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Abstract 
 

The coastal cod is an important commercial and recreational resource for the local 

communities in the Skagerrak. The situation of this and neighbouring stocks has worsened for 

decades, promoting an imperative need for better knowledge of the fine-scale ecology and 

behaviour of the species. In this study, the home ranges and vertical movement pattern of 

nearshore juveniles (n = 20, length = 325 mm [mean]; 265 - 375 mm [range]) were 

investigated using acoustic telemetry and kernel density estimators. In addition, habitat 

preferences were estimated by use of resource selection functions. In concordance with the 

hypotheses, home range sizes increased with fish length, whereas bigger fish remained at 

shallower depths than smaller fish. Although inconclusive, results were indicative of smaller 

fish displaying greater variation in vertical movement than larger fish. The fish used habitats 

disproportionately to what was available, and although tests were not significant the results 

showed a clear trend of selecting barren habitats over more complex habitat structures. These 

behavioural patterns are thought to reflect a dynamic decision-making process where intra- 

and inter-specific competition and predation pressure drive the selection of the trade-off 

between shelter and forage. Further, these results show that the classification of important 

habitats for a commercially exploited species is a complex process that should be investigated 

on a broader scale. 
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1 Introduction 
 

The coastal cod Gadus morhua has been of great economic and cultural importance to 

the maritime communities in the Skagerrak for centuries. Despite signs that the stocks are 

being overexploited, there is still a significant commercial and recreational fishing pressure on 

them (Gjøsæter, 2008). A large decrease in abundance and mean body size of several coastal 

species on the western coast of Sweden has been documented (Pihl et al., 2006, Pihl and 

Ulmestrand, 1993, Svedang, 2003), leading scientists to speculate whether the historically 

rich local spawning grounds may have been eradicated. It is believed that many of the fish 

species found there today are mostly young recruits that have drifted in to the area from the 

North Sea with the North Atlantic circulation, which has been shown to be the case at least for 

the cod (Knutsen et al., 2004, Pihl and Ulmestrand, 1993, Stenseth et al., 2006). With the 

North Sea cod stocks currently being overexploited (ICES, 2007) and risking the same fate as 

their conspecifics in Newfoundland, where the stocks collapsed and a moratorium was 

enforced (Hutchings, 2004, Myers et al., 1997), it is reason to assume that this may cause 

changes in the local cod communities in the Skagerrak. It is therefore crucial to have as much 

understanding as possible of the ecology and behaviour of the coastal cod, to be able to 

manage the species sensibly in the future. Restrictions on mesh size, seasonal closing of 

fishing grounds, construction of MPAs (Marine Protected Areas) and temporary moratoriums 

are proposed actions which may help to sustain a healthy cod population. However, to enforce 

these we need to increase our knowledge of the species and environment involved.  

In this study, the main focus was to describe the movement patterns and habitat 

preferences of juvenile (1 year group) cod in a semi-sheltered area on the Norwegian 

Skagerrak coast, and, further, to link these behavioural characteristics to the body size of 

individual fish. Cod is known as a mass-spawner, with only a small fraction of the larvae 

being recruited to the spawning stock. To survive until reproduction of viable and competitive 

offspring is, according to evolutionary theory, the ultimate goal of any species and the basis of 

which the relative fitness of an animal is estimated. There are several phenotypic traits closely 

linked to survival and reproduction (e.g., birth size, age and size at maturity, life span), but 

one of the most important and well-studied of these is growth. An individual with an 

increased body size relative to conspecifics is considered to be less vulnerable to predation, 

have increased intra- and inter-specific competitive abilities, have better capability of storage 

of energy reserves and to mature sooner and have higher reproductive success (Lankford et 

al., 2001, Metcalfe and Monaghan, 2003, Munch and Conover, 2003, Sundström et al., 2005). 
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But despite having the capacity of continuous growth, fish rarely maximise their theoretical 

potential. This may be due to a variety of factors, both intrinsic (trade-offs between fitness 

correlated traits and the cost of somatic growth), and extrinsic (environmental factors, such as 

size of habitat, population density effects, predation risk and prey availability) (Freedman and 

Noakes, 2002, Stearns, 1992). Trade-offs are linkages between two or more life history traits 

that are selected for at the same time. Growth versus current reproduction is one such trade-

off, where the animal must allocate its energy into one or the other but not both at the same 

time, if so it would face the risk of low-quality and -quantity offspring and poor body 

condition (Stearns, 1992). Growth versus future reproduction is another, in this case the 

animal must decide whether to invest in somatic growth or (in the case of cod) lipid liver 

reserves (Jørgensen and Fiksen, 2006). Moving on to extrinsic factors, there has been a wide 

reporting of different effects of body size on predation risk. While some have found predation 

mortality to increase with increasing body size (Dibattista et al., 2007, Lankford et al., 2001, 

Munch and Conover, 2003), others have found the opposite (Meekan et al., 2006, Nielsen and 

Munk, 2004), showing that this trade-off may be dependent on different life history strategies 

between species and different effects in differing ecosystems. The size of the animal’s habitat 

and prey availability and quality is also thought to affect the size of the animal. Pelagic 

species often grow larger than benthic ones, owing to their large cruising ranges in search of 

high-quality food. Benthic species, on the other hand, often rely on sedentary foraging 

strategies, which don’t require the animal to be any bigger than what is needed to capture and 

process the prey (Freedman and Noakes, 2002).  

The Skagerrak coastal cod is considered a benthic species, showing signs of site 

fidelity and discrete population structures within distances < 30 km (Bergstad et al., 2008, 

Espeland et al., 2007, Jorde et al., 2007, Knutsen et al., 2003). In literature, adult cod is often 

shown to undertake migrations to deeper water as winter sets in, while younger cod seem to 

remain stationary (Cote et al., 2004, Godø, 1984, Pihl and Ulmestrand, 1993). This 

segregation during winter time is thought to be a result of differing physiological abilities 

between juvenile and adult cod, with juveniles being better adapted to shallow, cold waters 

than adults, which need to migrate to warmer water (Goddard et al., 1992). On a smaller 

temporal scale, juvenile cod is known to sometimes have diel migrations in the water column 

(Anderson et al., 2007, Grant and Brown, 1998, Gregory and Anderson, 1997). There is some 

confusion as to why this pattern is seen, but it is mainly thought that the juveniles move 

vertically to avoid  
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predators during the day, or to feed during the night. The different life stage groups also seem 

to have somewhat different habitat preferences; while juvenile cod often select habitats that 

provide shelter from predators (such as coarse bottom substrates that match their skin 

colouration and habitats with high vegetation cover), older cod tend to associate more with 

single habitat structures that provide predation cover from which they stray to forage (e.g. 

high bathymetric relief, boulders and little vegetation) (Chan et al., 2003, Cote et al., 2004, 

Cote et al., 2003, Dalley and Anderson, 1997, Gotceitas and Brown, 1993, Gotceitas et al., 

1997, Gregory and Anderson, 1997, Lekve et al., 2006, Riley and Parnell, 1984).  

 There are numerous studies on the behavioural patterns of juvenile cod reported in the 

literature. While a few of these deal with individuals within the body length range used in this 

study (e.g. Cote et al., 2003, Gregory and Anderson, 1997), most of them focus on the young 

of the year; the 0 year group (e.g. Anderson et al., 2007, Grant and Brown, 1998, Linehan et 

al., 2001). The latter age group may experience radically different selection pressures from 

what larger individuals do. In addition, few behavioural studies have been done on the 

movement patterns and habitat preferences of nearshore cod in the Skagerrak, compared to 

the literature that exists on cod from e.g. Newfoundland and surrounding areas. As life history 

traits have been shown to vary among populations only a few hundred kilometres apart (Olsen 

et al., 2004), it is reason to assume that behavioural responses of the Skagerrak cod may differ 

from their conspecifics studied elsewhere. This study thus aims to investigate the habitat 

selection and effects of body size on home ranges and movement patterns of nearshore 

juvenile cod, using acoustic telemetry and resource selection functions.  

Previous studies have shown that at about age 3 (total length = 590 mm [mean]), 50 % 

of the stocks close to the study area have reached maturity (Olsen et al., 2004). Based on 

length-at-age relationships available for cod from this area, the study animals used here were 

sampled so that it was unlikely that any of them would mature within the time frame of the 

study and show signs of an eventual spawning migration. I hypothesise that the animals will 

select habitats that maximise shelter from predators (H1), preferring coarse bottom substrates 

(H1a) and dense vegetation (H1b). I also hypothesise that movement patterns of the fish will 

depend on the size of the fish within the age group (H2). Here I predict that larger fish will be 

competitively superior to smaller fish, reflected in larger home ranges (H2a). Smaller fish will 

show greater variation in their vertical distribution (H2b), due to predator avoidance and 

differing foraging strategies. I also predict that mean depth will be negatively correlated with 

the size of the fish, as smaller individuals will seek refuge from predators closer to the bottom 

than larger ones (H2c).  



Materials and methods 

2 Materials and methods 

 
2.1 Study area 

 

The study area consists of a 2.5km2 semi-sheltered archipelago located at the 

Norwegian Skagerrak coast close to the city of Arendal (Fig. 1). The river Nidelva, with a 

mean annual water discharge of 123 m3 s-1 (Thorstad et al., 2003), has one of it’s three outlets 

in the northern part of the locality, making the area an estuarine system. Most parts of the area 

are quite shallow, with depths of 10-15 meters predominating. Maximum observed depth was 

about 30 meters.  

 

 

Figure 1. Map of the study area located in the southern part of Norway. 

 

2.2 Tagging and tracking 

 

2.2.1 Capture and selection 

 

The study was carried out in the period October-December 2006. A total of 20 cod 

were caught by eel pots left overnight scattered around in the study area (Fig. 2a). Based on 

previous studies on cod caught in the vicinity (unpublished data, Jakob Gjøsæter, Institute of  

Marine Research Flødevigen), only specimens assumed to be at age 1 were brought back to 
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the Flødevigen research station; other animals were released back to the sea (see Appendix I, 

Table A1 and Figure A1 for estimated length at age). During the sampling, cod of various 

sizes (100 - 600+ mm) and ages (0 - 3+) were frequently caught. The total lengths (Lt) of the 

specimens chosen for the study (Table 1), measured at the capture site, were well within the 

length-range of the 1 year group. All research animals were equipped with a unique T-bar tag, 

showing its identification number, the name of the research station and a capture reward 

(NOK 50,-) in case the fish should get caught by local fishermen. 

 

2.2.2 Tag implantation 

 

At the research station, each individual was anaesthetised in a 40 L seawater bath 

containing a mixture of 0.36 ml ethanol/L and 0.04 ml concentrated clove oil/L as described 

by Cooke et al. (2004) and Cote et al. (1999). Comparative experiments have shown clove oil 

to be an efficient sedative, with minimum stress impact on the test animals and low mortality 

rates, in addition to having antibacterial and antiviral effects (King et al., 2005, Munday and 

Wilson, 1997, Soto and Burhanuddin, 1995, Tort et al., 2002). When the fish no longer 

responded to visual stimuli and lost equilibrium, it was taken out of the bath and placed on a 

sterilised bench. A small incision (10-12 mm) was made mid-ventral posterior to the pelvic 

fin, through which a V9P coded acoustic transmitter (40 mm [length] x 9 mm [diameter], 2.6 

g [in water]; Vemco Ltd, Halifax, Canada) was passed and gently inserted in the body cavity. 

The transmitter sends a unique ID code and pressure measurement at random intervals every 

30 to 60 seconds. The wound was then closed using absorbable sutures (Dexon* II™, Tyco 

Healthcare Group, Mansfield, MA, USA) and a liquid tissue adhesive (Vetbond™, 3M 

Company, St. Paul, MI, USA). During the surgery, a small tissue sample was taken from the 

tail fin for DNA profiling useful for further studies.  

After the procedure, the fish was put in a 3000 L holding tank and manoeuvred back 

and forth to stimulate respiration and to clear the gills of the anaesthetic. The time elapsed 

from total anaesthesia to full control of equilibrium varied from 5 to 15 minutes. All of the 

fish used in this experiment made a full recovery, and the surgeries were conducted by 

experienced personnel from the Flødevigen research station. 
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2.2.3 Acoustic tracking 

 

The tagged individuals were kept in the holding tanks for observation for 1-3 days, 

before they were released at their respective capture sites. Immediately after release, the fish 

were tracked using an omnidirectional hydrophone (VH165) and a directional hydrophone 

(VH110), connected to a receiver on board (VR100; all from Vemco Ltd, Halifax, Canada).  

The position of the fish was estimated to be where the directed signal was strongest at the 

lowest possible gain, and a coordinate was assigned to the position in addition to the tracked 

depth.  

When tracking the fish, a portable CTD (Conductivity-Temperature-Depth) recorder 

was deployed at five regular locations within the study area to measure the temperature and 

salinity in the water column. The CTD stations represent a gradient from inshore (close to the 

river mouth) to more exposed areas (far from the river mouth). For each relocation of a fish, 

the temperature and salinity at the tracked depth measured at the nearest CTD station were 

used to describe the variation of the environment experienced by the fish during the study 

period. The difference of these variables over the inshore-exposed gradient was minimal 

(temperature: 13.3 °C [mean inshore], 13.1 °C [mean exposed]; salinity: 33.3 ‰ [mean 

inshore], 33.4 ‰ [mean exposed]). A summary of the measurements are given in Appendix II, 

Table A2.  

The tracking and CTD measurement procedure was repeated at daytime every 1 to 10 

days from October 11th to December 21st, giving the total number of relocations for each fish 

listed in Table 1. 
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Table 1. Number of relocations and total length (Lt) of each individual. Mean, median and standard deviation are 
given at the bottom. 

Tag ID Relocations Lt (mm) 
233 13 315 
234 13 340 
235 13 325 
236 13 350 
237 13 330 
238 13 305 
239 13 295 
240 14 320 
241 14 320 
242 14 375 
243 18 320 
244 18 353 
245 19 319 
246 17 335 
247 17 358 
248 22 265 
249 15 348 
250 27 285 
251 27 298 
252 18 350 

   
Median 15 323 
Mean 17 325 
SD 4 27 
 

 

2.2.4 Habitat types 

 

           Using a portable ROV (Remote Operated Vehicle), the bottom substrate of the study 

site was video taped at 28 equally interspersed stations (Fig. 2b). The vehicle was deployed at 

predetermined coordinates and manoeuvred in a 360° circle at the bottom in a radius of 5 m. 

The video clips were then analysed and bottom substrate and vegetation cover (mainly eel 

grass (Zostera marina), sea lace (Chorda filum) and sugar kelp (Laminaria saccharina)) for 

each station was quantified. The bottom substrates were categorised into “fine” and “coarse”, 

as there were no medium grained substrates among the ROV samples. The vegetation cover 

was divided into “little” (0 % - 20 % cover) and “lush” (> 20 % cover). The available 

combinations of these categories made up a total of 3 different habitat types (a – c) in the 

study area, given in Table 2. For a more detailed view of the ROV samples, see Appendix III, 

Figure A2 and Table A3. 
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a) b)  
Figure 2. a) The capture sites of the study animals. Tag ID is annotated next to the coordinate (●). b) ROV 
sampling stations in the study area (●). Stations number 1 and 28 were not sampled and left out of the map. 

 
Table 2. Combinations of bottom substrates and vegetation cover in the study area. 

Habitat type Habitat category 
Fine bottom substrate, little vegetation a 
Fine bottom substrate, lush vegetation b 
Coarse bottom substrate, lush vegetation c 
 
 

2.3 Data analysis 

 

2.3.1 Initial screening of data 

 

Immediately after tracking the study animals in the field, all coordinates, depth 

recordings and CTD measurements  were stored in an excel spreadsheet. The coordinates 

were then exported to a mapping software (Google Earth, Google Inc) to check if any 

positions ended up on land or other unlikely locations. This was never the case. Whilst 

tracking, any unlikely depth recordings (depths above surface or far below the maximum 

depth of the study area) were ignored and attributed to poor communication between the 

transmitter and the receiver. At two occasions, a fish was tracked at the same position and 

depth over 2-3 consecutive days. After examining the immediate area, eel pots were found 

and hauled after notifying the owners. Both times the fish were found trapped inside the gear 

in good condition, and released. The consecutive tracked positions from these incidents were 

not included in the spreadsheet.
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2.3.2 Home range analyses 

 

The telemetry observations for each fish were imported to the statistical software R (R 

Development Core Team, 2006). Using the adehabitat package (Calenge, 2006), the home 

range probability densities were estimated with both hLSCV and href kernels. The home range 

probability levels from 20 - 95 % with 5 % increments were also estimated. 

Estimating the home range area of an animal based on tracking data can be 

confounded by several factors. First of all, the tracked estimated positions may be considered 

a small sub-sample of the animal’s true movements, and with few data points the estimated 

home range may reflect probability distributions far from the true values. Secondly, tracking 

an animal will inherently result in spatially and temporally autocorrelated data, since an 

animal does not move randomly. The usual statistical demand of independence may therefore 

result in heavily truncated data sets (if one decides to remove data points to achieve 

independence), or data points with inflated degrees of freedom (De Solla et al., 1999). A way 

to cope with this problem is to use methods that are less sensitive to autocorrelation when 

estimating home ranges. Kernel probability density estimators are non-parametric and 

estimate the probability density in an animal’s home range by constructing scaled-down 

probability density functions, or kernels, over each relocation of the animal, based on the 

estimated positions used in the analysis. The amount of variation used in each kernel 

estimation is determined by the smoothing parameter, h (Worton, 1989). With the least square 

cross validation (hLSCV) method this parameter is found by minimizing the estimated error 

between the unknown true density function and the kernel density estimate. With the 

reference (href) method, h is estimated from the number of relocations and the standard 

deviation of the coordinates (Blundell et al., 2001, Hemson et al., 2005). Several studies have 

found the kernel density methods to be reliable estimators of home ranges, even with small 

sample sizes and autocorrelated data points (Blundell et al., 2001, Borger et al., 2006, De 

Solla et al., 1999). 

 

2.3.3 Effects of fish size on home range size and depth 

 

To investigate potential effects of fish size on home range and depth, simple linear 

models (LM) were applied. These were used to test the size of the fish against the size of its 

90 % probability level home range (as recommended by Borger et al. (2006)) and against 

mean depth. In addition, the coefficients of variation of the tracked depths (D) were calculated 

using:
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   Di = σ * 100 / μ      (1) 

 

where σ denotes the standard deviation of the data, and μ denotes the mean tracked depth of 

each fish. The coefficients of variation were also analysed against fish size with LMs. 

 

2.3.4 Resource selection functions 

 

Habitat selection was analysed by comparing the telemetry observations and estimated 

home ranges to the ROV mapping of bottom habitats. For each individual, I visually 

examined which ROV stations were covered by its 90 % probability level href kernel. These 

stations were then categorised according to Table 2, and a proportional use of each habitat 

category (U) was calculated:  

 

Ui = ai / bi       (2) 

  

where a is an individual’s number of use of the habitat category and b is the sum of the 

individual’s number of use of all the habitat categories. In addition, the proportional 

availability (A) was calculated as: 

 

Ai = ci / e       (3) 

 

where c is the number of ROV stations consisting of the habitat category and e is the total 

number of ROV stations (= 28). The proportional availability was hence assumed to be the 

same for all individuals. The used and available proportions were then imported to R and 

RSFs (resource selection functions) were fitted using the widesII function in the adehabitat 

package (Calenge, 2006). Chi-square tests of identical habitat use at the individual level and 

overall habitat selection at the population level were run, and the mean selection ratios with 

95 % confidence limits were plotted. Selection ratios above 1 indicate that the specific habitat 

type is selected, whereas selection ratios below 1 indicate avoidance. Selection ratios equal to 

zero represent no use. The test of the hypothesis that animals are on average using resources 

in proportion to availability was also run by subtracting the individual level test statistic from 

the population level test statistic.
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RSFs are useful for testing whether there exist any significant selection of specific 

habitats, based on the proportional use versus the proportional availability of habitat 

categories. There are three different types of RSF data, based on what sort of study has been 

conducted. I used the type fitted for estimating selection of the home range within the study 

area when the availability of the habitat categories are the same for all animals, the design II 

data (Manly et al., 1993).  
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3 Results 

 

3.1 Habitat selection 

 

Opposed to what was predicted in H1a and H1b, there was a strong, although not 

significant, trend of selection of habitat category a; fine grained bottom substrates with little 

or no vegetation cover. There was also an opposite, negative trend of avoidance of habitat 

category b; fine grained bottom substrates with lush vegetation cover. This habitat category 

was the most available habitat in the study area (proportion = 0.50), but had a mean use 

proportion of only 0.18 (Table 3). Habitat category c, which was expected to be selected for 

(predictions H1a and H1b), was avoided by all of the fish. The test of average use in 

proportion to availability was highly significant (p = <0.001), showing that although the 

overall habitat selection was not significant at the level of the specific habitats (p = 0.98), 

there was a clear discrepancy between the mean availability and the mean use. The individual 

level test statistic was not significant (p = 1) (Table 4). A visual inspection of the different 

habitat categories within each individual’s home range revealed that many of the animals used 

a variety of different habitats. A total of 8 of the 20 individuals used substrates with both high 

and low vegetation cover, whereas 7 of 20 individuals had stations with dense eel grass beds 

within their home range. One individual used only habitats with fine bottom substrates and 

high vegetation cover. 

 

Table 3. Availability and usage proportions for each habitat category, and their respective selection ratios          
± 95 % confidence intervals (CI). Selection is marked either as “Positive” or “Negative”. 

  Habitat   Selection ratio     Direction 
Habitat availability Mean use (use/     of 

type (proportion) (proportion) availability) 95% CI selection 
a 0.43 0.82 1.92 1.60, 2.24 Positive 
b 0.50 0.18 0.35 0.08, 0.63 Negative 
c 0.07 0.00 0.00 0.00, 0.00 Negative 
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Table 4. The chi square test statistics (χ2), degrees of freedom (df) and p-values of the tests of habitat selection 
at the individual and population level, as well as the test of whether mean use is proportional to the availability 
of habitat categories. 

  Χ2 df p 
Individual level 9.09 38 1.00 
Population level 23.23 40 0.98 
Use vs. availability 14.14 2 <0.001 
 

 

3.2 Home ranges 

 

The sizes of the 90 % home ranges varied greatly between the animals (range: 0.93 – 

117.09 ha) (Table 5). Many of the fish that relocated over longer distances within the study 

area, moved to areas within established home ranges of other individuals. This trend became 

more and more common during the study period (personal observation).  

A visual inspection of the home ranges estimated by the least square cross validation 

(hLSCV) method showed that they were consistently overfragmented. I therefore decided to use 

the reference (href) method for all further analyses, although the href home ranges tended to be 

overestimated. According to Borger et al. (2006), a means to mend this problem is to discard 

the 95 % probability levels and instead base the analyses on the 90 % probability levels, 

which I did. An example of the under- and overestimation of hLSCV and href home ranges is 

given in Figure 3. 



Results 

 

a) b)  

Figure 3. hLSCV  (a) and href (b) home ranges for fish ID 247. The smoothing parameter (h) was 17.5 and 72.6, 
respectively. 

 

 

Table 5. The estimated 90 % href home range areas (ha) for each fish. Mean, median and standard deviation 
values are given at the bottom.  

 90 % 
Tag ID home range area (ha) 

233 40.85 
234 57.37 
235 25.46 
236 117.09 
237 5.72 
238 50.00 
239 7.39 
240 3.75 
241 6.72 
242 78.86 
243 67.17 
244 51.11 
245 4.59 
246 56.97 
247 19.89 
248 0.93 
249 36.66 
250 6.13 
251 4.16 
252 36.03 

  
Median 30.74 
Mean 33.84 
SD 31.42 
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3.3 Home range size, depth and fish length 

 

Confirming prediction H2a, there was a highly significant, positive effect of fish size 

on the size of the home ranges (p = <0.001, R2 = 0.51) (Fig. 4a). The mean depth was also 

significantly correlated with the length of the fish, although in the opposite direction (p = 

0.02, R2 = 0.26), confirming prediction H2c (Fig. 4b). The coefficients of variation of all the 

tracked depths were slightly negatively correlated with fish size, but this result was not 

significant (p = 0.34, R2 = 0.05) (Fig. 4c). 



Results 

a) b)  

c)  

Figure 4. Linear relationship between the lengths of the fish and a) the 90 % home range sizes; b) the mean 
tracked depth, and c) the coefficients of variation of the tracked depths. All variables are log transformed for 
better fit of the models. 
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4 Discussion 

 

The main purpose of this study was to investigate habitat preferences and size-

dependent movement patterns of juvenile cod in a nearshore environment. Due to their young 

age and relatively small size, behaviour strategies were expected to be driven mainly by 

predator avoidance. Habitats that were structurally complex, such as with high vegetation 

cover and coarse bottom substrates were thought to be preferred over bare sediments. I also 

expected that the variability of total lengths between the individuals would be reflected in 

independent movement strategies. Larger fish are known be competitively superior to smaller 

fish (Tupper and Boutilier, 1995), and they were such thought to occupy larger areas in this 

study. Smaller fish were thought to show signs of avoidance both from predators and larger 

conspecifics, reflected in a more flexible use of the water column and a preference for deeper 

habitats than bigger fish. 

 

4.1 Habitat selection 

 

Contrary to what was expected, the fish studied in my work tended to prefer habitats 

with few structures. It is commonly accepted that species diversity and abundance increases in 

areas rich with vegetation. Several investigations have also shown foraging success over such 

habitats to be affected not only be the mere abundance of prey but also by the quality and 

quantity of the vegetation. Gotceitas & Colgan (1989) estimated that the response of habitat 

use on habitat complexity by both predators and prey was non-linear and that above a certain 

threshold level of vegetation density, foraging success decreased significantly. It seems both 

from this study and from others (Cote et al., 2003, Gotceitas and Brown, 1993, Gregory and 

Anderson, 1997) that the habitat preferences of the prey often depend on the presence of 

predators. In manipulated experiments, responses of juvenile cod have been investigated when 

exposed to a predator (Fraser et al., 1996, Gotceitas et al., 1997). In many of the trials, the 

juveniles prefer fine bottom substrates with no vegetation prior to an encounter with a 

predator, but quickly seek out patches of coarse bottom substrates and/or vegetation when a 

predator is introduced. Comparisons of habitat selection between the predators and the prey 

revealed that in most cases the juvenile cod choose habitats because of predator avoidance.  

This may be indicative of low predation pressure for the fish studied in my work. Although no 

tests of size-specific habitat selection were run, it was clear that habitat structures associated
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with low protection from predators were chosen over structures that provide good shelter.  

It may be that the habitat samples that contained high degrees of vegetation cover and coarse 

bottom substrates were not above the threshold value proposed by Gotceitas & Colgan (1989), 

thereby not providing enough shelter for the animals to seek them out. It may also be that 

these types of habitats were not equally available to all the animals, as assumed in the test.

 Although being of only age 1, the study animals used here probably do not have many 

natural predators. Most common are probably older conspecifics, humans and marine birds, of 

which the true aquatic animals are thought to be the main force to induce changes in 

movement strategies. During the sampling of the animals, a wide variety of size- and age 

groups of cod were caught, indicating that the study area consists of a heterogeneous mixture 

of age classes. The selection of relatively barren habitats may therefore be the result of a 

trade-off between foraging and shelter, as the animals are not available as prey to a large 

number of species. This may also be reflected by the fact that almost half of the study animals 

used one or more habitat samples that contained dense vegetation cover. More often than not, 

this vegetation consisted of eel grass (Zostera marina) (personal observation; Appendix III, 

Table A3), a plant species known to be of great importance as nursery habitats for marine 

species (Joseph et al., 2006, Tveite, 1984). The animals may therefore utilise these sites for 

shelter, as foraging success has been seen to decrease over eel grass beds (Gotceitas et al., 

1997), while they use the open spaced structures for hunting prey. Gregory & Anderson 

(1997) also speculate whether the difference in skin colour between young and old juveniles 

may affect the choice of preferred habitats. Younger cod have more mottled skin colouration 

than older cod, which would provide them shelter in habitats that match their colour patterns, 

such as gravel, if they rely on crypsis from predators. However, all of the fish sampled in this 

study had very similar skin colour and -pattern, so it is unlikely that this would cause any 

difference in habitat selection here. 

Caveat. In addition to the results of the habitat selection tests not being statistically 

significant, it is also worth considering the nature of the data used in this analysis. First of all, 

all of the home ranges estimated here are based on day time relocations. There might be 

different habitat preferences during the diel cycle, which might explain why I did not see the 

expected pattern of substrate selection. In addition, the 28 ROV samples are small sub-

samples of the true substrate and vegetation of the study area. Outside of each roughly 30 m2 

sample, I cannot justify any interpolation of the nature of the environment. A large-scale 

mapping of marine biotopes along the Norwegian coast is currently being conducted  
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(personal communication, Torjan Bodvin, Institue of Marine Research Flødevigen), but data 

from this project were not available at the time of my study. Such habitat data will in the 

future give much more predictive power when analysing resource selection than what is 

currently available. 

 

4.2 Movement patterns and size-dependent variation 

 

There was a strong relationship between the sizes of the fish and the sizes of their home 

ranges in this study. This is indicative of intra-cohort competition among the individuals, 

where larger fish will out-compete smaller fish over important resources such as shelter and 

foraging grounds. During a visual inspection of juvenile cod in St. Margaret’s Bay, Nova 

Scotia, Tupper & Boutilier (1995) documented that larger individuals had significantly larger 

home ranges (p < 0.001, R2 = 0.95) than smaller sized conspecifics. They also observed that 

encounters between different sized individuals were generally aggressive, with the bigger fish 

driving away the smaller ones. In their study, which lasted from June to December, none of 

the smallest sized individuals had high enough growth rates to out-grow their bigger 

counterparts. This may reflect a negative feedback in which small sized individuals are 

inferior competitors of food and shelter, and thus grow even slower than bigger fish.  

Resource competition is not restricted to interactions between individuals of the same 

species. In a survey of stomach contents of young-of-the-year cod, whiting (Merlangius 

merlangus) and other littoral fishes outside of Flødevigen, Fjøsne & Gjøsæter (1996) 

documented a high degree of dietary overlap between cod and whiting. Both species mainly 

foraged for actively moving prey (such as fish and copepods), indicating that these two 

species might be competitors of food. This may be reflected in the trend for smaller fish to 

utilise larger portions of the water column than bigger fish, as shown in my study. Individuals 

that are inferior competitors may need to be less specialised when it comes to prey 

preferences, and thus utilise larger parts of the surrounding three-dimensional area. In 

addition, small and large cod occupied significantly different depths in my study, which may 

indicate that the smaller individuals experience different predation pressures than the bigger 

ones. Laurel & Brown (2006) found that juvenile cod tend to change their relative position to 

a predator dependent on the type of predator and habitat characteristics. Over sandy bottoms  

and eel grass beds cod remained below cruising predators, such as older conspecifics. 

Ambush predators, such as short-horned sculpins (Myoxocephalus scorpinus), did not 

provoke any change in movement patterns over sand, but when juvenile cod entered the eel  
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grass beds they preferred the upper part of the vegetation and maintained a larger distance 

between themselves and the sculpins. The tendency for smaller cod to inhabit deeper areas 

than larger ones was also documented by Gregory & Anderson (1997) during a habitat 

preference survey in Placentia Bay, Newfoundland. The authors dismissed that this  

segregation of vertical distribution was biologically meaningful though, as they observed 

small and large cod coexisting on many of the depths studied. It is worth mentioning that this 

latter study was conducted in the spring, when ambient water temperatures were about - 1 °C. 

The individuals seemed to be in what Gregory & Anderson referred to as a “winter mode”, 

moving slowly and possibly infrequently compared to warm water behaviour. As the cod 

studied in my work experienced much higher temperatures (Appendix II, Table A2), it is 

unlikely that this shift in activity patterns due to temperature would be apparent.  

 Throughout the study period, many of the individuals relocated over longer distances 

within the study area. More often than not, they moved from an area with low density of 

tagged individuals, to areas within established home ranges of other individuals. Typical “hot 

spots” of aggregation of fish were close to the capture sites of fish ID 250 and 241 (see Fig. 

2a), which both represent relative barren habitats. At the end of the study in late December, 

more than half of the study animals were tracked within 50 m of at least two other individuals. 

This pattern of aggregation over sandy habitats is something that is recognized as an anti-

predator strategy among juvenile cod (Anderson et al., 2007, Laurel and Brown, 2006, Laurel 

et al., 2004). In the absence of structural shelter, schooling behaviour may confuse visual 

predators so that they will have trouble in stalking and capturing a prey. In addition there is 

safety in numbers, and although individuals that aggregate may have to compete more 

intensively for food, they will have a lower probability of being caught. 
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5 Conclusion 
 

This study has shown that behavioural strategies are dynamic and can vary even 

within single individuals. The type of available habitats, density of animals and size- and 

species composition may all affect the determination process of choosing the optimal habitat. 

For juvenile nearshore cod, both predation pressure and inter- and intra-specific competition 

appears to be the driving forces when selecting movement strategies. The behavioural 

selection process was shown to vary within the age group, dependent on the relative body 

lengths of the fish. Bigger fish had large home ranges and showed little variation in vertical 

distribution, indicative of high competitive abilities and a lowered predation risk. Small fish 

on the other hand, behaved in ways thought to represent high predation pressure. They 

generally stayed at deeper depths than their larger conspecifics, but also tended to show a 

more flexible distribution in the water column. This may be the result of changing anti-

predator strategies over different habitats. In addition, smaller individuals had smaller home 

ranges, which may indicate that they are not capable of competing for the optimal resources in 

the same way that bigger fish do. The cod seemed to prefer open habitats that provided little 

shelter over more structurally complex habitats. This may be explained by the fact that many 

of the fish were observed to aggregate with conspecifics, a known anti-predator strategy when 

sheltered habitats are unavailable. 

As a species that is currently under great fishing pressure, I suggest that further studies 

on a larger scale should be done on the behaviour and habitat selection process of cod in the 

Skagerrak. This is needed to identify the different importance of various habitats not only to 

specific life stages but also across the relative body size gradient, so that we will have a better 

knowledge of which areas are more vulnerable to exploitation than others. 
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Appendix I Estimated length at age 

 

The data used in the estimation of length-at-age (Fig. A1, Table A1) are part of an annual 

autumn survey of biodiversity along the Norwegian Skagerrak coast. The cod are sampled 

with the same trammel gillnets at regular stations each year (mesh size = 45 mm). The gillnets 

are set in the evening and hauled in the morning at shallow, near-shore sites. Among the 

characters measured are total length and age, determined by otoliths (unpublished data, Jakob 

Gjøsæter, Institute of Marine Research Flødevigen; Olsen et al., 2008). The data used here 

stems from the station sampled medio December 2006 located outside of the Flødevigen 

research station, considered to be representative of the study animals used in this work.  

 

Figure A1.  Length (mm) at age, calculated from the reading of otholits. 

 
Table A1. Median and mean (± SD) length at age, calculated from n individuals in each age group. 

  n Median Lt (mm) Mean Lt (mm) SD 
Age 1 43 400 396 34 
Age 2 12 480 482 44 
Age 3 3 580 580 80 
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Appendix II Salinity and temperature 

 

Measurements of salinity and temperature were taken each day the fish were tracked, 

at regular stations. The stations represent a supposed gradient from close to the river outlet to 

away from the outlet in the study area. The measurements reported in Table A2 are taken at 

the nearest CTD station from a fish’s estimated location at its tracked depth. 

 

Table A2. Minimum, mean and maximum salinity and temperature in the study area over time and distance from 

the river outlet, based on the variables measured at each fish’s estimated position. 

  Salinity (‰)   Temperature (°C) 
        
  Min Mean Max   Min Mean Max 
October        
   Close to        
    river outlet 30.3 32.6 33.7  14.1 14.9 15.3 
   Away from        
    river outlet 24.4 31.9 33.4  13.5 14.9 15.5 
        
November        
   Close to        
    river outlet 32.2 33.6 34.5  11.1 13.7 14.6 
   Away from        
    river outlet 28.9 33.6 34.6  10.7 13.4 14.4 
        
December        
   Close to        
    river outlet 33.3 33.5 33.7  10.7 10.7 10.7 
   Away from        
    river outlet 32.2 33.5 33.8   10.4 10.6 10.7 
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Appendix III ROV samples 

 

The ROV samples were categorised according to the different bottom substrates 

available in the study area, which were mud or silt, fine grained sand and large rocks or 

bedrock. The coverage of vegetation was split into eel grass (Zostera marina) and other 

vegetation, and were categorised into “none” (absent), “sparse” (< 20 %), “patchy” (20 % - 50 

%) and “covered” (> 50 %) (Table A3). The locations of the ROV sampling stations are given 

in Figure 2b in the main text. Examples of the habitat categories used in the analyses are 

given in Figure A2. 

 

 

Figure A2. Snapshots of the three different habitat categories sampled in the study area. From left to right: 

category a, fine bottom substrate without vegetation; category b, fine bottom substrate with dense vegetation; 

category c, coarse bottom substrate with dense vegetation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 29 - 



Appendices 

- 30 - 

 

Table A3. Overview of the bottom substrates and vegetation cover for each ROV sampling station. The 

corresponding habitat categories used in the analyses (see Table 3 in the main text) are given to the right. See 

text for explanation of cover categories. 

ROV station Bottom substrate Eel grass Other vegetation Habitat category 
2 Mud/silt None Covered b 
3 Mud/silt None Covered b 
4 Sand Covered Patchy b 
5 Sand Patchy Covered b 
6 Sand None Patchy b 
7 Rocks/bedrock None Covered c 
8 Mud/silt None None a 
9 Mud/silt None None a 
10 Mud/silt None None a 
11 Sand None Covered b 
12 Sand None Covered b 
13 Mud/silt None Sparse a 
14 Sand Covered Covered b 
15 Sand None Covered b 
16 Sand Covered Patchy b 
17 Mud/silt None Sparse a 
18 Sand Covered Patchy b 
19 Mud/silt None None a 
20 Mud/silt None None a 
21 Sand None Covered b 
22 Mud/silt None Patchy b 
23 Sand None Sparse a 
24 Rocks/bedrock None Covered c 
25 Mud/silt None None a 
26 Mud/silt None Sparse a 
27 Sand None Sparse a 
29 Mud/silt None Patchy b 
30 Sand None None a 
 

 

 

 

 

 

 

 

 

 

 

 

 


