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Abstract 

Adult skeletal muscle fibers show an ability to undergo phenotypic alterations without cell 

death or regeneration in response to environmental changes. Important factors affecting the 

metabolic and contractile properties of a muscle fiber includes the activation of genes involved 

in mitochondrial biogenesis and oxidative phosphorylation, as well as fast and slow isoforms of 

contractile proteins.  

The coactivator peroxisome proliferator-activated receptor (PPAR) gamma coactivator (PGC)-

1! has recently been proposed to initiate these processes by altering oxygen capacity and 

myosin heavy chain (MyHC) expression in individual muscle fibers in transgenic animals. 

However, it is difficult to know if the observed effects reflect a true adult plasticity, or an effect 

of PGC-1! overexpression throughout myognesis. Here we compared wild type expression 

patterns of PGC-1! in both fast and slow muscles and investigated the effect of PGC-1! on 

fiber phenotype in adult mice, where developmental factors are not involved.  

Expression patterns of the endogenous PGC-1! protein were analyzed by subcellular protein 

fractionation and Western blotting, while overexpression was studied by electroporating a 

plasmid encoding Flag-PGC-1! into both the slow oxidative soleus (SOL) and the fast 

glycolytic extensor digitorum longus (EDL). MyHC fiber type distribution was further analyzed 

among the transfected fibers, and compared to control fibers within the same muscles.  

The endogenous PGC-1! protein was found to be expressed 36-fold higher in nuclei from 

EDL than nuclei from SOL. Overexpression studies in SOL resulted in no MyHC alterations 

in the PGC-1!-transfected fibers. In EDL an increase in 2x fibers at the expense of 2b fibers 

was seen when comparing PGC-1!-transfected fibers with the sham-transfected fibers. 

However, sham transfection in EDL also influenced fiber type, a finding we attribute to 

selective transfection of fibers with low input resistance. Therefore these findings should be 

interpreted with caution, and the experiments should be repeated under conditions where 

sham transfection has no effect.  
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1. INTRODUCTION 

1.1 Skeletal muscle 

Skeletal muscle is a complex and heterogeneous system, which shows an enormous variability 

in its functional features, such as force production, resistance to fatigue, and energy 

metabolism (Berchtold et al., 2000). Skeletal muscles primarily obtain this heterogeneity 

during development, when immature myoblasts differentiate into the long, cylindrical, 

multinucleated fibers (cells) that make up the skeletal muscle.  These fibers exhibit different 

functional properties so that groups of fibers or muscles can face tasks ranging from steady 

low-level activities, such as maintenance of posture, to sudden bursts of intense activity, such 

as rapid movements or resistance training (Arany, 2008).  

Most mammalian muscles consist of a mixture of the different fiber types, and this diversity is 

related to the expression of different isoforms of contractile and metabolic proteins in the 

muscle. Muscle fibers are mainly classified according to two major functional characteristics, 

their speed of contraction and their ability to resist fatigue.  

Skeletal muscle diversity was realized as early as in 1874 when it was established that muscles 

differed in color, red or white (Ranvier, 1874). In the early 19th century the correlation 

between color and speed of contraction was confirmed (Paukal, 1904), in which slow-

contracting muscles (such as soleus (SOL)) are always red, in contrast to fast-contracting 

muscles (such as extensor digitorum longus (EDL)), which can be either red or white (reviewed 

in Needham, 1926). Today we know that color of skeletal muscle is due to the amount of 

myoglobin (Kendrew et al., 1954), a red oxygen-binding pigment, which correlates with the 

oxygen capacity of the muscle.  

Muscle fibers’ speed of contraction correlates with the myosin molecules’ ability to hydrolyze 

adenosine triphosphate (ATP) via their myosin ATPase (mATPase). The greater intrinsic 

speed, the higher the ATPase activity of the respective muscle. This was originally shown by 

Barany (1967), and in 1985 Reiser et al.(1985) showed that the shortening velocity of 

individual fibers correlate with the myosin heavy chain (MyHC) isoform composition, but did 

not show any consistent correlation with myosin light chain (MyLC) isoforms. Fiber type-
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specific programs of gene expression are not restricted to just the MyHC isoforms, but exist 

for other muscle proteins as well (Schiaffino & Reggiani, 1996; Pette & Staron, 1997; 

Windisch et al., 1998), such as troponin subunits, tropomyosin, "-actinin, and various Ca2+-

regulatory proteins such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), 

dihydropyridine (DHP)-receptor and calsequestrin (Pette & Staron, 1993, 1997). All of these 

may contribute to a faster contraction and a shorter duration time. The different isoforms may 

be expressed in a graded fashion; the fast Ca2+-ATPase isoform SERCA1 is expressed at higher 

levels in type 2b fibers compared to type 2a fibers, or in an all or none fashion; e.g. 

phospholamban is found in type 1, but not in type 2 fibers (Pette & Staron, 1993, 2000).  

With histochemical procedures three main fiber types, termed type 1, 2a and 2b were 

discovered as a result of mATPase activity (Brooke & Kaiser, 1970). Later with the 

development of immunohistochemical techniques and monoclonal anti-MyHC antibodies 

(Schiaffino et al., 1986), a fourth MyHC fiber type, the 2x fiber, expressing MyHC isotype 2x 

was identified (Schiaffino et al., 1989; DeNardi et al., 1993). This fiber type was classified as an 

intermediate between 2a and 2b fibers, by being relatively oxidative compared to 2b (Larsson et 

al., 1991) and more fast-twitch than 2a (Bottinelli et al., 1994). In total, 11 different MyHC 

isoforms in adult mammalian muscles encoded by separate genes have been identified (Pette & 

Staron, 2000). Four of these, MyHC 1, 2a, 2x, and 2b, are present in adult rodent limb 

muscles (Brooke & Kaiser, 1970; Schiaffino et al., 1989).   

Usually, only one isoform is expressed in each fiber at a time, but the co-expression of 

different MyHC genes, e.g., fibers containing both 1 and 2a-MyHC, 2a and 2x-MyHC, 2x and 

2b-MyHC occur (Pette & Staron, 1990; Schiaffino & Reggiani, 1994). Although hybrid fibers 

are often assumed to represent a negligible population, substantial data indicates that a 

considerable percentage of these fibers are present in normal adult muscles (e.g. Biral et al., 

1988; Schiaffino & Reggiani, 1994). These hybrid fibers generally show an intermediate mean 

cross-sectional area (CSA), succinate dehydrogenase (SDH) and "-glycerolphosphate 

dehydrogenase (GPD) values lying between their respective pure MyHC fiber types, suggesting 

a continuum of contractile and metabolic properties from type 2b to type 1 (Rivero et al., 

1998). 
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There is a correlation between muscle fibers speed of contraction and their ability to resist 

fatigue; with slow twitch fibers being oxidative and fast twitch fibers being glycolytic. Type 1 is 

believed to be the most fatigue resistant fiber type, due to high concentrations of mitochondria 

and oxidative enzymes (e.g., SDH), while 2b fibers are fast fatigable due to low concentrations 

of mitochondria, but have high concentrations of glycogen and glycolytic enzymes (e.g., GPD). 

When comparing speed of contraction, 2b fibers are the fastest due to fast hydrolysis of ATP, 

this however, is only a short-lasting source of ATP since the amount of substrate is limited; 

while type 1 fibers have the slowest hydrolysis (Schiaffino & Reggiani, 1994). Type 2a and 2x 

show intermediate speed of contraction, resistance to fatigue, and metabolic profile compared 

to type 1 and 2b. An overview of the physiological properties of the different MyHC isoforms 

is presented in table 1.1. An inverse relationship between CSA and SDH activity has been 

proven, as well as a relationship between CSA and MyHC, with the ranking order 1/2a-2a/1-

2x-2b (Sieck et al., 1995; Delp & Duan, 1996; Rivero et al., 1998). However, since the range in 

fiber size varies both within and between the different fiber types, among different muscles, 

and among different strains of rat and mice, it is difficult to make up a define scheme of the 

relationship between CSA, SDH and MyHC.  

Table 1.1 An overview of the fiber types defined by MyHC isoform and physiological properties in 
skeletal limb muscle of rodents.  

Fiber 
type: 

MyHC: Speed of contraction: Metabolic profile: Endurance: 

1 MyHC 1 Slow Oxidative Good 
2a MyHC 2a Fast Oxidative-glycolytic Good-Medium 
2x MyHC 2x Faster Glycolytic-oxidative Medium-poor 
2b MyHC 2b Fastest Glycolytic Poor 

Myosin heavy chain (MyHC) expression determines the muscle fiber type and defines the speed of 
contraction. Resistance to fatigue, and the metabolic profile defines the level of endurance.   

The most frequently used muscles in studies concerning fiber type and metabolic profile are 

the fast glycolytic EDL and the slow oxidative SOL. This is due to their extreme phenotypes 

in mice (table 1.2) and rat (data not shown).   
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Table 1.2 Fiber type frequency (%) of a typical fast muscle (EDL) and a typical slow muscle (SOL). 

Muscle: Animal: 1 2a 2x 2b Reference: 

EDL Mouse 1 12 19* 68 (Hughes et al., 1999) 
EDL Mouse 1 54 - 45 (Wernig et al., 1989) 
SOL Mouse 50  50  0 0  Ekmark unpub,  
SOL Mouse 55 51 0* 0 (Hughes et al., 1999) 

Extensor digitorum longus (EDL) muscle in mice is predominated by fast glycolytic muscle fibers (2b), 
while slow oxidative muscle fibers dominate in the soleus (SOL) (1 and 2a). *2x fiber frequencies are 
calculated assuming 1 + 2a + 2b + 2x = 100 % (Hughes et al., 1999). – Not measured (Wernig et al., 
1989).  

1.2  Plasticity of muscle fiber phenotype 

Even though the basic fiber type composition of a muscle is largely determined during 

development, the adult muscle retains its ability to undergo substantial phenotypic alterations 

(Pette, 2002; Schiaffino et al., 2007) as a response to changes in the environment, e.g. nerve 

activity, mechanical stimuli, hormonal activity and aging (Pette & Vrbova, 1985; Gorza et al., 

1988; Pette & Staron, 1997; Mercier et al., 1999; Pette & Staron, 2000). The phenotypic 

alterations occur in fully differentiated cells from slow/oxidative to fast/glycolytic and vice 

versa, without cell death or regeneration (Gorza et al., 1988; Personius & Balice-Gordon, 

2001).  This transition in MyHC isoform expression occurs in a sequential and reversible 

order: MyHC 1 ! MyHC 2a ! MyHC 2x ! MyHC 2b (Windisch et al., 1998; Pette & 

Staron, 2000). During this transition the percentage of hybrid fiber populations often increases 

(Pette & Staron, 1997, 2000).  

The firing pattern of the motor neuron that innervates the muscle has been shown to have the 

most profound effect. This was demonstrated in a series of classic experiments, starting with 

the cross-innervation experiments by Buller et al. (1960), which demonstrated that innervated 

slow muscles became fast when re-innervated with a fast nerve and vice versa for fast muscles 

(reviewed in Pette & Vrbova, 1985). This resulted in two main hypotheses of how the nerve 

conducted these changes, by electrical signals and/or neurotrophic factors secreted from the 

nerve. Several studies have shown that when stimulating the denervated muscle directly by 

steel electrodes, thereby excluding trophic factors, electrical signals alone are sufficient to 

change the properties of the muscle in the same way as the cross-innervated muscles. Slow 

contraction speed and high fatigue resistance was induced in the fast EDL muscle when 
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stimulated with a slow electrical stimulation pattern (chronic, low-frequency), inducing fast-

to-slow transformation (e.g. Eken & Gundersen, 1988; Westgaard & Lomo, 1988; Gundersen 

& Eken, 1992). Slow-to-fast transformation was achieved when stimulating the slow SOL 

muscle with high frequency stimulations, resulting in a less fatigue resistant muscle (e.g. Lomo 

et al., 1974; Gorza et al., 1988; Gundersen & Eken, 1992). The importance of electrical signals 

has been well established, while the role of the neurotrophic factors, if they exist, are still 

somewhat unclear.  

Endurance training, or prolonged low-frequency muscle activity, might induce fast-to-slow 

fiber type-switch by increasing the oxidative metabolism through expansion of the 

mitochondrial compartment and increased angiogenesis (e.g. reviewed in Arany, 2008). This 

improves endurance and resistance to fatigue. Stretch and mechanical load has been shown to 

cause the same transition (Pattullo et al., 1992). In contrast, mechanical unloading has shown 

transition in a faster direction (Vrbova, 1963; Jankala et al., 1997).  

Inactivity, decreased activity, severe malnutrition or disease may cause atrophy (reduced CSA) 

in the muscle and induces a slow-to-fast transformation (Pette & Staron, 2000; Arany, 2008).    

Aging is associated with decrease in total muscle CSA (atrophy) as a result of a reduction in 

the number of muscle fibers and a reduction in the CSA of individual fibers (Lexell et al., 

1988). However, in contrast to disease, inactivation and decreased activity, aging induces a fast-

to-slow transformation (Larsson & Ansved, 1995; Pette & Staron, 2000). This is a result of 

selective decrease in muscle fiber size; type 2 fibers decrease with increasing age, whereas type 1 

fibers are unaffected (Roos et al., 1997). The relative contribution of type 2 fibers to force 

generation is therefore less in the aged than in the young. There is also evidence for selective 

atrophy of type 2 fibers (Klitgaard et al., 1989; Klitgaard et al., 1990); however, the literature 

presents conflicting evidence about whether the loss of muscle fibers are type-specific or not 

(Lexell et al., 1986; Lexell, 1993), which is the main factor for a decreased total muscle CSA 

(Roos et al., 1997).   

Different hormones (Izumo et al., 1986; Moxley, 1994; Van Zyl et al., 1995) have a profound 

effect on muscle fiber composition, energy metabolism and protein synthesis in fast and slow 

skeletal muscles. The thyroid hormone appears to have the greatest effect on muscle fiber type. 
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In general, hypothyroidism causes an increase in slow fibers, whereas hyperthyroidism elicits 

transition in the opposite direction (Ianuzzo et al., 1977; Nwoye & Mommaerts, 1981; Pette & 

Staron, 1997). Other hormones, such as testosterone, may contribute to gender differences in 

fiber size, affecting the relative concentrations of MyHC isoforms in young untrained men and 

women (Staron et al., 2000).  

However, the signaling pathways linking muscle activity to alterations in gene expression of 

the metabolic and contractile proteins are far from fully understood. Recently published 

literature suggests that an array of signaling pathways, rather than a “master” switch or 

pathway, are responsible for the changes in fiber phenotype seen in adult skeletal muscle 

(Spangenburg & Booth, 2003; Koulmann & Bigard, 2006).  

1.3 Signaling pathways regulating muscle plasticity 

Several independent signaling pathways regulating skeletal muscle phenotype have so far been 

identified. Only a few of these pathways have been proposed as regulators linking electrical 

signals from motor neurons to a fast glycolytic phenotype (Seward et al., 2001; Grifone et al., 

2004; Noirez et al., 2006; Ekmark et al., 2007). MyoD knockout mice express low levels of 

MyHC 2b messenger ribonucleic acid (mRNA) when compared to muscles of wild type mice 

(Seward et al., 2001). Somatic MyoD deoxyribonucleic acid (DNA) transfer in adult mice has 

shown elevated levels of MyHC 2b (Ekmark et al., 2007). Another mechanism, the Six and 

Eyes absent homolog (Eya) pathway, is involved in the establishment and maintenance of a 

fast-twitch muscle phenotype (Grifone et al., 2004). Pathways regulating slow-gene programs 

are more extensively investigated.  

Myogenin was found, when overexpressed in transgenic mice, to increase oxidative capacity and 

decrease fiber size in fast muscles compared to wild type mice (Hughes et al., 1999). However, 

no effect on MyHC composition was observed.  These results were also observed when 

myogenin DNA was electroporated into muscles of adult mice (Ekmark et al., 2003).  

Other pathways have been shown to alter MyHC composition in a slow oxidative direction, 

and special attention has been paid to calcium-triggered regulatory pathways acting through 

calcineurin (CaN) and Ca2+-calmodulin-dependent protein kinase (CaMK) (figure 1.1) 
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(Koulmann & Bigard, 2006). CaN is a serine-threonine Ca2+/Calmodulin (CaM)-regulated 

protein phosphatase that acts on the transcription factor nuclear factor of activated T cells 

(NFAT) family, inducing their translocation to the nucleus and binding to promoter regions of 

different target genes (Rao et al., 1997). CaN is a heterodimer which consists of a catalytic 

(CnA) and a regulatory (CnB) subunit. Both the CaN subunits and NFAT have various 

isoforms, and skeletal muscles express CnB1, CnA" and CnA!, as well as NFATc1-c4 

(Schiaffino et al., 2007). Calabria et al. (2009) have suggested that the transcription of slow and 

fast MyHC genes uses different combinations of the 4 NFAT isoforms (NFATc1-c4). CaN is 

thought to contribute to transition of MyHC isoform expression in a fast-to-slow direction, 

both in vitro and in vivo, through the activation of NFAT (Chin et al., 1998; Dunn et al., 1999; 

Bigard et al., 2000; Rana et al., 2008). The transactivational activity of NFAT on slow gene 

programs (McKinsey et al., 2002) is known to require interactions with other transcription 

factors, such as myocyte enhancer factor (MEF)-2 (Wu et al., 2000). MEF-2 interacts with, 

and mediates, a large set of reactions and is activated through the CaMK pathway (McKinsey et 

al., 2000). The rate of transcription is often dramatically increased after MEF-2 

phosphorylation on its transcriptional activation domain (on the C-terminal end) by the p38 

mitogen-activated protein kinase (MAPK) (Zhao et al., 1999; McGee & Hargreaves, 2004). 

However, MEF-2-mediated transcription is dependent upon dimerization and association with 

different cofactors possessing histone acetyltransferase (HAT) activity (McKinsey et al., 2002). 

Both NFAT (McKinsey et al., 2002) and peroxisome proliferator-activated receptor (PPAR) 

gamma coactivator (PGC)-1" (Scarpulla, 2002) have the ability to recruit coactivators with 

HAT activity, such as steroid receptor coactivator (SRC)-1 and CREB binding protein 

(CBP)/p300 (Puigserver et al., 1999), to transcription factors, thereby activating transcription 

by histone acetylation.  
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Figure 1.1 Signaling pathway through the calcinurin (CaN) and Ca2+-calmodulin-dependent protein 
kinase (CaMK) 

Schematic diagram summarizing CaN signaling through its two major downstream substrates, the 
nuclear factor of activated T cells (NFAT) and the myocyte enhancer factor (MEF)-2. Different co-
activators (Co-act) with the ability to recruit proteins with histone acetyltransferase (HAT) activity are 
recruited to the transcription site to aid the expression of genes meditated by these pathways. Histone 
deacetylase (HDAC) is phosphorylated by CaMK, and thus contributes to the activation of the MEF2 
transcription factor by releasing it from HDAC. The figure is adapted from Koulmann & Bigard 
(2006).  

The fatty acid activated transcription factors PPARs are nuclear receptors, which have been 

found to play master regulatory roles in development, inflammation, glucose and lipid 

metabolism (Schmidt et al., 1992; Xu et al., 1999; Willson et al., 2000; Blaschke et al., 2006). 

Three mammalian subtypes, all closely related and encoded by separate genes, have been 

identified: ", #, !/$ (Dreyer et al., 1992; Kliewer et al., 1994). PPAR" has the ability to induce 

transcription of genes involved in mitochondrial fatty acid oxidative pathway through the 

activation of PGC-1". PPAR!/$ has been shown to regulate, in addition to !- and %-

oxidation of fatty acids (Oliver et al., 2001; Wang et al., 2003), expression of mitochondrial 

DNA (mtDNA) and slow contractile protein genes. This results in an increased resistance to 

fatigue and a more oxidative fiber type profile (Luquet et al., 2003; Wang et al., 2004) also in 

adult mice (Lunde et al., 2007). PPAR# has been found to be a master regulator of 

adipogenesis (Tontonoz et al., 1994a; Tontonoz et al., 1994b; Rosen & Spiegelman, 2000), and 
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is predominantly expressed in white adipose tissue and brown adipose tissue, as well as in 

macrophages, colon and placenta (Braissant et al., 1996).  

PGC-1" was originally identified as a coactivator for PPAR# when induced by cold exposure in 

brown adipose tissue (Puigserver et al., 1998). However, PGC-1" has later been shown to 

interact with a myriad of other transcription factors both inside and outside the nuclear 

receptor family in a ligand-dependent or -independent fashion (Lin et al., 2005). This makes 

PGC-1" highly versatile and capable of activating distinct biological programs in different 

tissues. PGC-1" is particularly expressed in oxidative tissues, such as heart, brain, kidney, liver, 

white and brown adipose tissue and skeletal muscle (Puigserver et al., 1998). Different 

pathways, such as p38 MAPK (Akimoto et al., 2005), CaMK and CaN (Handschin et al., 

2003), have been shown to regulate and control PGC-1" expression (figure 1.2) (Koulmann & 

Bigard, 2006). PGC-1" controls adaptive thermogenesis through the up-regulation of 

uncoupling protein (UPC)-1 in brown adipose tissue, but also in skeletal muscle (Puigserver et 

al., 1998). In addition, PGC-1" has been shown to interact with UPC-1 during brown 

adipocyte differentiation (Lin et al., 2002a). PGC-1" has also been shown to stimulate 

mitochondrial biogenesis and oxidative enzymes in different cell types by inducing the 

expression of the estrogen related receptor (ERR)-" and the nuclear respiratory factors 

(NRF)-1 and 2, and by co-activating the transcriptional activity of NRF-1 (Wu et al., 1999; 

Mootha et al., 2004; Schiaffino et al., 2007). NRF-1 and 2 are in turn able to stimulate the 

expression of genes primarily involved in oxidative phosphorylation and mtDNA transcription 

and replication (Scarpulla, 2002). PGC-1" has also been shown to increase mitochondrial 

biogenesis in vivo (Lehman et al., 2000). As mentioned above, PGC-1" has the ability to 

induce MEF-2-mediated transcription through its ability to recruit HATs (McGee & 

Hargreaves, 2004). Interestingly, knockout mice or mice targeted with a disrupted PGC-1" 

gene are viable and show only mild mitochondrial impairments (Scarpulla, 2006).  

The importance of PGC-1" in the control of oxidative metabolism, as previously mentioned, 

an important factor in fiber type diversity, resulted in the interest in PGC-1"’s effect on fiber 

type switching. PGC-1" is preferentially expressed in slow muscles (Lin et al., 2002b), and in 

denervated muscles the expression of PGC-1" decreases (Koves et al., 2005). However, exercise 

in both rodents and humans readily induces PGC-1" expression, possibly through the p38 
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MAPK pathway (figure 1.2) (Schiaffino et al., 2007). Phosphorylation of PGC-1" by p38 

MAPK leads to nuclear translocation of PGC-1" and increased expression of mitochondrial 

enzymes (Wright et al., 2007). Overexpression of PGC-1" in skeletal muscle of transgenic mice 

induced slow-type-1 and 2a fibers in fast glycolytic muscles, in addition to stimulating the 

mitochondrial biogenesis and synthesis of oxidative enzymes; thus making the muscles more 

resistance to fatigue (Lin et al., 2002b). In PGC-1" knockout mice the number of these fibers 

appear normal, indicating that PGC-1" clearly not is the sole determinant for type 1 and 2a 

fibers (Arany et al., 2005).  

In addition to regulating mitochondrial biogenesis, oxidative enzymes, and a slow MyHC gene 

program, PGC-1" also has the ability to up-regulate genes of the mitochondrial fatty acid 

oxidative pathway in skeletal muscles through the activation of PPAR" (figure 1.2) (Vega et 

al., 2000; Lee et al., 2006). GLUT4 expression is known to be enhanced by PGC-1" via 

coactivation of MEF-2 in skeletal muscles (Michael et al., 2001).  

Recent data indicate that the later-identified homologue to PGC-1", PGC-1!, may also be 

involved in the activation of mitochondrial biogenesis and muscle plasticity through some of 

the same pathways as PGC-1" (Lin et al., 2002a; Lin et al., 2005; Mortensen et al., 2006; 

Arany et al., 2007).     
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Figure 1.2 Activation of PPAR-gamma-coactivator (PGC)-1! and some of the downstream 
regulation involved in mitochondrial biogenesis and fiber type switching 

Ca2+/calmodulin-dependent protein kinase (CaMK), myocyte enhancer factor (MEF)-2 and 
calcineurin, together with p38, play distinct but overlapping roles in increasing PGC-1" expression. In 
combination with nuclear factor of activated t-cells (NFAT), activated-MEF-2 can bind coactivator 
proteins such as PGC-1". Through binding of nuclear respiratory factor (NRF)-1, estrogen related 
receptor (ERR)", and peroxisome proliferation-activated receptor (PPAR)", PGC-1" has the ability to 
coordinate expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation, as 
well as, contractile and regulatory proteins in muscles. This figure is adapted from Koulmann & Bigard 
(2006).  

1.4 PPAR-gamma coactivator-1! (PGC-1!) 

The PGC-1 family of coactivators consists of PGC-1", PGC-1! and the PGC-1 related 

coactivators (PRC). This family is highly conserved between many chordate species, such as 

humans, primates, rodents, ruminants, birds, amphibians, and fish (Lin et al., 2005), 

suggesting an important role common to all of these species (Lin et al., 2002a). Lin et al. 

(2002a) and Kressler et al. (2002) found a close homologue to PGC-1", named PGC-1!, 

through searches of new data base entries. This 3.6 kb mouse complimentary DNA (cDNA) 

has an open reading frame of 1014 amino acids, which corresponds to a molecular size of 112.1 

kDa. Unlike the PGC-1 related coactivators (PRC) (Andersson & Scarpulla, 2001), sequence 

similarity between PGC-1" and -1! is distributed along the entire length of the protein with 

greater identity in the N-terminal activation domain (AD) and the C-terminal RNA 
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recognition motif (RRM), 40 and 48 %, respectively (figure 1.3) (Lin et al., 2002a). Even 

though these are all closely related homologues expressed primarily in the same tissues, they 

have distinct and often opposite biological activities.  

 

Figure 1.3 Protein sequence alignment of PGC-1!, PGC-1! and PRC.  

Protein sequence alignment of the PGC-1 family of coactivators; with the degree of sequence similarity 
to PGC-1! shown. Conserved domains/motifs are indicated above the diagram, and includes the 
activation domain (AD), host cell factor (HCF) binding motif (HBM), RNA recognition motif 
(RRM), arginine/serine-rich motif (RS) and leucine-rich domains (LXXLL). PGC-1! also contains 
two glutamic/aspartic acid-rich domains (E), in contrast to PGC-1" and PRC, which has an 
arginine/serine-rich motif (RS). Figure is not drawn to scale, and is based on Lin et al. (2002a) 

The tissue distribution of PGC-1! mRNA corresponds to that of PGC-1", with the highest 

levels in brown adipose tissue and heart (Lin et al., 2002a; Scarpulla, 2002), but it is also found 

in other oxidative tissues, such as brain, liver, white adipose tissue, and muscle (Puigserver et 

al., 1998; Lin et al., 2002a; Kamei et al., 2003). However in brown adipose tissue, PGC-1! is 

not induced by cold exposure as PGC-1" (Lin et al., 2002a). In contrast to PGC-1", PGC-1! 

does not work through the activation of the UCP-1 promoter and does not have the ability to 

stimulate PPAR#-mediated transcription (Kamei et al., 2003).  

Despite the differences between PGC-1! and -1", PGC-1! binds NRF-1 and ERR", and 

transactivates their target genes leading to increased mitochondrial gene expression, by the 

same mechanisms as PGC-1" (Kamei et al., 2003; Lin et al., 2003). PGC-1! has also been 

shown to be equally potent as PGC-1" to activate a full program of mitochondrial biogenesis 

and oxidative enzymes in isolated cells (St-Pierre et al., 2003) and in vivo (Arany et al., 2007). 

However, PGC-1" has been associated with higher proton leak rates than PGC-1! (St-Pierre 
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et al., 2003). Since the tissue-specific expression pattern of the two coactivators is very similar, 

PGC-1! may compensate for the absence of PGC-1" in PGC-1" knockout mice by 

maintaining the mitochondrial functions (Scarpulla, 2006).  

1.5 PGC-1! and skeletal muscle 

During the last few years, knowledge about the physiological functions of PGC-1! in skeletal 

muscle has increased considerably. Strong evidence suggests that PGC-1! is an important 

regulator of mitochondrial biogenesis and oxidative enzymes, such as its homologue PGC-1" 

(St-Pierre et al., 2003; Arany et al., 2007). In skeletal muscle, one of the most oxidative tissues 

in the body, PGC-1! is highly expressed (Lin et al., 2002a). PGC-1! knockout mice have 

reduced expression of oxidative phosphorylation genes and mitochondrial dysfunction in 

skeletal muscles (Vianna et al., 2006). PGC-1!, as PGC-1", has been shown to be a potent 

enhancer for GLUT4 expression via MEF-2 in cultured skeletal muscle myotubes from rat 

(Mortensen et al., 2006).  

In addition to activating a full program of mitochondrial biogenesis and oxidative enzymes, 

PGC-1! has been shown to induce fiber type switching in transgenic mice partly via 

coactivation of the MEF-2 transcription factor (Arany et al., 2007). PGC-1!’s influence on 

fiber type maturation was shown by Mortensen et al. (2006) when they overexpressed PGC-1! 

by adenovirus-mediated gene transfer in cultured neonatal myoblasts, primarily from rat 

skeletal muscle. Both PGC-1! and -1" seem to be involved in maturation of myofibers by 

downregulating MyHCemb (embryonic) and MyHCperi (perinatal).  

Arany et al. (2007) further explored the functions of PGC-1! by transgenic expression of this 

protein in skeletal muscle. Remarkably, this transgenic overexpression of PGC-1! induced a 

significant increase in the amount of MyHC 2x mRNA, in expense of MyHC 1, 2a and 2b, 

compared to wild type littermates. The induction of mitochondrial biogenesis and gene 

expression of the 2x MyHC isoform resulted in transgenic animals capable of withstanding 

more work over time than wild type animals. These transgenic mice were able to run, on an 

average, for 32.5 min to exhaustion, compared to 26 min for the control mice, which reflects a 

distance run of 746 meters, versus 516 meters, respectively. Interestingly, transgenic expression 
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of PGC-1! in all tissues at once leads to resistance to diabetes and hypermetabolism (Kamei et 

al., 2003). 

Because PGC-1! has been shown to interact in myofiber maturation (Mortensen et al., 2006), 

the results in transgenic mice presented by Arany et al. (2007) cannot be ruled out as PGC-

1!’s role in myogenesis, rather than true adult plasticity. One of the aims for this thesis was 

therefore to investigate PGC-1!’s effect on MyHC expression in adult mice, where myogenesis 

no longer is an involving factor.  

Furthermore, Arany et al. (2007) investigated the mRNA level of endogenous PGC-1! in 

homogenates from different wild type mice muscles, and compared it to the mRNA level of all 

MyHC isoforms. A good correlation between the mRNA expression of PGC-1! and the 

MyHC 2x isoform was seen in all muscles examined, with the exception of SOL. PGC-1! 

mRNA expression was found to be high in SOL, although higher in the fast EDL. These 

results support the hypothesis of a role for PGC-1! in the regulation of 2x fibers. However, 

the subcellular localization and the relative protein level of PGC-1! in SOL and EDL has not 

yet been investigated, and was therefore one of the aims of this study.   

Taken into account these in vitro and in vivo observations, PGC-1! is implicated as a potent 

regulator of mitochondrial biogenesis and a key molecular switch in the regulation of muscle 

fiber phenotype.  

In this master thesis, overexpression of the PGC-1! protein in individual skeletal muscle fibers 

of mice was investigated in context of the underlying mechanisms that determine adult fiber 

phenotype plasticity, and in this way, developmental effects were precluded.  
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1.6 Aims  

1. What is the expression pattern of PGC-1! protein within wild type fast and slow 

muscles?  

To address this question, EDL and SOL muscles from wild type mice were 

homogenized, and protein was extracted and fractionated into nuclear and cytosolic 

samples. Western blots were performed and PGC-1! was visualized by antibody 

staining.  

2. Will PGC-1! overexpression in adult mice induce phenotypic changes in individual 

skeletal muscle fibers?  

To answer this, Flag-PGC-1! was transfected into muscle fibers of both EDL and 

SOL of adult mice by in vivo electroporation. MyHC expression of the transfected 

fibers was analyzed fourteen days after transfection and compared to sham-transfected 

and normal non-transfected control fibers. 
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2. MATERIALS AND METHODS 

2.1 DNA Constructs 

For overexpression of PGC-1!, a 9.1 kb plasmid, pcDNA-f:PGC-1!, (1031, Addgene) (figure 

2.1A) encoding a constitutively active Flag-PGC-1! fusion protein was bought from Addgene 

(1031). DNA sequence encoding the Flag-tag had been fused N-terminally to the PGC-1! gene 

and the transgene is driven by the constitutively active cytomegalovirus (CMV) promoter.  

Serving as sham control, a modified pcDNA-f:PGC1! plasmid was prepared (figure 2.1B).  The 

DNA sequence encoding PGC-1! was cut out using the restriction enzyme EcoRI. Following 

restriction cutting, the plasmid was religated using T4 ligase and transformed into CaCl 

competent Escherichia coli (E.coli) cells. The amplified plasmid was then extracted from the 

bacteria by a miniprep DNA purification system. For verification, restriction cutting with 

HindIII and sequencing using a T7 primer was performed. This resulted in a sham plasmid with 

the flag-tag, but without the PGC-1! gene, that we designated pcDNA-f.  

In addition, a reporter plasmid, pAP-lacZ (figure 2.1C), was used. The 7.8 kb pAP-lacZ plasmid 

contains the E.coli !-galactosidase sequence which is driven by a rous sarcoma virus (RSV) 

promoter and an origin of replication driven by a simian virus (SV) 40 promoter. This plasmid 

was a kind gift from Professor N. Gautam.  
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Figure 2.1 Expression vectors.  

A. The 9.1 kb pcDNA-f:PGC-1! plasmid, encoding the fusion protein Flag-PGC-1! B. The 5.6 kb 
pcDNA-f sham plasmid, encoding the flag-tag. C. The 7.8 kb reporter plasmid, pAP-lacZ, encoding !-
galactosidase.  

2.2 Animals 

Female NMRI mice (20-25 g), delivered by Scanbur (BK), were used for this study. They were 

held in cages in the animal research facility at the Department of Molecular Biosciences, 

University of Oslo. The air temperature and humidity were kept at 21-24 °C and 50-60 %, 

respectively. The light was regulated at 12- h cycles. Food and water was given ad libitum.  

All animal experiments were conducted according to the Norwegian Animal Welfare Act of 

December 20th, 1974, no. 37, chapter VI, sections 20-22, and the Regulation on Animal 
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Experimentation of January 15th, 1996, as well as reviewed and approved by the Norwegian 

Animal Research Authority. 

2.3 Surgery 

2.3.1 Anesthesia 

Each animal was initially anesthetized with 1.9-2.5 % v/v of Isoflurane gas (506949, Florene, 

Abbot) with airflow of 500-600 cc/min, or an intraperitoneal injection of 5 µl/g body weight 

Equithesin for the electroporation and termination experiments, respectively. By pinching the 

metatarsus region and observing the absence of the withdrawal reflex, the effect of anesthesia 

was regularly checked. Further anesthesia was administrated if necessary.   

2.3.2 Surgical procedures 

When deep anesthesia was induced, hair was removed from the lower part of the leg by an 

electric shaver and hair removal cream (Veet, Reckitt and Coleman). The leg was locked in a 

fixed position onto a platform and the muscle surgically exposed. For transfection of muscle 

fibers, the DNA solution (appendix A, 5.1.1, 5.1.2) was injected into the belly of the muscle, 

followed by electroporation. The wound was covered at all times in ringer acetate solution 

(Fresenius Kabi Norway AS) to prevent dehydration of the muscle. After electroporation, 

surgical sutures were used to close the wound.  

After fourteen days the animals were re-anesthetized; this time by intraperitoneal injections of 

Equithesin (704845, Ullevål sykehusapotek, Norway). The muscle was surgically exposed and 

excised. While still under deep anesthesia, the animal was sacrificed by neck dislocating. The 

excision of wild type muscles was performed in the same way.  

2.3.3 Freezing of muscles 

After excision the muscles were slightly stretched between two pins in a homemade form and 

embedded in Tissue-Tek (4583, Sakura Finetek).  It was further frozen in isopentane 

(24872.323, GPR Rectapur), which was cooled down to its freezing point (-160 °C) by liquid 

nitrogen (-196 °C), and stored in 2 ml microtubes (72.694.006, Sarstedt) at -80 °C until used 

for histochemical analyses. 
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Muscles intended for homogenization and fractionation were frozen directly in liquid nitrogen 

and stored in 2 ml microtubes (72.694.006, Sarstedt) at -80 °C.  

2.4 Transfection of plasmids  

2.4.1 Transfection in tissue culture 

To verify the translation of the Flag-PGC-1! transgene into a fully functional protein, human 

embryonic kidney cells (HEK 293) were transfected, and the protein lysate was visualized on 

Western blots.  

The HEK 293 cells were cultured at 37 °C in an atmosphere of 5 % CO2 in Dulbecco’s 

modified Eagle’s medium (DMEM) (41966-029, GIBCO) with 5 % fetal calf serum (FCS) (14-

416F, Bio Whittaker) and 100 U/ml Pen/Strep (DE17-602E, Bio Whittaker), an antibiotic 

solution containing both penicillin and streptomycin (appendix 5.2.1). The cells were split 1:6 

every fourth day with trypsin ethylenediaminetetraacetic (EDTA) (BE17-161E, Bio Whittaker).  

Transfection with the expression plasmids pcDNA-f:PGC-1! was carried out according to the 

Lipofectamine 2000 kit (11668019, Invitrogen). As sham control, cells were transfected with the 

vector pcDNA-f, while non-transfected cells were used as a negative control.  

2.4.2 In vivo electroporation 

In vivo electroporation has previously been described by Mathiesen (1999), and is a mechanism 

for inducing uptake of foreign DNA into a cell. Electroporation is based on the principle that 

each cell has a given transmembrane threshold, and the electric field applied has to excide this 

threshold for the cells to get permeabilized (Rols & Teissie, 1990; Golzio et al., 2001, 2002; 

Rols, 2006). This critical threshold is dependent upon the cell size, increasing with decreasing 

size (Rols, 2006).  

Following surgical exposure of the muscles, 10 µl of 0.5 µg/µl DNA solution (appendix 5.1.1, 

5.1.2) was injected into the muscle fibers using a U-100 insulin BD Micro-Fine ™ syringe.  

Immediately following the injection, the muscle was subjected to five trains (with 1s 

intermission between each train) of 1000 symmetrical bipolar electrical pulses (200 µs in each 

directions) with a peak-to-peak voltage of 20 V. This was delivered by means of a pair of 1 mm 

thick/2 cm long silver electrodes, one on each side of the muscle, approximately 3-5 mm apart. 
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The electrical field was created by a pulse generator, (Pulsar 6bp-a/s, Fredrick Haer and Co), 

and the electrical charge was registered with an analogue oscilloscope (03245A, Gould Advance).  

10 µl of DNA solution containing a mix of the expression plasmid pcDNA-f:PGC-1! and the 

reporter plasmid pAP-lacZ (appendix A, 5.1.1) was injected into the right leg of both EDL and 

SOL. A similar DNA solution containing the sham plasmid, pcDNA-f and pAP-lacZ was 

injected into the left leg (appendix A, 5.1.2). This resulted in two different experimental groups 

from the right and left leg; with the pcDNA-f:PGC-1! transfected fibers as one and the 

pcDNA-f transfected fibers as the other. These two groups are from now on referred to as 

PGC-1!-transfected fibers and sham-transfected fibers, respectively.  

In addition another group, which served as an internal control, was made up of a large number 

of randomly selected non-transfected fibers (hereafter called the normal control fibers). Because 

of an earlier reported “sham effect” (normal control and sham-transfected fibers differed 

significantly) with mice in our group, normal control fibers were picked in two different ways to 

ensure an unbiased material. Fibers were either selected as the nearest fiber down to the left (or 

up to the right depending on what was possible) from the transfected fibers (PGC-1! 

transfected fibers), or a large number of fibers surrounding each transfected fiber (sham 

transfected fibers). The normal control fiber type distribution from the PGC-1!-transfected and 

the sham-transfected fibers did not differ significantly, and are presented as on group. This 

strongly indicates that the sham effect is not due to how the normal fibers were picked, but 

rather some unknown effect of overexpression or the method of electroporation in mice.  

The three groups described above (table 2.1) consist of pooled data from several animals, as no 

systematic inter-animal variations were observed.  
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Table 2.1 Overview of experimental groups, expression vectors and overexpressed proteins 

Groups: Expression vectors: Overexpressed proteins: 

Control fibers 
 

- - 

Sham transfected fibers 
 

pcDNA-f 
pAP-lacZ 
 

Flag 
!-galactosidase 

PGC-1! transfected fibers pcDNA-f:PGC-1! 
pAP-lacZ 

Flag-PGC-1! 
!-galactosidase 

Three groups, two experimental and one internal control, with the following expression vectors injected 
and electroporated, and the respective overexpressed protein. Expression vector pcDNA-f:PGC-
1!/pAP-lacZ was injected in the right leg (PGC-1!-transfected fibers), while the pcDNA-f/pAP-lacZ 
was injected into the left (sham-transfected fibers). Normal control fibers are represented from both legs 
and pooled together.  

2.5 Protein extraction and measurement 

2.5.1 Whole cell protein extraction from cell culture 

48 h after transfection of the HEK 293 cells, medium was removed, cells put on ice and washed 

twice in ice-cold phosphate buffered saline (PBS) (20012-043, GIBCO). The cells were further 

lysed in 500 &l lysis buffer (Cameron et al., 2008) (appendix 5.2.2) and centrifuged for 20 min at 

13 000 g at 4 °C. The supernatant was stored at -80 °C. 

2.5.2 Fractionation of protein from wild type muscles 

To evaluate expression of the endogenous PGC-1! protein in wild type SOL and EDL, the 

muscles were homogenized, fractionated and run on a Western blot. 12 normal (6 mice), 

untreated muscles of the same type (SOL or EDL) were pooled together and crushed with a 

mortar and pestle before being transferred to a falcon tube. Electrical homogenization (IKA 

Labortechnik T25 basic, Tamiro Lab AS) was carried out to ensure thorough crushing. The 

cytoplasmic and nuclear protein fractionation was performed according to the Compartmental 

protein extraction kit (2154, Chemicon International). To determine the protein concentration 

the Bio-Rad protein assay system was used according to the protocol (500-0006, Bio-Rad) and 

read at 595 nm by a microplate reader (Wallac Victor2 1420, Perkin Elmer). The samples were 

further aliquoted and stored at -80 °C.  
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2.6 SDS-PAGE and Western Blotting 

Sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) and Western blotting was performed 

according to the NuPAGE Technical Guide (IM-1001, Invitrogen Instruction Manual (2003)). 

The electrophoresis was run at 200 V for 90 min using MOPS as a running buffer (NP0001, 

Invitrogen). 40 &g of protein extract, from both transfected HEK 293 cells and normal muscles 

from female NMRI mice, was run on NuPAGE® Novex 4-12% Bis- Tris Gels (NP0321BOX, 

Invitrogen).  Both Sharp Pre-stained protein ladder (LC5800, Invitrogen) and SeeBlue plus2 

Pre-stained protein ladder (LC 5925, Invitrogen) were used.  

Blotting was performed at 30 V for 90 min (as described in XCell II Blot Module, IM-9051, 

Invitrogen Instruction Manual 2003). Membranes were blocked in 5 % dry milk (7352F, 

Acumedia) in tris-buffered saline with tween20 (TBS-T) (appendix 5.3.1) at 4 °C overnight. 

Primary antibodies were diluted in 5 % dry milk and secondary antibodies in 1.3 % dry milk.  

Visualization of transgenic (from cell lysate) and endogenous PGC-1! protein (from muscle 

extract) was achieved by application of a rabbit polyclonal anti-flag primary antibody (1:300, 

F7425, SIGMA) and a rabbit polyclonal anti-PGC1! antibody (1:1000, NB110-58858, Novus 

Biologicals), respectively, followed by goat horse-radish peroxidase (HRP) conjugated anti-

rabbit immunoglobulin (Ig)G secondary antibody (1:1750, 4030-05, SouthernBiotech). 

Immunostaining was followed by visualization on film (28906837, Amersham) using the ECL 

Western Blotting Detection kit (RPN2109, Amersham).  

Even loading, in whole cell lysate, was controlled by the application of a mouse monoclonal 

anti-actin IgG antibody (1:500, Sc-8432, Santa Cruz Biotechnology), followed by a sheep HRP 

conjugated anti-mouse IgG secondary antibody (1:1750, NA931VS, Amersham). The purity of 

the subcellular protein fractions was controlled by the application of goat polyclonal anti-

GAPDH antibody (1:500, Sc-20357, Santa Cruz Biotechnology) and rabbit polyclonal anti-Oct-

4 antibody (1:1000, 3576-100, Biovision), followed by rabbit HRP conjugated anti-goat IgG 

secondary antibody (1:1750, 6160-05, SouthernBiotech) and goat HRP conjugated anti-rabbit 

IgG secondary antibody (1:1750, 4030-05, SouthernBiotech), respectively. Octamer (Oct)-4 

transcription factor was used as a nuclear marker, whereas glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) was used as a cytosolic marker. The expression of GAPDH should be 

higher in the glycolytic EDL than in the oxidative SOL muscle (Okumura et al., 2005).   

To measure the relative amount of protein, Western blot bands were quantified using ImageJ 

(NIH).  

2.7 Histochemistry 

2.7.1 Preparation of transverse muscle serial sections 

The frozen muscles were cryosectioned at 10 µm using a cryostat (HM560M Microme). The 

temperature of the muscle tissue was set to -26 °C and the knife to -24 °C. Transverse serial 

sections were mounted on SuperFrost Plus slides (J1800AMNZ, Menzel-Gläser) and stored at -

80 °C until further histochemical analyses.  

2.7.2 Staining for !-galactosidase activity 

As previously mentioned, the pAP-lacZ plasmid was co-transfected along with the experimental 

plasmid, pcDNA-f:PGC1-! and the sham plasmid, pcDNA-f, as a reporter gene for 

identification of the transfected fibers (Lojda, 1970; Sanes et al., 1986). pAP-lacZ encodes the 

!-galactosidase enzyme for which the activity can be visualized histochemically in a color 

reaction (appendix 5.4.2). When adding the enzyme’s substrate, 5-bromo-4-chloro-3-indolyle-

!-D-galactoside (X-gal) to the colorless product indoxyle, the indoxyle dimerises and makes 

insoluble blue crystals that can be visualized under the microscope (figure 2.2). Since co-

transfection of two separate plasmids into muscle fibers by in vivo electroporation results in 

nearly 100 % co-expression, the stained fibers are also likely to express the protein of the other 

plasmid (Rana et al., 2004) 

Figure 2.2 !-galactosidase staining 

!-galactosidase staining on a cross section of soleus. The blue 
fibers are identified as the lacZ transfected fibers, in contrast to 
the non-transfected colorless ones. Scale bar: 20 µm 
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2.7.3 Staining for myosin heavy chain isoforms and laminin 

To determine the muscle fiber types, monoclonal antibodies against the four main MyHC 

subtypes were used on neighboring sections. These antibodies were kindly provided by Stefano 

Schiaffino’s lab. A specific antibody against the 2x MyHC isoform (6H1) was a kind gift from 

Joseph F.Y.Hoh, but in this case it stained poorly, and therefore was not further used. The 

suitable secondary antibodies (table 2.2, appendix 5.4.3) were conjugated to fluorescent dyes 

such as cyanine (Cy-3) and fluroscein (FITC). When Cy-3 or FITC is illuminated with green 

('=546 nm) or blue-green ('=485 nm) light, respectively, fluorescence is emitted and the 

positive fibers will light up, while the negative ones will remain dark (figure 2.3). 

Laminin is a major protein of the basal laminia, a protein network in the extracellular matrix 

surrounding the cell membrane. By staining sections with a rabbit anti-laminin primary 

antibody (1:600, L9393, Sigma), followed by a goat isothiocyanate (TRITC) conjugated anti-

rabbit IgG secondary antibody (1:200, T6778, Sigma) (appendix 5.4.3) and illuminated the 

muscle sections with green light ('=546 nm), the contour of the individual cell can be visualized 

and easily distinguished from each other. This makes MyHC-fiber typing less difficult to 

perform.  

An example of a histochemical analysis on serial sections from EDL is shown in figure 2.3, 

comparing !-galactosidase and anti-MyHC staining on a PGC-1!-transfected muscle section. 

Randomly selected non-transfected fibers are marked N1-6, while !-galactosidase positive 

staining are marked P1-6.  Laminin staining is also shown.  

Table 2.2 Overview of antibodies used to identify MyHC subtype expression in muscle fibers 

MyHC: Primary antibody: Secondary antibody: 

1 BA-D5 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

2a SC-71 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

All non-2x BF-35 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

2b BF-F3 Goat anti-mouse IgM, Cy-3 (J115-165-020, Jackson 
ImmunoReasearch Lab) 

An overview of the primary and secondary antibodies used to identify the different subtypes of MyHC in 
the individual muscle fibers of transfected soleus and extensor digitorum longus.    
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Figure 2.3 A-F Example of serial 
sections stained with !-galactosidase, 
anti-myosin heavy chain (MyHC) and 
anti-laminin in a PGC-1! transfected 
EDL muscle 

Serial cross sections stained for !-
galactosidase activity (A), MyHC 2b 
(B), non-MyHC 2x (C), MyHC 2a 
(D), MyHC 1 (E) and laminin (F). A. 
Positively stained !-galactosidase fibers 
appear blue (P1-6), while randomly 
selected non-transfected control fibers 
are !-galactosidase negative, and appear 
bright (N1-6). B-E. Positively stained 
fibers appear bright for their respective 
MyHC isoform, while the dark fibers 
represent negatively stained fibers with 
a different MyHC isoform. F. Anti-
laminin staining shows the cell 
membrane of each fiber. Scale bare A-
F: 20 µm 

 

 

In addition to the four main fiber type populations, which contain only a single MyHC isoform 

(Reiser et al., 1985; Schiaffino et al., 1989), some fibers stained positive for two or more 

subtypes of MyHC. The population of intermediate hybrid fibers includes 1/2a, 2a/2x and 2x/2b 

(Pette & Staron, 1993; Schiaffino & Reggiani, 1994), and during some experimental conditions 

aberrant hybrid fibers such as 1/2b, 1/2a/2b and 1/2x/2b has also been documented (Caiozzo et 

al., 1998). However, since the specific 2x antibody (6H1) worked poorly in mice this made it 

impossible to determine 2a/2x and 2x/2b hybrids, the most important hybrids in this thesis.  

2.8 Imaging 

2.8.1 Bright-field imaging 

Images from muscle cross sections stained for !-galactosidase activity were taken with a color-

chilled 3CCD video camera (C5810, Hamamatsu) connected to a microscope (BX50WI, 

Olympus). The images were taken with a 10X water immersion objective (UMFPlanF1, 

Olympus), the images were further digitalized through an image-processing unit (Argus 20, 
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Hamamatsu), and transferred to a Power Macintosh G3 computer. The processing of the 

material was carried out using Adobe Photoshop CS3. 

2.8.2 Fluorescence imaging 

Muscle cross sections stained with Cy-3, TRITC or FITC conjugated antibodies were 

photographed in a dark room with a light sensitive SIT video camera (C2400-08, Hamamatsu) 

using a 20X water immersion objective (UMFPlanF1, Olympus), both connected to a 

microscope (BX50WI, Olympus). Two different filters, green (XF37) and blue-green (XF22), 

were used to illuminate the sections depending on whether the Cy-3/TRITC or FITC 

conjugated secondary antibody was used, respectively. Further processing was performed as with 

bright-field imaging.   

2.9 Statistics 

For statistical comparison of relative protein expression in different lanes on Western blots, a 

Wilcoxon t-test was performed. The level of significance was set to 0.05. For relative protein 

levels in normal muscles, the PGC-1! level in nuclear SOL fractions were set to 1.  

For statistical comparison of fiber type distribution between the PGC-1! transfected, sham 

transfected and normal control fibers, a Fisher’s exact test with Bonferroni correction was 

performed. The level of significance was set to 0.05. All statistical analyses were performed in 

GraphPad Prism 4. 
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3. RESULTS 

3.1 PGC-1! expressionin fast and slow muscles 

Western blots were performed on protein extracted from homogenized untreated EDL and 

SOL muscles from both legs of 18 female NMRI mice. EDL or SOL muscles from 6 animals 

were pooled together, respectively. This experiment was repeated three times (n=3). The 

homogenized samples were fractionated into cytosolic and nuclear protein and analyzed by 

immunoblotting. A representative blot is presented in figure 3.1A, showing a PGC-1! positive 

band at about 110 kDa, which corresponds to the expected size of the endogenous protein 

(112.1 kDa). This band was predominantly seen in the EDL nuclear fraction. As expected, the 

expression of the glycolysis enzyme GAPDH was higher in the glycolytic EDL than in the 

oxidative SOL.  

A quantitative assessment was performed on three blots to measure the relative amount of 

endogenous PGC-1! protein in the nuclear fractions from EDL and SOL (figure 3.1B). The 

EDL nuclear fraction had a significantly higher relative amount of endogenous protein 

compared to the SOL nuclear fraction (*=p < 0.05, n=3). This showed that the endogenous 

PGC-1! is almost exclusively expressed in the EDL nuclear protein fraction of adult female 

NMRI mice, with 36-fold more protein, than in the SOL nuclear protein fraction. Expression 

of endogenous PGC-1! in the cytosolic protein fraction from SOL and EDL was not 

detectable.  
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Figure 3.1 The endogenous peroxisome 
proliferator-activated receptor (PPAR)-gamma 
coactivator (PGC)-1! protein is expressed in 
nuclei from extensor digitorum longus (EDL)  

A. Representative blot showing the expression of 
endogenous PGC-1! protein in fractionated 
protein samples, cytosolic (Cyt) and nuclear 
(Nuc), from soleus (SOL) and EDL. To preclude 
contamination of the fractionated protein 
samples, loading control was performed with the 
cytosolic marker, glyceraldehyd 3-phosphate 
dehydrogenase (GAPDH) and the nuclear 
marker Octamer (Oct)-4 transcription factor B. 
A quantitative assessment showing the relative 
amount of endogenous PGC-1! protein in the 
nuclear fractions (*=p<0.05), n=3. Mean ± SEM. 
SOL Nuc fraction set to 1.  

 

 

 

3.2 Verification of the Flag-PGC-1! fusion protein 
expression 

Expression of the flag-PGC-1! fusion protein was verified by transfecting HEK 293 cells with 

the experimental plasmid, pcDNA-f:PGC1!.  As controls, non-transfected cells and cells 

transfected with the sham plasmid, pcDNA-f, were used. Cells were lysed, protein extracted 

and analyzed by Western blotting. The flag-tag is only 8 amino acids long, which corresponds 

to less than 1 kDa in molecular mass. The blot (figure 3.2) confirmed expression of the Flag-

PGC-1! fusion protein with a band at approximately 110 kDa in the pcDNA-f:PGC-1! 

transfected cells, but not in the sham or non-transfected controls. This size corresponds to the 

predicted molecular mass of the fusion protein (approximately 113 kDa).  
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Figure 3.2 Tranfection of human embryonic kidney 
(HEK) 293 cells with the pcDNA-f:PGC-1! 
plasmid resulted in expression of the Flag-PGC-1! 
transgene 

Protein extraction from HEK 293 cells transfected 
with experimental plasmid pcDNA-f:PGC-1!; sham 
plasmid pcDNA-f, or non-transfected presented on a 
Western blot. The 110 kDa band represents the flag-
PGC-1! fusion protein, visualized using a flag 
specific antibody. Anti-actin is used as a loading 
control, seen at approximately 43 kDa. n=2 

 

 

3.3 Effects of Flag-PGC-1! on fiber type distribution 

The fiber type distribution was found by counting the number of different fiber types 

identified by anti-MyHC immunohistochemistry staining fourteen days after transfection.  The 

distribution in SOL and EDL are presented in figure 3.3/table 3.1 and figure 3.4/table 3.2, 

respectively.    

3.3.1 Fiber type distribution in SOL 

A total of 1095 transfected fibers in the three groups (normal control fibers, sham transfected 

fibers and PGC-1! transfected fibers) from 8 female NMRI mice were analyzed (figure 

3.3/table 3.1). The fiber type distribution was not significant when comparing the PGC-1!-

transfected, sham-transfected and normal controls, nor between the sham-transfected and the 

normal control fibers (p=0.05)(figure 3.3).  
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Figure 3.3 Fiber type distribution in SOL after PGC-1! transfection 

Fiber type distribution in SOL in PGC-1!-transfected, sham-transfected, and normal controls 
(p=0.05). No significant differences were observed when comparing any of the groups. n=1095 fibers 
from 8 NMRI mice. For further information see table 3.2 

Table 3.1 MyHC fiber type distribution in the normal control, sham-, and PGC-1!-transfected 
groups of SOL 

Fiber type: Normal control:  Sham transfected: PGC-1" transfected: 

 n: % n: % n: % 

1 444 60.7 103 54.5 93 53.2 

1/2a 48 6.6 17 9.0 16 19.1 

2a 239 32.7 69 36.5 66 37.7 

Total:  731 100 189 100 175 100 

3.3.2 Fiber type distribution in EDL  

A total of 2065 fibers in three groups (normal control fibers, sham-transfected fibers and 

PGC-1!-transfected fibers) from 8 animals were analyzed (figure 3.4/table 3.2). The fiber type 

distribution was significantly different when comparing PGC-1!-transfected fibers with the 

normal controls. There was a 33.9 % decrease in the proportion of 2a fibers (p=0.0003), and a 

15.7 % increase in the proportion of 2b fibers (p=0.0004).  

When comparing sham-transfected with normal controls, the proportion of 2a fibers decreased 

by 40.7 % (p=0.0074), the proportion of 2x fibers decreased by 48.2 % (p=0.0001) and the 

proportion of 2b fibers increased by 40.1 % (p<0.0001).  

A significant difference in fiber type distribution was also seen when comparing the PGC-1!-

transfected fibers with the sham-transfecetd fibers. There was a 17.4 % decrease in the 
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proportion of 2b fibers (p=0.0006) and a 77.6 % increase in the proportion of 2x fibers 

(p=0.0020). 

As described, there was a general shift towards a faster fiber phenotype in the sham and PGC-

1! transfected group when compared to the normal control. However when comparing the 

PGC-1!-transfected group to the sham-transfected group a drastic increase in the proportion 

of 2x fibers (77.6 %) at the expense of 2b fibers was evident, shifting the fiber phenotype in a 

slower direction.  

 

Figure 3.4 Fiber type distribution in EDL after PGC-1! transfection 

Significant differences compared to the normal controls are indicated by *, while significant differences 
compared to the sham-transfected fibers are indicated by # (***/###=p<0.001 **/##=p<0.01). The level 
of significance was set to 0.05. n=2065 fibers from 8 animals. For further information see table 3.1 

Table 3.2 MyHC fiber type distribution in the normal control, sham-, and PGC-1!-transfected 
groups of EDL 

Fiber type: Normal control: Sham transfected: PGC-1" transfected: 

 n:  % n: % n: % 

1 18 1.5 1 0.5 12 1.8 

1/2a 18 1.5 1 0.5 7 1.1 

2a 226 18.9 23 11.2 83 12.5 

2x 293 24.5 26 12.7 150 22.6 

2b 641 53.6 154 75.1 412 62.0 

Total:  1196 100 205 100 664 100 
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4. DISCUSSION 

The present study shows that endogenous PGC-1! protein was detected exclusivly in nuclei, 

and not in the cytosolic fractions of either EDL or SOL. The protein was found to be 

expressed 36-fold higher in the fast glycolytic EDL compared to the slow oxidative SOL, while 

the mRNA level has been shown to be much more equal (Arany et al., 2007).  

The overexpression studies in EDL showed a general shift towards a slower phenotype when 

comparing the PGC-1!-transfected fibers with the sham-transfected fibers. This was due to a 

downregulation of 2b fibers and an upregulation of 2x fibers. However, when comparing both 

the PGC-1!-transfected and sham-transfected fibers with the non-transfected normal control, 

a general shift towards a faster phenotype was observed; and due to this it is difficult to 

interpret these results.  

In SOL no significant effect was observed when comparing any of the groups, it is therefore 

possible to conclude that PGC-1! had no effect on MyHC expression under the experimental 

conditions presented in this thesis.  

4.1 Subcellular localization and expression of 
endogenous PGC-1! 

Previous experiments conducted in wild type muscles from mice have shown the expression of 

PGC-1! protein to be localized in nuclei by the use of in situ immunohistochemistry (Arany et 

al., 2007). In accordance with Arany et al. (2007), PGC-1! protein was found to be expressed 

exclusively in the nuclear fractions from both EDL and SOL.  

PGC-1! mRNA has been shown to be expressed approximately 1.6 times more in EDL than 

in SOL by Arany et al. (2007). The relative quantity of the PGC-1! protein in this study was 

found, as Arany et al. (2007) observed for mRNA, to be expressed at higher levels in EDL than 

in SOL. However, the difference in expression level was more extreme, with EDL expressing 

the PGC-1! protein 36 times more than SOL. Theoretically, this could be explained by several 

subcellular mechanisms such as translational efficiency or protein stability.  
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4.2 Effects of PGC-1! on fiber type distribution 

4.2.1 “Sham effect” observed in mouse muscle 

The sham group is an important control that is used to exclude possible effects of the 

electroporation procedure, effects of introducing foreign DNA, or overexpression of protein in 

general. Both the sham- and PGC-1! transfected fibers in EDL displayed a faster fiber type 

distribution when compared to the non-transfected normal control. We attribute the 

alteration in fiber type distribution to selective transfection of fast glycolytic fibers. At the 

present time the reason for this observed effect remains to be ascertained. However, since fast 

glycolytic fibers often are larger in diameter than slow oxidative fibers, and the square root of 

the radius (CSA) is inversely proportional to the electrical input resistance, this might be a 

reason for the selective transfection observed. This results in an increased conductivity through 

these larger fibers, thus making them less difficult to permeabilize. Electroporation is based on 

the principle that the applied electric field has to exceed the transmembrane threshold for any 

given cell to make it permeable, and this threshold is inversely proportional to cell size (Rols, 

2006). If the electric field applied under our conditions is too weak to permeabilize the small 

fibers, a selective transfection of the large fibers, as seen here, can occur.   

In SOL, however, the selective transfection was not observed. This is likely due to the more 

homogenous fiber size observed in SOL (e.g., Delp & Duan, 1996), which might result in a 

more randomized transfection of the different fiber types, rather than a selective transfection of 

the largest fast glycolytic fibers as observed in EDL. The fiber size of type 1 and 2a fibers in 

SOL have also been predicted to be larger in size than the same fibers in EDL, almost at the 

same size as the 2x and 2b fibers in EDL (personal communication and observations) (Delp & 

Duan, 1996). All of these elements coincide with the observed rate of transfection being 

almost equal as for that observed in EDL.  

Another possible explanations for the lack of sham effect, in addition to the more homogenous 

fiber size, might be the geometry of the SOL muscle; compared to EDL, SOL is a flatter 

muscle. The electrical current per unit area of cross section (current density) will increase when 

the area where current is applied decreases. This results in an increased conductivity and 

possibly an explanation for the similar transfection rate as observed for EDL. The lack of sham 
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effect may also be a result of a combination of the scenarios mentioned above, not one or the 

other.  

However, a small, non-significant tendency towards a faster phenotype can be observed when 

comparing both the sham- and PGC-1!-transfected fibers to the normal control in SOL. This 

tendency might be of significant proportions if the number of fibers transfected were to be 

increased. Others in our group have seen the “sham effect” in SOL, although smaller than for 

EDL (Hansen, 2009).  

The “sham effect” has not been observed in rats (Ekmark et al., 2007; Lunde et al., 2007), 

which may be explained by the size difference, both at macroscopic and cellular levels, in mice 

compared to rat. The electric field applied in rats may be large enough to exceed the 

transmembrane threshold for all the fibers, resulting in no selective transfection, but rather a 

more uniform permeabilization of all fibers.  

4.2.2 Effects of PGC-1! in EDL 

Although no solid conclusion can be drawn from the EDL overexpression experiments due to 

the “sham effect”, some significant differences were observed when comparing the sham- and 

PGC-1!-transfected fibers. This may indicate that PGC-1! overexpression could have the 

ability to affect MyHC expression. A faster phenotype was observed when comparing both the 

PGC-1!- and sham-transfected fibers to the normal control. Interestingly, when comparing 

the PGC-1!- and sham-transfected fibers, an increase in 2x fibers at the expense of 2b fibers 

was evident, resulting in a shift towards a slower phenotype. Arany et al. (2007) observed, in 

addition to downregulation of the 2b MyHC mRNA, a downregulation of the MyHC mRNA 

1 and 2a at the expense of an increase of 2x in EDL in transgenic animals overexpressing PGC-

1!. This is partly in agreement with the results presented in this study.  

In transgenic animals overexpressing PGC-1!, the protein is present throughout both primary 

and secondary myofiber formation, and therefore the observed effects cannot be ruled out as 

the result of PGC-1!’s role in myogenesis, rather than true adult muscle plasticity. Mortensen 

et al. (2006) further supports PGC-1!’s role in myogenesis when they observed its involvement 

in the maturation of myofibers, downregulating MyHCemb and MyHCperi, in cultured rat 

skeletal muscle myotubes. However, when the effect of PGC-1! is explored in adult mice by in 
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vivo electroporation, developmental factors are precluded from the experiment and will no 

longer be of influence on the results.  

The PGC-1! overexpression experiments in EDL conducted in this thesis could be performed 

in rats, where this selective transfection has not been noted. This will probably make it less 

difficult to determine at which point a shift in fiber type is due solely to overexpression of the 

protein of interest, as opposed to any by-effects of the electroporation procedure.  

4.2.3 Effects of PGC-1! in SOL 

Since there were no significant differences between any of the three groups compared in SOL, 

this indicates that PGC-1! overexpression had no effect on MyHC expression in this muscle. 

This is in accordance with the observations conducted in transgenic mice (Arany et al., 2007). 

Their PGC-1! cDNA transgene, which was cloned 3’ to 4.8 kb of the promoter of muscle 

creatine kinase (MCK), was poorly expressed in SOL. Several studies have shown that fast-

twitch muscles and glycolytic fibers contain higher levels of both MCK mRNA and MCK 

activity in comparison to slow-twitch muscles and oxidative fibers (Andres et al., 1990; 

Yamashita & Yoshioka, 1991; Tsika et al., 1995). Evidence also suggests that MCK promoter 

regulation is determined by different regulatory elements in fast- and slow-twitch fibers, 

resulting in an uneven expression of the gene downstream of this promoter in skeletal muscles 

(Johnson et al., 1989; Shield et al., 1996). This has also been supported by in vivo expression 

studies (Dunant et al., 2003). The lack of PGC-1! expression in SOL observed by Arany et al. 

(2007) may therefore be explained by the MCK promoter’s reduced activity in this muscle.  

However, this argument can not be used to explain our findings, since we in this study use the 

CMV promoter, a “universal” virus promoter, which is not a fiber-type-restricted promoter 

such as the MCK promoter (Hallauer & Hastings, 2000). The lack of effect by PGC-1! on 

MyHC expression in SOL in our experiments has resulted in two main possible hypotheses, 

based on the results seen in normal non-transfected muscles. Arany et al. (2007) have shown 

that the mRNA level of PGC-1! is almost equal in both the slow muscle SOL and the fast 

muscle EDL in non-transfected muscles, therefore the regulation has to occur after mRNA is 

produced. The PGC-1! mRNA may therefore not be translated into protein or the rate of 

translation could be low. However, if the protein is translated, the protein might be unstable, 
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resulting in some form of degradation of the protein, preventing it from affecting MyHC 

expression. This last hypothesis is probably the most likely scenario, as most regulation occurs 

as a post-translational modification rather than a regulation of the translational efficiency. 

Again, this may also result in the degradation of the flag-PGC-1! fusion protein, resulting in 

no effect of transfection, as we see in this study.  

Another important point to remember is, that if we are to believe the results seen in EDL 

when comparing the PGC-1!- and sham-transfected fibers, no effect should be observed in 

SOL. This is due to the lack of 2b fibers in SOL, which were the only fibers in EDL that had 

the ability to convert to 2x fibers.   

These hypotheses show why overexpression of PGC-1! might not have any effect on MyHC 

expression in SOL.  

4.3 Future experiments 

Because of the “sham effect” observed in mouse EDL in this study, these experiments should 

be repeated under conditions where this selective transfection has not been observed. Then it 

may be clearer whether or not PGC-1! may indeed affect MyHC expression. In addition, it 

would be interesting to investigate possible effects of PGC-1! on the metabolic profile (SDH, 

GAPDH) and size (CSA) of the different fibers in adult mice compared to wild type.  

In this study, PGC-1! has shown to have no effect one MyHC expression in SOL. The reason 

for the lack of effect by PGC-1! could easily be established by an experiment where both the 

mRNA and protein level were measured by homogenizing muscles electroporated with the 

experimental plasmid. If both mRNA and protein are present, the result of no effect is due to 

repression of factors involved in the transcriptional machinery or heterochromatination of 

target sequence. If mRNA is present, and the protein is not, this is a result of translational 

inefficiency or protein degradation. It is, however, not that easy to establish whether or not the 

lack of protein is due to degradation or translational inefficiency. Protein degradation is 

however a more frequent method of regulation, although this varies for molecule to molecule. 

If there is no mRNA present, there is a regulation at the transcriptional level. However, the 

presence of PGC-1! mRNA has been established by Arany et al. (2007). Last, but not least, 
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there is, off course, always a possibility that our construct might not work in vivo, even though 

it works in HEK 293 cells.   

4.4 Conclusions 

1.  In wild type muscles, PGC-1! was exclusively found in nuclei and 36-times more in 

the fast glycolytic EDL muscle compared to the slow oxidative SOL muscle.  

2. In EDL, overexpression of PGC-1! showed significant alterations in a slower direction, 

decreasing 2b fibers at the expense of an increase in 2x fibers, when comparing PGC-

1!- and sham-transfected fibers. However, due to the “sham effect” no solid 

conclusions can be drawn without conducting the experiment in rats where this effect 

is not observed.  

3. Overexpression of PGC-1! in SOL did not show any significant alterations in MyHC 

expression.  
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5. APPENDICES 

5.1 DNA electroporation solutions 

5.1.1 pcDNA-f:PGC-1 and pAP-lacZ solution (200 µl) 

Solutions: Amount: 

pcDNA-f:PGC1 in H2O (2 ug/ul) (Addgene) 25 &l 
pAP-lacZ in H2O (2 ug/ul) 25 &l 
4 M NaCl 8 &l 
dH2O 142 &l 

5.1.2 pcDNA-f and pAP-lacZ solution (200 µl) 

Solutions: Amount: 

pcDNA in H2O (2 ug/ul) 25 &l 
pAP-lacZ in H2O (2 ug/ul) 25 &l 
4 M NaCl 8 &l 
dH2O 142 &l 

5.2 Cell culture 

5.2.1 DMEM (555 ml) 

Solutions: Amount: 

DMEM (GIBCO) 500 ml 
FCS (Bio Whittaker) 50 ml 
Penicillin /Streptomycin (Bio Whittaker) 5 ml 

5.2.2 Cell lysis buffer (2 l) 

Solutions: Amount: 

50mM Trisacetate pH 7  12 g 
0.27M Sucrose 184.4 g 
1mM EDTA 0.75 g 
1mM EGTA (ethylene glycol tetraacetic acid) 0.76 g 
1mM Sodium Orthovanadate 20 ml stock 
10mM B-glycerophosphate 6.3 g 
50mM Sodium Fluoride 4.2 g 
5mM Sodium Pyrophosphate 4.46 g 
1% Triton X-100 20 ml 

Make up to 2 l with distilled water. 50 &l each (per 50 ml buffer) of protease inhibitor 

phenylmethanesulphonylfluoride (PMSF) and Benzamide, and the same volume of !-

mercaptoethanol; must be added before use.  
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5.3 Western blotting 

5.3.1 TBS (2 l 10X) and TBS-T solution (1 l 1X) 

Solutions: Amount: 

NaCl 584.4 g 
Tris  48.5 g  

dH2O 2.0 l 

• Dissolve NaCl and Tris in some dH2O, before adjusting the volume to 2l.  

• To make TBS-T, take 100 ml of 10X TBS and 900 ml of dH2O, add 1 ml of Tween20 
(P1379, Sigma Aldrich), mix well.  

5.4 Histochemistry 

5.4.1 PBS solution (10X) 

Solutions: Amount: 

NaCl 80 g 
KCl 2.0 g 
Na2HPO4 x 2H2O 14.4 g 
KH2PO4 2.0 g 

• Dissolve all the chemicals in 800 ml of dH2O 

• Adjust the pH to 6.8/6.5 and the volume to 1 l 

• 1X PBS solution with pH 7.4/7.1 was made up taking 100 ml of the 10X solution and 
900 ml with dH2O 

5.4.2 Staining for !-galactosidase activity 

• Thaw the sections to room temperature 

• Make the fix solution: 

Solutions: Amount: 

(Para)Formaldehyde (Electron Microscopy 
Sciences) 

2.0 g 

Gluteraldehyde (Electron Microscopy Sciences) 400 &l 
10X PBS (pH 7.1) 10.0 ml 
dH2O 69.2 ml 

• Dissolve the formaldehyde in dH2O (60 °C); adjust volume to 100 ml and pH to 7.1 

• Fix the sections at 4 °C for 20 min by circling the sections using a hydrophobic pen 
(H-4000, Vector) and applying a large drop of fix solution 

• Wash the sections in 3 x 5 min in PBS (pH 7.1) 
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• Make the "-galactosidase staining solution: 

Solutions: Amount: 

10X PBS (pH 7.1) 150 &l 
0.2 M Potassium Ferro cyanide 30 &l 
0.2 M Potassium Ferri cyanide 30 &l 
1 M MgCl2 3 &l 
dH2O 1260 &l 
X-gal (50 mg I DMSO) (Promega) 30 &l 

• Stain overnight at 37 °C 

• Wash the sections 3 x 5 min in PBS (pH 7.1) 

• Mount the sections in glycerin gel: 

Solutions: Amount: 

Gelatin (PROLABO) 15 g 
Glycerol (Invitrogen) 100 ml 
dH2O 100 ml 

5.4.3 Staining for MyHC isoform and laminin 

Staining for MyHC 1, MyHC 2a, MyHC all non-2x: 

• Use a hydrophobic pen to circle the muscle section 

• Dilute the primary antibody 1:2000 in 1 % bovine serum albumin (BSA) in PBS (pH 
7.4) 

• Incubate the sections with the primary antibody for 60 min in room temperature  

• Wash the sections 3 x 5 min in PBS (pH 7.4) 

• Dilute the secondary antibody 1:200 in 0.5 % BSA in PBS (pH 7.4) 

• Incubate the sections with the secondary antibody for 30 min at 37 °C 

• Wash the sections 3 x 5 min in PBS (pH 7.4) 

Staining for MyHC 2b: 

• Use a hydrophobic pen to circle the muscle section 

• Dilute the primary antibody 1:2000 in 0.5 % BSA in PBS (pH 7.4) 

• Incubate the sections with the primary antibody for 45 min at 37 °C 

• Wash the sections 3 x 5 min in PBS (pH 7.4) 

• Dilute the secondary antibody 1:300 in 0.5 % BSA in PBS (pH 7.4) 

• Incubate the sections with the secondary antibody for 45 min at 37 °C 

• Wash the sections 3 x 5 min in PBS (pH 7.4) 
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MyHC: Primary antibody: Secondary antibody: 

1 BA-D5 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

2a SC-71 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

All non-2x BF-35 Rabbit anti-mouse IgG, FITC conjugated (F-9137, 
SIGMA) 

2b BF-F3 Goat anti-mouse IgM, Cy-3 (J115-165-020, Jackson 
ImmunoReasearch Lab) 

Staining for laminin: 

• Use a hydrophobic pen to circle the muscle section 

• Dilute the primary antibody 1:600 in 1 % BSA in PBS (pH 7.4) 

• Incubate the sections with the primary antibody for over night at 4 °C 

• Wash the sections 5 x 5 min in PBS (pH 7.4) 

• Dilute the secondary antibody 1:200 in 0.5 % BSA in PBS (pH 7.4) 

• Incubate the sections with the secondary antibody for 60-90 min at 37 °C 

• Wash the sections 5 x 5 min in PBS (pH 7.4) 

Primary antibody: Secondary antibody: 

Rabbit anti-laminin (L9393, 
SIGMA) 

Goat TRITC conjugated anti-rabbit IgG, (T6778, SIGMA) 
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5.5 Abbreviations 

AD Activation domain 
ATP Adenosine triphosphate 
BSA Bovine serum albumin 
CaMK Ca2+/Calmodulin-dependent 

protein kinase 
CaN Calcineurin 
CBP CREB binding protein 
cDNA Complementary DNA 
CMV Cytomegalovirus 
Co-act Co-activator 
CSA Cross-section area 
CYT Cytosolic 
CY-3 Cyanine 
DHP Dihydropyridine  
DMEM Dulbecco’s modified Eagle’s 

medium 
DNA Deoxyribonucleic acid 
E Glutamic/aspartic-rich domain 
E.coli Escherichia coli 
EDL Extensor digitorum longus 
EDTA Ethylenediaminetetraacetic 
EGTA Ethylene glycol tetraacetic acid 
emb Embryonic 
ERR Estrogen-related receptor 
Eya Eyes absent homolog 
FCS Fetal calf serum 
FITC Fluorscein 
GAPDH Glyceraldehyd 3-phosphate 

dehydrogenase 
GPD "-glycerophosphate 

dehydrogenase 
HAT Histone acetyltransferase 
HBM HCF binding domain 
HCF Host cell factor 
HDAC Histone deacetylase 
HEK Human embryonic kidney 
HRP Horse radish peroxidase 
Ig Immunoglobin 
LXXLL Leucine-rich domain 
MAPK Mitogen-activated protein kinase 
  
  

  
  
  
mATPase Myosin ATPase 
MCK Muscle creatine kinase 
MEF Myocyte enhancer factor 
mtDNA Mitochondrial DNA 
mRNA Messanger RNA 
MyHC Myosin heavy chain 
MyLC Myosin light chain 
NFAT Nuclear factor of activated T-

cells 
NRF Nuclear respiratory factor 
NUC Nuclear 
Oct Octamer  
peri Perinatal  
PBS Phosphate buffered saline 
PGC-1" PPAR gamma coactivator-1 

alpha 
PGC-1! PPAR gamma coactivator-1 beta 
PPAR Peroxisome proliferator-

activated receptor 
PRC PGC-1 related coactivators 
RNA Ribonucleic acid 
RRM RNA-recognition motif 
RS Arginine/serine rich domain 
RSV Rous sarcoma virus 
SDH Succinate dehydrogenase 
SDS-
PAGE 

Sodium dodecyl sulphate 
polyacrylamide gel 

SEM Standard error of mean 
SERCA Sarco/Endoplasmic reticulum 

Ca2+-ATPase 
SOL soleus 
SRC Steroide receptor coactivator 
SV Simian virus 
TBS Tris-buffered saline 
TBS-T Tris-buffered saline with tween 
TRITC Isothiocyanate 
UPC Uncoupling protein 
V Volt 
X-gal 5-bromo-4-chloro-3-indolyle-!-

D-galactoside 
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