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 Abstract. 
 

The Red Queen hypothesis states that biological entities rather than abiotic factors 

constitute the larger part of the selective environment experienced by individual 

organisms, and that species as a consequence undergo continual evolution. Such non-

stationary evolutionary dynamics can exist on a fine evolutionary scale, where a constant 

number of co-evolving species engage in fixed ecological interactions. Phenotypic 

models of evolution can reflect such continuous evolution through limit cycles in the 

evolution of traits. Here a dynamic phenotypic model of trait evolution under asymmetric 

intra- and interspecific competition is presented and analyzed. The model comprises two 

species or populations competing for resources, where the value of a trait, such as body 

size, of the interacting individuals determines the competitive effects. A cost for having a 

trait size different from a defined ecological optimum (i.e. optimal in the absence of 

competition) is included. The degrees of intra- and inter-specific asymmetry affect 

evolutionary dynamics in very different ways. The model exhibits Red Queen dynamics 

in some parts of the investigated parameter space. However, evolutionary limit cycles 

only occur when there is a certain degree of asymmetry in the inter-specific competitive 

interactions and when the two populations have different rates of evolution. A shortcut 

for finding equilibria where such continual dynamics can be achieved in adaptive 

dynamics models is also presented. This shortcut applies weak convergence stable 

equilibrium points in any adaptive dynamics model with two species with one evolving 

trait each.  
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1. Introduction. 

1.1 The Red Queen hypothesis. 
The Red Queen hypothesis was put forth by Van Valen (1973) and was based on 

interpretation of paleontological data. His analysis suggested that the longevity of any 

taxon did not affect the probability that species within the taxa would go extinct. This led 

him to the hypothesis that all species are continuously evolving and coined the term Red 

Queen evolution to describe this non-stationary evolutionary dynamics. The name comes 

from Lewis Carroll’s Behind the looking glass (Carroll 1872), where the red queen says 

to Alice that ‘…it will take all the running you can do, just to stay in the same place’.  

 

The Red Queen hypothesis is one out of very few dealing with large-scale evolutionary 

patterns and processes, and has been investigated from different biological approaches. 

One of the first thorough model-approaches to investigate the hypothesis was done by 

Stenseth and Maynard-Smith (1984), focusing on community patterns. Their model 

distinguishes between three timescales: i) The ecological time scale, where the variables 

are the species abundances;  ii) The gene frequency time scale, where the number of 

species and the nature of their interactions are constant; and iii) The speciation-extinction 

timescale. Their analysis suggested that in the absence of environmental changes, 

ecosystems are expected to approach one of two possible states. One is a stationary state, 

in which ecosystems are stable in number of species and with few evolutionary changes. 

The other is the Red Queen state, in which there is a steady state characterized by a 

uniform rate of evolution, speciation and extinction. Accordingly, the model poses the 

possibilities of two different regimes in the history of evolution under stable 

environmental conditions: that of stasis or of continual, non-stationary evolutionary 

dynamics. If most species are continuously evolving, this may be reflected in the fossil-

record (which was what led Van Valen to put forward his hypothesis), although not 

necessarily so, because there are many evolvable traits, such as cellular processes and 

behavioral traits, that are not fossilized. The hypothesis is often put up against that of 

Vrba on turnover-pulses (1993) and other “Court Jester hypotheses” (Barnosky 2001), 

which suggest that biological communities are fairly stable in composition and have 
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stable rates of extinction and immigration/speciation when the environment is stable, and 

undergo a turnover-pulse when large-scale climatic or tectonic changes occurs. The 

debate is still ongoing, particularly with respect to evolution of mammal communities 

(Vrba 1993, Alroy 1996, Alroy et al. 2000, Raia et al. 2005)  

 

The interpretation of the Red Queen hypothesis in the above mentioned debate relates to 

whether biological communities, on the evolutionary timescale (i.e. with respect to 

extinction and speciation), are mainly shaped by biological interactions or by external 

forcing. However, the hypothesis can also be interpreted at a finer scale, in terms of 

evolution of co-evolving species. In the latter view, Red Queen dynamics can be 

consistent with Vrba’s turnover-pulses. This is because in the absence of external 

changes, a species might still undergo continual evolution in adapting to other species 

with which it interacts ecologically. This can have an effect on turnover-rates if such 

evolution leads to recurrent extinction and speciation. However, one can also envision 

continual evolution without changes in species composition of an ecological system. 

Such type of non-stationary dynamics would correspond to Red Queen evolution on the 

second timescale as defined by Stenseth and Maynard-Smith (1984), the ‘gene-frequency 

time-scale’ where the number of species and the nature of their interactions are constant. 

In this latter view of the Red Queen, investigations of conditions for lack of evolutionary 

stasis in phenotypic models that incorporate frequency-dependent fitness of co-evolving 

species can potentially yield fruitful insights. 

1.2 Red Queen evolution on the ‘gene frequency’ time scale. 
Investigations of Red Queen evolution in systems of fixed interactions have in many 

cases not assumed a fixed number of coevolving species. Most of the models constructed 

to address the possibilities of non-stationary dynamics on the time scale of fixed 

interactions are of predator-prey, parasite-host or general exploiter-victim type (Marrow 

et al. 1992, Dieckmann et al. 1995, Gavrilets 1997, Martins 2000, Gandon 2002, Loeuille 

et al. 2002, Dercole et al. 2003, Kisdi and Liu 2006). In most exploiter-victim systems 

such continual dynamics is fairly common. Competition has also been studied (Dawkins 

and Krebs 1979, Parker 1983, Abrams and Matsuda 1994, Matsuda and Abrams 1994, 

Law et al. 1997, Kisdi and Geritz 2001, Kisdi 2004), also on a larger scale relating to 
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taxon-cycles (Taper and Case 1992) or to other patterns of fluctuating diversity (Kisdi 

1999, Doebeli and Dieckmann 2000, Kisdi and Geritz 2003). Most of these models of 

competition are either focused on intra-specific competition or with varying number of 

interacting species. 

 

Competition is a ubiquitous phenomenon in natural communities, and thus the 

evolutionary consequences of different competitive interactions both within and between 

species are of interest. Competition can be characterized by the actual way the 

interactions are undertaken; in exploitative competition the detriment for one individual 

is due to other individuals consuming the same resources, whereas in interference 

competition the individuals directly interact in competition over some resource. 

Competitive interactions are said to be asymmetric when the fitness effect of the 

interaction differs between the individuals. Asymmetries in competitive interactions are 

likely to exist in both types of competition, but are probably more predominant in direct 

interference competition (Persson 1985). Competitive asymmetries includes direct 

contests where the larger individual wins with a higher probability (Cluttonbrock et al. 

1979) or gets a larger share of the resource (see e.g. Schwinning and Weiner (1998)). 

Asymmetries are also prevalent in the competition for territories (Robinson and Terborgh 

1995) and appears both within and between species (Persson 1985, Alatalo and Moreno 

1987, Morin and Johnson 1988, Robinson and Terborgh 1995). The degree of asymmetry 

in competitive interactions has potential to greatly affect the evolution of traits 

determining competitive ability, and has therefore been studied to a certain extent. 

However, to my knowledge, the only model of evolutionary dynamics with focus on co-

evolution of persistent populations (except for co-evolution as a result of evolutionary 

branching or re-occurring invasions) engaging in asymmetric competitive interactions 

was published by Law et al. (1997). Their model comprised two species/populations 

where one evolvable trait in each population influenced the basal mortality of the 

populations as well as determined the effect of the competitive interactions. The traits 

were interpreted as body sizes, as they are of importance in competitive interactions 

(Weiner 1990). The model showed that asymmetry (i.e. unequal division of fitness 

effects) in competitive interactions can give rise to several more equilibrium points in 
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addition extinction of one of the species. They also presented one example of limit cycle 

in the system. One could, however, question their choice of mathematical representations 

of the biological interactions. One would expect that the degree of competition between 

individuals and populations should diminish with increasing differences in trait-values 

between the competitors, as larger differences in body size could correspond to less 

overlap of resource utilization. This was not assumed in their model, where the 

interaction coefficient was as depicted in figure 1. Another potential problem is that they 

defined every trait-value below zero as impossible and just used a linear cost-function, 

although they introduced a suggestion on how one could transform body sizes. One 

should, however, expect there to be an optimal body size defined by the abiotic 

environment in the absence of competition, and a region of body sizes around that 

optimum. A model describing the evolutionary dynamics of asymmetric competition 

where these objections are taken into account is therefore needed. 

 
Figure 1. The competitive interaction function in Law et al. (1997) with increasing levels of asymmetry. 

The first axis represents difference in trait value for the two individuals and the second denotes the 

ecological impact of the competitive interaction.  From a – no asymmetry to d – strong asymmetry and a < 

b < c < d in level of asymmetry. 

 

1.3 Purpose 
The purpose of the model presented here is to model biological competition, take the 

above objections to the model by Law et al. (1997) into account, and to evaluate under 
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what conditions a coevolutionary model of competition will exhibit evolutionary limit 

cycles. The model consists of two species or populations that compete for a common 

resource. The parameters of interest are first and foremost the degree of asymmetry in the 

competitive interaction, but other parameters will also be briefly analyzed.  Asymmetry is 

unequal division of competitive impacts between the two entities engaging in competitive 

interactions and is of particular interest because of the probable predominance of 

asymmetric competition in contrast to symmetric in nature. (Lawton and Hassell 1981, 

Connell 1983, Schoener 1983, Weiner 1990) 

 

In addition to a deterministic model of evolutionary change, an individual-based model 

and a monomorphic stochastic model (Dieckmann and Law 1996) was constructed (see 

appendix 2 and 3 for details). The main reason for including these additional models was 

to investigate whether solutions of the deterministic approximation would be validated 

with simulations in which some of the assumptions are lifted. Another reason was to 

evaluate if the occurrence of limit cycles in the deterministic approximation would be 

evident also in a polymorphic stochastic model, where the possibilities of such cycles 

could be affected by the fact that populations are polymorphic with a certain degree of 

phenotypic variance. A deterministic approximation of a cycle can for instance be of 

small amplitude and individual-based simulations can shed light on the dynamics in the 

system if the variation within a population is larger than the amplitude. 

 9



2. The model. 

2.1. The framework. 
One of the frameworks for dynamic modeling of phenotypic evolution developed in the 

last decades is loosely termed adaptive dynamics. The main contribution to the 

development of the approach was that of invasion-fitness as the long term per capita 

growth rate of a (potential) mutant in a system defined by existing phenotypes called 

residents (Metz et al. 1992). The derivative of the invasion-fitness with respect to the 

mutant is then used as a fitness-gradient in a dynamical system of monomorphic 

population(s) as an approximation of evolution by small mutational steps. This 

approximates the mean path of many realizations of a stochastic mutation-selection 

process, and is termed the canonical equation of adaptive dynamics (Dieckmann 1996, 

Marrow et al. 1996).  

 

The models of adaptive dynamics are especially suited for investigating the Red Queen 

hypothesis due to the possibilities of deriving evolutionary models from ecological 

models, such that ecological parameters are explicitly incorporated into the evolutionary 

system. In the adaptive dynamics literature, the term Red Queen dynamics is used to 

describe two qualitatively different types of continual evolution. One is branching-

extinction cycles (Geritz et al. 1997, Geritz et al. 1998, Kisdi 1999, Doebeli and 

Dieckmann 2000, Kisdi et al. 2001, Bowers et al. 2003) where evolution is non-stationary 

in the sense of lineages branching into several populations or species, with following 

Darwinian extinction (Webb 2003) and reoccurring branching. The other form is the 

existence of limit cycles in the adaptive trait-space (Dieckmann et al. 1995, Abrams and 

Matsuda 1997a, 1997b, Law et al. 1997) where evolution never halts due to lack of stable 

point attractors. 

2.1.1. Properties of evolutionary singular strategies. 
The possible stationary outcomes of a one-dimensional adaptive dynamics model can be 

characterized by certain analytical properties (Geritz et al. 1998). The points where the 

fitness gradient disappears can be characterized by the double-derivatives of the invasion-
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fitness with respect to the mutant’s and the resident’s phenotype. Following Geritz et al. 

(1998), properties of evolutionary singular strategies can be classified into eight different 

categories, depending on the values of the following mathematical properties, evaluated 

at points where the selection gradient disappears called a singular point: 

(a) ( )
iimut ssimut

i

ssf
s =

∂
∂

|
,|2

2

  (b) ( )
iimut ssimut

imut

ssf
s =∂
∂

|
,|2

|

2

 

Property of the singular strategy Mathematical criteria 

ESS stability, δ – stability  (b) < 0 

Convergence stability, m –stability  (a) – (b) > 0 

Singularity can spread (a) > 0 

Nearby dimorphisms (a) + (b) > 0  
Table 2. Properties of singular strategies and their characterization, after Geritz et al. (1998) 

Here ( )ssf imut ,|  represents the fitness of an initially rare mutant with phenotype smut|i in a 

system defined by the vector s, denoting the phenotypes of the residents. 

 

The delineation of the two first properties as independent was of great importance in the 

extension of the traditional static definition of ESS’s (Evolutionarily Stable Strategies). 

Without both ESS stability and convergence stability, an ESS in the old sense is not 

attainable by small mutational steps. The original distinction of the two first properties is 

δ-stability and m-stability from Taylor (1989), elaborated by Christiansen (1991), due to 

earlier work by Eshel and Motro (Eshel and Motro 1981, Eshel 1983). One of the 

conclusions from this distinction is the appearance of convergence stable, not ESS stable 

points of attraction. If these singular strategies also fulfill the last criteria with nearby 

dimorphisms, it corresponds to a branching point; a point where the population might 

split into two populations with different trait-values (Geritz et al. 1997, Geritz et al. 1998, 

Kisdi 1999, Doebeli and Dieckmann 2000, Geritz and Kisdi 2000). This can in some 

cases also lead to cycles of branching and extinction of one of the morphs, followed by 

branching events, one form of Red Queen dynamics (Kisdi et al. 2001, Dercole 2003) in 

such models. The application from Geritz et al.(1998) only applies to one-dimensional 

models, but some of the conditions have also been extended to multidimensional models 

(Leimar 2002). Leimar (Leimar 2002) introduces the concept of strong convergence 
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stability as a multidimensional extension of convergence stability. In the case of non-

correlated traits in several dimensions (as is the case if there is only one trait in every 

population in the model) strong convergence stability implies asymptotic stability of the 

dynamical system and convergence stability for all of the populations. This concept is 

needed due to the fact that an attractor in the dynamical system must be convergence 

stable for some of the evolving populations but not necessarily all. If an attractor exhibits 

strong convergence stability it is however convergence stable for all populations. 

Attractors can thus have strong convergence stability (a-b > 0 for all populations) or weak 

convergence stability (a-b>0 for one population). Note, however, that these criteria only 

apply to evolutionary singular strategies that are contenders of the final resting stops for 

evolution and thus that the existence of limit cycles in the system can not be 

characterized by the use of these criteria.  

2.1.2. The applicability of adaptive dynamics models. 
Most limitations of models lie in their assumptions, and the derivation of the canonical 

equation together with the assumptions about the particular system under investigation all 

limit its applicability to natural systems. As in other phenotypic models haploid and 

asexual reproduction is assumed, which clearly only applies to a limited set of organisms. 

On the other hand, numerical explorations of sexually reproducing individual-based 

models has in several cases shown to follow very similar dynamics as the haploid, 

asexual ones (Dieckmann and Doebeli 1999, Geritz and Kisdi 2000). Other limitations 

include those of small mutational steps, general mutation-limited evolution (i.e. fixation 

of one mutant before another appears) and decoupling of ecological and evolutionary 

timescales. The assumptions and therefore limitations of the adaptive dynamics models 

are still under debate, and the adequacy of adaptive dynamics as models for evolution is 

continuously questioned (see Waxman and Gavrilets  (2005) with replies and further 

comments in same issue). 

 

In spite of its limitations, adaptive dynamics models have a solid basis, as the 

approximation can be derived from stochastic mutation-selection processes and also from 

a starting point in quantitative genetics (Iwasa and Pomiankowski 1991, Taper and Case 

1992, Abrams et al. 1993a, Abrams et al. 1993b, Dieckmann et al. 1995, Marrow et al. 
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1996). Another strength of the approach is the fact that the framework has four distinct 

types of models, with different assumptions and degrees of realism, three of which are 

utilized in this thesis. It also includes both frequency- and density-dependence in the 

evolution of traits, and it is fairly easy and straightforward to construct dynamic models 

for very different ecological scenarios. 

2.2. A model of asymmetric competition. 
The basic scenario here is a coevolutionary model of competition, where two populations 

assumed to be different species, engage in competitive interactions. Each population 

consists of individuals having one trait, which we may think of as body size, which 

undergoes evolution. The trait sizes has primarily two effects, they affect the impact of 

competition; it is assumed that differences in trait sizes between two interacting 

individuals determines the mortality effect on both. There is also a cost associated with 

trait size, and an optimal trait size in the absence of competition is defined. Having a 

larger or smaller trait size than the optimum incurs some cost through increased mortality 

risk. The growth rate of the populations being monomorphic for one trait size can then be 

expressed as functions of these relationships if one includes a birth rate, here assumed to 

be independent of the trait size. The main focus of investigation is the degree of 

asymmetry in the competitive interactions, where increasing asymmetry means that the 

individuals or populations with the smaller trait size have disproportionately larger 

mortality risk due to competition than those having larger trait size. First, the functions 

describing the relationship between trait size and mortality risks are introduced; then a 

population dynamic system is constructed, and finally an evolutionary dynamical model 

is derived from the system. The dynamical model is interpreted as an approximation to 

several runs of the stochastic models presented at the end of this section. 

2.2.1. Individual interactions. 

2.2.1.1. The competition function alpha 
The competition function alpha describes the level of competition between two 

individuals, as a function of the individuals’ trait-values (denoted si and sj) and the degree 

of asymmetry (denoted ki,j). The trait-values can, as suggested above, be interpreted as 

body size of the individuals, which is often important in competitive interactions, but can 
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represent any phenotypic trait that can be transformed into a scalar value and is of 

importance in the competitive interaction (such as degree of armament, weight, or costly 

signals of strength). The numerical value of the function is assumed to translate into 

probabilities of dying per encounter per unit time. Per encounter can mean direct 

encounter as in interference competition, or imagined encounter due to encountering a 

resource that already has been utilized by another individual. Increasing levels of 

asymmetry means that the impact of the interaction is divided differently between the two 

individuals differing in trait-values, with lack of asymmetry corresponding to an equal 

effect. The competition function (I) reflects certain desired properties; equal effect on 

both individuals if they have the same scalar trait value independent of the level of 

asymmetry; decreasing effect when the difference in trait-values increases (unlike Law et 

al. (1997)); an increase in the level of asymmetry skews the function in the opposite 

direction of the asymmetry; and finally, the sum of effects of the interaction is the same 

for the same difference in trait-values, irrespective of the level of asymmetry:  

( ) ( )( )
(( ))jiji

ji
jiji ssk

ss
kss

−⋅+
−−

=
,

2

, exp1
exp

/,, γα  (I) 

 

 
Figure 2..Interaction coefficient α for different degrees of asymmetry. The x-axis is the difference in trait-values for the two 

competing individuals/populations. a) ki.j = 0. b) ki,j= 3. c) ki,j = 7. 

 

If one sets the trait values equal, the level of competition calculates to the numerical 

value of ½, as it will for all levels of asymmetry. One can also easily see that the effect of 

the interaction will decrease for increasing difference in trait-values, as the numerator 

depends on the exponential of the negative squared difference in trait value. That the 
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function reflects the wanted property of asymmetry is accomplished by the denominator, 

and is most easily seen graphically, in figure 2. The parameter γ has the unit time-1 and 

specify the temporal aspect of the interaction and thereby scales the population sizes.  

2.2.1.2. The cost function delta 
Trait sizes cannot evolve ad infinitum and there is likely a cost for having larger values of 

a trait such as body size. This cost could represent lower fecundity or higher mortality 

risk, and must be incorporated in the model. We here assume that there is an optimal trait 

size, and that deviations from that optimal size incur increased mortality risks. Thus, the 

cost-function here is of second-order to make sure that there is an optimal trait size (in 

absence of competition), accomplished by setting the appropriate parameters into the 

function: 

( ) 2
321 iii scsccs ⋅+⋅−=δ  (II)  

This function will have a parabola-shape with a minimum at ( )32 2 cc ⋅  , when we assume 

all parameters to be positive.  

 

The cost function, together with the intrinsic birth rate, βi,  could be viewed as the 

resource that the populations consume, and therefore defining an alike to the carrying 

capacity or maximum attainable resource, dependent on the trait value. In that case any 

difference in βi’s can be interpreted as a difference in the ability to utilize the resource, 

irrespective of the evolvable trait. One could also imagine different cost-functions for the 

different populations, but here the parameters used are equal for both. 

2.2.2. Population dynamics 
The population dynamics of the system can be derived using the alpha-function above if 

we assume that individuals encounter each other at random. Then, the alpha-function 

together with the mortality risk δ(s) translates into net rates of increase (or decrease) for 

the whole population of individuals. I here assume that the populations are monomorphic 

for one trait size. The functions can then be incorporated in a model of Lotka-Volterra 

type (sensu latu); 
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Here the change in size of a population i is a product of the population size at time t and a 

function for the population’s growth rate, which again depends on the trait values of the 

populations (s, a vector consisting of two traits, s1 and s2) and the population sizes (N, 

indicating the vector of population sizes). This function (from now on referred to as the 

growth function) consists of several parameters where βi is the intrinsic birth rate of 

population i; the function δ, which corresponds to basal mortality and which depends on 

the trait value of the focal population only; and two terms describing the competitive 

interaction within and between the populations. The cost-function is here assumed to 

translate into rates of mortality as a function of the trait size of the populations. The 

interaction term has a scaling factor ci,j which scales the effect of an inter-specific versus 

an intra-specific interaction. This scaling factor is used to allow an interaction to have a 

stronger effect within a population than between populations, as might be the case when 

the ecology of the two species differs to some extent. It is important to distinguish the 

type of asymmetry in the model from the more traditional ecological way of interpreting 

asymmetry, where asymmetry simply reflects differences in the extent populations affect 

each other in population dynamics (i.e. differences in the full term ci,j*α(si, sj, ki,j)).  Here 

the degree of asymmetry in addition to the scaling factors ci,j will determine the impacts.  

2.2.3. The canonical equation. 
To derive the canonical equation(s) of adaptive dynamics (Dieckmann and Law 1996, 

Geritz et al. 1998) one introduce a mutant in the dynamic system and define fitness as the 

long term per capita growth rate of a (potential) mutant invader (Metz et al. 1992). The 

growth function (invasion fitness) for the mutant invader will then be 

( ) ( ) ( ) ( )∑
=

⋅−−=
2,1

,
ˆ,,,

j
jijjmutjimutimut sNksscssf αδβs   (IV) 

Here the constants in the function with subscripts (i.e. βi and ci,j) are equal to the 

corresponding constants of the population where the mutant appears. As is evident from 

the interaction term we here make one of the fundamental assumptions in adaptive 

dynamics theory; that the mutant itself does not initially affect the environment in which 
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it appears. We only calculate the interaction between the mutant and the two resident 

populations, and how that will affect the initial per-capita growth rate of a potential 

mutant (it does not initially interact with itself). Thus the environment is completely 

determined by the resident populations and their trait-values. We also assume that the 

population dynamics has reached its attractor since we evaluate at the equilibrium 

population sizes of the two residents, ( )sN̂ , which implies a decoupling of ecological and 

evolutionary timescales. Thus, the invasion fitness only depends on the resident trait-

values which determine the equilibrium population sizes. This function is often called the 

invasion fitness. We assume that whenever this evaluates to a positive value the mutant 

will invade and replace the resident population in which it appeared.  

 

If we make the assumption that the two types (that is mutant and resident) cannot coexist 

in the same population and in addition have infinitesimally small mutational steps 

(invasion of new types is only possible in the immediate vicinity of the resident trait), we 

can derive the fitness gradient. This will be the mutant’s growth function differentiated 

with respect to the mutant’s trait-value and substituting for the trait-value of the 

population in which it appears. 
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Here smut|i is the trait-value of the mutant appearing in population i. Since we assume that 

the resident populations have reached their equilibrium sizes, fi(si,s) is zero. This 

selection derivative (or fitness gradient) is used in a deterministic dynamical system, as it 

describes the direction of evolution of the trait values in the limit of small mutational 

steps.   
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Here the term κi(si) is the parameters that scale the rate of evolution, and consists of 

biologically meaningful terms as follows; 

( ) ( )sNs iiii
ˆ

2
1 2 ⋅⋅⋅= σμκ   (VII) 
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Here the ½ term arises from the assumption that half of the mutations that appear will be 

selectively disadvantageous (i.e. have negative invasion fitness), µi is the mutation rate, 

σi
2 is the mutational variance and ( )sNi

ˆ  is the equilibrium population size of population i 

as a function of the trait-values. 

2.2.4. The monomorphic stochastic and polymorphic stochastic models. 
In addition to the deterministic approximation above I constructed two stochastic models, 

one individual-based and one population-based simulation model, to validate solutions of 

the deterministic approximation. Evolution is not a deterministic process, and the 

stochasticity in individual deaths, births and more importantly the randomness of 

mutations can be taken into account in such stochastic model. An individual-based model 

will also exhibit some variation of phenotypes within populations, absent in the 

deterministic approximations, where populations are assumed to be monomorphic. The 

functions (α and δ) and βi can map and be scaled such that an individual’s trait (together 

with all other traits in the populations) translates into probabilities for giving rise to a new 

individual or to die. To construct an individual-based model of the system, one also needs 

to incorporate mutation probabilities and the distribution of mutations. A birth-event is 

followed by a mutation of the trait value of the focal individual with probability µi, and is 

drawn from a normal distribution with zero mean and variance σi
2. After every event all 

probabilities are recalculated. In this model both the ecological and the evolutionary 

dynamics are emergent. Further details of the individual-based model are given in 

appendix 1. 

 

For construction of the other stochastic model the invasion fitness (eq. IV) of a mutant is 

used together with the mutational distribution. In this simulation model both populations 

are assumed to be monomorphic and the invasion fitness together with the mutational 

distribution determines probabilities for transitions to other trait-values in the vicinity of 

the resident. Here we assume that there is a separation of time scales such that the 

populations have reached their population dynamical attractor before any trait-transition 

will occur. Therefore the model will only have emergent evolutionary dynamics, while 

 18



the ecological dynamics are neglected. Further details of the population-based model are 

given in appendix 2. 

3. Analysis of the model. 

3.1 Regions of coexistence 
Since we are interested in the coevolution of two populations we are restricted to a subset 

of the Cartesian plane S = s1*s2 in which both populations have non-zero and positive 

population sizes. The isoclines defining this subset can be found by solving the resident 

population model (III) for the population sizes. There is only one solution with two 

positive population sizes. With two populations, the population sizes are dependent on 

every parameter and variable in the resident model (III). In addition to the presence of β 

and δ there is an augmenting term arising from the interaction with the other population. 

The subspace of S where both populations are non-zero and positive, Sc, requires that the 

following inequality is met: 
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In absence of competition, the region of existence (or equivalently the trait-values for 

zero population size in absence of competition) is defined by β and the δ-function, which 

again yields; 
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So, as the first term describes the optimum trait-value according to the delta-function, the 

second term describes the width of the region of viable trait-values si. 

 

If we substitute the values for interactions within a population (α(si, si, ki,i)=½) and 

choose values for scaling the effect of an interaction between and within the populations 

so that a population always affects itself more than the other (to make the inequality VIII 

hold in a larger subset of S), ci,i = 2, ci,j =1,i ≠ j,  we get the following expression for the 

equilibrium population sizes; 

 19



( ) ( ) ( )( )
( ) ( )( )ijijjiji

jjjijiii
i ksskss

sksss
N

,,
2

,

,,,,
,,ˆ
ααγ

δβαγδγβ
⋅−

−⋅−⋅−⋅
=      (X) 

This only applies to the monomorphic stochastic and deterministic model, as the 

individual-based model will have emergent population sizes and a very stochastic 

representation of those sizes. 

 

From equation X it is obvious that the parameter γ scales the population sizes (it is a part 

of the α-function), as its square is a part of every term in the denominator and it is part of 

every term in the numerator. If there is only one population, its size is defined only by the 

intrinsic birth rate βi, the value of the cost function δ, and γ. Note that this does not mean 

that there is no competition acting within the population, only that we have defined 

competition to have a numerical value of 2*½ =1 for interacting individuals (or 

populations) with the same trait-value.  

 

We then have an expression for the equilibrium population sizes as a function of the trait-

values. The expressions involved are fairly complex and are not solved for s analytically, 

but I use numerical computations to find the subset in which both populations have 

positive sizes. It is only within this region we can have coevolution, and evolution out of 

this region will in this model correspond to a Darwinian extinction (Webb 2003). 

 

Since the region of coexistence depends on one of the parameters of interest, namely the 

degree of asymmetry, I explore the effect of changing the level of asymmetry on the size 

and shape of the region of coexistence. For the analysis to be simplified I use a baseline-

scenario throughout for comparison. The parameter settings for this scenario applies and 

are as follows if not otherwise stated: 
Parameter Interpretation Value 

βi Intrinsic birth rate of population i. 1 for i=1, 2. 

c1, c2, c3 Parameters of the cost-function 1, 9/20, 3/20 

ci,j Scaling of the interactions 2 for i = j, 1 for i ≠ j 

ki,j Degree of asymmetry in the interaction 0 for all 
Table 1. Parameter settings for the baseline scenario. 
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In figure 3 below, the axes represent the trait-values of the two populations, and the black 

lines are the zero-population size isoclines for the populations. We see that when Δs =si-sj 

is large, but both trait-values are close to the isoclines, they are determined by the cost-

function, whereas when Δs is small (in the top right and lower left region) the interaction 

has an effect on the shape of the isoclines. Changing the values for βi (equally for both 

populations) and the parameters in the cost-function will not affect the shape of the 

isoclines, only their positioning along the axis. Changing βi for only one population, 

however, leads to a dramatic change in the region of coexistence, and for very different 

values (~βi > 3/2 * βj) the region seizes to exist. I do not explore this further and only 

minor changes in the βi’s are analyzed. 

 

The region of coexistence is evidently independent of the degree of asymmetry in the 

interaction within a population as the degree of intraspecific asymmetry does not affect 

the impact of ecological competition (α(si, si, ki,i) is always ½).  Changes in the inter-

specific asymmetry, however, affect the isoclines in regions where Δs is fairly small. The 

only assumption we have made so far is that the interaction can be represented by the 

alpha-function defined, and that the traits are limited by the non-evolving environment 

(the δ-function). If we assume that competitive interactions follow this relationship in 

nature, then analyzing the size of the region of coexistence would relate to how often one 

would expect to encounter interactions with the specified parameters in nature. As one 

sees, the region is substantially smaller for large differences in β-values, which in turn 

means that competitive asymmetric interactions in nature may be more common between 

species with small or no difference in intrinsic birth-rates.  

 
Figure 3. Regions of coexistence. a) Baseline scenario. b) Degree of inter-specific asymmetry, ki,j=3. c) ki,j=3 and β2=0.9.  
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3.2 The fitness gradient. 
One can get an impression of the dynamics of the model by inspecting the selection 

derivative. By differentiating the growth function of the mutant by the mutant trait-value, 

and then substituting it with the trait-value of the resident population in which it appears, 

one obtains; 
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On first inspection one sees that the first term (a) is selection due to the cost-function 

defined. This term will always point towards the optimum trait-value, only augmented by 

the other terms (b-d) which result from the ecological interaction within and between the 

populations. If there is only one populations, (i.e. Nj =0) then the only other term is the 

last (d), which will be positive for all positive values of ki,i  (the degree of asymmetry 

within population i). This makes intuitive sense, since an increased level of asymmetry 

within a population should lead to an equilibrium trait-value higher than the optimum 

defined by the cost-function. Note that d is here not explicitly dependent on the trait-value 

of the population in focus. However, the equilibrium population sizes in this equation are 

in themselves dependent on the trait-values, which make the fitness gradient highly 

nonlinear. Note also that γ always appears together with the equilibrium population sizes, 

and therefore γ does not affect the dynamics directly, although it will affect the speed of 

the dynamical system by scaling the population-sizes which appear in the kappa-function 

in the canonical equation (here the γ’s will be cancelled out, see equation X).   

 

The b and c terms in equation XI are the results of the ecological competition between the 

populations, and therefore depend on the trait-values of both populations, the population 

size of the competitor, and the different parameters scaling the interaction. The c term is 

always positive (or zero), whereas the b term depends on the difference in trait-values 

and may therefore take both positive and negative values. One can see that b will be 

negative for the population with the smaller trait-value and positive for the larger, and 

 22



thus lead to selection towards smaller trait-value for the former and opposite for the 

larger. One also sees that the c term is directly dependent on the level of asymmetry in 

the inter-specific interaction, and therefore is zero in the case of symmetric competition.  

 

To have selection for smaller (larger) trait-values arising from the interspecific 

interaction, the sum of the second and the third term needs to be negative (positive) (note 

though that there is a possible negative term arising from the cost-function). Some 

algebra gives rise to the following necessary condition for selection for smaller trait 

values to occur due to the inter-specific competition: 
( )

( ) 0
exp1
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skk
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ji
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We see immediately that when there is no asymmetry in the interaction, the inequality 

only holds for negative differences in trait values, i.e. always for the population with the 

smaller trait-value. When there is asymmetric competition it will still only hold for 

negative Δs but not necessarily all. With increasing levels of asymmetry one sees that 

there are possible negative differences in trait values for which the interaction will lead to 

selection for larger trait-values. When this is the case the population with the smaller 

trait-value will experience selection for larger trait size arising from the asymmetric 

interaction with the competitor with the larger trait value. This is a result of Δs not being 

large enough in absolute terms for the two populations to be on different sides of the peak 

in the α-function (see figure 1). If the populations are similar (Δs is small) increasing 

levels of asymmetry may lead to larger mutants being favored in both populations and 

can only be augmented by the cost of increasing trait-values. Limit cycles in the model 

will probably include evolution within and outside this range, at least for one of the 

populations. 

  

Inequality XI also reveals that the species with the larger trait value will only experience 

selection for smaller trait-values arising from the cost-function and never from the 

interactions within or between the populations. Thus the only cases in which the model 

may exhibit cycles are when selection due to the ecological interaction becomes weaker 

(in absolute terms) than selection for optimum trait-value for the larger population. This 
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implies that a decrease in the trait-value of the species with the smaller trait value has to 

predate a decline in the other species. 

 

The null-isoclines for the fitness gradients of both populations are of particular interest 

with respect to the evolutionary dynamics. These isoclines describe where the selection 

derivative equals zero, and therefore where adaptive evolution in one of the populations 

stops. Depending on the system, the realization of the solutions will either tend to or from 

the isoclines. Where the evolutionary isoclines of the two populations intersect, we have 

an evolutionary singular point (Geritz et al. 1998). These evolutionary singular points 

represent possible evolutionary outcomes, depending on the shape of the isoclines. When 

I numerically solved the dynamical system defined by XI and VI, I incorporated the 

unique non-zero solutions to the population dynamics so that the evolution of the system 

only depends on the trait-values. The isoclines in the model presented here were to 

complex to be solved analytically. Accordingly, I relied on numerical analysis using 

Maple (Maplesoft. 2003) 

3.3 Properties of evolutionary singular strategies. 
Recall the properties used to characterize the dynamics around a singular strategy (or a 

coalition of two strategies) (Geritz et al. 1998): 
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For the model presented here the properties are; 
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These expressions are fairly complex, but numerical exploration of term a, shows that it 

is usually positive in the region of coexistence, and almost always so in the regions where 
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we experience an equilibrium point. There is also valuable insight to be gained from 

applying the conditions for evolutionary branching to occur. These conditions are again 

(b > 0, a – b > 0, and a + b > 0). One parameter of particular importance (even though the 

rest of the expression will be complex) here is c3, the last parameter in the δ-function. If 

this parameter has a low numerical value (remember it is assumed to always be positive) 

it can increase the probability that two of the conditions for branching to occur are 

fulfilled. This makes sense when we recall that the last parameter in the δ-function 

defines the steepness of the function, i.e. how narrow the regions of viable trait-values 

are. When c3 has a low value, there is a wider scope of possible trait-values in which 

coexistence is attainable (a wider range of unutilized resources), and therefore the 

possibility for evolutionary branching caused by the ecological interactions in the model 

is increased. Since this only applies in the vicinity of a convergence stable equilibrium, c3 

can be interpreted as defining the steepness of the distribution of resources surrounding 

the singular point. Note, however, that a lower value for c3 may also lead to larger 

differences in trait-values, which also influence b. Hence, the relationship between c3 and 

the possibility for evolutionary branching is complex. 

3.4 Conditions/criteria for limit cycles. 
It is hard to identify or analytically show the existence of limit cycles in a dynamical 

system. To evaluate whether cycles may occur in the system I applied and numerically 

investigated the Bendixson-Dulac theorem (e.g. Farkas (1994)) also called Dulac’s 

criterion. The theorem states; 
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autonomous system does not have any periodic solutions. “Almost anywhere” here means 

everywhere except for a point or a line, i.e. a set with area 0. 
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These conditions were implemented and tested numerically for all parameter settings 

used in the investigation. Interestingly, div(f) was always equal to zero in some parts of 
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the plane. When the theorem failed to yield any results, I resorted to investigate the 

model numerically, to localize the equilibria of the set and to investigate the eigenvalues 

of the Jacobian at the equilibria. The existence of limit cycles cannot be ascertained by 

only inspecting the Jacobian, however, so I also used numerical simulations of the 

equations. 

3.5 Evolutionary dynamics. 

3.5.1 Baseline scenario. 
As for the investigation of the regions of coexistence, a baseline scenario for the 

evolutionary dynamical model is presented, with parameters as shown in table 2. 
 

Parameter Interpretation Value 

µi Mutation rate 10^-4 

σi
2 Mutational variance 10^-3 

γ Scaling of population sizes 1/500 

Table 2. Parameter settings for the baseline scenario. 

 

 
Figure 4. Phase portrait of evolutionary baseline-scenario. Isoclines for non-negative population sizes in 

black, evolutionary isoclines in grey. Crosses mark attractors with strong convergence stability , but not 

ESS stability for any, diamonds indicate attractors with strong convergence stability and ESS stability only 

for population 2. Parameter values in a: β1 = β2 =1, and in b:  β1=22/20, β2=19/20. 
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Figure 4 shows both the zero-population size isoclines (black) and the evolutionary 

isoclines (grey) of the baseline scenario and a scenario with differing β-values in addition 

to several numerical simulations of the systems (red). As is apparent in 4a), the 

evolutionary isoclines intersect in three points, one saddle (s1=s2=1.5) and two attractors 

that are equivalent, in the sense that their trait-values are opposite. It is not shown in the 

figure, but inspecting the numerical simulations suggest that the saddle’s unstable 

manifolds flow towards the attractors and its stable manifolds attract towards the saddle 

from the saddles where the isoclines for zero-population size intersect in [0,0] and [3,3]. 

For the values stated in table 1, the attractors are not ESS stable ((b)>0), and therefore 

constitutes branching-points. This has been explored thoroughly in earlier models of 

asymmetric competition (Kisdi 1999), and will not be explored further. Using a higher 

value for c3 will in the baseline scenario only lead to one monomorphic equilibrium, 

which is both ESS and convergence stable for both populations.  

 

The evolutionary orbits depend on the initial conditions. We can recognize both parallel 

shifts (both populations increase or decrease in trait-value) and divergence after some 

time. The coevolutionary path undertaken can also entail reversal of the direction of 

evolution in one population, as the other evolves to larger trait size. This is particularly 

evident where the initial trait sizes are fairly equal and different from the optimal size. In 

these simulations selection on both populations is firstly determined by the environment 

(i.e. δ- function) but as they evolve closer to the optimum, they diverge due the 

competitive interaction.  

 

In figure 4b the birth rates are different for the two populations. The resulting 

evolutionary attractors are convergence stable for both populations, but ESS stable only 

for population 2. They constitute branching points for population 1. The rationale for this 

is that β1 > β2. Accordingly, population 1 has a larger range of resources to consume and 

has therefore a higher potential for branching into ‘unused’ resource-space, whereas this 

is not the case for population 2.  
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3.5.2 Asymmetric intraspecific competition. 
To investigate the model I varied the parameters of interests individually and in concert. 

Intra and interspecific asymmetries in the competitive are not necessarily correlated. One 

can for instance easily imagine species where there is contest-like competition within the 

species (which is of a more asymmetric nature), say for territories, while the inter-

specific competition is more based on resource utilization and not associated with such 

contests. The simplest scenarios of asymmetric intraspecific competition are presented in 

figure 5. Except for the values stated in the figure(s) all are set as in table 1 and 2.  

 
Figure 5. Phase-portraits for different values of the intraspecific asymmetry parameter, k[intra]=ki,j , i≠j. 
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What is apparent and also expected is that the convergence stable resting points increase 

in value as the degree of asymmetric intraspecific competition increase. We also see that 

the system undergoes a pitchfork bifurcation where ki,i exceeds 1. The only stop for 

evolution of this system (figure 5d) is an evolutionary attractor which is not ESS stable 

for any of the populations. The degree of asymmetry selects for larger and larger traits, 

and leaves a large part of the resource space unutilized, the populations with ki,i=2 both 

converge to a monomorphic equilibrium with fairly large trait sizes. A single population 

model with the same settings also yielded an evolutionary branching point at that trait-

value, and an extension of this (i.e. ci,i=ci,j) yielded a polymorphic equilibria ESS stable 

for the larger species (results not shown).  
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3.5.3 Asymmetric interspecific competition. 

 
Figure 6. Phase-portraits for different values of the interspecific asymmetry parameter. Only equilibria 

which are dynamical attractors are depicted with points, crosses are attractors that are not ESS stable for 

any population, diamonds are ESS-stable for one population and boxes are not ESS stable for any and 

convergence stable for only one of the populations. 

 

In figure 6 the effect of different asymmetries in interspecific competition is illustrated. 

What is interesting to see is that the evolutionary isoclines shift in a qualitatively different 

manner compared to the scenarios where I varied the intraspecific degree of asymmetry 

(figure 5). In case of intraspecific asymmetries the isoclines shifted more in position than 
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in shape, but in case of interspecific asymmetries (figure 6) one sees that they change 

shape within the region of coexistence.  

3.5.4 Asymmetric inter- and intra-specific competition. 

 
Figure 7. Phase-portraits for different values of inter- and intra-specific asymmetric interactions. 

Figure 7 displays the evolutionary dynamics for various settings of both inter- and intra-

specific asymmetric competition. As also seen in the previous sections, the degree of 

intra-specific asymmetry mainly changes the positioning of the evolutionary isoclines, 

whereas the degree of inter-specific asymmetry mainly changes the shape more than the 

positioning. The changes in shape are however less pronounced with a higher degree of 

intraspecific asymmetry.  This can be interpreted in the sense that it is the intra-specific 
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interaction that predominantly defines the evolutionary dynamics here, probably due to 

the different impacts of between and within interactions.  

3.5.5 Red Queen dynamics. 

3.5.5.1 Limit cycles in the deterministic model. 
 

 
Figure 8: The Red Queen dynamics of scenario 1 through 4. For parameter setting see table 3. 
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Parameter Scenario RQ1 Scenario RQ2 Scenario RQ3 Scenario RQ4 

β1 , β2 1, 1 1, 0.9 1, 1 1, 1 

ci,i , ci,j 2 , 1 2 , 1 2, 1 2, 1 

c1 , c2 , c3 1, 9/20 , 3/20 1 , 9/20 , 3/20 1 , 9/20 , 3/20 1 , 9/20 , 3/20 

k1,1 , k1,2 , k2,1 , k2,2 0 , 2 , 3 , 0 0 , 3 , 3 , 0 3 , 5 , 7 , 3 0 , 3 , 5 , 0 

γ 1/500 1/500 1/500 1/500 

σ1
2 / σ2

2 1 1 1 1 

µ1 / µ2 10 7 40 10 

Table 3. Parameter settings for Red Queen dynamics scenarios. 
 
In figure 8 four examples of scenarios with evolutionary cycling is depicted for different 

parameter-settings. They all entail a certain degree of asymmetry in the inter-specific 

competitive interactions and different evolutionary rates for the two populations. The 

population with the faster evolutionary rate always has the higher amplitude in the cyclic 

trait. One interesting feature of scenario RQ4 is that the two populations alternate in 

having the largest trait-value, i.e. at some point in the cycle the larger becomes the 

smaller and vice-versa. To my knowledge this result has not been reported before as a 

potential result of competitive interactions.  

 

The different parts of the selection derivative for scenario RQ2 is depicted for the two 

populations in figure 9. What is interesting is that population 2 (with the largest trait size 

but smallest amplitude of the cycle) always experiences selection for larger trait size due 

to the interaction and for smaller trait size due to the δ-function, while population 1 

experiences both positive and negative selection due to both. This is also evident in figure 

10, where inequality XII is shown for both populations in scenario RQ2. 
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Figure 9. Partitioning of the different parts of the selection derivative for the two populations at the limit-

cycle attractor in RQ2. Green lines illustrate the parts b and c (d is non-existent due to no intraspecific 

asymmetry) of equation X (selection due to the ecological interaction), red the selection toward the 

optimum trait-value and black lines the total, i.e. the direction of evolution in the population. 

 

 
Figure 10. Displays the value for left hand side of inequality XII. Red is population 1 and green population 

2. What is easily seen is that only population 1 undergoes both selection for larger and smaller trait-values 

due to the ecological interaction. 

 

Thus the continual evolution is driven by fast trait evolution in population 1 that ‘pushes’ 

population 2 towards the end of the resource spectrum, while population 1 itself is not 

that adversely affected due to a higher β-value. Population 1 actually undergoes evolution 
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such that it comes close enough in trait-value to population 2 that it experiences positive 

selection due to the interspecific interaction (see figure 10). All cycles found in the model 

consist of one population being ‘squeezed’ between selection arising from the interaction 

and that from adapting to the environment, and it is always the faster evolving population 

that is the ‘pusher’ and the slower that is being pushed. This also relates to the 

equilibrium population sizes of the two populations as they undergo a cycle, as these 

sizes change and thereby affects the selection derivative.  

 

The cycles are very sensitive to changes of the parameters in the δ-function as seen in 

figure 11, where c3 is varied around the baseline value of 6/40 for scenario RQ2. One 

sees that the system undergoes a bifurcation as c3 is changed from 5/40 towards 6/40 and 

that the system undergoes another bifurcation as c3 is changed from 6/40 towards 7/40. 

This change of parameters would constitute environmental forcing, e.g. by change of 

climate, such that the resources consumed by the populations change in distribution and 

abundance. 
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Figure 11. Parameters as in the scenario with only interspecific asymmetry (RQ2). The c3 values are 

indicated on each figure. Note the different scale in a vs. b-d. 
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3.5.5.2 Limit cycles in the monomorphic stochastic model. 

 

Figure 12. Realizations of the monomorphic 

stochastic model, with parameter-settings as in 

scenario RQ2. Top left shows eight simulations 

with same initial values, and bottom left shows 

the average of the simulations. Above is the 

deterministic approximation where the 

evolutionary isoclines are also depicted. 

 

The monomorphic stochastic model represents each population with one trait-value and 

calculates transitional probabilities to other trait-values in the vicinity according to the 

invasion-fitness and mutational distributions. In figure 13 I have depicted several 

simulation runs with the model for scenario RQ2. The cycle predicted by the 

deterministic approximation is evident, with stochastic variations around the mean. Every 

run is somewhat different due to the stochasticity, but the mean is not very different from 

the differential equation approximation. 
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3.5.5.3 Limit cycles in the polymorphic stochastic model. 
One reassuring aspect of the existence of limit cycles is that they easily appear in both the 

deterministic approximation and the monomorphic stochastic model. On the other hand, 

how the evolutionary trajectories will display in an individual-based stochastic model 

will probably largely be determined by the amount of phenotypic variance included in the 

model populations. This variance in trait-values can be manipulated by altering the values 

for mutation rate and mutational variance, but also by the scaling the population sizes (in 

this model the value of gamma, see appendix 2), because larger population sizes leads to 

lower probability for any particular individual to die (in essence larger populations scales 

all the probabilities down so that the fitness difference between individuals becomes less 

pronounced). 

 

In figure 13 (below) one sees that the limit cycle attractor is also emergent in the 

individual-based simulations (the scenario is the equivalent of RQ2, but the simulation 

was run with different values for the delta-function due to later adjustment of those 

parameters to fit the region of coexistence into the positive quadrant). As the parameter-

settings in the scenario imply, with differing mutation rates, population 1 exhibits more 

variation around the predominating trait-value. And as predicted by the deterministic 

approximations, the amplitude of the cycle is much larger for population 1 (note the 

difference in scales on the y-axes). Simulations where one of the populations went extinct 

due to the stochasticity were frequent, even though the solution for the population sizes 

(XI) were positive. Several simulation runs were conducted before a value of γ=1/500 

was chosen in all models, which lead to a decrease in extinctions. 

 

For the evolving populations to follow the orbit predicted by the deterministic model, the 

variance has to be small in comparison with the amplitude in trait-values the cycle will 

exhibit.  
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Figure 13. Realization of the individual-based model with values for the limit cycle presented in scenario 2, 

except for the parameter in the cost-function, here c1=5/10,c2=3/10,c3=3/10. Top, population 1, bottom; 2. 

Note the different y-axes. 
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3.6 The importance of evolutionary rates. 
The limit cycles identified in the model can be shown to occur through Hopf-bifurcations, 

where a stable focus bifurcates into an unstable focus with a surrounding limit cycle. The 

eigenvalues of the Jacobian at an equilibrium reveal the nature of these equilibria and the 

occurrence of a Hopf-bifurcation. As shown in appendix 3 all cycles found occur through 

Hopf-bifurcations when one varies the evolutionary rate (i.e. the κ-function) of one of the 

populations when the equilibria is convergence stable for only one of the coevolving 

populations. 

 

Convergence stability is an independent measure of local asymptotic stability of the 

dynamical system, and one can linearize the dynamics around an equilibrium with the 

Jacobian of the system; 
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The elements on the diagonal correspond to the criteria for convergence stability for each 

population, and in the case of convergence stability for only one population, these are of 

different signs. As noted by Marrow and Dieckmann (1996); in scenarios where this is 

the case, different dynamics can be achieved around the fixed point. This was further 

elaborated by Leimar (2002), where the investigation of the mutational matrix (which in 

this case would be a diagonal matrix A where Ai,i=κi) was suggested as a method to 

determine the stability of the point. Given convergence stability for only one population, 

if the off-diagonal elements in the Jacobian above are of same sign, the point is an 

attractor, but if they are of opposite signs the stability depends on the κ-functions. This 

change of stability as one varies a parameter in the κ-functions corresponds to a Hopf-

bifurcation. The derivation for the bifurcation is described in detail in appendix 3.  

 

The Hopf-bifurcation is a local bifurcation, and it will occur as described above if the 

conditions are satisfied. Over how large part of the parameter-space the limit cycle will 
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continue to exist depends on the global phase-portrait. The linearization (i.e. the 

Jacobian) around an equilibrium can show the transition from a spiral sink to a spiral 

source, but it is only in the infinitesimal vicinity of the bifurcation-point that we can be 

sure about the existence of a cycle. It can in many cases be a transient phenomenon, and 

the destiny of a limit cycle depends on the global phase-portrait as it turns into a source 

and acts as a repellor. If one inspects the evolutionary cycle in scenario RQ3 the limit 

cycle has a very small amplitude and does not exist in a large parameter subspace.   

 

Figure 14 depicts the evolutionary dynamics of the limit cycle RQ4 as one varies the 

parameters in the κ-function for one of the populations. Here ρ = µ1/ µ2. We can see that 

the system undergoes a Hopf-bifurcation as one varies the mutational rates. The exact 

bifurcation (ρ ≈ 100/17.6) was calculated and predicted using the insight in appendix 3. 
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Figure 14. The Hopf-bifurcation in RQ4. All parameters are as in table 3, except for µ1 and µ2 which are 

scaled such that ρ=µ1/µ2. 

 

It is important to understand that the above scenario is not the only way to achieve limit 

cycles in a dynamical system like the one presented here. This is but one way the 

eigenvalues of the Jacobian can characterize a Hopf-bifurcation, and non-stationary 

dynamics can also occur through other bifurcations and in different guises (e.g. a 

homoclinic loop). But to draw similar conclusions for the other parameters are more 

problematic, because they do not only alter the dynamics exhibited, but also the 

positioning of the equilibria (see figure 11. for changes in c3). In addition, the partial 
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derivatives may change dramatically. However one can follow these bifurcation points 

through numerical continuation and probably reveal parts of the parameter-space where 

the two populations have the same parameters in κ(s), but still show limit cycles. 

 

The localization of parameter-settings that yield limit-cycles becomes easier when one 

realizes the above relationships, and I found several more limit-cycle attractors, using the 

procedure of scaling the ratio of evolutionary rates after localizing an attractor with the 

above conditions. 

 43



4. Discussion 

4.1 On evolution under asymmetric competition. 
The dynamics of the co-evolutionary system presented were heavily influenced by the 

degree of asymmetry in the competitive interactions. An increasing level of intra-specific 

asymmetry leads to evolution toward larger trait sizes of the population, as we saw a shift 

in the positioning of the evolutionary isoclines. It also increased the likelihood of both 

populations to converge to the same trait size, though these attractors were rarely ESS 

stable.  Inter-specific asymmetry had a highly nonlinear effect, changing the shapes of the 

isoclines and affecting the dynamics in a qualitatively different manner than intra-specific 

asymmetry, and could increase the number of attainable equilibria. In scenarios of 

asymmetry in both intra- and inter-specific competition, the level of asymmetry within a 

population had the dominating effect on the dynamics. Only when the evolutionary rates 

of the populations were different, and there was asymmetric competition between the 

populations did the model yield non-stationary Red Queen dynamics in the form of limit 

cycles. 

 

What is interesting is the fact that the model presented predicts a larger region of co-

existence with higher degree of asymmetry, whereas the model by Law et al.(1997) 

predicts there to be a smaller region. This is most likely due to the way they define the 

competitive interaction, where a large difference in trait-values yields as much impact as 

a smaller difference (see figure 1). In my model the competitive interactions only have an 

effect on the zero population isoclines when Δs is small. Law et al. (1997) also 

highlighted the importance of directly (numerically) investigating adaptive dynamics 

models, due the lack of analytical conditions showing the existence of periodic orbits of 

evolution. As they state: ‘There appears to be no shortcut…’ (Law et al. 1997). I indeed 

found and presented one shortcut for finding such periodic orbits, given that one can 

locate an equilibrium with the conditions described in appendix 3. This is also one way to 

obtains the limit cycle presented in their paper. As this is achieved through changing the 

parameters in the κ-function, the conditions apply to any two-dimensional dynamical 

system with such scaling-factors, and therefore any adaptive dynamics co-evolutionary 
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system of two populations. That some equilibria which are convergence stable for only 

one population can change dynamical stability through such scaling was however briefly 

mentioned in Marrow et al. (1996) and elaborated somewhat by Leimar (2002), though 

they seemed to have missed the fact that the system can be forced through a Hopf-

bifurcation.  

 

The appearance of branching-points in the model presented is predominant. It is therefore 

important to appreciate that the construction of the model was with focus on co-

evolution, and that the dynamics of the model is not an extension of a one-species model 

in which there occurs evolutionary branching. This is solely due to the scaling of the 

interactions to be of different impacts between and within populations, i.e. different 

values for ci,i and ci,j. As an example, a one population model with parameters as in the 

baseline scenario would predict there to be a branching point at s1 = 1.5, but the model 

presented here would not constitute an extension of such a model, because here we scale 

the interaction differently between the populations. Kisdi’s (1999) investigation of 

circumstances in which asymmetric competition would lead to evolutionary branching 

showed that branching is commonly the case. She did not assume any particular shape of 

the equivalents of the α – and δ-functions used here, but instead used their shapes 

characterized by the second derivatives. According to her analysis, functions as defined 

here can give rise to both continuously stable strategies/coalitions (CSS’s after Eshel 

(1983)) or branching points. Even though this analysis only applies to one-population 

systems, both convergence stable, ESS stable coalitions, and branching points were found 

in my model. Kisdi’s (1999) classification did not include any analysis of potential for 

evolutionary cycling, and is therefore incomplete with respect to determining the 

evolutionary dynamics of competitive interactions. 

 

The existence of periodic orbits in the evolution of exploiter-victim interactions, such as 

predator-prey, parasite-host or plant-herbivore, also constitutes Red Queen evolution on 

the ‘gene-frequency’ time scale of Stenseth and Maynard-Smith (1984). The nature of 

those ecological interactions, however, gives a higher probability that such evolutionary 

dynamics will exist. This is due to the fact that the encounters are of ecological + / - type, 
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i.e. positive for one of the individuals (the predator) but negative for the other (prey). The 

adaptive evolutionary effects of this encounter will therefore be of opposite impacts; a 

change in the adaptive trait with positive effect for the one would constitute a 

deterioration of the biotic environment for the other. Competition is of true - / - type, 

where both individuals have a negative fitness effect of the encounter, and a small 

phenotypic mutation will in the case of symmetry change the impacts similarly for both 

populations. This is however not necessarily the case for asymmetric competition (even 

though it still constitutes an ecological - / - interaction), where an adaptive change in one 

species might deteriorate the biotic environment of the competitor. This can be 

understood as a more general reason for asymmetric competition leading to cycles or 

evolutionary arms races. 

 

All identified limit cycles occurred when there was a difference in the evolutionary rates 

of the two competing populations. Even though it is impossible to state that periodic 

attractors of phenotypic evolution only will occur if one has a difference in the 

evolutionary rates of the competing populations, the analysis here in addition to that of 

Law et al. (1997) at least clearly indicates that it is by far more plausible with such a 

difference. Different evolutionary rates would typically be the case in natural systems 

where competitors are phylogenetically more distant. This is because they then may have 

a higher probability of having different life-histories and thus rates of evolution.  

 

To evaluate the dynamics of this model in a more thorough way, one could utilize the 

tools of numerical bifurcation analysis to precisely define the parts of parameter-space 

that exhibits limit cycles. Such analysis of other adaptive dynamics models has been done 

to a certain extent in predator-prey systems (Marrow et al. 1992, Dercole et al. 2003) but 

not in models of competition. It remains clear though that while this type of dynamics is 

not predominant, it is still a possible outcome.  

4.2 The limitations of the model. 
One major drawback of the model is the separation of timescales, and the use of 

equilibrium population sizes in the invasion fitness. This separation is most probably not 

met in any evolutionary system, but there is another complication for the investigation of 
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asymmetric competition. Asymmetric competition can be dependent on the densities of 

the competing populations, with higher asymmetry when the densities are high, for 

instance in the case of asymmetric competition for light in plants. In the model presented 

here, asymmetries are the same regardless of densities, but one could argue that 

equilibrium population sizes correspond to high densities, and in that case the model is 

applicable if the selection occurs mainly at high densities. A more general interpretation 

would be that to evaluate the evolutionary dynamics of a competition system like the one 

under investigation, the methods should not include such a separation and take into 

account the density-dependence of asymmetry. 

 

Most evolutionary models of any kind do not take the spatiality of nature into account, 

and that is not done here either. The mean-field assumption is made in all the models. 

This could fairly easily be lifted in the individual-based model by introducing a spatial 

dimension, where all individuals reside on a one- or two dimensional spatial scale, and by 

accounting the distance into the effect of competition. It is difficult to predict the effect 

this inclusion of spatiality could have on the dynamics, but in the simplest of scenarios, 

where there are only one evolutionary attractor, one would expect that the system 

eventually came to a halt at this attractor. Limit cycles in such a spatial system could take 

very different forms, and have different spatial dynamics. A model where one varied the 

size of the interaction neighborhood would be instructive in evaluating if there would be 

a larger subset of the parameters that would lead to such dynamics.  

4.3 Concluding remarks – prevalence of Red Queen dynamics. 
The deterministic model presented yielded several points in parameter-space with 

existence of limit cycles, and both the monomorphic stochastic and polymorphic 

stochastic representations of the system also portrayed such dynamics, thus substantiating 

the approximation. The subset of the parameter-space giving rise to cycles were fairly 

narrow, and it can be stated that the probabilities for ecological interactions as defined 

here amounting to continual evolution are comparably low. Limit cycles was however 

never experienced with no asymmetry in the interactions, and neither without any 

difference in evolutionary rates. The nature of competition in natural communities is 

most probably not symmetric, and competing species need not have equal rates of 
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evolution. Accordingly, these prerequisites for continual evolution are probably often 

satisfied. However, natural systems where the degree of asymmetry is larger in inter-

specific interactions compared to intra-specific are probably seldom. 

 

I did not assess the possible existence of Red Queen dynamics of branching-extinction 

type (Kisdi et al. 2001). However, the prevalence of branching points in the two-

population model constitutes one of the prime conditions for such dynamics to occur.  

 

Limit cycles in adaptive dynamics models of two-species with one evolvable trait, can be 

forced through scaling of the evolutionary rates if an equilibrium of the system can be 

characterized by convergence stability of one species, and that the off-diagonal elements 

in the Jacobian also are of opposite signs. This adds another analytical tool that can be 

utilized in adaptive dynamics models, and the characterization of non-stationary 

outcomes of phenotypic evolution in such models. 
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5. Appendices. 

Appendix 1. The individual-based model. 
The development of the individual-based model was based on earlier such models used in 

the adaptive dynamics literature (Dieckmann 1996), but in essence akin to any 

individual-based model.  

 

The model is implemented using super-individuals, meaning that each unique trait-value 

in the system at any time is logged as the trait-value and the number of individuals of that 

trait value. This decreases computing time considerably. The model is initiated with two 

arrays representing the two populations; 

 

Si = [[si,j ,ni,j],…,[si,u , ni,u]] for i = 1,2 and j = 1..u , where u are the number of unique 

trait-values in population i.  

 

Then one defines the phenotypic distribution Pi(s) for each population i as: 

( ) ∑
=

−⋅=
uin

j
jijii ssDiracnsP

,

1
,, )(  

The Dirac delta function is defined as zero everywhere except for Dirac(0) where it has a 

singularity and it has the property that  

∫
∞

∞−

= 1)(xDirac  

Then one calculates the transition probabilities for every (super-) individual j in both 

populations i, by mapping the trait-values into probabilities for a birth event and death 

event; 

( ) ( )

jijiji

ji
h s

hhijihijiji

jiiji

dbw

nPksscsd

nb

,,,

,

2

1
,,,,,

,,

,

+=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅+=

⋅=

∑ ∫
=

∞

−∞=

αδ

β

 

 49



where alpha and delta-functions are as defined in the main text. The bi,j and di,j are not 

true probabilities unless they are scaled, because they can take values above 1. Also note 

that the sums would be different if the cost-function were to represent reduced fecundity, 

it is here taken to increase mortality risk, as it is part of di,j.  

 

Then one calculates the total event-probabilities for each population (wi) and the total 

event-probability (W) in the system; 
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Then a waiting time for the next event is drawn; 
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where o is a number between 0 and 1 drawn from a uniform distribution. At the start of 

the simulation t is set to 0 and updated for every event. 

 

For every iteration a population is drawn from the distribution of event-probabilities, 

[w1/W, w2/W ], and then a (super-) individual from that selected population is drawn from 

the event-probabilities within that population [wi,j…wi,u]. Having selected an individual a 

particular event is implemented with probabilities calculated for that specific individual 

[bi,j/wi,j , di,j/wi,j]. If the event drawn is a death-event the individual is taken out of the 

array (or the number of individuals with that particular trait-value is reduced by 1). If the 

event is a birth event, a mutation event is implemented with a certain probability (µi), or 

the number of individuals with the trait-value is increased by 1. A mutation is drawn from 

a normal distribution with variance σi and mean 0. For every event time t is updated and 

then all probabilities are recalculated. This is iterated for a predefined number of events 

or time. 
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The model was implemented in Maple (Maplesoft. 2003) and simulations where very 

time-consuming, which is reflected in the number of simulations performed. The trait-

values for every 50th event were logged. 

Appendix 2. The monomorphic stochastic model. 
The monomorphic stochastic model can be described by a master equation in the 

following way; 
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where s denotes the vector of trait-values (and s’ denotes the vector of possible 

transitions), and  denotes the probabilities per unit time for the transition s → s’ 

at time t.  is the probability density of resident trait-values. As developed in 

Dieckmann (1996) in the infinitesimal time dt only transitions in one population have a 

nonvanishing probability per unit time; 
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In our case n = 2 and the expression is fairly simple. The derivation of the transition 

probability per unit time is derived in Dieckmann (1996) and can be expressed; 
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Here µi(si) is the mutation-rate (in our model independent of the trait-value), bi(si,s) is the 

probability for birth in population i given trait-vector s, ( )sNi
ˆ , equilibrium population 

sizes, Mi(si,si’-si) is the mutation distribution (i.e. the distribution of probabilities of trait-

value si giving rise to trait-value si’) and fi(si’,s) is the invasion-fitness of si’ in a 
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community defined by s. The use of the Heaviside function is to map negative invasion-

fitnesses to zero. 

 

The implementation of the model is straightforward; first one initiates the model with two 

populations with one unique trait-value each, sets t=0 and specifies tend, the time for the 

simulation to end. Then one calculates the event-probabilities for each population and the 

total; 
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Then a waiting time is chosen as in the individual based model, and a population is 

chosen with probability iw
w

⋅
1 . The new trait-value for this population is chosen from the 

distribution ( ssw
w ii

i

,1 ′⋅ ) . Then time and s is updated and the procedure is continued until 

tend. This was also implemented using Maple (Maplesoft. 2003). 

Appendix 3. Derivation of the criteria for Hopf-bifurcations. 
Assume that we have located an equilibrium of the dynamical system. The linearization 

(i.e. Jacobian) around the point will yield the asymptotic behavior of the system in the 

vicinity of that point. We can write the Jacobian; 
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The diagonal elements can be shown to correspond to the criteria for convergence 

stability for the two populations (Abrams et al. 1993b, Marrow et al. 1996).  

 

The point is an attractor if tr (J) < 0 and det(J) > 0, thus convergence of both populations 

is not sufficient conditions for dynamic stability because even if tr(J) <0, det(J) might 

still be less than zero. If the point is lacking convergence stability for both populations 
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(i.e. tr(J) > 0), it will be an evolutionary repellor. If the point is convergence stable for 

both populations and the off-diagonal elements are of opposite signs the point will be an 

attractor. If the point is convergence stable for only one population, and the off-diagonal 

elements are of same sign, it will be a repellor (det(J) < 0).  

 

The system can be both locally stable and unstable if only one of the population is 

convergence stable if det(J)>0, since tr(J) can be of both signs. This corresponds to weak 

convergence stability of Leimar (2002). In this case the system can be forced through a 

Hopf-bifurcation by scaling the parameters in the κ-functions as shown below. 

 

For the system to undergo a Hopf-bifurcation, the eigenvalues must (as one varies on 

parameter) change from having non-zero imaginary part and negative real-part (meaning 

that it is a spiral sink) to having non-zero imaginary part and positive real-part (meaning 

that it is a spiral source). In this range there must exist a point where the eigenvalues are 

pure imaginary, and this constitutes a Hopf-bifurcation point.  

 
Figure A.1. Plots showing the eigenvalues of the Jacobian evaluated at a dynamical equilibrium, where the 
axis represent the imaginary (Im) and the real part (Re). a correspond to a spiral sink, c to a spiral source 
and b to the exact bifurcation point. 
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For there to be some part of the space defined by the parameters in the κ-function (or the 

‘mutational matrix’, M) where a Hopf-bifurcation occurs, we need that there is some 

range where the eigenvalues of the Jacobian can take all constellations shown in figure 

A.1. Remember that as we change the parameters in the κ-functions, the positioning of 

the evolutionary isoclines, and thus the positioning of the equilibrium does not change. 

This also means that a, b, c and d in the Jacobian above does not change (i.e. det(L) > 0). 

To vary the κ-function, we need to vary the mutation rate or mutational variance of one of 

the populations, as the equilibrium population sizes will be constant for the same 

equilibrium body sizes. Also remember the conditions; a and d of opposite signs and 

det(L)>0 (i.e. b and c also of opposite signs and sufficient size). For the eigenvalues of 

the Jacobian (J) at the point to have non-zero imaginary parts we need (for notation the 

dependence on s is left out since at the evolutionary equilibrium point the equilibrium 

population sizes will be constant as we vary µi or σi); 

( ) 04 21
2

21 <⋅⋅⋅⋅+⋅−⋅ cbda κκκκ    (A.I) 

Since we are interested in the scaling of κ’s, let 21 κκρ = . If we substitute for κ1, we 

then obtain: 

   (A.II) ( )( ) 024 2222
2 <+⋅⋅⋅−⋅⋅+⋅⋅ ddacba ρρκ
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A necessary condition for A.II is: 

   (A.III) ( 024 <⋅⋅−⋅⋅ dacb )
 since ρ only can take positive values. This will always hold, since det(J)>0  

implies det(M)det(L)>0, i.e. det(L)>0 since M is symmetric and positive-definite. Thus 

will also be the sufficient condition. 

 

To illustrate in a different way, assume we have found an equilibrium where a and d are 

of opposite signs, and det(J)>0. Then we can scale the mutation rate for one population 

such that the left hand side of A.II is the terms in the square-root of the eigenvalues. Let g 

be a function describing the terms under the square-root in the eigenvalues, i.e. the left 

hand side of A.II, as a function of 21 κκρ = . We can differentiate this function with 

respect to ρ to find its minimum, and whether this is negative; 

( ) ( )
( )

( ) ( )
2min

2min

2

222

4

2
0242

24

a
cbdacbg

a
cbda

dacbag
ddacbag

⋅−⋅⋅⋅⋅
=

⋅⋅−⋅
=

=⋅⋅−⋅⋅+⋅⋅=′

+⋅⋅⋅−⋅⋅+⋅=

ρ

ρ

ρρ

ρρρ

 

We here see that the minimum value for the left hand side of A.II will be negative 

(yielding imaginary parts of the eigenvalues), since det(J)= a d – b c > 0 (b and c of 

opposite signs). We also see that this will happen when ρ > 0. 

 

To make sure that the system can undergo a Hopf-bifurcation in this subspace we need 

that the real part of the eigenvalues can shift from positive to negative within this region. 

If we substitute the boundary-values for ρ yielding non-zero imaginary parts (i.e. 

solutions of ( ) 0=ρg  above), into the real parts of the eigenvalues we get; 

( )
4444 34444 214434421

III

a
cbcbda

a
cbd

22

22Re ⋅+⋅⋅⋅−
⋅±⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−⋅= κκλ  (A.IV) 
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For A.IV to take both negative and positive values, we need that the last term (II) is in 

absolute value larger than the absolute value of the first (I). This yields; 

( ) 0det
..

,0

>

>⋅−⋅

L
ei

cbda
 

 

So if a and d are of opposite signs, in addition to the criteria det(L) > 0 (which implies b 

and c of opposite signs), then the system can be forced through a Hopf-bifurcation by 

scaling the evolutionary rates and a limit cycle will necessarily occur. 

Appendix 4. Notation. 
The following notation is used in the thesis; 
 
Symbol/function Interpretation 
si Trait-value of population/individual i. Without subscript denotes 

the vector of two trait-values. Also referred to as body size. 
smut|i Trait-value of mutant appearing in population i. 
Δs Denoting the difference in trait-values. 
ki,j Degree of asymmetry in the effect of the interaction between 

individual/population i and j on population i. Non-negative. 
α - function Function describing the effect of the competitive interaction  
δ - function Function describing the mortality dependent on the trait-value. 
c1, c2, c3 Parameters of the δ – function. All positive. 
βi Birth rate of population i. All positive. 
Ni  Size of population i. Dependent either on time and the vector of 

trait-values or only the trait-values when dealing with equilibrium 
population sizes, . N̂

ci,j Parameter that scale the interaction between population i and j. 
µi Mutation-rate in population i. 
σi

2 Mutational variance in population i. 
κ- function The function scaling the evolutionary rate, dependent on the 

vector of trait-values, as it includes population size. 
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