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Abstract 

 

The Benguela upwelling in Namibia and South Africa experienced an ecosystem collapse 

after overfishing in the 1960s and 1970s, and as several industrially important species 

became scarce, others grew abundant. One of these was Sufflogobius bibarbatus, also 

known as the pelagic goby. The Benguela ocean floor has many areas with low levels of 

oxygen combined with high concentrations of H2S. These potentially lethal conditions are 

avoided by most species, but the pelagic goby spend daytime in this inhospitable mud. In 

April 2008 a the research vessel “G.O. Sars”  left port in Namibia, with a goal of 

investigating exactly how and why the goby prefer to seek shelter in such areas.  

 Cytochrome c oxidase (COX) is the fourth complex in the electron transport chain 

of mitochondria. It uses oxygen as the terminal electron acceptor during oxidative 

phosphorylation. Without oxygen oxidative phosphorylation stops and ATP production 

has to rely on anaerobic glycolysis. Accumulation of the end-product lactate is potentially 

deadly, and must be avoided. H2S binds to COX and inhibits the interaction with oxygen, 

thus stopping oxidative phosphorylation, making the organism functionally anoxic. In this 

thesis I have used respirometry to investigate the hypoxia-tolerance and H2S-tolerence of 

the pelagic goby. Finally I have done real-time RT-PCR experiments to examine the 

expression of COX subunits I-III during exposure to anoxia and/or, H2S. 

 My findings indicate that the pelagic goby is exceptionally good at taking up 

oxygen in hypoxia, being able to maintain resting oxygen consumption down to a water 

oxygen level of 5.3 % of air saturation. It does not appear to have any special mechanism 

for tolerating H2S, asides from the fact that it can survive exposures to anoxia for hours. 

During anoxia it accumulates lactate and builds up on oxygen debt. In nature, this oxygen 

debt is most likely paid off during the nocturnal migration from the bottom to well-

oxygenated pelagic waters, and could be a main reason for the diurnal migration pattern of 

the pelagic goby. The expression of COX subunits I-III does not appear to be affected by 

either anoxia or H2S exposure. 
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1. Introduction 
  

During the 1960s to 1980s, there was a major ecosystem collapse in the Namibian 

Benguela upwelling as a result of overfishing. Dominating fish species in the ecosystem 

had until then been sardines (Sardinops sagax) and anchovies (Engraulis encrasicolis), but 

after the collapse several new species grew abundant in the absence of the predatory fish, 

among them a pelagic goby species (Sufflogobius bibarbatus). The reasons behind the 

pelagic goby’s success have not been clear.  

Lack of oxygen, or anoxia, is deadly for most vertebrates. In spite of this there are 

a few species that can survive very long exposures to anoxia ([O2 ≤ 0.5 % of air 

saturation), including some fish and some species of freshwater turtle. They survive on 

anaerobic metabolism and their metabolism is depressed to save energy. 

Studies done of the bottom of the Benguela current show that there are large 

hypoxic pockets on the bottom where no vertebrate life can be found, except for 

Sufflogobius bibarbatus. The pockets also contain high concentration of H2S (Emeis et al., 

2004). H2S is generated by bacteria in aquatic ecosystems and it reacts with oxygen to 

produce hypoxic or even anoxic areas. H2S has also a direct inhibitory effect on 

respiration, making the animal functionally anoxic. Thus, for most species exposure to 

high H2S levels rapidly lead to death. 

 In April 2008 the Norwegian research-vessel “G. O. Sars” was the scene for an 

expedition studying the Benguela ecosystem in Namibia. This thesis is in part a result of 

studies done on this excursion, and in addition the thesis attempts to explain the 

physiological adaptations that make the goby so well suited to living in these challenging 

conditions.   

 

 

1.1 The Benguela Upwelling System 

 

The Benguela Current is the name of a coldwater current moving north from the coast of 

Namibia and South Africa. It is created by a meeting of the warm Indian ocean, 

subtropical Atlantic water and cold sub Antarctic water, and it was one of the four most 

productive ecosystems in the world (Cushing, 1971). Several studies of this area have 

divided it into two major parts, the Northern Benguela and the Southern Benguela, with 



the dividing area at the Orange river mouth at the boarder between Namibia and South 

Africa (Shannon and Jarre-Teichmann, 1999; Shannon et al., 2003). By being a very 

nutrient rich this area has historically been able to support many species of fish like 

sardines and anchovies.  

 Namibia and South-Africa has been populated for thousands of years, and fish 

have always been an important part of the diet for anyone living close to the sea. With the 

large increase of catch size that came with developing technology in the 1950s and 1960s, 

overfishing of anchovies and sardines caused the Benguela system to go through an wasp-

waist ecoshift where the removal of some species has lead to changes in population for 

other species as well (figure. 1) (Cury and Shannon, 2004). 

 
Figure 1. Wasp-waist ecoshift: As one species is reduced in abundance it leads to shifts in other layers of the 

food chain. Here is shown a reduction in layer 2, leading to a decrease in abundance of layer 1 as well due to 

lack of food. Layer 3 experience an increase because of the reduced amount of predators. This in turn causes 

the 4th layer to be reduced. See text for further explanation. Figure adapted from Cury and Shannon (2004). 

 

Overfishing of sardines and anchovies (layer 2 in figure 1) have greatly reduced the 

abundance of these species, which in turn is reducing the amount of larger fish (layer 1) 

that prey on them. In the absence of predators other species that would serve as a food-

source for these species have become abundant (layer 3), in turn reducing the abundance 

of their food (layer 4). This has lead to a general shift in abundance of larger predatory 

fish (layer 1 and 2) to an increase in plankton-eating pelagic fish and smaller invertebrates 

(layer 3). The ecoshift allowed Sufflogobius bibarbatus to be one of the species replacing 

the sardine, and the goby has become a very abundant species in the area, along with other 



less industrially important species like several species of jellyfish (Chrysaora hysoscella 

and Aequorea forskalea) (Griffiths et al., 2005; Lynam et al., 2006). The pelagic goby is 

of great importance to the ecosystem as it is one of the main sources of food for the 

predatory fish, birds and seals in the area (Shannon and Jarre-Teichmann, 1999). Studies 

of Sufflogobius bibarbatus are few, but it is very important to understand how it fits into 

the ecosystem and how these changes in a few decades allowed the goby to become a 

dominant species. 

 

 

1.2 Sufflogobius bibarbatus 

 

The species Sufflogobius bibarbatus is part of the Gobiidae-family, consisting of more 

than 2000 species (figure 2). These small fish are found in numerous places like shallow 

pools of both fresh- and saltwater, and coral reefs, and some are even highly popular 

aquarium fish. S. bibarbatus, or the pelagic goby, is a small fish found on the coast of 

Namibia and South Africa (Hewitson and Cruickshank, 1993). Early studies on the goby 

reported that its main source of food was phytoplankton (Crawford et al., 1987), although 

later studies have contradicted this claiming that it also feed on zooplankton (Gibbons et 

al., 2002).  

  
Figure 2. A pelagic goby caught in the spring of 2008 off the coast of Namibia. 

 

During the larval stage and as early juveniles they are widely distributed in the upper 50m 

layer of the ocean (O'Toole, 1978). As older juveniles they are found in all epipelagic 

depths and as they mature into adults they migrate into deeper waters and can be found in 



the demersal zone (close to the bottom) (Bianchi et al., 1993). Studies of the ocean floor 

off the coast of Namibia have shown that the highest density of the pelagic goby can be 

found between Walvis Bay and Ludertiz (Hewitson and Cruickshank, 1993). S. bibarbatus 

is also known as the pelagic goby because it spends long periods in the pelagic zone of the 

water column at night. 

 

 

1.3 Anoxia and H2S in the Ocean 

 

As mentioned, it is not uncommon to find areas with hypoxic, or even anoxic ,pockets in 

the water of the Benguela current, posing a challenge to life in these areas. This is not the 

only place where conditions like this is found, and one well studied area comparable to 

this is the oceanic area off the coast of Chile. There are several similarities between the 

upwelling system in Benguela and the coast of Chile. In both areas there is a strong 

upwelling current with high plankton activity. The bottom water in these areas is often 

depleted of oxygen because of intense heterotrophic respiration. Additionally, both  areas 

have sediment-water interface zones with high levels of H2S (Ferdelman et al., 1999; 

Fossing, 1990). When measuring H2S production off the coast of Namibia, Ferdelman 

found values near zero at the sediment surface, and up to 29 nmol cm-3d-1 2 - 5 cm into the 

sediment, decreasing at further depths. These values are higher than most teleost fish 

tested can tolerate (Bagarinao, 1992).  

 H2S is a toxic gas produced by bacteria in absence of oxygen and is naturally 

occurring in both the environment and the gut. Many bacteria produce H2S by breakdown 

of dead organic material, like in the muddy bottom of the Benguela. As this is very similar 

to conditions off the coast of Chile it was expected that it would be caused by the same 

bacteria (Thioploca and Beggiatoa), but this was not investigated until 1999 when Schulz 

et al. (1999) reported the finding of a new bacteria. Their examinations of the sediments 

off the coast of Namibia show that Thioploca and Beggiatoa are present in the sediment, 

but in far lower numbers than expected.  

 

 



 
Figure 3. A short chain of Thiomargarita namibiensis observed during our cruise in Namibia.  

 

 

Instead, they found high quantities of Thiomargarita namibiensis (”Sulphur Pearl of 

Namibia”), a sulphur-oxidising bacterium living in low-oxygen water found in the top 3 

cm of the sediments. This is the largest known bacterium, large enough to be seen with the 

naked eye (< 0.75mm) (figure 3).  
 

 

 
Figure 4. Echogram showing the ocean floor. This echogram has been recorded while the boat was moving 

into gradually deeper waters, seen in the figure by the gradual lowering of the big red line (ocean floor). 

Individual fish can be observed as a coloured dot in the picture, and the more fish in one area the more 

colouring. Some pockets with no fish can be seen, indicating a hypoxic H2S-area. Most gobies were found in 

the hypoxic pockets, but cannot be seen on echogram due to hiding in the mud. From Utne-Palm et al. (in 

review). 

 

Observations of the ocean floor during our research cruise off Namibia showed that there 

are areas at the bottom where no fish can be detected with sonar (figure 4). These 



correspond to pockets of hypoxic water (~10% of air saturation) with high concentration 

of H2S, in which most fish cannot survive for more than a few minutes. Surprisingly these 

are areas where gobies can be caught. Studies done in vivo on the research cruise indicated 

that the goby not only spend long periods of time in these anoxic pockets, but also burrow 

itself in the mud with only the head visible (Utne-Palm et al, in review). This is a very 

strong indication of hypoxia tolerance and possibly also a special tolerance to H2S.  

 

 

1.4 Maintaining Energy without Oxygen 

 

Energy is needed for all life, and most energy consuming processes in cells are driven by 

adenosine triphosphate (ATP). Most of the ATP is under normal circumstances produced 

by oxidative phosphorylation in the mitochondria in all cells, and this process uses oxygen 

as terminal electron acceptor. As ATP cannot be stored it needs to be continuously 

synthesised. Oxidative phosphorylation theoretically produces 36 mole of ATP per mole 

of glucose broken down. When there is no oxygen present ATP is produced through 

anaerobic glycolysis, yielding only 2 moles of ATP pr mole of glucose. In addition to not 

producing enough energy to maintain normal function this also leads to a build-up of 

lactate, which is produced as the end product. Build-up of lactate will lead to acidosis 

which in turn may cause death by slowing of heart rate, change in ion-concentrations, and 

depression of glycolysis (for a review, see Nahas, 1970).  

Failure to maintain ATP levels will lead to organs failing, which will first involve 

failure of the heart and brain, and then death. The two options available for keeping ATP 

supply up during anoxia is to either increase ATP-production through glycolysis, or to 

reduce ATP consumption by suppressing activity in the various tissues (for a review, see 

Nilsson and Lutz, 2004). Different animals uses different strategies. Some freshwater 

turtles (Trachemys and Chrysemys) that can survive for months in anoxia by suppressing 

brain activity to a comatose-like state, thus lowering ATP consumption (Fernandes et al., 

1997; Hicks and Farrell, 2000). They also buffer the lactate produced by anaerobic 

glycolysis with calcium carbonate in the shell. Other species (crucian carp and goldfish) 

survive long periods of anoxia by fermenting lactate to ethanol that leaves the fish through 

the gills (Shoubridge and Hochachka, 1980).  

  



Table 1. [O2]crit for 7 hypoxia-tolerant teleosts. Values in parenthesis refer to hypoxia acclimatised individuals. 

Adapted from Nilsson and Randall (2010 (in press)). 

 

Build-up of lactate during short exposures to hypoxia is usually not a problem. When once 

again able to take up oxygen, lactate can be converted back into pyruvate and be 

aerobically broken down to ATP. After an anoxic episode, lactate is oxidized, which 

causes oxygen consumption to rise. The increase of oxygen consumption is a hallmark of 

an oxygen debt, and will subside once the debt is paid off, meaning when there is no more 

lactate to break down.  

Fish are confronted with lack of oxygen more often than air-breathing animals, due 

to the much lower solubility and diffusion rate of oxygen in water, lack of photosynthesis 

at night and in depths with no sunlight, and low mixing of the top layer of water with the 

lower layers. Furthermore, water fully saturated with oxygen will hold only about 1/30 of 

the amount found in air. Consequently, numerous fish species show hypoxia tolerance 

(Nikinmaa and Rees, 2005). 

  When examining the metabolic rate of fish, it is convenient to do so using 

respirometry. In this thesis closed respirometry was used, meaning that the gobies were 

placed in a sealed chamber and the fall in the water oxygen level was recorded. The point 

where the organism no longer are able extract enough oxygen to maintain their resting 

oxygen consumption rate is called the critical oxygen tension, PO2cri or critical oxygen 

concentration [O2]crit (table 1).  

Species Habitat PO2crit 

(mmHg) 

[O2]crit 

(mg l-1) 

T 

(°C) 

Toadfish 

(Opsanus tau) 

Atlantic coast of North America 29 1.4 22 

Common carp 

(Cyprinus carpio) 

European freshwater 30 2.2 10 

Crucian carp 

(Carassius carassius) 

European freshwater 12 (6) 1.0 (0.5) 8 

Goldfish 

(Carassius auratus) 

Domesticated 

(orig. Asian freshwater) 

25 

40 

1.8 

2.3 

10 

20 

European eel 

(Anguilla anguilla) 

European freshwater 25 1.4 25 

Humbug damselfish  

(Dascyllus aruanus) 

Great Barrier Reef 29 1.2 30 

Coral goby 

(Gobiodon ceramensis) 

Great Barrier Reef 22 0.9 30 



1.5.1 Cytochrome c Oxidase 

 

Oxygen is needed as an electron acceptor in the terminal (fourth) complex in the electron 

transport chain. H2S mimics the effect of anoxia by blocking complex IV, which is made 

up of cytochrome c oxidase (COX), a transmembrane protein found in the inner membrane 

of the mitochondria. During oxidative phosphorylation, COX transfers electrons from 

reduced cytochrome c to oxygen, thus creating an electrochemical gradient. It is 

responsible for almost 90% of oxygen consumption in mammals (Babcock and Wikström, 

1992). COX consists of several subunits, and the exact number varies between prokaryots 

and eukaryots, with an increasing higher degree of complexity between the subunits 

(Richter and Ludwig, 2003). Schägger (2001) argues strongly for the formation of 

supercomplexes with Complex I, II and III, further increasing the complexity of COX 

function.  

  
Figure 5. Image of COX. Subunit I (yellow), II (purple) and III (blue) make up the catalytic core. From 

Itawa et al (1995). 

 

The eukaryotic COX consists of several subunits; 3 are found in the mitochondrial 

genome (mtDNA) and the last 4-10 subunits are encoded in the nuclear genome, while 

yeast COX consists of fewer nuclear encoded subunits (Capaldi, 1990; Richter and 

Ludwig, 2003). The three largest subunits (I, II and III according to the nomenclature 

introduced by Kadenbach, 1981) are found in mtDNA. According to Barrientos (2002) 

subunits I, II and III are the subunits that make up the catalytic core reacting to oxygen 

(figure 5). The rest of the subunits play a role in regulation and formation of the enzyme 



(for a review, see Richter and Ludwig, 2003). In eukaryotes subunits I-III are synthesised 

in the mitochondria and then inserted into the mitochondrial membrane (Ludwig, 1987). 

Translation, processing and assembly of COX in eukaryotes is a multi-step process, aided 

by several other gene products (for a detailed review, see Barrientos, 2002). While most 

organisms have some form of the three main subunits, some species have been found to 

lack the genes for subunits II and III, such as the green algae Chlamydomonas (Attardi and 

Schatz, 1988). In spite of this, a striking similarity has been revealed between bacterial 

and eukaryotic COX, a sure indication of the conservation of this gene during evolution 

(Moody, 1996; Tsukihara et al., 1995; Tsukihara et al., 1996).  

 

 

1.5.2 COX Regulation, Anoxia and H2S. 

 

Regulation of both expression and activity of COX has been intensively studied, but still 

much remains to be fully explained. It is complicated by the fact that COX is in part 

expressed from two independently regulated genomes – the nuclear and the mitochondrial 

genomes, the latter occurring in several copies in each organelle. Not only do each 

mitochondria contain several copies of its genome, but each cell also contains numerous 

mitochondria, resulting in 103-105 copies of mtDNA in a cell (Gross et al., 1969). The 

level of mutated mitochondrial genomes needed for discovering a change is hard to 

determine, and a protective threshold is given by the heterogenic nature of mitochondria in 

a cell. In spite of this it has been shown that mutations in genes for COX subunits show a 

reduction in enzyme function at very low levels of mutation (D'Aurelio et al., 2001). 

Trifunovic (2004) also found mitochondrial mutations to be connected to symptoms of old 

age, and mutated COX seems to be connected to failing cardiomyocytes.    

 Mitochondria lack the proof-reading systems seen in nuclear transcription and 

translation, leading to a higher rate of mutation. This is seen in the fact that there are many  

mitochondria related diseases linked to either mitochondria encoded genes or accessory 

proteins, for example Parkinson’s disease, Leigh’s syndrome and Alzheimer’s disease to 

mention a few (Wallace, 1992). In their review Richter and Ludwig (2003) also pointed 

out that most mitochondrial mutations are either a point mutation or a nonsense (terminal) 

mutation. The mutations caused by pretermination of translation would lead to a loss of 

redox-center and subsequent loss of activity for COX. There are also several known cases 



of point-mutation leading to reduction of enzyme activity and a lowered maximal 

respiration rate (Richter and Ludwig, 2003).  

 

 
Table 2. Correspondence between yeast and mammalian (bovine) COX nomenclature.  

From Burke and Poyton (1998) 

 

There are different forms (paralogs) of the subunits encoded in the nucleus in several 

species of mammals and yeast, including oxygen-dependent/independent paralogs, tissue-

specific paralogs and developmental paralogs (for a review, see Burke (1998)). Kwast 

(1998) discussed the finding of two paralogs of subunit V in yeast (Saccharomyces 

cerevisiae) (a homolog to COX IV in mammals, table 2), where one is expressed in 

aerobic conditions (Va) and the other one is expressed at hypoxic conditions (Vb). In 

humans, it is interesting to note that several subunits are expressed at different forms  

during fetal and adult life (subunits VIa, VIIa and IV) (Bonne et al., 1993). With this in 

mind it would be interesting to investigate if there are such paralogs that allow oxidative 

phosphorylation to continue in presence of inhibitory chemicals such as H2S.   

  
Table 3. Sulphide concentrations that are inhibitory and stimulatory to COX in various species. The low H2S 

concentrations stimulate COX activity as it oxidises H2S. At higher concentration H2S becomes inhibitory as 

the enzyme becomes blocked.  From Bagarinao (1992) 
 



In spite of eukaryotic COX being expressed from two different genomes, there seems to 

be no shared regulation of expression between the two genomes. The expression of the 

nuclear-encoded genes are regulated by transcription factors, and mitochondrial 

expression seems to be regulated by mitochondrial turn-over (D'Aurelio et al., 2001). 

 The activity of COX is regulated by a variety of mechanisms. One main element in 

inhibiting COX activity is a high intra-mitochondrial ATP/ADP ratio (Napiwotzki and 

Kadenbach, 1998). Several hormones affect expression of mtDNA, either inhibitory 

(estrogen) or stimulatory (thyroid hormones, gastrin) (Bettini and Maggi, 1992; Wiesner et 

al., 1992). In addition several other molecules have been shown to affect the activity of 

COX. Thus, NO, CO and H2S are known to inhibit COX activity (Alonso et al., 2003; 

Winzler, 1943). As reviewed by Bagarinao (1992) H2S will bind to the catalytic core 

creating an enzyme-sulphide complex that is non-responsive towards oxygen. However, at 

low concentrations H2S actually exerts an stimulatory effect on COX, as H2S is being 

oxidatively detoxified to thiosulfate (table 3) (Bartholomew et al., 1980; Baxter et al., 

1958). 

 

 

1.6 Aim of Thesis 

 

This thesis forms part of a larger effort aimed at understanding the biology, and thereby 

the success, of Sufflogobius bibarbatus off the Namibian coast. This effort was based on 

an 11 day research cruise on RV “G. O. Sars” in April 2008, involving 25 researchers and 

students, and including sonar surveys of fish movements, trawling at different depths, 

behavioural studies, sediment studies, and finally physiological measurements. In 

particular my thesis aims to 

1. Investigate the hypoxia tolerance, and the respiratory effects of H2S, on 

Sufflogobius bibarbatus.  

2. Look for any changes in expression of COX when exposed to anoxia and/or H2S. 



2. Methods and Materials: 
 

2.1 Experimental Animals 

 

Fish of the species S. bibarbatus were caught by the research vessel “G.O. Sars” off the 

coast of Namibia in the Benguela region using a bottom trawl and a pelagic trawl at a 

depth of < 120m. All the respirometry experiments on the pelagic goby were done 

onboard the ship, while the molecular studies were done on tissues brought back to the 

University of Oslo.  

After bringing the fish on board, the fish were carefully removed from the trawl by 

hand and kept in a holding tank (1000 L) with seawater at surface water temperature (13ºC 

± 1ºC). The fish were kept on deck in a natural day-night cycle, and were not fed after 

trawling. The fish used for respirometry experiments were kept overnight in a separate 

tank to reduce stress.  

 

 

2.2 Respirometry 
 

The respirometry experiments were performed to examine the capacity for oxygen uptake 

in hypoxic water (as determined by [O2]crit) and to see how H2S affect the oxygen 

consumption of the pelagic goby. When doing closed respirometry the fish is placed in a 

sealed container and the falling level of O2 is recorded continuously (figure 6). 

 



Figure 6. Goby in a closed respirometer. The oxygen electrode can be seen at the top of the chamber with a 

magnetic stirrer attached to it to ensure even distribution of oxygen in the chamber.  

The respirometer was custom-made from a Perspex cylinder with an inner diameter 

of 80 mm and an adjustable plunger to allow regulation of volume. This allowed for 

regulation of volume according to size of the fish. During the experiments the oxygen 

level in the respirometer was monitored by using a galvanometric oxygen electrode 

(WTW OXI 340i) placed in the chamber, with a magnetic propeller attached to the tip of 

the electrode to ensure thorough circulation of water in the chamber and over the 

electrode. The propeller was driven by a magnetic stirrer placed outside of the chamber. 

The whole chamber was kept submerged in an aquarium where the temperature was 12°C 

± 1°C. The data was recorded with a Powerlab 4/20 and the program Chart 5.0 (both from 

AD instruments), and the O2-level was measured as % of air saturation.  

 The fish were kept in the respirometer for 1-2 hours prior to each experiment to 

acclimatise them to the chamber. During this period water was continuously fed into the 

chamber. 

 

  

2.2.1 Determination of Critical Oxygen Tension and of Metabolic Rate             

 

Three types of experiments were done using closed respirometry. First resting oxygen 

consumption and critical oxygen tension ([O2]crit) was measured. Oxygen consumption is 

found by calculating how much O2 the fish consumes per hour pr kg fish. [O2]crit is defined 

as the lowest level where the fish is able to maintain its resting O2 consumption, and can be 

found by allowing the fish to consume all the oxygen in the chamber. This initially gives a 

steady rate of consumption until the O2 concentration is too low for the fish to efficiently 

consume O2 anymore, resulting in a declining rate of consumption. From the graph this can 

easily be determined by locating the point where the consumption-rate falls off 

(exemplified in figure 7).  



 
Figure 7. Figure 7. Example of recording of falling oxygen-levels in water during closed respirometry. When 

oxygen concentration decreases below the critical oxygen tension ([O2]crit, arrow), the fish will no longer take 

up oxygen at a constant rate.  

 

2.2.2. Effect of H2S on Oxygen Consumption 

 

 Next the effect of H2S on the oxygen consumption was measured using the same 

set-up. Two chambers were run in parallel with one fish in each. The fish were allowed to 

consume oxygen until the oxygen level reached about 50% of air saturation, whereupon the 

fish was removed from one of the chambers and both chambers were injected with a H2S 

solution prepared from sodium sulphite (NaS) crystals dissolved in deoxygenated seawater. 

Concentration of total sulphide was measured at the end of the experiment. The empty 

chamber was run as a blank to record the rate by which H2S reacts with O2 dissolved in 

water. This inorganic disappearance of oxygen was subtracted from the rate of oxygen 

consumption seen in the chamber with fish. Several experiments were carried out with 

varying concentrations of total sulphide (100-1200 μM) corresponding to H2S, 

concentrations of 3.6 – 43.2 μM.  

 

 

2.2.3 Build up of Oxygen Debt 

 

Finally the effect of anoxia (O2 < 0.5%) was measured. This was done by allowing 

the fish to consume all the oxygen available in the chamber. After approximately 2 hours of 

subsequent anoxia exposure, the water was replaced with fully aerated water, and the fish 



was again left to consume the oxygen. Comparison of the O2-consumption rate before and 

after the anoxia exposure revealed if the fish had built up an oxygen-debt. 

 

 

2.3 Molecular Experiments 
 

The purpose of the molecular experiments was to examine changes in the expression of 

mRNA for subunits of COX when the fish were exposed to anoxia and/or H2S.  

 

 

2.3.1 Cloning and Sequencing of Genes of Interest  
 

The genome of the pelagic goby is not sequenced, so in order to obtain gene specific 

primers for real-time RT-PCR, the genes of interest need to be sequenced. Because COX 

I-III make up the catalytic core of COX it was decided to clone and sequence the genes for 

subunits I-III (COX I-III), while Beta-actin and GAPDH (Glyceraldehyde 3-phosphate 

dehydrogenase) would be used as reference genes in the real-time RT-PCR assay. Primers 

used in cloning of all genes were designed based on sequences obtained from other fish 

species, all found on the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/). 

Primers were chosen with emphasis on sequences from other gobies, because a close 

relationship between the species generally means similarity in gene sequence. Due to 

some variations in the sequences between the species degenerated primers were used, 

meaning that where the sequences varied a mixture of the bases were used (table 4, for a 

overview of IUPAC one-letter base abbreviations see appendix C). The primers were 

designed using the Primer3 tool (http://frodo.wi.mit.edu/primer3/input.htm) (Rozen and 

Skaletsky, 2000), and purchased from Invitrogen.  

 

 

2.3.1.1 Cloning Primers: 

 

A mixture of RNA isolated from heart, liver, brain and muscle was extracted with TRIzol 

(Invitrogen) and then cDNA was synthesized using Superscript III (Invitrogen), all 

according to manufacturer’s instructions. This cDNA was then used as a template for a 



polymerase chain reaction (PCR). The target region was then amplified using a Platinum 

Taq DNA polymerase (Invitrogen), and due to the degeneration of the primers, 10 μM of 

each primer were used. Degenerated primers consist of a mix of different bases and in 

order to get a high concentration of each of the different bases in the mix, more primer is 

needed..  

Table 4. Overview of primers used for cloning and sequencing. Due to variations between sequences in other 

species, degenerated primers were used. (IUPAC one-letter abbreviations can be seen in appendix C). 

 

The PCR was done on a Mastercycler gradient thermal cycler (Eppendorf), starting with a 

10 min incubation step on 94˚C before repeating the following steps 35 times: 30sec at 

Gene Forward primers Reverse primers 

COXI CGGIATRRTIGGIACIGVIY 

GAGGVTTYGGIAAYTGRYTV 

TTAGCHTCYTCHGGIGTDGA 

TGTATACCCBCCHYTIKCVG 

CACAYGCIGGDGCHTCYGTH 

GGGAGCCGAIDGADGAVAYD 

GCAAAGACDGCYCCYATIGA 

GGAGGARTTDGMBARIACRA 

ACCCTCCRTGIAGRGTRGCI 

ATAAAGCCYARIARICCRAT 

COXII CCACCCCTCICAACTAGGWT 

CATTTYCAYGAYCAYRCHYT 

ATTATTGTGIYIDTRGTVWC 

TCCC CTCTCTACGCATCTTG 

GAIRYIGAYCACCGAATGGT 

CWGTICCAGGACGCCTAAAC 

RTGYTCDGAAATYTGTGGGG 

GAADBMMTICCITTAAAATACTTC

COXIII ACCAAGCACAYSCMTAYCAY 

TAGTAGAMCCMAGCCCHTGA 

GGCCATCAYACVCCVCCYGT 

TTCTGAGCHTTYTWYCAYK 

CAAAGCCAAARTGRTGBTYD 

AAGTCCATGAAABCCKGTDG 

TGTGAAGGGGGCYTCRWART 

ATGCTRTGRTGDGCYCADGT 

Beta-actin GTTGACAAYGGMTCYGGYA 

ATGGGCCAGAARGAYWSCT 

GGTGATGARGCHAARAGCAA 

CAGGGAGAARATGACMCAGA 

GCCCATCTAYGARGGBTAY 

GCTGGAAGRTRGASAGVGAR 

AGCACAGTGGTGGCRTAMAG 

TGCTGTTGTAKGTRGTYTC 

CGGGCAACTCRTAGCTCTTC 

CTTGATGTCACGBACRATTT 

GAPDH TGACCCATTCATYGACCTKG  

CGGTCAAGCHATCACHGTBT  

TCACATTAAGGGYGGTGCHA  

GGTGGTGCHAARAGRGTSAT  

TGGGTGTCAACCAYSAGAAR  

AACCTGGTCCTCHCTGTATC 

GCTGGCAGGYTTCTCMAGRC 

ACGGAAGGCCATRCCDGTMA 

TCAACGGTCTTCTGDGTDGC 

AGGAGGCATTGCTKACMACT 



94˚C to denature the cDNA and primers, followed by 1 min at 55˚C for proper annealing 

of primers to the cDNA and then 1 min/1kb at 72˚C for elongation of the product. In the 

end there is a final step of 10 min at 72 ˚C to allow all the product to be replicated all the 

way to the end.  

After the PCR the product was visualized by running the samples on a 1% agarose 

gel and checking if the product had the desired size. PCR-products with the right size were 

ligated into p-GEM®-T-Easy Vector (Promega) following instructions from manufacturer. 

Bacterial transformation was used to insert the vector containing the PCR product into 

calcium competent E. coli cells. The cells was plated on LB plates containing ampicilline 

and IPTG/X-GAL and incubated overnight at 37˚C. After the overnight growth the plates 

had both white and blue colonies. Each colony consists of identical copies of the plasmid, 

all identical to the cell starting the colony. Since the plates were covered in ampicilline 

every cell that survives on the ampicilline-plate will contain a plasmid with ampicilline 

resistance. The product of breakdown of X-GAL is blue, and blue colonies indicate that 

the cell has taken up a plasmid without an insert in the region coding for breakdown of the 

X-GAL. White colonies will also have taken up plasmids, but these plasmids will have an 

insert in the region coding for breakdown of X-GAL, thus not producing the blue end-

product. This is an effective way of screening out the unwanted colonies. Finally some 

white colonies were chosen and the target region from the plasmids was amplified with 

vector specific primers in an PCR. The product size was confirmed on an agarose gel, and 

finally the product was treated with exozap and sent for sequencing at the ABI-lab 

(http://www.bio.uio.no/ABI-lab/) at University of Oslo. The results were compared to the 

same genes in other species.  

 

 

2.3.1.2 Gradient PCR 

 

When confirming the PCR products on an agarose gel it appeared that COXI had not been 

successfully amplified. In order to test if the melting temperature had been sub-optimal for 

the primers, a gradient PCR was done. This means running a PCR with triplets of each 

reaction and using different annealing temperatures for each set of samples, thus testing 

for different annealing temperatures. The gradient PCR temperature-range was 55˚C ± 

2˚C. To further improve results from the gradient-PCR a nested PCR was run. In a nested 

PCR the products from a previous PCR is used, and primers added to the reaction binds 



within the target sequence of the previous PCR. This leads to an amplification of an 

already amplified region. 

 

 

2.3.2 Rapid Amplification of cDNA Ends (RACE) to Obtain 

Full Gene Sequence 
 

RACE was performed to amplify 3’ and 5’ ends of the previously amplified and 

sequenced region of all genes, thus obtaining the full cDNA sequence for an unknown 

mRNA. Although slightly different techniques are used for 5’ and 3’ RACE, both require 

that there is a known central sequence of the transcript.    

The cDNA was synthesised from RNA purified from total RNA using Dynabeads 

mRNA Direct Kit (Invitrogen). This kit uses magnetic beads with oligo(dT)-sequences 

bound to it, which will hybridize to the polyA tail of mRNA, allowing separation of 

mRNA from other ribonucleotides using a magnet.  

 

Gene 5’RACE  3’RACE primer  

COXI CCCCGGCTAGGTGGAGGGAAA 

CACCTCCAGCGGGGTCGAAG 

ACACTTCTGGGTGGCCGAAGAA 

CTTCGACCCCGCTGGAGGTG 

TCTGATTCTTCGGCCACCCAGA 

TCACGGTAGGGGGCCTAACAGG 

COXII TCAAGATGCAGCCTCCCCCG  

TGCGAAGGGATGGGAGAGCA 

CCTTCGATTCTTATATGGTCCCCACCC 

GAAGCCCCCGTCCGAGTCCT 

CCTGGCACCCGGACAATTTCG 

TGCCTCTCGCCCAGGAGTTTTC 

COXIII CAGATGGCAAGGCCGGAGGT 

GGTGCCAAGGACAATGAGGAC GA 

CCTTCTCGGACAATATCCCGTCATCA 

TGGAGCCTACTTCACATTCCTGCAA 

GCAACCGGCTTTCACGGCCTA 

TGGCACCACCTTCCTGGCTGT 
Table 5. Overview of primers used for RACE.  

 

In order to ensure gene-specific amplification of the desired target, gene-specific primers 

were designed from the sequence obtained in the previous cloning and sequencing 

experiments (table 5). Once again the Primer3 web resource was used in designing the 

primers, and the primers were synthesised by Invitrogen.  



 A SMART RACE cDNA library were created using Superscript RT II (Invitrogen) 

and SMART RACE cDNA Amplification kit (Clontech) following instructions from the 

manufacturer. 

 After amplification by SMART RACE the product size was confirmed by running 

an agarose gel, and then the product was ligated into the pGEM-T Easy vector (Promega) 

and transformed into E.coli cells in order to amplify the product before sequencing as 

previously described.   

 

 

2.3.3 Real-time RT-PCR 
 

2.3.3.1 Exposure 

 

There were four treatment groups; normoxia exposure, anoxia (O2 < 0.5% of air 

saturation) exposure, H2S exposure (~1.0mM of total-sulphide) and a final group of both 

H2S and anoxia exposure. Anoxia was achieved by bubbling the closed fish tank with N2, 

while the normoxic group was bubbled with air. Each group consisted of 10 fish. After 2 

hours of exposure the fish were killed by cutting the spinal cord. From each fish the heart, 

brain and liver were dissected out and quickly frozen at -80˚C within a few minutes.  

 

 

2.3.3.2 Isolation of Total RNA Using TRIzol Reagent.  

 

While still frozen the tissues were weighed and transferred to tubes containing TRIzol 

(Invitrogen) and Teen D lysing Matrix beads (MP Biomedicals). The volume of TRIzol 

was adjusted according to the weight of the tissue. Then the tissue was homogenized using 

a homogenizer (Ultra-Turrax T 8, IKA). A 50 pg external standard per mg of tissue was 

added to the samples that were going to be used for mRNA quantification (see section 

2.3.3.4). The rest of the RNA isolation was carried out according to the TRIzol protocol. 

RNA was stored in -80˚C. After isolation the concentration of RNA in each sample was 

determined by measuring light absorbance in 1:5 dilutions at 260 nm with a 

spectrophotometer (Nanodrop ND-1000).  

 



 

 

2.3.3.3 cDNA Synthesis 

 

Before cDNA synthesis all RNA samples were treated with TURBO DNase (Ambion) to 

remove any traces of genomic DNA. This was done according to the manufacturer’s 

instruction with one exception; due to low RNA content in the samples 0.1 μl of DNase 

Inactivation Reagent were added for each μl of total volume. The cDNA synthesis to be 

used for real-time quantification was performed using random primers (Invitrogen) and 

SuperscriptIII (Invitrogen). A 14 μl mix was made containing 1μg totRNA (for liver), 0.5 

μg totRNA (for brain) and 0.2 μg totRNA (for heart), 30 ng random primer and 10 mM 

dNTP (Invitrogen). This mixture was incubated for 5 min at 65˚C and then cooled on ice 

for 1 min. At this point the volume of the mix was increased to 20 μl by adding 5x 

Superscript First strand buffer, 200 U of Superscript RT III and DTT (all from Invitrogen). 

After a 5 min incubation at 25˚C the mixture was incubated for 60 min at 50˚C, followed 

by 15 min incubation at 70˚C. In the end the cDNA samples were diluted 10 x by adding 

180 μl of MQ-water.  

 

 

2.3.3.4 Real Time RT-PCR  

 

The real-time RT-PCR assay was carried out on a LightCycler 480, using LightCycler 480 

SYBR Green 1 Master Kit (Roche). SYBR Green is a fluorescent dye that binds to dsDNA 

minor groove, emitting fluorescence when bound (Morrison et al., 1998). This allows 

monitoring of the levels of amplified product when SYBR Green binds to dsDNA. It is 

during the exponential rise of the PCR product that quantification takes place, as this is the 

only phase the reaction is exponential. The LightCycler software uses the second 

derivative method to calculate the point where the increase in fluorescence is highest, 

called the Cp-value. The more cDNA there is when starting the process the faster this 

point will be reached, resulting in a lower Cp-value.   

 The relative expression of a target gene is calculated in comparison with a 

reference gene, using the primer efficiency (E) and the Cp-value as seen in formula 1.  

 



 (1) 
(Pfaffl, 2001) 

 

The primers for real-time RT-PCR were designed based on the gene sequence obtained 

from cloning and SMART RACE cDNA amplification, and using Primer3. For each gene 

three sets of gene specific primers were designed, each with a melting-point of  

~60˚C, and the efficiency of each primer pair was found by making a dilution curve from 

the cDNA to be used later in experiments. The dilutions were 1/10, 1/20, 1/40, 1/80 and 

1/160, and these dilutions were used in a real-time PCR with the different primers. Based 

on the Cp-values from each dilution the Light Cycler software calculates the efficiency for 

each of the primer pairs.  

The primer efficiency E is calculated by the slope of the dilution curve according 

to formula 2 given by Rasmussen (2001): 

 (2) 

 

The efficiency is a measure of how much PCR-product is amplified per cycle. E is given 

as a number between 1 and 2, 1 indicating no PCR product per cycle and 2 indicating that 

every PCR-product is amplified. The primer pairs with the best results for efficiency and 

yielding satisfactory Cp-values were selected and are shown in table 6. 

The real-time RT-PCR was run using the following program; starting with an 

incubation period of 10 min at 95 ˚C, then 42 repeats of 10 sec at 95˚C, 10 sec at 60˚C and 

10 sec at 72 ˚C. The following settings were used for the melting curve assay: 5 sec at 95 

˚C, followed by 10 sec at 65˚C and a continuous heating to 97˚C.  

In this thesis the data have been normalised against an internal control. The 

advantage of using such a control is that it compensates for differences that would arise 

from the early steps of treatment, such as variation in starting material, quality of RNA, 

variations in the efficiency of the RT-reactions, and differences in mRNA isolation. This 

is because the control would be exposed to the same treatment as the gene (Radonic  et al., 

2004). None of the traditionally used housekeeping genes are always suitable to use, as 



they are expressed at different levels in different experimental exposures (Ellefsen et al., 

2008; Tichopad et al., 2004).    

Beta actin and GAPDH was chosen as candidate house keeping genes. To test if 

these house keeping genes were stable in our experiments, we used an external standard 

when doing real-time RT-PCR. This was added to our tissues in the RNA extraction and 

was subsequently used to control the expression level of the housekeeping genes (Ellefsen 

et al., 2008). By combining the use of an external standard and an internal control, the 

insecurities of unstable house keeping genes are removed. Beta-actin was found to be the 

best house keeping gene to use, and was subsequently used to normalize the real-time RT-

PCR data for the COX genes.  

Table 6. Primers used for real-time RT-PCR amplification. Primer pairs in bold were selected as the most 

optimal based on satisfactory efficiency and Cp-values. 

 

Gene Forward primer (5’  3’)  Reverse primer (5’  3’) 

COXI GACACCCGAGCCTACTTTACA 

CGCAATTCCTACAGGCATA 

CTGCCAGTATTAGCAGCAGGT 

AGCCGGGGTGTCTTCTATCT 

ACCCCCTGCTATAACCCAAT 

CCGTACTAATTACAGCCGTCCT

GCGGGGGATCATTTGATATT 

ATTATACCGCCCCCTAGTA 

GCGGGGTCGAAGAAAGTAGT 

TGGGTTATAGCAGGGGGTTT 

GCTGCTAATACTGGCAGTGAGA

GCGGGGTCGAAGAAAGTAGT 

COXII AATGGACGCAGTACCTGGAC 

GGAGTCAAAATGGACGCAGT 

GACCACCGAATGATTGTTCC 

TCTCGCCCAGGAGTTTTCTA 

CCCCACAAATTTCTGAGCAT 

ACTGCGTCCATTTTGACTCC 

COXIII TAACCTGAGCACACCACAGC 

ATCGCTGACGGAGTTTATGG 

CCATTCAATCCCTTGCTCTC 

TTGCTTGCAGGAATGTGAAG 

GAGACAGACAGCCAGGAAGG 

GAGCCATAAACTCCGTCAGC 

Beta-actin CAGGCTGTGCTGTCCTTGTA 

AGCCAACAGGGAGAAGATG 

GAGCACCCTGTCCTGCTTAC 

CATAGATGGGCACTGTGTGG 

GGTGGTACGACCAGAAGCAT 

GGGGTGTTGAAGGTCTCAAA 

GAPDH AAAGTCATTCCCGAGCTCAA 

GAGAAACCCGCCAAGTATGA 

AGCTCAACGGAAAACTGACC 

TCATACTTGGCGGGTTTCTC 

AAGTCCGTTGAGACGACCTG 

TAGCCCAGAATTCCCTTCAG 



The significance of any changes was tested using Kruskal-Wallis test, as the tested 

groups often showed differences in their variances. Kruskal-Wallis is an analogue to the 

one-way analysis-of-variance (ANOVA) for non-normalised populations, and it can be 

used to test if several independent samples of observations stem from the same original 

distribution. The null hypothesis stating that the populations are equal was rejected at P-

values ≤ 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results 
3.1 Respirometry 
 

The aims were to examine how well adapted the fish is to hypoxia and H2S by measuring 

changes in oxygen consumption.  

 

 

3.1.1 Determination of [O2]crit and Resting Metabolic Rate 

 

The metabolic rate (measured as oxygen consumption, VO2) in resting gobies was found 

to be 72.05 ± 2.65 mg O2   h-1 kg-1 (mean ± SD) (N=11). Further the critical oxygen 

concentration ([O2]crit), the lowest [O2] where the fish is able to maintain its resting O2-

consumption, was found to be 5.3 ± 0.88% (mean ± SD) of air saturation (N=7), as shown 

in figure 8.  
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Figure 8. Graph showing a more or less stable VO2  in 7 fish faced with a decreasing level of oxygen, until 

[O2]crit is reached , whereupon a fast drop in VO2  is seen. 
 



3.1.2 Effect of H2S on oxygen consumption 

 

Experiments were conducted by running two chambers, one with a fish and one without a 

fish, as described in the method and materials section. A typical result is illustrated in figure 

9. 

 

 
Figure 9. Example of respirometry with addition of H2S: The graph on the left shows the oxygen tension in 

the chamber where the fish was kept. The graph on the right shows the chamber where the fish is removed, 

and gives the rate of the reaction between H2S and O2, to be subtracted from the rate of consumption after 

addition of H2S in the left graph. In both chambers 0.5mM H2S was added after ~2 hours. In this example 

consumption was partly inhibited. 
 

Five different concentrations of H2S were added to different fish to find the concentration 

where H2S blocked respiration. Oxygen consumption was not inhibited by the lower levels 

of H2S added (3.6μM and 7.2 μM). At higher concentrations of H2S, consumption is 

nearly (18 μM H2S) and completely (36 μM and 43.2 μM H2S) inhibited (figure 10). 

Values for H2S were calculated to be 3.6% of total sulphur added (at ~15˚C and 3.5% 

salinity) according to (Millero et al., 1988). All fish survived the experiments.  

 



 
Figure 10. Oxygen consumption when the fish is exposed to varying concentrations of H2S in % of control. 

Each point is the result of one fish. Oxygen consumption is not inhibited by low levels of H2S. At 18μM 

consumption is almost totally inhibited, and O2 consumption stops completely at higher values.  

 

3.1.3 Build up of Oxygen Debt 

 

To find out if the gobies built up an oxygen-debt in anoxia we did anoxia exposure 

experiments, and compared oxygen consumption before and after the exposure. Fish that 

can produce ethanol has no oxygen debt when reoxygenated and this will indicate whether 

or not the pelagic goby can produce ethanol or another alternative metabolic end product 

than lactate. The results showed a significant increase in oxygen consumption after anoxia. 

Average oxygen consumption before exposure to anoxia was at 58.5 ± 9.9 mg kg-1 h-1 

(mean ± SD) , and after an average of 2 hours in anoxia the O2 consumption average rose 

to 89.9 ± 16.4 mg kg-1 h-1(mean ± SD, n = 7) (exemplified for one fish in figure 11). 

 



 
 

Figure 11. Oxygen consumption before and after exposure to anoxia. The trace is from one fish while the 

values given are from 6 fish. The more steep line to the right in the graph reveals an increase in O2-

consumption after exposure to anoxia.  

 

 

3.2 Molecular Experiments 
 

Here, the aim was to use real-time RT-PCR to test for anoxia and H2S induced changes in 

gene expression in S. bibarbatus. 
 

3.2.1 Cloning and Sequencing 
 

The sequences of COX I-III in the pelagic goby were obtained by PCR, RACE-PCR and 

subsequent sequencing as described in the Materials and Methods section. 
 

 

 

 

 



3.2.2 COXI 
 

Sequencing of the cloned COXI gene is compared to others species in figure 12. Hs is 

Homo sapiens, while the other three are fish species (Oryzias latipes, Gillichthys mirabilis 

and Gobiodon histrio). Comparison of nucleotide sequence gave a 79.6 % similarity 

between  the COXI subunit of S. bibarbatus and Oryzias latipes, while comparison to 

another goby (Gobiodon histrio) gave a 78.5% similarity.  

 
Figure 12. Comparison of nucleotide sequence of COXI in five species. From this we can see there is a 

78.5% similarity between S. bibarbatus COXI and the same gene in Gobiodon histrio (Gh), another goby.  

 

 

 



3.2.3 COXII 

 

Sequencing of the gene for COXII in S. bibarbatus gave a 79.5% similarity to the same 

gene in Oryzias latipes (figure 13). Other species in comparison are Carassius carassius, 

Homo sapiens and Gadus morhua. 

 
Figure 13. Comparison of nucleotide sequence of COXII in five species. From this we can see there is a 

79.5.6% similarity between the S. bibarbatus  COXII and the same gene in Oryzias latipes. 

 

 

 

 



3.2.4 COXIII 

 

The nucleotide sequence of COXIII in S. bibarbatus compared to the same sequence in 

three other species can be seen in figure 14. When comparing the nucleotide sequence to 

Oryzias latipes a 80.2% similarity was found, while comparison to another goby, 

Gymnogobius pteschiliensis, gave a 78.2% similarity between them. Other species are 

Homo sapiens and Oplegnathus fasciatus. 

 
Figure 14. Comparison of nucleotide sequence of COXIII in five species. From this it can be seen that S. 

bibarbatus COXIII is 78.2% similar to the same gene in another goby (G. pteschiliensi. Gp)) 



3.3 Real-time RT-PCR 
 

Studies of the expression of COX genes in heart, brain and liver of the pelagic goby were 

done using real-time RT-PCR. The gene expression was measured in four groups; 

normoxia (N), anoxia (A), H2S (H) and anoxia combined with H2S (HA).  

 

 

3.3.1 Reference Genes 

 

In order to confirm that our reference genes were expressed at a stable level when treated 

with anoxia and/or H2S, we normalised expression of beta-actin to the levels of known 

amounts of an added external standard 2A4 (figure 15).  
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Figure 15. Beta-actin mRNA levels in liver and brain of S. bibarbatus normalised to an external standard. 

No statistically significant difference in mRNA levels was found (p=0.69 for both groups calculated 

separately), so beta-actin was used as a reference gene. 

 

In addition statistical calculations were done comparing expression levels of beta-actin 

(without any normalization) in all three tissues and all exposure-groups, and this also gave 

no statistically significant difference in expression levels (p = 0.22 for heart, p = 0.75 for 

liver and p = 0.31 for brain) (figure 16). Because of the stable expression of beta-actin, we 



decided to use beta-actin as reference gene for the COX gene expression, as this gave a 

smaller sample-to-sample variation than using the externally added control gene as 

reference. 
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Figure 16. . Beta-actin mRNA levels in heart, liver and brain. All three groups showed similar levels, Cp = 

19.48 ± 0.81 (mean ± SD), and no statistical significant differences in between groups was found.  

 

 

3.3.2 COXI 

 

When running real-time RT-PCR on COXI there was no detectable expression. Six 

different primer pairs were tested and neither gave a positive result. We concluded that the 

expression of this gene was too low to give an accurate result in this assay and it was thus 

omitted from subsequent experiments.  

 

 

 

 

 

 



3.3.3 COXII 

 

There was no statistically significant differences between either of the groups in heart (p = 

0.35), liver (p = 0.40) or brain (p = 0.70) when comparing the treatments to the normoxic 

control (figure 17). This suggests that expression of COXII in these tissues was not 

effected by anoxia or H2S.   
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Figure 17. COXII mRNA levels in the pelagic goby, normalized to Beta-actin. Neither heart, liver or brain 

showed any statistically significant change in expression of COXII in response to the treatments. 
 

 

 

 

 

 

 

 

 



3.3.4 COXIII 

 

The results of comparing the expression of COXIII in the tissues when exposed to the 

various treatments. There was no statistically significant change in expression of COXIII. 

(p= 0.96 for heart; p =  0.85 for liver; p = 0.48 for brain, figure 18). 
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Figure 18. COXIII mRNA levels normalized to Beta-actin. Each of the four exposure groups tested is shown 

here, grouped by tissue. There was no statistically significant change in expression of either group in either 

tissue.   

 

 

 

Thus the treatments did not appear to affect the expression of COXIII in the tissues 

examined.  

 

 

 

 

 



4. Discussion 
 

4.1 Respirometry 
 

Metabolic rate, and therefore oxygen consumption, is dependent on activity level, size and 

temperature. Thus, small highly active fish in tropical waters have the highest rates, as 

exemplified by the record high rate of oxygen consumption of swimming coral reef larvae, 

which consume up to 6000 mg O2 kg-1 h-1 (Nilsson et al., 2007). A high metabolic rate will 

also lead to a high [O2]crit due to higher demands for oxygen uptake. Because of this it is 

very important to compare experiments done at similar temperatures.   

 A resting metabolism of 72.05 ± 2.65 mg O2 kg-1 h-1 (mean ± SD) which was found 

in the pelagic goby corresponds well with other similar measurements, for example the 

resting metabolism found in another goby Gobiusculus flavescens of 88 mg O2 Kg-1 h-1 

(similar in size, and temperature of 15 ˚C) (Thetmeyer, 1997).   

The pelagic goby was found to have an [O2]crit = 5.3 ± 0.88 % of air saturation 

(mean ± SD, figure 8). When comparing to other hypoxia-tolerant species this is an 

extremely low [O2]crit. Generally, species that are tolerant to hypoxia have a lower critical 

oxygen tension than species that are not hypoxia tolerant (Nilsson and Randall, 2010 (in 

press)); and when compared to the overview presented by Nilsson and Randall (2010 (in 

press)), the goby has the lowest [O2]crit found (5.3% of air saturation = 0.44 mg O2 l-1 

compared to 1.0 mg O2 l-1 for crucian carp at similar temperature, see table 1, section 1.4.). 

That the Sufflogobius bibarbatus appears to display the lowest [O2]crit  ever measured in a 

fish suggest it is very well adapted to survive the low oxygen levels often found on the 

ocean floor off the Namibian coast. This is thus highly likely to be one of the prerequisites 

for its success in this habitat. 

 

 

4.1.1 Effect of H2S on Oxygen Consumption 

 

The effect of H2S on respiration was measured using varying concentrations, from 3.6μM 

to 43.6μM. The two lowest concentrations do not inhibit oxygen consumption (figure 10), 

but as concentrations increased above 18 μM, respiration was completely inhibited. 



However, the fish still survived at least 2 hours at these high H2S concentrations. 

Comparing this to table 2 we see that these concentrations are similar to the inhibitory 

limit for isolated mitochondria studied in other vertebrates (including mammals). Thus, S. 

bibarbatus does not have a COX that is insensitive to H2S, and therefore its ability to 

survive sulphide exposure must relate to its ability to survive anoxia, because having an 

inhibited COX will be functionally identical to anoxia. Indeed, anoxia tolerance has been 

suggested to be the key adaptation to survive high H2S concentrations (Bagarinao and 

Vetter, 1992), and it could be mentioned that the H2S tolerance of S. bibarbatus is similar 

to that of other highly sulphide tolerant species, such as Fundulus parvipinnis (Bagarinao 

and Vetter, 1992).  

 

 

4.1.2 Build up of Oxygen Debt 

 

The pelagic goby practices DVM (diel vertical migration) spending the day-time in the 

benthic zone on the bottom, and migrating into the pelagic zone at nightfall, remaining 

there till dawn when it returns to the bottom (shown in figure 19). One task for the 

Namibia expedition was to find out if the pelagic goby resolves the problem of lactate 

build-up during hypoxia at the bottom by producing ethanol, like the crucian carp does.  

 

Crucian carp does not experience an increase in oxygen consumption after an exposure to 

anoxia, because it expels its anaerobic end-product (ethanol) from the organism. Our 

measurements comparing oxygen consumption of the pelagic goby before and after a 

lengthy exposure to anoxia gave a clear increase in consumption, as seen in figure 11 (see 

Results, 3.1.3.). This indicates that the goby accumulates an oxygen debt and does not 

produce a significant amount of ethanol during anoxia. Indeed, measurements made by 

others involved in the project showed that no ethanol could be detected in the blood of 

anoxic gobies, and that there was a significant rise in its blood lactate levels during anoxia 

exposure (see Appendix A) Thus, after anoxia and H2S exposure, the goby will need to 

pay off an oxygen debt by consuming more oxygen than the basal resting metabolism 

would indicate. This ties in well with its diurnal migration pattern, indicating that one 

reason for its ascent from the bottom at night is to pay off an oxygen debt acquired at the 

bottom.  

 



 
Figure 19. Echogram of the ocean. This figure shows an echogram taken while the boat was in a fixed 

position, over an extended period of time. We can clearly see that there are several layers of fish moving 

with the current, and at a given point in time (dawn) suddenly the lower layer of fish dissolve and the fish 

return to the hypoxic water. From Utne-Palm et al (in review).  

 

Combining trawling and echograms gave the expedition the opportunity to study the 

feeding habits of the goby, and analysis of stomach content showed that it feeds mainly 

upon benthic polychaetes and diatoms. This contradicts the previous belief that the goby 

performs DVM in order to feed at night. Further analysis of the stomach-contents showed 

that the contents remained largely undigested during the day, and it becomes gradually 

digested as it migrated into the pelagic. From this we concluded that the S. bibarbatus 

enters the pelagic both to digest the food eaten while it is sheltered in the muddy bottom, 

and to re-oxygenate the blood and pay off the oxygen debt.  

 

 

 

 

 



4.2 Molecular Experiments 
 

4.2.1 Cloning and Sequencing 

 

An initial aim for cloning COX was to investigate if it was different from other COX in a 

way that could help the pelagic goby survive exposure to H2S. However, as our 

respirometry results, combined with literature data on mitochondrial H2S sensitivity in 

other vertebrates,  suggested that the goby’s capacity to tolerate H2S stems from anoxia 

tolerance rather than having an especially H2S-tolerant COX, this possibility was rejected. 

Indeed, the cloning of all three subunits of COX revealed a relatively high degree of 

similarity to the same genes in other species (79%-80% correlation to Oryzias latipes). 

Thus, COX appears to be a highly conserved gene, found in a genome without an internal 

correction system, the mitochondrial genome. This indicates that there is a strong 

evolutionary selection for keeping COX un-mutated.  

   

 

4.2.2 Real-time RT-PCR 

 

Expression of COXI could not be quantified with real-time RT-PCR. This could indicate 

one of three things. One reason could be that none of the primers tested were good enough 

and did not bind to any area of COXI mRNA. However, after having tried six different 

primers this seems unlikely. More likely, it could be that COXI mRNA is expressed at a 

very low level, possibly because the protein is very stable and therefore does not need to 

be synthesised very often. Finally, the mRNA itself could be very unstable and therefore 

we did not manage to isolate it.  

 mRNA expression of COX II and III seemed unaffected by anoxia and/or H2S 

(figure 17 and 18). This is contradictory to the findings of Poyton and McEven (1996) 

done at protein level where they found that both COX I and II were regulated by the 

presence of oxygen. If such a regulation exists in the pelagic goby, we could have 

neglected to discover it because of post-transcriptional regulation of expression. This 

would give the same amount of mRNA without it being translated into protein, falsely 

indicating a maintained expression level (as reviewed by Greenbaum et al, 2003). 

Experiments have been done where an reduction in mtDNA did not cause a noticeable 



reduction in mRNA of COX genes, supporting that regulation occur post-transcriptionally 

(Trifunovic et al., 2004). However, it does seem wasteful to be producing mRNA that will 

not be used during an energy crisis such as anoxia. A second way of having higher 

amounts of COX II and III proteins during anoxia would be if the degradation was 

reduced, giving each protein a longer lifespan. This would not require any increase in 

production of mRNA, but would give higher amount of protein found. An investigation 

into protein-expression of COX in S. bibarbatus could possibly yield different results. 

Another possibility, maybe the most likely one, is that the gobies studied already had their 

COX genes fully induced, as they were caught in an environment where they would be 

regularly exposed to hypoxia. Indeed, this could be a factor behind their low [O2]crit and 

future experiments could be aimed at comparing S. bibarbatus from different habitats, as 

well as studying COX expression in individuals caught in well oxygenated areas and 

exposing these to hypoxia, anoxia and H2S. 

 It is also possible that changes in COX expression could be occurring in other 

subunits presently not studied. Kwast and Burke (1998) reviewed the effects of hypoxia in 

yeast stating that subunit V seems to be regulated by anoxia. The nomenclature 

surrounding the subunits of COX is a little confusing, but this is a paralog to subunit IV in 

mammals. Subunit V in the yeast S. cerevisiae can be expressed in one of two paralogs, 

expression of Va at normal oxygen levels and when oxygen concentration drops below 

1μmol L-1 switches to expression of Vb. Studies of the different subunit V paralogs show 

that Vb stimulates a higher maximum turnover number (TNmax) giving a higher in vivo rate 

of electron transfer (Allen et al., 1995). Allen et al suggest that the Vb paralog increase the 

catalytic rate of COXI in order to prevent the formation of dangerous partially reduced 

products like hydrogen peroxide and fully exploit the minute amounts of oxygen present.  

Other subunits that are regulated by oxygen have been found in the amoeba 

Dictyostelium discoideum, but this involves subunit VII (homolog of subunit VIc in 

mammals and VIIa in yeast) (Schiavo and Bisson, 1989). Similarly to regulation of 

subunit V in yeast one of these paralogs are expressed at normal conditions (VIIe) and 

switching occurred at hypoxic conditions (to VIIs), although the oxygen threshold for 

switching is much higher in D.discoideum than in yeast.  

 These findings of several paralogs to several subunits in COX argues for further 

studies of the S. bibarbatus COX, in particular the subunit homologous to yeast subunit V.  

 

 



4.3. Conclusion 
The experiments done in this thesis, combined with other experiments carried out by the 

expedition, show that the goby has a record low [O2]crit making it possible for the goby to 

continue its routine resting metabolism even at very low oxygen concentrations. In 

addition it can survive several hours of anoxia and H2S exposure by surviving on 

anaerobic, lactate-producing metabolism, thereby building up an oxygen debt. This 

oxygen debt could be an important reason for its nocturnal ascent from the bottom of the 

ocean to more oxygen rich waters. The ability to survive for an extended time in 

conditions deadly to most vertebrates gives the goby a great advantage by making it able 

to seek out food on the anoxic and sulphide rich bottom, while at the same time being out 

of reach from predators. This may be the key to its success, making it the dominant fish 

species in this ecosystem. From the molecular studies I can conclude that there is no 

significant change in the expression of COX subunits II and III, at least not at 

transcriptional level (COX subunit I could not be quantified), suggesting that a possible 

induction of these enzymes does not form a part of its H2S tolerance or hypoxia tolerance. 
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Catch me if you can! 
A multi niche extremist thriving in the Benguela upwelling system 
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Abstract The northern Benguela upwelling system is amongst the most productive in the 
world1 . Yet much of the production is not fully utilised and accumulates over the inner 
shelf as diatomaceous anoxic mud, rich in hydrogen sulphide and methane gas. Kills of fish 
and invertebrates occur during “sulphur eruptions” when even surface water is affected by 
hydrogen sulphide (H2S) from the sediment2,3. Few metazoan life forms are capable of 
surviving the inhospitable seabed environment, which is dominated by various bacteria 
fuelled by the hydrogen sulphide, both on the mud where white mats of large sulphide-
reducing bacteria visibly cover the surface4 and in the lower water column where blooms of 
chemolithotrophic bacteria oxidise hydrogen sulphide5. Here, however, we report how a 
remarkable species of fish, the bearded goby Sufflogobius bibarbatus, thrives in this 
inhospitable environment through a combination of unusual physiological and behavioural 
adaptations: it not only lives within the deadly mud and consumes it as food, but it uses the 
hypoxic bottom water as a refuge from predators. Nightly vertical migrations allow it to 
digest the food and pay off the oxygen debt built up at the bottom. Away from the seafloor, 
it swims with jellyfish, probably to avoid predatory fish. These traits in combination may 
have allowed S. bibarbatus to assume a pivotal role in the Benguela ecosystem following 
the demise of pelagic fisheries at the end of the 1960s. 
 
Introduction Sulphidic and anoxic marine sediments occur worldwide in areas of natural 
eutrophication6. Intense decay processes in the mud belt off Namibia produce high 
concentrations of hydrogen sulphide in the surface sediments7, and evidence of sulphide 
eruptions date back to the early 1900s8,9,10,3. Although chemolithotrophs play a role in 
detoxifying the overlying sulphidic water5, we know little of the physiological and 
behavioural adaptations of higher life forms in this environment. Anticipated climate 
change effects could lead to more frequent low oxygen events11 and sulphide eruptions off 
Namibia12,13.This scenario poses key survival challenges to organisms and affects, 
sustainable harvesting of marine resources, which is of major importance in the region14. 

Small gobiid fishes are numerous in nearshore marine environments and they are 
often the major prey for locally harvested fish15. In northern Benguela, however, the 
bearded goby S. bibarbatus plays a far bigger, ecosystem-wide role, where it now occupies 



a pivotal position in the shelf’s food web16. Until the mid 1960s, sardines (Sardinops sagax) 
were the most abundant pelagic fish, but over-exploitation at the end of that decade coupled 
with environmental changes led to the fishery’s collapse17,14. Seabirds, penguins, gannets, 
cormorants, fur seals and piscivorous fish,such as hake (Merluccius sp.) and horse mackerel 
(Trachurus trachurus), were forced to find alternative food sources, and gobies have now 
become their staple diet16. Paradoxically, despite the sharp increase in predation, S. 
bibarbatus has increased in abundance18, even though it is considered a slow-growing, late-
maturing and relatively long-lived species with a low fecundity19. Here, we present reasons 
for the success of the bearded goby.  

Using the Norwegian research vessel G. O. Sars, we conducted a cross-shelf 
acoustic survey off Namibia in April 2008 (23º20`S-14º12`E to 23º 40`S-13º15`E), coupled 
with pelagic and demersal trawling, a full suite of environmental sampling stations, and on-
board behavioural and physiological experiments. This allowed us to determine diel 
patterns of movement and feeding of S. bibarbatus, and achieve a comprehensive 
understanding of the behavioural and physiological strategies underlying the success of this 
fish in this extreme environment.  

 
 
Field Observations 
 

S. bibarbatus was most abundant over the inner shelf, down to depths of 200 m, 
where the seafloor comprised a thick layer of diatomaceous mud characterised by 
millimolar concentrations of sulphide close to the sediment surface. No other vertebrates 
were found in the overlying lower water column (see Fig. 1a-b), with oxygen levels below 
5 % of air saturation (or 0.3 ml O2 l-1). Although some S. bibarbatus were recorded in the 
water column during day and night, most of the population was on the seabed during 
daylight hours, as documented from demersal and pelagic trawls and acoustic records. 
Video observations have previously shown S. bibarbatus to be closely associated with 
sediments20, and gobies were caught in multi-core tubes whilst sampling the mud.  

Acoustic records coupled with pelagic trawling show gobies ascending from the 
bottom in the evening to join an existing acoustic scattering layer (SL) in the water column 
(Fig. 1a), and then returning to the bottom throughout the night, or in the morning (Fig. 1b). 
These pelagic SLs are dominated by two species of large jellyfish (Aequorea forskalea and 
Chrysaora hysoscella), the biomass of which is currently estimated to exceed that of finfish 
off Namibia21. Data from over 11 000 samples of pelagic fish landings at Walvis Bay (1991 
– 2006) show that gobies are significantly more likely to be caught with jellyfish than other 
fish species (Kruskal-Wallis ANOVA by Ranks; H (4, N= 40) =18.18, p=.001), and six 
times more likely to be found with jellyfish than its predator, the horse mackerel (Table 1). 
The behavioural experiments were designed to test the hypothesis that S. bibarbatus swims 
with jellyfish to reduce predation risk, as has been shown for juvenile whiting (Merlangius 
merlangus) in other ecosystems22. 

The goby’s nocturnal ascent does not appear to be for feeding. Gut fullness was 
significantly higher, and the state of content’s digestion was significantly lower, in 
ascending than descending fish (Prop. odds logistic regression, p < 0.001, see 
Supplementary Table 1) (Fig. 3a). Thus, gobies appear to feed on the bottom during the day 
and then digest their food whilst away from the sea-floor at night. This observation is 
reinforced by the gut contents themselves: benthic polychaetes and diatomaceous mud (Fig. 
3b). The branchiospines of the gill are too far apart (0.3 - 1.1 mm) to allow this species to 
filter diatoms from the water, and they appear to be ingested (directly and/or indirectly) 
from the benthos, which is rich in giant sulphur bacteria (0.1 to 0.75 mm) (Schulz et al., 



1999), of a size that could be filtered out. Mud surface feeding is known from the pacific 
goby (Gobionellus sagittula), whose gut content consists of diatoms, algal debris and 
flocculate detritus23. Sulphide bacteria are an important prey for tubeworm, clam and snail 
in seep areas, but not in fish from the same stations24. As digestion requires energy, it is 
suppressed in the hypoxic environment occupied by fish during the day25, so we propose 
that S. bibarbatus ascends at night in order to digest its food and to repay its oxygen debt. 
This goby is the first species ever shown to perform diel vertical migration (DVM) in order 
to digest food and to re-oxygenate its body. 

 
On-board experiments  
On-board experiments were used to test hypotheses formed during the in situ observations, 
viz: (i) that S. bibarbatus tolerate anoxia (O2 < 0.5 % air saturation) and hydrogen sulphide, 
(ii) has benthic habitat preference, (iii) has a preference for associating with jellyfish to 
avoid predators. We also tested their predators’ ability to cope with hypoxia (using hake), 
or associate with jellyfish (using horse mackerel).  
 
Physiological studies confirmed our predictions that S. bibarbatus tolerates hypoxia, 
anoxia and hydrogen sulphide astonishingly well. Thus, it was found to have an extremely 
low critical oxygen level ([O2]crit = 5.3 ± 0.3 % of air saturation = the lowest [O2] at which 
resting oxygen uptake can be maintained) (Fig. 2a). This should allow it to sustain aerobic 
metabolism at water depths below the main SL (found at ca 10 % of air saturation; Fig. 
1a,b). While S. bibarbatus builds up an oxygen debt during anoxia (Fig. 2b), which is 
probably largely related to their need to oxidize accumulated lactate, the rate of lactate 
accumulation in the blood declined markedly after 1 h of anoxia (Fig. 2c), suggesting 
metabolic depression. Metabolic depression is also indicated by their suppressed ventilation 
rate at [O2] below [O2]crit (Fig. 2d). This ability to limit lactate production should increase 
the time that can be endured on the anoxic mud.  

Hypoxia may impair escape responses, and therefore increase the vulnerability of 
fish when attacked by predators26. However, if gobies were touched (using a lever mounted 
in the lid of the sealed aquaria) all fish reacted with an immediate, fast escape response 
even after 7-9 h below their [O2]crit followed by 4 - 5 h in anoxia, (n=7). This shows that 
anoxic gobies retain neural responsiveness, which is probably needed not only for predator 
avoidance but also for initiating the ascent at night. 

We compared anoxia tolerance in hake (M. capensis) and S. bibarabatus by 
measuring the performance of their excised hearts. These experiments showed that the 
pumping capacity (heart rate x contraction force27) of both species’ hearts was reduced by 
~80 % after 20 min of anoxia. For the goby this likely reflected anoxia-induced metabolic 
depression. However, for the hake, it probably revealed an inability to cope with anoxia; as 
after 40 min of subsequent re-oxygenation, only the goby heart recovered to pre-anoxic 
values, suggesting that the hake heart had sustained permanent damage (Fig. 2e). The 
implication of this is that hake are not able to coexist with the gobies on the anoxic 
seafloor, thereby providing the gobies with a refuge from these predators. 

Hydrogen sulphide is a respiratory poison that blocks mitochondrial respiration by 
inhibiting cytochrome c 28.  The rate of oxygen consumption by S. bibarbatus was virtually 
unaffected by 100 - 200 µM total sulphide (corresponding to 6 – 12 µM H2S 29,28), while it 
became 98 % suppressed at a total sulphide level of 500 µM (= 30 µM H2S) (Fig. 2f). 
These data correspond well with measurements of the effect of H2S on isolated vertebrate 
mitochondria (from both relatively H2S tolerant fish and mammals), showing that H2S 
levels below 6 µM stimulates mitochondrial oxygen consumption (probably because 
mitochondria utilize oxygen to detoxify H2S to thiosulphate), while H2S levels above 11- 



14 µM inhibits mitochondrial respiration28. This suggests that fish surviving high H2S 
levels do not rely on H2S tolerant cytochrome c 28. Rather, the key to surviving high [H2S] 
is   anoxia tolerance, which makes the fish temporarily independent of mitochondrial 
respiration through a sufficiently high capacity for anaerobic (glycolytic) ATP production. 
The anoxia tolerance of S. bibarbatus gives it an ability to survive the extremely high [H2S] 
that peak in the mud where these fish feed and hide during daylight hours (Fig. 4). While 
the bearded goby’s tolerance of H2S matches the world’s most tolerant marine fishes (see 
Table 2 in30), which all are marine species inhabiting muddy coastal waters (see Table 2 
in30), it is the first fish reported to survive such extremes in an open coast habitat. 

In individual, onboard habitat choice experiments, S. bibarbatus showed a 
significant preference for sediments of diatomaceous mud (collected on station from 
benthic cores) rather than aerated sand, (2-sample t-test on normalized arc-sine transformed 
data: t=3.29; p=0.0017, n=30). We even observed the fish burrowing into the sulphur-rich 
mud, especially if threatened or disturbed. These findings suggest S. bibarbatus deliberately 
exposes itself to a more extreme environment in order to avoid predation.  

Interactions between jellyfish and horse mackerel, and jellyfish and gobies were 
examined by allowing fish to choose between two chambers during a 300 sec trial. The 
chambers, one with and one without a jellyfish (C. hysoscella), were separated by a wide 
mesh screen. Horse mackerel strongly avoided jellyfish and either fled the chamber these 
were in (within 18 sec ± 11 sec, mean ± s.e.), or never moved across the mesh divider to 
associate with jellyfish. In contrast, gobies took significantly (2-sided t-test: p<0.001; df = 
25, n=14) longer (210 sec ± 37 sec, mean ± s.e.) to leave the jellyfish chamber, and they 
frequently moved across the divider. This confirms our prediction from field observations 
and fish landings that gobies in the water column choose to associate with jellyfish, but 
their predators do not.  

 
Conclusion 

The marine ecosystem off Namibia has witnessed a number of profound ecological 
and environmental changes since the collapse of the commercial pelagic fisheries at the 
end of the 1960s, including a proliferation of jellyfish21, a change in the fish community 
structure16, a possible increase in hypoxia and toxic gas eruptions13 and consequently a 
change in the food web dynamics17. These changes are all symptoms of the same malaise 
– the loss of a supremely successful filter feeder (sardine) has resulted in the liberation of 
ecological space within the pelagos for opportunistic jellyfish and a less efficient 
utilisation of primary production, which in turn has resulted in increased sedimentation of 
phytoplankton. The bearded goby, by virtue of tolerating the low oxygen and high H2S 
levels at the bottom, by deriving their nutriment from the benthos, by utilizing DVM to 
digest food and pay off their oxygen debt, and by using jellyfish as a refuge, have come 
out amongst the winners. 

Climate change will likely increase coastal upwelling12, which in an area like the 
Benguela could lead to an increase in the frequency of sulphide eruptions and anoxic 
water masses13. Organisms able to tolerate such extreme conditions are likely to be 
successful in these future environments. Furthermore, S. bibarbatus which feeds low in 
the food chain (feeding on diatom and bacteria rich mud on the seabed) represents a 
species that efficiently contributes to trophic energy transfer within these waters. S. 
bibarbatus, with its remarkable suite of adaptations, looks set to play a critical role in the 
ecosystem off Namibia. Thus caution should be exercised in any plans for its 
exploitation19. 

 



Full methods description and any associated references are presented in the 
supplementary information. 
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        Trachurus 
    Sardinops Engraulis trachurus Etrumeus
 Sufflogobius 
Month  N  sagax  encrasicolus capensis whitheadi
 bibarbatus    
 
January      1066  18  23  13  22  75 
February      1757  17  26  10  19 
 151 
March      1982  19  28  14  20 
 508 
April      1749  18  18  10  14 
 130 
May      2088  38  27  13  35  80 
June      1113  49  124  48  103 
 182 
July      1038  73  131  95  147 
 175 
August      318  48  40  44  70 
 233 
Average    35  52  31  54 
 192 
 
 
Table 1. Temporal changes in the frequency at which the dominant species of pelagic fish 
were caught with jellyfish, expressed as: Total number of catches of fish species X with jellyfish, 
divided by the total number of catches of the same species X without jellyfish: by month. Data 
collected from randomly selected samples of the landings of pelagic fleet in Walvis Bay, Namibia, 
for the period 1990-2007. Only months where the total number of samples (N) was greater than 100 
are shown. Information for juvenile hake (Merluccius sp.) not available as this species is not a 
routine part of the pelagic fishery. 
 
 
 



Figure legend 
Figure 1 Acoustic record (38 kHz). a, Showing gobies ascending from the sediment in the 
afternoon, joining an acoustic scattering layer of jellyfish and b, returning to the sediment 
in the morning. Sequential near-bottom pelagic trawling gave no catches prior to the ascent 
and a unispecific catch of gobies during the ascent. The vessel was stationary during the 
descent, therefore many echoes were returned from each fish, then being depicted by 
“lines”. Depth in meters and average oxygen level (% oxygen saturation) is given at ten 
meters intervals.  Temperature decreased gradually from 18 ºC at the surface to 13 ºC above 
the bottom. 
 
Figure 2 Physiological studies on Sufflogobius bibarbatus (a,b,c,d,f) and  Merluccius 
capensis (e). a, Gobies maintained a constant oxygen consumption rate until the critical 
oxygen concentration ([O2]crit) of 5.3 % ± 0.3 % (mean + s.d.) of air saturation (~0.3 ml O2 
l-1) was reached. [O2]crit is the lowest [O2] in which the animal is able to maintain its 
resting rate of O2 consumption (Prosser & Brown, 1961). Seven replicate fish marked with 
individual symbols. b, Representative trace showing that 3 h exposure to anoxia caused an 
oxygen debt as post-anoxia oxygen-consumption rate was increased by ~35% (n=6).  c, 
Accumulation of blood lactate during 3 h of anoxia (O2 < 0.5 % air saturation). Note that 
the rate of increase slowed after 1 h, indicating metabolic depression. Significant 
differences (P<0.05; one-way analysis of variance; Student-Newman-Keuls post-test) 
between time points are indicated by dissimilar letters. n=33 fish in total and 3 – 6 at each 
time point. Values are means ± s.e.m. d, Ventilation rate increased in response to falling 
water [O2] until [O2]crit, then ceased (regression line obtained by locally weighted 
scatterplot smoothing (LOESS)) (n=7). e, Isolated, spontaneously contracting heart 
preparations of S. bibarbatus (n=6) successfully recovered from 20 minutes of anoxia, 
whereas hearts of its predator, M. capensis (n=6), were irreversibly damaged by anoxia. 
Asterisks indicate a statistically significant difference (P < 0.05; one-way repeated 
measures analysis of variance performed on non-normalized data; Student-Newman-Keuls 
post-tests) from the control normoxic level (i.e., 0%). Values are means ± s.e.m.  f, 
Oxygen consumption of gobies exposed to different sulphide concentrations at a normoxic 
oxygen level (> 50 % of air saturation) (n=5). 
 
Figure 3 Gut analysis. a, Box and whisker plot showing difference in degree of gut 
fullness and digestion, for fish ascending from bottom to the pelagic at dusk or returning 
to the bottom at dawn (n=99 gut fullness, and n=75 digestion grade). Gut fullness score is 
graded 1 to 5, 5 being completely full and 1 being empty, while digestion score is graded 1 
to 4 (4 being fully digested and 1 being undigested). Tick line is the median; Box is the 
interquartile range; Whiskers are maximum and minimum; Dots are outliers. Where no 
box or whiskers there is little variability in the data. b, Diet composition based on the 
percentage of fish  that have consumed a particular prey category (y-axis) related to 
whether caught in the pelagic (red bars) or on the bottom (blue bars).  
 
Figure 4  Profile of pore water hydrogen sulphide concentration [H2S] in a sediment 
core sampled off the Namibian coast (23º23'S - 14º12'E; 120 m water depth). 
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Appendix B 
 
Real-time RT-PCR  
 
In the molecular part of this thesis real-time RT-PCR (or reverse transcriptase real-time 
PCR) is used for quantifying the expression level of genes. Real-time RT-PCR includes 
two main steps: RT-reaction being reverse transcription to make cDNA from mRNA 
isolated from the tissues of interest, and real-time PCR is the reaction that allows for 
quantification. The real-time RT-PCR technique is sensitive enough to be used for 
quantifying expression in a single cell (Liss, 2002), and specific enough to separate 
between closely related homologues if the primers are correctly designed (Ginzinger, 
2002). It is also the most powerful method for amplifying small amounts of mRNA (Wang 
et al., 1989).  
  
The synthesis of cDNA is the cause for many problems in regards to RT-PCR, as the 
efficiency of each synthesis can vary. The gene(s) of interest is amplified in a PCR 
reaction using gene-specific primers and is measured by using a DNA-binding flourescent 
dye like SYBR-green or ethidium bromide. The usage of  DNA-binding dyes combined 
with the amplification of the gene of interest in the real-time RT-PCR reaction gives a 
high degree of specificity. One major drawback to using a non-specific dye is that it will 
bind to any dsDNA, including primer-dimers, therefore its is very important to verify that 
it is only the amplicon of interest that get amplified.  
 

 
Figure 5: Real-time RT-PCR fluorescence: Figure showing the four phases of real-time RT-PCR 

amplification, starting with the flat initial phase (blue). In this stage the amplification of the desired region is 
indistinguisable from the background fluorescence. After that an exponential growth-phase follows(red), 

quickly turning into a linear growth-phase(green). Towards the end of the PCR a platau-phase is 
reached(purple), and no further increase can be detected. Figure adapted from (Tichopad et al., 2002). 

 
When running real-time RT-PCR and plotting the product against cycles run, four distinct 
stages can be observed. In the beginning of amplification it will not be possible to 
distinguish the fluorescence from the amplicon of interest from the fluorescence from 
other DNA’s in the reaction. This can be seen as a flat, starting region of an sigmoid 
curve. The second part of the amplification-curve is an exponential stage of amplification, 
where the desired amplicon is doubled during each cycle of the PCR. In the third stage of 
amplification the increas has slowed down, and is now showing a linear growth of 
product. The lower amplification rate is due to a combination of shortage of primers, 



dNTP’s and product-product annealing. The final stage is where amplicon-growth comes 
to a halt forming a platau-phase, and no traceable new growth of product occurs (Figure 5) 
(Kainz, 2000; Tichopad et al., 2002). 
 
For this thesis the LightCycler machine and software was used for measuring fluorescence 
emitted during the PCR-reaction. This is just one of several thermal flourimeters that can 
be used for measuring the fluorescence SYBR-green emits during the PCR. The results of 
the real-time PCR run will be plotted by the LightCycler Data Analysis Software to give a 
graphic dispay of cycles vs fluorescence. In order to calculate the amount of initial product 
we use a point known as Cp (crossing point). According to Rasmussen (2001) the method 
least subject to errors would be the second derivative method, due to the fact that it is the 
most automated method. By using the second derivative method it is the exponential part 
of the curve that is used to calculate the amount of initial sample. In this part of the curve 
the growth of fluorescence is at its highest, and the Cp is set to be the point where the 
growth of fluorescence is at its maximum, i.e. just before the linear part of the curve. This 
means the lower the Cp-value, the higher amount of starting template that was present.  
 
 
Quantification can be done in one of two ways. The first method of quantification is 
absolute quantification, and is based on either an internal or external calibration curve 
made using known amounts of DNA in a dilution curve (Pfaffl, 2001). This gives an exact 
number of copies of mRNA in a cell. The second method of quantification is relative 
quantification, based on the expression of one gene versus another one. When doing 
relative quantification it is important that the reference gene is expressed at a stable level 
so that comparison to it will not be disturbed by regulation of the reference gene. In most 
cases using a housekeeping gene is recommended(Pfaffl, 2001), although some treatments 
cause regulation of commonly used housekeeping genes such as β-actin and GADPH and 
may need other additional controls (Ellefsen et al., 2008; Radonic  et al., 2004). Relative 
quantification is the most commonly used quantification for experiments examining 
physiological changes in gene expression.  
 
In this thesis the data have been normalised against an internal control. The advantage of 
using such a control is that it compensates for differences that would arise from the early 
steps of treatment. This is because the control is exposed to the same treatment as the gene 
(Radonic  et al., 2004). Adding an external standard when doing real-time RT-PCR 
removes any concerns about the constitutively expression of internal control (usually 
housekeeping genes) when exposed to any treatments (Ellefsen et al., 2008). By 
combining an external standard and an internal control, the insecurities of differential 
treatment of the samples is removed, and the expression level of the reference gene is 
controlled against the external standard.  
 
Extractions of different tissues should still not be compared to each other. This is because 
there may be variations in efficiancy between extractions and PCR-amplifications from 
inhibitory factors possibly found in different tissues (Tichopad et al., 2004). My results are 
comparing one tissue at a time to remove any such insecurities.  
 

 
 



Appendix C 
 

 
 
IUPAC one-letter abbreviations used for degenerated bases in primers. This have been 
used where the sequence varies between species, and in order to have primers that will 
base-pair to several options it is made up of a mix of several of the bases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix D 
 
Abbreviations: 
 

A: Anoxia 

ATP: Adenosine triphosphate 

Cc: Carassius carassius 

Cp: Crossing point, the cycle number needed to reach the second derivative maximum 

(PCR) 

COX – Cytochrome c oxidase 

dNTP: deoxyribonucleotide triphosphate 

DTT: Dithiothreitol 

DVM: Diel vertical migration  

EtBr: Ethidium bromide 

E. coli: Escherichia coli 

F: Forward primer 

GAPDH - glyceraldehyde-3-phosphate dehydrogenase 

Gh: Gobiodon histrio 

Gm: Gillichthys mirabilis  

gm: Gadus morhua  

Gp: Gymnogobius pteschiliensis 

GSP: gene specific primer 

H: H2S 

HA: H2S + anoxia 

H2S: Hydrogen sulphide 

Hs: Homo sapiens 

Kb: Kilobase (1000 basepairs) 

LB: Lysogeny broth 

MtDNA: Mitochondrial DNA 

N: Normoxia 

NaS: Sodium sulphite 

Of: Oplegnathus fasciatus  

Ol: Oryzias latipes  

PCR: Polymerase chain reaction 



R: Reverse primer 

RACE: rapid amplification of cDNA ends 

RT: Reverse transcription 

RV: Research vessel 

Sb: Sufflogobius bibarbatus 

SD: Standard deviation 

TPP: Thiamine Pyrophosphate 

X-gal: 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix E 
 
 
Reagents (product, catalog number and manufacturer): 
 
Advantage 2 polymerase mix, 639202, Clontech Laboratories Inc 
Agarose, SeaKem®, 50004, Cambrex 
Ampicillin (D[-]-α-Aminobenzylpenicillin), A-9518, Sigma 
Chloroform, C2432, Sigma 
DEPC (diethyl pyrocarbonate), SD5758, Sigma 
Dithiothreitol, Y00147, Invitrogen 
DNAfree Kit, AM1906, Ambion 
dNTP-mix, 10297-018, Invitrogen 
Dynabeads mRNA Direct Kit, 610.01, Invitrogen 
Ethidium Bromide, 443922U, BDH-Electron 
IPTG (isopropyl-β-D-thio-galactoside), 21727117, Promega 
Nuclease-Free Water, AM9932, Ambion 
LightCycler FastStart DNA MasterPLUS SYBR Green I, 04707516001, Roche Diagnostics 
pGEM®-T Easy Vector systems, A1360, Promega 
Platinum Taq Polymerase, 10966, Invitrogen 
RNA 6000 Nano Lab Chip ® Kit, 5065-4474, Agilent 
SMART RACE cDNA Amplification Kit, 634914, Clontech 
SOC medium, 15544-034, Invitrogen 
Superscript First strand buffer, Invitrogen 
SuperScript ™ III Reverse Transcriptase, 18080-(044), Invitrogen 
Teen D lysing Matrix beads, MP Biomedicals 
TRIzol ® Reagent, 15596-018, Invitrogen 
TURBO DNA-free Kit, Cat #1907, Ambion 
X-gal, V3941, Promega 
 
 
 
 
Equipment (product, catalogue number/model and manufacturer): 
 
Eppendorf centrifuge, 5417R, Eppendorf 
Finnpipettes, 0.5-10 μL, U23386; 2-20 μL, T27033; 20-200 μL, T27388; 100-1000 μL, 
T28301,  
Galvanometric oxygen electrode OXI 340i, WTW  
Homogenizer, Ultra-Turrax T8, IKA 
LightCycler 480 Instrument, 03531414201, Roche Diagnostics 
Mastercycler gradient, 5331, Eppendorf 
NanoDrop ®, Model ND-1000, NanoDrop Technologies 
Powerlab 4/20, ADInstruments 
 
 
 
 
 
 



 
Software (freeware is listed with websites) 
 
BioEdit, version 7.0.5.1 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) 
Chart 5.0, ADInstruments 
ClustalX, version 2.0 (http://bips.u-strasbg.fr/fr/Documentation/ClustalX/) 
EndNote X, Thomson 
GeneDoc, version 2.7. (http://psc.edu/biomed/genedoc)  
LightCycler® Software, version 4.0, Roche Applied Science 
NanoDrop, version 3.0.1, Coleman Technologies Inc. 
Netblast, version 2.2.17 (http://www.ncbi.nlm.nih.gov/blast/download.shtml) 
Past, version 1.89 (http://folk.uio.no/ohammer/past)  
Primer3 primer design program, version 0.4.0 (http://frodo.wi.mit.edu/primer3/input.htm)  
SigmaPlot 10, Systate Software Inc. 
 


