 8 testicles for one gradient). In the first step 5 ml of solution IV was added to 

each tube. Then 7 ml of solution III, 5 ml of solution II and 8 ml of solution I was added. 
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Solutions III-I were overlaid carefully on top on the previous layer by placing the pipette 

point at the meniscus. This created a liquid bridge. We emptied the pipette slowly through this 

liquid bridge and a clean layer formed on top of the previous one.  

 

 

 

 

 

 

 

 

 

 

 


