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Abbreviations 

DEP    Dishevelled, EGL-10, Pleckstrin domain 

EE   Early endosome 

EGFR   Epidermal growth factor receptor 

EMS   Ethylmethane sulfonate 

ER   Endoplasmic reticulum 

ESCRT   Endosomal sorting complex required for transport 

Fab1   Fragmented and binucleated 1 

FYVE   PI(3)P binding domain conserved in Fab1, YOTB, Vac1, EEA1 

Hrs    Hepatocyte-growth-factor-regulated tyrosine-kinase substrate 

LE   Late endosome 

MVBs   Multivesicular body 

OGD   Oregon green dextran 

PH   Pleckstrin homology 

PI   Phosphoinositide 

PI(3)P   Phosphatidylinositol-3-phosphate 

PI(3,4)P2  Phosphatidylinositol-3,4-bisphosphate  

PI(3,4,5)P2   Phosphatidylinositol-3,4,5-trisphosphate  

PI(3,5)P2  Phosphatidylinositol-3,5-bisphosphate 

PI(4)P   Phosphatidylinositol-4-phosphate 

PI(4,5)P2   Phosphatidylinositol-4,5-bisphosphate 

PI(5)P   Phosphatidylinositol-5-phosphate 

PI3K   Phosphatidylinositol-3-kinase 

PI3P-5K   Phosphatidylinositol-3-phosphate-5-kinase 

PI4K    Phosphatidylinositol-4-kinase 
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PI5K   Phosphatidylinositol-5-kinase 

PIKfyve Phosphoinositide kinase with specificity for the five positions 
containing a fyve finger 

PIK   Phosphatidylinositol-kinase 

PtdIns   Phosphatidylinositol 

PX   Phox homology 

Snf7   Sucrose non-fermenting 7 

STE3 Pheromone a factor transmembrane receptor in Saccharomyces 
cerevisiae 

TGN   Trans Golgi network 

Tsg101  Tumour susceptibility gene 101    

UIM   Ubiquitin interacting motif  

Vps     Vacuolar protein sorting 
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Aim of the present study 

Receptor downregulation is an important cellular function. Growth factor receptors 

are downregulated by uptake in the endocytic pathway and subsequent degradation in 

the lysosomes. Defective receptor downregulation may cause uncontrolled cell 

proliferation and cancer. Characterisation of the molecular mechanisms concerning 

receptor downregulation is therefore important. Phosphoinositides (PIs) are lipids 

known to regulate receptor downregulation. Previously it has been established that 

phosphatidylinositol-3-phosphate (PI(3)P) regulates endocytic membrane trafficking 

by recruiting intracellular effectors containing a PI(3)P binding FYVE (conserved in 

Fab1, YOTB, Vac1, EEA1) domain. The yeast FYVE domain-containing kinase, 

Fab1 (fragmented and binucleated 1), is involved in membrane trafficking and 

receptor sorting into the multivesicular bodies (MVBs). The receptors are degraded 

upon fusion with the vacuole (equivalent to the mammalian lysosome) and thereby 

downregulated. FAB1 is highly conserved in higher organisms and we hypothesise a 

similar function of the kinase in flies and humans. The aim of this project was to take 

advantage of the genetic tools available in the model organism D. melanogaster in 

order to characterise the FAB1 homologue and its function in endocytic trafficking 

and cell signalling. Information obtained from the fruit fly will be highly relevant in 

humans due to the conservation of the kinase throughout evolution.
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1. Introduction 

Endocytosis and vesicle trafficking play crucial roles in cell function by regulating 

cell-cell communication and signalling. Cell growth, differentiation and proliferation 

are stimulated by activated receptors, such as the epidermal growth factor receptor 

(EGFR), at the cell surface. This receptor is downregulated by endocytosis, sorted 

into multivesicular bodies (MVBs) and subsequently degraded in the lysosomes. PI 

kinases (PIKs) and their products PIs are important components of this machinery. 

Defective degradation of activated receptors can lead to uncontrolled cell 

proliferation and cancer (Katzmann et al., 2002; Raiborg et al., 2003). By 

investigating the endocytic sorting machinery of the cell, one can understand the 

molecular mechanisms behind serious diseases and use this knowledge to design 

therapeutic drugs. A useful model to investigate these processes in vivo is the fruit 

fly, D. melanogaster. This thesis concerns investigation of the PIK, Fab1, in D. 

melanogaster and its potential role in regulating endocytic trafficking. 

1.1 Endocytosis and vesicle trafficking 

In all eucaryotic cells, membrane trafficking and cargo sorting are essential processes. 

The membrane traffic flows along highly organised directional routes. The eucaryotic 

cells have evolved a system of internal membranes, the biosynthetic pathway, 

transporting newly synthesised carbohydrates and lipids to target compartments. The 

transport of the biosynthetic pathway goes from the endoplasmic reticulum (ER) 

toward the Golgi apparatus and then either out of the cell or to the lysosome. This 

pathway allows the cell to modify the molecules produced through a series of steps, 

store them until needed, and then secrete them to the exterior of the cell in a process 

called exocytosis. The transport and storage of these molecules also takes place in 

conjunction with the second major vesicle transport system, the endocytic pathway. 

This system of internal membranes allows the cells to take up macromolecules from 
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the outside by a process known as endocytosis (Figure1A) (Sanderfoot and Raikhel, 

1999). 

The endocytic pathway transports, among other proteins, transmembrane proteins 

from the plasma membrane to the early endosomes (EEs) and late endosomes (LEs)/ 

MVBs (referred to as MVBs hereafter). Certain transmembrane proteins in the early 

endosomes are targeted for degradation in the lysosome via budding of inner vesicles 

into the MVBs. Proteins, which are embedded in the membrane of inner vesicles, are 

released and degraded upon fusion between the lysosomal- and the MVB-limiting 

membranes by lysosomal proteases, lipases and other hydrolases (Katzmann et al., 

2002). In both endocytic and biosynthetic trafficking the flow of membrane 

compartments is strictly regulated and balanced. The flow in opposite directions 

brings membrane and selected proteins back to the compartment of origin. Each 

transport vesicle needs to be very selective to perform this task; it must fuse only with 

the appropriate target membrane and take up only the correct proteins. A great deal is 

known about the molecular mechanisms of endocytic sorting, as outlined below. 

1.1.1 MVB; A molecular sorting station 

Fifty years ago the first MVB was described by electron microscopy as a spherical 

organelle of around 400-500 nm with a limiting membrane enclosing several internal 

vesicles of 40-90 nm (Katzmann et al., 2002). MVBs represent endocytic 

intermediates formed from EEs (Raiborg et al., 2003). The MVBs serve as sorting 

stations and receive cargo from the endocytic pathway and the biosynthetic pathway. 

The sorting of cargo into intraluminal vesicles has several important functions. First, 

transmembrane proteins that are to be released from the cell in a regulated manner 

might be stored in intraluminal vesicles and the MVB might function as a vehicle for 

this matter. Second, the proteins in the MVB limiting membrane are usually resistant 

to degradation by proteases upon fusion with the lysosomes, because they only 

expose their luminal region that is usually extensively glycosylated. However, the 

proteins  
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Figure 1 Model for the endocytic pathway and protein sorting into the MVB. (A) The endocytic pathway 
transports, among other proteins, transmembrane proteins, from the plasma membrane to the EE and LE/ 
MVBs for degradation in the lysosomes. The sorting of cargo into intraluminal vesicles has several important 
functions, such as signal downregulation. The EGFR, for example, is monoubiquitinated at multiple sites, and 
this modification is interpreted as a sorting signal into the inner vesicles of MVBs. The area indicated by a 
rectangle is enlarged in (B). (B) Together with monoubiquitin, other protein complexes, such as the ESCRTs, 
are involved in the formation of the MVB inner vesicles and thereby the sorting process. The lipid PI(3)P 
mediates localisation of the FYVE-domain containing protein Hrs and its associated proteins to the endosomal 
membranes. This complex binds to ubiquitinated protein and retains them in the membrane. Hrs recruits 
ESCRT-I by interacting with Tsg101. The ubiquitinated protein is relayed on to ESCRT-II and sorted into the 
MVB by polymerisation of ESCRT-III. The arrows indicate the direction of the sorting process. (The figure is 
adapted from (Raiborg et al., 2003)). 
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sorted into the intraluminal vesicles of the MVBs will be degraded by lysosomal 

hydrolases. Third, MVBs can play an important role in signal downregulation: In 

principle, signalling from internalised receptors is possible from the limiting 

membrane of MVBs (Lloyd et al., 2002). The ability of endocytosed receptors, such 

as the EGFR, to transmit signals inside the cell is believed to be blocked by enclosing 

them in intraluminal vesicles of MVBs (Raiborg et al., 2003). The activated EGFR 

associates with several key components of the signalling transduction machinery. By 

sorting it into the intraluminal MVB vesicles its cytoplasmic domain is segregated 

away from the cytoplasm, and thereby interaction is prevented (Katzmann et al., 

2002). In mice, mutations interfering with the MVB sorting of EGFRs lead to 

tumorigenesis (Ceresa and Schmid, 2000; Di Fiore and Gill, 1999), and in D. 

melanogaster such mutations cause prolonged growth-factor-stimulated signalling 

and embryonic patterning defects (Lloyd et al., 2002). 

1.1.2 Molecular mechanisms of protein sorting into MVBs 

To understand the downregulation of transmembrane receptors it is necessary to 

define the proteins that target them to the intraluminal vesicles of MVBs (Raiborg et 

al., 2003). By studying the molecular mechanisms behind trafficking of the 

transmembrane receptor EGFR, it is possible to obtain general information about the 

principles behind endocytotic sorting and degradation (Felder et al., 1990). The lipid 

PI(3)P is to be found on EE membranes (Gillooly et al., 2000). The PI(3)P binding 

protein Hrs (hepatocyte-growth-factor-regulated tyrosine-kinase substrate) together 

with monoubiquitination of target proteins has been shown to serve as a mediator of 

MVB-sorting (Hicke, 2001; Marchese and Benovic, 2001; Rocca et al., 2001; Rotin 

et al., 2000; Shenoy et al., 2001). Monoubiquitination of proteins from the Golgi, 

plasma membrane and endosomes has been shown to target them to the lysosome 

(Raiborg et al., 2002; Reggiori and Pelham, 2001; Urbanowski and Piper, 2001). The 

EGFR is monoubiquitinated at multiple sites, and this modification is interpreted as a 

sorting signal to target them to the inner vesicles of MVBs. Together with Hrs and 
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monoubiquitin, other protein complexes are involved in the formation of the MVB 

inner vesicles and thereby the sorting process. This intricate system is outlined below.  

The lipid modifying enzyme, PI 3-kinase (PI3K), modifies the membrane lipid PtdIns 

to PI(3)P (the PIs and PIKs are dealt with in detail later) (Fruman et al., 1998). 

Inhibition of PI3K by wortmannin or an antibody prevents the formation of 

intraluminal vesicles in MVBs (Fernandez-Borja et al., 1999; Futter et al., 2001). 

Likewise, sequestration of endosomal PI(3)P by a tandem PI(3)P binding FYVE 

domain inhibits the sorting of activated EGFRs into MVBs, but transport of other 

cargos between the early and late endosome is not affected (Petiot et al., 2003). This 

indicates that PI(3)P is not required for the formation of MVBs as such, but is 

required for the formation of intraluminal vesicles in MVBs and sorting of EGFR to 

these vesicles by recruiting PI(3)P binding effector proteins. Many of the proteins 

that bind PI(3)P do so either through a FYVE domain or a PX domain (Phox 

homology domain), and there are around 70 different proteins containing one of these 

domains in mammals (Gruenberg and Stenmark, 2004). The lipid PI(3)P mediates 

localisation of the FYVE-domain containing protein Hrs and its associated proteins to 

the endosomal membranes (Raiborg et al., 2001). Hrs has a ubiquitin-interacting 

motif (UIM), that is able to directly bind ubiquitinated proteins (Raiborg et al., 2002). 

The function of the Hrs -protein complex is believed to be to bind to ubiquitinated 

membrane proteins in order to prevent them from recycling back to the plasma 

membrane (Raiborg et al., 2003). Direct evidence for the role of Hrs in lysosomal 

targeting of ubiquitinated proteins comes from studies in Drosophila melanogaster, 

in which hrs mutants display enlarged endosomes, a reduced number of intraluminal 

vesicles in MVBs and increased EGFR signalling. This shows that Hrs is required for 

the sorting of EGFRs into the inner vesicles of MVB and their subsequent 

degradation (Lloyd et al., 2002).  

Many of the components in the endocytic sorting machinery, such as the ESCRTs 

(endosomal sorting complexes required for transport), have ubiquitin-binding 

domains (Katzmann et al., 2002). The ESCRTs consist of several vacuolar-sorting 
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proteins (Vps). Hrs is indirectly involved in the formation of the intraluminal vesicles 

in MVBs by recruiting ESCRTs to the endosomal membranes (Bache et al., 2003; 

Katzmann et al., 2003) (Figure 1B). The Hrs protein complex is believed to deliver its 

ubiquitinated proteins to ESCRT-I, a complex consisting of three subunits (Vps23, 

Vps28 and Vps37) by binding the subunit Vps23 in yeast (Tsg101 (Tumor 

susceptibility gene 101) in mammalian cells) which also contains a ubiquitin binding 

domain (Bache et al., 2003; Katzmann et al., 2003; Lu et al., 2003; Pornillos et al., 

2003). Interaction between Hrs and ESCRT-I is important for the sorting of 

ubiquitinated cargo to the degradation pathway (Katzmann et al., 2003; Lu et al., 

2003). The ubiquitinated protein is further relayed on to another three-subunit 

complex, the ESCRT-II (Vps22, Vps25 and Vps36). The ESCRT–II subunit, Vps36, 

contains a ubiquitin binding-domain which is believed to have a function in the 

sorting of ubiquitinated proteins into endosomal invaginations. The ubiquitinated 

protein is transported into an intraluminal vesicle, whose formation requires the 

polymerisation of a third multisubunit complex, the ESCRT–III (Vps2, Snf7, Vps20 

and Vps24) on the endosomal membrane (Raiborg et al., 2003). Saccharomyces 

cerevisiae cells that lack one or more of the ESCRT-subunits have defective protein 

sorting to the vacuole and do not form the intraluminal vesicles (Katzmann et al., 

2003).  

Another protein containing a FYVE-domain, like Hrs, is the S. cerevisiae 

phosphatidylinositol-3-phosphate 5-kinase (PI3P-5K) Fab1 and its mammalian 

homologue PIKfyve. This kinase is localised to endosomal membranes (Sbrissa et al., 

2002). In mammalian cells, overexpression of a dominant negative PIKfyve does not 

lead to elimination of the inner vesicles of MVBs, indicating that the PI3P-5K is not 

the only protein needed for the intraluminal vesicle formation. However, Fab1 might 

play an important role in the sorting of a subset of proteins into the intraluminal 

vesicles (Reggiori and Pelham, 2002). The ESCRT-III complex contains a subunit, 

Vps24, that is able to bind PI(3,5)P2, the catalytic product of Fab1. This finding 

suggests that PI(3,5)P2 might function as an activator of ESCRT-mediated protein 

sorting (Whitley et al., 2003). 
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1.1.3 Phosphoinositides and lipid kinases 

PIs are phosphorylated derivates of phosphatidylinositol (PtdIns), a lipid with two 

fatty acid tails and an inositol head group. PtdIns is a unique component among 

phospholipids in the eucaryotic cell membranes in the sense that its head group can 

be phosphorylated at free hydroxyls (Figure 2). Site- and time specific PI production 

has been found to play important roles in many cellular responses. PIs are involved in 

many cellular processes, such as proliferation, survival, cytoskeletal organization, 

glucose transport, platelet function and vesicle trafficking. The enzymes that 

phosphorylate PtdIns and its derivates are the PIKs (Fruman et al., 1998). 
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Figure-2                          
Phosphoinositides 
(PIs). PIs are 
phosphorylated 
derivates of 
phosphatidylinositol 
(PtdIns). The inositol 
ring can be 
phosphorylated in 
position 3, 4 and 5 
intracellularly by PIKs. 
The PIKs are indicated 
in-between their 
corresponding substrate 
and product. 
Phosphatases are not 
included. In cells, the 
following PIs have been 
identified; PI(3)P, 
PI(4)P, PI(5)P, 
PI(3,4)P2, PI(3,5)P2, 
PI(4,5)P2 and 
PI(3,4,5)P3. PI(5)P is 
not included in the 
figure because its 
function is unknown. 
(The figure is adapted 
from (Simonsen et al., 
2001)). 
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Positions 3, 4 and 5 in the inositol ring are the only ones found to be phosphorylated 

intracellularly (Shisheva, 2001). The ring can be phosphorylated in these positions 

separately or in all possible combinations. In cells, the following PIs have been 

identified; PI(3)P, PI(4)P, PI(5)P, PI(3,4)-bisphosphate (bisphosphate termed P2 

hereafter), PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)-trisphosphate (trisphosphate termed P3 

hereafter). In unstimulated eucaryotic cells, PtdIns is the most abundant phospholipid 

and the others are present in much lower amounts (Table 1) (Stephens et al., 2000). 

Although the PIs are present as a small fraction of the total cellular phospholipids, 

they play a crucial role in signal transduction as the precursors of several second-

messenger molecules. The PI lipids could be imagined to have several different 

functions in the cell: (1) alteration of local membrane topology by electrostatic 

interactions, (2) direct interaction with intracellular proteins and thereby affect their 

localisation and/ or activity, (3) function as phospholipase substrates for soluble 

inositol phosphate (inositol(1,4,5) trisphosphate (IP3) and membrane-associated 

diacylglycerol) second messengers (Fruman et al., 1998). 

Phosphoinositide levels in unstimulated 
mammalian cells
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Table 1 Phosphoinositide levels in an unstimulated mammalian cell. The table shows 
approximate levels of PIs. The most abundant lipid, PtdIns, is set to 100%. The levels of PI(4)P 
and PI(4,5)P2 are around 5%, followed by PI(5)P, PI(3)P at 0,2% and PI(3,5)P2, PI(3,4)P2 and 
PI(3,4,5)P3 at 0,01%. (The figure is adapted from (Stephens et al., 2000)). 
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PI kinases 
PIs are mainly synthesised by lipid kinases, although some PIs can be generated by 

lipid-specific phosphatases acting upon more highly phosphorylated forms (the 

phosphatases are not going to be dealt with here). The PIKs are divided into different 

classes based on the enzymatic activity leading to transfer of a phosphate to a specific 

position in the inositol ring. Three general families were generated on the basis of 

this, PI3Ks, PI4Ks and PI5Ks. The PI4Ks are not going to be dealt with here. Lower 

eucaryotes and yeast express kinases with substantial protein-sequence homology to 

their mammalian counterparts, and members of each kinase family have been 

identified. Support to the classification of separate families is given by the finding of 

sequence homology, and the importance of these enzymes is underscored by their 

conservation throughout evolution (Fruman et al., 1998). 

PI3Ks 
Studies of PI3Ks have revealed a role both in growth regulation and various other 

cellular responses (Franke et al., 1997). The PI3Ks are divided into three classes, 

class I, -II and –III, according to their recognised substrate, but all three classes 

phosphorylate the inositol ring in the third position. Class I and II are not going to be 

dealt with here. 

The class III PI3K was identified in a screen for mutant yeast cells defective in 

vacuolar protein sorting (Herman and Emr, 1990). When the corresponding gene 

VPS34, was cloned, it was found to be essential for accurate transport of newly 

synthesised proteins from the Golgi apparatus to the vacuole (Schu et al., 1993). 

Class III PI3Ks only phosphorylate PtdIns to produce PI(3)P (Figure 2) (Fruman et 

al., 1998). These PI3Ks do not appear to be acutely regulated by cell-surface 

receptors, but rather in agonist-independent membrane trafficking (Toker et al., 

1995).  
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The PI3P-5K, Fab1 
From the cellular pool of PI(3)P, PI(3,5)P2  is synthesised by a PI3P-5K. In humans a 

PI3P-5K, PI5Kα, has been cloned and the kinase domain is related to a protein in S. 

cerevisiae, Fab1. In resting mouse cells PI(3,5)P2 is a product of an agonist-

independent pathway and their relatively constant cellular levels are maintained by a 

reciprocal action between PI(3,5)P2 5-phosphatase (not dealt with here) and PI3P-5K 

called PIKfyve (Figure 2) (Whiteford et al., 1997).  

FAB1 (yeast) and PIKfyve (mouse) are orthologs of a PI3P-5K that belongs to an 

ancient gene family. The gene is conserved in many different species such as mouse 

(mus muculus), human (Homo sapiens), yeast (Saccharomyces cerevisiae, 

Schizosaccharomyces pombe), and Caenorhabditis elegans, Arabidopsis thaliana and 

the fruit fly (Drosophila melanogaster) (Shisheva, 2001). The yeast gene, FAB1, was 

first discovered in a screen for defects in protein sorting. The yeast cells had enlarged, 

deacidified vacuoles and the cell membrane receptor, STE3, failed to be sorted into 

the vacuolar lumen. Instead the receptor was missorted to the outer membrane of the 

vacuole. The FM4-64 dye inserts into the plasma membrane and when the membrane 

is internalised by endocytosis, the dye will label the membranes of endocytic 

intermediates, the internal vesicles of MVBs and eventually the vacuole membrane. 

The delivery of the lipophilic fluorescent dye FM4-64 from the plasma membrane to 

the vacuole, is delayed in the yeast fab1 mutants compared to wild type cells (Shaw 

et al., 2003). It has been observed that mammalian cells expressing a kinase defective 

mutant of PIKfyve have altered morphology. The cells show enlarged endocytic 

vesicles, indicating that PIKfyve enzymatic activity plays a crucial role in regulating 

membrane trafficking. It still remains to be directly tested whether the PI(3,5)P2 

product of PIKfyve gives the specific phenotype. However it is likely that the effect 

is due to loss of PI(3,5)P2, as observed in yeast cells with an inactive FAB1 gene 

(Odorizzi et al., 2000). Studies of PIKfyve at the protein level have revealed a 

widespread distribution of the protein among cells and tissues (Sbrissa et al., 2000). 

Immunofluorescence microscopy in 3T3-L1 adipocytes (a fat storage cell in 

mammals) has found the endogenous protein distributed in the cells periphery and 
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excluded from the nucleus. Biochemical analysis has revealed that around 76% of the 

protein can be detected in the cytosol, 20% associated with intracellular membranes 

and 4% with the plasma membrane. Analysis of the intracellular membrane fraction 

has suggested that PIKfyve associates with the membranes of the late endocytic 

pathway (Shisheva et al., 2001). Late endosomal PI(3)P is probably both a binding 

site for the FYVE-domain in PIKfyve/ Fab1 and a source of PI(3,5)P2 production 

(Sbrissa et al., 2002). 

To be able to investigate the role of Fab1 in membrane trafficking and cell signalling 

in a multicellular system, and not only in a single cell, Drosophila melanogaster was 

chosen as a model system. 

1.2 The model organism Drosophila melanogaster 

Since Thomas Hunt Morgan decided to use D. melanogaster as an organism to 

investigate the chromosomal theory of inheritance at the beginning of the last 

century, it has been one of the favourite model organisms of geneticists (Weiner, 

1999). The reason why Morgan chose D. melanogaster was because it is cheap to 

keep in the laboratory, has a short generation time (only ten days) and produces many 

progeny. There are, however, other advantages to working with this model organism. 

The fruit fly has only four chromosomes and there is no meiotic recombination in 

males, making it relatively easy to track chromosomes through generations. The giant 

polythene chromosomes of the larval salivary glands formed by many rounds of 

DNA replication align tightly side by side in a parallel register. This can be visualised 

by a normal light microscopy and the structure of the chromosomes can thus easily be 

determined making it possible to probe genes and position them on the chromosome. 

The development of the external features of the fly, such as wings, bristles and 

compound eyes can be affected by mutations. Simply by looking at the fly in the 

stereomicroscope, one can spot phenotypic mutants arising from genomic mutations. 

Combining these features, it is possible to study the molecular and genetic basis of a 

phenotype. Succeeding drosophilists have developed several sophisticated techniques 
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that make the fruit fly one of the best model organisms for genetic analysis of almost 

any process (Rubin and Lewis, 2000).  

Even though insects and vertebrates diverged around 700 million years ago, flies 

represent organisms that are surprisingly similar to vertebrates with respect to 

developmental processes (Adams et al., 2000).  A surprisingly large number of the 

approximately 15.000 D. melanogaster genes have proven to have overt human 

homologues (Friedman and Hughes, 2001). Out of the 287 known human disease 

genes, 197 have homologues in D. melanogaster and produce very similar symptoms 

in flies when mutated. Even the human disease genes that have no fly homologue 

produce similar symptoms to those observed in humans when expressed in D. 

melanogaster (Feany and Bender, 2000; Fortini et al., 2000). The ability to carry out 

large-scale genetic screens for mutations affecting a given process is one of the most 

important features that D. melanogaster provides. The gene affecting the process can 

be identified and at the same time the fly serves as a very practical tool for genetic 

investigation (St Johnston, 2002). 

1.2.1 The life cycle of Drosophila melanogaster 

In mammals, the fertilized embryo develops inside the mother’s uterus and is born as 

a miniature version of the adult. D. melanogaster has a different life cycle. The fly 

goes through four stages; embryo, larvae, pupa and adult fly (Figure 3). The fertilized 

embryo is laid in nutritious food, such as bananas or other types of fruits. After one 

day, when the larva hatches, it is surrounded by nutrition. The larva spends almost all 

its time eating and gaining weight to expand its tissues. When the larva grows, the 

skin becomes too small. There are three larval stages (instars) separated by moults 

where the skin is shed. At the end of the third instar, about five days after fertilisation 

of the embryo, the larva stops feeding, moults one more time and forms an immobile 

pupa. In this pupal stage the larva goes through complete metamorphosis where all 

the larval tissues are reorganised to form the adult fly. The whole process takes 

approximately ten days. 
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Figure 3 Life cycle of D. melanogaster. The larva hatches from the embryo and goes through 
three larval stages (instars) called L1, L2 and L3 as it grows. At the end of the third instar, L3, the 
larva becomes immobile and forms a pupa. In the pupa the larvae goes trough total 
metamorphosis and developes into a fly. The whole process takes 10 days. (The figure is adapted 
from http://www5.indire.it:8080/set/biotecnologie/drosophila/dros3.htmdrosophila/dros3.htm). 

 

 

 

1.2.2 Embryonic and imaginal disc development  

Large amounts of maternal mRNAs and proteins are deposited in the eggs of insects, 

before the embryonic nuclei starts to function, to facilitate rapid development. In 

Drosophila these proteins and mRNAs are produced in the follicle and nurse cells 

and thus come from the genome of the mother fly. These genes are called “maternal 

contribution genes” and consist of “housekeeping genes” necessary for basic cell 

function, early development and patterning. The scientific disadvantage with this 

maternal mRNA contribution is that the effect of mutated genes on development and 

embryonic patterning can be masked by the presence of the maternal protein product 

(Perrimon et al., 1996). 

In the pupa the larva goes through total metamorphosis as mentioned before, but the 

development of the epidermis of the adult fly, including its appendages such as 

wings, eyes, legs and antennae has already begun in the embryo. Tissues called 

imaginal discs are set aside. These are sheets of epithelial cells, which proliferate, 

grow, and pattern during larval life. The body parts arising from the imaginal discs 

are excellent model systems for research in cell function and development. 

Morphological features of the wings and cuticle are products of important signalling 
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pathways and defects in these can be easily observed (MacDougall et al., 2004). 

Many signalling pathways active during development have been well characterised, 

and several, like EGFR, perform multiple functions in D. melanogaster development. 

In the imaginal discs, the EGFR functions as a factor for specifying cell fate and 

survival of postmitotic cells. Defective signalling consequently leads to a variety of 

patterning defects in the adult cuticle (Dominguez et al., 1998). 

1.2.3 Genetic tools for investigating gene function 

Mutations have occurred spontaneously in nature at all times in all species. In the 

beginning of the twentieth century, scientists used spontaneous mutations in the 

genome of D. melanogaster to study genetic inheritance. Since mutations that have 

scientific value occur very rarely by chance, scientists have, during the last twenty 

years developed methods to mutate the Drosophila genome with a higher frequency. 

This is most often done by the use of X-rays, gamma rays, or chemical mutagens 

such as ethylmethane sulfonate (EMS). Today, full saturation screens (mutating all 

genes in the flies genome) are done by EMS, which generate point mutations in the 

genome of the fly. The power of saturation screening in multicellular organisms was 

demonstrated by Christiane Nusslein-Volhard and Eric Wieschaus when they used 

this approach in an attempt to identify all important genes for embryonic pattern 

formation in one of the first large-scale D. melanogaster screens undertaken in the 

late seventies and early eighties (Nusslein-Volhard and Wieschaus, 1980).   

Another way of introducing mutations in genes is by insertion of transposable 

elements. In all organisms, transposable elements are present as dynamic components 

of their genomes, thereby causing mutations and genetic variation. These elements 

are pieces of DNA requiring a host cell to replicate and proliferate. In D. 

melanogaster the most useful one is the P transposable element (P-element) (Miller et 

al., 1997). The P-element moves with high frequency in the Drosophila genome and 

is controlled by the availability of a transposase. In scientific experiments the P-

element is controlled by a transposase not normally present in the fly. It has a major 
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advantage to other mutagenic agents by being easy to detect and map by sequencing 

of the neighbouring DNA. In most cases, the affected gene can be determined and the 

insertion mapped with minor efforts because the P-element preferentially inserts near 

the 5’ end of the genes. A disadvantage of P-elements is their tendency to insert at 

specific genomic sites with a high frequency. This biased insertion makes it 

impossible to mutate all genes in the genome by simple P-element mutagenesis 

(Spradling et al., 1995). Almost any sequence can be inserted between the inverted 

repeats recognised by the transposase, and this makes the P-element extremely useful 

as a tool for other purposes, such as enhancer-traps, and more importantly, insertions 

of transgenes into the genome (Spradling et al., 1999).  

UAS-GAL4 system 
Model organisms have experienced a renaissance during the last decade, and the 

genetic toolbox has expanded enormously, particularly in D. melanogaster. The 

sequencing of the whole genome has allowed scientists to investigate almost all genes 

and processes. One of the most elegant tools for targeted gene expression is the 

GAL4/ UAS system.  

GAL4 is a transcriptional activator identified in S. cerevisiae (Laughon et al., 1984; 

Laughon and Gesteland, 1984). The GAL4 protein regulates gene expression by 

binding to an enhancer called UAS (Upstream Activating Sequence) upstream of its 

target gene (Giniger et al., 1985). Expression of GAL4, not normally present in 

Drosophila, has no deleterious effect and can drive expression of a reporter gene 

under the control of a UAS sequence (Fischer et al., 1988). This technique has proven 

to be very powerful to express any gene in a temporal and spatial fashion in vivo 

(Brand and Perrimon, 1993). The gene of interest (the responder) is controlled by the 

presence of the UAS element, but the gene expression is silent when GAL4 (the 

driver) is absent. By keeping the UAS/ responder gene and GAL4 in separate fly 

lines, the responder gene expression is first achieved when the two fly lines are 

mated. GAL4 is not expressed ubiquitously, but is controlled by an enhancer in the 

Drosophila genome. Therefore GAL4 and the responder gene are only expressed in 
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tissues where the respective enhancer is activated. Since neither the GAL4 expression 

nor the silent responder gene is of any harm to the flies, when kept in separate fly 

lines, the responder gene can be either toxic, lethal, or have reduced viability when 

expressed. One example of such a responder gene is reaper. This gene can trigger 

programmed cell death. When a fly line carrying this silent reporter is mated to a fly 

line with a GAL4 driver, it causes cell death in those tissues where the driver is active 

and expresses GAL4 (Figure 4) (Greenspan, 1997). 
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Figure 4 The GAL4/ UAS 
system. The two 
components from the driver 
and responder fly line are 
brought together in the 
offspring by a single cross. 
The expression of the Gal4 
gene (red box)  is driven by 
a time and tissue specific 
enhancer. The Gal4 protein 
(red) binds the UAS 
sequences (circles) and 
activates the expression of 
the gene of interest, Gene 
X (black box). (The figure 
is adapted from (St 
Johnston, 2002)). 

Mosaic analysis 
Some mutations cause early lethality in D. melanogaster. When studying processes 

late in development, a way of getting around this problem is the Flp/ FRT (Flip 

Recombinase Target) site-specific recombination system (Figure 5). This elegant 

method creates genetic mosaics at desired stages in development and overcomes the 

problem with early lethality by generating mutant groups of cells (clones) in an 

otherwise wild type environment. This enables scientists to address many biological 

questions. Originally, the genetic mosaics were generated by X-ray-induced mitotic 
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recombination, but the rate of recombination was very low. The cells in such a clone 

could be distinguished from the surrounding tissue only in very specific cases. The 

Flp recombinase is originally from yeast, but works very efficiently when expressed 

in D. melanogaster (Golic and Lindquist, 1989). By creating flies with transgenic 

FRT-sites at identical positions on homologous chromosomes, Flp-mediated 

recombination can be used to generate mitotic clones (Golic, 1991). If the site-

specific recombination between the two homologues takes place after DNA 

replication in G2 phase of the cell cycle, the chromosome arm distal to the FRT-

recombination site will be made homozygous. The daughter cells will inherit two 

copies of the region from one of the parental chromosomes, but this will only happen 

if the sister chromatids segregate appropriately. If the cells are heterozygous for a 

mutation and the mutation is located distal to the FRT-site, the recombination can be 

used to make a mutagenized chromosome arm homozygous in clones of cells. The 

homozygous mutant cells can be screened for a phenotype. A great advantage of this 

approach is that only the cells of interest are made homozygous by controlling where 

and when the recombination takes place. Regardless of their function in development, 

tissue specific mutant phenotypes in essential genes can be identified. Another 

advantage is that it is not necessary to go through two generations of flies, which is 

the case with traditional screens, to make the mutagenized chromosome homozygous. 

The F1 generation, which is the first generation of progeny, can be screened for 

recessive loss-of-function phenotypes (St Johnston, 2002).  
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Figure 5 Using the FRT/ Flp system to generate clones in D. melanogaster. The upper picture shows a 
cell in the G2 phase of the cell cycle. The two homologue chromosomes, one indicated with thin lines and 
the other with thick lines, have replicated to form sister chromatides. On the upper sister chromatide pair an 
asterisks indicate a mutation. On the lower pair of sister chromatides the M indicates a marker upstream of 
the FRT-recombination site (indicated by the box). The Flp recombinase induces a flip between the 
chromosome arm distal to the FRT-recombination sites on the sister chromatide containing the mutation and 
the sister chromatide not containing the mutation.  During mitosis the sister chromatides are segregated as 
indicated by the arrows and shown in the lower panel. The cell to the left has become heterozygous for the 
mutation and can be distinguished from the other cells by the lack of marker. The recombination has made 
one of the cells homozygous for the mutation and the cell can give rise to a clone of cells containing the 
mutation. The homozygous mutant cells can be screened for a phenotype.  The cell arising from the 
chromatides with the marker, lacking the mutation, will behave as wild type. Adapted from (St Johnston, 
2002). 
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Abstract 

Phosphoinositides play important roles in downregulation of growth factor 

receptors, such as the epidermal growth factor receptor (EGFR), through 

regulation of membrane transport and multivesicular body (MVB) biogenesis. 

Phosphatidylinositol-3-phosphate (PI(3)P) is required for the formation of 

intraluminal vesicles in MVBs and sorting of EGFR into these vesicles by 

recruiting PI(3)P binding effector proteins, such as Hrs. Another candidate 

effector of PI(3)P is the PI(3)P binding PI(3)P 5-kinase, FAB1, that synthesises 

one of the least studied phosphoinositides, PI(3,5)P2, from PI(3)P. In yeast both 

Vps27 (Hrs) and Fab1 are necessary for correct membrane trafficking, and 

display morphological defects, such as enlarged vacuoles when mutated. We 

describe the isolation and characterisation of the Drosophila melanogaster FAB1 
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gene (termed fab1) and its mutants. The fab1 gene encodes a protein of 1809 

amino acids with similar domain architecture as in other eucaryotes. 

Immunolocalisation of the Fab1 protein shows colocalisation with Rab5, a 

marker for early endosomes (EEs), FYVE, a marker for EEs and MVBs and 

Rab7, a marker for MVBs. Analysis of fluid phase endocytosis revealed that 

fab1 mutant cells are larger than wild type cells with accompanying enlarged 

endocytic vesicles, and a block in endosome to lysosome fusion. Initial analysis of 

EGFR signalling in fab1 mutants did not reveal increased signalling activity. 

Further analysis is needed to investigate the potential role of Fab1 in receptor 

downregulation. 

Introduction 
Tight regulation of membrane trafficking is important to ensure proper temporal and 

spatial delivery of membrane-bound cargo. The endocytic pathway transports, among 

other proteins, transmembrane proteins from the plasma membrane to the EEs and 

MVBs (Lloyd et al., 2002). One type of transmembrane protein is the growth factor 

receptor, EGFR. EGFRs are downregulated by endocytosis via sorting into MVBs 

and subsequent degradation in the lysosomes upon fusion with the MVBs. Defective 

EGFR downregulation may cause uncontrolled cell proliferation and cancer. 

Phosphoinositides (PIs) are lipids known to regulate receptor downregulation by 

recruiting effector proteins necessary for the receptor sorting into the MVBs. 

Previously it has been established that phosphatidylinositol-3-phosphate (PI(3)P) 

regulates endocytic membrane trafficking by recruiting intracellular effectors 

containing a PI(3)P binding FYVE (conserved in FAB1, YOTB, Vac1, EEA1) 

domain, such as hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). 

Hrs plays an important role in the sorting of monoubiquitinated EGFR into the inner 

vesicles of MVBs for degradation in the lysosomes (Raiborg et al., 2003). The Hrs-

protein complex is believed to deliver its ubiquitinated proteins to ESCRT-I, a 

complex consisting of three subunits (Vps23, Vps28 and Vps37) by binding the 

subunit Vps23 in yeast and Tsg101 (Tumour susceptibility gene 101) in mammalian 
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cells, both containing ubiquitin binding domains (Bache et al., 2003; Katzmann et al., 

2003; Lu et al., 2003; Pornillos et al., 2003). The ubiquitinated protein is transported, 

via a second protein complex ESCRT-II (Vps22, Vps25 and Vps36), into an 

intraluminal vesicle, which is formed by the polymerisation of a third multisubunit 

complex, the ESCRT–III (Vps2, Snf7, Vps20 and Vps24) on the endosomal 

membrane (Raiborg et al., 2003). Saccharomyces cerevisiae cells that lack one or 

more of the ESCRT-subunits do not form the intraluminal vesicles and have defective 

protein sorting to the vacuole (equivalent to the mammalian lysosome) (Katzmann et 

al., 2003). The yeast FYVE domain containing kinase, Fab1 (fragmented and 

binucleated 1), is also involved in membrane trafficking and receptor sorting into the 

MVBs. FAB1 was first discovered in a screen for defects in protein sorting. The yeast 

cells had enlarged, deacidified vacuoles and the cell membrane receptor, Ste3, failed 

to be sorted into the vacuolar lumen, indicating that Fab1 enzymatic activity plays a 

crucial role in regulating membrane trafficking (Dove et al., 1997). Fab1 and the 

mammalian homologue PIKfyve are phosphatidylinositol-3-phosphate 5-kinases 

(PI3P-5Ks) synthesising PI(3,5)P2 from PI(3)P (Sbrissa et al., 2002). Studies of 

PIKfyve at the protein level have revealed a widespread expression of the protein in 

various cells and tissues (Sbrissa et al., 2000). Analysis of the intracellular membrane 

fraction has suggested that PIKfyve associates with the membranes of the late 

endocytic pathway (Shisheva et al., 2001). Late endosomal PI(3)P is probably both a 

binding site for the FYVE-domain in Fab1/ PIKfyve and a source of PI(3,5)P2 

production (Sbrissa et al., 2002). In mammalian cells, overexpression of a dominant 

negative PIKfyve does not lead to elimination of the inner vesicles of MVBs, 

indicating that the PI3P-5K is not needed for the intraluminal vesicle formation. 

However, Fab1 might play an important role in the sorting of a subset of proteins into 

the intraluminal vesicles of MVBs (Reggiori and Pelham, 2002). The ESCRT-III 

complex contains a subunit, Vps24, that is able to bind PI(3,5)P2, the catalytic 

product of Fab1. This finding suggests that PI(3,5)P2 might function as an activator of 

ESCRT-mediated protein sorting (Whitley et al., 2003). In addition, PI(3,5)P2 

binding effector proteins might play a role in sorting of proteins into the MVBs. In 
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yeast, a protein, Ent3p, containing a PI(3,5)P2 binding ENTH domain has been 

identified.  Ent3p localises to the MVBs in a manner that is dependent on Fab1 kinase 

activity (Friant et al., 2003). 

Thus, although numerous data suggest that Fab1/ PIKfyve may play a role in vesicle 

trafficking and protein sorting, the precise function of Fab1/ PIKfyve in these 

processes is unclear. To further investigate the role of Fab1, we analysed the effects 

of the loss of fab1 in Drosophila melanogaster by studying three independent mutant 

fly lines encoding kinase domain deficient Fab1 proteins. Importantly, we 

demonstrate that loss of Fab1 might lead to impaired fusion between MVBs to 

lysosomes. The impaired endolysosomal fusion suggested a block or delay in 

endosomal membrane receptor degradation. 

Results 
Drosophila has one FAB1 homologue 

Drosophila fab1 like the yeast and mouse orthologs, FAB1 and PIKfyve respectively, 

is believed to encode a phosphatidylinositol-3-phosphate 5-kinase (PI3P-5K). fab1 is 

located on the R-arm of chromosome two and has been mapped to cytological band 

54E9 (Figure 1C) (The FlyBase Consortium, 2003). Only one single fab1 homologue 

was identified in the fly genome in FlyBase (The FlyBase Consortium, 2003) and 

there are no other genes predicted to be overlapping with fab1in the same region 

(Figure 1A). Three independent fly lines, fab18, fab121 and fab131, believed to be 

mutated in the fab1 genetic region were isolated during an EMS mutagenesis screen 

for defects in Drosophila embryonic tracheal development. The mutants did not 

complement a deficiency mutant fab130w lacking a region on chromosome two 

including the whole fab1 gene (Figure 1B) (Mohr and Gelbart, 2002). The predicted 

structure of the fab1 gene was confirmed by sequence analysis of a full length EST 

cDNA clone, GH01668 (2003). The clone predicted a open reading frame of 1809 

amino acids (Figure 1D). Aligning this protein sequence against the sequences in 

Saccharomyces cerevisiae, Caenorhabditis elegans and Mus musculus (Appendix 1), 
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shows an overall sequence identity of 26,6 % (37,7 % similarity) and the protein 

harbours several evolutionarily conserved domains with functional significance 

(Shisheva, 2001) (Appendix 1). Database analysis with PFam (Bateman et al., 2004) 

of the sequence showed domains similar to a PI(3)P binding FYVE domain (amino 

acids 181-247) located at the N-terminus of the protein (Ponting and Bork, 1996), a 

chaperonin-like region (amino acids 424-824), found in proteins implicated in actin 

and tubulin folding, and a putative catalytic kinase domain (amino acids 1563-1796) 

found in phosphatidylinositol 5-kinases (PI5Ks) and phosphatidylinositol 4-kinases 

(PI4Ks) (the domains are indicated in Figure 1D and Appendix 1). The FYVE 

domains in Drosophila and mouse show 71,6% similarity and 62,7% identity and the 

kinase domains show 61,9% similarity and 50,4% sequence identity. The kinase 

domain of Drosophila Fab1 harbours two important sites, an ATP binding site and a 

lipid specificity site that are of functional importance and depicted in Figure 1D 

(Shisheva et al., 1999). In fact, fab1 belongs to an evolutionary ancient gene family 

represented by a single-copy gene also identified in Schisosaccharomyces pombe, 

Arabidopsis thaliana and Homo sapiens (Shisheva, 2001). 
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Figure1 Drosophila fab1: Genomic location, deficiencies, structure and mutational analysis. (A) 
Drosophila fab1 CG6355, highlighted in black, is located on chromosome two, cytological band 54E9 
(mRNA splice variants are located above and below the gene, long form CG6355-RA and short form 
CG6355-RB giving rise to identical proteins). The figure shows other genes located close to fab1, but here 
are no other genes predicted to overlap fab1 (adapted from FlyBase (The FlyBase Consortium, 2003)). (B) 
The figure is related to (A) and the region between the bars shows the region that is missing in the DfPcl7b 

and fab1w30 deficiencies. DfPcl7b is lacking a region larger than the figure in (A), only depicted by one bar. 
fab1w30 is a smaller deficiency, depicted by two bars. (C) The structure of fab1 with UTR regions indicated 
by white boxes and intron (spaces with cone)/ exon (black) boundaries. (D) The protein structure of  Fab1 
containing a PI(3)P binding FYVE domain, chaperonin-like region and PIP5K kinase domain. The 
diamond indicates the site for ATP binding and the circle indicates the lipid specificity site. The numbers 
show the location of the three fab1 lesions, fab18, fab131 and fab121 respectively. The mutations are point 
mutations changing one amino acid to a stop codon leading to a truncated, kinase deficient protein. The 
exact amino acid position is shown at the bottom of (D): fab18 changes amino acid number 1308, a 
glutamine, to a stop codon, fab131 has a change in amino acid 1321, a leucine to a stop codon and fab121 

has a change in amino acid number 1525, a glutamine to a stop codon. 
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Lethal phase of Drosophila fab1 heteroallelic mutants 

No animal with heteroallelic combinations of fab1 mutations reached the adult stage 

and the fab1 mutations identified are thus recessive lethal mutations. In order to 

check the lethal phase of fab1 deficient animals, we observed the percentage of 

mutant larvae reaching the pupal stage. We generated homozygous and heterozygous 

fab1 mutants by crossing flies with the mutations fab18, fab121 and fab131 balanced 

over a balancer chromosome Cyo, Kr-GFP to the deficiency fab130w over the same 

balancer. Since the mutation is recessive, the heterozygous mutants will not be 

affected and express a wild type phenotype. Because the balancer chromosomes are 

lethal when homozygous, 25% of the larvae will die. Only 75% of the embryos can 

become larvae and therefore the expected percentage of mutant larvae will be 33% of 

the total number of larvae. We also analysed the lethal phase of Drosophila larvae 

lacking the region where fab1 is positioned by crossing flies heterozygous for the 

fab130w and DfPcl7b deficiencies (Figure 1B). The percentage of larvae actually 

surviving to the pupal stage was around 25%, instead of the expected 33% (Table 1). 

Some mutant larvae might actually die before they reach the pupal stage and thereby 

decrease the number of fab1 mutant pupa. No fab1 homozygous mutants were 

observed to hatch from the pupa and such mutants are therefore pupal lethal. 

Percentage of fab1 mutants surviving to pupal stage 
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Table1. Approximate percentage of mutant larvae surviving to the pupal stage. This figure 
shows the approximate percentage of fab1 mutant larvae that survive to the pupal stage. Twenty to
30 % of heteroallelic animals reached the pupal stage, while DfPcl7b/ fab130W die as late L3 larvae 
(not shown). Mutant flies hatching from the pupa have not been observed (n is total number of 
larvae counted).  
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Characterisation of the fab1 mutants by sequencing 

In order to find the mutations and map them to the fab1 gene, we sequenced the 

genomic DNA isolated from fab1 mutants. We used fab1 heterozygous mutant flies 

from all three mutant lines, balanced over a GFP tagged chromosome, to perform a 

cross and generate homozygous fab1 mutant larvae. All larvae lacking GFP 

expression were thus homozygous fab1 alleles. The non-expressing GFP-larvae were 

selected and genomic DNA was isolated and sequenced. The sequencing showed 

nonsense mutations upstream of the kinase domain in all three mutant strains. In 

fab18 the mutation was a CAG-to-TAG nonsense mutation at amino acid number 

1308 changing a glutamine to a stop codon (Q 1308 Stop), fab121 was a TTG-to-TAG 

nonsense mutation at amino acid number 1321 changing a leucine to a stop codon (L 

1321 Stop) and fab131 was a CAG-to-TAG nonsense mutation at amino acid 1411 

changing a glutamine to a stop codon (Q 1525 Stop) (Figure 1E). Based on their 

lethal phase, all three alleles are likely loss-of-function alleles. 

Generation of an antibody against Fab1  

Polyclonal antibodies were generated to the N-terminal half (amino acids 1-400, #267 

anti-N-Fab1) and C-terminal half (amino acids 1423-1809, #269 anti-C-Fab1) of the 

Fab1 protein (the N-terminal antibody gave the best results and is the one used in all 

experiments). The protein encoding sequences were cloned into the pMAL-C2 vector 

making a MBP fusion and purified (Figure 2A). The fusion proteins were purified 

and sent for immunisation in rabbits. The resulting antiserum was affinity purified 

using the previously obtained MBP-fusion protein on an affi-gel (Figure 2B). The 

#267 anti-N-Fab1 was tested in L3 larvae on wild type Garland cells and Garland 

cells from animals lacking the region containing the fab1 gene. The tissue staining 

analysis showed specific staining of vesicular structures in the wild type cells, but not 

in the fab1 deficient cells where the entire fab1 gene was missing, fab130w / DfPcl7b 

(Figure 3A). Western blot analysis of larval extracts using the same antibody detected 

a weak band of 200 kD in wild type, Fab1 deficient and mutant animals. In the fab131 

mutant a weak band of 150 kD was detected by the #267 Fab1-antibody in addition to 
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the 200 kD band, suggesting that a 1321 amino acid truncated protein is expressed in 

the mutant animal (Figure 3B). The presence of full-length protein in the L3 larvae of 

the Fab1deficient and the mutant animals suggests that maternally deposited Fab1 is 

stable and compensates for the loss of zygotic Fab1 during embryonic development. 

This supports the fact that the lethal phase of fab1 mutants are in the pupal stage. The 

staining with #267 anti-Fab1 shows that the #267 anti-N-Fab1 is specific.  

 

 

 

 

A B 

 

 

 

 

 

Figure 2. MBP fusion protein for immunisation and affinity purified protein gels. (A) The 
standard (Stnd) shows a band of 100 kD and a band of 75kD. In the IPTG- lane (lane 4) a band around 
90 kD can be seen. In the IPTG+ lane (lane 5) a stronger band of the same size can be seen. These 
bands are the MBP-fusion proteins. The expression of the protein is increased with addition of IPTG. 
The lanes S1-4 show different MBP/ Fab1-N-fusion protein elutions, with the highest protein 
concentration in lane S2.  1µg and 3µg BSA in lane 2 and 3 are included to measure protein 
concentration in lane S1 to S4. (B) Gel picture showing the affinity purified #267 anti-Fab1 antibody 
heavy chain at around 50 kD. 
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(B) Western blot analysis of  third instar larvae (L3) 
showing a band of 200 kD in the wild-type, mutant 
and deficiency larvae indicated by arrows. A band of 
150 kD can bee seen in the mutant, suggesting that a 
1321 amino acid truncated form of Fab1 is 
expressed in the mutant (indicated by a asterisk). 

Figure 3. Antibody 
staining of wild type and 
fab1 mutant Garland 
cells and Western blot 
analysis of wild type and 
fab1 mutant larvae. (A) 
The confocal image 
shows #267 anti-Fab1-N 
antibody staining in green 
in wild type Garland cells 
(left) and a fab1 deficient 
Garland cell (right). 
Nuclei are stained in blue 
Garland cells contain two 
nuclei in each cell. (This 
experiment was 
performed by Tor Erik 
Rusten.)  B 

Characterisation of the subcellular localisation of the Fab1 protein 

To determine the subcellular localisation of Fab1, expression was examined in 

imaginal discs of third instar larvae (L3). The facts that PI(3)P is found on endosomal 

membranes and that Fab1 contains a PI(3)P binding FYVE-domain similar to that 

found in Hrs, made us ask the question whether Fab1 is to be found on the same 

structures as Hrs or on later endocytic structures. This was investigated using GFP 

fusion proteins of the endocytic markers Rab5, dbFYVE and Rab7. The Rab5-, 

dbFYVE- and Rab7-GFP fusions are located downstream of a UAS sequence in 

transgenes inserted in the Drosophila genome, and the Ptc-GAL4 driver expresses the 

GFP-fusion protein in a stripe in the imaginal discs in the L3 larvae (Figure 4A). 

Rab5 labels EEs, dbFYVE labels EEs and MVBs and Rab7 labels MVBs (Figure 

4B). The discs were stained with #267 anti-N-Fab1 and showed staining of vesicular 

structures that colocalised with all three endocytic markers, supporting the hypothesis 

that Fab1, like Hrs, is an important part of the endocytic pathway (Figure 4C, D and 

E).  
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Figure 4. Colocalisation of Fab1 with endosomal markers.  (A) The imaginal disc in a third-instar larva 
expressing GFP-Rab5 fusion protein in a stripe (GFP–dbFYVE and -Rab7 are expressed in a similar manner).
(B) A schematic presentation of the endocytic pathway in a cell showing the location of Rab5 on EEs, 
dbFYVE on EEs and MVBs and Rab7 on MVBs. (C, D and E) The panels are showing enlarged parts of the 
imaginal discs expressing Rab5, dbFYVE and Rab7 respectively in a stripe (green structures) and staining 
with #267 Fab1-N antibody (red structures). (C’-C’’’) Rab5-GFP colocalises with #267 Fab1-N antibody in 
distinct 0,5 µm-sized structures (arrow indicate one of the vesicles that show overlap). (D’-D’’’) dbFYVE-
GFP colocalises with #267 Fab1-N antibody in distinct 0,5 µm-sized structures (arrow indicate one of the 
vesicles that show overlap). (E’-E’’’) Rab7-GFP colocalises with #267 Fab1-N antibody in distinct 0,5 µm-
sized structures (arrow indicate one of the vesicles that show overlap). 
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Failure in endosome-to-lysosome fusion in fab1 mutant Garland cells 

To determine if Fab1 functions in endocytic vesicle trafficking, the internalisation of 

fluid phase tracers was investigated in third-instar larval Garland cells, large cells 

with a high rate of fluid phase endocytosis (Narita et al., 1989). Wild type Garland 

cells showed strong labelling of peripheral vesicles after 5 min incubation with 

Oregon green dextrane (OGD), indicating that the dye internalises rapidly into 

endosomes. Mutant cells were much larger than wild type cells but showed strong 

labelling of peripheral vesicles, suggesting that dye internalisation was not 

significantly impaired. The endosomes did not colocalise with the lysosomal marker 

(lysotracker) after 5 min uptake and 0 min chase (Figure 5 A and C). After 40 min 

chase, almost all the OGD in wild type cells colocalised with lysotracker, whereas in 

the fab1 mutant cells the marker still seemed to be trapped in endosome-like 

structures. However, many labelled endosomes in the mutant cells were much larger 

than those observed in the wild type cells (Figure 5 B and D). These results indicate 

that internalisation is not affected by the fab1 mutation, but the fusion between 

endosomes and lysosomes is defective or delayed in the fab1 mutant cells. 

 

Figure 5. Failure in endosome to lysosome fusion in fab1 mutant Garland cells.  The lower panels (scale 
bars 1,5µm) are enlargements of the upper panels (scale bars 10 µm) (A) Wild type cells take up the Oregon 
green dextran dye (OGD) in green (arrow) and show peripheral labelling after 5 min uptake, but no 
colocalisation with the red lysosomal marker lysotracker (arrowhead). (B) After 40 min chase the OGD is 
colocalising with lysotracker (asterisk), indicating endosome to lysosome fusion. (C) Uptake of OGD in a fab1 
mutant cell after 5 min and almost no lysosomal labelling indicating that lysosomes are less acidic. (D) After 40 
minutes chase the OGD can still be seen in the periphery. The endosomes are larger than wild type and no 
colocalisation can be seen between the weak lysosomal staining and OGD. 
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Characterisation of EGFR downregulation in fab1 mutant embryos 

To investigate the hypothesis that fab1 mutants had impaired MVB sorting, we 

examined the downregulation of the EGFR. This receptor is downregulated by 

endocytic internalisation, sorting into the MVBs and subsequent degradation upon 

fusion with the lysosome. If the sorting into the MVBs is defective, the EGFR will 

remain in the limiting membrane and therefore give rise to increased signalling, as 

observed in hrs mutants (Lloyd et al., 2002). In the Drosophila embryo, a precise 

pattern of sensory organ precursor cells in the peripheral nervous system (PNS) 

provides a useful model to study EGFR signalling. The Drosophila PNS comprises 

approximately 600 neurons and 1200 associated cells organised in a segment specific 

pattern. In the abdominal hemi-segments (A1-A7) the neurons are organised in three 

clusters along the dorsoventral axis. The PNS sensory organ is divided in two parts, 

internal and external. The internal part is called chordotonal organs (Chs) and at the 

lateral (L) position five clustered cells, LCh5, are located. EGFR signalling regulates 

the cell number in LCh5. Two of the five chordotonal organs in LCh5 are determined 

by EGFR signalling. Overactive signalling will give rise to more than two neurons 

such that the total number of neurons would be more than five. Absence of EGFR 

signalling will yield only the three neurons not determined by EGFR signalling 

(Figure 6B) (Okabe and Okano, 1997; Rusten et al., 2001). We investigated the 

possible EGFR overactivation by staining mutant embryos with a marker that labels 

the neurons of the PNS, including the LCh5 (Figure 6A). By confocal microscopy we 

could clearly see five chordotonal organs in wild type embryos (Figure 6D). We 

could not observe any effect of overactive EGFR signalling as expected from the 

previous observed results of what seemed to be defective endosome to lysosome 

fusion in the Garland cells (Figure 6 E and F).  
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(D) Wild type embryo showing two LCh5 organs with five neurons each indicated by asterisks. (E) and (F) 
fab1 mutant embryos showing two LCh5 organs with five neurons each (indicated by asterisks). The mutant 
embryos show no signs of overactive EGF signalling by increased number of neural cells as predicted in (B). 
Figure (B) is adapted from (Okabe and Okano, 1997).
Figure-6.  EGFR
signalling in fab1 mutant 
embryos. (A) The PNS of 
a Drosophila wild type 
embryo visualised by a 
neural marker (22C10). 
The abdominal hemi-
segments  (A1-A7) contain 
a cluster of neurons, LCh5, 
indicated by the rectangle 
and highlighted in (B). (B) 
The LCh5 in an abdominal 
hemi-segment in wild type 
and embryos with no- or 
overactive EGF signalling 
respectively.  The LCh5 is 
highlighted in red and extra 
chordotonal organs are 
indicated in black. Wild 
type LCh5 in (C), where 
one can see the five neural 
cells indicated by arrows.  
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Discussion 

The yeast phosphatidylinositol kinase, Fab1, has been implicated in membrane 

trafficking and receptor sorting. We have identified and characterised the Drosophila 

Fab1 ortholog, which is highly conserved between flies, yeast and mammals. 

Characterisation of three fab1 mutant alleles revealed point mutations predicting 

truncated proteins, which all lack the C-terminal part of the protein, containing the 

kinase domain. These alleles genetically behave as null mutations. 

Immunolocalisation of endogenous Fab1 showed that the enzyme is localised to the 

endocytic pathway, and similar to previous results from yeast, Drosophila fab1 

mutants display reduced lysosomal acidity. In contrast to earlier findings in yeast, 

analysis of fluid-phase endocytosis has revealed enlarged endosomes rather than 

lysosomes (equivalent to the yeast vacuoles) and a block or delay in the endosome-to-

lysosome transport. This suggests a block or delay in lysosomal degradation of 

transmembrane receptors. 

Roles of Fab1 in endocytic trafficking 
Yeast cells containing a point mutation in the lipid kinase domain of FAB1 have 

reduced PI(3,5)P2 production, altered vacuole morphology, reduced acidity and 

endocytic protein sorting defects. Lysotracker staining of Drosophila fab1 mutant 

cells is severely reduced compared to wild-type cells. The reduction of acidity in the 

lysosomes in the fab1 mutant cells could be due to the mislocalisation of lysosomal 

proton pumps (Shaw et al., 2003). To check that the lysotracker stained structures are 

lysosomes, it would be useful to create an antibody against LAMP. Moreover, 

endosome to lysosome fusion is severely reduced or blocked. This impaired fusion 

between endosomes and lysosomes has been confirmed by electron microscopy (EM) 

studies (Andreas Brech, data not shown). Fluid-phase tracer studies of fab1 mutant 

Garland cells have revealed a dramatic enlargement of cell size and endocytic 

structures. Very similar phenotypes have been found in Drosophila cells lacking Hrs. 

In hrs mutants endosome-to-lysosome fusion appears normal, but it is suggested that 
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an inability to invaginate the endosomal membrane causes the enlarged endosomes 

(Lloyd et al., 2002). In the fab1 mutants the cause of the increased sizes of the cells 

and endocytic structures are unknown, but it could be due to a PI(3,5)P2 effector 

protein important for membrane invagination. In yeast, one such effector, Ent3p, 

containing a PI(3,5)P2 binding ENTH domain has been identified. This protein is 

involved in sorting of cargo into the MVBs. The actual sorting mechanism is 

unknown, but Ent3p is suggested to function similarly to epsin. The ENTH domain of 

epsin, once bound to its phosphoinositide, penetrates the membrane and inserts into 

one leaflet of the plasma membrane, thereby pushing aside surrounding lipids and 

inducing membrane curvature. Ent3p localises to the MVBs in a manner that is 

dependent upon Fab1 kinase activity and the PI(3,5)P2 binding ability of the ENTH 

domain. Downstream effectors of Ent3p still remain to be identified (Friant et al., 

2003). 

A potential role for Fab1 in regulating cell signalling 
Internalisation of cell surface receptors and their subsequent degradation in the 

lysosome is a mechanism thought to mediate signal downregulation. There is 

evidence suggesting that endocytic membrane trafficking regulates both the intensity 

of signalling and the colocalization of activated receptors with downstream signalling 

molecules (Ceresa and Schmid, 2000). Activated tyrosine kinase receptors (TKRs) 

are one example of receptors that are sorted into the lumen of the MVBs by 

interaction with Hrs and other proteins (Felder et al., 1990). When the TKRs are 

inside the MVBs they are unable to signal to downstream components (Lloyd et al., 

2002). In yeast FAB1 mutant cells, the transmembrane receptor Ste3 is not efficiently 

sorted into the vacuolar lumen, but instead localises to the limiting membrane of the 

vacuole (Shaw et al., 2003). Since we observed a severely reduced endolysosomal 

transport in the fab1 mutants, it is likely that Fab1 is needed for degradation of 

transmembrane receptors as in yeast. Therefore, we investigated a potential increase 

of signalling of the TKR, EGFR, in the PNS of Drosophila fab1 mutant embryos. 

This preliminary analysis did not reveal any detectable increase of EGFR signalling 
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in the absence of fab1. This could be due to the fact that EGFRs are properly sorted 

into the lumen of MVBs and signalling is therefore inhibited in a normal manner. 

Results from EM analysis have shown intraluminal vesicles in MVBs of fab1 mutant 

larvae (Andreas Brech, data not shown). Another option is that the EGFR is 

dependent on Fab1 to be sorted into the lumen of MVBs (Shaw et al., 2003), and the 

reason for the undetectable overactivation of EGFR might be due to a well-

characterised negative feedback mechanism, whereby transcription of EGFR is 

inhibited by hyperactivation of the receptor (Sturtevant et al., 1994). Yet another 

option is that maternally supplied fab1 mRNA substitutes the zygotic loss, and it is 

therefore not possible to see an effect of the lack of Fab1 on the early stages of 

embryogenesis. These possibilities need to be studied in more detail and further 

analysis is needed to fully understand the role of Fab1in endocytic trafficking. 

Evidence suggests that both PI(3,5)P2, synthesised by Fab1, and ubiquitin have a role 

in cargo selection and MVB sorting. Hrs, ubiquitin and the ESCRT complexes are 

involved in sorting of ubiquitinated cargo into the MVBs, while the role of PI(3,5)P2 

in multicellular animals is poorly understood (Raiborg et al., 2003). It is suggested 

that a subunit of the ESCRT-III complex, Vps24, is interacts with PI(3,5)P2 in the 

MVB sorting process (Whitley et al., 2003). The yeast transmembrane receptor Ste3, 

like the mammalian EGFR, is ubiquitinated and sorted into the MVB. FAB1 mutant 

yeast cells show mislocalisation of the majority of the Ste3 receptors to the vacuolar 

outer membrane in the absence of PI(3,5)P2, but the Ste3 receptor does not show 

strict dependence on the lipid in the sorting process. In the absence of PI(3,5)P2, 

detectable levels of Ste3 are to be found in the lumen of the vacuole. This finding is 

analogous to the localisation of a mutant Ste3 receptor, which lacks a lysine residue 

crucial for ubiquitination and sorting into the MVBs. Inefficient sorting of receptors 

into the MVB, could be due to the presence of multiple sorting signals on plasma 

membrane receptors, involved in recycling receptors from the endosomes, back to the 

plasma membrane. A sorting determinant such as PI(3,5)P2 could play a role here as 

well as in sorting of cargo into the lumen of the MVBs (Shaw et al., 2003).  
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Data that could shed more light on the role of Fab1 could be the identification of a 

Drosophila Ent3p homologue and other proteins containing PI(3,5)P2 binding 

domains. It will be interesting to check whether the EGFR in Drosophila is 

mislocalised in a similar manner to the Ste3 receptor in yeast. Further investigation is 

needed in order to determine if the absence of EGFR overactivation is due to sorting 

of EGFR into the MVBs or transcriptional suppression. To determine the localisation 

of PI(3,5)P2, the ENTH domain of Ent3p could be used to generate a probe which 

binds the lipid. By creating a transgenic fly line carrying a GFP-ENTH fusion it 

would be possible to visualise PI(3,5)P2 in a similar manner to PI(3)P, where the 

dbFYVE probe is used. By using the Flp/FRT system to induce clones it is possible 

to investigate the role of Fab1 in vesicle trafficking, receptor sorting and cell 

signalling when the maternal mRNA contribution is no longer a problem. In this 

study we have identified a previously unknown function of Fab1 in endosomal 

transport. This underlines the importance of studying vesicle trafficking in 

multicellular model organisms. It will be interesting to investigate other differences 

or additional roles that may exist between yeast and Drosophila in the control of 

vesicle transport. 
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Materials and methods 

Materials 

Chemicals 

Advantage Taq polymerase New England Biolabs       
   (MA, USA). 
AdvantageTM2 Taq polymerase BD Biosciences              
   Clontech (CA, USA).  
Affi-gel Bio-Rad Laboratories (CA, USA) 
Agar Life Technologies (Paisley, Scotland).  
Ampicillin (50 mg/ ml) Bristol-Myers Squibb (New        
   York, USA).  
Amylose recin New England Biolabs (MA, USA).  
Apple juice Tine Meierier (Ås, Norway).  
Bromphenol blue Sigma Aldrich (MO 63178, USA) 
BSA (bovine serum albumine) Sigma Aldrich (MO   
   63178, USA) 
Buffers New England Biolabs (MA, USA). 
Chloramphenicol (34 mg/ ml) Sigma Aldrich (MO  
   63178, USA) 
Chloroform MERCK (Darmstadt, Germany) 
dNTPs Roche Diagnistics GmbH (Mannheim,  
   Germany).  
DTT (dithiothreitol) Sigma Aldrich (MO 63178, USA) 
Dye reagent concentrate Bio-Rad Laboratories (CA,  
   USA).  
EcoRI New England Biolabs (MA, USA). 
EST fab1 cDNA clone GH01668 with vector p-Mal-C2 
   and primers Invitrogen life Technologies (Maryland,  
   USA).  
Fly food: agar, molasses, syrup, yeast A/S Pals  
   (Billingstad, Norway).  
Formaldehyde Polysciences, Inc. (Pennsylvania, USA). 
Glycerol MERCK (Darmstadt, Germany) 
Glycine MERCK (Darmstadt, Germany) 
GNS (goat normal serum) Sigma Aldrich (MO 63178,  
   USA) 
HCl MERCK (Darmstadt, Germany) 
Hepes Sigma Aldrich (MO 63178, USA) 
Heptane MERCK (Darmstadt, Germany).  
IPTG (isopropylthio-β-D-galactoside) Saveen Werner   
   AB (Malmö, Sweden).  

KAc Sigma Aldrich (MO 63178, USA) 
KCl MERCK (Darmstadt, Germany) 
KH2PO4 MERCK (Darmstadt, Germany)  
Lysotracker (1mM) in DMSO Molecular Probes  
   (Oregon, USA).  
Maltose Sigma Aldrich (MO 63178, USA) 
Methanol VWR International (Oslo, Norway).  
MgCl2 MERCK (Darmstadt, Germany) 
NaAc MERCK (Darmstadt, Germany) 
NaCl MERCK (Darmstadt, Germany) 
NaH2PO4 MERCK (Darmstadt, Germany) 
Nipagin Sigma Aldrich (MO 63178, USA) 
n-propylgallate Sigma Aldrich (MO 63178, USA) 
Oregon green dextran (1mg/ ml) Molecular Probes   
   (Oregon, USA).  
Phenol Sigma Aldrich (MO 63178, USA) 
Polyacrylamide 40% Bio-Rad Laboratories (CA, USA) 
Ponceau S solution SERVA FEINBIOCHEMICA  
   GmbH & Co KG (Heidelberg, Germany).  
Propionic acid MERCK (Darmstadt, Germany) 
Protease inhibitor Roche Diagnistics GmbH  
   (Mannheim, Germany).  
ProteinTM  Sandards Dual color Bio-Rad, (CA, USA) 
Proteinase K Boehringer-Mannheim GmbH (W.  
   Germany, Germany).  
SalI New England Biolabs (MA, USA). 
Schneider medium Sigma Aldrich (MO 63178, USA)  
SDS Bio-Rad Laboratories (CA, USA) 
Sodium hypochlorite Lilleborg (Oslo, Norway).  
Sucrose MERCK (Darmstadt, Germany) 
Super signal® West ECL reagents Pierce qb Perbio (IL, 
   USA).  
T4-ligase New England Biolabs (MA, USA). 
Trichloroacetic acid MERCK (Darmstadt, Germany) 
Tris Sigma Aldrich (MO 63178, USA) 
Triton X-100 Sigma Aldrich (MO 63178, USA) 
ZnCl2 MERCK (Darmstadt, Germany) 
 

 
 



 55

Antibodies 

Primary antibodies: 22C10 mouse monoclonal antibody was obtained from the 

Developmental Studies Hybridoma Bank at the University of Iowa (diluted 1:20) 

(Fujita et al., 1982), rabbit polyclonal anti β-Galactosidase (diluted 1:4000) from 

Cappel (MD, USA), #267 rabbit polyclonal anti Drosophila fab1 N-terminal protein 

(diluted 1:1000 for western blot and 1:200 for tissue staining, this study). Secondary 

antibodies: Cy2- and Cy3-fluorocrome conjugated donkey anti rabbit IgG (diluted 

1:200 and 1:500 respectively) and Cy3 fluorocrome conjugated goat IgG anti mouse 

(diluted 1:500) were all purchased from Jackson Immuno Research laboratories 

(1330 Fornebu, Norway). 

Constructs 

pMAL-C2  

This vector is similar to pMAL-p2 except for a deletion of the malE signal sequence 

(bases 1531-1605). The vector is described in: 

http://seq.yeastgenome.org/vectordb/vector_descrip/PMALC2.html and supplied by 

New England Biolabs (MA, USA). 

pOT2 

The vector is described in: http://www.fruitfly.org/EST/pOT2vector.html and 

supplied by ResGenTM Invitrogen Corporation (CA, USA). 

Drosophila stocks and genetics 

Genetics 

Flies were grown in vials (Regina industries LTD, Newcastle, England) on standard 

corn meal molasses agar (corn meal, agar, molasses, syrup, yeast, nipagin, propionic 

acid) at 18ºC or at 25ºC. In a standard fly cross each virgin female were crossed to a 

male in a 3:1 (female: male) ratio. Usually between 5 and 10 females were used. All 

crosses described were done at 25ºC.  

http://seq.yeastgenome.org/vectordb/vector_descrip/PMALC2.html
http://www.fruitfly.org/EST/pOT2vector.html
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Drosophila stocks 

Df(2R)14H10W-30: a small deficiency uncovering the fab1 locus (Mohr and Gelbart, 

2002). In the text referred to as fab130w. 

Df(2R)Pcl7B: a large deficiency uncovering the fab1 locus 

(http://rail.bio.indiana.edu/.bin/fbidq0.html?FBstBL-3064). In the text referred to as 

DfPcl7B. Uncovered region: 054E08-F01;055B09-C01 

fab1SJB 8: amorph, nonsense mutation Q1308stop (this study). In the text referred to as 

fab18. 

fab1SJB 21: amorph, nonsense mutation Q1525stop (this study). In the text referred to 

as fab121. 

fab1SJB 31: amorph, nonsense mutation L1321stop (this study). In the text referred to 

as fab131. 

Generation of homozygous mutant embryos 

Homozygous fab1 mutant embryos were generated by crossing: fab131/ CyO, ftz-LZ 

with DfPcl7b/ CyO, ftz-LZ and fab130w / CyO, ftz-LZ. Mutant embryos were 

distinguished by lack of ftz-LZ expression detected by an antibody against β-

Galactosidase. 

Generation of homozygous mutant larvae  

Homozygous mutant fab1 larvae were generated by crossing: fab18/ CyO, Kr-GFP 

with fab18/ CyO, Kr-GFP, fab121/ CyO, Kr-GFP with fab121/ CyO, Kr-GFP and 

fab131/ CyO, Kr-GFP with fab131/ CyO, Kr-GFP. Homozygous fab1 animals were 

distinguished by the lack of Kr-GFP expression. 
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Methods 

Molecular biology 

PCR 

DNA was amplified using AdvantageTM2 Taq polymerase using standard procedures. 

The following conditions were used for a 50 µl reaction: 50 ng template DNA, 5 µl 

10x reaction buffer, 1µl dNTPs (stock: 10 mM), 1 µl of each primer (stock: 1µg/µl), 

1 µl Polymerase, H2O to 50 µl. Denaturation: 30 seconds at 94°C, annealing: 30 

seconds mostly at 60°C (temperature depending on primers), elongation: 1-3 min 

depending on length of DNA at 72°C, 30 cycles, primers were ordered from 

Invitrogen, life technologies (CA, USA).  

Restriction digests, gel electrophoresis, ligations and transformations 

Restriction enzymes, T4-ligase and corresponding buffers were used as 

recommended by New England Biolabs. Digests, ligations and agarose gel 

electrophoresis were carried out using standard techniques (Sambrook, 2001). 

Ligation reaction or purified plasmids were transformed in CaCl2 competent DH10α 

or BL21 E. coli cells using standard procedures heat shock transformations 

(Sambrook, 2001). Bacteria were plated out on Luria Broth (LB)-agar plates, 

standard protocol (Sambrook, 2001) containing ampicillin for selection. 

DNA purification 

DNA was purified from E. coli using the QIAquick® PCR purification kit protocol 

(Quiagen, Hilden, Germany) or for mini preps the Wizard® Plus SV Minipreps DNA 

Purification System (Promega, WI, USA), following the protocols described in the 

handbook provided by the supplier. DNA fragments separated on agarose gels were 

purified using the QIAquick® Gel Extraction kit (Quiagen, Hilden, Germany) 

following the protocols described in the books provided by the suppliers. For mini 
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preps, bacteria were grown over night (ON) at 37 °C in LB with ampicillin (100µg/ 

ml). 

Isolation of genomic DNA and mutational analysis 

For each fab1 mutant strain, 30-50 homozygous fab1 mutant larvae were collected 

and homogenised in an Eppendorf tube in 0.5 ml DNA extraction buffer (0.1 

M NaCl, 0.2 M sucrose, 0.1 M Tris-HCl, pH 9.1, 0.05 M EDTA, 0.5 % SDS, distilled 

water to 100 ml) in a 65 °C water bath. The larvae were incubated for at 65°C for 30 

min and 75 µl 8 M Kac was added. The sample was incubated 30 min on ice, 

centrifuged for 1 min, max speed (20,800 x g) in a tabletop centrifuge (Eppendorf 

centrifuge 5417c equipped with a F45-30-11 rotor, BB Lab as, Skårer, Norway). The 

supernatant was transferred to a fresh tube. This procedure was repeated once. 

Ethanol was added to a final concentration of 70% and the sample was left for 5 min 

at room temperature (RT). The sample was then centrifuged at max speed (20,800 x 

g) for 5 min at RT (Eppendorf centrifuge 5417c, as used before), after which the 

supernatant was removed and the DNA washed in 70% ethanol. The supernatant was 

removed, washed and centrifuged once more and the sample air-dried for 5 min. 200 

µl TE (100 mM tris pH 7.4, 10 mM EDTA pH 8), pH 8, was added and the DNA 

pellet was dissolved at 65 °C for 30 min by vortexing and pipetting. The sample was 

centrifuged at max speed (20,800 x g) for 5 min (Eppendorf centrifuge 5417c, as used 

before) and the pellet was discarded. 20 µl 5 M NaCl, 4 µl 0.5 M EDTA, 0.6 µl 10 

mg/ml RNAseA (final conc. 20ug /ml) was added and the sample was incubated at 37 

°C for 30 min 2.1 µl 10mg/ ml Proteinase K was added and the sample incubated at 

RT for 30 min with the addition of 1 volume Phenol/Chloroform to the aqueous 

solution. The sample was vortexed ~30 sek to form an emulsion and centrifuged 1-2 

min (20,800 x g) (Eppendorf centrifuge 5417c, as used before) until the phases 

separated. The aqueous phase was retained. This procedure was repeated with 

Phenol/ Chloroform, until no protein was left at the interface. 1/10th volume 3 M 

NaAc ph 5.2 and 2 volumes ethanol (70% total in solution) were added, mixed and 

DNA precipitated at -20 °C for 30 min. The sample was centrifuged for 5 min at max 
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speed (20,800 x g) at RT using a tabletop centrifuge (Eppendorf centrifuge 5417c, as 

used before), the pellet was washed with 70% ethanol. DNA was dried and finally 

dissolved in 50 µl TE, pH8. 

On the basis of the published genomic sequence of the fab1 gene region, 21 different 

primer pairs were designed to amplify the whole fab1 gene region from the three fab1 

mutant strains by PCR (2003).  

5’-3’  
Sense       Antisense 
TTTTGTATGTCCCAGTTGCATTG  CAAATGAAATTCATGAAGCTGTGG  
CTGCTGTCCGAACCAAATG    AGCTGCATCGGCAAGATATC 
GGCAAAAAAAAACAGCTGATATG  GTAGTAATCGAAAGTGCCAATCG   
CTCACCATTAAGCTAATTGCC  CGACAGTGCTTAAATATTGGAG  
CTGTGAGTGTGGCAAAATTATC   GTCGGGGTGTTAGGAGTTG 
CTAACCAAGGACCGTGAGTC   GAAACGGTGCGCCCCTG 
CCAATAGTGAGACACGTGGCAC   CTGCCACTATCTTGTACTTCCAG 
TGGCGATCTCAAAGTGTGCAAC   GAAACCAGCGGCTAGCATAG 
GTCAGCGTCTGATTGAGTTTC  ACAATCTTCGAGTCCTTGCG 
AAGCCAGAGCATTGTAGTAACG   CCTCTGAGGAGACAGGTG 
CAAGCTGGGCTATTGCAATG  AAATAAGGTAGGGGAAATGTCAG 
TAGCTGTGGAACCGCGTTAC  AGACGTTGATGGTTCTGCGG 
AAAAAAGAACGCCGAAGTGATC   CGATGCAATGAGTGTTCACATAC 
AGATGCGCTTCCATGGCC    CCAGAGTCGATGTGATGCG 
CACGGATAACAGGGCTACTG   CCGCTAATGGAATTTTTCGC 
TCTCAGTTCAGTGATTGCATAC   TCCTCCTCCTGATTGGAATC 
GCACCGGGTCCGAAATG    CCTCTCTGAGCCCTTAAGATC 
ACTTACGCATTTTTAATACTAGTTC  GATTGACCACGGTCGGATC 
TACATTCGAACCTTTACGCTGG   GAAACCATGCTTATGAGACTCC 
GAAATTATTATCATGATGGAGACC  TACAACTTGACCGCTCAGATC 
ATGTCGGAAAGTTGGCGTGC  CATGTTAGTTACCCTCC 
 

These primer pairs gave approximately 500 bp-sized overlapping fragments spanning 

the entire fab1 genomic region. The PCR reactions were resolved on agarose gel and 

extracted as previously described. The purified DNA was sent for sequencing by 

AGOWA (Berlin, Germany) and aligned against genomic DNA CG6355 (2003) and 

one other by using software Vector NTI, AlignX 2003 provided by InforMax Inc. 

(Maryland, USA) to find the mutations. 
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cDNA library sequencing 

DH10α E. coli cells were transformed with pOT2-GH01668 EST fab1 cDNA clone 

and selected on chloramphenicol (20 µg/ml) agar plates. The DNA was purified by 

Wizard® Plus SV Minipreps DNA Purification System and sent for sequencing to 

AGOWA (Berlin, Germany). The same primers were used as for the genomic DNA 

sequencing. 

Sequence alignments 
The alignments of genomic sequences and calculations of protein identities and 

similarities were done using Vector NTI, AlignX 2003 provided by InforMax Inc. 

(MD, USA). Alignments of protein sequences were done using ClustalW (Thompson 

et al., 1994).  

Production of Fab1 antibody 

Polyclonal antibodies against the N-terminal and the C-terminal parts of the Fab1 

protein were generated using the sequence of an EST cDNA clone GH01668. A 

fragment encoding amino acids 1-400 (N-terminal part of protein) and amino acids 

1424-1809 (C-terminal protein) were amplified by PCR. In the N-terminal protein a 

stop codon behind serine 400, an EcoRI site at the 5’ end and a SalI site at the 3’ end 

were introduced using sense and antisense primers; 

5’CCGGAATTCATGACTAGCAACAACCAAAAC 3’ and 

3’GATATTCAAGAGGTTTTCGACTCAGCTGCAGC5’ respectively. In the C-

terminal protein an EcoRI site in front of glutamine 1424, at the 5’ end and a stop 

codon in front of a SalI site at the 3’ end were introduced using sense and antisense 

primers; 5’CCGGAATTCGAAGACAGTCCAAGCCTTTG 3’ and 

3’CCCTCCCGGAAAGGTTTCAGATTACTCAGCTGCAGC5’ respectively. The 

obtained PCR product was run on an agarose gel, excised and extracted by 

QIAquick® Gel Extraction kit. The purified PCR product was then restricted with 

EcoRI/ SalI and cloned into EcoRI/ SalI digested vector pMAL-C2 to make a maltose 

binding protein (MBP)-fusion. Vector pMAL-C2 was transformed into DH10α cells 
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and plated out on ampicillin plates (100 µg/ ml). The plasmids were purified using 

procedures described above. The vector was further transformed into BL21 bacteria, 

incubated for 4 hours. IPTG (to final conc. 0,3 mM) was added to express the MBP-

fusion protein in front of Ptac promoter and Fab1 N-term MBP-fusion protein was 

extracted (procedure described below). Proteins were dialysed ON in a PBS buffer 

and sent for immunisation in rabbits (EUROGENTEC S.A. Herstal, Belgium). 

MBP fusion protein production and purification 

A 5 ml pre-culture of LB containing ampicillin (100µg/ml) and transformed BL21 

bacteria was set up ON and used to start a 500ml LB/ ampicillin culture. Bacteria 

were grown to an OD (600 nm) of 0.5, at after which point IPTG was added (final 

concentration 0.3 mM) to induce protein expression and the culture incubated to an 

OD of 1.5. Bacteria were centrifuged for 10 min at 5000 rpm (2,600 x g)  (Eppendorf 

centrifuge 5417c, as described before). The supernatant was removed and the sample 

was frozen at -20°C. The bacterial pellet was dissolved in 20 ml sonication buffer 

(NaCl 200 mM, Tris 20 mM, DTT 1 mM protease inhibitor (EDTA (ethylene-

diamine-tetra-acteic acid)-free protease inhibitor was used to dissolve the bacteria 

expressing the N-term protein containing the FYVE domain) and sonicated on ice 5 

times (30 seconds, amplitude 50-60, pause 30 seconds in between). 1 ml Triton X-

100 was added, the sample was left at shaking 4°C for 30 min and centrifuged at 

12000 rpm (16,000 x g) for 15 min at 4°C (16,000 x g, Eppendorf centrifuge 5417c, 

as used before). Amylose resin in a 20 ml Bio-Rad Polyprep® Chromatography 

column (CA, USA) was pre-washed with 100 ml sonication buffer. The protein-

containing supernatant with protein was removed and diluted in 100 ml sonication 

buffer. The supernatant was added to the column, but only the MBP-Fab1 fusion 

protein was bound to amylase beads. The MBP-fusion protein was eluted by addition 

of 20 ml sonication buffer with 10 mM maltose. Protein concentration was calculated 

by measuring OD (280 nm). OD was measured on a Hewlett Packard 845X UV-

Visible System provided with UV-visible ChemStation software. 
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Antibody purification 

MBP fusion proteins of C- and N-terminal parts of Fab1 were obtained as previously 

described. 1 mg of each protein was applied to a pre-washed Affi-gel® (Active Ester 

Agarose) 10 or 15 (depending on pI (isoelectrical point)) for binding and centrifuged 

at 10000 rpm (11,000 x g, Eppendorf centrifuge 5417c, as used before) for 3 min. 

The protein was incubated for 3.5 hours at 4 °C on a rotator. Glycine, pH 8, was 

added to a final concentration of 0.1 M (1 µM ZnCl2 was added to the FYVE-domain 

containing N-terminal protein). The gel was incubated at RT for 1 hour, centrifuged 

at 10000 rpm (11,000 x g, Eppendorf centrifuge 5417c, as used before) for 3 min and 

washed 3 times with hepes buffer (20 mM hepes pH 7.2, 140 mM NaCl, 1 µM 

MgCl2, 1 µM ZnCl2, 1 mM DTT). The gel was washed 3 times with PBS, 

centrifugated at 10000 rpm (11,000 x g) for 1 min and incubated with 2 ml rabbit 

serum, third bleed, for 2 hours at RT. The gel was transferred to a 10 ml Bio-Rad 

Polyprep® chromatography column and washed with 20 column volumes of PBS. 

The purified antibody was eluted with 1 ml 0.1 M glycine pH 2.8 into tubes 

containing 25 µl 3 M tris pH 8.8. Glycerol was added 1:1 and the purified antibody 

stored at –20 °C. 

Western blotting 

Larvae were homogenised and mixed with concentrated samplebuffer. In the cases 

where single larvae were used, each individual larvae was homogenised and put 

directly into 20 µl SDS-PAGE 4X sample buffer (300 mM tris pH 6.8, 30 % glycerol, 

10 % SDS, 0.6 % bromphenol blue, 600 mM DTT), 20 µl distilled water and 1.6 µl 

protease inhibitor. In other cases 20 larvae were homogenised together and 

centrifuged 1 min to remove cuticles (20,800 x g, Eppendorf centrifuge 5417c). The 

protein concentration was measured using a Bio-Rad protein assay, dye reagent 

concentrate and Biotrack II plate reader, (Amersham Biosciences, Oslo, Norway) 

following instructions provided by the supplier and approximately 30 µg protein was 

denatured with 4X sample buffer. Prior to loading on to a 7.5 % polyacrylamide gel, 

samples were heated to 100 °C for 10 min. For polyacrylamide gel electrophoresis, 
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standard procedures were used as described in (Sambrook, 2001) and protein 

standard Precision Plus ProteinTM  Standards Dual color was used to indicate protein 

sizes. Resolved proteins were transferred to Immobilon-P PVDF transfer membrane 

(Millipore Corporation, Bedford, MA) using a Mini Trans-Blot® Electrophoretic 

Transfer Cell (Bio-Rad, CA, USA) following the instructions provided by the 

supplier. After the protein transfer, the membranes were dried and blocked by 

incubation for 1 hour at RT, stained with Ponceau S Red solution (0.2 % Ponceau, 3 

% trichloroacetic acid) and destained with distilled water. The membranes were re-

soaked for 0.5 hour in PBS and 0.1 % tween (3 times change of solution) and 

incubated with primary antibody #267 diluted in PBS, 0.1 % tween and 2 % dry milk 

ON at 4 °C. The membranes were washed 3 times for 10 min with PBS and 0.1 % 

tween and incubated with secondary antibody (horse radish peroxidase (HRP) 

conjugated IgG HRP-goat anti-rabbit) diluted in PBS, 0.1 % tween and 2 % dry milk 

ON at 4 °C. The membranes were washed as before and developed in Super signal® 

West ECL (enhanced chemiluminiscence system) reagents following the instructions 

provided by the supplier. 

Oregon green dextran (OGD) chase experiment in Garland cells 

Wandering third instar wild type and fab1 mutant larvae were collected and dissected 

to expose the Garland cells to the medium. The tissue was left in OGD diluted in 

Schneider medium (1:1) for 5 min, before incubation in lysotracker (1:1000) for 1 

min, the Garland cells were mounted on a glass slide in 80% glycerol in PBS and 

covered with a coverslip. The tissue containing the cells for the chase experiment 

were washed and incubated in Schneider medium for 40 min before being exposed to 

lysotracker (1:1000 in PBS for 1 min) and mounted. All experiments were performed 

at 25 °C. 

Antibody staining of imaginal discs 

10-20 wandering third instar larvae were collected in a dissecting dish with PBS (140 

mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM NaH2PO4). The larvae were cut in 
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half with a pair of forceps and the anterior parts containing the imaginal discs were 

inverted. The anterior body parts of the larva were transferred to a 24 well tissue 

culture plate (Labware, New Jersey) containing fixative (PBS, 0.1% Triton X-100 

and 3% formaldehyde (FA)) and incubated on ice for 20 min. The tissue was washed 

5-6 times (30 min) with PBX (PBS and 0.1% Triton X-100) and blocked for 1 hour in 

PBX+ 0.1% bovine serum albumine (BSA). The tissue was incubated with primary 

antibody #267 diluted in PBX, 0.1% BSA and 5% goat normal serum (GNS) ON and 

washed as before. The tissue was incubated ON with Cy2 conjugated secondary 

antibody diluted as described above. The tissue was washed as before and covered in 

80% glycerol in PBS and 0.4% n-propylgallate, before ON storage at 4°C. Discs 

were dissected out and mounted onto a glass slide, covered with a coverslip, and 

sealed with nail varnish. 

Embryo collection and staining of PNS 

The embryos were collected after two hours egg laying on apple juice plates (22.5 g 

agar, 750 ml dH2O, 25 g sucrose, 250 ml apple juice, 1.5 g nipagin dissolved in 3 ml 

ethanol) with dried yeast and aged to stage 16 (15 hours). The embryos were 

dechorionated with 6.5% sodium hypochlorite by gently rocking the plate for 1 min, 

then transferred to a filter container and rinsed in distilled water. The embryos were 

transferred with a spatula to an Eppendorf tube containing freshly made fix solution 

(heptane 500 µl, PBS 450 µl, 50 µl 16% FA), vortexed to mix and incubated for 20 

min on an orbital shaker. The lower, aqueous phase was removed; excess 100% 

methanol was added and mixed well by inversion. The upper heptane phase was 

removed, more methanol added and mixed by inversion. The dechorionated embryos 

collected at the bottom of the tube and were washed once more in methanol. The 

methanol was removed, excess PBX was added and the embryos were rinsed twice in 

PBX. The embryos were blocked in PBT (PT, 0.5% BSA) for 30 min at an orbital 

shaker. The embryos were incubated with primary antibody 22C10 and rabbit 

polyclonal anti β-Galactosidase, diluted in PBT and 5% GNS ON on a rocking table 

at 4°C. The embryos were washed 3 times in PBT for 5 min, twice for 20 min and 
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incubated with Cy3 conjugated IgG secondary antibody diluted in PBT for 2 hours at 

room temperature, covered from light on a rocking table. The embryos were washed 

3 times for 5 min and twice for 20 min in PBT and mounted in 80% glycerol. The 

embryos were visualised by immunofluorescence microscopy. 

Confocal immunofluorescence microscopy 

All fluorescence microscopy was carried out on a Zeiss LSM 510 confocal 

microscope from Zeiss (Jena, Germany). Images were processed with Adobe 

photoshop from Adobe (San Jose, CA) and Zeiss LSM Image Browser (Version 3) 

from Zeiss (Jena, Germany). 



 66 

Appendix 1 

mofab1          -------------------MATDDKSSPTLDSANDLPRSPASPSHLTHFKPLTPDQDEPP 41 
drfab1          -------------------------MTSNNQNNSSSHQHLHSPSKLTEFARNFEDKPESL 35 
cefab1          ------------------------------------------------------------ 
yfab1           MSSEEPHASISFPDGSHVRSSSTGTSSVNTIDATLSRPNYIKKPSLHIMSTSTTSTTTDL 60 
                                                                             
 
mofab1          FKSAYSSFVNLFRFNKERGEGGQGEQQSPS----------------SSWASPQIPSRTQS 85 
drfab1          FGRVVNKIQNVYNQSYNTVNDISSGSSSSSSTQPVQVVGKSQFFSDSQTSTAEIADVETS 95 
cefab1          ------------------------------------------------------------ 
yfab1           VTNPILSNISVPKISPPTSSSIATATSTSHVTGTASHSNIKANANTSTSVNKKNLPPTTS 120 
                                                                             
 
mofab1          VRSPVPYKKQLNEELHRRSSVLENTLPHPQESTDSRRKAEPACGGHDPR----------- 134 
drfab1          SQSSVRPQPPTTLSIRTNSETRGTSTSSNTAAEDSETSDRVETLPLPTS----------- 144 
cefab1          ------------------------------------------------------------ 
yfab1           GRIPSSTIKRYPSRYKPSHSLQLPIKNDSNFKRSSIYASKSTVTAIPIRNNRPISMQNSY 180 
                                                                             
 
mofab1          ------------------TAVQLRSLSTVLKRLKEIMEGKS-------QDSDLKQYWMPD 169 
drfab1          ------------------EANQGRTVSNVLKHISNIVATKNNNDLRNYKDTELQRFWMPD 186 
cefab1          ---------------------------------------------------------MPD 3 
yfab1           ARTPDSDHDDVGDEVSSIKSASSSLTASLSKSFLFAFYNNRKKDKTSNNGVLSKEYWMKD 240 
                                                                         * * 
 
mofab1          SQCKECYDCSEKFTTFRRRHHCRLCGQIFCSRCCNQEIPGKFMGYTGDLRACTYCRKIAL 229 
drfab1          SKAKECYDCSQKFSTFRRKHHCRLCGQIFCSKCCNQVVPGMIIRCDGDLKVCNYCSKIVL 246 
cefab1          STGRECYQCEERFTTFRRRHHCRLCGQIFCAKCCSSHIDGAALGYMGELRLCDYCARKVQ 63 
yfab1           ESSKECFSCGKTFNTFRRKHHCRICGQIFCS-SCTLLIDGDRFGCHAKMRVCYNCYEHAD 299 
                .  :**:.* : *.****:****:******: .*.  : *  :   ..:: *  * . .  
 
 
mofab1          SYAHSTDSNSIGEDLNALSDSTCSVSILDPSEPRTPVGSRKASRNIFLE----------- 278 
drfab1          TFLKSS-SSEMGQDMQELQQHLSNKLEVQ------------------------------- 274 
cefab1          RLAEEGKQTPTTSTTRSQTPVNSRKISFDRN----------------------------- 94 
yfab1           TYEDSSDEENDSTMQLNEPRSRSRSRSSNTNPYSHSHSHLHLISQDNHNGTDLHDPVAAT 359 
                   ..  .              .     :                                
 
mofab1          ------------------------------------------------------------ 
drfab1          ------------------------------------------------------------ 
cefab1          ------------------------------------------------------------ 
yfab1           DNPQQQNEVYLLNDDDVQSIMTSGEDSKLFISTPPPPPKMAIPATKQGGSLEISFDSEND 419 
                                                                             
 
mofab1          -------DDLAWQSLIHPDSSNSALSTRLVSVQEDAGKSPARNRSASITNLSLDRSGSPM 331 
drfab1          ----------------------------------DSGSSLAKHP-------QMQRAPLPR 293 
cefab1          ---------------------------------TAHKNSDTVRTVSNGAIWSLCPPESSM 121 
yfab1           RALHYQDDNPGRHHHLDSVPTRYTIRDMDNISHYDTNSNSTLRPHYNTNNSTITINNLNN 479 
                                                     .. : .         :        
 
mofab1          VPSYET-----------------------------SVSPQANRNYIRTETTEDERKILLD 362 
drfab1          KTSVGY-----------------------------QEERFSSHPTYTTLSIDDRKNILQQ 324 
cefab1          PPEITS-----------------------------PPQLGSRRNSLAQSSNGPGVPTILS 152 
yfab1           TTSNNSNYNNTNSNSNINNPAHSLRRSIFHYVSSNSVNKDSNNSSATPASSAQSSSILDP 539 
                 ..                                  .  : .      :       :   
 
mofab1          SAQLKDLWKKICHHTSGMEFQDHRYWLRTHPNCIVGKELVNWLIRNGHIATRAQAIAIGQ 422 
drfab1          SNSLITLHEEMQRDLP---------------AQNCGQRLIEFLNSNNKSANEVQAVAILN 369 
cefab1          VADLCASNSAMLTNSHS---------------------------HPMITEEEESGPDWFR 185 
yfab1           ANRIIGNYAHRNYKFKFNYNSKGPSQQNDTANGNNDNNNNNNNNNNNNNNNSASGIADNN 599 
                   :         .                                       ..    . 
 
mofab1          AMVDGRWLDCVSHHDQ-------LFRDEYALYRPLQSTEFSETPSPDSDSVNSVEGHSEP 475 
drfab1          AMLAAGFLEPIVPDPE-------QMDFDSSLHYKFSKSSSSDTSRTMSPQFEANP-HAEP 421 
cefab1          TMHPG--MDGVINNET-------SDSADVFAYANLAGAITNEFTEMMDARAAEPTSATTD 236 
yfab1           NIPSNDNGTTFTLDKKKRNPLTKSKSTSAYLEYPLNEEDSSEDEGSMSIYSVLNDDHKTD 659 
                 :        .  .             .      :     .:     .             
 
mofab1          SWFKDIKFDDSDTEQIAEEGD--------------------------------------- 496 
drfab1          QPPKSMDQSAEEKEKELEN----------------------------------------- 440 
cefab1          RKITFPSLSLDESVMNAAK----------------------------------------- 255 
yfab1           NPIRSMRNSTKSFQRAQASLQRMRFRRKSKSKHFPNNSKSSIYRDLNFLTNSTPNLLSVV 719 
                        . ..      .                                          
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mofab1          --DNLAKYLVSDTGGQQLSISDAFIKESLFNRRVEEKSKELPFTPLGWHHNNLELLREEN 554 
drfab1          ------------------------------------------------------ELENDR 446 
cefab1          ------------------------------------------------------------ 
yfab1           SDDNLYDDSSPLQDKASSSAASRLTDRKFSNSSGSNNNSNSNSNINTDPWKRIASISGFK 779 
                                                                             
 
mofab1          EEKQAMERLLSANHNHMMALLQQLLQNESLS-SSWRDIIVSLVCQVVQTVRPDVKHQDDD 613 
drfab1          CYTTATSKLLASYCEHEEQLLAQMLRAHNLD-QEWDKVLQMLCSTAANHFKPEHCSN-DL 504 
cefab1          --EEQRDNLEELFRRNTERILDEVMKREYIREDKWRDLILKSVYEVVENVTVNVPSG-DT 312 
yfab1           LKKEKKRELNEVSLLHMHALLKQLLNDQEISNLQEWITLLDGALRKVLRTILNARDLNTL 839 
                       .*      :   :* :::. . :   .    :       .     :        
 
mofab1          MDIRQFVHIKKIPGGK-KFDSVVVNGFVCTKNIAHKKMN----SCIKNPKILLLKCSIEY 668 
drfab1          MDIRNYVNFKKVPGGR-RKDSKIVHGVAFSKNVAHKDMA----THVPFPRILLLQCPIVY 559 
cefab1          MNIADYVHVKKVHKKEGKVDSEIIWGVACSRSLVYKSLSEEDESSHTTESIMIVSGSIEY 372 
yfab1           DFRQTYVKIKRISGGS-PQNSEYIDGVVFSKALPSKTMP----RHLKNPRILLIMFPLEY 894 
                     :*:.*::       :*  : *.. :: :  * :            *:::  .: * 
 
mofab1          LYREETKFTCIDPIVLQEREFLKNYVQRIVDVRPTLVLVEKTVSRIAQDMLLEHGITLVI 728 
drfab1          ER-IEGKFVTIETVLLQEKEYLRNVCARIMSFKPNVVLVHKNVAGIAQDLLRSYEVTLVL 618 
cefab1          ER-VSNKLSSIEPIIVQEEKFLEKQIDRIATKRASLILVEGGVSHIAAQLLHKRGIKVAV 431 
yfab1           QK-NNNHFLSIESVFRQEREYLDKLVSRLKSLHPDIIYVGANVSGYALELLNDSGIVVQF 953 
                    . ::  *:.:. **.::* :   *:   :. :: *   *:  * ::* .  : : . 
 
mofab1          NVKSQVLERISRMTQGDLVVSMDQLLTKPHLGTCHKFYMQIFQLPNEQTKTLMFFEGCPQ 788 
drfab1          DVKLSVMERLSRTLQCDIVSSIESNITMPKLGYCNDFYIRNYNG-----KTLMFFEKLTN 673 
cefab1          NVKMSILQRISRATGADIVSNSDSQLVEQNLGCCPEFQQRNMQQEDGRIKTLMIFADCQK 491 
yfab1           NMKPQVIERIAKLTEADIAISVDKLATNIKMGECETFEVKSYIYGN-ISKTYTFLRGCNP 1012 
                ::* .:::*:::    *:. . :.  .  ::* *  *  :         **  ::      
 
mofab1          HLGCTIKLRGGSDYELARVKEILIFMICVAYHSQLEISFLMDEFAMPPTLMQSPSFHLLT 848 
drfab1          PRGYTCLLRGGSNAELTRVKRVASALLFARYNWRLEMSFLLNEFAQP------------- 720 
cefab1          ETGCTVLLHGDDLKELVAVKRVVQFLVTIVYSNYLEQSYLN------------------- 532 
yfab1           ELGGTILLRGDSLENLRKIKQVSEFMVYAIFSLKLESSFFNDNFIQLSTDVYLKRAESKK 1072 
                  * *  *:*..  :*  :*.:   ::   :   ** *::                     
 
mofab1          EGRGEEGASQEQVSGSSLPQDPECPREALSSEDSTLLESRTVLEKGELDNKSIPQAVASL 908 
drfab1          -----------------------------------LSPKPSIFDSKETSPKTETEAELRS 745 
cefab1          -------------------------------------------AFNTTIARRQSDCVVCE 549 
yfab1           LQVFEG-YFADFLIKFNNRILTVSPTVDFPIPFLLEKARGLEKKLIERINQYESESDLDR 1131 
                                                                  :  .:.     
 
mofab1          KHQDYTTPTCPAGIPCALFALVPESLLPLHMDQQDAVGNEHRETSQQTDEQQDPKSQMKA 968 
drfab1          KRPIILERKSEDKITTIVSENVSDFTDPLRASQAEALSTSPCAPPVVEALAVEPR----- 800 
cefab1          KRRAIVYSQGEK------------------------------------------------ 561 
yfab1           QTQLNMLQGLESTITKKHLGNLIKFLHEMEIENLELEFQKRSRQWEVSYSSSQNLLGTGS 1191 
                :                                                            
 
mofab1          FRDPLQDDTGMYVTEEVTSSEDQRKTYALTFKQELKDVILCISPVITFREPFLLTEKGMR 1028 
drfab1          --------------------------YDNRFRTALSSTLLSVSPFLTFPLPYLETEQGRK 834 
cefab1          ----------------------------TEFEKNLYATMLSSSPVIEFEPPLLETATGRE 593 
yfab1           HQSITVLYSMVSTKTATPCVGPQIVTIDYFWDSDISIGQFIENVVGTARYPCQQGCNG-- 1249 
                                              :   :    :  . .     *      *   
 
mofab1          CSTRDYFPEQIYWSPLLNKEVKEMESRRKKQLLRDLSGLQGMNGSVQAKSIQVLPSHE-- 1086 
drfab1          CKLRKLFPAELYFSKQWSRTGLERPDSMGD------GEAGKSEPGNKENQMQLLPAHD-- 886 
cefab1          CPLIAYFKQPLYKLLKP-------------------GDVELIKQGYEEDIVPIPKKEP-- 632 
yfab1           -LYLDHYRSYVHGSGKVDVLIEKFQTRLPKLKDIILTWSYCKKCGTSTPILQISEKTWNH 1308 
                      :   ::                              : . .   : :        
 
mofab1          ----LVSTRIAEHVGDSQTLGRMLADYRARGGEFSQNIWNPFVHSKDDIMYFRWQIRETK 1142 
drfab1          ----FVLMKITAPAS-SRDIQSKLAEFRSFGGRLPKGKAPMLRPKKKNAEVIQRPQKVSE 941 
cefab1          ----LLVDRRHAFAQCNRGIN---------------------FRRRTAQIVKHRKIVETE 667 
yfab1           SFGKYLEVMFWSYKDSVTGIGKCPHDFTKDHVKYFGYNDLVVRLEYSDLEVHELITPPRK 1368 
                     :             :                                .      : 
 
mofab1          LRVMKERGLIPSDVIWPTKVDCLNPANHQRLCVLFSSSSAQSSNAPSACVSPWIVTMEFY 1202 
drfab1          EQLYK---------------DALDPQNHQRLPVLFCSFHYNPKGVSSFCKLPMLLDMKFY 986 
cefab1          KQPFR-------------AKDVLDPRVHQTLAVLFGSFSRKSPNAPYFCVRPWVVSMQYY 714 
yfab1           IKWKPHIDIKLKVELYYKILEKINNFYGSVLSRLERIKLDSMTKDKVLSGQAKIIELKSN 1428 
                 :                  : ::    . *  *      .       .  . :: ::   
 
mofab1          GKNDLTLGIFLERYCFRYSYQCPSMFCDTPMVHHIRRFVHGQGCVQIILKELDSPVPGY- 1261 
drfab1          GQYDIMLEQFLQRYCCLFNSMCP--SCNLPMLGHVRRYVHSLGCVHVYLTEDLTRSD--- 1041 
cefab1          KDHDMTIGEFLVKFCFNRSYECPSSNCEVPMLDHSRKLVYGKVCVEISTQTVNEAENAIE 774 
yfab1           ATEEQKLMLQDLDTFYADSPCDQHLPLNLVIKSLYDKAVNWNSTFAIFAKSYLPSETDIS 1488 
                   :  :           .        :  :     : *     . :              
 
mofab1          ---QHTILTYSWCRICKQVTPVVALSNESWSMSFAKYLELRFYGHQYTRRAN-------A 1311 
drfab1          ---PTRIYFTSWCSICNATTPTIPLSDAAKCLSLAKYLEMRFHGHAYKRRPPSTDAEQGG 1098 
cefab1          SEQQKSIMTWRNCGKCNCSSQMVKFDKAIWHLSFAKFLEYIGNSCFTTDTIYPITN---Q 831 
yfab1           RITAKQLKKLFYDSSRKDSEDKKSLHDEKAKTRKPEKNELPLEGLKDVEKPKIDSKNTTE 1548 
                      :         :       : .       .:  *    .                 
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mofab1          EPCGHSIHHDYHQYFSYNQMVASFSYSPIRLLEVCVPLPKIFIKRQAPLK---------- 1361 
drfab1          TVCEHSLHRDYVHHFSFRGVGAKFQYTPVEVWETDLPSLTVQLDLPQPFQS--------- 1149 
cefab1          NQCSHCFFHEKLYFFAMDNLVTTFKVIAIRPYSVVFSPIICSVKVLKVSR---------- 881 
yfab1           NRDRTNEPQNAVTITTFKDDTPIIPTSGTSHLTVTPSASSVSSSLTPQTEERPPISRSGT 1608 
                        ::     :     . :         .  .      .     .           
 
mofab1          -VSLLQDLKDFFQKVSQVYLAVDERLASLKTDTFSKTREEKMEDIFAQKEMEEGEFKNWT 1420 
drfab1          -AQVQEEIKNFSIKGHEVYNRIHERIADLATEEENSPLVQHLKTMLTHDQFIFKQKIEIV 1208 
cefab1          -KELSDDVSRIATLALTACEDTNKQLAELDEEVQITPIVVKLAGAIRNTMALASESRMFA 940 
yfab1           GISMTHDKSTRPNIRKMSSDSSLCGLASLANEYSKNNKVSKLATFFDQMHFDALSKEFEL 1668 
                  .: .: .                :*.*  :   .    ::   : :      .      
 
mofab1          EKMQARLMSSSVDTPQQLQSIFESLIAKKQSLCEVLQAWNSRLQDLFQQEKGRKRPSVPP 1480 
drfab1          HTLLTDNRATAYDT-------SDALAMARRALAESIELWGPRLQEIEK------------ 1249 
cefab1          KNILS------------------------------------------------------- 945 
yfab1           ERERERLQLNKDKYQAIRLQTSTPIVEIYKNVKDAVDEPLHSRSSGNNLSSANVKTLEAP 1728 
                .                                                            
 
mofab1          SPGRLRQGEESKINAMDTSPRNISPGLSQWRKRRSLLDNPVQPATSSTHLQLPTPPEALA 1540 
drfab1          ----LTAKQAHHIDSGTICTEELRP--------EQVQTADSSKVTTSSLPKENDPLECPS 1297 
cefab1          -------GDEDLIRSNDRLYREVTG---------TFMKVREVTYNLIALWNENCAAIKYP 989 
yfab1           VGEHSRANNCNPPNLDQNLETELENSISQWG---ENILNPSGKTTASTHLNSKPVVKETS 1785 
                        :            ::                     .  :  :        . 
 
mofab1          EQVVGGPTDLDSASG--SEDVFDGHLLGSTDSQVKEKSTMKAIFANLLPGNSYNPIPFPF 1598 
drfab1          EDTETGASNSQTVLD--KNFSIDQMLASTVNVYSDKKSIRKILTQLLPSGNQVNPLQSPF 1355 
cefab1          KRTPEDIQEIATLQK--LENPFPSHLHLAIKLQPRLGVVVRDIQDTRGN----------- 1036 
yfab1           ENPKSIVRESDNSKSEPLPPVITTTTVNKVESTPQPEKSLLMKTLSNFWADRSAYLWKPL 1845 
                :       :  .         :        .                              
 
mofab1          DPDKHYLMYEHERVPIAVCEKEPSSIIAFALSCKEYRNALEELSKATLRNSAEEGLPANS 1658 
drfab1          -PAQDHLTLPLGSIPIHVRETDLSSVIAYSLTSMDYQKAIDEAEANSNAAHSSPQLKRKI 1414 
cefab1          ------------------FKPDIGSIIAYALSAVDYNKIPEAADTVSMDSASSSLKFSQM 1078 
yfab1           VYPTCPSEHIFTDSDVIIREDEPSSLIAFCLSTSDYRNKMMNLNVQQQQQQQTAEAAPAK 1905 
                                   : : .*:**:.*:  :*.:     .                 
 
 
mofab1          ALDNRPKSS-SPIRLPEISGGQTNRTVEAEPQPTKKASGMLSFFRGTAGKSPDLSSQKRE 1717 
drfab1          PLAESVSDAEDSPSLSRTSSNTSAAPNASVPSPATAASESEEKSKERIKQPPSPHITLAF 1474 
cefab1          DDGENLASS--------------------------------------------------- 1087 
yfab1           TGGNSGGTT------------------QTGDPSVNISPSVSTTSHNKGRDSEISSLVTTK 1947 
                   :    :                                                    
 
mofab1          TLRGADSAYYQVGQAGKEGLESQGLEPQDEVDGGDTQKKQLTNPHVELQFSDANAKFYCR 1777 
drfab1          QDHSCQFQCKIYFAREFDAMRSKSLKPP-KLDKSLYRRLEKSKMREELRISQSRTGSEME 1533 
cefab1          -------------------------------------------QHLEVEFEDESASYYVK 1104 
yfab1           EGLLNTPPIEGARDRTPQESQTHSQANLDTLQELEKIMTKKTATHLRYQFEEGLTVMSCK 2007 
                                                            : . .:.:  :    . 
 
mofab1          LYYAGEFHKMREVILGSSEEE------FIRSLSHSSPWQARGGKSGAAFYATEDDRFILK 1831 
drfab1          LVRKPSDVGAPRTTEDDSNQEEDARIALARSLCKSVQWEARGGKSGSRFCKTLDDRFVLK 1593 
cefab1          MLYAEKFRKLRELLIAEGEET------FIRSLSNSTFWTPQGGKSGSFFYRTQDDRFVVK 1158 
yfab1           IFFTEHFDVFRKIC--DCQEN------FIQSLSRCVKWDSNGGKSGSGFLKTLDDRFIIK 2059 
                :          .    . ::       : :**...  * ..*****: *  * ****::* 
 
mofab1          QMPRLEVQSFLDFAPHYFNYITNAVQQKRPTALAKILGVYRIGYK-NSQNNTEKKLDLLV 1890 
drfab1          EMNSRDMTIFEPFAPKYFEYIDRCQQQQQPTLLAKIFGVFRVSVK-KKDSFVER--SVMV 1650 
cefab1          QMSRFEIQSFVKFAPNYFDYLTTSATESKLTTLCKVYGVFRIGYK-SKT--TTLKVDILV 1215 
yfab1           ELSHAELEAFIKFAPSYFEYMAQAMFHDLPTTLAKVFGFYQIQVKSSISSSKSYKMDVII 2119 
                ::   ::  *  *** **:*:  .  ..  * *.*: *.:::  * .         .::: 
 
mofab1          MENLFYGRKMAQVFDLKGSLRNRNVKTDTGKESCDVVLLDENLLKMVRDNPLYIRSHSKS 1950 
drfab1          MENLFYGCNIENKFDLKGSERNR--LVDPSNQQGEIVLLDENLVQMSWSKPLYVLSHSKT 1708 
cefab1          MEYLFYNHNVSQVWDLKGSLRNR--LASTGKSANEMVLLDENFVKDLWNQQLYVLPHSKA 1273 
yfab1           MENLFYEKKTTRIFDLKGSMRNR---HVEQTGKANEVLLDENMVEYIYESPIHVREYDKK 2176 
                ** ***  :  . :***** ***       .   : ******:::   .. :::  :.*  
 
mofab1          ELRTSIHSDAHFLSSHLIIDYSLLVGRDDTSNELVVGIIDYIRTFTWDKKLEMVVKSTGI 2010 
drfab1          VLRDAIQRDSSFLEKNLVMDYSLLVGLDKKNGVLVLGIIDYIRTFTLDKRVESIIKGSGI 1768 
cefab1          AMNQAISNDSHFLSSQYIMDYSLLVGVDDDNGELILGIVDYMRTYTLDKKLESWVKIVAI 1333 
yfab1           LLRASVWNDTLFLAKMNVMDYSLVIGIDNEGYTLTVGIIDFIRTFTWDKKLESWVKEKGL 2236 
                 :. ::  *: ** .  ::****::* *. .  * :**:*::**:* **::*  :*  .: 
 
mofab1          LGGQ--GKMPTVVSPELYRTRFCEAMDKYFLMVPDHWTGLDLNC-- 2052 
drfab1          LGGK--GKDPTVVNPERYKQRFIDAMDRYFLTVPDRWEGLSKV--- 1809 
cefab1          PG----AHLPTILSPEMYCARFSEAIDSYFPVVPDQWTGLGSIRSY 1375 
yfab1           VGGASVIKQPTVVTPRQYKKRFREAMERYILMVPDPWYWEGN---- 2278 
                 *     : **::.*. *  ** :*:: *:  *** *   .      
 

 
Appendix 1. Alignment (ClustalW (Thompson et al., 1994)) of Mus musculus (AF102777), 
Drosophila melanogaster (CG6355), Caenorhabditis elegans (T18961)  and Saccharomyces 
cerevisiae (YFR019W) Fab1 orthologs (accession numbers in parentheses).  Database analysis 
with Pfam (Bateman et al., 2004) of the D. melanogaster sequence showed domains similar to a 
PI(3)P binding FYVE domain (amino acids 181-247) located at the N-terminus of the protein 
(Ponting and Bork, 1996), a chaperonin-like region, Cpn60_TCP1 (amino acids 424-824), found in 
proteins implicated in actin and tubulin folding, and a putative catalytic kinase domain (amino acids 
1563-1796) all underlined and shaded in grey (Shisheva, 2001). 
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