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Abstract 
 

The crucian carp (Carassius carassius) has an exceptional ability to tolerate anoxia, 

being able to survive without oxygen for several months at low temperatures. In response to 

low oxygen levels the crucian carp reduces its metabolic rate, and up-regulates glycolysis to 

produce enough ATP to fuel cellular ATP demand. These adaptations solve the main problem 

encountered during anoxia, which is to supply cells with enough ATP. The brain has a very 

high rate of ATP use, and it is therefore especially vulnerable during anoxic conditions. In the 

brain of mammals, even brief periods of oxygen deprivation can induce apoptotic cell death. 

It is still not known if the crucian carp brain suffers brain damage after anoxic exposure. The 

aim of this study was therefore to examine if anoxia, and/or subsequent reoxygenation, affect 

the incidence of apoptotic cell death in the brain of crucian carp.  

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method 

was applied to stain for and quantify apoptotic cells in the crucian carp telencephalon. The 

amount of apoptotic cells did not increase significantly after 7 days of anoxia (at 9 °C). 

However, when the anoxic fish were given 1 day of reoxygenation at normal oxygen levels, a 

170 % increase in the number of apoptotic cells was detected. The elevated apoptosis after 

reoxygenation resembles the effect of reperfusion after cerebral ischemia in mammals, where 

reperfusion accelerates the rate of cell death.  

One possibility is that anoxia initiates apoptotic pathways in the brain without leading to 

actual cell death until oxygen is restored. Another possibility is that anoxia in itself does not 

induce apoptosis, but that the following reoxygenation causes increased apoptosis. 

Regardless, anoxia followed by reoxygenation does cause some damage in the form of 

increased levels of apoptosis in the crucian carp telencephalon. This points at an hitherto 

unrecognized aspect of anoxia tolerance in crucian carp: the need to possess effective 

mechanisms to repair a damaged brain after anoxia / reoxygenation events. 
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Abbreviations 
 

AMPA  - α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 

ATP  - adenosine triphosphate 

DAB  - 3, 3’-diaminobenzidine 

DNase I - deoxyribonuclease I 

DND  - delayed neuronal cell death 

dUTP  - deoxy-uridinetriphosphate 

GABA  - γ-Aminobutyric acid 

HRP  - horseradish peroxidase 

HSP  - heat shock protein 

HSP 70 - heat shock protein 70 

NMDA - N-methyl-D-aspartic acid 

PCD  - programmed cell death 

PB  - phosphate buffer 

PBS  - phosphate buffer saline 

ROS  - reactive oxygen species 

TdT  - terminal deoxynucleotidyl transferase 

TUNEL - TdT mediated dUTP nick-end labeling 

  

 

 

 

 

 

 
 

5 
 



Introduction 

All vertebrates need oxygen to produce ATP in order to survive. In aquatic 

environments oxygen is not always easily available due to its low solubility and low diffusion 

rate in water. Thus, obtaining enough oxygen to uphold sufficient ATP levels is a common 

challenge for aquatic vertebrates. At normal oxygen levels (normoxic conditions) aerobic 

metabolism yields 36 molecules of ATP per molecule of glucose consumed. With complete 

lack of oxygen (anoxic conditions), the citric acid cycle and oxidative phosphorylation stop, 

leaving glycolysis as the only route for ATP production, resulting in only 2 molecules of ATP 

per molecule of glucose. Thus, the brain of most anoxic vertebrates will suffer energy failure, 

which leads to loss of ion gradients and the ability to maintain membrane potentials 

(Johansson et al., 1995). This causes a series of catastrophic events, leading to cell death 

(necrosis) or cell suicide (programmed cell death, apoptosis) (Lutz and Nilsson, 2004). 

A few vertebrates have the ability to survive long periods of anoxia. These include the 

painted turtle (Chrysemys picta) (Ultsch and Jackson, 1982), the goldfish (Carassius auratus) 

(Shoubridge and Hochachka, 1980), and the crucian carp (Carassius carassius) (Johnston and 

Bernard, 1983, Holopainen et al., 1986, Blazka, 1958). This unique ability is required by the 

crucian carp to survive for prolonged anoxic periods in small ponds and lakes in the northern 

hemisphere. These lakes freeze over during the winter months and oxygen-transfer from the 

atmosphere is limited. This causes the rate of oxygen consumption by organisms living in the 

ponds to exceed the strongly suppressed rate of oxygen production from photosynthesis, and 

the environment often becomes completely anoxic during several months in the winter 

(Nilsson and Renshaw, 2004).   

In contrast to most vertebrates, the crucian carp maintains brain ATP levels in the 

absence of oxygen. Firstly, it can sustain relatively high rates of glycolytic ATP production 

during anoxia because it builds up exceptionally large glycogen stores during the summer 

(Hyvarinen et al., 1985). When winter approaches, the liver glycogen store may amount to as 

much as 30 % of the liver mass, which in turn can make up 15 % of the body mass, making it 

the largest glycogen store of any vertebrate studied (Nilsson, 1990). Also, both the heart 

(Vornanen, 1994) and the brain (Vornanen et al., 2009) have considerable glycogen stores. It 

has been suggested that the glycogen reserve is the only factor that limits anoxic survival in 

crucian carp (Nilsson and Renshaw, 2004, Nilsson, 1990). 
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To avoid acidosis and lactate self-poisoning, the crucian carp produces ethanol as its 

major anaerobic end-product (Johnston and Bernard, 1983). It does this by combined actions 

of the pyruvate dehydrogenase and alcohol dehydrogenase. The ethanol production seems to 

be exclusively taking place in red and white skeletal muscle (Nilsson, 1988), after which it is 

readily transported with the blood to the gills, through which it easily diffuses into the 

ambient water (Nilsson, 1988, Vornanen et al., 2009, Nilsson, 2001). To allow maintained 

neural activity during anoxia, the blood flow to the brain doubles within the first few minutes 

of anoxia and is then sustained throughout the anoxic period (Lutz and Nilsson, 2004). This 

elevation indicates an increased rate of glucose delivery and lactate removal during anoxia.  

The crucian carp cannot survive anoxia by utilizing the glycolytic strategy alone; it 

also employs a second strategy, metabolic depression, which involves reducing the rate of 

ATP consumption. As the crucian carp remains active during anoxia the degree of metabolic 

depression that can be attained is limited. Microcalorimetry on anoxic crucian carp brain 

slices (telencephalon), show a 30-40 % reduction in the metabolic rate (Johansson et al., 

1995). Also a study carried out on goldfish, a close relative to the crucian carp, showed a     

70 % depression of the whole body metabolic rate (measured in heat production) (Van 

Waversveld et al., 1989). Studies on crucian carp and goldfish have shown that some brain 

functions are drastically reduced. The auditory nerve is strongly suppressed (Suzue et al., 

1987), and light induced responses in the optic tectum as well as in the retina are suppressed 

during anoxia (Johansson et al., 1997). Moreover, spontaneous physical activity is reduced by 

about 50 % during anoxia (Nilsson and Lutz, 2004). One mechanism utilized by the crucian 

carp to suppress brain electrical activity is to increase the release of the inhibitory 

neurotransmitter GABA (Nilsson, 1990). Reducing brain functions during anoxia probably 

pose no threat to the crucian carp, because no predatory fish can survive the anoxic conditions 

in its habitat.  

It is well established that the brain is one of the most sensitive organs to energy 

restriction as the brain has the largest consumption of oxygen and glucose, and depends 

almost entirely on oxidative phosphorylation for production of ATP (Taoufik and Probert, 

2008). In mammalian species, anoxic conditions in the brain can be caused by cerebral 

ischemia (Zemke et al., 2004). During ischemia, the blood flow to the brain is reduced or 

completely blocked, which causes oxygen and glucose deficiency, resulting in energy failure 

(Zemke et al., 2004). Within the first few minutes of anoxia, the ATP depletion causes the 

Na+/K+-ATPase activity to slow down and eventually stop, leading to a net outflux of K+ into 
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the extracellular space. This rapidly leads to depolarization of the membrane, upon which Na+ 

and Ca2+ enter the neuron and cause massive release of excitatory neurotransmitters like 

glutamate (Lipton, 1999, Lutz and Nilsson, 2004). The anoxic death process is accelerated by 

initiation of a positive feedback loop, where released glutamate activates AMPA, NMDA and 

kainate receptors, which are glutamate activated cation channels causing a massive inflow of 

Ca2+ into the neuron. Intracellular Ca2+ initiates mechanisms resulting in anoxic/ischemic 

brain damage (Bickler and Buck, 1998, Zhang et al., 2007, Taoufik and Probert, 2008) 

including increased free radical formation, lipid peroxidation, membrane damage (Traystman 

et al., 1991, Hemmen and Zivin, 2007, Taoufik and Probert, 2008), and triggering of 

apoptotic pathways (Broughton et al., 2009). In addition, overactivation of ionotropic 

glutamate receptors promotes an increase in intracellular Na2+ and Cl-, along with passive 

influx of water. This water influx leads to cell swelling and formation of edema, which in turn 

increases the intracranial pressure, causing vascular compression and herniation, and 

ultimately death (Hemmen and Zivin, 2007, Nakka et al., 2008).   

Originally it was thought that ischemic cell death in the brain mainly involved 

necrosis, an uncontrolled form of cell death. Necrosis may be induced by serious physical and 

chemical insults, or by extreme physiological conditions like anoxia. The series of events that 

are involved in necrosis include compromised membrane integrity due to ATP depletion, 

disruption of homeostasis, swelling and eventually cell lysis, causing leakage of cell content 

into the extracellular space (Chowdhury et al., 2006). Necrosis often results in an 

inflammatory response (Lawen, 2003, Erickson, 1997). By contrast, apoptosis or programmed 

cell death (PCD) is morphologically characterized by chromatin condensation, cytoplasmic 

shrinkage and finally nuclear and cytoplasmic fragmentation into apoptotic bodies that are 

removed by macrophages or other phagocytic cells (Elmore, 2007, Negoescu et al., 1996, 

Zhang et al., 2004). A number of studies have shown that both the intrinsic and the extrinsic 

apoptotic pathways operate after cerebral ischemia (Broughton et al., 2009, Rosenbaum et al., 

2000, Martin-Villalba et al., 1999). Today it is generally accepted that lesions after cerebral 

ischemia can occur by both necrosis and apoptosis. Cell death may occur shortly after the 

initial insult, or after hours to several weeks later, a phenomenon referred to as delayed 

neuronal death (DND) (Chu et al., 2002, Holopainen, 2005). Both the duration and the 

severity of ischemia affects the lag time between insult and cell death (Rosenblum, 1997). It 

has been suggested that DND following ischemia involves cell death by apoptosis rather than 

necrosis (Love et al., 2000, Nitatori et al., 1995, Du et al., 1996). Also, an increase in neurons 

8 
 



undergoing DND occurs when the blood flow to the brain is restored after an ischemic insult 

(reperfusion), in anoxia-intolerant vertebrates (Li et al., 2007). A prominent example is the 

cells in the CA1 region in mammalian hippocampus. These are particularly sensitive to 

ischemia, and DND occurs days after the initial ischemic insult (Wang et al., 2004, 

Danielisova et al., 2009, Deshpande et al., 1992, Nikonenko et al., 2009).  

It has long been assumed that anoxia tolerant vertebrates like the crucian carp 

effectively counteracts any deleterious effects of anoxia and do not suffer cell death in the 

brain. Still, this is only an assumption that has not been experimentally assessed. As 

anoxic/ischemic conditions and reoxygenation/reperfusion causes brain damage through 

apoptosis in other vertebrates, it would therefore be interesting to investigate how apoptosis is 

affected by both of these conditions in the crucian carp. Apoptosis is the primary mechanism 

for eliminating injured cells in the brain of other teleosts (Zupanc and Zupanc, 2006, Zupanc, 

2009), and studies carried out on apoptosis in fish have indicated that the apoptotic pathways 

are functionally conserved in vertebrates (dos Santos et al., 2008, Krumschnabel and 

Podrabsky, 2009). Measuring the incidence of apoptosis in crucian carp under different 

oxygen regimes could give us insight into how an energy demanding process like apoptosis is 

regulated during an energy deficient period. It could also tell us whether there is any brain 

damage during and after anoxia in crucian carp, despite the crucian carp’s extreme ability to 

survive anoxic conditions. Consequently the aim of this study was to examine the effects of 

anoxia on apoptotic cell death in the brain of crucian carp exposed to anoxia or anoxia 

followed by reoxygenation, by quantifying apoptotic nuclei using the TUNEL method. 
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Materials and methods 

Experimental animals 

The experimental animals used were crucian carp (Carassius carassius) obtained from 

Tjernsrud pond in Oslo, Norway, with weights ranging between from 26.5 to 61.0 g (42.0 ± 

2.3 g, mean ± SEM). The animals were transported to the research facilities at the University 

of Oslo, and kept in a 750 liter holding tank. The holding tank and experimental tanks were 

supplied with aerated dechlorinated Oslo tap water at 9.3 ± 0.6 °C (mean ± SD), and 

subjected to a 12 h light/12 h dark cycle. The fish were fed daily with commercial carp food.  

Experimental set-up and design 

The experiments were conducted using two 15 liter cylindrical PVC containers with 

tight fitting lids. The containers were immersed in a 750 liter holding tank filled with tap 

water (Figure 1). All the experimental fish were acclimatized in the containers for 2 days (20 

fish in each container), during which the water in both containers was bubbled with air, and 

the water was changed once daily to remove waste. At the start of the anoxia exposure, the lid 

of one of the containers was sealed tightly, and the gas supply changed to N2 to remove 

oxygen from the water, thus making the experimental environment anoxic. This set-up has 

been shown to be completely anoxic (O2 level < 0.1 mg O2/l) in previous experiments 

(Nilsson, 1989). The normoxic control container was continuously bubbled with air. The fish 

were not fed during acclimatization or the experimental period.  
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Figure 1. An overview of the experimental set-up. Both the anoxic and normoxic groups were kept in 

PVC containers submerged in a holding tank, supplied with N2 and air respectively. 

Sampling and tissue preparation 

Three experimental groups were formed; normoxia 7 days (n=10), anoxia 7 days 

(n=10) and anoxia 7 days followed by 1 day of reoxygenation (n=10). After 7 days, 10 fish 

from each container were sampled (forming the normoxic and anoxic groups), and the 

remaining 10 fish from the anoxic container were transferred to the now empty normoxic 

container, where they were kept for an additional day in aerated water before sampling 

(forming the reoxygenation group).  

The fish were killed by decapitation, whereupon the brains were dissected out and 

fixed in 4 % paraformaldehyde in 0.1 M phosphate buffer (PB). After 24 h the brains were 

transferred to 20 % sucrose solution for another 24 h, and finally in 30 % sucrose solution for 

24 h. The brains were embedded in Tissue-Tek O.C.T- medium, and frozen in isopentane 

cooled to its freezing point (-160 °C) in liquid N2. The frozen brains were stored at -80 °C, 

until being sectioned at 25 µm thickness using a cryostat (Microm HM 560) and mounted on 

SuperFrostPlus (Thermo Scientific) slides. Slides were air dried at room temperature for 48 h 

and kept at -80 °C for storage. 
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Apoptosis detection using the TUNEL method 

The TUNEL method is based on visualization of endonuclease activity on tissue 

sections, using the specific binding of terminal deoxynucleotidyl transferase (TdT) to free 3‘-

OH ends in the DNA. This method has been extensively used to identify apoptotic cells 

(Gavrieli et al., 1992, Surh and Sprent, 1994, Huppertz et al., 1999). 

Unless otherwise stated, all procedures were performed at room temperature. The 

sections were thawed and rehydrated 5 x 5 min in phosphate buffered saline (PBS; 100 mM 

NaPO4 set to pH 7.4). They were post-fixed in 4 % paraformaldehyde for 15 min, and then 

washed 3 x 5 min in PBS. Epitope retrival was done by incubation for 30 min at 85 °C in 

sodium citrate (0.1 M, pH 6.0) containing 0.1 % Triton X-100 (Sigma). After incubation the 

sections were rinsed 3 x 5 min with PBS whereupon endogenous peroxidase activity was 

blocked with 3 % H2O2 (Sigma) for 10 min. Sections were washed 3 x 5 min in PBS before 

being incubated in TdT reaction buffer  (25 mM Tris-HCl, 200 mM sodium cacodylate, 0.25 

mg/ml bovine serum albumin, 1 mM cobalt chloride) for 10 min, followed by incubation with 

the TdT reaction mixture (1600 U/ml TdT and 3.6 µM biotin-16-dUTP, both Roche 

Diagnostic, in TdT reaction buffer) in a humidified chamber for 1 h at 37 °C. The enzyme 

reaction was stopped by washing for 10 min in a stop buffer (300 mM NaCl, 30 mM sodium 

citrate) followed by 3 x 5 min in PBS. Slides were incubated in secondary antibody 

(streptavidin-HRP, BD PharmingenTM) for 20 min, and rinsed 3 x 5 min with PBS. The 

peroxidase activity was visualized using DAB (3, 3’-diaminobenzidine 0.01 M, Applichem, 

0.01 %  H2O2 in PBS, 7 min), before washing 3 x 5 min with dH2O. The slides were air dried 

and coverslipped using Clarion TM Mounting Medium (Sigma). Positive controls were made 

by incubating sections with DNase I (20 U/ml, Invitrogen) for 10 min prior to the labeling 

procedure to induce DNA strand breaks. For negative controls, TdT was omitted from the 

reaction mixture.     

Quantification of TUNEL positive nuclei 

For reasons of time limitation, only 6 out of 10 fish were examined from each group. 

Since the TUNEL method has been suggested to be insufficient for a definitive determination 

of cell death type, additional morphological analysis with light microscopy was employed. 

For quantification of TUNEL positive nuclei, an Olympus BX50WI microscope with a 

ColorView camera (1288 x 966 pixels resolution), and Olympus Cell B software were used. 

Pictures were taken at 20 x magnification and merged together using Olympus CellB and 
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Photoshop CS3 software. Every fourth section (one 25 µm section per 100 µm) throughout 

the telencephalon was analyzed, and preoptic areas were excluded when they appeared in the 

same sections. Only nuclei with intact nuclear membrane, which is a characteristic 

morphology for apoptosis (Lawen, 2003), as well as positive TUNEL staining were counted. 

If only one of the two characteristics were present, the nuclei were not considered apoptotic. 

The staining intensity of the nuclei was also compared to the positive control, and nuclei with 

a lower intensity were excluded. The analyzed volume was found from the area of each 

section, as determined by using Photoshop CS3 software, and the section thickness (25 µm). 

The number of apoptotic cells per analyzed tissue volume was calculated by dividing total 

number of stained nuclei for all sections in a telencephalon with the total analyzed volume. 

Statistics 

Statistical analysis was performed using STATISTICA for Windows (StatSoft, Inc., 

Tulsa, Oklahoma). For data on analyzed volume, a one-way ANOVA was performed. Data on 

weight and apoptotic nuclei per analyzed volume did not show variance homogeneity 

(Levene’s test) and were analyzed using Kruskal-Wallis ANOVA in combination with 

multiple comparisons of mean ranks for all groups. Significance levels were set at p ≤ 0.05.

            

Results 

Weight 

There was no significant difference in body weight between the groups at the time of 

sampling (anoxic 42.8 ± 6.2 g, normoxic 39.7 ± 3.1 g, and reoxygenation 43.3 ± 2.2 g; mean 

± SD; Kruskal-Wallis ANOVA, p=0.75).  

 Cell death  

TUNEL staining was performed on brains from 18 individuals (n=6 in each group), 

and the staining resulted in distinctly labeled nuclei (Figure 2). Pretreatment with DNase I for 

formation of positive controls caused an intense staining of all nuclei in the section, and 

omitting TdT in the staining procedure as a negative control completely abolished all staining. 

There was no difference between the groups in analyzed volume (ANOVA; p=0.14). 

However, Kruskal-Wallis ANOVA revealed that there was a significant between-group 

difference in the number of stained cells per analyzed volume (p=0.002). Multiple 
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comparisons of ranks showed that there was no difference between the normoxic and anoxic 

fish (p=0.84), but the reoxygenation group had significantly more stained nuclei per analyzed 

volume than both the anoxic (p=0.05) and the normoxic groups (p=0.002) (Figure 3). Indeed, 

the number of TUNEL stained cells were 170 % higher in the reoxygenation group compared 

to the normoxic control. 

 

Figure 2. TUNEL positive nuclei in crucian carp telencephalon. The black arrows indicate the nuclei 

with both positive TUNEL staining and intact nuclear membrane. Scale bar 20µm. 

 

 

Figure 3. Density of TUNEL positive nuclei in the telencephalon of crucian carp exposed to 7 days of normoxia, 
7 days of anoxia, and 7 days of anoxia followed by 1 day of reoxygenation. Different letters indicate a 
statistically significant difference between the groups. See text for ANOVA statistics. Values are means ± SEM. 
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Discussion 
 

The present study show that the incidence of apoptosis in the crucian carp 

telencephalon is unchanged by 7 days of anoxia (compared to normoxic animals), but a 

subsequent day of reoxygenation after 7 days of anoxia leads to a significant increase in cell 

death.  

For detecting apoptotic cell death, TUNEL staining was used. This method 

specifically labels DNA breaks usually associated with apoptosis (Gavrieli et al., 1992). DNA 

fragmentation is considered to be one of the hallmarks of apoptosis (Hacker, 2000, Huang and 

Lu, 2001, Ucker, 1991), and is probably the most used marker for apoptosis. However, DNA 

fragmentation is not exclusively present in apoptotic nuclei. It is also found in late necrotic 

stages and the TUNEL reaction might give a positive reaction for both apoptosis and necrosis 

after excitotoxicity and ischemic injury (CharriautMarlangue and BenAri, 1995, Graslkraupp 

et al., 1995, Wolvekamp et al., 1998). We therefore assessed the staining intensity and 

morphological appearance of the TUNEL stained nuclei to exclude any false positives due to 

necrosis. Thus, believe that although there may be a few false positives stemming from 

necrosis (CharriautMarlangue and BenAri, 1995), the quantified cell death in this study 

mainly reflects apoptosis.  

Characteristic apoptotic processes, like DNA alterations and cytoskeletal proteolysis 

require energy (Kerr et al., 1972). It has been shown that the availability of ATP and 

mitochondrial integrity determine whether cells die by necrosis or apoptosis (Roy and 

Sapolsky, 1999, Brunelle and Chandel, 2002, McClintock et al., 2002). In anoxia-intolerant 

vertebrates, apoptotic cell death can take place as long as ATP remains available, but when 

cellular energy stores are empty, cell death occurs by necrosis (Pagnussat et al., 2007). In 

contrast, the crucian carp is not subject to this severe ATP depletion, and as a consequence, it 

should be able to remove cells through apoptosis. Indeed, this was apparent in the present 

study, where the incidence of apoptosis was maintained after 7 days in anoxia. Zupanc (1998) 

showed that the majority of injured cells after a lesion in the cerebellum of the brown ghost 

knifefish (Apteronotus leptorhynchus) were removed by apoptosis, and only a few cells died 

by necrosis. Apoptosis is also the main mechanism for cell death during proliferative activity 

in both the retina and cerebellum of adult fish (Soutschek and Zupanc, 1996, Mizuno and 

Ohtsuka, 2009).  
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The telencephalon was chosen for analysis in this study as the dorsomedial area of the 

teleost telencephalon is believed to be homologous to the mammalian hippocampus (Saito and 

Watanabe, 2006, Broglio et al., 2005, Broglio et al., 2010, Vargas et al., 2009). Hippocampal 

functions include accommodation of memories and spatial learning (Spencer and Bland, 

2007, Hodges et al., 1996). In mammals, the hippocampus has a particularly high rate of 

energy utilization, and thus also a high oxygen demand, explaining why it is often more 

severely damaged than other brain regions during anoxia (Gadian et al., 2000, Leblond and 

Krnjevic, 1989). Specifically the CA1 region contains cells that are particularly sensitive to 

ischemia, and it has been suggested that these cells die more easily by apoptosis after being 

subjected to ischemia than other brain cells (Kirino, 1982, Nitatori et al., 1995, Deshpande et 

al., 1992, Wang et al., 2004).  

Lack of oxygen inhibits the electron-transport chain and causes loss of inner 

mitochondrial membrane potential, resulting in activation of proapoptotic factors (Brunelle 

and Chandel, 2002). If the cell is able to resume energy production when oxygen levels are 

restored (reoxygenation), the cell will undergo apoptosis. If, however, the energy production 

cannot be resumed, the cell will die by necrosis (Saikumar et al., 1998). It is therefore thought 

that oxygen deprivation induces apoptotic cell death, and not necrosis, as long as oxygen 

levels return to normal within a given time period. In addition it has been shown that 

postischemic reperfusion leads to an overproduction of reactive oxygen species (ROS), which 

induce apoptosis in mammals (Szeto, 2008). The brain’s high oxygen consumption and low 

levels of antioxidants makes it particularly vulnerable to oxidative damage compared to other 

organs (Hemmen and Zivin, 2007). ROS is therefore to be regarded as a key factor involved 

in the induction of anoxic cell death.   

In the present study there was no change in the prevalence of apoptosis after 7 days of 

exposure to anoxia compared to the normoxic control group. During anoxia, the crucian carp 

needs to conserve energy to prolong the anoxic survival time. Cell death by apoptosis is an 

energy demanding process (Kerr et al., 1972), so to upregulate apoptosis during the anoxic 

period would be energetically unfavorable. However, our results do not show any down-

regulation of apoptosis either. A possible reason for this is that during anoxia, the crucian carp 

can produce enough ATP to uphold normal cellular ATP levels and during anoxic periods, 

several processes in the crucian carp brain is maintained at the normoxic levels. A normal rate 

of protein synthesis is, for instance, upheld in the crucian carp brain during anoxia (Smith 
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1996), and a wide range of genes involved in neurotransmission show stable expression 

during anoxia compared to normoxic conditions (Ellefsen et al., 2008, Ellefsen et al., 2009).  

After the first 24 h of reoxygenation following 7 days of anoxia there was an increase 

in the prevalence of apoptotic cell death compared to both anoxic and normoxic conditions. 

This result strikingly resembles the effect of an ischemic episode on the mammalian 

hippocampus, where reperfusion accelerates the rate of cell death (Li et al., 2007). The 

majority of cell death occurring during reperfusion after brief ischemia is believed to be 

caused by apoptosis and not necrosis (Pagnussat et al., 2007). Recently Stensløkken et al. 

(2010) demonstrated a change in the expression levels of heat shock proteins (HSP) during 

anoxia. The main role of HSPs during episodes of stress (e.g. anoxia) is to preserve protein 

function, and thus limit cellular damage (Nishi et al., 1993). HSP70, for instance, protects 

cells against both apoptotic and necrotic cell death (Giffard and Yenari, 2004). A 10 fold 

increase in the expression of HSP70 mRNA was shown as a response to anoxia in crucian 

carp at 13 °C, while expression was maintained at a high level before, during and after anoxia 

at 8 °C (Stensløkken et al., 2010). An increased level of HSP70 mRNA has also been 

observed during ischemia and reperfusion in mammalian hippocampus CA1 neurons (Nishi et 

al., 1993). This elevation of HSP70 declined in surviving neurons, but remained high in those 

that were destined to die (Truettner et al., 2009). It is thus possible that HSP70 functions to 

suppress apoptosis during anoxia in the crucian carp. The maintained high HSP70 mRNA 

expression seen during reoxygenation in anoxic crucian carp kept at 8 °C (Stensløkken et al., 

2010) could have a protective effect against apoptosis, but in our study apoptosis still 

increased during reoxygenation. One possible explanation for this could be an increase in 

ROS formation. ROS levels are known to increase within minutes of reperfusion in mammals, 

and these molecules can damage cellular components, including proteins and membrane lipids 

(Niizuma et al., 2010, Traystman et al., 1991). In a study done on goldfish exposed to anoxia 

at 20 °C, ROS damage (measured as lipid peroxidation) was significantly increased in the 

brain 14 h after reoxygenation (Lushchak et al., 2001). Though ROS formation can be 

expected to be higher at 20 °C than at the temperature of the current experiment (9 °C), ROS 

are still potential candidates for causing apoptosis in the crucian carp brain during 

reoxygenation. 

   In conclusion, this study demonstrates that there is no change in apoptosis in the 

crucian carp telencephalon after 7 days of anoxia, but an additional day of reoxygenation after 

anoxia leads to increased prevalence of apoptotic nuclei. This shows that the crucian carp is 

17 
 



able to maintain apoptosis at an unchanged level during anoxia, and that there is either some 

degree of delayed damage to the brain caused by the anoxic conditions, or damage caused by 

the restoration of oxygen, possibly induced by ROS. There are similarities to the situation in 

mammals, where the incidence of apoptosis is low during the anoxic period due to a lack of 

energy, while upon reperfusion there is a large increase in the apoptotic rate, which may be 

caused by damage attained during anoxia or from the oxygen induced production of ROS.  
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