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ABSTRACT 

ABSTRACT 

 

It was long believed that most cell to cell communication in plants occurred by non-peptide 

plant hormones. Peptide signaling in plants is a recent discovery that opens a new world of 

signaling in plants. One signaling peptide is IDA, INFLORESCENCE DEFICIENT IN 

ABSCISSION. It is believed to signal through the receptor-like kinases HAESA (HAE) and 

HAESA-LIKE2 (HSL2), mediating the floral organ abscission process in Arabidopis. A novel 

group of putative ligands in Arabidopsis, the IDA-LIKE (IDL) proteins was identified based 

on their similarities to IDA. They are thought to signal through receptors closely related to 

HAE, the HAESA-LIKE (HSL) proteins, where they regulate different cell separation 

processes. In this thesis it has been made an effort to identify novel putative receptor-ligand 

interactions by matching the expression pattern of IDL genes and HSL genes. The interaction 

between IDA’s close relative IDL1 and IDA’s native receptors, as well as a putative native 

receptor for IDL1, HSL1, has been investigated using a yeast two-hybrid assay. Furthermore, 

a genetic approach was used to investigate the interaction between IDL1, IDL2 and IDL3, and 

HAE/HSL2 in the floral organ AZ, and finally the roles of IDL1, HAE, HSL1 and HSL2 in 

root development were investigated by mutant studies.  

Based on the overlapping expression pattern of promoter::reporter gene constructs, several 

novel putative ligand-receptor pairs were identified in this thesis. No direct, biochemical 

interaction between IDL1 and HAE, HSL1 or HSL2 could be identified. A genetic approach, 

however, revealed that IDL1, IDL2 and IDL3 were able to signal through HAE and HSL2 

when expressed in the floral organ AZ. Preliminary results also indicate that IDL1 might 

signal through HSL1 and HSL2 in the root cap.   
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INTRODUCTION 

1 INTRODUCTION 

 

1.1 Arabidopsis thaliana as a model organism 

 

Arabidopsis thaliana (Arabidopsis) is a small flowering dicoyledonous plant belonging to the 

Brassicaceae (mustard weed) family. This small plant has over the past 20 years become an 

excellent model for studying plant biology. Arabidopsis has several advantages as a model 

organism. It is small, requires simple growth conditions and has a short life cycle of ~7 

weeks, thus making it easy to grow under laboratory conditions. The plant self-fertilizes and 

each plant produces thousands of seeds. Arabidopsis has the smallest genome with fewer 

repetitive sequences than any other known higher plant; 146 Mb (million base pairs) arranged 

into five chromosomes that contain ~26200 protein coding genes (Somerville and Koornneef, 

2002; Bevan and Walsh, 2005). All of the features mentioned above make Arabidopsis the 

model system of choice for classical and molecular plant genetics, as well as for studying 

plant development, physiology and pathology (Page and Grossniklaus, 2002; Somerville and 

Koornneef, 2002). Sequencing of the Arabidopsis genome of the Columbia (Col) ecotype was 

completed at the end of year 2000 (The-Arabidopsis-Genome-Initiative, 2000) as the first 

plant genome sequenced. A collection of characterized mutations and transgenic plants is 

available, where genes involved in nearly every major biochemical pathway have been 

knocked out (Somerville and Koornneef, 2002).  

 

1.1.1 T-DNA insertional mutagenesis 

 

A key resource for studying the gene functions of Arabidopsis is the use of insertional 

mutagenesis. Common techniques includes the use of Zea mays transposable elements 

(Fedoroff, 1989) and Agrobacterium tumefaciens T-DNA (Koncz et al., 1992; Azpiroz-

Leehan and Feldmann, 1997). For this thesis T-DNA insertional mutants were used and novel 

gene constructs were introduced in Arabidopsis by Agrobacterium transformation. The T-

DNA insertional mutagenesis techniques utilizes a portion of the tumor inducing plasmid 

from A. tumefaciens, which natural function is to induce crown galls by transferring T-DNA 
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into the nucleus of plant cells. When a plant is infected, T-DNA is transferred into the host 

cell and inserted into the nuclear genome (Binns, 2002)   

SALK lines are T-DNA insertion lines generated by A. tumefaciens transformation of plants 

with the vector pBIN-pROK2. The lines are distributed by the Arabidopsis Biological 

Resource Center (ABRC) and the Nottingham Arabidopsis Stock Center (NASC). The T-

DNA insertion sites are identified by the Salk Institute Genome Analysis Laboratory 

(SIGnAL) (Alonso et al., 2003), and are available in the SIGnAL database using the 

Arabidopsis gene mapping tool, T-DNA Express. As the identification of insertion sites are 

high throughput operations the exact insertion sites have to be confirmed by sequencing the 

genomic region flanking the left border (LB) of the T-DNA. 

 

1.1.2 Reporter gene systems 

 

It is possible to investigate a gene’s function by examining when and where the gene is 

expressed, both in the cell and in the entire organism. This is done by cloning the promoter 

region of the gene of interest in front of a reporter gene. The reporter gene can be a 

fluorescing protein or an enzyme, whose activity can easily be monitored. Two such reporter 

gene systems are the GUS (β-glucuronidase) system and the YFP system. 

 

1.1.2.1 The GUS reporter gene system 

The β-glucuronidase (gusA) gene is a frequently used reporter gene in genetically modified 

plants. This gene was first isolated from Escherichia coli and encoded the GUS enzyme, 

which catalyses the hydrolysis of several different glucuronides (Jefferson, 1989). This ability 

is utilized when the gene is used as a reporter gene to study and monitor gene expression, 

mainly the tissue specificity of promoter sequences. It splits the histochemical substrate 5-

bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc) into a blue end-product, staining the 

tissue blue and hence visualizing the activity of the gene of interest. GUS is absent in many 

organisms other than vertebrates, and this is a major advantage, making it possible to 

visualize small quantities of GUS activity without having to consider background signaling 

(Jefferson, 1989). When fused to a promoter, the promoter will regulate the expression of the 
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gusA gene, and gusA will adopt the expression pattern of the gene originally regulated by the 

promoter.  

 

1.1.2.2 The YFP reporter gene system 

After the discovery of green fluorescent protein (GFP) (Shimomura et al., 1962; Morin and 

Hastings, 1971; Morise et al., 1974), a variety of fluorescing proteins have been discovered 

that can function as reporter-genes, including red fluorescent protein (Matz et al., 1999) and 

yellow fluorescent protein (YFP) (Macheroux et al., 1987). The gene encoding YFP was first 

isolated from Vibrio fischeri (Macheroux et al., 1987). When cloning the promoter of the gene 

of interest in front of YFP, the YFP gene will adopt the expression pattern of the gene of 

interest. An advantage with using YFP, like GFP, is that it only requires blue light, so that 

availability of substrates is not a limiting factor. Another advantage is that it is possible to 

visualize the YFP expression in live plants. This makes it a good choice for monitoring gene 

expression.     

 

1.2 Cell separation in plants 

 

Plant cells are joined together by an adhesive matrix that cements the cells together. However 

several events in a plants life cycle are dependent on breakdown of this adhesion between the 

cells. The loss of adhesion is accomplished by the process of cell separation, as a part of the 

programmed development of the plant or as a response to environmental stress (Taylor and 

Whitelaw, 2001). Cell separation facilitates penetration of the primary root through the soil, 

lateral root emergence, expansion of cotyledons and leaves, release of pollen from the anthers 

and softening of fruit, as well as shedding of flowers or floral organs (Roberts et al., 2002) 

(figure 1.1). Common to all these processes is the degradation of the cell wall. 
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Figure 1.1 Sites of cell separation (Roberts et al., 2002). 

 

1.2.1 Abscission 

 

Abscission is a developmentally determined program of cell separation that results in the 

shedding of organs. Entire organs are shed to secure dispersal or propagation, aid pollination, 

as a defense mechanism against pathogens or, when the organ no longer serves a function or 

is damaged (Patterson, 2001). The sites of abscission, termed abscission zones (AZs), are 

normally highly predictable (Taylor and Whitelaw, 2001) and AZs are often located in stems 

between the organ to be abscised and the body of the plant (Bleecker and Patterson, 1997; 

Patterson, 2001). It has long been recognized that the timing of the abscission process is 

determined by the balance between the plant hormones ethylene and auxin, where ethylene 
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has been recognized as the inducing agent and auxin as the break (Taylor and Whitelaw, 

2001). When exposed to the appropriate stimulus, the cells in the AZ enlarge and the middle 

lamella dissolves (Bleecker and Patterson, 1997). After shedding of the organ a continued 

enlargement of the AZ cells and differentiation of a protective layer follow (Bleecker and 

Patterson, 1997; Patterson, 2001). 

Arabidopsis does not display leaf or fruit abscission, but it does abscise floral organs and 

seeds. Several Arabidopsis genes have been shown to be involved in the abscission of floral 

organs. Of interest for this thesis is the gene IDA, that encodes a small putative peptide ligand 

involved in the control of floral organ abscission (Butenko et al., 2003). The ida mutant was 

first characterized in 2003 (Butenko et al., 2003). The mutant shows no floral organ 

abscission; hence the sepals, petals and stamens remains attached to the plant body, and the 

affected gene was named INFLORESCENCE DEFICIENT IN ABSCISSION. The IDA protein 

is necessary for abscission of floral organs in Arabidopsis. Over-expression of the IDA 

protein results in earlier abscission and ectopic expression leads to abscission of organs that 

are not normally shed (Stenvik et al., 2006). The double mutant haehsl2 displays the same 

abscission-defective phenotype as the ida-mutant, indicating that the receptor-like kinases 

HAESA (HAE) and HAESA-LIKE 2 (HSL2) of the HAESA family of LRR-RLKs also are 

involved in the regulation of floral organ abscission in Arabidopsis (Cho et al., 2008).   

 

1.2.2 Sloughing 

 

Sloughing is a programmed cell-to-cell separation process that takes place in the outer layers 

of the root cap and results in the shedding of live cells (del Campillo et al., 2004). Shedding 

of the root cap is a process similar to abscission in that it involves the activity of cellulases 

and pectolytic enzymes (Uheda et al., 1997). The root cap serves as a protective layer in front 

of the root meristem, and shields it against damage from soil particles (Bengough and 

McKenzie, 1997). The living cells are continuously shed from the root tip while secreting a 

slimy mucilage, thus creating a sheath decreasing the friction at the soil-root interface 

(Bengough and McKenzie, 1997; Roberts et al., 2002). This facilitates rapid growth in 

compacted soils (Iijima et al., 2003) and serves as a barrier against pathogen attack (Vicre et 

al., 2005). Promoter::GUS expression of IDL1 (IDA-LIKE1), a close relative of IDA, has 
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been shown to have a strong expression in the columella cap of the primary root, and is 

proposed to have a function in this cell-separation process (Stenvik et al., 2008). 

1.3 Signaling in plants 

 

Cell-to-cell interactions are in general essential for differentiation, organization and function 

of most organ systems. How cells in multi-cellular organisms communicate is therefore a 

central question in biology. Responses, like differentiation, growth and development, are 

strictly regulated and coordinated through signaling between cells. Intracellular 

communication in plants was for many years explained on the basis of signaling by the five 

non-peptide plant-hormones: auxin; cytokinin, ethylene, abscisic acid (Kende and Zeevaart, 

1997) and brassinolides (Mandava, 1988). Later it has become clear that plant cell 

communication also makes use of small peptide signals and specific receptors (Matsubayashi, 

2003; Ryan et al., 2007). To date, only a few ligand-receptor pairs have been identified in 

plants, but the number is increasing (Butenko et al., 2009). 

 

1.3.1 The receptor-like kinases 

 

Representing almost 2.5 % of the plant’s protein coding genes one of the largest gene families 

in the Arabidopsis genome is the receptor-like kinases (RLKs) with its 625 members (Shiu 

and Bleecker, 2001a, 2001b, 2003). Characteristic of the RLKs are an N-terminal signal 

peptide (SP), a ligand binding extracellular domain (ECD) and a cytoplasmic, C-terminal 

serine/threonine domain (Walker, 1994; Torii, 2000). The RLK gene family can further be 

divided into 44 subfamilies, based on their kinase domains (Shiu and Bleecker, 2001b). A 

fraction of these are lacking the ECD, and are referred to as receptor-like cytoplasmic kinases 

(RLCKs). RLKs possessing an extracellular domain are thought to function in the cell 

membrane, where they recognize extracellular ligands, following an activation of the 

intracellular domain and the subsequent transduction of a downstream signaling pathway 

(Torii, 2004). The ECD varies greatly in the RLKs and they have been shown to participate in 

protein-protein interactions, binding of carbohydrate substrates, including plant and microbial 

cell-wall components, glycoproteins or steroids (Shiu and Bleecker, 2001b).  
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The RLKs with leucine-rich repeat (LRR) ECDs are most frequent in Arabidopsis with 216 

genes (Shiu and Bleecker, 2001b). LRR domains are involved in protein-protein or protein-

peptide recognition processes (Kobe and Deisenhofer, 1994), and members of the LRR-RLK 

subfamily have been found to regulate various developmental processes, phytohormone 

perception and defense responses (Shiu and Bleecker, 2001a). Developmental regulators in 

Arabidopsis include the proteins ERECTA (specifies organ shape) (Torii et al., 1996), 

CLAVATA1 (controls meristem cell fate) (Clark et al., 1997) and HAESA (HAE) (involved 

in floral organ abscission) (Jinn et al., 2000; Cho et al., 2008). 

 

1.3.2 Signaling peptides in plants 

 

In contrast to the RLKs, very few ligands have been identified. A reason why so few 

functional signal peptides have been identified to date might be the small size of the peptide 

molecules and their complementary DNA (cDNA). Small cDNAs are often not represented in 

cDNA libraries and peptide gene tagging by insertional mutagenesis is often not an option. 

From a bioinformatic perspective these small signal peptides (many less than 100 amino acids 

long) are difficult to discover, as the programs used to search for putative peptides are set to a 

minimum of 100 amino acids). However, more and more signaling peptides are identified. 

Many of these putative ligands are thought to interact with a receptor and trigger a 

downstream signaling pathway (e.g. the MAPK pathway) (Shiu and Bleecker, 2001a).  

The putative ligands SCR (S-LOCUS CYSTEINE-RICH) (Schopfer et al., 1999), PSK 

(PHYTOSULFOKINE) (Yang et al., 2001), NCR (NODULE-SPECIFIC CYSTEINE RICH) 

(Mergaert et al., 2003) and IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) 

(Butenko et al., 2003) (see section 1.4.1) all have an N-terminal signal sequence. The signal 

sequence is thought to act as a signal for transport through a secretory pathway to the 

extracellular space. Proteolytic processing is a common way of activating signaling peptides. 

These peptides are therefore though to be processed into smaller active peptides, which may 

interact with the LRR-domain of the LRR-RLK receptor (Butenko et al., 2009).    
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1.4 Ligand-receptor pairs 

 

Due to few loss-of-function mutants for the small signal peptides is that it has been difficult to 

identify ligand-receptor pairs in plants. However, eight ligand-receptor systems has been 

identified in plants so far, where the ligand-receptor interaction has been confirmed by either 

genetic or biochemical evidence (Butenko et al., 2009).  

As a response to wounding, Tomato systemin is released and recognized by SR160, a typical 

LRR-RLK (Scheer and Ryan, 2002). AtPEP1 is also involved in defense, amplifying innate 

defense responses upon interaction with the LRR-RLK PEPR1 (PEP RECEPTOR 1) 

(Huffaker et al., 2006; Huffaker and Ryan, 2007). Other systems regulate cellular 

proliferation and differentiation, such as PSK1 (PHYTOSULFOKINE 1) that interacts with 

PSKR (PSK RECEPTOR 1) (Yang et al., 2001) and PSY1 that interacts through the LRR-

RLK At1g72300 (Amano et al., 2007). The peptide ligand SCR (S-LOCUS CYSTEINE-

RICH) induces self-incompatibility response upon binding of the receptor SRK (S-LOCUS 

RECEPTOR KINASE) (Vanoosthuyse et al., 2001; Mishima et al., 2003) whereas tapetum 

TAPETUM DETERMINANT (TPD1) binds MICROSPOROCYTES 1 (EMS1) to determine 

the cell fate in anthers (Yang et al., 2003). The CLAVATA system consists of the 

extracellular peptide CLV3 and a receptor complex consisting of CLV1, CLV2 (Jeong et al., 

1999) and CRN (CORYNE) (Muller et al., 2008). The LRR-RLK CLV2 is structurally 

similar to CLV1, but is lacking an intracellular kinase domain. To compensate for the lacking 

kinase domain in CLV2, the heterodimer constitutes a functional unit with the extracellular 

LRR domains of CLV1 and CLV2 and the intracellular domain of CRN (Muller et al., 2008). 

Biochemical evidence support the interaction of CLV3 and the extracellular domain of CLV1 

in a recent publication (Ogawa et al., 2008) and it is clear that CLV3 together with the CLV1-

CLV2-CRN receptor complex plays an important role in maintaining the plant meristem, 

regulating the balance between meristem stem cell proliferation and differentiation 

(Matsubayashi, 2003). The IDA-HAE-HSL2 system is the latest ligand-receptor pair to be 

identified in plants (Butenko et al., 2009). The peptide IDA is signaling through the LRR-

RLKs HAE and HSL2 to regulate floral abscission in Arabidopsis (Cho et al., 2008; Stenvik 

et al., 2008).         
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1.4.1 IDA and the IDA-likes – a family of peptide ligands 

 

The IDA gene encodes a small protein of 77 amino acids with an N-terminal signal peptide of 

26 amino acids. C-terminally you find the extended PIP domain (EPIP), which is thought to 

encompass the active peptide (Stenvik et al., 2008). As mentioned above the protein is 

involved in the cell separation process of floral organ abscission, and has been localized to the 

extracellular space using an onion epidermis assay (Butenko et al., 2003).  

IDA and the IDA-LIKE genes constitute a family of 6 members in Arabidopsis, all encoding 

proteins with less than 100 amino acids (Butenko et al., 2003). They are expressed in different 

tissues where cell separation events take place (Stenvik et al., 2008). Common for the IDA 

and IDL proteins is an N-terminal hydrophobic signal peptide, a variable region and a 20 

amino acid conserved C-terminal EPIP motif (Stenvik et al., 2008). The function of the 

variable region is not clear, but might assist the IDL EPIP-C domain in binding the receptor 

(Stenvik et al., 2008) (figure 1.2). 

 

 

A 

B C 
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The IDL genes differ in expression pattern, but over-expression of the genes result in 

phenotypes similar to the over-expression of IDA, indicating that the IDL proteins are able to 

initiate the same cellular response as IDA, early abscission (Butenko et al., 2003; Stenvik et 

al., 2006; Stenvik et al., 2008). Therefore it is thought that they might function through 

common mechanisms when expressed in the floral organ AZ, as well as when expressed in 

their native positions. HAE and HSL2 are proposed to be the receptors of IDA in the floral 

organ AZ (Stenvik et al., 2008) and IDL1, the closest relative of IDA (Butenko et al., 2003), 

is thought to be able to act through the receptors of IDA in the AZ (Stenvik et al., 2008). The 

phenotypic similarities resulting from over-expression of the IDL genes suggest that the 

receptors of the IDL proteins most likely are those closely related to HAE and HSL2, thus 

indicating that the HSL proteins might be the receptors of the IDL peptides.  

 

1.4.2 HAESA and the HAESA-likes  

 

HAE and HSL2 are members of a family of LRR kinases (Shiu and Bleecker, 2001a). They 

are plasma membrane serine/threonine protein kinases expressed at the base of petioles, base 

of pedicels and the floral organ AZ (Jinn et al., 2000; Cho et al., 2008). They are thought to 

either homodimerize or heterodimerize with each other and the HAE/HSL2 complex is 

proposed to be the receptor complex of IDA (Cho et al., 2008; Stenvik et al., 2008). Both the 

ida- and the haehsl2-mutants lack floral organ abscission (Butenko et al., 2003; Cho et al., 

2008; Stenvik et al., 2008), indicating that IDA, HAE and HSL2 could be involved in the same 

pathway. A further indication that these genes are in the same pathway is that the over-

expression phenotype of IDA is lost in the haehsl2 background (Stenvik et al., 2008).  

IDL1 and the IDL1 EPIP, expressed by IDA’s promoter, have been shown to rescue the ida 

phenotype (Stenvik et al., 2008), probably by interacting with the receptors of IDA. It is 

therefore possible that the receptors of IDL1 are closely related to the receptors of IDA..The 

Figure 1.2 IDA and the IDLs. (A) A schematic view of the IDA and IDL proteins. (B) Alignment of the C-terminus of IDA 

and the IDL proteins. IDL1 is the one most similar to IDA, and most able to substitute for IDAs function. The middle cluster 

partially substitutes for IDA, and IDL5 at the bottom does not substitute for IDA. Amino acids in the EPIP-Cs of IDLs 

identical to the IDA sequence are shaded grey; an asterisk indicates the EPIP residues common to IDA and IDL1, but not any 

of the other IDLs. (C) A phylogenetic tree illustrating the relationship between IDA and the IDL proteins. The tree was 

constructed using maximum likelihood analysis after alignment of the full-length protein sequences. Bootstrap values are 

indicated as percentages. (Stenvik et al., 2008)    
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closest relative of HAE is HSL1. Based on a previous microarray experiment (Birnbaum et al., 

2003) and publicly available expression data, it is hypothesized that HSL1 could be the 

receptor of IDL1 in the root cap. In addition to HSL1 and HSL2 other relatives of HAE 

(figure 1.3) might also be involved in cell separation pathways, such as IKU2L2. In this thesis 

IKU2L2 was investigated for a possible function.  

 

 

 

 

 

1.4.3 Aim of Study 

 

This study is a part of a larger project, where the goal is to characterize the five IDL genes and 

proteins and their putative target receptors of the LRR-RLK group XI, including HAE and its 

close relatives. The aim of this study was to investigate potential overlapping expression 

patterns of the LRR-RLKs HSL1 and IKU2L2 with the putative peptide ligands of the IDA 

and IDL family. Furthermore, since IDL1 rescues the ida mutant it was of interest to 

investigate the putative physical interaction between IDL1 and IDA’s receptors HAE/HSL2. 

In addition, the physical interactin between IDL1 and HSL1, a proposed receptor candidate 

Figure 1.3 The LRR-RLK group XI of 

proteins identified in Arabidopsis. The figure 

shows the alignment of the full length amino acid 

sequence of the 28-member subfamily of LRR-

RLKs XI proteins. Names are given for receptors 

with known biological function (except IKU2L2). 

Arrows indicate LRR-RLKs of most relevance to 

this thesis. (Butenko et al., 2009) 
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for IDL1, was investigated. The interaction between the IDL proteins and HAE/HSL2 in the 

floral organ abscission zone was investigated using a genetic approach. A subsidiary goal of 

this thesis was to nvestigate the roles of the putative ligand-receptor pairs in different cell-

separation processes. By studying possible root phenotypes in plants over-expressing IDL1, 

both in wild type background and haehsl2 background, and a SALK line for HSL1, the role of 

IDL1, HAE, HSL1 and HSL2 in root development was investigated. 
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2 MATERIALS AND METHODS 

2.1 Plant studies 

2.1.1 Surface sterilization and growth conditions 

 

Seeds were surface sterilized using 70 % ethanol for 5 min, bleached in 20 % chlorine in 0.1% 

Tween20 for 5 min and then washed in 0.001 % Tween20 for 5 min. 0.1 % agar was added to 

the seeds before plating on MS medium (Murashige, 1962), supplemented with 2 % sucrose 

(MS-2). For segregation analysis, selections of transformed lines, and genetically modified 

lines, either kanamycin (Km) (50 mg/l) or hygromycin (Hyg) (25 µg/ml), dependent on the 

construct used, was added to the medium. Plated seeds were cold treated at 4 °C for 18-32 

hours and then transferred to growth chambers and cultivated at 18 °C, 8h dark and 16h light. 

After two weeks the seedlings were transferred to soil and further cultivated under the same 

conditions.  

For segregation analysis T2 seedlings were scored for antibiotic resistance or sensitivity two 

weeks after germination. Seedlings that did not develop past the dicotylouse stage were 

considered to be antibiotic sensitive. 

 

2.1.2 Transformation of Arabidopsis thaliana by floral dipping 

 

The floral dipping method is based on the ability of A. tumefaciens to randomly integrate T-

DNA, from its pTi plasmid, into the Arabidopsis genome (Bechtold et al., 1993). The method 

is modified by Clough and Bent (Clough and Bent, 1998). 

2.1.2.1 Plant growth 

Arabidopsis ecotypes Col and C24 were grown to flowering stage. To obtain more flowering 

buds, inflorescences were clipped; this encourages proliferation of numerous secondary bolts. 

Plants were transformed four to six days after clipping.  

2.1.2.2 Culturing of A. tumefaciens and transforming of plants 

A T-DNA vector with the gene of interest was transformed into the A. tumefaciens strain C58 

pGV2260. Bacteria were grown in YEB-medium, containing the appropriate antibiotics for 
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selection, at 28 °C to the stationary phase (OD600 ~1.2). Cells were harvested by 

centrifugation for 10 min at room temperature at 5000 rpm and then resuspended in 5% 

sucrose solution (made fresh) to the final OD600 of 0.8. Before dipping, Silwet L-77 was 

added to a concentration of 0.005%. The above-ground parts of the plants were inverted in the 

Agrobacterium solution for 30 seconds. Then the plants were transferred to a tray with moist 

paper, and covered with transparent plastic to maintain humidity. The plants were placed in a 

dark room ON and returned to the growth chamber the next day. Plants were grown for 4-6 

weeks before seeds were harvested 1-2 times. 

For selection of transformants MS-2 plates with carbenicillin and rifampicin in addition to 

either kanamycin or spectinomycin, depending on the vector, was used. 

 

2.1.3 Histochemical GUS analysis 

 

Plant tissue was prefixed in 90% cold acetone for 15 minutes, rinsed in staining buffer (50 

mM NaPO4 (pH 7,2), 2 mM K4Fe(CN)6, 2 mM K3Fe(CN)6, 0.1% Triton X-100) for 10 

minutes, and incubated in staining buffer with 2 mM X-gluc substrate at 37°C for 30 minutes-

20 hours. When investigated the stained tissue was rinsed in a graded ethanol (EtOH) series 

(15%, 35%, 50% EtOH in 50 mM NaPO4), 10 minutes each. Post fixation was done by 

incubating the samples 30 minutes on ice in a 10:7:2:1 solution of 96% EtOH, dH2O, 100% 

acetic acid and 37% formaldehyde. The tissue was then rehydrated in the reverse graded 

EtOH series. 

Tissue was stored at 4°C in 50 mM NaPO4. The material was mounted on microscope slides 

in clearing solution (8:2:1 chloral hydrate:water:glycerol) (Grini et al., 2002) and incubated 

for minimum one hour at 4°C before inspection. The samples were investigated using a Zeiss 

Axioplan 2 imaging microscope. 

 

2.1.4 Subcellular localization of promoter::YFP constructs 

 

The subcellular localization of the promoter::YFP constructs were investigated using a Nikon 

SMZ800 stereomicroscope and a Leica TCS SP5 confocal microscope.  
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2.2 Working with bacteria 

2.2.1 Growth and storage of bacteria 

 

For permanent storage of all cultures, 1 ml culture containing 8% glycerol was made and 

stored at -80 °C. 

2.2.1.1 E. coli 

E. coli cultures were grown in LB-medium (10g/l Bacto tryptone, 5g/l Bacto yeast extract, 

0.17M NaCl) at 37 °C with shaking. E. coli cells were plated onto LA-plates (LB-medium 

containing 15g agar per liter) to obtain single colonies. 

 One Shot ® TOP 10 chemically competent cells (Invitrogen) 

For Gateway and TOPO cloning TOP10 cells were used. This strain does not contain 

the F’-episome which contains the ccdA gene. The ccdA gene is an antidote to the 

ccdB gene toxicity, and will prevent negative selection by the ccdB gene in the 

Gateway system. 

 BL21-SI
TM

 (Invitrogen) 

For induction of IDL1 protein BL21-SI
TM

 competent cells were used 

2.2.1.2 A. tumefaciens 

The A. tumefaciens strain C58 pGV2260 was used for transformation of both wild type (wt) 

Arabidopsis and the mutant line haehsl2. Agrobacterium cultures were grown in YEB-

medium (5 g/l Bacto beef extract, 1 g/l Bacto yeast extract, 1 g/l Bacto peptone, 5 g/l sucrose, 

pH 4.7, added 2 ml 1M MgSO4 per liter) at 28 °C with shaking. Agrobacterium cells were 

plated onto YEB-plates (YEB-medium containing 15 g agar per liter) to obtain single 

colonies. 

Agrobacterium cells containing pMDC 162 were selected on YEB-plates containing 

carbenicillin (100 µg/ml), rifampicin (100µg/ml) and kamamycin (50µg/ml) and cells 

containing pHGY and pH7WG2 were selected on YEB-plates containing carbenicillin (100 

µg/ml), rifamicin (100µg/ml), and spectinomycin (100µg/ml). 
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2.2.2 Transformation of bacteria 

 

2.2.2.1 Transformation of E. coli 

For TOP10 all transformations were done by heat-shock, as described by the manufacturer 

(Invitrogen). Cells were then plated onto LA-plates containing the appropriate antibiotic for 

selection, and incubated ON at 37 °C. 

2.2.2.2 Transformation of A. tumefaciens 

All transformations of A. tumefaciens were done by electrotransformation. Electrocompetent 

C58 pGV2260 was thawed on ice and plasmid was added. Then the mixture was added to a 

cold electroporation cuvette (Bio Rad) and shocked at 25 µFD, 200 Ω and 1.3 V. SOC 

medium was added and the cells were incubated 1 h at 28 °C with shaking. For selection of 

transformants the cells were spread on YEB-plates with the appropriate antibiotic and 

incubated at 28 °C. 

 

2.3 Working with yeast 

2.3.1 Yeast Two-Hybrid 

 

Yeast two-hybrid screening is a molecular tool used to identify putative protein-protein 

interactions or protein-DNA interactions by investigating the binding properties between two 

molecules. The key principle behind this lies in the ability of most eukaryotic transcription 

factors, such as the GAL4 transcription factor, to function properly without the covalent 

binding between their activating and binding domains. Even when the transcription factor is 

split in two it can still activate transcription if the two separated domains are indirectly 

connected.  

The protein to be tested for putative binding partners is fused to the GAL4 DNA binding 

domain (BD), which will bind to several different upstream activating sequences (UAS) of 

downstream reporter genes. Prey proteins are made as fusion proteins to the GAL4 activating 

domain (AD), and if binding occurs between bait and prey, the GAL4 transcription factor is 

indirectly connected and the reporter genes are actively transcribed. Prey fusion proteins are 

usually constructed on the basis of a cDNA library with the preceding RNA isolated from a 
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given type of tissue, representing all the protein expressed in that specific tissue in an 

organism (or the proteome of that tissue).   

 

 

Figure 2.1 The principle of yeast two-hybrid 

Interaction between the bait and prey protein indirectly connect the binding (DNA-BD) and GAL4 activating domain (GAL4 

AD) with the BD binding the upstream activating sequences (UAS) of GAL4, leading to transcriptional activation of 

downstream reporter genes. The figure is modified from the MATCHMAKER Library Construction & Screening Kit User 

Manual (Clontech). 

In the MATCHMAKER systems (Clontech) the downstream reporter genes included are 

MEL1, lacZ, ADE2 and HIS3. DNA-BD and GAL4-AD fusions are constructed by cloning 

cDNAs into the vectors pGBKT7 and pGADT7, respectively (figure 2.1). 

 

2.3.2 Growth of yeast 

 

The yeast strains were initially grown on YPDA-medium containing adenine and then 

selected on SD-medium (Synthetic Dropout) without either leucine (-L) or tryptophan (-T). 

  

2.3.3 Transformation of yeast 

 

The yeast cells were resuspended in 1X TE containing LiAc and herring testes carrier DNA 

and plasmid was added. PEG containing LiAc was added and the mix was incubated 30 min 

at 30 °C with shaking. After incubation DMSO was added and the cells were heat-shocked at 

42 °C according to the protocol (Clontech Matchmaker Library Construction and Screening 

Kit) 
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2.3.4 Direct mating   

 

One colony from each positive clone was resuspended in 2X YPDA, mixed with bait and 

control samples in a 96 well microtiter plate and incubated at 30 °C with shaking ON. The 

different matings were then plated on SD/-L/-T plates to attain diploid colonies and incubated 

at 30 C until colonies were observed. To find positive interactions three diploid colonies from 

each mating were then plated on both TDO-plates and QDO-plates containing X-α-gal and 

incubated at 30 °C for three days to look for positive interactions.   

 

2.4 Standard DNA techniques 

2.4.1 Agarose gel electrophoresis 

 

Separation of DNA fragments according to size was done by agarose gel electrophoresis 1 % 

agarose (SeaKem
®

LE agarose, Cambrex Biosciences) gels with 1 µg/ml SyberSafe 

(Invitrogen) were run in a 1xTAE buffer (40mM Tris-acetate, 1mM EDTA) at 80-90 V for 30 

min. To determine the size of DNA fragments GeneRuler
TM

 1 kb DNA ladder (Fermentas) 

was used. 

 

2.4.2 Purification of DNA fragments 

 

For purification of PCR fragments the Wizard SV gel and PCR Clean-Up System (Promega) 

was used. The procedure was followed according to the protocol supplied by the 

manufacturer. 

 

 

 

 



 

23 

 

MATERIALS AND METHODS 

2.4.3 Isolation of plasmids from E. coli cell cultures 

 

2.4.3.1 Miniprep (Promega) 

This method is based on the fact that treatment with SDS (sodium dodecyl sulfate) and alkali 

leads to cell lysis and denaturation of proteins and genomic DNA, while the plasmids are 

released in the supernatant. Isolation of plasmids from 4 ml culture was done with Wizard 

Plus SV Miniprep DNA Purification System (Promega) according to the manual supplied 

with the kit. 

 

2.4.4 Isolation of genomic DNA from Arabidopsis 

 

2.4.4.1 Miniprep (Omega) 

Isolation of small amounts of genomic DNA from plant tissues was done using e.Z.N.A SP 

Plant DNA Mini Kit (Omega). DNA was extracted from N2-frozen rosette leaves following 

the manual from the manufacturer. 

2.4.4.2 Extraction of DNA for genotyping 

For plants that were to be genotyped, DNA was extracted using the ULTRAPrep
®
 Genomic 

DNA Plant Kit (AHN Biotechnologie). The procedure was followed according to the protocol 

supplied by the manufacturer.  

 

2.4.5 Quantification of DNA 

 

Quantification of DNA samples was done using the NanoDrop® ND-1000 Spectrophotometer 

(NanoDrop Technonlogies) as described by the manufacturer. 
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2.4.6 Using the Gateway
®
 Technology (Invitrogen) to make constructs 

 

The Gateway Method is a cloning method based on site specific recombination performed by 

the bacteriophage lambda (Landy, 1989). DNA segments that flanked by recombination sites 

(att sites) are exchanged between vectors.  

Two recombination reactions constitute the basis of the Gateway technology. The BP reaction 

is catalyzed by the BP Clonase mix (Invitrogen), which recombines the attB sites of a PCR 

product or and attB expression clone and a donor vector containing attP sites. The BP 

reaction creates an entry clone bearing the insert of interest flanked by attL sites and a by-

product flanked by attR sites. The LR reaction is a recombination reaction between an entry 

clone and a destination vector (with an attR substrate) to create an attB-containing expression 

clone and a by-product containing attP sites.  

The Gateway technology has both positive and negative selection. The entry clone and the 

destination vector contain different antibiotic resistance genes for a positive selection of the 

entry or the expression clone. Both donor vectors, destination vectors, and the by-products of 

the BP and LR reactions contain the cytotoxic ccdB gene, which conveys a negative selection. 

Only plasmids with the appropriate antibiotic resistance and without the ccdB gene will yield 

colonies.    

 

2.4.6.1 YFP and GUS-constructs 

The PCR products containing the promoter regions of HSL1 and At5g49660, flanked by attB 

sites, were amplified using the primers attB1 SP2/At1g28440P, attB2 ASP2/At1g28440P, 

attB1 SP2/At5g49660P and attB2 ASP2/At5g49660P. The PCR products were recombined 

into the pDONR
TM

/zeo. The entry clones were confirmed using PCR and sequenced using the 

same primers that were used amplifying attB flanked PCR products.  

The destination vector pMDC 162 (Curtis and Grossniklaus, 2003), which contains the GUS 

marker, was used to obtain GUS-expression clones. The entry clones containing the promoter 

regions upstream of the coding sequence of HSL1 and IKU2L2 (2172 bp and 2485 bp 

respectively) were recombined with the destination vector pMDC162 in an LR reaction in 

front of the gusA gene (figure 2.2).  
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Figure 2.2 The GUS construct. The inserted promoter region is flanked by attB sites (25 bp) and followed by the coding 

sequence (CDS) of gusA, encoding the β-glucuronidase. RB: Right border, LB: Left border, tNos: Nos terminator, HygroR: 

Hygromycin resistance gene, KmR: Kanamycin resistance gene (NptII). The figure is not to scale. 

For the YFP expression clones the destination vector pHGY (RIKEN Plant Science Center) 

was used (figure 2.3). The entry clones containing the promoter sequences of HSL1 and 

IKU2L2 were recombined to the pHGY vector in an LR reaction in front of the YFP gene. 

 

Figure 2.3 The YFP construct. The inserted promoter region is flanked by attB sites (25 bp) followed by the CDS of the 

YFP gene. SpR: Spectinomycin resistance gene. The figure is not to scale.  

The expression clones for both GUS and YFP expression were analyzed by PCR using the 

primers attB1 SP2/At1g28440P, attB2 ASP2/At1g28440P, attB1 SP2/At5g49660P and attB2 

ASP2/At5g49660P and by sequencing using the M13F and M13R primers in addition to the 

other four primers (see Appendix 1). 

 

2.4.6.2 Constructs for direct mating 

Prey- and bait constructs were also made using the Gateway
®

 Cloning Technology. For the 

prey construct genomic DNA encoding the ECD of HSL1 (1888 bp) was amplified using 

PCR. The ECD contains the leucine-rich repeat (LRR) sequence presumably needed for 

ligand binding. Amplification was done by using the primers attB1 HSL1 cds SP and attB2 

HSL1 cds ASP, where the antisense primer contained a stop codon. The attB flanked PCR 

product was then recombined into the vector pDONR
TM

/Zeo (Invitrogen) in a BP reaction. 

The entry clones were verified by PCR and sequencing using the ECD specific primers 

(Appendix 1). The entry clones were then recombined into the destination vector pADN by a 

LR reaction. This resulted in a prey vector with the GAL4 Activation Domain (AD) upstream 

of and in reading frame with the LRR region of HSL1. This was confirmed using the AD 

insert screening primers (5’ and 3’) (Appendix 1). 
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Figure 2.4 The prey fusion construct. The GAL4 AD is positioned upstream of and in reading frame with the HSL1 ECD. 

The HSL1 ECD is flanked by attB sites (25 bp). LEU2: β-isopropylmalate dehydrogenase. AmpR: Ampicillin resistance gene. 

The figure is not to scale. 

 

For the bait vector the coding sequence of IDL1 (244bp) without the sequence encoding the 

SP (IDL1ΔSP) was cloned into the pDONR
TM

/Zeo (Invitrogen) in a PB reaction. The primers 

used for amplifying the truncated IDL1 transcript were attB1 IDL1 cds SP and attB2 IDL1 

cds ASP (Appendix 1). After sequencing, the entry clone was recombined into the destination 

vector pGBKT7 (Clontech) by an LR reaction. The resulting bait vector contained the GAL4 

Binding Domain (BD) upstream of and in reading frame with the coding sequence of IDL1, in 

order to make a translational fusion protein (figure 2.5). This was confirmed by sequencing 

using the BD insert screening primers (5’ and 3’) (Appendix1).  

 

 

Figure 2.5 The bait fusion construct. The GAL4 BD is positioned upstream of and in reading frame with IDL1ΔSP. 

IDL1ΔSP is flanked by attB sites (25 bp). Trp1: Phosphoribosylanthranilate isomerise. The figure is not to scale. 

All BP and LR reactions were performed as recommended by the manufacturer. 

 

2.4.7 TOPO TA cloning (Invitrogen) 

 

The TOPO
® 

Technology (Invitrogen) is a fast and efficient way of cloning PCR products into 

a vector. A key to the technology is the enzyme DNA topoisomerase, which has both 

restriction and ligase activity. Topoisomerase I from Vaccinia virus recognizes specific DNA 

sequences and cleaves the phosphodiester backbone of one strand. The energy from the 

reaction is conserved in the formation of a covalent bond between the 3’ thymidine phosphate 

in the cleaved strand and a tyrosine residue in the topoisomerase. The plasmid vector used, 

pCR
®
2.1 II TOPO

®
, is supplied linearized with the topoisomerase covalently bound to the 3’ 
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end of each strand. The 5’ hydroxyl of the PCR product will then attack the phosphotyrosine 

bond between the 3’ thymidine phosphate and the topoisomerase, so that the first reaction is 

reversed, the enzyme is released, and the PCR product is recombined into the TOPO vector. 

Topo cloning reactions were performed according to the manufacturer’s recommendations. 

2.4.7.1 Constructs for identification of T-DNA insertion sites 

The PCR products containing the flanking left border (LB) of the T-DNA insertion in Salk 

line SALK_108127 were amplified using the primers LBb1 and SALK_108127 RP. The PCR 

products were ligated into the pCR
®
2.1 II TOPO

®
 (Invitrogen) vector (figure 2.6). The clones 

were confirmed using PCR and sequenced using the same primers that were used in 

amplifying the PCR products.  

 

Figure 2.6 The Topo construct. The PCR fragment is cloned into the LacZα gene, encoding α-galactosidase, thus disrupting 

the function of LacZ. Plac: LacZα promoter, f1 ori: f1 origin of replication, KmR: Kanamycin resistance gene, AmpR: 

Ampicillin resistance gene. The figure is not to scale. 

 

2.5 Genotyping 

 

In order to indentify the genotype of plants PCR genotyping was performed 

 

2.5.1 Genotyping of 35S:IDL genes, hae and hsl2 

 

Transgenic plants containing the 35S:IDL over-expression constructs were identified using 

the primers 35S L, attB2 IDL1 stop, attB2 IDL2 stop and attB2 IDL3 stop (figure 2.7). As 

these are dominant alleles, there was no need to distinguish between hemizygous (HZ) and 

homozygous (HM) plants. To determine whether plants were wt, HZ or HM for T-DNA 

insertions in the HAE or HSL2 alleles, the primers LBb1, HAE RP, HAE LP, HSL2 RP and 

HSL2 LP were used. The expected fragment lengths were (Table 2.1): 
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Primers Band Length 

35S L + attB2 IDL1 stop 35S promoter-genomic flanking region  538 bp 

35S L + attB2 IDL2 stop 35S promoter-genomic flanking region  563 bp 

35S L + attB2 IDL3 stop 35S promoter-genomic flanking region  576 bp 

HAE RP + LBb1 T-DNA-genomic flanking region 526 bp 

HAE RP + HAE LP wt 1042 bp 

HSL2 RP + LBb1 T-DNA-genomic flanking region 561 bp  

HSL2 RP + HSL2 LP wt 1055 bp 
 

Table 2.1 Expected fragment lengths 

 

For the HAE and HSL2 T-DNA insertions, a wt plant would give a 1042/1055 bp band on an 

agarose gel, a HM plant would give a 526/561 bp band and a HZ plant would give both bands 

(figure 2.8). All three primers (LP, RP and LBb1) were run in the same PCR reactions, and all 

PCRs were run at standard conditions. 

 

 

 

 

 

Figure 2.7 Genotyping for the 35S:IDL constructs. 

The expected fragment lengths were 538 bp, 563 bp and 

576 bp, as indicated by the blue arrow. P35S: 

Constitutive 35S promoter. 
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Figure 2.8 Genotyping for HAE and HSL2 T-DNA insertions. A T-DNA insertion results in a PCR product of 526 bp 

(HAE) or 561 bp (HSL2), whereas no insertion results in a PCR product of 1042 bp (HAE) or 1055 bp (HSL2), as indicated 

by the blue arrows. 

 

2.5.2 Genotyping of SALK and SAIL lines for HSL1 and IKU2L2 

 

SALK and SAIL lines supplied from the Salk Institute were genotyped to look for a line 

homozygous for the T-DNA insertion. The primers used were LBb1, LB1, SALK_104365 

RP/LP, SALK_108126 RP/LP, SALK_108127 RP/LP and SAIL_268_H07 RP/LP (Appendix 

1) 

 

2.6 Polymerase chain reaction (PCR) 

 

PCR was used for amplification of desired DNA fragments for cloning, screening for positive 

bacteria colonies and genotyping of T-DNA mutants. Standard setup for one reaction was 1X 

reaction buffer, 200 µM dNTP (deoxyribonucleotide triphosphate), 0.2 µM primers and 0.5-1 

U DNA polymerase (Taq DNA Polymerase (New England BioLabs) or Phusion
TM

 High-

Fidelity DNA Polymerase (Finnzymes)). A positive control was included when possible and a 

negative control was always included. 

Taq DNA Polymerase is a thermostable polymerase for standard PCR. Phusion
TM

 High-

Fidelity Polymerase is a thermostable polymerase with 3’5’ exonuclease activity that gives 

accurate amplification of DNA, thus making it suitable for cloning. Taq Polymerase generates 

a 3’ A-overhang which facilitates ligation into a TOPO vector, whereas Phusion
TM

 High-

Fidelity Polymerase generates blunt ends. 
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All programs used were variations of the general program: 94 °C 5 min, 94 °C 30 sec, 52-68 

°C 15-30 sec, 72 °C 3 min, 72 °C 7 min, and 4 °C ∞. 

 

2.7 Sequencing 

 

Sequencing was performed with an Applied Biosystems 3730 DNA analyzer using the ABI 

BigDye Terminator sequencing buffer and v3.1 Cycle Sequencing kit provided by the 

sequencing facility at CEES, Department of Biology and Molecular Biosciences. 

 

2.8 Protein methods 

2.8.1 Induction of proteins from pGEX-AB-GAW expression clones 

 

BL21-SI
TM

 cells (Invitrogen), optimal for expression of protein, were used for expression of 

recombinant GST-fusion proteins. The coding sequences of these proteins are incorporated in 

isopropyl-β-D-thiogalactopyranoside (IPTG) inducible pGEX-AB-GAW expression clones. 

All expression clones used were constructed by Grethe-Elisabeth Stenvik (figure 2.9).  

 

 

Figure 2.9 The expression clone for GST-IDL1ΔSP. The expression clone was construcyed by Grethe-Elisabeth Stenvik. 

 

One colony of cells was diluted in 10 ml LB containing 100 µg/ml ampicillin and cultured 

over night at 37°C with shaking. At OD600 = 0.9 the cultures were split in two and IPTG was 

added to a concentration of 150 µM to one of the two cultures. Protein expression was 

induced at 150 rpm for 1 and 4 hours at 30°C. 

To investigate induction of GST-fusion proteins, 18 µl of induced and  not induced cell 

culture were run on the same SDS-PAGE gel for comparison of band strength.  
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2.8.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

SDS-PAGE was used for detection of proteins, where proteins are separated according to their 

electrophoretic mobility. SDS is an anionic detergent that denatures the secondary and the 

tertiary structures of proteins, in addition to coating the proteins in a uniform layer of negative 

charge, almost proportional to the mass of the protein. Linearized, net negatively charged 

proteins can thus be separated solely by their molecular weight when they migrate towards the 

anode in an electrical field. 2-mercaptoethanol is added to the loading buffer, in addition to 

SDS, do reduce intrinsic disulfide bonds. Estimation of the weight of the polypeptides was 

done by running a standard with known molecular weight in a separate lane. 

Polyacrylamide gels are separated in two layers: the stacking gel (5% 30% acrylamide/Bis 

solution (BioRad), 200 mM Tris-HCl pH 6.8, 0.1% SDS, 0.1% ammonium persulfate (APS), 

0.1% N, N, N’, N’-Tetramethylenediamine (TEMED)) and the separating gel which can have 

various concentrations of acrylamide (10/12/15% 30% acrylamide/Bis solution, 390 mM Tris-

HCl pH 8.8, 0.1% SDS, 0.1% APS, 0.04% TEMED). The stacking gel concentrates or 

“stacks” the proteins in thin bands before the polypeptides, with equal starting times, are 

subjected to separation in the separating gel. Proteins samples were mixed with the 

appropriate amount of 4X SDS loading buffer, boiled at 95°C for 5 min, and centrifuged at 

max speed for 6 sec. Denatured proteins were loaded onto the gel and run in running buffer 

(50mM Tris pH 8.3, 196 mM glycine, 0.1% SDS) at 45-55 mA for ~1 hour. PageRuler
TM

 

Prestained Protein Ladder (Fermentas) was used as a size marker. 

Staining of the gel was done in Coomassie Brilliant Blue dye (0.25 g/l Coomassie Brilliant 

Blue in 10% acetic acid, 45% methanol) for approximately 30 min before the gel was de-

stained by boiling for 5 min.  

 

2.8.3 Western blot analysis 

 

Western blotting, or immunoblotting, is used to detect a specific protein by exploiting the 

specificity of antigen-antibody recognition. Proteins are separated by SDS-PAGE and 

transferred, by electroblotting, to a PVDF membrane with non-specific affinity for amino 
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acids, so that the proteins are immobilized on the membrane and readily accessible for 

analysis. Proteins are then probed with antibodies specific to the target protein.  

Equal protein samples were run on three identical SDS-polyacrylamide gels, where one gel 

was subjected to Coomassie-staining, while the other two were blotted onto PVDF 

membranes. 

2.8.3.1 Blotting 

Two Scotch-brite
TM

 pads (3M Company) and two pieces of Whatman 3MM papers 

(Whatman®) were soaked in blotting buffer (25 mM TRIS, 192 mM glycine, 20% methanol), 

while the Immobilon
TM

 PVDF membrane (Millipore) was soaked in methanol for 3 sec, as a 

hydrophilic treatment, saturated in dH2O and soaked in blotting buffer before all layers were 

sandwiched together with the protein gel next to the membrane. The “sandwich” was then 

placed in an electrophoresis blotting chamber and run in cold blotting buffer at 100 V for 1 

hour at 4°C. To reduce the heating caused by the electric current a cooling element and a 

magnetic stirrer was included in the setup. 

2.8.3.2 Immunolabeling 

To reduce unspecific binding of antibody, the membrane was first left in blocking buffer (1X 

PBS, 2.5% skimmed milk, 0.1% Tween-20) for 1 hour with shaking. Blocking buffer was 

changed, the primary antibody was added in a 1000X dilution (goat anti-GST (Amersham 

Biosciences) and rabbit anti-IDL1) and incubated for 1 hour at room temperature. The 

membrane was then washed in wash buffer (1X PBS, 0.1% Tween-20) for 15 min with 

shaking, and then it was washed again for 3 x 5 min with fresh changes of wash buffer, this to 

remove any unbound antibody. Secondary antibody was then diluted 10000X (rabbit anti-goat 

(Sigma) and goat anti-rabbit (Thermo Scientific)) in blocking buffer and the membrane was 

soaked in this for 1 hour with shaking.  

SuperSignal® West Pico Stable Peroxide Solution and Enhancer Solution (PIERCE) was 

mixed in a 1:1 ration, transferred to the membrane and incubated for 5 min. The membrane 

was then drained for excess liquid, wrapped in plastic foil and placed in a Hypercassette
TM

 

(Amersham pharmacia biotec). 

2.8.3.3 Detection 

Shortly after incubation with working solution, a sensitive High Performance 

Chemiluminescence Film (GE Healthcare) was exposed to the protein membrane for various 
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amounts of time, depending on the expected signal strength. The secondary antibody is 

coupled to horseradish peroxidase (HRP), that will react with the working solution and emit a 

light signal that leaves a band on the processed x-ray film. The films were developed in the 

Optimax® X-ray Film Processor (PROTEC).  

 

2.9 Bioinformatics 

2.9.1 Sequence alignment and primer design 

 

The Invitrogen software tool for sequence alignment and data management, Vector NTI 

Advance
TM

, was used to analyze and align nucleotide sequences in addition to designing 

primers.  

 

2.10 Statistical analysis 

2.10.1 Standard deviation (SD) 

 

Standard deviation (SD) was calculated using the formula; 



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SD  

Where X is the individual data points, M refers to the mean and n refers to the number of data 

points. ∑ (sigma) means that all (X-M)
2
 are added to find the sum for all n data points. 

 

2.10.2 The chi-square test 

 

The chi-square test is performed to see if the observed and the expected frequency of results 

are of significant value supplied by the statistic χ
2
 (chi-square), given by the formula; 
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Where O is the observed value and E is the expected value. Expected values are computed on 

the basis of our hypothesis. A 0.05% confidence and 1 degree of freedom was used in this 

test, and for χ
2
 < 3.84 the hypothesis holds with 95% accuracy and is not rejected. 

 

2.10.3 Two-sample T-test 

 

In the two-sample T-test the null hypothesis is defined so that there is no difference between 

the population means. The T-value is given by the formula; 

2
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Where n1 and n2 are the number of samples in group 1 and group 2, respectively, 1Y and 2Y are 

the sample means, and s1
2
 and s2

2
 are the sample variances (variance = σ

2
 where σ is the 

standard deviation). In an unpaired T-test there are n1 + n2 – 2 degrees of freedom. A 0.05 

significance value and 1degree of freedom was used in the test, and for |T| > 2.02 the H0 is 

rejected, meaning that the population means are different with 95% accuracy.  
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3 RESULTS 

A possible physical interaction between IDL1 the native receptors of IDA, HAESA and 

HSL2, in addition to the closely related receptor HSL1 (Shiu and Bleecker, 2001a), was 

investigated using the yeast two-hybrid system. To see whether the IDL proteins were 

signaling through the native receptors of IDA in the floral organ AZ of plants over-expressing 

the IDL proteins, a genetic approach was also applied by investigating the phenotype of 

haehsl2 plants over-expressing IDL1, IDL2 and IDL3. 

For IDL1, which is normally expressed in the columella root cap, over-expression has been 

shown to result in shorter roots (Nora Tandstad, unpublished results). Due to the early 

abscission phenotype observed for over-expression of all the IDL genes, it was therefore of 

interest to investigate if this over-expression phenotype was also found when over-expressing 

IDA, IDL2 and IDL3.  

The expression pattern of the two genes At1g28440 (HSL1) and At5g49660 (IKU2L2) was 

examined by promoter::reporter gene analysis in order to compare the expression pattern to 

the observed expression pattern of the IDL genes. According to publicly available microarray 

data HSL1 and to a lesser extent IKU2L2 could be the native receptor(s) of IDL1 in roots, as 

they both seem to be expressed in the root. Therefore were three SALK lines for HSL1 and 

one SAIL line for IKU2L2 investigated in order to look for mutant phenotypes to investigate 

if any of these receptors could be the receptor of IDL1.    

 

3.1 Can IDL1 interact with IDA’s receptors? 

 

IDL1 is as efficient as IDA in the floral organ abscission zone (AZ), rescuing the abscission 

defect of ida, probably by interacting with IDAs receptors (Stenvik et al., 2008). We therefore 

wanted to test whether we could detect a direct interaction between IDL1 and IDA’s, 

receptors HAE and HSL2. It was also of interest to look for an interaction between IDL1 and 

its potential receptor HSL1. 

The direct interaction of IDL1 and HAE, HSL2 and HSL1 is expected to occur between the 

exported part of IDL1, the SP was therefore not included in the construct, and the 

extracellular domain (ECD) of the receptors containing the LRR domain. The constructs for 
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HSL1 ECD and IDL1ΔSP were made according to Materials and Methods, section 2.4.6.3. 

Yeast cell strain AH109 (MATa) was transformed with the prey vector containing the 

sequence encoding the ECD of HAE, HSL2 and HSL1 in frame with the GAL4 AD. The 

constructs containing HAE and HSL2 were made by Even S. Riiser (Riiser, 2009). Cells of 

the strain Y187 (MATα) were transformed with the bait vector containing IDL1ΔSP in frame 

with GAL4 BD. After growth on appropriate selective medium (SD/-Leu and SD/-Trp, 

respectively), the two strains were mated and plated on SD/-Leu/-Trp. The SD/-Leu/-Trp 

medium allows for selection of diploid yeast containing both the bait and prey vector.  

To test the interaction between IDL1 and the receptors the diploid yeast cells were streaked 

onto selective medium. As negative controls, Y187 cells containing only the bait vector 

pGBKT7 (BD) and pGBKT7-Lam (Human Lamin C::GAL4 BD) (LAM) were mated to 

AH109 containing the respective prey vectors. As a positive control, diploid yeast cells 

expressing two proteins with a known interaction, ASHR3 and AMS (Thorstensen et al., 

2008) were used. 

Growth of diploid yeast colonies were in all cases observed on the SD/-Leu/-Trp medium 

(figure 3.1, left column), indicating that the mating reactions were successful. For both the 

TDO and QDOX selective medium, growth was seen for the positive control (ASHR3/AMS), 

as expected (figure 3.1 middle and right column). The colonies with a positive interaction 

were coloured blue on QDOX medium. This colour is due to the cleavage of X-α-gal into a 

blue end-product by the α-galactorsidase encoded by the reporter gene Mel1. No growth was 

observed for the negative controls, showing that neither GAL4 BD alone nor GAL4::Human 

Lamin C interacts with any of the prey constructs. For the IDL1ΔSP::GAL4BD bait and the 

ECD of HAE::/HSL2::/HSL1::GAL4AD fusion proteins no growth was observed. This result 

concludes that no direct interaction between IDL1ΔSP and the ECD of HAE, HSL1 or HSL2 

could be detected using yeast two-hybrid. 
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Figure 3.1 Direct interaction assay. Growth was observed in all sectors of the –L/-T plates (left column), confirming the 

successful mating reactions. On TDO medium (middle column) and QDOX (right column) growth was observed for the 

positive control (lower left sector), while no growth was seen for the negative controls (upper left and lower right sector). 

Furthermore, no growth was observed for the cells containing both bait and prey fusion proteins was observed (upper right 

sector).  

 

3.2 Production of recombinant IDL1 protein in E. coli 

 

The lack of interaction in the Y2H assay could be due to lack of processing of IDL1 within 

yeast cells. To delineate the active peptide we plan to use Cauliflower meristem extract which 

has been shown to process IDA (Stenvik et al., 2008). In order to be able to produce protein to 
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be used in the processing assay, it is necessary to be able to express the protein in E. coli. To 

express the protein an expression clone was therefore constructed.  

A recombinant IDL1 protein was created by cloning IDL1ΔSP in front of the gene encoding a 

GST (glutathione S-transferase)-tag in the vector pGEX-AB GAW (Stenvik et al., 2006) and 

then transformed into E. coli BL21-SI
TM

 cells (materials and methods section 2.8.1) 

(performed by Grethe-Elisabeth Stenvik).  

GST-IDL1ΔSP was expressed in E. coli (figure 3.2) as seen in figure 4.2. The recombinant 

GST-IDL1ΔSP protein was visible as a strong band at ca. 30 kD, corresponding to the GST 

tagged IDL1ΔSP peptide of approximately 279 aa (ca. 30.7 kD). To verify that this was the 

fusion protein Western blots were probed with antibodies against the variable region of IDL1 

and GST. The antibody against the variable region of IDL1 resulted in much background 

noise, and could not be used to detect the recombinant IDL1 protein. The antibody against 

GST however gave one strong band of approximately 30 kD and three weaker bands at 

approx. 28 kD, 27.5 kD and 24 kD. The 30 kD band corresponds to the recombinant protein 

and possibly degradation products of this recombinant protein. 

 

 

B A 

Figure 3.2 GST-IDL1ΔSP. (A) Expression of the recombinant protein has been induced in lane 3 and 5 and a clearly 

visible band is seen at approximately 30 kD, corresponding to the 279 aa recombinant protein GST-IDL1ΔSP (asterisk). 

(B) Western blot of the induced GST-IDL1ΔSP. In lanes 2 and 4, where protein expression has been induced, a strong 

band of approximately 30 kD is visible (asterisk). This corresponds to the GST-IDL1ΔSP recombinant protein. The three 

bands of approximately 28 kD, 27.5 kD and 24 kD are possibly the degradation products of the recombinant protein. 
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3.3 Functional redundancy of IDA and IDL proteins in roots 

 

Since the direct interaction approach did not function, we went back to genetic and in planta 

experiments. It is known that the 35S:IDL genes exhibit a phenotype in the floral abscission 

zone (AZ) similar to that of 35S:IDA, namely early abscission of floral organs and secretion 

of arabinogalactan in the AZ (Stenvik et al., 2006; Stenvik et al., 2008). An interesting 

question to be answered is; can these proteins be functionally redundant also in other tissues 

than the AZ? Preliminary experiments performed by Nora Tandstad have indicated that 

35S:IDL1 plants have a specific short root phenotype (Tandstad, 2005) and this was the 

background for setting up a root experiment. The purpose of the experiment was to see if only 

35S:IDL1 plants had the short root phenotype, or if other 35S:IDL genes also could exhibit 

the same short root phenotype.   

Plants harbouring 35S:IDA and 35S:IDL gene constructs in Col background were investigated 

for short root phenotypes. The plants were grown vertically on MS plates for 17 days (see 

materials and methods). The results show that the plants over-expressing IDA and IDL1 have 

significantly (P < 0.001) shorter roots than the wt Col plants from day 5 and onwards (figure 

3.3). The plants over expressing IDL2, IDL3 and IDL5 were also shown to have significantly 

shorter roots, although at a lower level of significance (P < 0.01 and P < 0.05). The plants 

over-expressing IDL4 however, did not show any significant difference in root length 

compared to the wt control (figure 3.3).     
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Figure 3.3 Bar diagram showing length of roots (mm) relative to days after exposure to light. The bars show that over-

expression lines of IDA, IDL1, IDl2, IDL3 and IDL5 have shorter roots relative to the Col wt control line. 35S:IDL4 plants 

did not at any time exhibit a difference in root length from the wt control. *** P-value < 0.001, ** P-value < 0.01, * P-value < 

0.05. N = 23.  

 

After observing these results it was decided to also measure the total above-ground length of 

the plants to see whether the 35S:IDA and the 35S:IDL1 plants have a specific short root 

phenotype, or if they are generally shorter than the wt Col. The data showed that the above-

ground length of plants harbouring the 35S:IDL constructs were significantly shorter than the 

Col wt (figure 3.4). 
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Figure 3.4 Bar diagram showing length of plant (cm) relative to plant. All plants are significantly smaller than the Col wt 

plants. *** p < 0.001, ** p < 0.01. N = 14 

 

In order to be able to say if 35S:IDA and 35S:IDL1 plants have a shorter root phenotype, the 

length of the root had to be seen relative to the length of the above-ground plant. This showed 

that the 35S:IDL1 plants, when looking at the ratio between plant length and root length 

clearly have significantly shorter roots (p < 0.05), whereas the 35S:IDA plants do not have a 

specific shorter root phenotype (Table 3.1 and figure 3.5). It is known that IDA signals 

through HAE and HSL2 in the AZ (Cho et al., 2008; Stenvik et al., 2008), so it would be 

expected that 35S:IDA and 35S:IDL1 plants would have the same root phenotype if they 

signal through the same receptors. Since 35S:IDA does not exhibit a shorter root phenotype, it 

is plausible to think that IDA and IDL1 signals through different receptors in the root.    
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Plant 
Ratio plant 
length:root 

length 
Standard deviation p-value 

35S:IDA 14,6 8,845 0,187 

35S:IDL1 22,2 19,902 0,050 

35S:IDL2 8,7 4,583 0,123 

35S:IDL3 8,9 4,360 0,131 

35S:IDL4 12,6 9,528 0,583 

35S:IDL5 9,2 6,984 0,359 

Col wt 11,1 3,267 1,000 
 

Table 3.1 Ratio between plant length and root length 

 

 

Figure 3.5 Bar diagram showing the average ratio between plant length and root length. The 35S:IDL1 plants have 

significantly (p < 0.05) shorter roots in comparison with the wt Col background. * p < 0.05. N = 14 

 

3.4 Over-expression of IDL1, IDL2 and IDL3 in haehsl2 background 

 

Since over-expression of the IDL proteins all show early abscission, we wanted to test 

whether the early abscission observed is dependent on HAE/HSL2 signaling, or if another 

receptor could be involved. 35S:IDL1, 35S:IDL2 and 35S:IDL3 constructs (Stenvik et al., 

2008) were transformed into haehsl2 plants and investigated for abscission phenotypes, and 

any additional phenotypes. After selection of T1 and T2 plants, the transformants was 
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genotyped to make sure that they contained the over-expressing constructs for the IDL genes 

and were homozygous for the T-DNA insertions in the HAE and HSL2 genes (figure 3.6).    

 

 

Figure 3.6 Genotyping of transformants. The investigated transformants did all contain the 35S:IDL of choice and was 

homozygous for the T-DNA insertions in the HAE and HSL2 genes, making them 35S:IDL haehsl2 plants. (A) The primers 

used to genotype for the 35S:IDL constructs and the expected fragment lengths. (B) The primers and expected lengths of 

fragments for the T-DNA insertions in HAE and HSL2, respectively. (C) The gel showing the genotyping. For the T-DNA 

insertions all three primers were used in the same reactions.  

 

3.4.1 Over-expression of IDL genes in haehsl2 background retains the haehsl2 

phenotype 

 

When examining the plants in both T1 and T2 generation it became clear that they exhibited 

the haehsl2 phenotype, with no abscission of floral organs, masking the early abscission 
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35S:IDL phenotype (figure 3.7). The phenotypes of the plants were further confirmed when 

looking closer at the siliques of the plants. They all retained their floral organs even after 

silique development, just like the haehsl2 mutant (figure 3.8). Since over-expression of IDL1, 

IDL2 or IDL3 did not rescue the haehsl2 phenotype this indicates that signalling of the IDL 

proteins in the floral organ abscission zone is dependent on HAE and HSL2.   

When the receptors are present and the IDL proteins are over-expressed, the signal is 

strengthened and the plants display early abscission (Stenvik et al., 2006; Stenvik et al., 

2008). Removing the receptor on the other hand stops the IDA signal from being relayed and 

the plants are unable to abscise their floral organs (Cho et al., 2008; Stenvik et al., 2008). The 

fact that the haehsl2 phenotype is retained also in the IDL over-expression lines is a clear 

indication that all signaling is dependent on HAE and HSL2 in the floral AZ. 

 

 

 

 

 

wt Col 

35S:IDL3 hae hsl2 35S:IDL2 hae hsl2 35S:IDL1 hae hsl2 hae hsl2 

35S:IDL3 35S:IDL2 35S:IDL1 

Figure 3.7 Phenotypes of the transformants. The 35S:IDL haehsl2 plants retain the haehsl2 phenotype, masking the 

35S:IDL phenotype.  
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3.4.2 35S:IDL1 plants in haehsl2 background have long roots 

 

35S:IDL1 plants, but not 35S:IDA plants, have been shown to have a specific short root 

phenotype in wt Col background ( see section 3.3) and these results indicate that HAE/HSL2 

is not the receptor pair of IDL1 in the root although IDL1 is able to interact with HAE and 

HSL2 in AZs. On this background it was interesting to investigate the 35S:IDL1 root 

phenotype in a haehsl2 background, and also because HSL2 is expressed in the root cap of the 

main root (Riiser, 2009), and haehsl2 have long roots (Riiser, 2009).  

T1 plants of 35S:IDL1, 35S:IDL2 and 35S:IDL3 in haehsl2 background were selected on 

vertical MS/hygromycin plates, and the root length was investigated. Since wt Col and 

Figure 3.8 Floral organ phenotypes. Siliques from position 10. Over-expression of IDL1, IDL2 and IDL3 in haehsl2 

background does not rescue the haehsl2 phenotype, indicating that signaling of IDL proteins in the floral organ AZ is 

dependent on HAE and HSL2 
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haehsl2 plants cannot grow on this medium, the experiment was performed without control 

plants. The primary results however, did indicate that the roots of the 35S:IDL1 plants in 

haehsl2 background were significantly (p < 0.001) longer than that of the 35S:IDL2 and 

35S:IDL3 plants in haehsl2 background (figure 3.9). In the wt background the roots of 

35S:IDL1 plants are shorter than the roots of 35S:IDL2 and 35S:IDL3 plants (figure 3.3). If 

one assumes that all the IDL proteins are signaling through the same receptor(s), then one 

would expect that they would all have the same root phenotype in the haehsl2 background. 

The length of the 35S:IDL roots are however clearly different from the 35S:IDL2 and 

35S:IDL3 roots in the haehsl2 background, indicating that they do not signal through the same 

receptor(s) in the root.  

 

 

Figure 3.9 Bar diagram showing length of roots (mm) relative to days after exposure to light. From day 5 and onwards 

show that 35S:IDL1hae hsl2 has significantly (p < 0.001) longer roots than 35S:IDL2 hae hsl2 and 35S:IDL3 hae hsl2 roots, 

indicating that HAE/HSL2 could be the receptor of IDL1 in the root. N = 21 

 

Only measuring the root length is however not enough to determine whether 35S:IDL1 in 

haehsl2 background have a shorter root phenotype or not. It was also necessary to measure 

the plant length above-ground as well (figure 3.10).  
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Figure 3.10 Bar diagram showing length of plants (cm). The plants of 35S:IDL1 in haehsl2 were significantly (p < 0.001) 

longer than the 35S:IDL2 and 35S:IDL3 plants in haehsl2 background. *** p < 0.001. N = 10 

 

Measuring the above-ground plant length showed that the 35S:IDL1 plants also were higher 

above-ground than the 35S:IDL2 and 35S:IDL3 plants. The ratio between plant length and 

root length showed that the roots of the 35S:IDL1 plants in haehsl2 background are 

significantly (p < 0.05) longer than the roots of the 35S:IDL2 and 35S:IDL3 plants relative to 

the above-ground plant length (Table 3.2 and figure 3.11). 

 

Plant 
Ratio plant 
length:root 

length 
Standard deviation p-value 

35S:IDL1 in haehsl2 9,4 5,049 
         

0,01665 

35S:IDL2 in haehsl2 15,4 11,379 0,53126 

35S:IDL3 in haehsl2 18,4 9,491 1,00000 
 

Table 3.2 Ratio between plant length and root length 
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Figure 3.11 Bar diagram showing ratio between plant length and root length. The 35S:IDL1 plants in hae hsl2 

background have significantly (p < 0.05) longer roots than the 35S:IDL2 and 35S:IDL3 plants in the same background, 

compared to the above-ground organs. * p < 0.05. N = 10 

 

The results from the root experiment, showing that 35S:IDL1 plants in haehsl2 background 

have longer roots than 35S:IDL2 and 35S:IDL3 in haehsl2 background, indicate that IDL1, 

but not IDL2 and IDL3 signal through HAE and/or HSL2 in the root.  

 

3.5 Looking for new partners  

 

When the IDL genes are expressed using IDA’s own promoter, only IDL1 could rescue the 

ida mutant phenotype, while IDL2, 3 and 4 gave partial rescue, and IDL5 no rescue (Stenvik 

et al., 2008). Thus these genes are only partially redundant with IDA and all the 35S:IDL 

phenotypes may not  rely on signaling through the HAE/HSL2 receptors. This is the reason 

for why we are looking for other related receptors that could be partners for the IDL proteins. 

HSL1 and IKU2L2 are two leucine-rich repeat receptor-like kinases (LRR-RLKs) closely 

related to the members of the HAESA family (Shiu and Bleecker, 2001a). We were interested 

in knowing the expression pattern of these two genes in order to see if they could fit as the 

receptor for some of the IDL proteins.  The promoter sequences of the genes were cloned in 

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35S:IDL1 35S:IDL2 35S:IDL3

R
at

io
Plant length to root length

*



 

49 

 

RESULTS 

front of the GUS gene in the vector pMDC 162 and transformed into Col wt plants via A. 

tumefaciens.  

The same promoter sequences were also cloned in front of the YFP gene in the pHGY vector 

and transformed into Col wt plants.   

   

3.5.1 pHSL1::GUS expression 

 

Four primary transformants and six secondary transformants (from the same mother plant) 

harboring the promoter::reporter gene construct for HSL1 were investigated for GUS 

expression. Tissue from seedlings, rosette leaves, cauline leaves, flowers and siliques was 

incubated in X-gluc mixture at 37 °C for 1 hour (see materials and methods section 2.1.3).  

Examination of GUS expression in 14 day old T2 seedlings showed GUS to be expressed in 

the hydathodes and root tips of seedlings (figure 3.12). Examination of flower buds, flowers, 

cauline leaves and rosette leaves in adult T2 plants showed GUS to be expressed in stomata 

and hydathodes. Expression in root tip was not examined in the adult plants. The same 

expression was observed in three of the primary transformants and all of the six secondary 

transformants carrying the pHSL1::GUS construct. 
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3.5.1.1 HSL1 is expressed in the root tip 

The GUS expression in the root tip was of special interest as IDL1 is also expressed in the 

root cap (Tandstad, 2005). From a timeline set up for IDL1 it was shown that IDL1 expression 

starts in the primary root already at 36 hours after germination (Tandstad, 2005). It was 

therefore interesting to investigate when the expression of HSL1 starts in the root tip and a 

Figure 3.12 pHSL1::GUS expression in T2 plants. Expression of GUS seen in the entire seedling (A), leaf (B) and 

root tip (C). Expression of GUS in the guard cells in the petals of the flower (D), carpel (E) branching point (F) and 

hydathodes of the rosette leaves (G). 

 D  E 

 F  G 

A B C 



 

51 

 

RESULTS 

timeline was set up (figure 3.13). The results show that HSL1 expression starts at day 4 after 

germination and continues throughout root development. It is worth noting that HSL1 is not 

expressed in the first layer of columella cells as IDL1 is (Tandstad, 2005), but rather in the 

second and third layer of columella cells (fig 3.13 D-J). 

 

 

 

3.5.2 pHSL1::YFP expression 

 

To confirm the GUS results primary transformants harbouring the promoter::YFP construct 

were investigated for YFP expression. This was done by Even S. Riiser and postgraduate 

student Ane Kjersti Vie at NTNU. Three primary transformants harboring the 

promoter::reporter gene construct for HSL1 were investigated for YFP expression.  

Figure 3.13 Timeline of the GUS expression of pHSL1::GUS in 1 to 10 day seedlings. (A to E) Day 1 to day10. 

GUS expression is first observed at day 4 (D). Also notice the recently shed root cap in E, I and J. 
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Examination of 14 day old T1 seedlings showed expression of YFP in stomata (figure 3.14). 

No YFP could be detected in the hydathodes or in the root tips. The same expression was 

observed for all three lines, confirming the GUS results for stomata expression. 

 

 

 

 

3.5.3 Identifying a SALK line for HSL1 

 

Due to the interesting expression pattern of the promoter of HSL1, it was decided to try to 

identify an hsl1 mutant to look for possible phenotypes. A search for SALK lines with T-

DNA insertions within the promoter- or coding regions of HSL1 was done in the SIGnAL 

database (http://signal.edu/cgi-bin/tdnaexpress).  

Three SALK lines were identified using T-DNA Express, SALK_104365, SALK_108126 and 

SALK_108127. These were genotyped according to section 2.5.2 to look for a homozygous 

Figure 3.14 pHSL1::YFP expression in stomata. Examination of 14 day old 

T1 seedlings harbouring the pHSL1::YFP construct showed expression of YFP 

in stomata.  

http://signal.edu/cgi-bin/tdnaexpress
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T-DNA insertion. Only in line SALK_108127 were homozygous plants found for the T-DNA 

insertion (figure 3.15).  

 

 

Figure 3.15 Genotyping of HSL1 SALK T-DNA insertion line.  Homozygous plants for the T-DNA insertion were only 

found in the Salk line SALK_108172. For the homozygous (HM) plants for the T-DNA insertion a band of ca. 500 bp was 

observed using the primers SALK_108127 RP and LBb1, and no band was observed using the two genomic primers 

(SALK_108127 RP and SALK_108127 LP). Heterozygous (HZ) plants gave two bands, one using the genomic primer and 

the T-DNA primer of ca. 500 bp and one using the two genomic primers of 1189 bp.   

 

The Salk database predicted the T-DNA insertion to be in exon 1, +1857 bp relative to the 

start codon. The identification of insertion sites done by the Salk Institute are however high 

throughput sequencing reactions, and the insertion site could be from 0 to 300 bp from the 

predicted site. Identification of the correct T-DNA insertion was done by sequencing the 

flanking LB of the T-DNA and aligned with the genomic sequence of HSL1. After sequencing 

and alignment it was showed that the T-DNA was inserted at +1636 bp relative to the start 

codon, in the region encoding the LRRs (figure 3.16). An insert in this region would probably 

lead to a knock-out of the HSL1 gene due to the fact that the T-DNA would disrupt the open 

reading frame, producing a dysfunctional protein.  
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Figure 3.16 The T-DNA insert in SALK_108127. The T-DNA insert in SALK_108127 is inserted in the region of the gene 

that encodes the LRRs, at +1636 bp from the start codon. The figure also shows the LRR N-terminal domain and the protein 

kinase domain. The figure is not to scale.  

 

3.5.3.1 Investigation of the phenotypes of SALK_108127 

The homozygous line SALK_108127 with known T-DNA insertion site was investigated for 

phenotypes. No phenotype in the above-ground organs deviating from the wt phenotype was 

observed (figure 3.17) 

 

 

 

As HSL1 is expressed in the roots it was natural to investigate the roots of SALK_108127. A 

root experiment comparing the SALK line to wt Col and 35S:IDL1 was set up. The results 

show that the 35S:IDL1 plants have significantly (p < 0.001, except at day 17 where p < 0.05) 

shorter roots than the wt Col plants. SALK_108127 showed no significant difference in root 

length from the Col plants until day 17, where the roots were significantly (p < 0.01) longer 

than the Col plants (figure 3.18). Opposite phenotypes may indicate that HSL1 could be the 

receptor of IDL1.  

wt Col SALK_108127 Figure 3.17 Phenotypes of the homozygous T-DNA 

insertion line. Six week old plants. No phenotype in the 

above ground organs differing from the wt was observed. 
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Figure 3.18 Bar diagram showing length of roots (mm) relative to days after exposure to light. The SALK line does not 

show a difference in root length relative to the Col plants until day 17, where the SALK line seems to have significantly (p < 

0.01) longer roots. *** = p < 0.001, ** = p < 0.01, * = p < 0.05.  

 

3.5.4 pIKU2L2::GUS expression 

 

For the second receptor investigated in this thesis, seven primary transformants and four 

secondary transformants, from the same mother plant, harbouring the pIKU2L2::GUS 

construct were investigated for GUS expression.  

When 14 day-old seedlings were stained, GUS activity was observed in the vascular tissue of 

the seedlings (figure 3.19 A-C). Examination of the flower bud, flower, rosette leaves, cauline 

leaves and stalk revealed expression of IKU2L2 in the vascular tissue of all organs (figure 

3.19 D-G). GUS expression was detected in the vascular tissue in six of the primary 

transformants and all of the secondary transformants.  
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3.5.4.1 The vascular tissue expression of IKU2L2 

As pIKU2L2::GUS was expressed in the vascular tissue of the seedling it was of interest to 

see when this expression started. Vascular tissue development is a cell separation event 

starting after seed germination and during primary growth of the stem (Baucher et al., 2007). 

Figure 3.19 expression of pIKU2L2::GUS. Expression as shown in the entire seedling (A). Leaf (B). Root (C). 

Vascular tissue in the petal (D). Vascular tissue of rosette leaf (E). Vascular tissue of cauline leaf (F). Vascular tissue of 

the stalk (G).  
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IKU2L2 could be involved in this cell separation event and a timeline from day 1 to 10 after 

germination was set up. This showed that GUS was expressed already at day1 in the vascular 

tissue (figure 3.20 A and B).  

 

 

 

 

Figure 3.20 Timeline of the GUS expression of pIKU2L2::GUS in 1 to 10 day seedlings. Day 1 (A, B), day 2 (C, D) day 3 (E, 

F), day 4 (G, H), day 5 (I, J), day 6 (K, L), day 7 (M, N), day 8 (O, P), day 9 (Q, R) and day 10 (S, T). GUS expression started 

already at day 1 (A and B).  
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3.5.5 pIKU2L2::YFP expression 

 

Three primary transformants harbouring the pIKU2L2::YFP construct were investigated for 

YFP expression. This was done by Even S. Riiser and postgraduate student Ane-Kjersti Vie at 

NTNU.  

Examination of 14 day old T1 seedlings showed YFP to be expressed in the vascular tissue of 

the seedlings (figure 3.21). The same expression was observed for all three lines, confirming 

the GUS expression seen in section 4.5.4.  

 

 

 

 

 

 

 

Figure 3.21 pIKU2L2::YFP expression in vascular tissue. Examination of 14 day old T1 seedlings 

harbouring the pIKU2L2::YFP construct showed expression of YFP in the vascular tissue of the root. 
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3.5.6 Finding a T-DNA insertion line for IKU2L2 

 

With the results from the GUS and YFP experiments it was decided to look for an iku2l2 

mutant, in order to study a possible phenotype. The SIGnAL database was searched for a T-

DNA insertion line with T-DNA inserted within the promoter- or coding sequence of 

IKU2L2.  

One SAIL line was found using the T-DNA Express tool, SAIL_268_H07. Plants from this 

line were genotyped, using PCR, in order to find a homozygous line. No homozygous or 

heterozygous plants for the T-DNA insertion were found and, consequently no iku2l2 mutant 

was identified.  
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4 DISCUSSION 

 

The IDL proteins are thought to signal through members of the HAE and HSL family of 

LRR-RLKs (Butenko et al., 2009). By matching the expression of an IDL to the expression of 

an HSL we are hoping to identify possible ligand-receptor pairs.  

In this thesis the expression pattern of the two genes, HSL1and IKU2L2, has been investigated 

using GUS and YFP analysis. Comparison to the expression pattern of the IDL genes can be 

used to propose a number of new ligand-receptor pairs.  

Because the IDL genes have a similar over-expression phenotype, genetic crosses were used 

to investigate if the IDL proteins could signal through IDA’s receptor in the floral organ AZ, 

HAE and HSL2 (Cho et al., 2008; Butenko et al., 2009), and furthermore whether the short 

plant and root phenotypes  of the over-expressing lines  are likely to signal through the same 

receptor(s) (Tandstad, 2005).   

 

4.1 Matching ligands and receptors based on expression patterns 

 

The IDL genes are differentially expressed on sites where cell separation/ degradation of the 

cell wall take place (figure 4.1) (Stenvik et al., 2008). It is therefore believed that the IDL 

proteins could be involved in cell separation/degradation processes at different times and 

places. In a recent paper (Stenvik et al., 2008) it is found that IDL1 is expressed in the two 

outermost layers of the columella root cap, IDL2, IDL3 and IDL4 are, like IDA, expressed in 

the pedicel and in floral organ AZ but with peaks of expression at different positions. IDL2 

and IDL4 are also detected in the funicle AZ. Expression of IDL2, IDL3, IDL4 and IDL5 is 

also observed in the vascular tissue (Stenvik et al., 2008). 
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Figure 4.1 GUS expression under the control of the IDL promoters. (A) IDL1:GUS expression in the columella root cap 

and in cells that are shed from the root. (B) to (D) Expression at the base of pedicel, in the floral organ AZ and the funicle 

AZ, represented by IDL2:GUS. (E) IDL3:GUS expression in vascular tissue of a young seedling. Expression in vascular 

tissue was also observed for IDL2:GUS, IDL4:GUS and IDL5:GUS. (F) IDL4:GUS expression in guard cells. (G) GUS 

activity was seen in the hydathodes both for IDL4:GUS and IDL5:GUS, here represented by IDL5:GUS. The figure is taken 

from Stenvik et al. 2008. 

 

One approach to match receptors to the different IDL peptides is to find overlapping 

expression patterns. Due to the common over-expression phenotypes of IDA and IDL proteins 

we propose that these proteins, if ligands, through their common EPIP motif can interact with 

the same or similar receptors. Receptor candidates for the five IDL ligands are likely to be 

found among members of the LRR-RLK receptor family. The phenotypic similarities 

resulting from over-expression of IDA and IDL genes suggest that one should start looking 

among those molecules most closely related to HAE and HSL2. So far only the expression of 

HAE and HSL2 has been published (Jinn et al., 2000; Cho et al., 2008). By promoter::GUS 

analysis and in situ RNA hybridization HAE is shown to be expressed at the base of petioles 

and pedicels as well as the floral organ AZ (Jinn et al., 2000; Cho et al., 2008). 

Promoter:GUS analysis in the Aalen lab shows that HAE and HSL2 are expressed in the floral 

organ AZ, base of pedicel and, and in addition at the base of cauline leaf (Riiser, 2009). 

HSL2, but not HAE, is also expressed in the columella root cap of the main root (Riiser, 

2009).  

When examining two close relatives of HAE, HSL1 and IKU2L2 (Shiu and Bleecker, 2001a; 

Butenko et al., 2009), we have identified two new putative receptors for the IDL proteins. 

They both show overlapping expression with several of the IDL genes.     
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4.1.1 HSL1 

 

When 14 day old seedlings, buds, flowers, cauline leaves and rosette leaves of plants 

harbouring the pHSL1::GUS construct were examined, GUS was found to be expressed in 

hydathodes, guard cells and in the columella root cap. From previous GUS experiments it is 

known that IDL4 and IDL5 are expressed in the hydathodes, IDL4 is expressed in guard cells 

and IDL1 is expressed in the columella root cap (Stenvik et al., 2008). This not only 

strengthens the hypothesis that HSL1 could be the receptor of IDL1, but it also introduces the 

hypothesis of HSL1 being the receptor of IDL4 and IDL5. 

From the timeline experiment it became clear that HSL1 is expressed in the root cap first at 

four days after germination (figure 3.13 D). Also, the expression seems to be confined to the 

second and third columella layer of the root cap. This is slightly different from IDL1, which is 

found to be expressed in the first and second columella layer (Tandstad, 2005). This does 

however not exclude an interaction, as they do in fact overlap in expression in the second 

columella layer. IDL proteins are also assumed to be exported out of the cell where they are 

expressed, so that their receptors may not be expressed in the same cell layer.  

 

4.1.2 IKU2L2  

 

When 14 day old seedlings, buds, flowers, cauline leaves, rosette leaves and stalks of plants 

harbouring the pIKU2L2::GUS construct are examined, GUS is found to be expressed in the 

vascular tissue. YFP is also expressed in the vascular tissue, when investigating plants 

harbouring the pIKU2L3::YFP construct, confirming the GUS result. From previous GUS 

experiments it is known that IDL2, IDL3, IDL4 and IDL5 are expressed in the vascular tissue 

(Stenvik et al., 2008), indicating that IKU2L2 could be the receptor of any of these putative 

ligands.  

After the timeline experiment it became clear that IKU2L2 was expressed in vascular tissue 

already at day 1 after germination (figure 3.20 A and B). It would be interesting to repeat this 

experiment on seeds and siliques to see if IKU2L2 is expressed at an even earlier stage of 

development. So far no mature or differentiating vascular elements is identified in the 

Arabidopsis embryo, but a continuous network of procambial cells distributed along the 
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hypocotyl-root axis and the cotyledons make up the embryonic vascular system (Busse and 

Evert, 1999). Not until germination and during primary growth of the stem does the 

procambium produce xylem centripetally and phloem centrifugally, leading to the formation 

of vascular bundles (Baucher et al., 2007). It would therefore be interesting to investigate if 

IKU2L2 could be involved in the differentiation and/or formation of vascular bundles.   

All of the seeds for the T-DNA insertion line SAIL_268_H07, supplied from NASC, were 

genotyped to look for a plant homozygous for the T-DNA insertion. Because none of the 

plants were found to contain the T-DNA insertion an iku2l2 mutant could not be identified. It 

would be interesting to order new seeds from the supplier, as the batch of seeds could have 

been bad, to look for vascular defects in an iku2l2 mutant, as GUS and YFP analysis 

confirmed IKU2L2 to be expressed in the vascular tissue.  

 

4.2 The IDL proteins signals through HAE and HSL2 in the floral 

abscission zone 

 

IDA signals through the receptors HAE and HSL2 in the floral organ AZ (Stenvik et al., 

2008). When a single locus 35S:IDA line was crossed to haehsl2 the offspring exhibited the 

haehsl2 phenotype and none of the 35S:IDA early abscission of floral organs (Stenvik et al., 

2008).  

When the IDL genes are over-expressed they exhibit a phenotype similar to that of 35S:IDA, 

with early abscission and secretion of arabinogalactan from the AZs (Stenvik et al., 2006; 

Stenvik et al., 2008). This is an indication that IDA and the IDL genes may act redundantly. 

On the basis of these observations it is hypothesized that the IDL proteins may act through 

IDA’s native receptor in the floral organ AZ. To investigate this, the interaction between 

IDL1 and HAE and HSL2 was first investigated using a yeast two-hybrid assay. The 

interaction between IDL1 and its proposed native receptor HSL1 was also investigated. As the 

Y2H assay suggested no interaction between IDL1 and HAE, HSL1 or HSL2 it was decided 

to create a GST (glutathione S-transferase) tagged IDL1 protein. This will be used in further 

studies to investigate a possible proteolytic processing of IDL1. It was also decided to go back 

to genetic and in planta experiments to further investigate the possibility that the IDL proteins 

might signal through HAE and HSL1 when expressed in the floral organ AZ. haehsl2 plants 
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were transformed with constructs for 35S:IDL1, 35S:IDL2 and 35S:IDL3 and the 

transformants were investigated for phenotypes.  

 

4.2.1 The yeast two-hybrid suggests no interaction between IDL1 and HAE, HSL1 or 

HSL2 

 

As IDL1 rescues the ida mutant when expressed by IDA’s promoter and is the IDL protein 

most similar to IDA  it was suggested that IDL1 could interact with the proposed receptors of 

IDA, HAE and HSL2(Stenvik et al., 2008). A direct mating experiment was performed in 

order to look for a direct interaction between IDL1 and HAE and HSL2. As both IDL1 and 

HSL1 and HSL2 are expressed in the root, and HSL1 and HSL2 are suggested to be the native 

receptors of IDL1, the interaction between IDL1 and HSL1 and HSL2 was also investigated 

using the direct mating approach. 

No growth was observed for the mated cells containing both the BD-IDL1ΔSP fusion protein 

and the AD-HAE/HSL1/HSL2 ECD fusion protein. These results indicate that there is no 

interaction between the putative peptide ligand IDL1 and IDAs proposed receptors HAE and 

HSL2, or between IDL1 and its proposed receptor HSL1. This does neither support the 

hypothesis that IDL1 can signal through the receptors of IDA, nor does it support the 

hypothesis that HSL1 could be the native receptor of IDL1. There are however, several 

weaknesses in using the yeast two hybrid/ direct interaction method, which forces us to 

interpret the results with caution. First of all is the lack of contextual specificity, as the 

interaction between bait and prey is confined to the nucleus of the yeast cell (Bao et al., 

2009). The interaction of IDL1 and its receptor(s) in planta is thought to happen in the 

extracellular space, between the secreted, extracellular ligand and the LRR-domain of the 

plasma membrane-embedded RLK. These two compartments have different pH, and proteins 

are known to be dependent of proper pH for proper folding. If either the peptide ligand or the 

receptor is wrongly folded in the nucleus there will be no interaction.  Second, the recognition 

of the receptor by the ligand might depend on posttranslational modifications, such as 

glycosylation, of the LRR region of the RLK (Schaller and Bleecker, 1993). These 

modifications might not be correctly performed in the yeast. Third, and last, the fusion 

proteins might not fold and interact as wt proteins or even be transcribed or translated in the 
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yeast cell. The transcription level or the presence of the fusion proteins was not examined in 

this experiment.  

The nature of the putative ligand-receptor interaction between IDL1 and HAE, HSL1 or 

HSL2 is not ideal when utilizing the Y2H system. However, it is possible to take certain 

measures if the experiment is to be repeated. Results from similar studies show that using 

only fragments of the LRR-domain might yield sufficient results, as in the case of the small 

protein TPD1 and the LRR-RLK EMS1 (Jia et al., 2008). When investigating the interaction 

between the TPD1 and EMS1 the researchers created a series of prey vectors constructed by 

shorter cDNAs for truncated EMS1 LRRs. One of these fragments was found to interact with 

TPD1. This might also be done for the interaction between IDL1 and HAE, HSL1 or HSL2.  

Other promising methods have also been developed for investigating the direct interaction of 

membrane bound proteins. The membrane yeast two-hybrid (MY2H) system is used to 

identify interactions between membrane embedded proteins with either membrane bound or 

cytosolic proteins (Stagljar et al., 1998; Suter et al., 2008b). MY2H is an adaptation of the 

split-ubiquitin assay (Johnsson and Varshavsky, 1994) where integral or peripheral membrane 

proteins are fused to the c-terminal half of ubiquitin, followed by a transcription factor. Preys 

(membrane or cytosolic proteins) are expressed as fusions with the N-terminal half of 

ubiquitin. Bait-prey interaction reconstitutes native ubiquitin, which is then cleaved by an 

endogenous ubiquitin specific protease. The transcription factor then enters the nucleus and 

activates reporter gene expression (Iyer et al., 2005). This approach then avoids the lack of 

contextual specificity of the ordinary Y2H, as the interaction is allowed to happen outside of 

the nucleus. However, IDL1, like IDA (Butenko et al., 2003), is thought to act extracellularly, 

thus making the MY2H assay partly unsuitable for the hypothetical interaction between IDL1 

and HAE, HSL1 and HSL2. The group behind the MY2H assay is currently working on 

developing novel approaches to address potential ligand-receptor bindings (Suter et al., 

2008a), and this is of great interest and could be highly relevant in the work to reveal the 

biochemical interaction between IDL1, HAE, HSL1 and HSL2. 

 

4.2.2 An active IDL1 peptide might be delineated using cauliflower meristem extract 

 

CLV3 and the CLE proteins are a family of proteins in Arabidopsis that are subject to 

processing in planta (Fiers et al., 2006). The CLE domain of these proteins is the functional 
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peptide released from a precursor protein (Kondo et al., 2006; Ni and Clark, 2006). A similar 

mechanism is thought occur in the IDA and IDL proteins, with EPIP, the C-terminally 

conserved motif of IDA and the IDL proteins, as the active peptide (Stenvik et al., 2008; 

Butenko et al., 2009). IDL1 might be processed in planta and this might explain the lack of 

interaction in the Y2H assay. IDA has been shown to be processed by cauliflower meristem 

extracts (Stenvik et al., 2008), and it is of interest to see if IDL1 possess the same ability. 

Several peptide ligands, such as phytosulfokine, systemin and CLV3 (Pearce et al., 2001; 

Yang et al., 2001; Matsubayashi, 2003; Fiers et al., 2006; Kondo et al., 2006) are processed in 

planta in order to release functional peptides. 

We created a GST-IDL1ΔSP fusion protein, and successfully expressed it in E.coli. To 

confirm the expression Western blots were probed with antibodies against the variable region 

of IDL1 and GST. The antibody against the variable region of IDL1 resulted in a lot of 

background noise, making it impossible to draw any conclusions. Anti-GST however, yielded 

a strong band of approximately 30 kD, corresponding to the 279 aa fusion protein.  

When a GST-IDAΔSP fusion protein was incubated in cauliflower meristem extracts it was 

shown to be proteolytically processed. It would be interesting to see if GST-IDL1ΔSP could 

be subject to the same processing. It has been shown that IDL1 synthetic EPIP rescues the ida 

mutant, which is an indication that the functional domain of IDA and the IDL proteinss might 

be the EPIP domain (Stenvik et al., 2008). If IDL1 also is processed, then we would be one 

step closer to delineate the shortest peptide necessary for biological function and the potential 

release of this from an IDL proprotein. By incubating the purified GST-IDL1ΔSP fusion 

protein in cauliflower extracts, re-purification by GST affinity followed by separation on an 

SDS-PAGE and subsequent detection with an antibody, e.g. anti-GST (Ni and Clark, 2006), 

one will be able to see if IDL1 is subject to processing. The exact site of processing is then 

determined by mass spectrometry (Ni and Clark, 2006). 

 

4.2.3 Plants over-expressing IDL1, IDL2 and IDL3 in a haehsl2 background retain the 

haehsl2 phenotype  

 

Since a biochemical approach could not reveal an interaction between IDL1 and HAE and 

HSL2 it was decided to look for genetic evidence of an interaction between the IDL proteins 

and HAE and HSL2 in the floral organ AZ. In wt plants interaction between IDA and 



 

68 

 

DISCUSSION 

receptors leads to abscission (figure 4.2), when IDA is absent no abscission occur (Butenko et 

al., 2003), and when IDA is over-expressed the plant exhibits early abscission (Stenvik et al., 

2006). When the receptors are knocked-out, as in the case of the haehsl2 mutant, both the 

plants normally expressing IDA and the plants over-expressing IDA exhibit no abscission 

(Cho et al., 2008; Stenvik et al., 2008). As the plants over-expressing IDL genes exhibit the 

same phenotype as the plants over-expressing IDA, it was therefore proposed that they signal 

through the same receptor as IDA. 

To test this hypothesis genetically the over-expressing constructs were introduced into a 

haehsl2 background. When investigating the above-ground organs of plants over-expressing 

IDL1, IDL2 and IDL3 they all retained the haehsl2 phenotype, i.e. no abscission of the floral 

organs. The 35S:IDL abscission zone features could not be seen, although they were 

confirmed to harbour the 35S:IDL constructs. This is an indication that all the IDL proteins 

signal through the HAE/HSL2 receptor complex in the floral organ AZ (figure 4.2). 

 

 

 

4.3 Short roots and putative receptors 

 

Another approach for matching ligands and receptors could be to compare mutant phenotypes. 

The phenotypes of plants that either over-express a gene or has a mutated gene might tell us 

something about the function of the gene. The ida mutant for instance exhibits no abscission 

Figure 4.2 A model for signalling of IDA through HAE and HSL2. The interaction between IDA and receptors leads to 

abscission, when IDA is absent no abscission occur, and when IDA is over-expressed the plant exhibits early abscission. 

When the receptors are knocked-out, as in the case of the haehsl2 mutant, both the plants normally expressing IDA, and the 

plants over-expressing IDA, exhibit no abscission. Key: orange: IDA, red: HAE, blue: HSL2  
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(Butenko et al., 2003), whereas plants over-expressing IDA exhibit early abscission (Stenvik 

et al., 2006), indicating that IDA is involved in the floral organ abscission process. The 

haehsl2 mutant does also exhibit a no abscission phenotype (Cho et al., 2008) very similar to 

that of ida. The haehsl2 mutant does also have a long root phenotype (Riiser, 2009). 

Preliminary results for an artificial micro RNA (amiRNA) line for IDL1 suggests that down 

regulation of IDL1 results in a longer meristematic zone, and an amiRNA line for IDL2 

exhibits early seed abortion, impaired dehiscence and shedding of seeds (Robert Kumpf and 

Chun-Lin Shi, unpublished results). The mutation in IDL4 results in fewer lateral roots and a 

possible problem with the emergence of the lateral roots (Robert Kumpf and Chun-Lin Shi, 

unpublished results). RNAi lines for IDL1 also showed longer roots (Tandstad, 2005). Mutant 

lines for IDL3 and IDL5 have not yet been investigated. Plants over-expressing the IDL genes, 

however, have a phenotype similar to that of the plants over-expressing IDA (Stenvik et al., 

2006; Stenvik et al., 2008). Plants over-expressing IDL1 has also been reported to have 

shorter roots (Tandstad, 2005). 

IDL1 is expressed in the outermost layers of the columella root cap (Tandstad, 2005; Stenvik 

et al., 2008) and it is, as the rest of the members of the IDA and IDL gene family, thought to 

interact with RLKs (Stenvik et al., 2008). The EPIP domain of IDL1 rescues the ida mutant 

indicating that IDL1 is capable of interacting with the receptors of IDA. Over-expression of 

IDL1 in a haehsl2 background leads to retention of the haehsl2 phenotype, indicating that 

IDL1, when expressed in the floral organ AZ interacts with the receptors of IDA, HAE and 

HSL2. Since IDL1 clearly is capable of signalling through HAE and HSL2 it was of interest 

to investigate if either HAE or HSL2 or both could be the native receptor of IDL1 in the root. 

Another proposed receptor is HSL1. Based on microarray experiments and work done in this 

thesis HSL1 has been shown to be expressed in the root cap of the main root, similarly to 

IDL1. 

 

4.3.1 Over-expression of IDL1 results in a short root phenotype 

 

In order to see if the IDL proteins can act redundantly, also in other tissues than the AZ of the 

floral organs, a root experiment was set up. Root length was measured on 2, 5, 10, 12 and 17 

day old 35S:IDL plants grown under normal growth conditions. Compared to the control 

plants the roots of 35S:IDA, 35S:IDL1, 35S:IDL2, 35S:IDL3 and 35S:IDL5 were shorter. To 
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answer the question if the shorter root phenotype was due to a specific effect on the root or if 

it was caused by generally stunted growth it was decided to measure the above-ground plant 

length and compare the plant lengths and root lengths. Plants with a specific short root 

phenotype were expected have a plant length to root length ratio larger than the ratio for the 

control plants, and plants with a stunted growth would have a similar ratio to the control 

plants. A significant larger ratio was observed for the 35S:IDL1 plants, indicating that plants 

over-expressing IDL1 have a short root phenotype. None of the other lines were shown to 

have this phenotype when comparing above-ground plant length to root length. In order to 

confirm these results they will have to be repeated and preferably the expression level of the 

IDL genes should be measured by qPCR in beforehand, as the 35S phenotype is dose 

dependent.  

Also, as mentioned earlier, if IDA and IDL1 signal through the same receptors, the plants 

over-expressing IDA should exhibit the same short root phenotype as plants over-expressing 

IDL1. Although 35S:IDA plants are smaller than wt plants they do however not exhibit a 

specific shorter root phenotype, which may seem to contradict the hypothesis that HAE and 

HSL2 could be the receptors of IDL1 in the root.  

 

4.3.2 Over-expression of IDL1, IDL2 and IDL3 in haehsl2 background reveal a long 

root phenotype 

 

In haehsl2 background, the plants over-expressing IDL1 was found to have longer roots than 

plants over-expressing IDL2 and IDL3, the opposite of what was found for 35S:IDL1 plants 

in Col background. This could be an indication that IDL1 signals through HAE or HSL2 or 

both in the root. The haehsl2 mutant has been shown to have long roots, just as 35S:IDL1 

plants in a haehsl2 background. These results are summed up in figure 4.3. Also plants over-

expressing IDL2 and IDL3 retain their 35S phenotypes, seemingly unaffected by the haehsl2 

mutation, indicating that they do not signal through the HAE/HSL2 receptor in the root.  
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Based on the results in section 3.4.2 and GUS analysis (Riiser, 2009), a possible interacting 

partner for HSL1 could be HSL2.  Earlier results have shown that IDL2 and IDL3 are capable 

of signaling through HAE and HSL2 in the AZ. If IDL1 signals through HAE and HSL2 in 

the root cap, one would also expect IDL2 and IDL3 to be able to interact with HAE and HSL2 

in the root cap. One would expect to observe the same long root phenotype in plants over-

expressing IDL1 in the haehsl2 background as well as plants over-expressing IDL2 and IDL3 

in a haehsl2 background. However, plants over-expressing IDL2 and IDL3 in the 

haehsl2background did not have longer roots and neither does the expression pattern of HAE 

fit the expression pattern of IDL1, as it is not expressed in the main root cap (Riiser, 2009). 

These results indicate that HAE7HSL2 might not be the receptors for IDL1 in the root cap. 

However, HSL2 is expressed in the main root cap (Riiser, 2009), thus IDL1 could signal 

through HSL2 and maybe another receptor expressed in the root cap, assuming that IDL1 has 

a higher affinity for the other receptor than IDL2 and IDL3.  

The root experiment was performed in T1 generation without a control samples, i.e. wt and 

haehsl2 plants as well as 35S:IDL plants, due to shortage of time. If the experiment is to be 

repeated it is advised to measure the expression level of the IDL genes in addition to having  

control samples. The controls were left out as that the plants had to grow on a medium 

containing hygromycin, which is toxic to wt plants, it is therefore also advised to do the 

experiment in the T2 generation of transformants. Hygromycin was used in the medium in 

Figure 4.3 A model for IDL1 signalling through HAE and HSL2. The normal interaction between IDL1 and receptors 

leads to wt root length, but when IDL1 is over-expressed the plant exhibits short roots. When the receptors are knocked-out, 

as in the case of the haehsl2 mutant, both the plants normally expressing IDL1 and the plants over-expressing IDL1, exhibit 

longer roots. Key: yellow: IDL1, red: HAE, blue: HSL2.  
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order to select for haehsl2 plants harbouring the 35S:IDL constructs, as this construct contains 

a hygromycin resistance gene. The long roots observed for the 35S:IDL1 haehsl2 plants could 

also be the result of low expression of IDL1 and therefore it would be necessary to investigate 

the expression level of the IDL genes using qPCR. 

 

4.3.3  The hsl1 mutant has long roots 

 

 When the Salk line SALK_108127 was examined no differences in the above-ground organs 

between wt Col plants and the Salk line could be observed. The roots did however prove to be 

significantly (p < 0.01) longer than the roots of the Col control 17 days after germination. 

This strengthens the hypothesis that HSL1 might be the native receptor of IDL1, as seen in the 

model proposed in figure 4.4. More studies must however be done to confirm this hypothesis.  

If a 35S:IDL1 crossed to SALK_108127 also exhibits longer roots, it is plausible that IDL1 

signals through HSL1.     

 

 

 

 

Figure 4.4 A model for IDL1 signalling through HSL1. The normal interaction between IDL1 and receptor leads to 

normal root length, but when IDL1 is over-expressed the plant exhibits short roots. When the receptor is knocked-out, as in 

the case of the Salk line SALK_108127, the plants normally expressing IDL1 exhibit longer roots. If the long root 

phenotype is also seen when hsl1 plants are crossed or transformed to 35S:IDL1 plants (red brackets), the hypothesis is 

strengthened.  Key: yellow: IDL1, green: HSL1. 
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In addition to HSL2 and HSL1, IKU2L3 is also found expressed in the root cap of the main 

root (Riiser, 2009), thus there are three candidates for receptors for IDL1. It is possible that 

IDL1 uses one set of receptors at one particular time of development and another set at 

another time of development, since HSL1 was not expressed until four days after germination. 

An interesting approach would be to look at the temporal expression of HSL2 and IKU2L3 

and compare it to the temporal expression of IDL1, in order to see if any of them could be the 

receptors of IDL1 at an earlier stage of development. 

More studies should be done on this and it would be interesting to measure the root lengths of 

the hsl2 and iku2l3 mutant. It would also be just as interesting to measure the root lengths of 

35S:IDL1 hsl2 and 35S:IDL1 iku2l3 plants. If IDL1 signals through HSL2 or IKU2L3 one 

would expect hsl2, iku2l3, 35S:IDL1 hsl2 and 35S:IDL1 iku2l3 plants to have long roots.  

 

4.4 Summary and future perspectives 

 

From the expression study, several novel ligand-receptor pairs can be postulated. The 

expression of HSL1 in the root cap makes it an excellent candidate receptor for the small 

signaling peptide IDL1. The HSL1 expression in the hydathodes and stomatal guard cells also 

makes it a candidate receptor for IDL4 and IDL5. IKU2L2 was expressed in the vascular 

tissue and is proposed to be a candidate receptor for IDL2, IDL3, IDL4 and IDL5.  

No biochemical interaction between IDL1 and HAE, HSL1 and HSL2 was detected. 

However, based on a genetic approach it is clear that IDL1, as well as IDL2 and IDL3, acts 

through the receptors if IDA, HAE and HSL2, when expressed in the floral organ AZ. A 

GST-tagged IDL1 protein was created in order to investigate possible processing of the ligand 

necessary for proper function. 

Plants over-expressing IDL1 have a specific short root phenotype. When IDL1 is over-

expressed in the haehsl2 background the plants have a long root phenotype, similar to that of 

the haehsl2 mutant, indicating that IDL1 signals through either HAE or HSL2 or both in the 

root cap. The hsl1 mutant also exhibits a long root phenotype, indicating that IDL1 signals 

through HSL1 in the root cap. HAE is not expressed in the columella root cap of the main 

root, but HSL2 is. It is therefore plausible to propose HSL2 and HSL1 as the native receptor 

pair of IDL1.  
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In order to increase our knowledge of peptide signaling in plants, and the mechanisms behind 

this form of cell communication, it is necessary to investigate putative ligand-receptor 

interactions between the IDL proteins and the HSL proteins. By doing more biochemical and 

genetic studies we will be able to identify more new ligand-receptor pairs and the downstream 

pathways that they regulate. As our knowledge increases, so does the development of new 

techniques to identify interactions.     
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ABBREVIATIONS 

ABBREVIATIONS 

35S CaMV 35S constitutive promoter 

ABRC Arabidopsis Biological Resource Center 

AD Activating domain 

ADE2 Phosphoribosylaminoimidazole carboxylase 

AG  Arabinogalactan 

Agrobacterium Agrobacterium tumefaciens 

amiRNA Artificial micro RNA 

Amp  Ampicillin 

Amp
R
 Ampicillin resistant 

Amp
S
 Ampicillin sensitive 

AMS ABORTED MICROSPORES 

Arabidopsis Arabidopsis thaliana  

ASHR3 ASH1-RELATED 3 

AUX1 Auxin influx carrier 1 

AZ  Abscission zone 

BD Binding domain 

CaMV Cauliflower mosaic virus 

ccdB Controller of cell division or death B 

cDNA Complementary DNA 

CDS Coding sequence 

CFP Cyan fluorescent protein 

CLE CLAVATA3/ESR-RELATED 

CLV CLAVATA 

Col  Columbia (ecotype) 

CRN CORYNE 

dNTP deoxyribonucleotide triphoshate 

E. coli Esherichia coli 

ECD Extracellular domain  

EMS1 Excess microsporocytes 1 

EPIP Extended PIP domain 

EtOH Ethanol 

GAL4 GAL4 transcription factor 
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ABBREVIATIONS 

GFP Green fluorescent protein 

GST glutathione S-transferase 

GUS (gusA) β-glucuronidase 

HAE HAESA 

HIS3 Imidazoleglycerol-phosphate dehydratase 

HM Homozygote 

HSL HAESA-LIKE 

Hyg Hygromycin 

HZ Hemi-/heterozygote 

IAA Auxin (indole-3-acetic acid) 

IDA INFLORESCENCE DEFICIENT IN ABSCISSION 

IDL IDA-LIKE 

IKU2 HAIKU2 

IKU2L HAIKU2-LIKE 

IPTG isopropyl-β-D-thiogalactopyranoside 

Km Kanamycin 

LA (medium) Luria Broth medium w/ agar 

lacZ β-galactosidase in lac-operon 

Lam Human Lamin C 

LB Left border 

LB (medium)  Luria Broth medium 

Leu Leucine 

LP Left primer 

LRR Leucine-rich repeat 

MAPK Mitogen-activated protein kinase 

MAT Mating type 

MEL1 α-galactosidase 

MY2H Membrane yeast two-hybrid 

NASC Nottingham Arabidopsis Stock Center 

nptII Neomycin phosphotransferase 

OD Optical density 

ON Over night 

PCR Polymerase chain reaction 

PEPR1 AtPEP1 receptor 
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ABBREVIATIONS 

PG Polygalaturonase 

pI Isoelectric point 

PSK1/PSKR1 Phytosulfokine/PSK1-receptor 

QDOX Quadruple Dropout X-α-gal medium  

RB Right border 

RLK Receptor-like kinase 

RP Right primer 

S.O.C S.O.C cell growth medium  

SAM Shoot apical meristem 

SRC/SRK S-LOCUS CYSTEINE RICH/SRC receptor kinase 

SDS Sodium dodecyl sulphate 

SIGnAL Salk Institute Genomic Analysis Laboratory 

SP Signal peptide 

Sp Spectinomycin 

T1 First transformant generation  

T-DNA Transfer DNA 

TDO Triple Dropout Medium 

tNos Nopaline synthase terminator 

TDP1 Tapetum determinant 1 

Trp Tryptophan 

Wt Wild type 

X-α-gal 5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside 

X-gluc 5-bromo-4-chloro-3-indoyl-β-D-glucuronide 

YEB-medium Yeast extract broth 

YFP Yellow Fluorescent Protein 

Zeo Zeocin 
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APPENDIX 1 – Primer sequences 

APPENDIX 1 – Primer sequences 

 

Primer  Sequence 

attB1 At1g28440P SP  5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACTTTGCTTATAACAATCTC-3’ 

attB2 At1g28440P ASP  5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTCTTCGTCTTCCCCGGTATC-3’ 

attB1 At5g49660P SP 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATACATTCCAACTCGAAGTG-3’ 

attB2 At5g49660P ASP 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTCAGAGAAAGATCAAAAGTAACC-3’ 

attB1 HSL1cds SP 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTACCCACCGTCTTCTCTCTTAACCAAG-3’ 

attB2 HSL1cds ASP 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTACTATACATAGCCTCTCTTCTTAGCTTCA-3’ 

attB1 IDL1cds SP 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGCAAGGATCGGACCGATTAAGCTTTCTGA-3’ 

attB2 IDL1cds ASP 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTAGTGTTTGAGATTATTCACCACA-3’ 

SAIL_268_H07 RP 5’-GAATCTCCCTTTGGTCGAAAC-3’ 

SAIL_268_H07 LP 5’-TACCGGATTCAATCTGCAGTC-3’ 

SALK_104365 LP 5’-CTCGTTGATTTAGACCTTGCG-3’ 

SALK_104365 RP 5’-AATCCCTTGATATCCCCACAC-3’ 

SALK_108126 LP 5’-GCTCGTCAACAACTCGTTCTC-3’ 

SALK_108126 RP 5’-GTGAAGATACGAAAGCCCCTC-3’ 

SALK_108127 LP 5’-GATCTGTGTGCGAAAGGAGAG-3’ 

SALK_108127 RP 5’-CCAAGAGCTTGCAGTCTCTTG’3’ 

pGEX3’ 5’-CCGGGAGCTGCATGTGTCAGAGG-3’ 

pGEX5’ 5’-GGGCTGGCAAGCCACGTTTGGTG-3’ 

M13 F 5’-GTAAAACGACGGCCAG-3’ 

M13 R 5’-CAGGAAACAGCTATGAC-3’ 

Insert screening primer 3’ 5’-GTGAACTTGCGGGGTTTTTCAGTATCTACGATT-3’ 

Insert screening primer 5’ 5’-CTATTCGATGATGAAGATACCCCACCAAACCC-3’ 

35S L 5’-CAACCACGTCTTCAAAGCAA-3’ 

act2int2_antisense 5’-CCGCAAGATCAAGACGAAGGATAGC-3’ 

act2int2_sense 5’-CCCTGAGGAGCACCCAGTTCTACTC-3’ 

LBb1 5’-GCGTGGACCGCTTGCTGCAACT-3’ 

LB1_SAIL 5’-GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC-3’ 

LB2_SAIL 5’-GCTTCCTATTATATCTTCCCAAATTACCAATACA-3’ 
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APPENDIX 1 – Primer sequences 

LB3_SAIL 5’-TAGCATCTGAATTTCATAACCAATCTCGATACAC-3’ 

attB2 IDL1 stop  5’-GGGGACCACTTTGTACAAGAAAGCTGGTTAGTGTTTGAGATTATTCACCACA-3’ 

attB2 IDL2 stop 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTACGAGCTATCCAAAAAATA-3’ 

attB2 IDL3 stop 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGTCTTAGTACTACT-3’ 
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APPENDIX 2 – Statistical data 

APPENDIX 2 – Statistical data 

Length of roots  

Dag 35S:IDA σ P-value 35S:IDL1 σ P-value 

0 0,000 - - 0,000 - - 

2 0,000 - - 0,000 - - 

5 0,940 0,97833637 9,36507E-18 3,356 1,84093467 2,01845E-05 

10 12,483 7,18598962 4,55289E-19 15,003 7,95181815 6,61854E-16 

12 23,292 9,40920295 5,56529E-16 24,847 10,76336916 9,06295E-14 

17 50,832 16,50920908 1,00842E-07 49,063 15,09730075 8,70579E-09 

       Dag 35S:IDL2 σ P-value 35S:IDL3 σ P-value 

0 0,000 - - 0,000 - - 

2 0,173 0,30962218 0,676188584 0,113 0,25022251 0,60927752 

5 4,469 1,57728460 0,015873491 4,003 2,38006370 0,007069775 

10 33,309 5,20647050 0,110258076 29,408 7,92881532 0,002005689 

12 46,202 5,37655410 0,050316277 42,690 8,14689076 0,003707639 

17 74,731 14,25810247 0,864358118 67,041 18,07240045 0,066138543 

       Dag 35S:IDL4 σ P-value 35S:IDL5 σ P-value 

0 0,000 - - 0,000 - - 

2 0,091 0,30761452 0,441363305 0,186 0,31283824 0,554265303 

5 5,740 1,87526402 0,761578335 6,056 1,78496039 0,342727698 

10 35,439 7,26442981 0,844018069 30,175 7,40106032 0,003521593 

12 50,228 8,34733021 0,993981693 41,756 10,72613875 0,002459016 

17 72,756 12,60739515 0,448416486 63,846 15,41070371 0,005192979 

       Dag Col wt σ P-value 
   0 0,000 - - 
 

p < 0,001 
 2 0,144 0,206284721 1 

 
p < 0,01 

 5 5,594 1,855029951 1 
 

p < 0,05 
 10 35,787 6,476649126 1 

   12 50,211 9,35746967 1 
   17 75,373 14,17186272 1 
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APPENDIX 2 – Statistical data 

Plant length 

Plant Mean length σ P-value 

35S:IDA 20,2 4,264271449 6,458370173126E-16 

35S:IDL1 24,9 4,055625135 4,17043E-14 

35S:IDL2 35,5 4,26517459 2,00817E-05 

35S:IDL3 27,4 3,480079364 1,4832E-13 

35S:IDL4 37,4 4,828763028 0,002489517 

35S:IDL5 33,4 7,849640574 0,000346864 

Col wt 42,0 2,520052909 1 



 

89 

 

APPENDIX 2 – Statistical data 
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APPENDIX 2 – Statistical data 
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