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1 Introduction 

When colonizing a new habitat, organisms are often faced with novel and potentially 

fluctuating environmental conditions that exert strong selection pressures (Schluter 2000). 

The ability to adapt to these novel conditions may be critical for population persistence in 

these new environments (Chevin and Lande 2009). This is, however, easier said than done. 

Adaptive diversification and the resulting or foregoing population structuring can occur on 

different temporal and spatial scales, and can be aided or hindered by different evolutionary, 

ecological and anthropogenic factors. The aim of my thesis was therefore to investigate 

population structuring and divergence through time and space, and what influenced them. 

Populations – the unit of change 

The concept of a ‘population’ is central to the fields of ecology, evolutionary biology, and 

conservation biology, yet, there is no consensus regarding a quantitative definition of a 

‘population’ (Waples and Gaggiotti 2006). In population genetics, however, the word 

‘population’ refers to a group of organisms of the same species living within a sufficiently 

restricted geographical area so that any member can potentially mate with any other member 

of the opposite sex (Hartl and Clark 2007), and will be used in that way throughout this thesis. 

Evolution is a process of change in the genetic makeup of populations, with the most basic 

component being change in allele frequencies with time. Most populations are grouped into 

smaller subpopulations within which mating usually takes place. When there is such 

population structure, there is almost inevitably some genetic differentiation, i.e. differing 

allele frequencies, among the subpopulations. 

Several evolutionary forces like selection, genetic drift and gene flow affect genetic 

differentiation between populations. Genetic drift and selection can cause populations to 

diverge. Gene flow, on the other hand, tends to homogenize populations, although divergence 

between populations can occur despite ongoing gene flow if selection is strong enough (e.g. 

Hemmer-Hansen et al. 2007; Nadachowska and Babik 2009; Pavey et al. 2010; Richter-Boix 

et al. 2010). Conversely, if the level of gene flow exceeds the strength of selection, then local 

adaptation will be hindered by the continued introduction of alleles from other populations. 
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On the other hand, theoretical work suggests that gene flow might in some circumstances 

have a positive influence on adaptation (e.g. Holt and Gomulkiewicz 1997). It might mitigate 

negative effects of genetic drift in small populations by replenishing genetic variation and 

reducing the negative effects of inbreeding, and may thus facilitate adaptive evolution under 

certain circumstances (Alleaume-Benharira et al . 2006; Garant et al . 2007). The relative 

importance of positive and negative effects is, however, currently difficult to assess in nature 

(Lenormand 2002). To further complicate matters, genetic drift can aid divergence but might 

oppose adaptation due to its random nature. When either genetic drift or gene flow is able to 

overpower selection, local adaptation can be inhibited. Because of those complex interactions, 

population structuring can be very complex.  

Salmonids have it all! 

“Salmonids are diverse, intriguing, beautiful – and very well studied” (Hendry and Stearns 

2004). On top of that, they are ideally suited for the study of population structuring. Salmonid 

populations might be best described as ‘population networks’ or ‘metapopulations’ that 

occupy a variety of rearing and breeding habitats, and that are at least partially reproductively 

isolated owing to natal homing (for details on salmonids and their “features” see Hendry and 

Stearns (2004)). ‘Metapopulations’ are very dynamic systems, broadly defined as collections 

of local populations inhabiting discrete patches of suitable habitat, interacting through 

dispersal and persisting in a balance between stochastic extinctions and recolonizations (see 

Hanski and Gaggiotti 2004). Many salmonids are expected to exist as ‘metapopulations’, 

which is, however, often implied but rarely assessed in detail (but see Schtickzelle and Quinn 

2007; for a synthesis see Rieman and Dunham 2000). 

Salmonids are furthermore widely assumed to be adapted to their local environment which 

has recently been reviewed by Fraser et al . (2011). Therein, they point to the discrepancy 

between salmonids on the one hand being a paradigm for local adaptation but on the other 

hand the still poor knowledge of its extent, scale and molecular basis. Understanding local 

adaptation is, however, central to determining how quickly, and to what extent, particular 

salmonid populations will respond to e.g. habitat alterations, climate change and fisheries- or 

farming-induced evolution. Salmonids are economically and culturally important and have 
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therefore often been translocated and introduced into novel environments (Hendry and 

Stearns, 2004), resulting in a number of examples of rapid adaptation to novel environments 

(e.g. Haugen and Vøllestad 2001; Hendry 2001; Kinnison et al. 2001; Koskinen et al. 2002a).  

In my thesis, I used the European grayling (Thymallus thymallus; see Fig. 1), a spring 

spawning salmonid, to study the spatio-temporal population structuring in complex 

environments. Grayling are distributed across a large part of Europe (Northcote 1995) and 

show very low levels of intra-population genetic diversity (Koskinen et al. 2002b) compared 

to other salmonids, but exhibit high levels of genetic divergence also at small geographical 

scales (Koskinen et al. 2001; for a review see Gum et al. (2009)) despite common long-range 

movements (Heggenes et al. 2006). 

Figure 1: European grayling (Thymallus thymallus) 

As a spring spawning salmonid, grayling spawning and early offspring survival are highly 

dependent on environmental conditions in spring, especially with respect to snow melt. In our 

main study system, Lake Lesjaskogsvatnet (Fig. 2 detail), variable topography along with 

large variability in the amount of accumulated snow leads to substantial variation in water 

flow and temperature among the different tributaries. These differences among tributaries lead 

to variation in both the spawning time of grayling, which may differ by three to four weeks, 

and the temperature experienced by developing offspring (Gregersen et al. 2008; Barson et al. 

2009; Kavanagh et al. 2010), with strong evidence for local variation and adaptation in 

various life history traits (Gregersen et al. 2008; Kavanagh et al. 2010). This is especially 

interesting given that this is a very young grayling population system in its early phase of 

population divergence. The lake was colonized very recently by European grayling, about 20-

25 grayling generations ago (Haugen and Vøllestad 2001). Subsequent dam construction 
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suppressed further migration into the lake therefore isolating it from the downstream founding 

river population. Recently, Pavey et al. (2010) studied a case of very recent ecological 

divergence despite gene flow in sockeye salmon that started around 100 generations before 

present, and reported that this is the most recent ecological divergence ever reported in a fish 

species following natural colonization. Here, we study a system that seems to have diverged 

even earlier following a semi-natural colonization, i.e. 20-25 generations ago, driven by 

differences in temperature between tributaries. Overall, very low neutral genetic diversity has 

been observed in the system (Koskinen et al. 2002), which is probably a result of serial 

bottlenecks caused by the founding of the original lake population as well as prior upstream 

translocations within the ancestral river system (see Barson et al. (2009) for details). 

Lake Lesjaskogsvatnet is also the 

starting point of the River 

Gudbrandsdalslågen which termi-

nates in Lake Mjøsa (Fig. 2). It is 

one of the largest rivers in Norway 

with 200 km of main river stem. 

Our ‘Lågen’ study area lies in a part 

of the river that comprises over 100 

km without any anthropogenic 

migration barrier. 

Figure 2: Map of the ‘Lågen river system’ 
with indicated migration barriers. Streams 
in Lesjaskogs-vatnet are labeled in blue for 
‘large-and-cold’ and red for ‘small-and-
warm’. 

The discovery of microsatellites, and other hypervariable genetic markers, has enabled the 

study of genetic differentiation and population subdivision at small scales, like this one, 

allowing for in-depth investigations of the different evolutionary forces and their relative 
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contributions (Koizumi et al. 2006; Räsänen and Hendry 2008; Gaggiotti et al. 2009) as well 

as their effects on contemporary adaptation (Garant et al. 2007). 

Microsatellites 

The PCR (=polymerase chain reaction) revolutionized not only molecular biology, but also 

the fields of organismal and population biology, by stimulating many powerful new 

approaches to genetic marker acquisition. The idea is surprisingly simple: amplify a single or 

a few copies of a piece of DNA in order to generate thousands to millions of copies of a 

particular target DNA sequence through cycles of repeated heating and cooling (see Fig. 3). 

This method enabled research on many species including those that are endangered because it 

allows for non-lethal sampling of very small quantities of e.g. tissue, blood, feathers, and 

faeces, for DNA extraction and subsequent PCR amplification of e.g. microsatellite repeats. 

Figure 3: PCR. A sketch of the principle (left) and method (right). 

In the late 1980s Microsatellites were discovered and soon found to be located throughout 

nuclear and chloroplast genomes and in the mitochondrial genomes of some species. 

Microsatellites are stretches of DNA that consist of short tandem repeats (1-6 bp). They 

mutate very rapid with mutation rates of around 10-4 events per locus per replication which 

often leads to multiple alleles at each locus. This high level of polymorphism makes them 

suitable for inferring relatively recent population genetic events and determining parentage. 

During replication slipped-strand mispairing might occur (the daughter strand temporarily 

becomes dissociated from the template strand and re-anneals to the “wrong” repeat) which 

results in an either longer or shorter strand because it contains a different number of repeats. 
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Another important feature of Microsatellites is based on the fact that they are codominant 

markers; which allows the identification all of the alleles that are present at a particular locus. 

This ability to distinguish between homozygotes (one same allele) and heterozygotes (two 

different alleles) means that we can calculate easily the allele frequencies for pooled samples 

(such as populations). Numerous analytical methods in population genetics are based at least 

partially on allele frequencies. (Avise 2004; Graur and Li 1999)  

For all those reasons, microsatellites allow us to investigate the relative roles of the different 

evolutionary forces on population structuring, to understand the influence of the environment 

on populations especially with respect to changes over relatively short time (anthropogenic or 

climatic) and the way populations can adapt to that – given that they are developed for the 

species in question. 

Although microsatellites have been earlier described for European grayling (e.g. Diggs and 

Ardren 2008; Koskinen and Primmer 1999; Sušnik et al. 1999; for a review of markers and 

studies see Gum et al. 2009), there is a growing realization that application of higher numbers 

of molecular markers can increase the accuracy of population genetic inferences (e.g. 

Koskinen et al. 2004). In addition, in cases where populations have low levels of genetic 

variation owing to e.g. habitat fragmentation or recent founder bottlenecks (see Barson et al. 

2009; Koskinen et al. 2002) not all available markers may be polymorphic. We therefore 

developed new polymorphic Thymallus thymallus microsatellites and reported their cross-

species amplification success in the closely related Arctic grayling (Thymallus arcticus) and 

three other salmonid species Atlantic salmon (Salmo salar), Arctic charr (Salvelinus alpinus) 

and brown trout (Salmo trutta; PAPER I). Those markers were then applied in an optimized 

panel to all further studies presented in this thesis. 

Understanding early population structuring 

As discussed earlier, genetic differentiation between populations and therefore population 

structure is affected by several evolutionary forces like selection, genetic drift and gene flow 

whose interactions are not always clear or easily to decipher. One way of investigating the 

importance of the different processes influencing population divergence and adaptation is to 

study the early phases when a species invades a set of new environments. By doing this, it 
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may be possible to better understand the relative roles of genetic drift and selection together 

with the opposing effect of gene flow for divergence. One important question is whether 

population structuring is required before adaptive divergence can proceed or whether adaptive 

divergence can occur simultaneously with or even precede the development of isolation (see 

Dieckmann et al. 2004). The Lesjaskogsvatnet grayling system is a very young system in its 

early phase of population divergence with only about 20-25 generations (Haugen and 

Vøllestad 2001) since its colonization. On top of that, the combination of environmentally 

dependent adaptive differences and ongoing gene flow makes this system well-suited for 

investigating whether a scenario of 'isolation by adaptation' or 'adaptation by isolation' (see 

Dieckmann et al. 2004) can better explain the development of local adaptation in the very 

early stages of adaptive divergence. To investigate this question we analyzed neutral genetic 

structure and its stability over time, using microsatellite markers and samples from almost a 

decade of sampling. Furthermore, we used the analysis of temporal stability to assess the 

strength of temporal stochasticity in comparison to fluctuations in gene flow using a 

decomposed pairwise regression (DPR) analysis (Koizumi et al. 2006) in order to investigate 

whether the system is more influenced by drift or gene flow. (PAPER II) 

What influences population structure and divergence? 

Population structure can be aided or hindered by a variety of factors. Among those are 

environmental conditions experienced at different life history stages. Many organisms 

reproduce seasonally and must respond to a variety of cues indicating proper conditions for 

reproduction. Shifts in phenology, i.e. changes in the timing of events, therefore, seem to be 

common results of changing environmental conditions (Bradshaw and Holzapfel 2006, 2008). 

Environmental variability may then lead to an isolation-by-time (IBT) structure, where timing 

of environmental cues is the main driver of divergence (Hendry and Day 2005). Isolation-by-

time could lead to ‘adaptation-by-time’ when differences in reproductive timing that lead to 

reduced gene flow coincide with differences in selective environments (Hendry and Day 

2005). If differentiation is maintained primarily by timing of important life history events, the 

opportunity for gene flow and thus the strength of the IBT signal may vary as environmental 

conditions vary among years. Temperature, for example, is an important reproductive cue in 

many organisms. For salmonids that spawn in rivers and streams with environmental 
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conditions that differ strongly the response to these cues must differ among populations. 

Together with the well-documented propensity of salmonids to be highly philopatric (Hendry 

and Stearns 2004), this may lead to strong population structuring and also local adaptation 

(see Fraser et al. 2011). However, gene flow may still be common among populations, and 

differences in environmental conditions among years may potentially facilitate or constrain 

gene flow. In the Lesjaskogsvatnet lake system, previous studies showed a weak but 

significant signal of isolation-by-distance (IBD; Barson et al. 2009; PAPER II). However, the 

strength of this signal seemed to be subject to temporal fluctuations (PAPER II), possibly 

related to environmental variation among years that could, through its influence on spawning 

time, affect the level of among-stream migration. We therefore investigated in detail how 

among-year variation in local environmental conditions may influence reproductive isolation 

and impact on the isolation-by-distance signal, and show that climate interacts with 

geography to either facilitate or constrain gene flow (PAPER III). We used a set of 

environmental data to estimate spawning times for the various grayling populations during 

different years where observations were lacking, and the differences between them. Those 

spawning time differences together with geographic distances were then used to test for an 

influence on genetic distances (PAPER III). 

Global climate change is predicted to result in rapid environmental shifts (Meehl et al. 2007). 

Adaptive responses therefore need to be rapid to avoid maladaptation leading to population 

extinction (McLaughlin et al. 2002; Chevin et al. 2010; Chevin and Lande 2010). The relative 

contribution of genetic, plastic and ecological change to responses to climate change is still 

under debate (Gienapp et al. 2008; Chevin and Lande 2010). The picture is complicated as 

phenotypic plasticity can also evolve (Via and Lande 1985; Schlichting and Pigliucci 1998), 

and it is possible that evolving plasticity can accelerate evolutionary responses making this 

interaction between plastic and genetic change non-trivial (Lande 2009). In the 

Lesjskogsvatnet grayling system, the delayed warming of the ‘cold’ streams resulted not only 

in a delay in the spawning date of up to four weeks but also in a cumulative lower 

developmental temperature experience for ‘cold’ deme offspring (Gregersen et al. 2008; 

Barson et al. 2009; Kavanagh et al. 2010). This difference in growth period and temperature 

experience during development has lead to differences in growth rate and muscle 
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development despite the short time since the colonization (Kavanagh et al. 2010). We 

therefore investigated the potential that evolution of plasticity could have facilitated this rapid 

adaptation to an environmental perturbation following the colonization of a new habitat 

(PAPER IV). A common garden experiment was conducted to test for adaptive differentiation 

among cold and warm spawning demes. By rearing grayling individually at four 

developmental temperatures, we tested for the signature of adaptation by evolution of 

phenotypic plasticity in early life-history traits among grayling occupying divergent habitat 

types within Lesjaskogsvatnet. Additionally, we compared QST, a standardized measure of 

genetic differentiation of a quantitative trait among populations (Spitze 1993) to the expected 

distribution of QST for neutral traits and FST (Whitlock and Guillaume 2009), to assess 

whether the trait changes we recorded could be explained purely by stochasticity in these 

small semi-isolated populations. The average QST of a neutral quantitative trait is expected to 

be equal to the mean FST of neutral loci (Spitze 1993). If QST is lower than FST this is 

interpreted as evidence of stabilizing selection and if QST is higher of divergent selection. 

Anthropogenic barriers to migration like dams have a huge impact on population structure as 

they fragment or even lead to the loss of previously continuous habitats, therefore leading to 

one of the greatest threats to biodiversity (Hanski and Gaggiotti 2004). In rivers, habitat 

fragmentation is usually caused by construction of dams for hydropower production or 

irrigation. Permanent barriers like dams not only directly degrade or alter aquatic habitats and 

alter nutrient flows and dynamics, but they also prevent migrations between vital habitats 

(Jungwirth 1998; Lucas and Baras 2001). Barriers to migration compromise the 

metapopulation dynamics of habitat specialists by impeding re-colonization, shifting 

(Williams et al. 2008) or even preventing life history migrations (e.g. access to spawning or 

nursery grounds, e.g. Dauble et al. 2003) and reducing gene flow (e.g. Neraas and Spruell 

2001; Meldgaard et al. 2003). The background for this study (PAPER V) was the 

hydroelectric development plans in the River Gudbrandsdalslågen (see Fig. 2), and the need 

for a scientific assessment of consequences for migratory salmonids, i.e. brown trout (Salmo

trutta) and European grayling (Thymallus thymallus). The respective part of the river 

comprises over 100 km without any anthropogenic migration barrier, an excellent opportunity 

for a ‘baseline’ study in an un-fragmented river section as a ‘snapshot before damming’. The 
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new hydropower stations intent to use two existing potential migration barriers, i.e. a dam and 

natural waterfalls, which are just upstream that area. We used an integrative approach 

combining population genetics with telemetry to (i) assess population connectivity 

(movement/level of gene flow), (ii) identify vital habitats (for spawning, feeding and 

wintering) and (iii) predict genetic consequences of hydropower development by assessing 

the pre-regulation genetic structure of trout and grayling populations (PAPER V). 
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2 Material and Methods 

Isolation of microsatellites 

European grayling DNA library enriched for microsatellite sequences was obtained from a 

non-commercial microsatellite enrichment service which utilises the hybridisation capture 

method outlined in Glenn and Schable (2005). Sequences containing microsatellites were 

screened and selected as described in Leder et al. (2008). Amplification success and levels of 

polymorphism were initially assessed using an M13-tailing procedure (Oetting et al. 1995) to 

screen eight individuals from two different populations (details can be found in PAPER I). 

The level of polymorphism was assessed by genotyping 24 individuals from a population in 

southeastern Finland (Puruvesi) and 22 from our study population Lesjaskogsvatnet, shown to 

have very low microsatellite diversity (Koskinen et al. 2002). The final optimization was 

conducted with end-labelled primers.  

Sampling and genotyping 

In Lake Lesjaskogsvatnet grayling were caught from 15 spawning populations during 

spawning runs May/June between 2001 and 2009 (see Fig. 2; PAPER II, III and V) in total 

1485 individuals, some streams were sampled only once and others for up to seven years. At 

capture, all fish were anesthetized, measured (fork length), sexed, and fin clips were excised 

from the adipose fin and stored in 96% ethanol.  

In the mid-section of River Gudbrandsdalslågen system, 80 km in the main river stem and 30 

km in the main tributary River Otta, grayling and trout were sampled in 2008 and 2009 at five 

locations (see Fig. 3; paper IV). 172 trout and 199 grayling were captured above and below 

the Eidefoss dam and the Rosten rapids and waterfalls as well as further downstream in the 

main river stem. All fish were captured by rod fishing during early spring (end of March – 

April), measured (fork length, mm) and a small tissue sample from one of the pelvic fins was 

taken for later genotyping. 194 of them were also tagged with radio tags (see below). Further 

grayling samples from the Gudbrandsdalslågen river system below Hunderfossen, below 

Harpefoss and Lesjaskogsvatnet were obtained and used for comparison. 
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DNA was extracted using either the DNeasy® Blood & Tissue Kit (Qiagen) or the E.Z.N.A. 

Tissue DNA Kit (Omega). All samples were genotyped for a set of microsatellite loci: 19 

(paper II and III), 18 (paper IV) and 12 (paper V) comprising some previously used ones, plus 

some of the newly developed microsatellite markers (paper I). For details, please see the 

respective papers. Briefly, multiplex PCRs (using 1x Qiagen Multiplex PCR Master Mix) 

with annealing temperatures between 58 and 60°C, were run and subsequently combined for 

electrophoresis on an ABI3730xl Genetic Analyzer (also ABI3130xl in paper I and V). Trout 

samples were genotyped for one study, and details can be found in PAPER V. All genotypes 

were scored using GeneMapper 4.0 software (ABI) and genotype data were converted for 

further analysis using GenAlEx 6.2 (Peakall and Smouse 2006). 

Population genetics analyses 

For all genotype datasets, basic population genetics statistics were conducted (details can be 

found in the papers). In short: Descriptive statistics of microsatellite diversity, i.e. unbiased 

expected and observed heterozygosity, allele frequencies and mean number of alleles per 

locus were calculated in GenAlEx 6.2 (Peakall and Smouse 2006). Allelic richness was 

estimated in FSTAT 2.9.3.2 (Goudet 2001). GENEPOP version 4.0.7 (Rousset 2007) was 

used to test for significant deviations from Hardy-Weinberg and linkage equilibrium. We 

corrected for multiple tests by applying sequential Bonferroni corrections (Rice 1989), and 

also the Bernoulli method (Moran 2003). We tested for population differentiation by 

performing exact G tests, implemented in GENEPOP, to estimate the p-values for genic 

differentiation between each population pair at every locus and over all loci. In order to assess 

the statistical power when testing for genetic differentiation, we conducted several 

simulations using the computer program POWSIM (Ryman and Palm 2006). To estimate the 

degree of differentiation, pairwise FST values and global FST were calculated (Weir and 

Cockerham 1984; GENEPOP, FSTAT). 

Subsequently, several methods and programs have been used to further investigate the 

population structure in the two study systems. For details please see the PAPERS II and V. 
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Spatial population structure 

Spatial population structure was investigated mainly in two ways: (i) through genetic cluster 

analysis using Markov chain Monte Carlo (MCMC) simulations (paper IV) and (ii) in a linear 

fashion by assessing isolation-by-distance aiming furthermore to understand the relative 

contributions of genetic drift and gene flow during the early phase of adaptive differentiation 

(paper II).   

The program STRUCTURE 2.3 (Pritchard et al. 2000) was used to infer spatial population 

structuring among the five sampling locations in the Lågen study system for grayling and 

trout (PAPER IV). It uses a Markov chain Monte Carlo (MCMC) simulation to assign 

individuals to genetic clusters (K) on the basis of their multilocus genotypes. The analysis 

detects clusters under the assumption of Hardy-Weinberg and linkage equilibrium within each 

cluster, including new models that make explicit use of sampling location information which 

can potentially help to detect weak structuring (see Hubisz et al. 2009). (PAPER IV) 

Under migration-drift equilibrium populations are expected to exhibit a significant correlation 

between their genetic and geographic distance, termed ‘isolation by distance’ (IBD; Wright 

1943). IBD was tested by correlating genetic distances (FST/(1-FST); Rousset 1997) with 

geographic distances (km), measured as the shortest water distance between tributary mouths. 

However, by using standard regression analysis on all pairwise plots information on local 

specialties is lost, i.e. sub-population specific characters which are in turn responsible for the 

relative strengths of genetic drift and gene flow. Since we expected differences between the 

different Lesjaskogsvatnet spawning sub-populations due to different stream characteristics, 

we applied the decomposed pairwise regression (DPR) analysis introduced by Koizumi et al. 

(2006) in PAPER II. Briefly, after regressing genetic against geographic distance for all 

pairwise comparisons, putative outlier populations were detected (and removed) based on 

systematic bias of the regression residuals. The true outlier populations were then identified 

by choosing the best model based on the corrected Akaike Information Criteria (AICc). For 

each of the true outlier populations, pairwise genetic and geographic distances were regressed 

separately against all non-outlier populations, and each non-outlier population was further 

regressed against all other non-outlying populations to investigate the relative patterns of gene 

flow and drift (Koizumi et al. 2006). (PAPER II) 
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Spatio-temporal population structure 

The temporal stability of the Lesjaskogsvatnet grayling population structure was tested by (i) 

assessing how much of the total genetic variation is explained by either spatial or temporal 

variation through performing a hierarchical analysis of molecular variance (AMOVA) in 

Arlequin 3.11 (Excoffier et al. 2005), and (ii) assessing the signal of ‘isolation by distance’ 

through time by partitioning the dataset into years and performing Mantel tests, as described 

previously (PAPER III).  

Detection of migrants 

We used two different methods to evaluate dispersal between trout and grayling populations 

in the Lågen study system. (i) We used GeneClass2 (Paetkau et al. 2004; Piry et al. 2004) 

with the following settings: likelihood computation L_home / L_max (Paetkau et al. 2004), 

Rannala and Mountain’s (1997) Bayesian criterion for likelihood estimation and Paetkau et 

al.’s (2004) re-sampling method. (ii) The assignment test implemented in STRUCTURE 2.3 

(Pritchard et al. 2000) was used to detect putative migrants along with any individuals with 

recent immigrant ancestry. The assignment test implemented in STRUCTURE is a fully 

Bayesian method that uses geographical sampling location as prior population information, 

and assumes with a user-specified prior probability (v) that an individual is an immigrant 

(Pritchard et al. 2000).  

Effective population sizes and bottlenecks 

Short-term effective population sizes (Ne) for the different spawning populations were 

estimated based on (i) linkage disequilibrium as a one-time estimation (LDNe 1.31; Waples 

and Do 2008; PAPER V) and (ii) short-term allelic frequency changes between sampling 

periods using a method that allows for migration (MNe 1.0; Wang and Whitlock 2003; see 

Fraser et al. (2007) for a detailed method comparison; PAPER II).  

We used the program BOTTLENECK 1.2.02 (Cornuet and Luikart 1996; Piry et al. 1999) to 

detect population bottlenecks. Since, in a recently bottlenecked population, the level of 

heterozygosity expected under Hardy–Weinberg equilibrium (observed HE) exceeds the level 
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expected in a population at mutation-drift equilibrium (HEQ; Piry et al. 1999), this signature is 

detected by the program.  

Telemetry 

A total of 127 brown trout and 67 European grayling were radio-tagged at different sections 

of River Gudbrandsdalslågen and River Otta, and positioned during � 8 weeks (PAPER V). 

The fish were positioned once a week from March/April to December in 2008 and 2009. 

Home ranges for each radio-tagged fish positioned more than 7 weeks are presented as the 

total length of the river section employed, including the extreme points of the positions. 

Median values across all tagged fish of each location were then used to describe the 

distribution of individual home ranges.       

Common garden experiments 

Mature grayling were captured on their spawning run into four streams (two ‘cold’, two 

‘warm’) during June 2007 and 2008, anesthetized, and their eggs and sperm stripped and a fin 

clip was taken for genetic analysis. Eggs were fertilized at ~8°C laboratories. Grayling were 

then reared individually in a common garden at four developmental temperatures. Generally, 

each male was crossed with two to three females. In 2007 all females were unique but in 2008 

maternal in addition to paternal half-sib families were produced. Following fertilisation, eggs 

were placed into individual wells of a 48-well culture plate and eggs from each family were 

split between three temperatures for incubation (5.2± 0.2, 6.3± 0.2 and 10.5±0.3°C) in 2007 

and reared at 8.2±0.3°C in 2008. Measurements were performed using photographs and 

subsequent image analysis. (PAPER IV) 

We tested for elevated plasticity in ‘cold’ deme offspring relative to the ‘warm’ demes, and 

for a correlation between the slope of the reaction norm and the elevation in the cold thermal 

environment. Early and late embryonic survival rates were used to test for shifts in the lower 

thermal tolerance limit, i.e. in the direction of the local adaptive shift, previous work 

suggested no difference in the upper thermal limit (Kavanagh et al. 2010). Analysis of the 

lower limit allowed us to test if the thermal window has evolved or just the plasticity within 

this window. For each trait we used an animal model, a form of mixed effects model (Kruuk 
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2004; Wilson et al. 2009), to estimate the additive genetic variance, heritability and 

evolvability (Houle 1992). By decomposing the variance components the animal model 

allowed us to check for conformity to the model assumption of additive genetic control and to 

examine the potential for genetic constraints.  

In order to assess whether the trait changes that we observed could be explained by random 

genetic drift in the small semi isolated spawning populations, we estimated QST over the 

population set. QST is the quantitative genetic analogue of FST. Nineteen microsatellite loci 

were genotyped for 42-44 mature individuals caught in the four streams in 2008 (see PAPER 

II for loci and methods). We tested for neutrality using LOSITAN (Beaumont and Nichols 

1996; Antao et al. 2008), and one locus showing signals of balancing selection was removed 

from the analysis as a precaution. Weir and Cockerham’s (1984) FST and its 95% confidence 

intervals were calculated in FSTAT v2.9.3.2 (Goudet 1995, 2001). Since bias in the 

comparison between QST and FST can arise from sampling error and within population 

stochasticity (Whitlock and Guillaume 2009), we minimized this effect by comparing the 

estimated QST and its HPD intervals to both FST and the predicted neutral QST following the 

method proposed by Whitlock and Guillaume (2009). We estimated the neutral distribution of 

the between population variance. A distribution of QST was estimated using the results from 

the simulation of between population variance and the point estimate of the within population 

variance.  To take account of sampling error in the estimation of FST, the neutral expectation 

of FST - QST was calculated. Variance components for each locus were calculated in NEMO 

(Guillaume and Rougemont 2006) and these were used to create bootstrap estimates of FST as 

described in (Whitock and Guillaume 2009). Each iteration of neutral QST was subtracted 

from a bootstrap estimation of FST to create the neutral expectation for FST - QST. 

Modeling 

We utilized existing microsatellite data from 12 spawning populations in Lesjaskogsvatnet 

(Fig. 1) that were collected during spawning runs in May/June 2001-2008, and analyzed 

previously in PAPER II). In addition, we have, for PAPER III, added samples collected in 

2009 when six of the spawning populations were re-sampled. Based on the criteria stated in 

PAPER III, the final genetics dataset included data from the years 2001 and 2004-2009 and a 

total of 1261 individuals collected from the 10 spawning populations, in total 33 population-
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year samples, with sample sizes between 19 and 69 individuals. Pairwise FST values were 

calculated between local populations within the same year (Weir and Cockerham 1984) using 

GENEPOP version 4.0.7 (Rousset 2007). FST is a fixation index (Wright 1951), the portion of 

the total genetic variance that is attributable to differences between populations, and is a 

commonly used measure of genetic distance which when regressed against geographic 

distance provides a measure of isolation-by-distance (IBD). When using measures of ‘time’ 

one should be able to apply the same logic to test for isolation-by-time (IBT; see Hendry and 

Day 2005). All estimated FST values were subsequently transformed as suggested by Rousset 

(1997) so that the response variable used in all analyses below is FST/(1-FST), annotated as 

FST from now on for simplicity. 

A set of environmental data was used to estimate the predicted spawning time for the various 

grayling populations during the different years. It was necessary to estimate some spawning 

dates as we did not have direct observations and measurements for all years and populations. 

We used a combination of local environmental data, i.e. geography, stream characteristics, 

water temperature and spawning observations, and regional and global weather data to make 

these estimates. Our modeling approach went from meteorological data to stream water 

temperatures to spawning time to population genetic structure.  

In short: We reconstructed stream water temperatures from metrological data (T). We 

assumed the actual daily mean stream temperature (W) of each stream i would be a function 

of the month (m) where measures where taken, the mean air temperature the current day, and 

the average temperature over the previous week. A linear model was fitted to the water 

temperature data, allowing interactions between stream identity and the other covariates. The 

onset of spawning was predicted based on the estimated stream temperatures using the 

approach of Kavanagh et al. (2010). Briefly, a generalized additive model (GAM) was fitted 

to data on spawning data and stream water temperature. Daily values of either 0 or 1 were 

assigned to each stream depending on whether spawners were observed (value=1) or not 

(value=0). As temperature predictor, we used accumulated temperature sums over 4 degrees C 

(W4), starting on May 20. The probability of spawning (Pr(S)) was modeled using the binary 

arrays of spawning/no spawning as response and various predictors including temperature 

sum, day number of year (t), winter (December-March) NAO index and stream type (G, 
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classified as cold or warm). From 1996 to 2009 the onset of spawning (S) was recorded in 52 

occasions for certain combinations of streams (i, j) and years (y). For the rest of the streams 

and years the onset of spawning was predicted from the model. These spawning observations 

(and predictions) were used to calculate pairwise differences in the onset of spawning 

between streams within each year. These comparisons lead to 64 points to be used on further 

FST modeling. Therefore, the FST values were modeled as a function of the geographic 

distances (WD or SD) and the spawning distance using linear models allowing for plausible 

interactions between candidate covariates. 
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3 Results and Discussion 

Markers for population structure 

We found 19 new polymorphic Thymallus thymallus microsatellites. We reported genetic 

diversity indices and equilibrium test results based on two populations, as well as their cross-

species amplification success in four other salmonids (for details see Table 1 and 2 in PAPER 

I). Compared to earlier reported T. thymallus markers, these newly developed microsatellites 

were highly polymorphic with the mean number of alleles per locus for both populations 

together totaling 9.64; 8.32 (Puruvesi) and 4.5 (Lesjakogsvatnet), the latter one being notably 

higher than the numbers previously reported in the same lake system (1.8 in Koskinen et al. 

(2002) and 2.6 in Barson et al. (2009)) which was the motivation for the isolation of those 

new markers. Furthermore, one third of the loci showed heterozygosities >0.7 making them 

not only useful markers for parentage studies but also a valuable resource for conservation 

genetic studies of European grayling. Most grayling populations appear to show signals of 

historical bottlenecks (Swatdipong et al. 2010) which means, having a wide range of markers 

to choose from is extremely useful. 

Early population structuring 

We here used microsatellite data from almost a decade of sampling to investigate early 

population structuring and its temporal stability (PAPER II), as well as the roles of gene flow 

(PAPER II) and plasticity (PAPER IV) in a scenario of contemporary adaptation to divergent 

thermal habitats in the Lesjaskogsvatnet grayling system. 

Gene flow and plasticity in adaptive divergence 

Both plasticity and gene flow can constrain or promote adaptive divergence (Crispo 2008). 

Plasticity can allow populations to reach new optima without genetic change (Price et al. 

2003; Ghalambor et al. 2007), whereas high gene flow allows recombination and can result in 

genetic swamping (Lenormand 2002). However, gene flow also contributes genetic diversity 

to small isolated populations, therefore increasing the variation that natural selection can act 

upon and increasing the strength of selection (Garant et al. 2007). Gene flow can also rescue 
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small populations from extinction during the early stages post colonization by buffering 

against negative population growth until the population is sufficiently well adapted 

(Lenormand 2002).  

In Lesjaskogsvatnet, we found an overall weak but significant correlation between genetic 

and geographic distance suggesting a regional equilibrium allowing for divergence despite 

ongoing gene flow (PAPER II). This trend however, does not seem to be associated with the 

temperature-dependent divergence previously observed in the system (see Kavanagh et al. 

2010). Thus, is seems that habitat specific adaptation in this system has preceded the 

development of consistent population sub-structuring and in the face of high levels of gene 

flow from divergent environments. More detailed assessment of specific local populations, 

through decomposed pairwise regression (DPR) analysis (PAPER II), indicated that they may 

in fact be affected differently by gene flow and drift (see Fig. 4 – higher contributions from 

drift (B) to gene flow (D)) and possibly also extinction-recolonization dynamics, but for the 

majority of populations and years gene flow appears to be dominant to drift; with variation 

among years (see below: spatio-temporal population structure). 

Figure 4: Decomposed pairwise regression (DPR) analyses. A: Average residuals and 95% CIs from the IBD 
regression. B-D: DPR of (FST/(1-FST) vs. km for each population-year combinations; each of the two ‘true’ 
outlier populations was regressed with 33 non-outlier populations (B; drift), each of the 33 non-outlier 
populations was regressed with the other 32 populations showing statistically significant (C; IBD) and non-
significant (D; gene flow) regressions.
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Several factors may favor divergence despite gene flow in the Lesjaskogsvatnet system. 

Firstly, given the short period since colonization and the estimated evolvability for the 

diverging traits (PAPER IV), it is likely that selection is acting on standing genetic variation 

in the reaction norm, as opposed to requiring the invasion of new mutations. In Hendry et al’s 

(2001) model of divergence with gene flow in quantitative traits, adaptation is predicted even 

with high levels of gene flow if the heritability of the trait is moderate to high and can be 

achieved over short time periods (50 generations to reach equilibrium). Secondly, the plastic 

responses in the timing traits measured appear to be in the same direction as the adaptive 

response (PAPER IV) leading to weaker directional selection against immigrants than if there 

were counter-gradient selection (Crispo 2008). Although we did not estimate fitness, the 

plastic response of the warm population is in the same direction as the elevation of plasticity 

in the cold adapted population and so we assume this represents adaptive plasticity (PAPER 

IV). Additionally, the parallelism in responses between offspring from streams with similar 

spring temperatures suggests that the reaction norms are adaptive. Nevertheless direct tests of 

fitness of the ecotypic variation we have recorded are required to confirm the adaptive nature 

of these changes. Cogradient variation is expected to reduce the cost of dispersal and thus 

allow higher gene flow among selective environments (Crispo 2008). De Jong (2005) 

modeled adaptation of phenotypic plasticity and found that ecotypes could develop with 

moderate migration, as is suggested by estimates of neutral genetic structuring in 

Lesjaskogsvatnet (Barson et al. 2009; PAPER II). 

Spatio-temporal population structure 

Since the evolution of specializations can be very vulnerable to demographic perturbations, it 

is important to study the early phase where a system might not be in equilibrium yet to 

understand the development of the type of local adaptation for which salmonids are famous 

(see e.g. Ronce and Kirkpatrick 2001). One of the main questions we aimed to address in 

PAPER II was therefore whether or not this system is in equilibrium, which would assume a 

stable population structure. We tested for both migration-drift equilibrium, i.e. ‘isolation by 

distance’, and mutation-drift equilibrium, as evidenced by an absence of bottleneck 

signatures. None of the performed tests to detect these equilibria convincingly revealed a 

stable system. Signals of population bottlenecks were observed approximately 2/3 of the 35 
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population-year samples and isolation-by-distance was observable in only three of six years. 

A possible explanation for such a temporal pattern is that IBD may be unstable during the 

initial phase of its establishment (for details see Castric and Bernatchez 2003). Here, a 

combination of sampling issues, fluctuating environmental conditions and possibly fluctuating 

population dynamics could result in the observed pattern in this very young and thus yet 

unstable system. In our study, a lack of temporal stability was, furthermore, suggested by (i) 

the non-grouping of temporal samples in a principal component analysis, and (ii) the analysis 

of molecular variance (AMOVA) that showed that a significant amount of the overall 

variance was accounted for by temporal variance in addition to the underlying spatial 

variation. Thus, both temporal and spatial genetic variation is evident in this initial phase 

following colonization of Lesjaskogsvatnet. 

The weak overall signal of isolation-by-distance seemed to be subject to temporal fluctuation, 

possibly related to environmental variation among years that through its influence on 

spawning time could affect the level of among-stream migration. There was, however, no 

correlation in any of the years between genetic distances, i.e. FST/(1- FST) and spawning time 

distances measured as the difference in days between the spawning onsets. To further 

investigate this relationship between environmental factors, geographic distance, spawning 

time and genetic structure we conducted a further study (see below, PAPER III). 

Environmental fluctuations drive phenology and population structure 

Spawning tributary specific characteristics like exposition and width, determine how fast the 

stream will warm up in spring and will be able to keep a steady temperature that is suitable for 

spawning. Since temperature is the cue for the onset of spawning, the environmental 

conditions therefore determine the reproductive timing. This determines hereupon the amount 

of gene flow between the different spawning populations.  

The opportunity for gene flow among subdivided populations is clearly dependent on the 

geographic configuration of the landscape. But, as we show in PAPER III, gene flow is, 

moreover, also facilitated or constrained by local-scale temporal variation in environmental 

conditions. Our results clearly show a shift in the relative contribution of geography 

(geographic distance) and ecology (spawning time difference) that is driven by environmental 
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variation. In the case of large differences between spawning times, ecology seems to constrain 

gene flow, therefore maintaining population structure based on spawning time difference 

(isolation-by-time; see Fig. 5, 18 days). In a scenario of simultaneous spawning, however, 

geographic distance leads to an isolation-by-distance pattern (see Fig. 5, 0 days). This shows 

that within very small geographic scales the dominant isolating mechanism can vary 

depending on the climatic conditions. Thus, the strength of the reproductive isolation among 

populations depends on the local environmental conditions. Weakened strength of this 

isolation may reduce the opportunity for development of local adaptation, or lead to the 

breakdown of established adaptations through swamping of local genepools by migrants. 

Figure 5. Effects plot from the linear regression model showing the relationship between FST and water distance 
for three different values of spawning distance: 0, 6, and 18 days of separation. Note that predictors were 
centred. 

Disentangling isolating mechanisms is vital when studying population divergence. Recent 

studies have shown that geography and ecology together contribute to divergence (Dionne et 

al. 2008; Schwartz et al. 2010; Gomez-Uchida et al. 2011). Their relative contributions, 
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however, seem to vary with spatial scale, with an increasing role of ecology at smaller scales 

(Dionne et al. 2008; Gomez-Uchida et al. 2011). We could here show those relative 

contributions of ecological, here spawning time, differences, and geographical distance, 

which seem to be dependent on environmental conditions (PAPER III), within a very small 

spatial scale where spawning streams are well within grayling cruising distance. The variation 

in strength of the spawning time isolation among years, and the interaction between this 

strength and the strength of the isolation-by-distance signal, could explain why we previously 

found temporally fluctuating signals of isolation-by-distance (IBD; PAPER II). Variation in 

local climate here leads to among population variation in annual timing of 

reproduction/spawning. If some of this variation has a genetic basis, then the presence of 

different genotypes, with associated particular behaviors and life history traits, may increase 

the biocomplexity of the system. 

These climate induced fluctuations in gene flow are likely to coincide with fluctuations in 

selection intensity against immigrants. Environmental conditions that determine spawning 

time, and therefore spawning time differences, are also linked to the thermal conditions 

experienced by developing offspring. These different thermal conditions, experienced by the 

different populations, are thought to result in adaptive divergence among populations 

(Kavanagh et al. 2010; Barson et al., manuscript). Thus, environmental coupling of both gene 

flow and divergent selection could be expected to reduce the efficiency of divergent selection 

among tributaries in this system. Years of increased gene flow would also be years of 

decreased selection against immigrants. These fluctuations in the strength of both selection 

and isolation will have consequences for the persistence of locally adapted phenotypes. 

The reproductive isolation among the various grayling populations is then maintained by a 

combination of geography and innate tendencies to search for the natal stream (homing; see 

Hendry & Stearns 2004), and differential responses to environmental cues. This differential 

response, whether plastic or adaptive, leads to grayling from different spawning streams 

experiencing different environmental conditions during early development (Kavanagh et al. 

2010). Evidence does show that this has lead to genetic differences in a number of early life-

history traits, most probably due to rapid local adaptation to the temperature driven 

differences in local conditions (Kavanagh et al. 2010; PAPER IV). 
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The role of plasticity 

By rearing grayling individually at four developmental temperatures, we tested for the 

signature of adaptation by evolution of phenotypic plasticity in early life-history traits among 

grayling occupying divergent habitat types within Lesjaskogsvatnet, and found significant 

QST differences of quantitative traits between ‘cold’ and ‘warm’ spawning populations in 

developmental traits (time of eyeing and time of hatching) and survival (PAPER IV).  

We found contemporary shifts in the slope and elevation of the reaction norm for the timing 

of major developmental events. In addition, a signature of adaptation by phenotypic plasticity 

in the correlation between elevation of the reaction norm in the new environmental conditions 

and its slope was detected. This rapid response (i.e. within 20-25 generations) suggests 

potential resilience to temperature shifts resulting from climate change. However, no shift in 

the thermal tolerance window was evident, despite rapid adaptation within it. As a result this 

initial rapid response may not translate into resilience against further perturbations of the 

environment in the same direction. In Lesjaskogsvatnet, adaptation to a shift outside of the 

thermal tolerance window seems to have required a shift in spawning time (phenology) 

coupled with the elevation in plasticity of early life-history traits (Barson et al. 2009; 

Kavanagh et al. 2010). Thus, responses to anthropogenic disturbance or colonization of novel 

habitats may require multifarious responses to accommodate the resulting environmental 

perturbations. It is unlikely that these shifts have resulted from genetic drift in small 

populations as QST exceeded both FST and the neutral expectation of QST for time of eyeing 

(ET) and time of hatching (HT) and the shifts were concordant within stream temperature 

types with striking parallelism evident in the reaction norms (Figure 3).  

Adaptation to climate change is likely to depend on standing genetic variation. This study 

suggests that this can lead to adaptation of developmental rates to novel conditions within 

contemporary time frames that can partially compensate for a change in temperature of 

approximately two degrees centigrade (see below). However, plasticity is likely to be limited 

by the costs of plasticity (Lind and Johansson 2009) suggesting that the range of perturbations 

that can be accommodated through plasticity must likewise be limited. Here we see evidence 

of these constraints through the stasis of the thermal tolerance window despite rapid 

adaptation of slope and elevation within it.  
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Anthropogenic impacts on connectivity: movement and gene flow 

We have here assessed the population connectivity in River Gudbrandsdalslågen for trout and 

grayling by investigating both the short-term movement of the two species using telemetry 

and the more long-term level of gene flow using a set of population genetic tools (PAPER V). 

Much more extensive movement was observed in grayling (>60 km), which has also been 

documented in earlier studies in a nearby river where some individuals moved over 150 km 

(Heggenes et al. 2006). Individuals of both species ranged freely within the study area with 

regular movement between spawning, feeding and wintering areas. The movement was, 

however, constrained by the dams and waterfalls. The population genetic analysis on the other 

hand revealed possible upstream migration for trout, but not grayling (probably due to species 

differences in swimming ability), and downstream gene flow for both species. The population 

structuring detected was very different for trout and grayling. Most of the five trout sampling 

populations are significantly differentiated from each other and result in separate genetic 

clusters (Fig. 6A), except for the two furthest downstream populations which constitute one 

‘downstream’ population. In grayling, however, only the population above the natural 

waterfalls is differentiated from the other four sampling populations, (Fig. 6B), which is most 

likely explained by the recent immigration history.   

One important potential consequence of fragmenting this river landscape and manipulating 

water flow is that highly migratory genotypes may become less fit since migratory 

opportunity will decrease and costs will potentially increase. This may lead to reduced 

population growth rate and potentially alter the demographic structure. Especially the 

reduction in water flow over large stretches of the river will select for less migratory 

genotypes in both species. The loss of particular genotypes, with associated particular 

behaviors and life history traits, may reduce the biocomplexity of the system and reduce 

overall population resilience. Recent studies on sockeye salmon (Oncorhynchus nerka) and 

cod (Gadus morhua) do show that (meta)populations with complex structures are more 

resilient towards environmental change than less complex ones – named the portfolio effect 

(Hilborn et al. 2003; Olsen et al. 2008; Schindler et al. 2010). 
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Figure 6: STRUCTURE results for inference of the number of genetic clusters for trout (A) and grayling (B). 
Top: Proportional membership (Q) of individuals to genetic clusters (K) for K = 3 (trout) and K = 2 (grayling). 
Each vertical bar represents a single individual and individuals are ordered by geographical sampling location. 
Shades (black, grey, white) correspond to genetic clusters. Bottom: Both ln P(X|K) (the likelihood of the data 
given K; open circles) and �K (the standardized second order rate of change of ln P(X|K); filled triangles) are 
plotted as a function of K. Error bars (where discernible) of ln P(X|K) indicate standard deviations. 

The two methods applied here, telemetry and population genetics, did not always lead to the 

same conclusions on the population and species level, which illustrates the necessity for not 

only ‘multi-method’ but also ‘multi-species’ approaches in order to address such complex 

questions as ‘population connectivity’. One immediate outcome from this study was the 

preparation of revised construction proposals due to an interference with identified spawning 

areas for grayling and/or trout.  

Furthermore, the results from this study now offer a unique opportunity to follow a 

“controlled” fragmentation and its ecological and genetic consequences in a well studied 

population system including two species with contrasting life histories. Evolutionary changes 

and species-specific responses can so be tracked over time, potentially allowing the 

identification of the main factors and processes disrupting population dynamics.
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4 Summary 

I have hopefully shown in my thesis that it takes a variety of approaches to answer such 

complex questions as the relative roles of evolutionary forces especially on early population 

structuring together with the effects of space and time. 

We investigated early population structuring in the lake system Lesjaskogsvatnet that has 

recently been colonized by European grayling showing evidence for local variation and 

adaptation in various life history traits (Gregersen et al. 2008; Kavanagh et al. 2010). We 

found that this ‘metapopulation’ is not yet in equilibrium and detected a weak but significant 

signal of genetic structuring based on geographic distance allowing for divergence despite 

ongoing gene flow (PAPER II). Interestingly, this trend did not seem to be associated with the 

temperature-dependent divergence in the system (see Kavanagh et al. 2010). Several factors 

may favor divergence despite gene flow in the Lesjaskogsvatnet system: (i) given the short 

period since colonization and the estimated evolvability for the diverging traits (PAPER IV), 

it is likely that selection is acting on standing genetic variation in the reaction norm, as 

opposed to requiring the invasion of new mutations; and (ii) the plastic responses in the 

timing traits measured appear to be in the same direction as the adaptive response (PAPER 

IV) leading to weaker directional selection against immigrants than if there were counter-

gradient selection (Crispo 2008). 

We detected spatial and temporal genetic variation, with inter-annually fluctuating signals of 

isolation-by-distance, possibly related to environmental variation among years that through its 

influence on spawning time could affect the level of among-stream migration (PAPER II). 

Variation among streams in how temperature develops during spring determines the spawning 

onset and therefore the opportunity for gene flow between the different spawning populations. 

This is a critical relationship given the strong evidence for local adaptation in various early 

life history traits in this system (Kavanagh et al. 2010; also see paper IV). To further 

investigate this relationship between environmental factors, geographic distance, spawning 

time and genetic structure, we estimated spawning times based on local, regional, and global 

environmental data and modeled the effects of spawning time differences between 

populations on the genetic distance between them. Our results clearly show a shift in the 
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relative contribution of geographic distance (hence IBD) and spawning time difference (hence 

IBT) that is driven by environmental variation. In the case of large differences between 

spawning times, ecology seems to constrain gene flow, therefore maintaining population 

structure based on spawning time difference (IBT). In a scenario of simultaneous spawning, 

however, geographic distance leads to an IBD pattern. If conditions are becoming more 

similar, i.e. due to changing climatic conditions the streams warm up at more similar times 

therefore leading to similar spawning times and also more similar temperature profiles in the 

streams, the Lesjaskogsvatnet ‘metapopulation’ could lose its biocomplexity. This can cause 

the ‘metapopulation’ to become less resilient to new disturbances, an effect proposed by 

Schindler et al. (2010). Especially in the face of changing climatic conditions this might have 

dramatic consequences for population persistence (Chevin and Lande 2009).  

This is also highly relevant with respect to anthropogenic “perturbations” that may fragment 

complex population systems. This might cause the loss of particular genotypes, with 

associated particular behaviors and life history traits, therefore reducing the biocomplexity of 

the system and the overall population resilience (see Hilborn et al. 2003; Olsen et al. 2008; 

Schindler et al. 2010). In PAPER IV, we aimed to assess the potential ecological and 

evolutionary impact of imposing new migration barriers on trout and grayling, and showed 

extensive within-river movement of both species with regular movement between spawning, 

feeding and wintering areas. When fragmenting this population system through hydropower 

dams, highly migratory genotypes may become less fit since migratory opportunity will 

decrease and costs will potentially increase. This may lead to reduced population growth rate, 

potentially altering the demographic structure. Especially the reduction in water flow over 

large stretches of the river will select for less migratory genotypes in both species. The results 

from this study now offer a unique opportunity to follow a “controlled” fragmentation and its 

ecological and genetic consequences in a well studied population system including two 

species with contrasting life histories. Evolutionary changes and species-specific responses 

can so be tracked over time, potentially allowing the identification of the main factors and 

processes disrupting population dynamics. The application of our findings furthermore led to 

revised construction proposals due to an interference with important spawning areas – a win 

for science and nature.  
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An obvious next step to further understand the adaptive differences in Lesjaskogsvatnet, is an 

investigation of loci potentially affecting traits under divergent selection. Such candidate loci 

have previously revealed genetic differentiation between temporally divergent migratory runs 

in Chinook salmon, suggesting an influence on migration and spawning timing (see O’Malley 

et al. 2007). This promises to be very interesting when applied to the Lesjskogsvatnet 

grayling in a scenario of contemporary adaptation to divergent thermal habitats. 

And it goes on and on and on, and it goes on it and on and on… 

(Taio Cruz)
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