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Abstract 

The olfactory organ in fishes is organized in parallel pathways; sub-populations of neurons 

respond to biologically different types of odorants, and there is a direct link between 

activation of the different neuronal pathways and the specific behaviors induced. The aim of 

my thesis has been to study how the crucian carp processes odors involved in sexual 

behaviors and in the fright reaction, a stereotypic avoidance behavior. Two types of odors 

have been applied. The first, female sex pheromones, are hormones released from the female 

during sexual maturation. The second, extracts of fish skin, are complex odors which contain 

alarm substances inducing the fright reaction, but also a multitude of other chemicals. 

To investigate how behaviors related to, or influenced by sex hormones, may be 

reflected in the olfactory system, I have studied how olfactory bulb neurons respond to female 

sex pheromones (Paper I), seasonal variations in the olfactory epithelium (Paper II) and 

whether responses to alarm odors vary in relation to reproductive status (Paper III).

To investigate how skin extracts from different species induce behavioral and nervous 

responses, I have studied the behavioral and neural responses to alarm odors from 

conspecifics and cross-order species (Paper IV) and how olfactory bulb neurons respond to 

complex odors (Paper V). 

The results show that the neurons of the olfactory bulb in males, but not in females, 

very precisely discriminate female sex pheromones, indicating importance for males of 

knowing the exact time of ovulation (Paper I). Olfactory sensory neurons believed to respond 

to these odors varied in number throughout the year, being abundant in the summer and 

almost absent during winter months (Paper II). Furthermore, the fright reaction is suppressed 

in females in the final stages of sexual maturation, which can be related to altered levels of 

sex hormones, indicating increased risk-taking during mating (Paper III). 

Neurons sensitive to alarm substances did not show the same clear cut discriminative 

properties as neurons sensitive to the sex pheromones, but did however distinguish better 

between odor cues from conspecific and heterospecific skin extracts, than between odor cues 

from two heterospecific skin extracts (Paper IV and V). This can be seen in relation to the 

general message of these stimuli; the presence of a predator, which does not necessitate an 

extremely accurate interpretation about the exact nature of the victim. Furthermore, extract of 

skin which is used as stimuli, is a complex mixture, containing food-related odor as well as 

pheromones, in addition to the alarm substances (Paper V). These odors may have 
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complimentary functions but their importance is so far unclear, they could play a role in 

acquired responses to heterospecific skin extracts. 

The present findings show interesting aspects of the properties of the fish olfactory 

system. Large variance in the discriminatory capacity was observed, which related to the 

function of the detected odor. Also, a seasonally dependent expression of one type of sensory 

neurons and the adaptation of some behavioral responses according to sexual maturation 

indicates a highly flexible and adaptable sensory system in this animal group.  
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Introduction 

In fishes, olfaction is central to reproduction and predator avoidance. Behaviors related to 

these essential life processes may be induced exclusively by activation of the olfactory 

system. The different types of odors involved carry very specific information about particular 

situations, which requires accurate detection mechanisms. The importance of an odor may 

also be context-dependent, and proper interpretation is a necessity. The olfactory system 

detects odorant and processes the sensory input, enabling each individual to make appropriate 

decisions, thereby increasing its own probability of survival and reproductive success.

The fish olfactory system 

The organization of the olfactory system in fishes is based on similar principles as in other 

vertebrates. Odorants are detected by sensory neurons at their apical ending, which is in 

physical contact with the external environment. The neurons are located in the olfactory 

epithelium and their axons make up the olfactory nerve, terminating in the olfactory bulb. 

Here, they transmit the sensory input to the secondary neurons in the olfactory bulb. The latter 

have axons which make up the olfactory tract, ending up in the telencephalon (comparable to 

the forebrain/cortex in mammals) and other higher brain centers.

Some fishes, the gadids (cod fishes), the sillurids (catfishes) and many of the cyprinids 

(carp fishes), have a unique anatomical appearance; the olfactory bulbs are located close to 

the olfactory epithelia, whereas the olfactory tracts are long and easy to recognize (Figure 1). 

Species with this characteristic have proven advantageous for studying how the olfactory 

system functions due to the easy access of the secondary neurons. 

The sensory neurons 

The sensory neurons are situated in the olfactory epithelium; paired structures in the nasal 

cavities located on the front of the head, separated from the mouth and the respiratory organs. 

In many fishes these organs are shaped to form rosettes, consisting of lamella grouped 

together to form a leaf-like structure. The gross morphological shape varies largely among 

species, although a general property is a large surface-to-volume ratio, a formation which 

provides space for a vast number of sensory neurons and increases the probability of odorant 

detection.
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Figure 1. Overview of the fish brain.       
A. Dorsal view of the head of a crucian 
carp showing the brain and the olfactory 
system. B. Schematic drawing of the 
olfactory tract as it enters the telencephalon 
(the brain), demonstrating the three distinct 
bundles. C. Scanning micrograph of the 
olfactory epithelium. From Hamdani and 
Døving (2007).  

The cell bodies of the sensory neurons in fishes are situated with varying distance 

from the apical surface. Three different morphological types have been identified; ciliated 

cells, microvillous cells and crypt cells (Ichikawa & Ueda, 1977; Thommesen, 1983; Hansen 

& Zeiske, 1998). The ciliated cells have cell bodies deep down in the epithelium with 

dendrites reaching the apical surface where they bear cilia. The microvillous cells have cell 

bodies located at an intermediate depth in the epithelium with dendrites bearing microvilli at 

the surface. The crypt cells have cell bodies located near the apical surface bearing both cilia 

and microvilli (Hansen & Zeiske, 1998; Morita & Finger, 1998; Hamdani et al., 2001a; 

Hamdani & Døving, 2002, 2006). Thus, the three types of sensory neurons have cell bodies 

arranged in different vertical layers of the olfactory epithelium with respect to morphology.  

Odorant receptors 

Odorants are detected by odorant receptors which are molecules located in the membrane of 

the cilia and the microvilli of the sensory neurons. They belong to a large family of 7-trans-

membrane G-protein coupled receptors (Buck & Axel, 1991; Ngai et al., 1993b) and are 

activated when an odor binds to the binding site.

The olfactory system is capable of detecting and discriminating between thousands of 

odorants, which is possible because the odorant receptors function in a combinatorial way. 

One receptor may be activated by a range of certain odorants, whereas one odorant may 

activate different receptors. Thus, each odorant activates a unique combination of receptors. A
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sensory neuron expresses only one (or few) receptors, meaning that each odorant activates a 

unique sub-set of neurons (Ngai et al., 1993a; Malnic et al., 1999).

The secondary neurons 

The secondary olfactory neurons are mitral cells, named from their characteristic shape in 

mammals, and are located in the olfactory bulb (Figure 2). This organ is the first relay center 

of the olfactory system, where the olfactory information is initially processed. Two sub-types 

of mitral cells have been classified in teleosts (Alonso et al., 1988; Fuller et al., 2006) with 

respect to differences in morphology and location, indicating that their physiological 

functions also are partly segregated. There are, in addition, minor morphological variations 

between different species (Alonso et al., 1989) 

Figure 2. Schematic illustration of the olfactory 
bulb in common carp. The incoming axons of 
sensory neurons make synaptic contacts with the 
mitral cells. n., nervus, olf., olfactorius; med.,
medialis, lat., lateralis; g. n. term., ganglion cell of 
the nervus terminalis; fil. olf., fila olfactoria; gran.,
granule., ant., anterior; mitr., mitral., tr., tractus; 
asc., ascendens. From Sheldon (1912).

The axons of the sensory neurons make synapses to the mitral cells with very high 

convergence, in an estimated ratio of approximately 1000:1 (Allison & Warwick, 1949; 

Gemne & Døving, 1969). These synapses are located in the glomeruli, structures which are 

considered to be the functional units of the olfactory bulb based on findings in rodents, where 

sensory neurons expressing the same receptor protein converge to one glomerulus. The 

arrangement of this high convergence enables the detection of odors in extremely low 

concentrations.

The axons of the mitral cells ascend along the olfactory tracts, which terminate in the 

telencephalon, and project further to higher centers of the central nervous system (Sheldon, 

1912). In crucian carp, where the olfactory tracts are long, these may be divided in three 

separate bundles; the lateral olfactory tract (LOT), the lateral bundle of the medial olfactory 

tract (lMOT) and the medial bundle of the medial olfactory tract (mMOT). A similar 
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characteristic is also observed in other fish species with the same anatomical structure of these 

neurons.

Other neurons in the fish olfactory bulb 

Several other types of neurons are observed in the olfactory bulb (Figure 3). One of them, the 

granule cells (Sheldon, 1912), make reciprocal synapses with the dendrite of mitral cells, 

suggesting a two-way reciprocal communication. Granule cells are also innervated by efferent 

fibers; the centrifugal fibers (Ichikawa, 1976), which originate from the telencephalon and the 

contra-lateral olfactory bulb (Sheldon, 1912; Oka, 1980; Bass, 1981; von Bartheld et al.,

1984). Ruffed cells, another cell type (Kosaka & Hama, 1979), exclusively found in fishes, 

also make synaptic contacts with the granule cells (Kosaka & Hama, 1982).  

Figure 3. The cellular organization of fish 
olfactory bulb neurons. The axons of the sensory 
olfactory neurones, constituting the olfactory nerve, 
make synapses with mitral cells. Mitral cells and 
ruffed cells, both make synapses with the granule 
cells, and have axons projecting to the olfactory 
tract, but the ruffed cells do not make synapses with 
the sensory neurons. ON, olfactory nerve; M, mitral 
cell; G, granule cell; R, ruffed cell; MS, mixed-
synapse cells; PN, perinest cells. Arrows indicate 
synapses. From Kosaka and Hama (1982). 

Granule cells and ruffed cells apparently do not make synaptic contact with axons of 

the sensory neurons. However, their organization suggests influence on the mitral cell activity 

and in the processing of the sensory input. Contrasting interactions between two distinct types 

of neural activity, believed to represent the activation of mitral cells and ruffed cells 

respectively, have previously been described (Zippel et al., 2000; Hamdani & Døving, 2003). 

Combination of histological and electrophysiological approaches to verify this has so far not 

been done. Other bulbar neurons with possible influence on mitral cell activity are short axon 

cells, perinest cells and mixed synapse cells (reviewed by Satou, 1990).
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The functional organization of the olfactory organ 

Morphology – function relationship 

Sensory neurons expressing the same type of odorant receptor, thereby responsive to the same 

odorant(s), are widely dispersed within the olfactory epithelium (Ressler et al., 1994b; Weth

et al., 1996; Hansen et al., 2004). In mammals, the spatial termination of sensory neurons 

expressing a given odorant receptor terminates at one or few glomeruli (Ressler et al., 1994a; 

Vassar et al., 1994). Consequently the olfactory bulb is chemotopically organized and there is 

a spatial segregation of the sensory input; each glomerulus is activated by specific odorants 

(Figure 4). 

Figure 4. Projections of sensory neurons to 
glomeruli in mouse olfactory bulb. Sensory 
neurons expressing the same odorant receptor gene, 
MOR23, visualized in transgenic mice. The gene is 
tagged by homologous recombination with an 
IRES-taulacZ cassette, which enables co-expression 
of the receptor with a histological marker. These 
sensory neurons are widely distributed in the 
olfactory epithelium, with axonal projection to one 
of their two target glomeruli in the olfactory bulb. 
From Vassalli and co-workers (2002). 

A similar organization is found in fishes. The morphology of a sensory neuron is also 

correlated to its spatial termination in the olfactory bulb (Thommesen, 1982, 1983; Morita & 

Finger, 1998). In crucian carp, the axons of the microvillous receptor cells project to the 

lateral part, axons of the ciliated receptor cells to the medial part and the axons of crypt cells 

project to the ventral part of the olfactory bulb (Hamdani et al., 2001a; Hamdani & Døving, 

2002, 2006). Furthermore, ciliated and microvillous cells have been demonstrated to express 

separate classes of odorant receptors (Hansen et al., 2005). This strongly suggests that there is 

a correlation between the morphology of a sensory neuron, the odorant receptor it expresses, 

and to which class of  odorants it responds (Hansen et al., 2003; Hamdani & Døving, 2007). 

Thus, the relationship between the odorant receptor expressed and the target in the bulb, 

probably obeys to rules similar to those observed in mammals. 

The functional properties of sensory cells are most likely related to morphology, 

although investigations show somewhat inconsistent results. Initially, microvillous and 

ciliated cells were suggested to respond to amino acids (food-related) and bile salts 

(pheromones), respectively (Thommesen, 1982, 1983). Later studies found correlations 
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between ciliated cells and amino acid sensitivity, as well as between microvillous cells and 

sex pheromone sensitivity (Zippel et al., 1993; Zippel et al., 1997b). Subsequently, it was 

shown that microvillous cells also respond to amino acids, while the ciliated respond both to 

amino acids and pheromones (Sato & Suzuki, 2001; Lipschitz & Michel, 2002; 

Schmachtenberg & Bacigalupo, 2004). Crypt cells were recently found to respond to amino 

acids, and not to bile salts, however sex pheromones was never tested as stimuli 

(Schmachtenberg, 2006). These discrepancies show that further investigations are required to 

determine the function of each cell type. 

Spatial specificity of secondary neurons 

Since the sensory neurons with identical odorant receptors project to the same glomeruli, each 

odor activates specific parts of the olfactory bulb. In fishes, many biologically relevant odors 

are known, an advantage which facilitates the study of the olfactory system. Applications of 

electrophysiological techniques have enabled the mapping of separate regions of the olfactory 

bulb, each responding by increased nervous activity to a distinct group of odors. Generally, 

odors related to feeding behavior, such as amino acids, nucleotides and polyamines activate 

neurons in the lateral part of the olfactory bulb. Odors with pheromone-like functions, such as 

bile salts and alarm substances, activate neurons in the medial part (Thommesen, 1978; 

Døving et al., 1980; Nikonov & Caprio, 2001; Hamdani & Døving, 2003).  

Animals may respond with different behaviors to odors with similar biological 

function (Valentincic et al., 2000; Poling et al., 2001). This distinction is reflected in the 

activation of secondary neurons, which also can discriminate them, for instance two 

structurally related amino acids (Nikonov & Caprio, 2004). However, this ability largely 

varies from neuron to neuron and depends on its glomerular connection. The organization of a 

secondary neuron, i.e. the number of glomeruli it contacts, has influence on its discriminatory 

power: a high number of innervated glomeruli lower the discrimination.  

The bundles of the olfactory tract originate from different parts of the olfactory bulb, 

and terminate in different parts of the telencephalon, and each of the bundles has been shown 

to have a distinct function. Investigations performed on Atlantic cod (Gadus morhua) showed 

that electrical stimulation of a separate bundle induced a specific behavior (Døving & Selset, 

1980). In the crucian carp, ablation of the LOT resulted in loss of feeding behavior, the lMOT 

in loss of sexual behavior, and the mMOT in loss of avoidance behavior (Hamdani et al.,

2000; Hamdani et al., 2001b; Weltzien et al., 2003). In goldfish Carassius auratus, ablation 
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of the lateral and medial bundles resulted in reductions in feeding and reproductive behavior, 

respectively (Stacey & Kyle, 1983). The results from the ablation experiments were in 

congruence with the electrical stimulations on cod. This means that each bundle in the 

olfactory tract, and thereby each region of the olfactory bulb, mediates a distinct behavioral 

pattern. Furthermore, the organization seems to be conserved in distantly related species.

An important conclusion to be drawn from these studies is that differential activation 

of the secondary neurons induces characteristic behaviors in fishes, demonstrated both upon 

electrical and chemical stimulation. The activation of the olfactory bulb neurons therefore 

correlates to the behavioral response to an odor; different sub-populations of secondary 

neurons are inducers of distinct behavioral patterns. Simultaneous activation of functionally 

different neurons is, on the other hand, poorly investigated. Previously, secondary neurons 

were proposed to be organized in a hierarchical manner with respect to which type of 

information they transmit to the higher brain centres (Døving, 1966; Døving & Hyvarinen, 

1969). This aspect still remains to be more deeply investigated. 

Higher brain centers 

Studies on how odor information is processed after being handled in the fish olfactory bulb 

are scarce. Extracellular recordings in the telencephalon (forebrain) of channel catfish 

(Ictalurus punctatus) upon stimulation with odorants (Nikonov et al., 2005; Nikonov & 

Caprio, 2006), demonstrated that the chemotopy of the olfactory bulb is partly conserved with 

respect to food-related odors and bile salts. This finding is in congruence with studies on 

mammals, where odors which activate spatially separated regions in the olfactory bulb, 

activate specific, but partly overlapping regions in the olfactory cortex (Zou et al., 2001). 

Although anatomical comparisons between the telencephalon in fishes and cortex in mammals 

are controversial due to divergence in early embryonic development, the mechanisms for the 

processing of the bulbar output seem to have some functional elements in common. 

The fright reaction 

Among social animals it is a common strategy to warn conspecifics of potential dangers. Such 

warnings can be transmitted by many different forms of communication, and will often lead to 

diverse anti-predator behavior. Fishes use odors to warn others about dangerous situations. In 

fish skin there is a substance or a set of substances eliciting stereotypic avoidance behavior, 
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the fright reaction, upon detection. This particular behavior was discovered by von Frisch 

(1938; 1941), who observed that European minnows (Phoxinus phoxinus) fled and 

disappeared when they were exposed to damaged fish skin, but only when their olfactory 

system was intact. 

The fright reaction is widespread among fishes, particularly within the ostariophysian 

super order (Schutz, 1956), although the response varies from species to species. Typical 

behavioral patterns are rapid darting movements (escape-like swimming), dashing against the 

substrate, seeking down to the bottom and resting in an immobile posture. Shoaling and 

aggregation in a corner of the aquarium are characteristic collective reactions. The behaviors 

make the fright reaction suitable as a experimental model in studying Pavlovian conditioning 

and learning (Kimbrell et al., 1970; Chivers & Smith, 1994; Ferrari et al., 2005; Ferrari & 

Chivers, 2006). 

The chemical identity of alarm substances is unknown in spite of extensive 

investigations, although recent studies indicate nitrogen-oxide to be a functional group on 

alarm molecules in ostariophysean species (Brown et al., 2000). Alarm substances are 

believed to be stored in specialized epidermal cells, the club cells (Pfeiffer, 1963). These are 

non-secretory, which means that mechanical damage of the skin is necessary for the alarm 

substance to leak out and be detectable to other individuals. In both laboratory and field 

experiments, extract of fish skin is used to induce the reaction.  

Neural pathways 

The crucian carp has been applied as a model organism to identify the olfactory pathway 

involved in the fright reaction. Ablation of one specific bundle of the olfactory tract, the 

mMOT, results in loss of the fright reaction upon exposure to skin extract, the same bundle 

which in cod mediates defensive behavior when electrically stimulated (Døving & Selset, 

1980). The fright reaction remains intact when the mMOT is left undamaged while the other 

parts of the olfactory tract, lMOT or LOT, are ablated (Hamdani et al., 2000).

The mMOT gathers axons of secondary neurons with their cell body located in the 

medial part of the olfactory bulb. The posterior region is only activated by skin extracts, and 

thus believed to be sensitive to alarm substances (Hamdani & Døving, 2003). Furthermore, 

the sensory neurons projecting to this region are ciliated cells (Hamdani & Døving, 2002), 

which indicates that odorant receptors sensitive to alarm substances are expressed in this 

morphological type of neuron.
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Species specificity 

Fishes do not only react to skin extracts from conspecifics, but from other species as well 

(Schutz, 1956; Pfeiffer, 1963; Smith, 1982; Mathis & Smith, 1993; Mirza & Chivers, 2001), 

although extract of skin from conspecifics is usually more efficient than skin extracts from 

other species (Schutz, 1956; Kasumyan & Ponomarev, 1986; Døving et al., 2005). The ability 

to detect heterospecific alarm substances may be advantageous to sympatric species with 

common predators.

The species specificity in the fright reaction indicates that there are several different 

substances eliciting the reaction and/or that the chemical structures varies from species to 

species. It also means that there are different types of odorant receptors involved. The 

behavioral responses to skin extract exposure should be reflected in the activation of 

secondary neurons.

The skin extract as odor stimuli 

Physiological studies applying complex odor stimuli are scarce. To apply crude skin extract in 

investigations on the properties of the olfactory system is a realistic approach, mimicking 

what happens in nature when a fish detects odors from the injured individual. The skin 

contains a multitude of substances, including amino acids and steroids (Hay et al., 1976; 

Saglio & Fauconneau, 1985; Ali et al., 1987). These usually initiate behaviors not related to 

avoidance when introduced alone, but could have other functions when detected in concert 

with alarm substances. 

Hormones as pheromones – inducers of sexual behaviors 

Plasma levels of sex hormones vary throughout the reproductive season. In fishes, some of 

these have functions as pheromones as well, first proposed as a theory suggesting that 

hormones could be released and/or leak out to the surroundings, thereby informing other 

individuals about the reproductive status of the sender (Døving, 1976). It is now well 

established that gonadal steroids and prostaglandins function as sex pheromones (Dulka et al.,

1987; Sorensen et al., 1988; Stacey et al., 1989), and have influence on sexual behavior upon 

olfactory detection. 

Hormones implicated in late stages of sexual maturation in goldfish, a close relative to 

the crucian carp, are particularly well studied. Females release hormones which can be 
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distinguished as two sets of pheromones related to reproduction; one pre-ovulatory and one 

post-ovulatory. The pheromones provide the male with important information about the 

ovulatory phase of the female. Three of the preovulatory pheromones induce distinctive 

courtship behavior in males upon olfactory detection (Poling et al., 2001). One induces a low 

level of long-lasting chasing and nudging behavioral patterns, another induces more intense 

chasing and nudging lasting only about five minutes, and a third elicits intense aggressive 

behavior among males. The release of the pre-ovulatory steroids declines at ovulation, 

replaced by release of prostaglandins, which affect male spawning behavior (Kobayashi et al.,

2002; Stacey et al., 2003). In accordance, male crucian carp show short followings and 

inspections of the anal papillae of  PGF2 -injected females (Weltzien et al., 2003). The 

different behavioral responses upon detection of female sex pheromones, requires an olfactory 

system in males finely tuned to respond specifically to each odor.  

Other types of chemical substances work as pheromones as well. Bile salts have 

previously been proposed to be involved both in migration and reproduction (Døving et al.,

1980; Li et al., 1995), as shown in sea lamprey (Petromyzon marinus), which are anadromous. 

Male individuals arriving at spawning areas send out these chemical cues to attract the 

females, guiding them upstream (Li et al., 2003). 

Sensitivity towards sex pheromones 

Males and females show different responsiveness towards sex pheromones released by 

females. For instance in goldfish (Sorensen & Goetz, 1993), red fin shark (Epalzeorhynchus

frenatus) and tinfoil barb (Barbonymus schwanenfeldii) (Cardwell et al., 1995), males are 

more sensitive than conspecific females to prostaglandins. The same studies showed that both 

genders exhibit similar electro-olfactogram (EOG) responses to steroids, whereas only males 

have been reported to respond behaviorally to these odors. However, androgen-treatment of 

female round goby (Neogobius melanostomus) induces male-typical behavioral 

distinction/responses to steroids (Murphy & Stacey, 2002) which normally are absent. The 

behavioral responsiveness towards these pheromones therefore seems to be in correlation with 

plasma levels of male sex hormones.  

Female sensitivity towards odors from males is poorly investigated, but was recently 

studied in three-spine sticklebacks (Gasterosteus aculeatus) and brook sticklebacks (Culaea

inconstans) (McLennan, 2003). The behavioral response to olfactory cues from males varied 

in correlation to the ovulatory phase of the female (McLennan, 2005); ovulating females 
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showed increased responsiveness to odors from reproductively active males. The 

physiological mechanisms involved in increased sensitivity are unknown, but probably 

involve hormonal effects on the brain and/or the olfactory system.  

Effect of sex hormones on non-reproductive physiology and behavior 

During reproductive periods, alterations of plasma levels of sex hormones have impact on the 

behavioral patterns related to courtship. These variations may also affect behaviors not related 

to reproduction. Studies on mammals show that both males and females show less fear during 

mating season, which can be related to altered levels of androgens and/or estrous hormones 

(Boissy & Bouissou, 1994; Aikey et al., 2002; Koss et al., 2004; Lunga & Herbert, 2004). 

Increased risk-taking, such as ignoring potential predators, may be considered a trade-off 

where the balance between survival and reproduction is optimized.  

Effect of sex hormones on non-reproductive behavior in fishes is poorly investigated; 

however, androgens seem to have direct impact on components related to the fright reaction. 

The epidermal cells (club cells) containing the alarm substances (Pfeiffer, 1963) have in 

several species been reported to be lost or be decreased in sexually mature males and to 

decrease in some females during spawning season (Smith, 1976). Histological studies indicate 

that testosterone reduces the amount of club cells (Smith, 1973) and thereby loss of alarm 

substances, meaning that the skin no longer induces fright reaction upon olfactory detection. 

Apparently, this loss takes place in species displaying aggressive behaviors during mating 

season, such as abrasive contact and fighting that could easily lead to damage of skin. 

Therefore, the loss of alarm substance prevents sending false information about potential 

predators, which could lead to interruption of spawning behavior.
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Aim of thesis 

The aim of my thesis has been to study how the crucian carp handles odors that are involved 

in two essential life processes; reproduction and predator avoidance. I have focused on two 

main approaches: 

I

Plasma levels of sex hormones vary throughout the reproductive season, and have effect on 

maturation of gonads and sexual behavior. In fishes, these substances also function as 

pheromones, informing about the reproductive state of the sender. This has been particularly 

well studied in goldfish (a close relative to the crucian carp), where the female releases 

several pheromones, with each inducing distinct behaviors in males upon olfactory detection. 

The sensitivity towards sex pheromones released from individuals of the opposite sex has 

been suggested to vary in relation to the receiver’s reproductive state or sex hormone levels. 

Although poorly investigated in fishes, sexual maturation may in addition have effect on 

behaviors not related to reproduction, as shown in many mammals. To investigate how 

behaviors related to, or influenced by sex hormones, may be reflected in the olfactory system, 

I have studied: 

1) how olfactory bulb neurons respond to and discriminate between female sex pheromones, 

comparing males and females (Paper I) 

2) seasonal variations in the olfactory epithelium by looking at the number of crypt cells, 

sensory neurons believed to respond to sex pheromones (Paper II) 

3) whether behavioral responses to alarm odors vary in relation to reproductive status such as 

maturation of gonads and altered plasma levels of gonadal steroids (Paper III) 

II

The fright reaction, avoidance behavior induced by olfactory detection of injured 

conspecifics, is widespread among teleosts. This response is elicted by alarm substances in the 

skin, and extracts made of skin are frequently applied to induce the behavior. Many fishes 

also respond to skin extracts from other species, but with varying intensity. This could be 

related to similar, but non-identical, chemical structures of alarm substances and different 

types of odorant receptors involved. The skin extracts contain in addition several odors 

normally involved in behaviors not related to the fright reaction. The species specificity of the 
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behavioral response to such a complex mixture of odors indicates precise coding of the 

olfactory input. This should be reflected in the nervous activity in the olfactory bulb, since the 

activation of the secondary neurons induces behaviors. To investigate how skin extracts from 

different species induce behavioral and nervous responses, I have studied: 

4) the behavioral responses to skin extracts from conspecifics and cross-order species, and the 

correlation with activation of olfactory bulb neurons sensitive to alarm substances (Paper IV) 

5) how olfactory bulb neurons respond to the different classes of odors in skin extract from 

conspecifics and other carp fishes (Paper V) 
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Methods

Experimental animals 

Crucian carp (6-45 g body weight) were caught by traps in Tjernsrud and Langmyr, two small 

lakes on the outskirts of the city of Oslo, Norway, and transported to the aquaria facilities at 

the Department of Molecular Biosciences, University of Oslo. The fish were kept in 1000 L

aquaria supplied with through-flowing freshwater, and maintained under a photoperiod of 

light:dark (LD) 12:12 and a temperature of 10 oC.  The fish were fed three times a week with 

commercial pelleted feed (Modulfôr, Ewos, Norway). All experimental procedures were made 

in accordance with national legislation and institutional guidelines at the University of Oslo.

Single unit recordings of odor-induced activity in the olfactory bulb  

The behavioral responses to odors are related to properties of the olfactory system, and should 

be reflected in nervous activity. Single unit recordings permit to investigate the activation of 

olfactory bulb neurons upon stimulation of the sensory neurons with odors, and odor-

selectivity and discriminatory power can be determined. For the investigations in this thesis, 

the recordings were applied to compare the activation induced by different stimuli, i.e. how 

many units were activated by stimulus A compared to stimulus B, and how many units could 

distinguish between the two. 

The stimulus was delivered through a polyethylene tube placed into the right anterior 

naris. There was a continuous flow of artificial pond water, which could be replaced by the 

odor solutions using miniature valves connected to the tube. Recordings were made from 

single units, referring to the activity of one or few neurons, in the olfactory bulb using 

microelectrodes made from tungsten wire (125 μm, impedance 1-2 M , 1 kHz), prepared as 

described by Hubel (1957). The microelectrode position was adjusted by an electrical 

micromanipulator (SD Instruments MC 1000, CA, USA), and the signals led to a differential 

amplifier (DP 301, Warner Instrumental, Corp., CT, USA). The reference electrode was 

positioned on the border of the brain cavity. The bandwidth was adjusted to 0.3-3 kHz, and a 

notch filter of 50 Hz was activated. Signals from the amplifier were displayed on an 

oscilloscope (Tektronix 565; Portland, OR, USA). The nervous activity was digitalized with 

an A/D converter (μ1401; CED Cambridge, UK), stored and later analyzed by using a 

software program (Spike 2, version 4.04, CED Cambridge, UK). 
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Single unit activity represents the activation of a single neuron or few neurons with 

identical activity pattern. The visual appearance on the computer of the amplitude and shape 

of the action potentials vary with respect to the position of the electrode. The Spike program 

allowed sorting them out based on these parameters, thereby distinguishing between different 

units at the same electrode position.  

The units in the olfactory bulb can be divided into two categories, type I and type II 

units respectively (Hamdani & Døving, 2003). In brief, type I units are believed to correspond 

to the activity of mitral cells, and respond by excitation; a burst of impulses, concomitant to 

stimulus arriving at the olfactory epithelium. Only type I units responding to at least one of 

the stimuli are included in the analysis, and response to a skin extract was categorized as 

response judged by the appearance of a burst of impulses, or no response. 

Neurotracing

Neurotracing can be applied to visualize cells in the olfactory epithelium, and the different 

morphological types of sensory neurons can be distinguished and quantified.

Transcardial perfusions were performed with 4 % buffered paraformaldehyde. The fish 

were decapitated and the heads were placed in fixative (paraformaldehyde). After two days, 

the olfactory organ was dissected out and small crystals of DiI (1,1-dilinoleyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate, Molecular Probes, Eugene, OR, USA) were 

inserted by a sharp needle into the olfactory bulb. The preparations were placed in buffered 

paraformaldehyde and kept in dark at room temperature for five weeks. 50 μm sections were 

made on a Vibratome. Sections obtained were inspected with fluorescence (550 nm 

excitation, 565 nm emission) in a fluorescent microscope (Olympus BX50WI) and 

photographed by an Olympus digital camera (DP50). Some preparations were also examined 

in a confocal microscope (Olympus FluoView 1000, BX61W1). 

Behavioral studies 

The components of the behavioral response to conspecific skin extracts are well known in 

crucian carps. The fright reaction in this species is therefore a suitable model investigating 

influence of sexual maturation on non-reproductive behavior. Also, the response to skin 

extracts from other species can be applied to investigate the species specificity of this 

behavior, comparing it to nervous activity in the olfactory bulb.
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Fish were transferred from the holding tank to observation aquaria (25 L) where they 

were kept in isolation. The experiments were performed the day after insertion, to allow the 

fish to acclimate to the new environment. Black curtains covering the sides of the aquarium 

minimized the risk of visual disturbance from the experimenter, and the fish were videotaped 

through a small opening in the curtain. The fish were exposed to skin extract (2 mg skin/L), 

injected into the water through a polyethylene tube. 

Measurement of sex steroid hormones 

The major sex steroid hormones in mature male and female teleost fish are 11-

ketotestosterone (11-KT) and testosterone (T), and T and 17 -estradiol (E2) respectively 

(Borg, 1994). The plasma levels of 11-KT, T and E2 were measured by specific 

radioimmunoassay (RIA) according to Pall et al. (2002). In brief, individual plasma samples 

(15-50 μL) were diluted with 300 L in RIA buffer, heated at 80 C for 60 min. The samples 

were centrifuged at 13000 rpm for 15 min, after which the supernatant was extracted and 

stored at 4 °C until being assayed. To incubation vials was added 50 L aliquots of the 

sample together with 50 L RIA buffer, 50 μL of the radiolabelled steroid (3H-T and 3H-E2

was purchased from Amersham International, and 3H 11-KT was a gift from Dr. A.P. Scott, 

CEFAS, UK) (30-35,000 dpm/50 μL) and 200 L of steroid antiserum (a gift from Dr. Helge 

Tveiten, University of Tromsø). All samples were run in duplicate. The vials were vortexed 

and incubated overnight at 4 C. Free, unbound steroid were separated from bound steroids 

with dextran charcoal suspension (Activated charcoal and Dextran T-70). Following 5 min 

centrifugation at 3900 rpm (GPR Centrifuge, Beckman), the supernatant was poured into 

scintillation vials containing 4 mL scintillation fluid (OptiPhase Hi Safe II, LKB Wallac) and 

run for 5 min in the counter (1214 Rackbeta liquid scintillation counter, LKB Wallac). The 

detection limit for the assay was c. 2 ng/mL, and the intra- and interassay coefficient of 

variance was 5.4 and 7.0 % respectively. 
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Synopsis of results 

Paper I 

Gender distinction in neural discrimination of sex pheromones in the olfactory bulb of 

crucian carp, Carassius carassius (2006) 

Authors: Stine Lastein, El Hassan Hamdani and Kjell B. Døving 

Chemical senses 31(1) p.69-77

The olfactory bulb shows a clear chemotopic organization with spatially distinct regions each 

responding specifically to odors with similar biological function. We demonstrate a new 

feature of the bulbar chemotopy in fishes showing that neurons specifically sensitive to sex 

pheromones released by the female are located in a central part of the ventral olfactory bulb in 

crucian carp. The majority of the units recorded from males responded exclusively to one of 

the four sex pheromones, and thus showed a very selective tuning. In females, only one unit 

showed such a specific activation. These findings reflect remarkable differences between 

males and females in the discriminatory power of the olfactory neurons towards these sex 

pheromones.

Paper II

Seasonal variation in olfactory sensory neurons  Fish sensitivity to sex pheromones 

explained? (2008) 

Authors: El Hassan Hamdani, Stine Lastein, Finn Gregersen and Kjell B. Døving

Chemical senses 33 p.119-123

Crucian carps were caged in an outdoor pond exposed to the natural environment. Fishes were 

sampled every month and the olfactory organ was stained with the neurotracer DiI, permitting 

visualization of the sensory cells. The number of crypt cells in the olfactory epithelium was 

drastically reduced during the period from August to December from several hundred to less 

than 10 per olfactory rosette. When the number of crypt cells increased in March many were 

found close to the basal lamina of the sensory epithelium, indicating that they were not 

exposed to the environment. These findings demonstrate a variation in appearance of the 

olfactory sensory neurons in vertebrates that has not been observed before.
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Paper III

Risk it all: Female crucian carp (Carassius carassius) lose predator avoidance when 

getting ready to mate 

Authors: Stine Lastein, Erik Höglund, Ian Mayer, Øyvind Øverli and Kjell B. Døving 

In June, crucian carps were exposed to conspecific skin extract, followed by behavioral 

analysis and determination of gonadal maturation. The majority of individuals not responding 

to alarm substances with a fright reaction were sexually mature. In females, mean plasma 

concentrations of 17 -estradiol and testosterone, gonadal steroids known to decrease during 

the later stages of sexual maturation, were lower in the individuals not responding with a 

fright reaction compared to those responding. In males, there were no differences between 

responsive and non-responsive individuals in mean plasma levels of androgens involved in 

spermatogenesis and male sexual behavior, testosterone and 11-ketotestosterone. As the fright 

reaction in crucian carp consists of behavior incompatible with spawning behavior, we 

hypothesize that this short-term suppression of the fright response has evolved so that 

spawning can occur uninterrupted. 

Paper IV

Exposure of crucian carp (Carassius carassius) to skin extracts from conspecifics and 

cross-order species: Correlation between behavioral and neurophysological responses  

Authors: Stine Lastein, Ole B. Stabell, Helene K. Larsen and Kjell B. Døving 

We exposed crucian carp to skin extract from conspecifics and three cross-order species of 

fish (brown trout, perch, and pike), followed by behavioral analysis (in February) as well as 

single unit recordings from olfactory bulb neurons. Skin extract from cross-order species of 

fish induced behavioral fright reactions, but less frequent than conspecific skin extract. The 

difference in behavioral responses obtained with skin extracts correlates with a variation in 

the activation of olfactory bulb neurons located in the region involved in the fright reaction. In 

addition, we found several neurons responding to heterospecific, but not to conspecific skin 

extract. This indicates that crucian carp are able to detect and distinguish between alarm 

substances with different chemical structures, and recognize these olfactory cues as potential 

danger.
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Paper V

Deciphering complex odors in the fish olfactory bulb 

Authors: Stine Lastein, El Hassan Hamdani and Kjell B. Døving 

Fish skin contains odors that induce the fright reaction. Additionally, other odors related to 

feeding and sexual behaviors are present in the fish skin. Responses of olfactory bulb neurons 

to different types of odors in skin extracts from conspecifics and three other species from the 

carp family (common carp, tench and bream), were compared. Recordings from single units 

were made in three functionally distinct regions of the olfactory bulb; the alarm region, the 

pheromone region and the food-related region, where the skin extracts activated units in all 

regions. The majority of units responding only to one of the skin extracts were sensitive to 

conspecific skin extract. Furthermore, the discrimination between conspecific skin extract 

versus skin extracts from other species was in general better than between skin extracts from 

two heterospecifics. The results demonstrate that pheromones and food related odors from the 

skin are detected in addition to the alarm substances, possibly functioning as complementary 

odors. The diluted conspecific skin extract was well distinguished from the other species in all 

the three regions of the bulb. This demonstrates that pheromones and food related odors from 

the skin are detected in addition to the alarm substances, possibly functioning as 

complementary odors. The identification of injured fishes may therefore be based on different 

functional groups of odors. 
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Discussion

Distinction between functionally related odorants 

Chemical communication between individuals demands great accuracy in the process of 

interpreting messages. Distinguishing one important odor from another is often advantageous; 

individuals with this property will be favored from an evolutionary point of view. Male fishes 

with a high discriminatory power between sex pheromones released by females (Paper I) have 

probably had higher reproductive success than males lacking this quality. Knowing exactly 

when the females release eggs in the water enables appropriate timing of their own 

reproductive behavior. The benefit of a higher chance of fertilizing eggs has exceeded the cost 

of developing and maintaining this discriminatory capacity in the olfactory system. The 

females on the other hand, which do not discriminate as well between female pheromones 

(Paper I), have had no advantage of developing such a characteristic. Their ability to detect 

pheromones from other females have been suggested to be related to synchronization of 

reproduction, assumingly reducing the predation risk (Lima & Dill, 1990). The findings 

regarding sex pheromone discrimination can be seen in context with previous studies on the 

goldfish pheromone system, where the reproductive status of the female has influence both on 

the maturation of male gonads and male behavior related to courtship (Poling et al., 2001; 

Kobayashi et al., 2002; Stacey, 2003).  

A good discriminatory capacity signifies importance of a precise processing of the 

messages. However, not all important messages are subject to extreme distinction. The same 

level of precision was not observed in crucian carp when exposing the fish to skin extracts 

from different species (Paper IV and V). The unique neurons encountered (responding to only 

one of the skin extracts tested) could play a key role in recognizing conspecifics from other 

sympatric species. Nevertheless, the majority of neurons responded to more than one skin 

extract. The alarm substances, although probably with different chemical structures, carry the 

same message; potential danger. The phylogenetic relationship between donor and receiver is 

of little significance, as long as the threat is relevant. Less discriminatory receptor neurons 

may in fact be an advantage; increased survival. More broadly tuned odorant receptors means 

that the alarm neurons will be activated by several types of alarm substances, regardless of the 

species. Thus, excellent discrimination is not necessarily favorable.
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Deciphering complex odors  

The use of crude skin extract as stimuli in single unit recordings probably mimics the actual 

events taking place in nature. Here, the fish is exposed to a composite mixture of odors, 

resulting in activation of different parts of the olfactory bulb. The response in regions 

involved in reproduction and feeding is noteworthy (Paper V), demonstrating detection of 

compounds similar to the steroids and amino acids known to be present in the fish skin (Hay

et al., 1976; Saglio & Fauconneau, 1985; Ali et al., 1987). The widespread activation of 

bulbar neurons upon skin extract exposure shows that these odors are present in significant 

amounts and thus detected simultaneously and in parallel with the alarm substances.  

What does it mean that several regions of the olfactory bulb are activated 

simultaneously? In this concert of olfactory cues, the fish is still able to sort out the essential 

message. The characteristic organization of the olfactory system might enable the fish to take 

advantage of the various components of the skin. Odors normally related to non-predator 

situations may function as complementary odors to the alarm substances, for instance 

informing about the diet of the donor, as previously proposed (Saglio & Blanc, 1989). The 

functional significance of this is possibly most evident when detecting skin from other 

species. Behavioral responses to predators may be acquired or learned by previous 

experiences, enabling the association of odors from another prey fish with a threat (Brown & 

Smith, 1998; Chivers et al., 2002; Darwish et al., 2005; Ferrari et al., 2005).

Physiological studies on vertebrates using natural complex stimuli are scarce. In recent 

studies on rodents, Lin and co-workers applied natural blends of odors, such as urine and food 

to investigate neural responses in the main olfactory bulb (2005; 2006). Both extracellular 

recordings and imaging-techniques were applied in combination with gas chromatography 

(GC), enabling the separation and identification of the single odors in the stimuli and their 

respective activation pattern. The authors conclude that the bulbar response to a complex 

mixture in general reflects the sum of responses to each of the components. Whether this also 

is representative for the detection of the skin extracts in the fish olfactory bulb, remains to be 

shown. The resemblance of the organization of the olfactory system among vertebrates 

suggests that the mechanisms of decoding and processing complex odors are similar, even 

though the fish olfactory system differs from terrestrial animals.  

In attempt to identify the alarm substances of fish, a similar approach to studies 

performed with rodents have been conducted with skin extract, recording from the alarm 

region of the olfactory bulb in crucian carp (Brondz et al., 2004). The nature of the stimuli 

required high-performance liquid chromatography (HPLC), which is more complicated and 
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long lasting compared to than the GC, but demonstrated the presence of unknown substances 

with very high ability to activate neurons; potentially the alarm substances. In recent 

investigations, we further approached this by applying HPLC to fraction the different 

components of highly concentrated skin extracts, and behavioral tests indicate that there may 

be different chemical compounds needed to induce a fully expressed fright reaction 

(Antonietta Labra and Tobias Beckström; personal communication). To find the chemical 

identity of alarm substances would enable examination of how this important predation cue is 

detected and interpreted, and thereby also help understanding the function of other odors 

involved the fright reaction.

Finally, studies on the auditory and visual cortex show that complex and/or natural 

stimuli do not necessarily reflect the sum of responses to simple stimuli (reviewed by Kayser

et al., 2004; Nelken, 2004). This demonstrates that interpretation of composite sensory input 

takes place in higher brain centers. The same feature might be valid for olfactory cortex or 

equivalent brain centers in fishes, pointing toward the high relevance of using natural stimuli 

in physiological and behavioral studies. 

The activation of olfactory bulb neurons 

Many biologically relevant odors are known in fishes, and have enabled mapping the 

chemotopic organization of the olfactory bulb (Figure 5). Extracellular recordings from the 

region responding to sex pheromones was a contribution to the series of investigations on the 

unitary responses upon stimulation of the olfactory epithelium (Nikonov & Caprio, 2001; 

Hamdani & Døving, 2003; Nikonov & Caprio, 2004). The neurons showed unique properties 

not previously observed. The outstanding distinction between female sex pheromones in the 

male neurons is exceptional compared to the discriminatory capacity of other known odorants. 

Even though the glomerular organization is morphologically less defined (Oka, 1983; Riddle 

& Oakley, 1992) than in higher vertebrates, this demonstrates that the fish olfactory bulb 

neurons are capable of passing on information to the brain in an accurate way.

The known chemotopy of the fish olfactory bulb is a valuable tool in investigations of 

secondary neuron activity. This allows comparing the activation induced by crude skin extract 

and activation induced by pure and known odorants (Paper V). No obvious differences were 

observed between the activity patterns induced by the two types of stimuli, thus, it is possible 

to roughly predict the amount of the different food-related and pheromone-related odors in the 

skin.
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Figure 5. Functional distinct regions in the olfactory bulb of crucian carp. Dorsal view of the 
olfactory bulb in crucian carp, showing regions responding specifically to blue, food-related odors; red, 
sex pheromones; green, bile salts; and light blue, alarm substances. LOT, lateral olfactory tract; lMOT, 
lateral bundle of the medial olfactory tract; mMOT, medial bundle of the medial olfactory tract.

Extracellular recordings reveal two distinct types of neural activity in the olfactory 

bulb. These have previously been described in detail as type I and type II units respectively 

(Zippel et al., 2000; Hamdani & Døving, 2003). Type I units are believed to be activity of the 

mitral cells, the secondary cells. The type II units are believed to be activity of the ruffed 

cells, and work in contrasting interactions with type I units. Recorded simultaneously from 

one electrode position, type I units are active when type II units are silent, and vice versa. It 

was previously proposed that type II units on type I activity could be significant, possibly 

modulating responses to odorants. For instance, they may interfere with the duration of the 

induced activity in type I units, which ranged between 5 and 70 s upon stimulation, which 

always lasted 10 s (Paper I, IV and V). Modifying the mitral cell firing patterns could have 

significant impact on behavioral responses, as the activation are inducers of behaviors 

(Døving & Selset, 1980).

Whether there are distinctions between secondary neurons in functionally different 

parts of the olfactory bulb, remains to be investigated. There are morphological variations 

between mitral cells in the medial and lateral part. Possibly, there are electrophysiological 

differences between sub-populations as well, related to their spatial location and function. No 

obvious differences were observed during recordings in the olfactory bulb of crucian carp, 

however, such a possibility should not be excluded (Paper V).
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Variations in the olfactory system

A response to an odor is often context dependent and determined by several aspects in attempt 

to maximize fitness (Lima & Dill, 1990). Behavioral patterns such as feeding, reproduction, 

migration and avoidance may be induced directly by odors, but their presence do not always 

lead to the same response. Some species responding with a fright reaction upon detection of 

conspecific skin extract as juveniles, lose this behavior on a permanent basis as adults 

(Marcus & Brown, 2003; Harvey & Brown, 2004). The loss of response to the skin extract in 

crucian carp related to ovulation and altered plasma levels of female sex hormones is 

probably temporary, reflecting that this species has an advantage of the fright reaction under 

non-reproductive periods, but not during courtship behavior (Paper III).

Risk taking behavior seems unfavorable from an evolutionary point of view, since 

predation eliminates all future chances of producing offspring. However, behaviors related to 

reproduction are probably incompatible with the fright reaction, as release of alarm substance 

during male competition could interrupt the spawning. Thus, during the latest phases of sexual 

maturation of female crucian carps, the behavioral response to potential dangers is supressed 

in order to fulfill an essential biological process – reproduction.  

How does reproductive status have effect on the behavioral responses to odors related 

to danger? Central mechanisms are likely to be involved in increased risk-taking during 

mating season. Expression of neurotransmitters and receptors in the mammalian brain, which 

are involved in anxiety-related behavior, are under influence of steroids (Biegon & McEwen, 

1982; Neumann et al., 2000; Wood et al., 2001; Bowman et al., 2002; Isgor et al., 2003; 

Lunga & Herbert, 2004; Douglas et al., 2005). Alterations in plasma levels of female sex 

hormones in fishes could have similar effects on the crucian carp in late maturation stages. 

Sensory neurons are rapidly replaced in fishes (Zippel et al., 1997a), and recruitment 

or functional changes of new sensory neurons could possibly account for altered behavioral 

response to an odor. The remarkable variations in expression of one type of the sensory cells 

in crucian carp, numerous in the summer while almost absent during the wither months, is so 

far a unique feature not shown in any other adult vertebrates (Paper II). These cells are 

probably involved in detection of sex pheromones in this species. Application of the 

neurotracer DiI on the ventral part of the olfactory bulb resulted in a staining both of the crypt 

cells and of the axons in lMOT (Hamdani & Døving, 2006), the bundle of the olfactory tract 

mediating sexual behavior. However, studies on species phylogenetically distant to crucian 

carp indicate other functions as well. In the marine fish Pacific jack mackerel (Trachurus

symmetricus) crypt cell were found to respond to amino acid solutions, although steroids and 
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prostaglandins were not tested as stimuli (Schmachtenberg, 2006). Furthermore, their 

presence in juvenile thornback ray (Raja clavata) may indicate functions related to non-

reproductive behavior (Ferrando et al., 2007). 

What happens to the secondary neurons wired to sensory neurons that are temporarily 

lost? The olfactory bulb is a composite network of different types of neurons, where plasticity 

could account for behavioral changes upon odor detection. Re-wiring of the synaptic 

connections between sensory and secondary neurons, or re-arrangement of interneurons, may 

take place. Whether the other sensory cell types undergoes similar cyclical changes as the 

crypt cells, remains to be shown. A similar event might for instance take place upon the loss 

of the fright reaction during ovulation. Altered sensitivity and behavioral responses to odors 

might implicate both peripheral and central components, and may be more important than 

previously considered. 
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Conclusion 

A large majority of olfactory bulb neurons in males responded specifically to only one of four 

sex pheromones released by females, a property not observed in neurons in females. In 

females, sexual maturation seems to increase risk-taking behavior, as the behavioral response 

to alarm odors is suppressed. Hormonal variations may play a major role, with influence on 

both central and peripheral mechanisms, such as the alterations in crypt cell expression. 

Furthermore, the discrimination in the olfactory bulb between skin extracts from different 

species varied largely between neurons, and could be seen in relation to behavioral responses, 

indicating species specific alarm substances and odorant receptors. Odors in the skin normally 

involved in feeding and reproduction were detected, and could possibly function as 

complementary odors.  

The present findings point towards several important features of the fish olfactory 

system. The neurons are tuned to respond to different odorants but the discrimination between 

related messages is highly varying. Simultaneous detection of multiple odorants mimics what 

happens in natural environments, and shows that the fish is able to sort out the most essential 

information, according to the context, from a complex mixture. Although these detections 

involve functionally distinct bulbar regions, a final cognitive process in the higher brain 

regions is able to adequately interpret the messages and adapt the behavior. Finally, structural 

modulations in the olfactory system, such as the expression of sensory cells, and adaptation of 

behavioral responses to some significant odors, show that this plasticity is central in this 

sensory system, which therefore seems highly adjustable to different phases in the life of an 

adult fish. 
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Corrigenda

Page 20 and Paper III. Title and reference:  

Seasonal variation in olfactory sensory neurons  Fish sensitivity to sex pheromones 

explained? (2008). Chemical senses 33, 119-123. 

Page 35 and Paper IV. Reference: 

Nikonov AA & Caprio J. (2004)….Journal of neurophysiology 92, 123-134. 

Paper V. Page 10: 

In sub-set 1…and in sub-set 2 from less than 0.03 to 1.6 spikes per second… 

Page 12: 

Pheromone region… activated units (n = 51) was considerably lower…
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