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INTRODUCTION 
 

About Northeast Arctic cod  

Northeast Arctic cod (NEA cod) is the world largest stock of Atlantic cod (Gadus morhua), 

and an important economic resource with annual recorded catch between 400,000 and 

500,000 tonnes. In 2009, the value of the cod fishery was about 3.5 billion NOK and more 

than 50% of the Atlantic cod sold worldwide comes from the Barents Sea. The NEA cod is 

distributed in the Barents Sea and along the Norwegian coast (Figure 1). The fish mature at 

about 6 years of age and then migrate out of the Barents Sea to spawn further south in various 

locations off the Norwegian west coast. The largest spawning site is located around the 

Lofoten islands. This spawning cod is caught and referred to as “skrei” in Norwegian. After 

about 3 months, the mature fish return to their feeding grounds in the Barents Sea.  

The cod eggs that are spawned develop into larvae and are advected by the Norwegian 

Coastal Current northward along the coast into the Barents Sea (Figure 1). The larvae grow up 

in the Coastal Current, feeding on plankton. When the cod is above the age of 2-3 years, its 

key prey species is capelin (Mallotus villosus). Is has been shown that if the capelin biomass 

is high, this has a positive effect on the cod population, indicated by increased liver energy, 

egg production and spawner biomass (Marshall et al. 1999). Capelin is also important for the 

survival of young cod since cannibalism is an important factor for mortality in the early age 

classes of cod (Yaragina et al. 2009). Thus, if capelin abundance is low, the 1-2 year old cod 

are more likely to be eaten by larger cod. However, capelin recruitment is heavily affected by 

1-2 year old Norwegian Spring-Spawning (NSS) herring (Clupea harengus) which eat capelin 

larvae (Gjøsæter & Bogstad 1998). If the abundance of young herring is high, there will be a 

likely decrease in the abundance of capelin 2-3 years later (Hjermann et al. 2007a). Therefore, 

herring also affect the cod stock. The herring live partly in the Barents Sea (until the age of 3) 

and partly in the Norwegian Sea. Recruitment (i.e., larval mortality) of the herring, a key 

species in this system, is extremely variable from year to year, in part linked to variations in 

sea climate (Fiksen & Slotte 2002).  

Climate may also affect the distribution of species, where warmer climate may trigger 

capelin to move northeast, and cod may follow them (their key food resource) into Russian 

waters (Roderfeld et al. 2008). At the same time, new species may enter the Barents Sea, 

leading to a new food-web in the Barents Sea ecosystem. It is easy to imagine that such 

changes will have severe management implications. These food-web dynamics have profound 

effects for both the dynamics of cod and the entire ecosystem, and as a result, the fisheries. 
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This simplified food-web between cod, capelin and herring show that it is not straightforward 

task to predict the outcome of climate change (Hjermann et al. 2007a; Hjermann et al. 2007b; 

Hjermann et al. 2010). Cod recruitment appears to have become more dependent on 

favourable climate in the year of spawning over the years (Hjermann et al. 2007a). 
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Figure 1. The NEA cod has its feeding ground in the Barents Sea and spawning ground along 

the Norwegian coast. The capelin is the most important prey species for NEA cod and its 

spawning ground is overlapping with the feeding ground for the cod. This figure has been 

originally developed by Bjørn Gjevik (Gjevik 2009) and modified by Dag. Ø. Hjermann. 

 

 

Harvesting, spawning stock biomass and management 

The fishing pressure shifted with the technological change in the 1930s: the fishing fleets 

became dominant on the feeding grounds (the Barents Sea). In some years after the 1960s, the 

probability of a cod caught by fishing gear could be above 70% per year on the feeding 

grounds (M. Heino unpublished data, Eikeset et al. 2010a). At the same time, the harvest 

pressure on the spawning grounds (around the Lofoten islands) decreased from 50% to 10%. 

However, the total fishing pressure increased and as in many other exploited stocks, the 
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spawning stock biomass (SSB) in NEA cod became dominated by younger and smaller fish 

(Marshall et al. 2006; Ottersen 2008) (Figure 2). During the last decades, the link climate–

cod-recruitment has been found to become stronger (Ottersen et al. 2006). Such juvenation of 

the population may increase susceptibility to future changes and therefore have consequences 

for stocks being less robust or resilient to environmental changes (Ottersen et al. 2006). 

Changes in SSB were observed by fishermen as smaller fish were caught along the 

Norwegian coast, because the cod that mature and migrate down to the Lofoten islands to 

spawn had become younger and smaller: In the beginning of the 1930s, the cod matured at the 

age of 9 and length at 80 cm, while today cod mature at the age of 6 and 60 cm (M. Heino, 

unpublished data, Eikeset et al. 2010a). Why is this happening and what has driven these 

changes?  

 

 

 
 

Figure 2. Decadal time-series from 1913-2004 showing the mean percentage of spawning 

stock biomass (SSB) by each age group. Data are on NEA cod for age 3 and older (From 

Ottersen 2008). 
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Figure 3. Total biomass from age 3 and older, spawning stock biomass (SSB) and reported 

landings from 1913-2008. Data from 1913-1945 are obtained from A. Hylen, from 1946-2008 

data are obtained from ICES (ICES 2009a). 

 

 

For 2009, ICES (International Council for Exploration of the Sea) has estimated the SSB in 

NEA cod to increase further from 2008 and reach 1079,000 tonnes, which has not been seen 

since 1947 (ICES 2009a). Although SSB has increased, the total biomass has not had this 

correspondingly large increase (Figure 3). In addition to possible effects of climate, this 

increase in SSB is mainly caused by two reasons (B. Bogstad, personal communication): first, 

illegal fishery has been reduced from 166,000 tonnes in 2005 to 15,000 tonnes in 2008. This 

decline is most likely due to the introduction of port state control in 2007 where all vessels 

must be cleared by the state port that their catch is legally caught. Second, a harvest control 

rule (HCR) that determines the total allowable catch (TAC) was agreed upon and 

implemented from 2004 on. This HCR derives a TAC depending on the SSB. This is to 

ensure that the stock is not at “risk of being harvested unsustainably” or “suffering reduced 

reproductive capacity”. However, the advised TAC from the adopted HCR is not always 

followed. For example in 2009, due to the high SSB, the TAC was decided by the Joint 



5 
 

Norwegian Russian Fishery Commission to be 525,000 tonnes, while the adopted HCR 

advised 473,000 tonnes (ICES 2009a). Today, the stock is classified as “having full 

reproductive capacity” and “being harvested sustainably” (ICES 2009b; Kovalev & Bogstad 

2005). 

 

 

The ecological and evolutionary effects of harvesting 

There are two main hypotheses for describing the observed changes in earlier and smaller size 

at maturation of NEA cod. The first claims that the changes are driven by ecological 

dynamics through phenotypic plasticity: Phenotypic plasticity is when a single genotype is 

expressed as multiple phenotypes (Ernande et al. 2004; Pigliucci 2005; Stearns 1989). This 

plasticity makes it difficult to determine if life-history traits are changing as a result of 

underlying genetic change, and is therefore at the heart of the debate on fisheries-induced 

evolution (Andersen & Brander 2009a; Andersen & Brander 2009b; Conover & Munch 2007; 

Darimont et al. 2009; Hilborn 2006; Jørgensen et al. 2007; Kinnison et al. 2009; Marshall & 

McAdam 2007). For example, when harvesting reduces the biomass levels, more resources 

(e.g., food) are available to the remaining fish, and this fish can therefore grow faster and 

reach maturation earlier. The second hypothesis claims that changes in maturation can also be 

driven by evolutionary changes in the life-history traits: these are caused by genetic 

adaptations and driven by the change in selection pressure from the fishing mortality. For 

example, if the risk of getting caught is high, only the individuals that mature and reproduce 

before they die can pass on their traits to their offspring. Therefore, early-maturing individuals 

are the ones favoured by evolution. To summarize these two hypotheses, one of them claims 

that the change in maturation is driven by ecological processes only, while the other claims 

that these changes are also partly driven by genetic adaptations. However, these two 

hypotheses are not mutually exclusive. The mechanisms driven by ecology and evolution are 

intertwined in a eco-evolutionary dynamics where the effects from ecological changes act on 

evolutionary processes, and vice versa (Pelletier et al. 2009). A small change in selection 

pressure may induce evolutionary changes, but may not be easily detected, which makes the 

relative contribution of evolutionary and ecological effects not easy to disentangle. 
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MAIN OBJECTIVES AND APPROACH 
 

To investigate the effects of fishing on NEA cod, we tackle this problem from two sides: 

First, we focus on the population level and use data on landed catch and bottom trawl to 

estimate the “true” abundances and catch. At the same time, we aim to account for uncertainty 

about effects of components driving the population dynamic, by including both observation 

uncertainty and process error. We then try to derive knowledge about natural mortality and 

density-dependence. Hence in Paper 1, Destabilized population growth rate in Northeast 

Arctic cod, we investigate how population growth rate has developed over time in NEA cod 

and how this may be affected by climate, fishing, and density-dependent mortality. Then, we 

test through stochastic simulations if variability in fishing pressure may lead to larger 

fluctuations in stock size. 

Our second approach to study the effects of harvesting starts at the individual level to 

derive knowledge about the population level. Changes at the individual level progressively 

affect the population level. We do this by developing an individual-based model, which is 

ecologically and genetically detailed, and based on data for the NEA cod. The model has been 

developed to resemble the life-cycle of the cod to study if there are evolutionary changes in 

life-history traits (i.e., maturation) caused by the observed fishing pressure from 1932 until 

2005. The genetic component in this model allows the individuals to respond to selection 

pressure brought about by fishing pressure. At the population level, mechanisms such as 

density-dependent growth and newborn survival, temporal variability in recruitment and 

mortality act on the population, being observed by younger and lower biomass level over the 

course of fishing. We ask whether fisheries-induced evolution have occurred in NEA cod 

from 1932-2005. Can we find evidence for the hypothesis claiming that the observed 

phenotypic changes in maturation are also driven by evolutionary response to the selection 

pressure? If it does, how large and fast are these evolutionary changes? This is the focus of 

Paper 2, Is evolution needed to explain historical maturation trends in Northeast Atlantic 

cod?  

Can fisheries-induced evolution affect the economic yield, and how does it change 

optimal management strategies? This is the focus of Paper 3, The economic repercussions of 

fisheries-induced evolution. Paper 4, A bio-economic analysis of alternative harvest control 

rules for Northeast Arctic cod in the light of the precautionary principle - a counterfactual 

scenario, takes a step back in time and investigates if there are better ways of managing the 

stock than what has been historically done. Looking forward from 1932 until 2005, we 
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compare economic and biological consequences of three alternative HCRs: (1) the economic 

income or yield is maximized, (2) the precautionary HCR advised by ICES, and (3) the HCR 

agreed upon and implemented since 2004 for NEA cod.  

Finally, Paper 5, Unintended consequences sneak in the back door: making wise use of 

regulations in fisheries management, is not a modelling paper, but a qualitative discussion. By 

taking a broad overview we here examine some of the complexities brought about from the 

biological and social system, which might be difficult to see, and also, not easy to learn about.  

 

 

Population level 

Hsieh et al. (2006) and Anderson et al. (2008) found that exploited fish stocks show larger 

fluctuations than unexploited. Both studies used time-series on ichthyoplankton (e.g., fish 

larvae) data as a proxy for fish biomass. Even though this proxy has shown to be quite good 

(Hsieh et al. 2006), there is as in any study, a risk that uncertainty in the data and lack of 

information may have masked the observed mechanisms behind the phenomenon one 

considers. To make reliable projections about the state of the stock (i.e., true abundance, 

natural mortality) observation uncertainty and process error should be accounted for (Aanes et 

al. 2007). The effect of environmental noise on population size must be disentangled from 

stochasticity caused by uncertainty in parameter estimates (e.g., natural mortality) and errors 

in estimates on population size (Freckleton et al. 2006; Aanes et al. 2007). In marine science 

and stock assessment, state-space modelling has become a popular modelling framework that 

can be developed to include parameters that describe expected dynamics, as well as stochastic 

influences (Bogaards et al. 2009; McAllister & Carruthers 2007; Millar & Methot 2002; 

Millar & Meyer 2000a; Millar & Meyer 2000b; Millar & Stewart 2005; Swain et al. 2009; 

Aanes et al. 2007).  

Today, catch data are used to back-calculate abundance by adding fishing and natural 

mortality, and then calculate what the abundance the year before was; this is called Virtual 

Population Analysis (VPA, including methods such as XSA, ICA and ADAPT) (ICES 

2009a). Survey data can also be included, adding more realism (Shepherd 1999). The 

challenge is that even if survey abundance indices may be biologically very realistic, they are 

indices (not absolute population estimates), and only snapshots of the population size. 

Therefore, catch data and survey data are at a different scale and are most often not easy to 

unite. For this issue, state-space models have proven to be very useful. 
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In paper 1, Destabilized population growth rate in Northeast Arctic cod (Eikeset et al. 

2010b) we developed a state-space age-structured model for NEA cod using data on 

abundance from survey and catch statistics for the period 1981-2007. VPA analysis provide 

estimates on abundances from age 3 (ICES 2009a). Our model produces estimates on the 

“true” age-specific abundance and catches, including abundances for the youngest age-classes 

1 and 2 –year olds. In this process, the model also predicts variability in natural mortality, 

observation and measurement uncertainty and process error in the population dynamics. We 

find that increased variability in fishing mortality can lead to larger variability in SSB. This is 

supporting a previous study by Jonzen et al. (2001), but they used data from VPA analyses. 

Andersen et al. (2008) did not find support for this hypothesis, but found that it is the increase 

in mean fishing mortality that lead to increased fluctuations and non-linear population 

dynamics. We demonstrate that variation in fishing, climate and density-dependent mortality 

strongly affects the variability in population growth rate. First, density-dependent mortality is 

important in the youngest age-classes and as expected from ecological theory (Begon et al. 

1996), density-dependent mortality may act compensating on the population growth rate. 

Second, it is not the extent of fishing mortality that leads to destabilised fish stocks, but large 

year-to-year variation. This is of prime concern because if neglected in population models 

such mechanisms can generate biased predictions. Hence, high fishing mortality does not 

create fluctuations per se, it is merely causing a constant decline (from the reference level, i.e. 

1981 level) if mean fishing mortality exceeds 0.7 year-1 in NEA cod. Third, variations in 

recruitment, which may come about through climate effects, increase the variability in 

population growth rate. 

 

 

From individual level to population level 

“Nothing in biology makes sense except in the light of evolution” (Dobzhansky 1964). In 

paper 2 we ask: Is evolution needed to explain historical maturation trends in Northeast 

Atlantic cod? (Eikeset et al. 2010a). Here we investigate if fisheries-induced evolution has 

occurred in NEA cod from 1932-2005. Following this mechanism, a change in fishing 

pressure leads to a change in selection pressure: before the 1940s when fishing pressure was 

low in the feeding ground and high in the spawning ground, selection pressure was favouring 

large size at maturation, so the large and old fish migrated to spawn the spawning ground 

along the Norwegian coast (Figure 1). Larger sized fish have higher fecundity through larger 

gonads (Kjesbu et al. 1998; Marshall et al. 2006). Hence, it pays off to delay sexual 
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maturation, so when reproducing, the number of offspring is likely to be high. This is natural 

or harvest-induced selection towards larger size at maturation. However, after the 1940s when 

fishing pressure in the feeding grounds increased, immature fish (e.g. smaller size) were also 

caught. Under these new conditions, it became advantageous to grow faster and mature 

earlier, in order to increase the probability to mature and reproduce before death. In terms of 

reproductive output, it was now risky to wait with maturation. Therefore, in this case, harvest-

induced selection for small sizes at maturation occurs. 

“Nothing in evolution or ecology makes sense except in the light of the other” 

(Pelletier et al. 2009). Our life-history model describes every individual’s life-cycle through 

four processes: growth, maturation, reproduction and mortality. It is parameterised 

specifically for NEA cod and is novel in the sense that it is a complex life-history model and 

uses many sources of data describing a real stock over a 74 years period. For a specific wild 

and exploited stock it can predict to what extent fisheries-induced evolution occurs when 

phenotypically plastic maturation and growth are accounted for: We impose the historic 

fishing pressure, mimicking what has happened to the stock, and then compare our simulation 

predictions with data on age and length at maturation for the period, 1932-2005. By 

manipulating the level of genetic variation assumed in the model, we determine how much 

evolution is required to match historical trends in the age and length at maturation. We find 

that fishing has ecological and evolutionary effects, but the extent of how much evolution is 

needed, depends on complex dynamics between ecology and evolution: a model with 

evolution is better in replicating historical trends than a model without evolution. 

Furthermore, fisheries-induced evolution, in particular of increased growth, may prevent stock 

collapse, but the match with historical data depends on the density-dependent growth model 

used. We also find that although an evolutionary model outperforms a non-evolutionary 

model, the amount of evolution of traits is predicted to be smaller than suggested in previous 

studies. 

 

 

Costs and benefits of fisheries-induced evolution 

One worry for evolutionary changes has been the lack of recovery and decrease in yield. 

Given that fisheries-induced evolution has already occurred in the past, what would be the 

best way to avoid additional undesired effects in the future? If evolutionary effects are 

present, but ignored by managers, how costly will it be to overlook fisheries-induced 

evolution? We try to answer these questions in paper 3, The economic repercussions of 
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fisheries-induced evolution (Eikeset et al. 2010e), by combining ecology, evolution, and 

economics to evaluate optimal harvest scenarios when including accurate economic data 

based on the Norwegian fleet. Our results show that fisheries-induced evolution decreases 

economic yield if fishing mortality is too high. In contrast, the economic income is higher if 

fishing mortality is lower: an optimal HCR improves the historic fishing pressure from 1946-

2005, it boosts economic profits and reduces changes in age and length at maturation. In this 

case, fisheries-induced evolution decrease age and length at maturation, but increases the SSB 

and therefore the economic yield. We find that low fishing mortality is the key to higher SSB 

and economic yield, with or without addressing evolutionary changes. Unfortunately fish 

stocks are typically far from being managed optimally and high fishing mortality is very 

common. We find that the interplay between ecology and evolution changes life-history traits 

and stock properties, and therefore economic income.  

 

 

The objectives determines the optimum catch 

In paper 4, A bio-economic analysis of alternative harvest control rules for Northeast Arctic 

cod in the light of the precautionary principle - a counterfactual scenario (Eikeset et al. 

2010c), we compare alternative harvest control rules (HCRs) with the observed fishing 

mortality from 1932-2005. The alternative HCRs are derived from 1) optimal HCRs that have 

maximized yield or economic income 2) the precautionary HCR advised by ICES, 3) the 

implemented HCR for the cod fishery. We find that these produce different harvest patterns in 

terms of fishing mortality, biomass, catch and profit. For example, if profits are maximized, 

the catch is lower. This is because of the price effect, where lower catch gives a higher price. 

As a result, the consumers pay higher prices and buy less fish. The decision what to 

maximize, and what the objectives should be, is a political choice. We discuss how the 

economic success for the fishery requires biological sustainability, and how results obtained 

from an optimization routine perform in the light of the precautionary principle. 

 

 

Integrated management 

In paper 5, Unintended consequences sneak in the back door: making wise use of regulations 

in fisheries management (Eikeset et al. 2010d), we discuss management tools and highlight 

that their adequacy depends on the specific system, the costs of implementation and the 

difficulty to obtain all relevant information. Ostrom (2009) classified a social-ecological 
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system by its subsystems: (i) resource system (e.g. the cod fishery), (ii) resource units (e.g. 

NEA cod), (iii) users (e.g. fishermen), and (iv) the governance system (e.g. the specific laws 

and social norms in place). The first step in management is to identify these components with 

their characteristics and then determine what is relevant for making policy recommendations. 

However, one of the most difficult tasks is to identify and quantify these specific systems and 

their attributes. For example, for a given stock, a HCR is a rule for setting the annual quota 

and depends on the biomass level of the stock. However, biomass is never exactly known, but 

always uncertain. Therefore, dealing with uncertainty in the biological system and 

incorporating this into precautionary management is a challenge. Another question is who 

should be involved in the management process, and should the participants be made more 

responsible? Often, there is a trade-off between making decisions now and wait with acting 

until more knowledge is reached. Some stocks are to such an extent threatened by extinction, 

and so waiting for more knowledge may be a very dangerous strategy. The precautionary 

principle is clear in theory, but when and how should it be applied? 

 

 

SIMULATIONS 
 

Fallibility is the hallmark of science (Kitcher 1998). Every observation is guided by theory, 

with hypotheses being intellectually constructed conjectures that can be conclusively falsified 

in the light of suitable evidence (Chalmers 1999; Kitcher 1998). However, whatever the 

evidence, theories can never be established as true. To test 1) do fisheries-induced evolution 

occurs in a real stock and 2) are the economic effects of such evolutionary changes important, 

and 3) how far away we are from optimal management, we used numerical analyses to make 

predictions. We consider simulations as metaphysical, where our numerical model creates a 

parallel world (Frigg & Reiss 2009) in which “experimentation” can be performed, theories 

can be falsified and real life experimentation fails. Another advantage with simulations is that 

robustness and consistency of results can be thoroughly checked by replication (Galison 

1996) and sensitivity analysis. Scientists may only “arrive at partial and incomplete truths. 

Numerical analysis of data carry the deduction through many steps and it is as such crucial to 

‘keep the argument straight'” (Ziman 1968). 

Challenges arise when comparing our results to the real world. Can we be sure that 

these simulations represent reality? An increasingly widespread position is that numerical 

analysis represents the world because the world itself is probabilistic. In our case, one 
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message to managers could be that fisheries-induced evolution is a crucial force in driving 

stock dynamics and avoiding stock extinction. Equally, another message could be that 

fisheries-induced evolution is not crucial for stock survival, but adding it into the model 

explains the data better. The need to decrease fishing pressure is not only justified by 

evolutionary changes. Also other influences shape the population, such as environmental 

change and density-dependence. Nevertheless, the extent to which each of these components 

shapes the stock must be discussed. 

Science is maybe strongest when it fails, then we can say this is not the way it is. As 

long as the model stands the test against data, uncertainty is attached to it. If the model, with 

its uncertainty, can guide management to reach sustainability, then the argument for taking the 

model into account is stronger than rejecting it. Such ethical arguments should be considered 

when addressing the model’s value. This is because models are explanatory, not true.  

 

 

CONCLUSION 
 

The NEA cod population is reported to be in good shape (ICES 2009a) but it is important to 

look beneath the surface to ensure sound management and to avoid unpleasant surprises in the 

future. This can be summarised in one simple quote by Rosemary Grant, Kyoto Prize winner 

2009 at the Kristine Bonnevie lecture 2009: “Neither species nor environments are static 

entities, but dynamic, and constantly changing. To conserve species and their environments, 

we must keep them both capable of further change.” The NEA cod stock is no exception in 

this regard. 
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