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1. Abstract 

 
Extensive sampling of anadromous Arctic charr (Salvelinus alpinus) from River 

Signaldalselva (Troms County) and resident Arctic charr from Lake Pålsbufjorden 

(Buskerud County) revealed Gyrodactylus sp. infections in both localities. By use of both 

molecular and morphometric methodology the parasite species in both localities were 

identified as G. salaris. The discovery of G. salaris on Arctic charr in Pålsbufjorden is 

the first observation of this species infecting and maintaining a population on another 

salmonid species in the wild without co-occurring Atlantic salmon. The molecular 

analyses revealed that G. salaris on Arctic charr from Signaldalselva and on Arctic charr 

from Pålsbufjorden represent different mitochondrial haplotypes, respectively the type 

previously detected on Atlantic salmon from Signaldalselva, and the type previously 

detected on Atlantic salmon from the Rivers Drammenselva, Lierelva, Lærdalselva, and 

rainbow trout from Lake Bullaren, Sweden. Subsequently, a morphological study was 

performed to compare the G. salaris populations over a range of hosts and geographic 

locations. Hence, the morphometry of the ophisthaptoral sclerites of G. salaris from 

Arctic charr from Pålsbufjorden and Signaldalselva were compared with one another. In 

addition the Pålsbufjorden population on Arctic charr was compared with a sample of G. 

salaris from Atlantic salmon from Drammenselva and a sample from rainbow trout from 

Bullaren, and G. salaris on Arctic charr in Signaldalselva was compared to G. salaris 

from sympatric Atlantic salmon. Using statistical methods morphometrical dissimilarities 

were revealed between all G. salaris populations. There were only found minor 

morphometric differences between G. salaris on Arctic charr and Atlantic salmon in 

Signaldalselva, while the dissimilarities in morphometry between the populations from 

the other localities were more extensive. The observed variance is in part interpreted as 

being related to environmental conditions; in part it is believed to indicate an influence of 

the host species on the morphology of the parasite ophisthaptoral sclerites. Alternatively, 

there may be specific morphometric differences between the G. salaris strains as defined 

by the mitochondrial haplotype. The present discovery of G. salaris on wild populations 

of resident Arctic charr in the absence of Atlantic salmon and on anadromous Arctic 

charr may have important implications for the management of Atlantic salmon stocks in 

Norway.  
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2. Introduction  
 

Gyrodactylids are monogenean ectoparasites on the skin and gills of most freshwater and 

marine fish species. Gyrodactylus von Nordmann, 1832 is one of the most species-rich 

gyrodactylid genera (Kritsky and Boeger, 2003) and so far approximately 400 species 

have been described from nearly 400 host species (Harris et al., 2004). With the ~24 000 

known fish species in mind, this suggests that the biodiversity of Gyrodactylus is greatly 

underestimated (Bakke et al., 2002). Typically Gyrodactylus species have narrow host 

specificity, i.e. they infect only one or a few host species. The lifestyle of gyrodactylids 

(hyperviviparity, ectoparasitism) makes host switching a frequently used explanation for 

the parasites’ speciation and radiation (Brooks and McLennan, 1993; Boeger and 

Kritsky, 1997). In addition to allopatric speciation, host switching may be the major 

cause of the large biodiversity within this genus (Zietara and Lumme, 2002, 2003; 

Meinilä et al., 2004).  

 One particular species, Gyrodactylus salaris Malmberg, 1957, has been a severe 

pathogen of Norwegian stocks of Atlantic salmon (Salmo salar L.) for more than 25 

years. The spreading of the parasite has declined but new rivers are still being infected 

(Johnsen et al., 1999; Mo et al., 2004). To prevent further spread of G. salaris to new 

Atlantic salmon stocks a more detailed knowledge of the biology, morphology and 

genetics of populations and strains of the parasite is required.  

The species identification of gyrodactylids is traditionally based on morphology, 

first of all the size and shape of the hard parts (sclerites) of the posterior attachment 

apparatus (opisthaptor) (Malmberg, 1970). However, size and shape variations in these 

structures between species are often so subtle that the measurement of many worms from 

different populations must be analysed statistically before assigning them to species 

(Shinn et al., 2004). On the other hand, environmental factors (e.g. temperature) may 

cause large variability in several phenotypic morphological “traits” such as size and, to a 

lesser extent, shape of the ophisthaptoral sclerites of e.g. G. salaris specimens collected 

from wild Atlantic salmon (Mo, 1991a, b, c). This must be taken into account when using 

morphological measurements as a taxonomic tool to differentiate between salmonid 

gyrodactylid species (Tanum, 1983; Mo, 1991a, b, c; Shinn et al., 2004).  

 Molecular techniques have become increasingly important in identifying parasite 

species (McManus and Bowles, 1996) and several molecular markers have been 
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developed for gyrodactylid identification and phylogenetic studies. The most widely used 

markers are the internal transcribed spacer regions of the nuclear ribosomal DNA (ITS-1 

and ITS-2) (Cunningham et al., 1995; Cunningham, 1997; Matejusova et al., 2003; 

Zietara and Lumme, 2003). These molecular markers have proven to be suitable for a 

discrimination of most of the valid morphologically recognized species. Further, the 

intergenic spacer (IGS) of the nuclear ribosomal DNA cluster which separates the 

tandemly repeated units of the rDNA genes from G. salaris has been characterized by 

Collins and Cunningham (2000). This molecular marker is more variable than the ITS, 

and has been used to differentiate also subspecies within platyhelminths (Kaye et al., 

1998). Thus, the IGS can be used to discriminate between salmon, rainbow trout 

(Onchorhyncus mykiss Walbaum) and grayling (Thymallus thymallus L.) forms of G. 

salaris (Sterud et al., 2002; Cunningham et al., 2003). The mitochondrial cytochrome 

oxidase I (COI) is also a suitable marker for discriminating Gyrodactylus populations 

and in the study of phylogenetic relationships (Hansen et al., 2003; Matejusová et al., 

2003; Zietara and Lumme, 2003; Meinilä et al., 2004). 

 The fish genus Salvelinus has a circumpolar distribution and includes several 

species and subspecies (Brunner et al., 2001). However, Arctic charr (Salvelinus alpinus 

L.) represent the only Salvelinus species with a natural distribution in Norway and occur 

in both freshwater resident and anadromous forms (Pethon, 1985). Resident populations 

of Arctic charr are found all over the country, while anadromous populations are 

restricted to northern Norway. 

 Several Gyrodactylus spp. have been recorded on Salvelinus species worldwide 

(Harris et al., 2004). So far only two Gyrodactylus species are described from Salvelinus 

in the Palearctic: G. bohemicus on brook charr (Salvelinus fontinalis) in Czech Republic 

(only found in hatcheries) (Ergens, 1992) and G. birmani on Arctic charr (probably S. 

malma, Dr. O. Pugachev, pers. comm.) in Kamchatka, Russia (Konovalov, 1967; Ergens, 

1983). No Gyrodactylus-species has so far been described from Arctic charr in the 

Neactic. In addition, there are reports on unidentified Gyrodactylus spp. from Arctic 

charr in England (Lake Ennerdale) (Shinn et al., 1995) and in Finland (Dr. Jaakko 

Lumme, pers. comm.).  

 Reports of gyrodactylid infections on Arctic charr in Norway are scarce. The first 

report was from River Skibotnelva in North-Norway, where Atlantic salmon was 

reported infected with G. salaris in 1979 (Johnsen et al., 1999). The anadromous Arctic 

charr population have also been found relatively heavily infected with G. salaris (Mo, 
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1988). In the years 1988 and 1995, this river was treated with rotenone in order to 

eradicate the parasite. It is likely that G. salaris survived on both occasions either on 

resident or anadromous Arctic charr (see Johnsen et al. 1999). This is not surprising, as 

the ability of G. salaris to reproduce on Arctic charr has been demonstrated 

experimentally on both anadromous and freshwater resident populations (Tanum, 1983; 

Bakke et al., 1996). Heavily infected Arctic charr have also recently been reported from 

River Signaldalselva, a river in the vicinity of Skibotnelva located in the same fjord 

system (Knudsen et al., 2004). The colonization of G. salaris in Signaldalselva may be 

caused by anadromous fish migrating in brackish water from Skibotnelva (Johnsen et al., 

1999; Hansen et al., 2003). The Gyrodactylus infection on Arctic charr which co-occurs 

with Atlantic salmon in Signaldalselva is suggested to be G. salaris (see Knudsen et al., 

2004), however not taxonomically settled by use of the necessary methodology. In 

southern Norway, Sterud (1999) reported G. birmani on Arctic charr in Buskerud 

County, however, without any closer molecular or morphological description. 

The main aim of the present study is to taxonomically characterize Gyrodactylus 

sp. recovered on anadromous Arctic charr from Signaldalselva (Troms County) and 

Gyrodactylus sp. on resident Arctic charr from Lake Pålsbufjorden (Buskerud County). 

In addition, a closer study of the variability between gyrodactylids infecting different 

host species and on different geographical populations was performed by the use of both 

morphological and molecular tools on the following populations: (i) Gyrodactylus sp. 

from anadromous Arctic charr and G. salaris from the sympatric Atlantic salmon in 

Signaldalselva; (ii) Gyrodactylus sp. from anadromous Arctic charr in Signaldalselva and 

Gyrodactylus sp. from resident Arctic charr in Pålsbufjorden; (iii) Gyrodactylus sp. on 

resident Arctic charr from Pålsbufjorden and two selected populations of G. salaris from 

Atlantic salmon in River Drammenselva and rainbow trout from a hatchery in Lake 

Bullaren, Sweden. 
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3. Material and methods 

 
3.1. Fish and Parasites  

 

In southern Norway, Arctic charr were collected with fishing nets in the lakes 

Pålsbufjorden, Tunhovdfjorden, Skurdalsfjorden, and Tinnsjøen, Buskerud County, during 

2001- 2003 (Table 2). In northern Norway, Arctic charr and Atlantic salmon were 

collected concurrently by electro-fishing in Signaldalselva, Troms County, in 2001 and 

2004. In addition, Atlantic salmon were collected by electro-fishing in Drammenselva, 

Buskerud County in 2002, and rainbow trout (Onchorhyncus mykiss) were collected from 

a fish farm in Bullaren, Sweden in 2002 (Table 2). 

The fins of the adult fish were clipped immediately after the fish was killed by a 

blow to the head and subsequently fixed in 80% ethanol. Parr were fixed in 96% ethanol. 

The collected fish and fins were screened for Gyrodactylus-infection under a stereo-

microscope (at 40X) at the Department for Zoology, Natural History Museum, University 

of Oslo.  

 

3.2. Preparation of gyrodactylid specimens 

 

The Gyrodactylids detected on fish or fins were removed by a pipette after dislodgement 

and put into separate Eppendorf-tubes containing 80% ethyl alcohol and stored in a 

refrigerator. For morphological examinations the attachment organs (ophisthaptors) of the 

parasites were excised from the remaining parasite body and prepared as described in 

3.3.1. The bodies were stored in Eppendorf-tubes in a refrigerator until molecular analyses 

were performed. Doing so allows for both morphological and molecular analyses of one 

single parasite. 

 

3.3. Morphological analyses 

 

3.3.1. Digestion of organic matter 

To examine morphologically the haptoral hamuli, marginal hooks and ventral bar 

(sclerites) the excised ophisthaptors were purified according to a modified method of 

Harris et al. (1999). The ophisthaptors were placed on a slide and any excess ethanol was 
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removed or allowed to evaporate. Thereafter the whole opisthaptor was embedded in 0.5µl 

of digestion solution consisting of 75 mM Tris, 10 mM EDTA pH 8.0 containing, 5% 

SDS and proteinase K (100µg/ml). The digestion was allowed to continue until the soft 

tissue of the ophisthaptor was dissolved and the ophisthaptoral sclerites which are un-

digestible were released. The digestion solution was then gently removed by rinsing the 

sclerites with distilled water.  

 

3.3.2. Light microscopy 

After digestion and rinsing of the released sclerites a droplet of 0.1-0.3 µl ammonium 

picrate glycerine was added and a cover slip (diameter 10mm) was placed on the sclerites. 

Finally, the cover slips were sealed with Eukitt. A Leica DC 500 camera mounted on a 

Leica DM 6000B stereomicroscope was used to photograph the ophisthaptoral sclerites at 

magnifications of 1600, 1250, or 1000 X. All sclerites were photographed and measured 

by the Leica IM1000 software system purchased from Tamro MedLab AS, Norway. 

 

3.3.3. Morphological measurements  

Only slides containing all three ophisthaptoral structures (hamuli, ventral bridge and 

marginal hooks) were used for the morphological analyses. Fifteen to 30 specimens from 

each population were measured. The measurements were based on an optimal number of 

landmarks selected on the basis of the taxonomical literature on gyrodactylids (Shinn et 

al., 2004). Some additional measurements that were considered likely to pick up further 

differences between the populations were included. In total, 34 different measurements 

were applied (see Table 1 and Fig. 1). The measurements were taken using a digital 

calliper or a point-to-point tool. In addition, one angle measurement (converted to cosines 

values) was used (see Fig. 1). 
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Table 1. List of 34 morphometric characters measured on the ophisthaptoral sclerites: hamuli, ventral bar 
and marginal hook. (Parentheses = character abbreviation).  
 

Hamuli 
1 Aperture length (HAL) 
2 Point length1 (HPL1) 
3 Distal shaft width1 (HDSW1) 
4 Shaft length1 (HSL1) 
5 Aperture angle (HAA) 
6 Inner curve length1 (HICL1) 
7  Proximal shaft width (HPSW) 
8  Root length (HRL) 
9 Total length (HTL) 
10 Distal shaft width2  (HDSW2) 
11 Point length2 (HPL2) 
12 Shaft length2 (HSL2) 
13 Inner curve length2 (HICL2) 
  
Ventral Bar 
14 Total length (VBTL) 
15 Process to mid-length (VBPML) 
16 Basal median length (VBBML) 
17 Membrane length (VBML) 
18 Central length (VBCL) 
19 Lateral length (VBLL) 
20  Process to process width (VBPPW) 
21 Width (VBW)  
22 Maximum membrane width 

(VBMMW) 
23 Process length (VBPL) 
  
Marginal Hook 
24 Total length (MHTL) 
25 Shaft length (MHSHAL) 
26 Sickle length (MHSL) 
27 Sickle distal width (MHSDW) 
28 Sickle heel length (MHSHL) 
29 Sickle proximal width (MHSPW) 
30 Sickle toe length (MHSTL) 
31 Instep height (MHIH) 
32 Aperture distance (MHAD) 
33 Sickle toe height (MHSTH) 
34 Sickle width (MHSW) 
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Fig. 1 A-D. Scanning electron micrographs (SEM) of the ophisthaptoral sclerites from Gyrodactylus sp. 
from Arctic charr (S. alpinus) in Signaldalselva illustrating the morphometric parameters used. The 
numbers refer to the parameters listed in Table 1. – A, hamuli. – B, ventral bridge. – C, marginal hook. – 
D, marginal hook sickle 
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3.3.4. Statistical analyses 

Principal component analysis (PCA) was employed to analyse the multivariate datasets of 

the morphological measurements of the ophisthaptoral sclerites. This was done in order to 

project the multivariate dataset down to a reduced number of dimensions while making 

sure that as much as possible variance will be preserved and that visualisation of the 

results will be facilitated. The original variables were thus transformed into new variables 

that define independent patterns of variation and are not inter-correlated. 

The axes of maximal variance (principal components) in the datasets were 

identified and interpreted. When analysing morphometric datasets the first component is 

frequently interpreted as the one representing size variation, while the other components 

are usually interpreted as representing shape variation (Jolicoeur and Mosiman, 1960; 

Reyment et al., 1984). The correlations of variables with the component scores were 

determined. Such correlation indicates the contribution of a variable to a particular 

component (Blackith and Reyment, 1971) and is referred to as PCA loading. This 

parameter can also be employed to evaluate the morphological significance of the 

components. When interpreting the principal components it is important to view the 

loadings collectively. If the loadings have the same signs, the implication is that all 

variables are increasing together (positive signs) or decreasing together (negative signs). 

Such a component is often interpreted as a component consisting of variance related to 

size. A component with both positive and negative loadings is interpreted as a component 

consisting of variance related to shape. 

 The scores on the principal components of the datasets were then used in subsequent 

Analyses of Variance (ANOVA). By negating the component that best expresses size 

variation, the effects of having a between-group bias in the sizes of parasites in different 

samples was assumed minimal. 

To explore differences in single measures between populations directly without 

taking variation relating to size into account, Kruskal-Wallis and Mann-Whitney U tests 

were employed. All calculations and graphical illustrations were done with the 

programme PAST (ver 1.29, http://folk.uio.no/ohammer/past). 

 

3.3.5. Scanning Electron Microscopy (SEM) 

The preparation of sclerites for the scanning electron microscopy is the same as described 

in 3.3.1, with the only exception that the digestion was performed on a cover slip. After 

digestion and rinsing, the cover slip was transferred to a SEM stub and sputter-coated with 
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a gold-palladium mixture using a Polaron E5000 SEM coating unit for later examination 

in a JEOL JSM-6400 scanning electron microscope. 

 

3.4. Molecular analyses 

 

3.4.1. DNA extraction 

After removal of the ophisthaptor, the remaining bodies of 3 - 6 parasites per population 

were used for molecular analyses. To extract the DNA from the bodies they were placed 

individually in 30µm lysis solution (proteinase K 60- 180 g/ml, Tween 20 0.45%, and TE-

buffer (Tris- HCL 10 mM, EDTA 1 mM, pH 8.0)) and incubated at 65ºC overnight. 

Subsequently, the temperature was raised to 95ºC for ten minutes to inactivate the 

proteinase K. No further purification was done in order to avoid loss of DNA. 

 

3.4.2. PCR amplification of nuclear ribosomal DNA (rDNA) and mitochondrial DNA 

(mtDNA) 

The primer pairs from Matejusova et al. (2001): 

• ITS1A (5´-GTAACAAGGTTTCCGTAGGTG-3´) 

• ITS2 (5´-TCCTCCGCTTAGTGATA-3´) 

were used to amplify a fragment partially spanning the 18S gene, the internal transcribed 

spacer I, the 5,8S gene, the internal transcribed spacer II and partially the 28S gene by 

PCR.  

To amplify IGS, the primers from Collins and Cunningham (2000) were used: 

• IGSV3 (5´-CTGGCTATAATCACGTAAGACTGC-3´) 

•  IGSV4 (5´- AAGATACTCATTTGACTCGGTGTG-3´) 

To amplify overlapping ~ 400 bp segments of the mitrochondrial COI gene, the primer-

pairs defined by Hansen et al. (2003) were used: 

• ZMO1 (5´-GCGMCTAAATGCTTTAAGGGCTTG-3´) 

• ZMO2 (5´- CCAAAGAACCAAAATAAGTGTTG-3´) 

• ZMO3 (5´- TGTCYCTACCAGTGCTAGCCGCTGG-3´) 

• ZMO4 (5´- GAGGATAGCACTATCCCTGTCAC-3´)  

The amplification reaction contained 1 µl of the DNA template, PCR reaction buffer 

(Roche), 200 mM dNTPs, 1mM of each primer and 1U Taq polymerase (Roche) in a total 

volume of 25 ml. The PCR reaction was performed in a PCR system 9700 (Applied 
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Biosystems) using the following protocol: 4 minutes at 95 ºC, followed by 35 cycles of 1 

min at 95 ºC, 1 min 50 ºC and 2 min 72 ºC. PCR products were visualized on a 1.0% 

agarose gel stained with ethidium bromide. The PCR-products were purified by using the 

QIAquick PCR Purification Kit (Quiagen) according to the manufacturer’s protocol. 

 

3.4.3. DNA sequencing of ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) 

Both strands of the purified PCR-products were sequenced according to the chain-

termination method (Sanger et al., 1977) using the BigDye chemistry (Applied 

Biosystems) and an ABI 3100 automatic sequencer. For ITS the PCR-primers and the 

internal primers were used from Matejusova et al. (2001) and from Zietara and Lumme 

(2003): 

• ITS4.5 (5´-CATCGGTCTCTCGAACG-3´) 

• ITS3A (5´-GAGCCGAGTGATCCACC-3´)  

• ITS28F (5´-TAGCTCTAGTGGTTCTTCCT-3´)  

For the sequencing of the IGS the same primers as for the PCR amplification were used. 

To sequence the mitochondrial CO1 gene, the primers from Hansen et al. (2003) were 

used: 

• ZMO2 (5´-CCAAAGAACCAAAATAAGTGTTG-3´) 

• ZMO3 (5´-TGTCYCTACCAGTGCTAGCCGCTGG-3´) 
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4. Results 

 

4.1. Sampling results  

 

Arctic charr and Atlantic salmon from both northern and southern Norway were infected 

with the ectoparasitic monogeneans. Gyrodactylus infections were detected on fish from 

the lakes Pålsbufjorden, Tunhovdfjorden and Bullaren, and the rivers Signaldalselva and 

Drammenselva. Fish from the lakes Skurdalsfjorden and Tinnsjøen were not infected 

(Table 2). Gyrodactylus specimens were particularly prevalent on adult Arctic charr in 

Pålsbufjorden in the autumn 2003 (August to October) and hence used for the 

morphological analyses. Arctic charr collected by ice fishing in December 2002 and 

March 2003 in Tunhovdfjorden were uninfected. Specimens of Gyrodactylus were also 

recovered from parr of Arctic charr collected by electro-fishing in Signaldalselva. The 

obtained parasites were characterized morphometrically and molecularly and compared 

to G. salaris specimens infecting the concurrently occurring Atlantic salmon parr.  

The abundance of Gyrodactylus on the fins of Arctic charr in Pålsbufjorden was 

estimated to 0.89, which is much less than the estimated 8 Gyrodactylus per examined 

Arctic charr from Signaldalselva. G. salaris was also found on the fins and skin of 

Atlantic salmon parr collected in Drammenselva in June 2002, and on fins of adult 

rainbow trout in a hatchery in Bullaren in May 2002. These parasites were used for 

comparison with Gyrodactylus specimens recovered from Arctic charr in Pålsbufjorden 

in the autumn 2003. 

 15



Table 2. Details on the sampled Salvelinus alpinus , Salmo salar, Salmo trutta, and Oncorhyncus mykiss. 
All fish were screened for Gyrodactylus infection. 

              
Sampling locality 
(Country) 

Geographical 
coordinates 

Water 
temp. (ºC) 

Sampling 
date 

Host species 
examined 

No. fish 
examined

No. of G. 
specimens 

Lake Pålsbufjorden 
(Norway) 60º 27' 00 N, 8º 39' 00 E 16 13-15.08.03 S. alpinus 30 1 

" " 10-12 8-12.09.03 S. alpinus 22 3 

" " 15-8* 
08.-
10.10.2003 S. alpinus 24 67 

" " 8-7* 19.10.2003 S. alpinus 15 10 
Lake Tunhovdfjorden 
(Norway) 60º 25' 00 N, 8º 53' 00 E - 12.04.2003 

S. alpinus. + S. 
trutta 78 0 

" " - 05.-08.2003 S. alpinus  30 0 

" "  05.-08.2003 
S. alpinus + S. 

trutta 15 0 
" " - 11.09.2003 S. alpinus  12 1 

Lake Skurdalsfjorden 
(Norway) 60º 27' 00 N, 8º 23' 00 E 6,8 10-19.10.03 S. alpinus 92 0 
Lake Tinnsjøen 
(Norway) 59º 54' 00 N, 8º 55' 00 E 7 03.11.2003 S. alpinus 10 0 
River Signaldalselva 
(Norway) 69º 15' 58 N, 19º 55' 31 E - 21.09.01 S. alpinus Ca. 10 Numerous 
                      "                   " 5,8 6-8.09.04 S. alpinus 24 192 

     "                   " 5,8 6-8.09.04 S. salar 15 Numerous 
River Drammenselva  
(Norway) 59º 46' 35 N, 9º 54' 04 14-15** 18.06.2002 S. salar 10+ Numerous 
Lake Bullaren (Sweden) 58º 39' 24 N, 11º 32' 36 E - 13.05.2002 O. mykiss 3 fins Numerous 
              

* on 5.08.03 the temperature in Lake Pålsbufjorden was ca 15 ºC in most depths and there was still a 
thermocline. In September the thermocline had almost disappeared and the temperature was between 12-13 
ºC (10.09.03) (approximate values found in Brabrandt et al., 2004). Early in October there was most likely 
complete circulation of the water column and the temperature probably exceeded 7 ºC.  
** Approximate values calculated by Ånund Sigurd Kvambekk, NVE. 
 
4.2. Gyrodactylus sp. from Arctic charr and Atlantic salmon in Signaldalselva  
 

4.2.1. Molecular characterization (CO1) 

Two specimens of Gyrodactylus from Arctic charr were identified as G. salaris of 

haplotype B according to Hansen et al. (2003). Haplotype B has previously been found in 

G. salaris infecting Atlantic salmon from Signaldalselva and Skibotnelva in Norway, and 

rivers Vindelälven and Torneälven in Sweden (Hansen et al., 2003).  Hence, the 

Gyrodactylus population on Arctic charr in Signaldalselva is considered identical to that 

of G. salaris on Atlantic salmon in Signaldalselva based on COI sequences.  

 

4.2.2. Morphological analyses and comparisons  

G. salaris from Arctic charr in Signaldalselva (Figure 1 A-D) were characterized 

morphometrically and compared with parasites from the sympatric Atlantic salmon parr. 

The mean values, standard deviations, and ranges of the 34 measures (Fig. 1 A-D, Table 

1) are based on the morphometric measurements of 23 individual G. salaris specimens 

from Arctic charr and compared to a similar number of worms from Atlantic salmon 
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(Table 3). The individual measurements taken of G. salaris from both Arctic charr and 

Atlantic salmon showed that 6 out of 34 measures of the hamuli (HDSW1 and HICL2), 

the ventral bar (VBPML, VBML and VBPPW) and the marginal hooks (MHSL) differed 

significantly (Mann-Whitney U tests, p< 0.05) between G. salaris from the two host 

species (measurements that differ significantly are marked with asterisks in Table 3).  

 
Table 3. Measurements of the G. salaris specimens measured from Arctic charr (N = 23) and from Atlantic 
salmon (N = 23) in Signaldalselva, North Norway. Each measure is given as micrometer (µm) ± standard 
deviation (SD), range in parentheses. Statistically significant differences (p < 0.05, Mann-Whitney U-Test) 
between the two metapopulations of G. salaris are indicated with * 
. 

Character measured 
G. salaris 

Arctic charr               
G. salaris 

Atlantic salmon         
Hamulus (H)   

1 HAL 24.03 ± 1.11 (21.19-25.63) 23.81 ± 1.28 (21.53-27.28) 
2 HPL1 34.78 ± 1.11 (32.54-36.68) 35.25 ± 0.86 (33.47-36.86) 
3 HDSW1* 6.20 ± 0.21 (5.85-6.66) 6.02 ± 0.37 (5.23-6.8) 
4 HSL1 42.27 ± 1.24 (38.96-44.09) 42.55 ± 1.73 (38.12-45.11) 
5 HAA 0.74 ± 0.02 (0.71-0.78) 0.76 ± 0.03 (0.70-0.81) 
6 HICL1 5.82 ± 1.23 (3.52-8.99) 5.62 ± 0.93 (4.13-7.29) 
7 HPSW 10.81 ± 0.55 (10.05-12.28) 10.56 ± 0.44 (9.67-11.57) 
8 HRL 23.30 ± 1.90 (20.79-29.32) 22.88  ± 1.02 (20.42-24.74) 
9 HTL 68.15 ± 2.08 (64.00-72.57) 67.72 ± 2.24 (61.28-71.92) 
10 HDSW2 5.74 ± 0.26 (5.17-6.09) 5.60 ± 0.28 (4.85-5.94) 
11 HPL2 32.93 ± 1.37 (30.03-35.21) 33.64 ± 0.91 (31.79-35.45) 
12 HSL2 46.52 ± 1.40 (43.55-48.78) 46.25 ± 1.79 (40.50-48.53) 
13 HICL2* 2.47 ± 0.65 (1.37-3.87) 2.82 ± 0.50 (1.99-4.06) 

Ventral Bar (VB)   
14 VBTL 27.66 ± 1.85 (25.03-34.30) 27.29 ± 1.48 (24.46-30.97) 
15 VBPML* 2.25 ± 0.84 (0.37-3.51) 2.73 ± 0.70 (0.53-3.54) 
16 VBBML* 8.58 ± 1.08 (6.45-10.78) 7.64 ± 1.02 (5.72-10.32) 
17 VBML 16.82 ± 1.37 (15.28-21.69) 16.91 ± 1.37 (13.99-19.65) 
18 VBCL 25.42 ± 1.73 (22.98-31.19) 24.56 ±1.53 (22.28-27.75) 
19 VBLL 11.20 ± 0.83 (9.71-12.52) 11.06 ±0.70 (9.36-12.14) 
20 VBPPW* 23.43 ± 1.43 (21.15-28.75) 22.56 ± 1.16 (20.33-24.36) 
21 VBW 25.56 ± 1.45 (23.88-31.19) 24.67 ± 1.20 (21.73-26.43) 
22 VBMMW 17.75 ± 1.33 (15.93-22.79) 17.09 ± 1.47 (14.26-19.75) 
23 VBPL 1.35 ± 0.28 (0.85-2.04) 1.27 ± 0.28 (0.75-1.92) 

Marginal Hook (MH)   
24 MHTL 39.49 ± 0.93 (37.62-40.73) 39.30 ± 0.92 (37.21-40.64) 
25 MHSHAL 32.44 ± 0.80 (30.59-33.56) 32.27 ± 0.80 (30.55-33.53) 
26 MHSL* 7.61 ± 0.19 (7.33-7.89) 7.48 ± 0.19 (7.07-7.8) 
27 MHSDW 5.93 ± 0.21 (5.41-6.34) 5.99 ± 0.16 (5.60-6.26) 
28 MHSHL 0.75 ± 0.13 (0.51-0.99) 0.71 ±0.09 (0.57-0.88) 
29 MHSPW 5.16 ± 0.16 (4.86-5.41) 5.15 ±0.20 (4.69-5.51) 
30 MHSTL 1.99 ± 0.12 (1.82-2.32) 1.98 ± 0.13 (1.69-2.15) 
31 MHIH 0.42 ± 0.10 (0.27-0.60) 0.45 ± 0.09 (0.28-0.6) 
32 MHAD 6.20 ± 0.12 (6.00-6.46) 6.19 ± 0.16 (5.84-6.52) 
33 MHSTH 1.67 ± 0.09 (1.50-1.80) 1.62 ± 0.11 (1.41-1.79) 
34 MHSW 1.39 ± 0.07 (1.29-1.55) 1.38 ± 0.10 (1.08-1.53) 
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A PCA- plot shows a high degree of overlap in the first principal component (PC1) (see 

Fig. 2), which account for 34% of the variance in the dataset. The loadings of PC1 were 

mostly negative, and PC1 were thus interpreted as a component representing variance 

related mainly to size (some variables (HAA, VBPML, MHSDW, MHIH and MHSW) 

had a vague positive correlation with the component scores). Along PC1 there were not 

found any significant differences between G. salaris from Arctic charr and Atlantic 

salmon (ANOVA, p> 0.05, Table 4). Accordingly G. salaris on salmon and charr in 

Signaldalselva do not differ from each other with respect to size. There is also a high 

degree of overlap of morphological measurements of G. salaris from Arctic charr and 

Atlantic salmon along PC2 in the PCA- plot (Fig. 2). 
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Fig.  2. PCA plot of the morphometric data of all measurements (see Table 1) of Gyrodactylus sp from 
Arctic charr (in blue) and G. salaris from Atlantic salmon (in black) from River Signaldalselva in the two 
first planes (Component 1 vs Component 2) of the PCA plot. (ellipses represent 95% confidence intervals 
about the mean).  
 

The variances of the PC2-7 were interpreted as reflecting shape due to the occurrence of 

both negative and positive loadings. The PCA-scores of PC2-4 and PC6-7, which 

collectively accounted for 50% of the variation described, showed no significant 

differences along these components (ANOVA, p>0.05, Table 4).  However there is a 

significant (ANOVA, p=0.024) difference between G. salaris from salmon and charr in 
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axis 5 but this component accounted for only 6 % of the total variation in the 

morphological traits. Consequently, there are found some small shape-differences in G. 

salaris between these two host species. 
 
 
Table 4. The percent variation described by the seven first components of the PC analyses of G. salaris 
from charr and salmon in Signaldalselva. The results of an ANOVA test based on the PCA-scores of the 
different components are also presented. 
 

PCA ANOVA
Component % Variation p 
1 34.357 0.144 
2 25.557 0.216 
3 9.578 0.094 
4 7.003 0.429 
5 6.323 0.024 
6 3.996 0.392 
7 3.635 0.995 

 

 

4.3. Gyrodactylus sp. from Arctic charr in Pålsbufjorden, Atlantic salmon in 

Drammenselva and rainbow trout in Bullaren 

 

4.3.1. Molecular characterization (ITS, CO1, IGS) 

The ITS sequences of Gyrodactylus specimens from Arctic charr from 

Pålsbufjorden were identical to those of G. salaris (and also G. thymalli).  

The COI sequence of the Gyrodactylus from Arctic charr in Pålsbufjorden is 

identical to that of G. salaris, haplotype F according to Hansen et al. (2003). Haplotype F 

has previously been detected in the following G. salaris populations on Atlantic salmon: 

Drammenselva, Lierelva and Lærdalselva, and in addition in specimens recorded from 

rainbow trout in a hatchery in Bullaren, Sweden (Hansen et al., 2003). 

The analysis of the IGS of the specimens from Arctic charr in Pålsbufjorden 

revealed highest similarity in sequence and structure to G. salaris specimens previously 

analysed from the rainbow trout in the hatchery in Bullaren (Hansen et al., in prep.). The 

obtained IGS sequence did not match those found in other specimens with haplotype F, 

i.e. G. salaris from the Drammenselva, Lierelva and Lærdalselva. Hence, the 

Gyrodactylus population on Arctic charr from Pålsbufjorden is according to the 

molecular markers ITS, COI and IGS regarded identical to that of G. salaris found on 

hatchery reared confined rainbow trout (Bullaren, Sweden).  
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4.3.2. Morphological analyses and comparisons 

G. salaris from Arctic charr from Pålsbufjorden (Fig. 3 A-D) were characterized 

morphometrically and compared with parasites of the same mitochondrial haplotype (F) 

collected from Atlantic salmon in Drammenselva and rainbow trout in Bullaren (Fig. 4 

A-F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 A-D. Scanning electron micrographs (SEM) of the ophisthaptoral sclerites of G. salaris from Arctic charr in 
Pålsbufjorden. – A, hamuli. – B, ventral bridge. – C, marginal hook. – D, marginal hook sickle. 
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Fig. 4. A-F. Scanning electron micrographs (SEM) of the ophisthaptoral sclerites of G. salaris from 
Atlantic salmon in Drammenselva and from rainbow trout from a hatchery in Bullaren. Drammenselva: - 
A, hamuli. – B, ventral bridge. – C, marginal hook. Lake Bullaren: - D, hamuli. – E, ventral bridge. – F, 
marginal hook. 
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The mean values, standard deviations, and ranges of the 34 measures (Fig. 1, Table 1) are 

based on the morphometric measurements of 30 G. salaris specimens from Arctic charr 

(Pålsbufjorden), 15 specimens from Atlantic salmon (Drammenselva) and 15 specimens 

from rainbow trout in Bullaren (Table 5). 
 
Table 5. Measurements of the G. salaris from Arctic charr (N = 30) from Pålsbufjorden, Atlantic salmon 
(N = 15) from Drammenselva, south Norway, and rainbow trout (N = 15) from a hatchery in Bullaren, 
Sweden. Each measure is given as micrometer (µm )  ± standard deviation (SD), range in parentheses.  
    

Character 
measured 

G. salaris 
(Arctic charr) 
Pålsbufjorden 

G. salaris 
(Atlantic salmon) 
Drammenselva 

G. salaris 
(rainbow trout) 

Bullaren 
     

Hamulus        
1 HAL 24.15 ± 2.90 (20.66-32.87) 25.66 ± 1.18 (23.78-27.81) 23.84 ± 1.32 (19.9-25.15) 
2 HPL1 39.34 ± 0.95 (36.66-41.44) 35.02 ± 1.32 (32.53-37) 37.23 ± 1.05 (35.42-39.48) 
3 HDSW1 7.58 ± 0.69 (6.76-9.34) 6.58 ± 0.50 (5.7-7.54) 6.81 ± 0.29 (5.95-7.23) 
4 HSL1 46.54 ± 1.28 (44.55-49.13) 42.60 ± 1.96 (38.74-45.44) 44.31 ± 1.24 (41.77-46.04) 
5 HAA 0.77 ± 0.06 (0.57-0.84) 0.71 ± 0.03 (0.64-0.74) 0.77 ± 0.02 (0.74-0.83) 
6 HICL1 3.94 ±1.01 (1.63-6.24) 4.87 ± 1.10 (2.79-6.38) 4.67 ± 0.81 (3.28-6.35) 
7 HPSW 12.11 ± 0.75 (10.07-13.72) 11.25 ± 0.86 (8.95-12.34) 11.40 ± 0.42 ( 10.8-12.48) 
8  HRL 27.47 ± 1.19 (24.58-29.87) 24.13 ± 1.87 (19.23-26.48) 26.60 ± 1.65 (22.66-28.78) 
9 HTL 75.88 ± 1.77 (72.47-79.41) 69.88 ± 3.91 (61.97-74.73) 72.07 ± 2.65 (65.79-74.97) 
10 HDSW2 7.41 ± 0.65 (6.46-9.27) 6.17 ± 0.46 (5.44-7.14) 6.49 ± 0.37 (5.63-7.2) 
11 HPL2 38.33 ± 0.87 (36.73-40.48) 33.03 ± 1.25 (30.27-35.02) 35.98 ± 1.14 (33.65-38.13) 
12 HSL2 49.38 ± 1.27 (46.55-51.77) 46.56 ± 2.44 (42.33-50.71) 47.45 ± 1.49 (43.85-49-28) 
13 HICL2 2.59 ± 0.59 (1.46-3.72) 2.23 ± 0.55 (1.52-3.43) 2.68 ± 0.56 (1.92-3.71) 

Ventral Bar        
14 VBTL 30.71 ± 2.16 (28.16-40.21) 28.30 ± 1.69 (25.16-30.99) 28.69 ± 0.80 ( 27.27-29.78)
15 VBPML1 2.10 ± 0.76 (0.40-3.75) 1.86 ± 0.42 (1.12-2.64) 2.02 ± 0.96 (-0.89-3.31) 
16 VBBML 11.07 ± 1.65 (8.37-15.39) 10.32 ± 1.77 (6.29-12.89) 10.38 ± 1.55 (7.4-12.9) 
17 VBML 17.47 ±2.30 (13.02-24.98) 16.29 ± 1.68 (12.46-18.78) 16.26 ± 1.23 (14.39-17.93) 
18 VBCL 28.70 ± 2.33 (25.19-37.81) 26.86 ± 2.45 (23.22-33.62) 26.66 ± 1.43 (24.27-29.72) 
19 VBLL 11.63 ± 1.13 (9.58-15.22) 11.55 ± 1.34 (9.78-13.67) 11.43 ± 0.53 (10.55-12.47) 
20 VBPPW 27.55 ± 2.14 (25.59-36.48) 24.57 ±1.93 (19.77-27.67) 26.24 ± 1.73 (24.32-29.28) 
21 VBW 29.18 ± 1.84 (27.04-37.24) 25.93 ± 1.63 (21.76-28.23) 26.69 ± 0.76 (25.22-28.3) 
22 VBMMW 21.14 ± 1.51 (19.14-26.82) 17.89 ± 0.92 (16.33-20.4) 18.41 ± 0.74 (16.67-19.19) 
23 VBPL 2.01 ± 0.36 (1.49-2.94) 1.92 ± 0.52 (1.05-2.81) 1.92 ± 0.32 (1.13-2.28) 
Marginal Hook        

24 MHTL 40.18 ± 1.02 (38.19-42.58) 37.80 ± 0.87 (36.3-39.23) 38.87 ± 1.15 (37.12-40.4) 
25 MHSHAL 32.80 ± 0.92 (30.85-34.37) 30.77 ± 0.90 (29.48-32.17) 31.63 ± 1.11 (29.84-33.15) 
26 MHSL 7.93 ± 0.22 (7.59-8.4) 7.42 ± 0.27 (6.6-7.74) 7.83 ± 0.24 (7.32-8.33) 
27 MHSDW 6.05 ± 0.27 (5.63-6.73) 5.73 ± 0.26 (5.27-6.03) 5.67 ± 0.28 ( 5.16-6.14) 
28 MHSHL 0.78 ± 0.11 (0.57-0.99) 0.68 ± 0.13 (0.5-0.9) 0.67 ± 0.16 (0.46-0.99) 
29 MHSPW 5.29 ± 0.31 (4.95-6.23) 5.01 ± 0.34 (4.07-5.4) 5.14 ± 0.24 (4.72-5.65) 
30 MHSTL 2.01 ± 0.20 (1.74-2.77) 1.91 ± 0.14 (1.59-2.11) 1.95 ± 0.13 (1.75-2.29) 
31 MHIH 0.61 ± 0.13 (0.43-0.87) 0.39 ± 0.12 (0.23-0.67) 0.59 ± 0.09 (0.46-0.79) 
32 MHAD 6.42 ± 0.20 (6.09-7.2) 6.13 ± 0.16 (5.61-6.32) 6.10 ± 0.15 (5.89-6.48) 
33 MHSTH 1.76 ± 0.20 (1.20-2.43) 1.62 ± 0.11 (1.4-1.79) 1.80 ± 0.12 (1.61-2.01) 
34 MHSW 1.51 ± 0.13 (1.28-1.9) 1.38 ± 0.10 (1.16-1.52) 1.57 ± 0.12 (1.36-1.73) 
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The individual measurements taken of G. salaris from Arctic charr, Atlantic salmon and 

rainbow trout showed that 26 out of 34 measures of the hamuli (HAL, HPL, HDSW, 

HSL, HAA, HICL, HPSW, HRL, HTL, HDSW2, HPL2 and HSL2), the ventral bar 

(VBML2, VBCL, VPPW, VBW and VBMW) and the marginal hooks (MHTL, 

MHSHAL, MHSL, MHSDW, MHSHL, MHIH, MHAD, MHSTH and MHSW) differed 

significantly (Kruskal-Wallis tests, p< 0.05, Table 6). Of the measurements found to 

differ significantly between the tree populations, 19 proved to be different between G. 

salaris from Pålsbufjorden and Bullaren, 25 were significantly different between G. 

salaris from Pålsbufjorden and Drammenselva and 15 measurements were significant 

different between G. salaris from Drammenselva and Bullaren (Mann-Whitney U tests, 

p<0.05, Table 6). 

 
Table 6. Kruskal-Wallis post hoc tests (Mann-Whitney U tests) for each morphometric character of the G. 
salaris populations from Pålsbufjorden, Drammenselva and Bullaren. Only those variables that were 
statistically significant different (p<0.05) between the populations are listed (abbreviations see Table 1). 
 
 G. salaris 

(rainbow trout, Bullaren) 
G. salaris  

(salmon, Drammenselva) 
G. salaris  
(Arctic charr, 
Pålsbufjorden) 

HPL1 (p<0.01) 
HDSW1 (p<0.01) 
HSL1 (p<0.01) 
HICL1 (p=0.019) 
HPSW (p<0.01) 
HTL (p<0.01) 
HDSW2 (p<0.01) 
HPL2 (p<0.01) 
HSL2 (p<0.01) 
VBML (p=0.024) 
VBCL (p<0.01) 
VBPPW (p=0.018) 
VBW (p<0.01) 
VBMMW (p<0.01) 
MHTL (p<0.01) 
MHSHAL (p<0.01) 
MHSDW (p<0.01) 
MHSHL (p=0.043) 
MHAD (p<0.01) 
 

HAL (p<0.01) 
HPL1 (p<0.01) 
HDSW1 (p<0.01) 
HSL1 (p<0.01) 
HAA (p<0.01) 
HICL1 (p<0.01) 
HPSW (p<0.01) 
HRL (p<0.01) 
HTL (p<0.01) 
HDSW2 (p<0.01) 
HPL2 (p<0.01) 
HSL2 (p<0.01) 
VBCL (p<0.01) 
VBPPW (p<0.01) 
VBW(p<0.01) 
VBMMW (p<0.01) 
MHTL (p<0.01) 
MHSHAL (p<0.01) 
MHSL (p<0.01) 
MHSDW (p<0.01) 
MHSHL (p=0.022) 
MHIH (p<0.01) 
MHAD (p<0.01) 
MHSTH (p<0.01) 
MHSW t (p<0.01) 
 

G. salaris 
 (rainbow trout, 
Bullaren) 

 HAL (p<0.01) 
HPL1 (p<0.01) 
HSL1(p=0.014) 
HAA (p<0.01) 
HRL (p<0.01) 
HDSW2 (p=0.025) 
HPL2 (p<0.01) 
VBPPW (p=0.03) 
VBMMW (p=0.019) 
MHTL (p=0.018) 
MHSHAL (p=0.04) 
MHSL (p<0.01) 
MHIH (p<0.01) 
MHSTH (p<0.01) 
MHSW (p<0.01) 
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 A PCA- plot shows that there is not a complete overlap of morphological 

measurements of the tree G. salaris populations in PC1 (Fig. 5 A). 
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The loadings for PC1 all have positive signs except HICL1 which is not directly related 

to size but describes the curvature of the hamuli. Accordingly, PC1 captures variance 

mainly related to size. All populations differed significantly from each other in PC1 

(ANOVA and Tukey`s pairvise comparisons, p<0.05, Table 7). This together with the 

high variation (57%) captured in PC1 implies that the three G. salaris populations differ 

in sizes. In PCA- plots showing the scores of PC2-3 there seems to be high degree of 

overlap of morphological measurements in the three G. salaris populations (Fig. 5 A- B). 
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Fig. 5 A, B. PCA plots of the morphometric data of all measurements (see Table 1) of G. salaris from 
Arctic charr in Pålsbufjorden (in red), Atlantic salmon from Drammenselva (in purple) and rainbow trout 
from Bullaren (in green). – A, the two first planes (Component 1 vs Component 2) of the PCA plot. – B, 
the second and third plane (Component 2 vs Component 3) of the PCA plot (ellipses represent 95% 
confidence intervals about the mean). 



These components account for 26-9% of variance in the dataset. The loadings for PC2-5 

all have a mix of negative and positive signs and are therefore interpreted as consisting of 

variance related to shape. In PC4 and PC5 (collectively capturing 21% of the variance) 

there were no significant differences between morphometry of G. salaris from the three 

populations (ANOVA and Tukey`s pairvise comparisons, p>0.05, Table 7). In PC2, 

however, G. salaris from Drammenselva is significantly different from G. salaris from 

Bullaren. In PC3 G. salaris from Drammenselva is significantly different from G. salaris 

from Pålsbufjorden as well as G. salaris from Bullaren (Tukey`s pairvise comparisons, 

p=0.02 and p=0.04, respectively). This component captures 9.4% of the variance in the 

dataset, which implies that there are moderate significant differences in shape, in 

addition to differences in size, between the ophisthaptoral sclerites of G. salaris from 

Drammenselva and G. salaris both from Pålsbufjorden and Bullaren. 

 
Table 7. The percent variation described by the first five components of the PC analyses. The results of an 
ANOVA test based on the PCA-scores of the different components in addition to post-hoc tests based on 
Tukey`s pairvise comparisons of the populations are also given.  
 

PCA ANOVA Post-hoc tests 
Component % 

Variation 
p(same) Pålsbu-

Drammen 
Pålsbu-
Bullaren 

Bullaren-
Drammen 

1 57.379 1,718 E-13 0.0001189 0.0001198 0.002412 
2 11.68 0.037 0.064 0.982 0.042 
3 9.352 0.015 0.020 0.959 0.041 
4 5.196 0.965 0.993 0.965 0.989 
5 4.294 0.135 0.724 0.140 0.482 

 

 

4.4. Comparison between the morphology of G. salaris on Arctic charr from 

Pålsbufjorden and Signaldalselva 

 

A comparison between the morphology of G. salaris from Arctic charr from 

Pålsbufjorden and from Signaldalselva showed that 24 out of 34 measures of the hamuli 

(HPL, HDSW, HSL, HAA, HICL, HPSW, HRL, HTL, HDSW2, HPL2 and HSL2), the 

ventral bar (VBTL, VBBML, VBCL, VPPW, VBW, VBMW and VBPL and the 

marginal hook (MHTL, MHSL, MHIH, MHAD, MHSTH and MHSW ) differed 

significantly (Mann-Whitney U tests, p<0.05, Table 8). 
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Table 8. The results of a Mann-Whitney U tests for each morphometric variable of the two G. salaris 
populations from Arctic charr in Pålsbufjorden and Signaldalselva. Only those variables that were 
statistically significant different (p<0.05) between the populations are listed (abbreviations see Table 1). 
 

Measure p(same) 
2 HPL1 <0.01 
3 HDSW1 <0.01 
4 HSL1 <0.01 
5 HAA <0.01 
6 HICL1 <0.01 
7 HPSW <0.01 
8 HRL <0.01 
9 HTL <0.01 
10 HDSW2 <0.01 
11 HPL2 <0.01 
12 HSL2 <0.01 
14 VBTL <0.01 
16 VBBML <0.01 
18 VBCL <0.01 
20 VBPPW <0.01 
21 VBW <0.01 
22 VBMMW <0.01 
23 VBPL <0.01 
24 MHTL 0.025 
26 MHSL <0.01 
31 MHIH <0.01 
32 MHAD <0.01 
33MHSTH <0.01 
34 MHSW <0.01 

 
 

In a PCA- plot there seems to be almost no overlap of the morphological measurements 

of G. salaris from Arctic charr in Pålsbufjorden and Signaldalselva along PC1 (Fig. 6 A). 

The loadings of PC1 are all positive as expected if the bulk of variance in the dataset 

originated from size-differences. The only measure that does not follow this trend is 

MHIH (marginal hook) that was found not directly correlated to size. The variance in 

PC1 is accordingly interpreted as resulting from differences in size between the 

populations. Thus, the two populations proved to be significant different in PC1 

(ANOVA, p<0.01, Table 9), which means that they are different in size. In PC2-3 there 

seems to be a high degree of overlap (Fig. 6 A- B).  
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Fig. 6 A, B. PCA plots of the morphometric data of all measurements (see Table 1) of G. salaris on Arctic 
charr from Lake Pålsbufjorden (in red) and River Signaldalselva (in red). - A, the two first planes 
(Component 1 vs. Component 2) of the PCA plot. – B, the second and third plane (Component 2 vs. 
Component 3) of the PCA plot (ellipses are 95% confidence intervals about the mean).  
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PC2-6 is interpreted as consisting of variance related to shape due to mixed signs of the 

loadings. These components accounts for 13-2% of the variance (collectively capturing 

28% of the variance) in the dataset, and thus the morphometrical differences between 

these populations are small and insignificant (ANOVA, p>0.05, Table 9). Therefore G. 

salaris infecting Arctic charr in Pålsbufjorden and Signaldalselva are not different from 

each other with respect to shape. 

 
Table 9. The percent variation described by the first six components of the PC analyses of G. salaris from 
charr in Pålsbufjorden and Signaldalselva. The results of an ANOVA test based on the PCA-scores of the 
different components are also shown.  
 

PCA ANOVA 
Component % Variation p(same) 
1 65.421 6.184E-23 
2 13.577 0.286 
3 5.833 0.251 
4 3.744 0.664 
5 2.587 0.707 
6 1.987 0.513 
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5. Discussion 

 

Arctic charr from both the north Norwegian Signaldalselva and the south Norwegian 

Pålsbufjorden was found infected with Gyrodactylus. By the use of molecular and 

morphological methods both Gyrodactylus populations were identified as G. salaris. The 

morphometric measurements of the Gyrodactylus from both Signaldalselva and 

Pålsbufjorden fall within the range of G. salaris for the 15 characters published by 

Cunningham et al. (2001). However, in one of the specimens from Arctic charr in 

Pålsbufjorden the four measures of the ventral bridge (VBTL, VBML2, VBCL and 

VBPPW) were clearly out of the range described by Cunningham et al. (2001). This 

specimen from Pålsbufjorden is atypical in having a larger ventral bridge than the other 

specimens from the same locality. Otherwise, shape and size are not specifically 

different.  

The sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal 

gene cluster and the mitochondrial cytochrome oxidase I gene (COI) of the specimens 

from Arctic charr in Signaldalselva and Pålsbufjorden were identical to that of G. salaris 

from the respective clade I and clade III as described by Hansen et al. (2003). The 

finding that G. salaris is able to infect wild anadromous Arctic charr in Signaldalselva 

confirms the suggestions from the field-studies of Knudsen et al. (2004), and the 

experimental work by Bakke et al. (1996). Further, the finding that G. salaris infecting 

Atlantic salmon also infects the sympatric Arctic charr in Signaldalselva is in accordance 

with the observations made in the nearby river Skibotnelva (Mo, 1988; Kristoffersen et 

al., 2005). The observations in Skibotnelva and Signaldalselva indicate that Arctic charr 

co-occurring with Atlantic salmon infected with G. salaris most probably will acquire 

the infection. The finding that the freshwater resident Arctic charr from Pålsbufjorden 

apparently is continuously infected by G. salaris without any co-occurring Atlantic 

salmon was, however, more surprising. In addition the susceptibility of the resident 

Arctic charr population in Pålsbufjorden is surprising due to a previous study 

demonstrating that another resident stock of Arctic charr was resistant to G. salaris of the 

same haplotype (i.e. from Lierelva, Bakke et al., 1996).  

The documented G. salaris infection on Arctic charr in Signaldalselva was 

compared morphologically with G. salaris of the same mitochondrial haplotype infecting 

Atlantic salmon living in sympatry with Arctic charr in Signaldalselva. The results 

demonstrated that the morphology of G. salaris on Arctic charr and Atlantic salmon was 
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almost indistinguishable. The minor morphometrical differences (significant differences 

in six out of 34 measurements and in component 5 of the PCA) between parasites 

detected from the two host species may be interpreted as a result of differences 

associated to the host-species since all environmental parameters were kept similar.  

Host dependent differences in morphology of gyrodactylids infecting closely 

related host species have been studied both in the field and by laboratory experiments. In 

a laboratory study, G. salaris sampled from rainbow trout in a fish farm in Lake 

Tyrifjorden, infected both Atlantic salmon parr and rainbow trout (Mo, 1991c). The size 

and shape of the parasites ophisthaptoral sclerites were found to be indistinguishable 

when infecting salmon parr and rainbow trout at the same temperature in the laboratory. 

In another study concerning G. derjavini which normally infects brown trout, G. 

derjavini specimens prepared from concurrently sampled Atlantic salmon and trout in 

River Sandvikselva, did not vary with respect to morphometry (Mo, 1993). In addition, 

Geets et al. (1999) did not find any significant differences between the morphometry of 

G. cf. arcuatus specimens on two different but related host species; Pomatoshistus 

minutus and P. lozanoi. Thus, previous studies have shown that there is no host-

dependent variation in ophisthaptoral hard parts of G. salaris as well as other 

Gyrodactylus species when infecting closely related hosts. The findings in the present 

study, on the contrary, show that G. salaris from the same locality can vary slightly in 

morphometry when infecting different salmonid host species.  

G. salaris on Atlantic salmon and Arctic charr in Signaldalselva could either 

represent two different metapopulations or belong to the same population of parasites. If 

G. salaris on Arctic charr and Atlantic salmon in Signaldalselva consist of two different 

metapopopulations the differences in morphology observed could result from an early 

step of differentiation to a new host. However, a hypothesis of two separate 

metapopulations is considered unlikely as it contradicts the finding that the parasites on 

Arctic charr are of the same haplotype as those on salmon. Another objection to this 

hypothesis is that Gyrodactylus on sympatric fish species seems to frequently switch 

hosts (Bakke et al., 1992). This is in accordance with the studies performed by Mo (1983, 

1993) where two host species shared a common population of parasites, i.e. G. derjavini 

infecting the primary host brown trout and Atlantic salmon in Sandvikselva. The Atlantic 

salmon was heavier infected in periods with low water supply in the river, yielding a 

higher density of fish and thus a higher infection pressure of G. derjavini from brown 

trout. Further, G. salaris is known to have a high potential for host switching among 
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salmonids (see Bakke et al., 2002). Soleng et al. (1999) has shown that G. salaris both in 

laboratory and field studies can be transmitted to new salmon hosts both by direct contact 

between infected live fish and/or dead fish, besides indirectly from the substrate or via 

drift in the water column. Both indirect and direct transmission of G. salaris, are 

probably important routes for infection of Arctic charr in Signaldalselva since parr of 

Arctic charr and Atlantic salmon occupy somewhat different habitats in the river. 

Atlantic salmon is frequently found in deep parts of the river with strong water currents, 

while Arctic charr is more often found in shallow waters near the shore (Heggberget, 

1984). It is also possible that heavily infected or dying Atlantic salmon parr displays 

abnormal behaviour in moving into more shallow waters and thus may facilitate the 

spreading of the parasite to parr of Arctic charr. In the light of the findings made by Mo 

(1983) and Soleng et al. (1999) it is likely that G. salaris on Arctic charr and Atlantic 

salmon in Signaldalselva consist of a common population with origin from Atlantic 

salmon as opposed to two different metapopulations constrained to the host species. 

Consequently, it is considered unlikely that the morphometrical differences found 

between G. salaris parasitizing Arctic charr and Atlantic salmon are connected to the 

parasites representing separate populations. 

One possible reason for the observed differences in morphometry of G. salaris on 

Arctic charr and Atlantic salmon belonging to a common population of parasites is that 

different host species will provide different microenvironments for monogenean parasites 

(see Buchmann and Lindenstrom, 2002). The microenvironment offered by the host 

could potentially influence the phenotype of the ophisthaptoral sclerites of gyrodactylids. 

Another reason to the observed dissimilarities in the morphometry of G. salaris on Arctic 

charr and Atlantic salmon may involve the variable morphology recorded between 

individuals of G. salaris (Malmberg, 1987). If some of the parasites display traits 

(morphological or linked to morphology) that are favourable for survival and 

reproduction on Arctic charr after a host-switch they may after some time dominate in 

the sample from Arctic charr. Cone and Wiles (1989) found that specific individuals of 

G. colemanensis would be dislodged in instances when the attachment mechanisms and 

the parasite morphology did not fit host epidermal architecture. This finding may support 

the theory of G. salaris specimens with particular “traits” are dominating in the sample 

of parasites from Arctic charr as it indicates that morphological variability within the 

same Gyrodactylus population can affect the ability of individual parasites to survive on 

a new host after transmission. In this context it must be mentioned that reproduction of 
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G. salaris on Arctic charr in Signaldalselva is considered likely due to the high 

intensities of parasites observed on individual Arctic charr (Knudsen et al., 2004). Such 

high intensities can hardly be explained solely by transfer from Atlantic salmon. 

Reproductions after a successful host switch may certainly enhance the effect of G. 

salaris specimens in possession of particular “traits” dominating in the gyrodactylid 

population on Arctic charr. Based on the various observations mentioned above the 

differences in the morphometry between G. salaris on Atlantic salmon and Arctic charr 

could be explained by the assumption that the particular parasites that are able to 

establish and reproduce on Arctic charr after transmission from Atlantic salmon (see 

Bakke et al. 1991) are morphologically slightly different from the mean of morphological 

traits of the G. salaris specimens infecting Atlantic salmon. If so, G. salaris may appear 

slightly different with respect to the morphometry of the ophisthaptoral sclerites in the 

two host species. The alternative hypothesis that seems likely to explain the observed 

differences in morphometry between G. salaris on Arctic charr and Atlantic salmon are, 

as mentioned above, that the host is influencing the phenotype of the parasites. 

The observation that G. salaris is able to infect resident Arctic charr in 

Pålsbufjorden was somewhat surprising. This is the first time G. salaris has been 

recorded in a wild resident Arctic charr population over a prolonged period (recorded in 

2000, 2003 and 2004) without co-occurring Atlantic salmon. In the present study, 

repeated transfer of G. salaris from Atlantic salmon can be excluded. According to 

Sterud (1999) G. birmani has been recorded on Arctic charr in Buskerud County. This 

species was not observed in Pålsbufjorden; however, the absence of G. birmani does not 

exclude the possibility of G. birmani occurring elsewhere on Arctic charr in Buskerud 

County.  

The molecular and morphological analyses of G. salaris on Arctic charr in 

Pålsbufjorden and Signaldalselva gave the opportunity to compare the morphology of G. 

salaris of different populations and mitochondrial haplotypes infecting the same host-

species. The ophisthaptoral sclerites of G. salaris from these two Arctic charr 

populations were different in size but similar in shape. The sclerites of the specimens 

from the sampling in Pålsbufjorden are generally larger than those of G. salaris from 

Signaldalselva. Environmental factors such as differences in water temperature could 

cause morphological dissimilarities as the sampling in Signaldalselva (5.8ºC) was 

performed at lower temperature than the temperature during the sampling period in 

Pålsbufjorden (7 - 15ºC). However, this contradicts several earlier investigations that 
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have shown that the ophisthaptoral hard parts of G. salaris increase in size with 

decreasing water temperature (Mo, 1991a, b, c). This seems to be a general trend in 

gyrodactylids as it is also observed in several other Gyrodactylus-species such as e.g. G. 

aphyae, G. macronychus, G. truttae, G. katharineri, G. derjavini, G. callariatis (Ergens 

(1976, 1981; Ergens and Gelnar, 1985; Mo, 1993; Appleby, 1996). Thus, the larger 

ophisthaptoral sclerites of G. salaris from Arctic charr in Pålsbufjorden than on Arctic 

charr in Signaldalselva are considered to be size differences between the two parasite 

populations that are temperature independent.  

The finding that G. salaris from Arctic charr in Pålsbufjorden is larger than G. 

salaris from Arctic charr in Signaldalselva appear to be in accordance with the 

observations of Mo (1991c). He noticed that G. salaris found on rainbow trout in 

Tyrifjorden had larger ophisthaptoral hooks than G. salaris on Atlantic salmon usually 

had. In this context it is noteworthy that the COI of G. salaris infecting Arctic charr from 

Pålsbufjorden was of the same haplotype as G. salaris from Drammenselva. Mo (1991c) 

hypothesized that Drammenselva was infected with G. salaris from Tyrifjorden, which 

implies that G. salaris from Pålsbufjorden may have the same haplotype as the “large” 

G. salaris from rainbow trout in Tyrifjorden. The larger ophisthaptoral sclerites of G. 

salaris infecting Arctic charr from Pålsbufjorden than found in Signaldalselva might 

therefore be based on genetic differences between the two populations (haplotypes). 

However, other explanations for the observed size differences cannot be excluded. For 

example, the Arctic charr sampled in Pålsbufjorden were mostly adult (3-5 year old) 

while the Arctic charr sampled from Signaldalselva were parr (0+ and 1+). This host size 

differences may also affect the gyrodactylid phenotypes. For example the size of the 

ophisthaptoral hard parts of G. arcuatus has previously been found affected by the age of 

the host as specimens infecting older hosts had larger ophisthaptoral hard parts than those 

parasitizing small fish (Malmberg, 1970). This is in accordance with G. salaris from 

Pålsbufjorden having larger sclerites than G. salaris from Signaldalselva. 

Further differences that could have led to variability in the morphology of the 

parasites from the two populations could be that the resident Arctic charr in 

Pålsbufjorden and the anadromous Arctic charr in Signaldalselva are of different fish 

stocks. They could therefore represent different genotypic and/or phenotypic challenges 

for the gyrodactylids. Bakke et al. (1996) showed that there may be distinctions in the 

susceptibility of different stocks of Arctic charr towards G. salaris since anadromous 

Arctic charr from the Hammerfest stock in North Norway was susceptible whereas the 
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resident Arctic charr from the Korssjoen stock in south-eastern Norway was not. Arctic 

charr is a species that has high level of molecular variation between different populations 

(Wilson et al., 2004). Accordingly, the observed dissimilarities in morphology between 

the two G. salaris populations on Arctic charr may be related to host population 

differences inducing different phenotypes. These different traits may also have been 

selected for in the two different host populations.  

In summary, the differences in size of the ophisthaptoral sclerites of G. salaris 

infecting Arctic charr in Pålsbufjorden and Signaldalselva can be caused either by strain 

dissimilarities in the parasite populations, and/or microenvironmental factors such as 

strain dissimilarities in the Arctic charr populations or differences in age of the host 

(adults versus parr). However, the possibility of differences related to some 

macroenvironmental factors cannot be ruled out. 

The sequencing of the mitochondrial COI gene of G. salaris from Arctic charr in 

Pålsbufjorden identified it to a haplotype that belongs to the mitochondrial clade III 

according to Hansen et al. (2003). This particular haplotype has earlier been detected in 

G. salaris from Atlantic salmon in Drammenselva /Lierelva and Lærdalselva, and 

rainbow trout from Bullaren (Hansen et al, 2003). The sequence of the IGS from G. 

salaris from Pålsbufjorden showed highest similarity to the sequence of G. salaris on 

rainbow trout from Bullaren. This IGS sequence has previous been found in G. salaris 

adapted to rainbow trout (Sterud et al., 2002; Cunningham et al., 2003). To explore 

potential differences in morphology between G. salaris from different host species and 

localities but belonging to the same mitochondrial haplotype, G. salaris from Arctic 

charr (Pålsbufjorden), Atlantic salmon (Drammenselva) and rainbow trout (Bullaren) 

were subjects for more detailed morphometric analyses. The results of the 

morphometrical analyses of G. salaris between the three populations showed clear 

differences in size. There were also slight differences in the shape of the hooks of G. 

salaris from Pålsbufjorden and Drammenselva, as well as between the specimens from 

Drammenselva and Bullaren. Several measures of the hamulus (HAL, HPL, HDSW, 

HSL, HAA, HICL, HPSW, HRL, HTL, HDSW2, HPL2, HSL2), the ventral bridge 

(VBML2, VBCL, VPPW, VBW, VBMW) and the marginal hooks (MHTL, MHSHAL, 

MHSL, MHSDW, MHSHL, MHIH, MHAD, MHSTH and MHSW) proved to be 

significantly different between these populations of G. salaris.  However, these results 

represent most likely difference in size as proposed by the results of ANOVA performed 

on the PCA-scores.  
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The observed morphometric dissimilarities recovered may also be due to that 

the G. salaris measured from the different localities were sampled under different 

macroenvironmental conditions as e.g. water temperatures. Such differences may also 

partly be accounted to host-species induced differences in phenotypic traits of the 

parasites, as discussed above. 

The infection history of Signaldalselva is known from molecular studies which 

state that Signaldalselva probably was infected via estuarine migration of Atlantic 

salmon from the river Skibotnelva (Hansen et al., 2003). In contrast, the spread of the 

rainbow-trout form of G. salaris to Arctic charr in Pålsbufjorden remains unclear. The 

Arctic charr in Pålsbufjorden originally came from Lake Tinnsjøen (Ass, 1970), and the 

possibility that the G. salaris was introduced to Pålsbufjorden concurrently with the 

Arctic charr cannot be ruled out. However, no gyrodactylid infection has been reported 

on Arctic charr from Tinnsjøen. In addition, the relatively few fish from Tinnsjøen 

screened for infection was uninfected. This might indicate that G. salaris was introduced 

to Pålsbufjorden in a later incidence. Another possible introduction route of G. salaris to 

Pålsbufjorden employs rainbow trout. Roe of rainbow trout from Jutland in Denmark was 

hatched in various fish farms in Southern Norway and the fish was introduced into 

Pålsbufjorden on several occasions from 1962-1964 and to Tunhovdfjorden between 

1962 and 1967 (Per Aass, pers. comm.). However, within four years after the last 

introduction the rainbow trout had vanished from the fish catches (Per Aass, pers. 

comm.). Even though the introduced rainbow trout did not manage to persist in the lake, 

it is possible that the G. salaris today parasitizing Arctic charr in Pålsbufjorden was 

introduced concurrently with the fish and switched to Arctic charr before the rainbow 

trout disappeared. If this interpretation is correct, the rainbow trout must have acquired 

the infections in Norwegian fish farms since it was introduced to Norway as roe. This 

scenario is not unlikely as the host range of G. salaris has experimentally been found to 

be wide (Bakke et al., 2002). After switching from rainbow trout to Arctic charr the 

parasite might have adapted rapidly to the new host species. This scenario includes a 

remarkable fast host switch, since the transmission window from one host species to the 

other has been very short, as the rainbow trout and Arctic charr co-occurred probably 

only about six years in Pålsbufjorden. As recurrent host switching is considered to 

promote rapid host-specific adaptation and subsequent speciation (Cribb et al., 2002; 

Poulin, 2002; Zietara and Lumme, 2002), this seems to be a likely explanation of the fact 

that Arctic charr are infected with the rainbow-trout form of G. salaris. The life cycle of 
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gyrodactylids facilitate speciation via isolation and genetic divergence after a successful 

host-switching event (Cable and Harris, 2002; Zietara and Lumme, 2002; Meinilä et al., 

2004) since it renders possible that one pregnant worm can give rise to a viable deme 

after transmission to a new host. Most probably, the finding of G. salaris on the resident 

Arctic charr in Pålsbufjorden is an excellent example of the ability of rapid host-

switching of the parasite species which frequently seem to occur in the genus. 

The detection of a G. salaris infection on resident Arctic charr in a lake, which 

drains into a watercourse with uninfected Atlantic salmon, raises questions on the 

potential for further spread of the parasite to uninfected salmon stocks. Accordingly, 

there may be a need for examination of the infectivity of this G. salaris form on salmon. 

Infectivity studies to reveal the potential of the G. salaris from Arctic charr to establish 

and reproduce on Atlantic salmon, Arctic charr and rainbow trout, are ongoing. 

Generally, the observation that stocks of Arctic charr are able to maintain infections of 

G. salaris in the absence of Atlantic salmon will certainly have implications for the 

Norwegian salmon management and surveillance programmes.  

Regarding Signaldalselva, it would be of interest to settle whether G. salaris can 

survive on Arctic charr for prolonged periods without contact with salmon. If the G. 

salaris infecting Arctic charr in Signaldalselva also proves to be able to survive and 

reproduce on Arctic charr in the absence of Atlantic salmon this will have implications 

for the management of Atlantic salmon stocks since it indicate that Arctic charr, in 

addition to salmon, must in general be removed or disinfected in order to eliminate G. 

salaris from an infected water course. In addition, there is certainly a need for more 

detailed studies on the influence of both host species on the parasite morphology by use 

of e.g. isogenic lines of G. salaris. The present results are excellent examples of the 

remarkable ability of G. salaris to switch to new host species over very short time 

intervals. 
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