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2 Summary 

For evolutionary and medical reasons bacterial classification is an important field within 

microbiology. Before Carl Woese introduced the use of ribosomal RNA sequences for 

phylogenetic comparison, bacterial classification was based on different phenotypic 

methods. Today the primary center of attention is focused on making super trees 

(phylogenetic trees generated from multiple genes) and doing whole genome 

comparison. Still, problems resulting from non-orthogonal gene replacement and 

interference by lateral gene transfer make this matter far from trivial. 

 

This study is based on the classification of bacteria using the distribution and frequency 

of selected 10-mer oligonucleotides in complete genome sequences. These frequencies 

will be detected by an oligonucleotide microarray and the occurring pattern will be 

compared to a reference in order to classify a particular organism. In this way it will be 

possible to compare many bacterial genomes with each other and organize them 

according to their pattern. Prior to this thesis a set of programs for extraction of 

informative oligonucleotides from genome sequence data, based on their entropy, have 

been developed. This study aims to evaluate this method using an in silico approach. 

 

Different sub-sets of bacterial genome sequences were used to select sets of informative 

10-mer oligonucleotides. In order the test this method a program simulating a 

microarray was written, such that a suitable output for further analysis was generated. 

10-mer oligonucleotide frequencies from the genomes that are to be classified were 

computed and combined with a set of informative oligonucleotides, in the virtual 

microarray program. The output from this application was later used in construction of 

Dendrograms, using the microarray analysis program J-Express. These dendrograms 

were compared by visual inspection to phylogenetic reference trees made by 

conventional methods. The phylogenetic analysis was conducted on sequences encoding 

the 16S rRNA genes, the ATP synthase alpha chain, the prolyl-tRNA synthetase and the 

methionyl-tRNA synthetase. Our results indicate that the method obtains excellent 

resolution for discriminating bacteria at the species and strain levels, but not particularly 

good at the genus level. 
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3 Introduction 

Bacterial classification has always been a major issue in microbiology. It allows us to 

see relationships between different microorganisms and to develop a more reasonable 

taxonomy. Classification is the part of taxonomy concerned with the grouping of 

bacterial species into taxa based on different characteristics. Classification can be 

divided into natural or artificial. Natural classification seeks to find evolutionary 

relatedness based on sequence similarities, while artificial systems are based upon 

expressed characters such as an organisms phenotype. Until the mid seventies no 

reasonable method to determine microbial relatedness and evolution were established, 

thus all bacterial classifications were artificial. In 1965 it was suggested that sequences 

from conserved macromolecules, such as rRNA, DNA or proteins could be used to 

reflect evolutionary relationship between organisms (Zuckerkandl and Pauling, 1965). 

More than ten years later the first phylogenetic trees made from 16S rRNA comparison 

were published. These trees provided important clues about relatedness, not only 

between prokaryotes, but to higher organisms as well (Woese and Fox, 1977). In the last 

few years an ever increasing number of genomes have been completely sequenced and 

whole genome comparison has been conducted between several different species. It is 

still is important to remember that genotype and phenotype are closely related and that 

they both should be accounted for in the field of classification. 

The aim of this study is to establish a method, using oligonucleotides, for bacterial 

classification and to compare these results with already established methods. This 

introduction will begin by taking a glance at some conventional methods in bacterial 

classification followed by a broader discussion of more recent methods such as 

comparative genomics, phylogenetics, microarrays and clustering analysis.  
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3.1 Phenotypic classification of bacteria 

The backbone of phenotypic classification is made up of different methods to determine 

morphology and biochemical properties, some of these methods are more than 100 

years old and are still in use. Morphology, determined by light-microscopy, reveals 

characteristics such as size, shape and Gram-staining. To determine physiological and 

nutritional properties, a wide range of biochemical tests have been developed, which 

now are available in kits. In essence these kits are used to determine growth on 

particular substrates and/or to detect the production of particular metabolites under 

defined physiological conditions (Madigan et al., 2003).  

The mechanisms of movement are also of interest, by flagella, by gliding, by gas 

vesicles or if the bacteria are non-motile. Further, tolerance to different antibiotics and 

the presence of specific surface antigens are widely used for identification in clinical 

diagnostic microbiology. Due to the diverse range of lipid compounds found in the 

bacterial cell membrane, methods for chemotaxonomic analysis of the outer and inner 

membrane have been developed. To a certain degree the cell wall is also suitable as a 

phylogenetic marker (Lengeler et al., 1999) 

 

3.2 Genotypic classification of bacteria 

3.2.1 GC ratios 

The base composition of DNA, expressed in mol% G+C, varies with values ranging 

from 24 to 76 mol% G+C (Lengeler et al., 1999). The GC content can only be looked 

upon as an indication of relatedness, since closely related species should have 

approximately the same GC ratio, and distantly related species should have different GC 

content. Although the GC content is identical, the actual DNA sequence may be 

significantly different; as a result this method can only be used to exclude relatedness. 

GC contents is also being used as an indication of lateral gene transfer (LGT) since 

DNA acquired from distantly related species can have a significantly different GC ratio 

(Lawrence and Ochman, 1997). 
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3.2.2 DNA/DNA hybridization  

If two organisms have a high sequence similarity, they probably also share highly 

similar genes and their DNA strands are likely to hybridize to one another in proportion 

to the similarities in their genes. DNA::DNA hybridization was the first comparative 

method to be used that gave specific values which could be used in a quantitative 

manner. As a result the method gives an indication of the degree of relatedness between 

two bacteria. Bacteria belonging to the same species are said to show a hybridization 

value above 60-70 %. 

 

3.2.3 Fingerprinting techniques  

The use of modern techniques to determine the degree of sequence conservation 

between bacterial genomes has lead to methods for detection of natural polymorphism. 

These techniques employs the usage of restriction enzymes, PCR or both, in order to 

distinguish between different organisms, based on their DNA sequence. Restriction 

enzymes are used in order to detect “restriction fragments length polymorphisms” 

(RFLP), which may be used as a tool in bacterial taxonomy. Originally, Southern 

hybridization (Southern, 1975) was used to type RFLPs, but today other techniques are 

more commonly used. One such method is the “amplified fragment length 

polymorphism” (AFLP) technique, which combines the usage of specific PCR 

amplification and treatment with restriction enzymes (Janssen et al., 1996). Another 

method for typing polymorphisms is the “random amplified polymorphic DNA” 

(RAPD) fingerprinting technique, which is a strictly PCR based method (Welsh and 

McClelland, 1990). These methods all have resolution at the strain level.  

 

3.2.4 Ribotyping 

Ribotyping is based on comparing the unique patterns generated when DNA from a 

particular organism is treated with restriction enzymes. The original method (Grimont 

and Grimont, 1986) is based on treating bacterial DNA with different restriction 

endonucleases, followed by separation using eletrophoresis. Fragments on the gel are 

transferred to a nylon filter and finally the DNA fragments carrying rRNA genes 

(rDNA) will be localized by hybridization with a labeled rRNA probe, analogous to 

Southern hybridization (Southern, 1975). The pattern obtained from the hybridized 
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fragments will then be compared between different organisms. In the new method the 

whole RNA operon is PCR amplified using specific fluorochrome labeled primers. The 

DNA product is treated with restriction enzymes, an finally separated by electrophoresis 

(Kostman et al., 1992). This reveals a pattern that is unique within a species, and can be 

compared to other patterns. The PCR based method is technically less demanding than 

the original one since there is no need for probing and hybridization.  

 

3.2.5 Ribosomal RNA analyses 

In the early 1970s Carl Woese introduced a method based on sequence analysis of the 

16S ribosomal RNA molecule (Woese et al., 1975). He used the 16S sequences from 

different organisms to determine their phylogenetic relations, not only for prokaryotes, 

but for all living organisms. Today specific PCR amplification provides easy access to 

rRNA genes for sequencing. Since the 16S rRNA molecule has many regions that are 

highly conserved, a small set of PCR primers can be used to analyze a wide range of 

phylogeneticaly diverse organisms. Similar analysis has also been conducted on the 5S 

ribosomal RNA molecule, although it gives less information because of its limited size, 

and the 23S molecule which is approximately twice as large as the 16S molecule. 

However several findings suggest that the ribosomal operon has been subject to lateral 

gene transfer, which may give an incorrect evolutionary picture (Brochier et al., 2000). 

 

3.2.6 Phylogenetic classification using conserved genes  

In addition to rRNA, other conserved ubiquitous genes such as ATPase, DNA/RNA 

polymerase and elongation factors have been used in phylogenetic classification 

(Daubin et al., 2001; Gogarten et al., 1992). Due to the great diversity that exists among 

prokaryotes, finding genes common to all species is not a trivial manner. Never the less, 

it seems that conserved genes involved in translation, transcription, ATP 

synthesis/repair are present in nearly all species, but there are exceptions. This is an 

important field and hopefully it will give us a more complete phylogenetic 

classification. Influence by lateral gene transfer (LGT) and the introduction of new 

genes into an organism is a problem when constructing a reliable phylogenetic tree 

(Brown and Doolittle, 1997). If LGT cannot be limited to special categories of genes the 

basis for constructing a natural tree of life is eliminated, and that the tree of life may be 
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irresolvable (Doolittle, 1999; Martin, 1999). However findings suggest that 

informational genes are less frequently transferred than operational genes (Jain et al., 

1999), nevertheless LGT has also been detected in some of these genes (Brochier et al., 

2000).  Informational genes are genes involved in transcription, translation, and related 

processes, while operational genes are more commonly referred to as housekeeping 

genes.  

 

3.2.7 DNA arrays 

Since the ultimate goal of this study is the construction a microarray for bacterial 

classification, a broad introduction will be given to microarrays. The basis for DNA 

arrays is hybridization between nucleic acids, as is the case with many other DNA based 

detection methods. On a single DNA microarray, thousands of single stranded cDNA 

molecules or oligonucleotides are attached to discrete regions on the same surface, 

measuring only a few square centimeters. Since this technology has the ability to detect 

tens of thousands of hybridizations in a single experiment, it is being referred to as a 

high through put method. It has proven to be extremely efficient, especially in gene 

expression experiments (Lockhart et al., 1996; Schena et al., 1995), detection of 

polymorphisms (Wang et al., 1998), and comparison of closely related species, e.g. 

when hybridizing Bacillus cereus to a Bacillus anthracis DNA microarray (Read et al., 

2003). 

 

3.2.7.1 Fabrication, hybridization and post analysis of DNA microarrays 

A cDNA array is made by adding cDNA from any library of interest to the array 

(usually made by quartz), for prokaryotes and yeast this is usually done by amplifying 

genomic DNA with gene specific primers, while for eukaryotes EST positions are 

usually chosen (Duggan et al., 1999).  

 

A different type of microarrays is the oligonucleotide array (Affymetrix GeneChip®), 

which is constructed in a fundamentally different manner. Instead of printing whole 

cDNA molecules to the matrix, the four different nucleotides are added by parallel 

addition using a light masking technique, see Figure 1. The oligonucleotides are usually 

between 25-70 bases long, depending on the type of array. The shorter they are more 
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stringent conditions are necessary to give a satisfactory hybridization. As a result, the 

GC ratio has to be approximately equal in all oligos, which in turn limits the number of 

possibilities.  

 

 

 
Figure 1: Affymetrix use a combination of photolithography and combinatorial chemistry  
to manufacture their GeneChip® Arrays (taken from the Affymetrix GeneChip® web site, 
http://www.affymetrix.com/technology/manufacturing/index.affx).  
 
 
 
When conducting experiments with cDNA arrays, mRNA from the tissue of interest and 

the reference tissue, has to be extracted, purified and labeled before it is allowed to 

hybridize with DNA on the array. In this way gene expression between e.g. cancer cells 

and healthy cells, can be compared and quantitatively measured. Extraction and 

purification is a crucial step, as the quality of the mRNA has great influence on the final 

results. The labeling is usually done be using fluorescent dyes, where Cye3-dUTP  

(red) and Cye5-dUTP (green) are most commonly used. In some cases radioactive 

labeling is being employed, incorporating 33P, 35S or 3H directly into the nucleotides. 

Figure 2 shows a chart revealing the correlation between amount of starting material, 

total RNA and detection limit. It also shows that indirect and radioactive labeling has a 

much lower detection limit than direct labeling (Duggan et al., 1999). 
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Figure 2: Chart showing the correlation between amount of starting material (for eukaryotic cells), total 
RNA and detection limits using different kinds of labeling methods. (taken from (Duggan et al., 1999)) 

 

When the material has been label, it is ready to hybridize with DNA on the array. This 

is a sensitive step and any physical contact with the array, such as dust or scratches, 

and/or too little or too much washing, will greatly affect the final result. The figure 

below summarizes the procedure for conducting a cDNA microarray experiment. 

 

 
Figure 3: Chart summarizing the procedure for conducting a cDNA microarray experiment. Starting with 
the construction of an array by applying genes of interest followed by labeling and hybridization of the 
test and reference DNA. Finally the array is scanned and analyzed (Duggan et al., 1999). 
 
 

The hybridized target molecules, on the microarray, are visualized by laser induced 

fluorescence, detected by a high resolution CCD camera, and a two channel image (red 

and green) is saved on a computer for further analysis (Gibson and Muse, 2002). Since 
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the two dyes always are incorporated a little differently, the data has to undergo a 

normalization process before further analysis. Finally the image is interpreted using 

sophisticated computational algorithms, such as hierarchical clustering (Alizadeh et al., 

2000; Eisen et al., 1998; Sokal and Michener, 1958), �-means clustering  (Brazma and 

Vilo, 2000; MacQueen, 1967; Tavazoie et al., 1999) and self organizing maps (SOM) 

(Tamayo et al., 1999; Toronen et al., 1999). The most common technique is hierarchical 

clustering, and this is the only method to generate a dendrogram. Hierarchical clustering 

is fast and the process is relatively simple, starting by calculating a distance matrix 

between all genes. In the next step the distance matrix is traversed to find the two most 

similar genes or clusters, and placing them in a common cluster. In the last step the 

distances between the new cluster and all the other clusters or genes are calculated. The 

process is repeated until all objects are clustered. When calculating distances or 

similarities between two objects, there are a variety of different algorithms to choose 

from, etc. Euclidian, Manhattan or Pearson correlation. All these methods will generate 

a slightly different outcome (Quackenbush, 2001). As can be seen in Figure 4 results 

from using Euclidian distance measures will give a completely different outcome 

compared to Pearson correlation. While Euclidian distance measures the distance 

between x and y, Pearson correlation calculates the angle � between x and y, which is 

unaffected by parallel shifts in the data. When detecting co-expressed genes Pearson 

correlation is probably the most suitable method, while Euclidian distance 

measurements is better in comparing absolute gene products (Amaratunga and Cabrera, 

2003).  

   

   

   

                                                      ax      bx 

                                          �                                                  

 A                                       ay                   

                                                                        � 

                                       B                                    by 

 

Figure 4: While the distance between x and y increases from figure A to B (measured as Euclidian 
distance), � remains constant and is unaffected by a parallel shift in the data (corresponding to Pearson 
correlation).  
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When doing hierarchical clustering one of the following methods can be applied to 

cluster the information in the distance matrix; Single-linkage clustering, Complete-

linkage clustering or Average-linkage clustering. The unweighted pair-group method 

average (UPGMA) is the most common average-linkage clustering method. As an 

alternative the weighted pair-group average method (WPGMA) might be a better choice 

if the cluster sizes are expected to be greatly uneven (Quackenbush, 2001). Since these 

methods all yield different results, biological knowledge concerning the input data will 

be of great value in choosing which method to use. Without any biological basis the 

average-linkage clustering method is usually the best choice. 

 

3.2.8 Genome sequencing and comparison 

The ultimate bacteria genotype is the complete sequence of a whole genome. Since the 

first bacterial genome (Hemophilus influenzae (Fleischmann et al., 1995)) was 

sequenced in 1995, more than 155 complete genome sequences are now publicly 

available, where 144 are of prokaryotic origin (Entrez-Genome, February 2004), and 

many more are about to be completed. As this process becomes less labor intensive and 

less expensive, more and more complete genome sequences will become available for 

analysis. This may be looked upon as a new era in microbiology, allowing complete 

genotype::phenotype comparison to be made. It gives us the opportunity to study 

evolution, lateral gene transfer and the function of genes in a new perspective. Still the 

comparison of whole genome sequences is not straight forward and there are many 

complicating factors to overcome. It is difficult to compare genomes that are distantly 

related since the number of homolog sequences and conserved regions may be, very 

small, rearranged and scattered through out the genome. Thus, creating a good 

alignment is difficult but not impossible. Even thought the comparison of closely related 

species becomes difficult, mainly as a result of indels, inversions, tandem repeats, 

genome rearrangement and divergence in the third position of the codon. There is a lot 

of ongoing research seeking to find efficient methods for whole genome comparison. 

The BLAST program might be a useful tool in comparing genomes, although it is not 

designed to perform large scale genome alignments. Still, BLASTing whole genomes 

against each other and “three genome comparisons” might give crucial and valuable 

information about similar genes and relations (the Microbial Genome Database 

(MBGD) http://mbgd.genome.ad.jp). MUMmer (Delcher et al., 1999) is an application 
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meant for doing whole genome comparison, having the capability of rapid alignment 

between two genomes. The method is based on streaming the query sequence past a 

previously generated suffix tree, causing it to use less CPU time and memory. The 

output can be visualized as a plot and analyzed. Another program, called PROmer is the 

protein version of MUMmer, allowing comparison of large protein sequences (Delcher 

et al., 2002). Since protein sequences are much more conserved than nucleotide 

sequences, protein-based alignments are capable of detecting much older relationships 

than DNA alignments, making PROmer a natural choice if distantly related species are 

to be compared. An interesting fact that has emerged from genome analysis is the 

finding that the degree of horizontal gene transfer is surprisingly high (Eisen, 2000).  

3.2.9 Phylogenetic analyses 

Sequences that are to be compared phylogeneticaly must be of orthologous origin in 

order to reflect their true evolution, while paralogous have to be avoided. Orthologous 

sequences in two organisms are homologs that evolved from the same feature in their 

last common ancestor (Fitch, 1970). While paralogous are homologous sequences 

derived as a result of parallelism, usually by gene duplication. Prior to comparing 

sequences using phylogenetic methods, the sequences have to be aligned by multiple 

alignment program such as ClustalW (Higgins et al., 1996). Unless the sequences are 

too complex, having large indels and/or being of considerable different length, the 

program will compute an alignment close to ideal. Problems concerning the treatment of 

flanking positions and caps can be overcome by using a program such as Gblocks 

(Castresana, 2000), which removes weakly conserved regions, including gaps and 

flanking positions. A wide range of programs for phylogenetic analysis are available, 

PHYLIP (PHYLogeny Inference Package) (Felsenstein, 1993) and PAUP (Phylogenetic 

Analysis Using Parsimony) (Swofford, 1998) being the two most important ones. When 

measuring changes between sequences, nucleotide or protein, there are several methods 

available. Generally one of three methods is selected; maximum parsimony, distance 

methods or maximum likelihood. These methods both have their advantages and 

disadvantages, and the method chosen depends on the type of data that is to be analyzed 

and CPU time available. 

 

Construction of phylogenetic trees using maximum likelihood  (Felsenstein, 1981) is 

based on selecting trees that maximizes the probability of observing the data. For 
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sequences the data is the alignment of nucleotides or amino acids. These trees are 

calculated on the basis of the most suitable substitution model (see below). Since all 

possible topological trees that might fit the model have to be calculated, this method is 

extremely computer intensive and becomes virtually impossible if the data sets are 

large. 

 

Maximum parsimony is based on the assumption that the most likely tree is the one that 

requires the fewest number of changes to explain the data (Swofford, 1993). Maximum 

parsimony is best suited to sequences that are quite similar, but if there are a large 

number of sequences to be analyzed the number of possible trees may become very 

large. The parsimony method is fairly computer intensive if the number of sequences 

and characters is large, but not as intensive as maximum likelihood.  

 

Bayesian analysis is based on the idea of posterior probabilities, which is estimated 

probabilities based on a model that has learned something about the data (Huelsenbeck 

et al., 2001; Mau et al., 1999). As with maximum likelihood, the user has to postulate a 

model of evolution. This method searches for the best set of trees and generates a final 

consensus tree. Despite the fact that Bayesian analysis is relatively computer intensive it 

has the huge advantage of bypassing the time consuming bootstrapping algorithm. 

 

Maximum likelihood, parsimony and Bayesian analysis uses tree-searching methods to 

find the tree that best meets certain criteria. When conducting an exhaustive search the 

user is guarantied to find the best tree, unfortunately it can be extremely computer 

intensive and in most cases impractical. The second best method is the branch-and-

bound algorithm, but as with exhaustive searching it is also relatively slow (Hall, 2001). 

Usually a heuristic search has to be employed, a method often referred to as hill-

climbing. Two extensively used methods within this category is branch swapping and 

stepwise addition, but there are many more. Using a heuristic method is always a trade 

off between the certainty of finding the best tree and CPU hours used. All these methods 

are character-based, meaning that they use the alignment directly without generating a 

distance matrix.  

 

The distance methods are based on measuring the number of changes between pairs of 

sequences by generating a distance matrix. The sequences having the smallest number 
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of substitutions between them are placed as neighbors in the final tree. One of the big 

advantages using these methods is the fact that they are much faster than the other 

methods mentioned above. Common methods that relies on distances is the Neighbor-

joining algorithm (Saitou and Nei, 1987), and the Fitch-Margoliash algorithm (Fitch and 

Margolia.E, 1987), employed in the programs FITCH and KITCH (Felsenstein, 1993). 

The Neighbor-joining method is very fast and suitable for sequences where the rates of 

evolution varies within the sequence (Jin and Nei, 1990). Another method is UPGMA 

which in fact is a clustering method. It assumes that all taxa are equally distant from the 

root, something that is not very likely; as a result UPGMA is rarely used in 

phylogenetic analysis. Neighbor joining, the Fitch-Margoliash method and UPGMA are 

algorithmic methods, meaning that they use an algorithm when doing tree construction, 

instead of tree-searching methods as mentioned above. 

 

When corrections for multiple substitutions are made, maximum likelihood and distance 

methods have been shown to be more reliable than maximum parsimony (Mount, 2001). 

When branch lengths are varying the neighbor method has been shown to be more 

reliable than both standard and evolutionary parsimony (Jin and Nei, 1990). 

 

It is impossible to mimic a true evolutionary process and statistical assumptions have to 

be made. Since transitions are more likely to occur than transversions some 

substitutions are more common than others. To cope with these problems, and the fact 

that there is a significant probability that a character has changed more than once, 

different kinds of substitution models have been made, (Jukes and Cantor, 1969), 

(Kimura, 1980), (Tajima and Nei, 1984), (Hasegawa et al., 1985), (Tamura and Nei, 

1993). The model of choice is the one that has the greatest ability to predict the 

observed data and gives the highest likelihood score. The substitution rate might also 

vary within a sequence as a result of selection pressure. To compensate for this 

phenomenon a gamma distribution can be calculated, allowing variation in substitution 

rates.  

 

To facilitate the process of choosing a model that best suits the data, a program such as 

Modeltest is helpful (Posada and Crandall, 1998), see 4.2.9 for further description. 

When a final tree has been computed it is always a good idea to generate other trees 

using different methods in order to verify support for the chosen model.  
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In order to test how well a particular data set fits a model or method, the final tree has to 

be bootstrapped. This is done by resampling the alignment, making pseudoalignments 

(usually 100 or 1000 times) by randomly reordering the columns in the multiple 

sequence alignment. A new tree is then made from each of the 100 or 1000 

pseudoalignments, using the same settings as for the original tree. The original tree is 

then compared to one of the new trees, and for every clade that is present in both trees a 

score of 1 is given to that particular clade, if not a score of 0 is given. This process is 

repeated for each pseudoalignment. The final result is a bootstrapped tree, revealing the 

reliability of each clade. Clades having a score above 90% are pretty confident, while 

those having a value below 70% should be looked upon as less trustworthy. When using 

maximum likelihood methods bootstrapping can turn out to be extremely computer 

intensive and in many cases impractical. Fortunately MrBayes avoids these problems, 

instead of making pseudoalignments, it directly counts the fraction of times a clade 

occurs among the thousands of trees generated within the stable state.  
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3.3 Objectives of this study 

 

Bacterial classification, natural or artificial, is a central field in microbiology and as a 

consequence many different methods have been developed.  

I would like to point out that no method, despite new technology and whole genome 

comparison, is flawless. This problem also applies to phylogenetic trees, where 

orthologous genes are compared. Strictly speaking it is not possible to construct 

meaningful phylogenetic trees which are valid for all prokaryotes. By definition, such 

trees will only be valid for the molecules used in the tree construction.  

 

In this study, a method for bacterial classification using oligonucleotides will be 

evaluated. This technique is based on the idea of selecting a set of informative 

oligonucleotides, to be placed on a DNA microarray, for the purpose of classifying 

bacteria based on their hybridization patterns. The empirical nature of this method 

circumvents problems created by horizontal gene transfer and non-orthogonal gene 

replacement. The greatest challenge lies in selecting a set of primers that, in a most 

efficient way, will be able to differentiate as many species and strains as possible and to 

evaluate the output made by the microarray. 

 

Prior to this study a method was developed by W. Davies and S. Gaure for extraction 

and selection of informative oligonucleotides from genome data (using the programs 

Extseq, Gencnt and Selentprim written by Simen Gaure). Thus the aim of this thesis is 

to establish a method for testing different sets of oligonucleotides and their ability to 

classify bacterial species. In order to do this a method has to be established with the aim 

of testing and visualizing the generated data in a suitable manner for comparison with 

phylogenetic reference trees.  

 

In summary our goals are: 

 

1) To select different sets of complete genome sequence data suitable for extraction 

of informative primers, using previously written applications, and to generate a 

diverse range of primer sets for further analysis. 
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2) To develop a program or method, in collaboration with S. Gaure, to evaluate 

selected primer sets and their usefulness in the classification of bacterial species 

based on their 10-mer oligonucleotide frequencies on the primer set. A method 

also has to be developed in order to visualize this information in a suitable 

manner for comparison with phylogenetic reference trees. 

 

3) Make a set of robust reference trees using established methods. 

 

4) Compare the results from the oligonucleotide method to the reference trees and 

evaluate its value in bacterial classification. 
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4 Materials and methods 

 

4.1 Computers  and databases 

The following computers were used in our research: 

 

The Biotin EMBOSS server at the Biotechnology Center of Oslo, with a 1 GHz Pentium 

3 and 2 GB RAM, running Linux 7.3 2.96-112. 

 

The Macduff server at UiO, with a 1.8 GHz Pentium 4, 512 MB RAM, running Linux 

8.0 3.2-7 

 

The Darwin server at UiO, with 2 X 400MHz UltraSPARC-II, 1 GB RAM, running 

SunOs 5.6 

 

A private laptop, with a 1.4 GHz Pentium M, 512 MB RAM, running windows XP. 

 

A private desktop computer with a 2.26 GHz Pentium 4, 512 MB RAM, running 

windows XP. 

 

An Apple Macintosh computer at UiO, with a 400 MHz G3, 128 MB RAM, running 

Mac OS 9.2 

 

The following databases were used in this work: 

 

http://www.kegg.com/kegg/kegg2.html 

ftp://ftp.genome.ad.jp/pub/kegg/ 

http://www.ncbi.nlm.nih.gov/genomes/static/micr.html 

ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/ 
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4.2 Description of programs used in this study 

 

 

Programs made specific for this work 

Program Author Group 

Extseq S. Gaure and W. Davies USIT 

Gencnt S. Gaure and W. Davies USIT 

Selentprim S. Gaure and W. Davies USIT 

Testprimers S. Gaure and W. Davies USIT 

Testarray S. Gaure and A. Klevan USIT 

Revperl A. Botnen and A. Klevan USIT 

Extract A. Botnen and A. Klevan USIT 

Consrun A. Botnen and A. Klevan USIT 

Free or commercially available programs 

ClustalX 1.83 (Thompson, 1994)  

Gblocks 0.91b (Castresana, 2000)  

PAUP (Swofford, 1998)  

Modeltest 3.06 (Posada and Crandall, 1998)  

PHYLIP 3.5 (Felsenstein, 1993)  

TREE-PUZZLE 5.1 (Schmidt et al., 2002)  

MrBayes 3.0 (Huelsenbeck and Ronquist, 2001)  

J-Express 1.1 (Dysvik and Jonassen, 2001) Molmine 

ReadSeq (Gilbert, 1999)  

Revseq (Williams, 1999) EMBOSS 

Comseq 1.12 (Williams, 2000) EMBOSS 

Cons (Carver, 2000) EMBOSS 

Table 1: List of programs used in this study. 

 

 

4.2.1 Extseq 

The program Extseq reads a list of files with the “fna” extension and makes them 

suitable for further processing. This involves collecting the selected genome files into 

one file and changing their names according to certain rules. The output file contains all 

inserted genomes in a concatenated file, their length and their new names. For each 

genome there is 8 bytes at the beginning of the genome containing the number of bases, 

followed by 8 bytes with the length of the genome, in bytes, and the genome name. The 

names are fetched from the “fna” files and abbreviated. The output is a binary file meant 
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to be an input file for Gencnt. The symbols a,c,g,t are replaced by a two bits code in the 

following manner: 

 

a: 00 

c: 01 

g: 10 

t:  11 

 

The program can be executed like this: 

 

$ Extseq inputfolder/*.fna  outputfolder/outputfile.seq 

 

Executing this command will read all files in the “inputfolder” with the extension .fna, 

write the output to the “outputfolder” and give the “outputfile” the extension .seq. Note 

that this program does not read from standard input, thus implementing < and/or > will 

not have any effect. 

 

4.2.2 Gencnt 

This program read files generated by Extseq. The output contains a list of all 10-mer 

oligonucleotides in a certain genome, or genome set, and their frequencies. The output 

file is made up by a primer sequence followed by its melting point in 4 bytes. Then 

comes a list as long as the total number of genomes, and for each genome there is one 

pare of 16-bits digits with the number of forward and reverse matches. This is repeated 

for each 10-mer oligonucleotide. The melting temperature for the 10-mers is calculated 

in the following way: 

 

For each A & T the melting point is 2 

For each G & C the melting point is 4 

These numbers for all ten bases will then be summarized.   

 

To avoid improper 10-mer oligonucleotides in the final array, palindromes and primers 

with bad energy are removed. In this context a palindrome is defined as a 10-mer where 

the three first bases can pair with the three last bases. To avoid primers with improper 
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energy only 10-mer oligonucleotides with a free energy in the last pentamer between -9 

kcal/mol and -5 kcal/mol will be kept. The free energy is calculated according to the 

nearest neighbor method (Rychlik, 1995). A set with all possible 10-mer 

oligonucleotides will contain more than a million different primers (104 = 1.048.576), 

but after filtration this number is reduce to approx 700.000. Finally the extension “pri” 

will be added to the output. In addition Gencnt will output, to the terminal, the number 

of discarded 10-mer oligonucleotides in each genome, due to unspecific symbols such 

as Y, N, M, R, S, W, K, generated by sequencing errors.  

 

The program can be executed in the following way: 

 

$ Gencnt < outputfolder/outputfile.seq > outputfolder/outputfile.pri 

 

This command will read the output from Extseq, “outputfile.seq” execute it in Gencnt 

and give the output file the extension “pri”.  

4.2.3 Selentprim 

This program is used for primer selection, taking the output from Gencnt. The primers 

are selected according to melting point, GC content, minimum frequency and entropic 

distribution. Below is a list with arguments accepted by Selentprim: 

 

-e  number between 0-1  minimum entropy  

-E number between 0-1  maximum entropy 

-t     minimum melting temperature 

-T      maximum melting temperature 

-c number between 0-10  minimum C bases  

-C  number between 0-10  maximum C bases 

-f number greater than 0  minimum frequency for which a primer should              

     occur in at least one genome  

 

The entropy H of a discrete distribution p is given by: 

 

H (p) = i

i

i pp log�  
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By measuring the uniformity of the primers in the Gencnt output file, Selentprim has the 

capability to extract primers on the basis of their ability to distinguish between different 

genomes. A primer that is present in all genomes at the same frequency is not very 

informative neither is a primer that hardly ever appears, thus the ideal primers lies some 

where in between. The goal is to select a set of primers, with a skewered distribution, 

being able to differentiate between different genomes in a most efficient way. The 

higher the entropy the more uniform is the distribution. So if H = 1 the distribution is 

uniform, if H = 0 the distribution is concentrated in a single point. The entropy is 

normalized to be a number between 0 and 1. This is done by dividing H with log (N), 

where N is the number of genomes. The output from Selentprim is a list of primers that 

fulfills the conditions made at the command line. The file has the same binary format as 

Extseq. Since GC ratio and melting temperature are in correlation to each other only the 

GC ratio has been used during this study. 

 

The program can be executed in the following way: 

 

$ Selentprim –e 0.3 –E 0.6 –c 4 –C 5 –f 2 < outputfolder/outputfile.pri > 

outputfolder/outputfile.dat 

 

Executing this command will take the output from Gencnt and generate a file with 

primers containing from 4 to 5 C-bases, having an entropy between 0.4 and 0.6 and a 

minimum  frequency of f = 2. The output file is given the extension “dat”. This program 

also outputs to screen how many available primers it has (usually 718.744, see above) 

and the number of primers extracted using the given settings. The goal is to select 4.000 

primers suitable for classification purposes. 

 

4.2.4 Testprimers 

This program sorts the output from Selentprim for presentation purposes. Both the 

output from Gencnt and Selentprim are used as input. An ASCII file is made for each 

genome containing a list of primers, extracted by Selentprim, and their 3log frequency 

in that particular genome. The output from Testprimers can be used to make gnuplots or 

a list expressing distances between two genomes as a number between 0 and 1. This is 

done by calculating the Euclidian distances between two and two primer frequencies in 
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a pair of genomes. Finally the distances between all pairs in these two genomes will be 

summarized and normalized. This is done for every single genome, thus all pair of 

genomes are compared to each other and given a number reflecting their relatedness. 

The pair having the lowest number is probably the most similar.  

 

The program can be executed in the following way: 

 

$ testprimers –f outputfile.dat  –p outputfile.pri 

 

The file “outputfile.dat” is the output from Selentprim, holding the primer set, while the 

file “outputfile.pri” is the output from Gencnt holding the 10-mer oligonucleotide 

frequencies for genomes that are to be classified. Testprimers automatically generate 

several output files, one file for each genome in the Gencnt output file. As described 

above the output files from Testprimers can be used to create gnuplots or a 1:1 

comparison of the genomes. This comparison is employed by writing the following 

command. 

 

$ sort +1 –n dfile.dat 

 

By executing this command a list with normalized Euclidian distances between all pair 

of genomes will be written to the screen. This list can be converted into a graph using J-

Express. 

 

4.2.5 Testarray 

Testarray is a program that combines the output from GENCNT and SELENTPRIM 

(see flowchart on page 50) and produces a table in which there is a column for each 

bacteria/genome and rows reflecting the actual frequency of each primer in that 

particular species (see Figure 5). In this way we can generate a file containing a set of 

primers (e.g. made by five different Proteobacterial genomes) and test it against a 

completely different set of Proteobacterial genomes. The process mimics a true DNA 

microarray by virtually hybridizing genome DNA to the primers (selected by 

Selentprim) on the virtual array. The application can analyze several genomes at the 

same time, thus outputting a multiple experiment file for genome comparison, using J-
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Express. Two different versions of Testarray have been made, Testarray and Testarray-

v2, the later having a feature for dividing primer frequencies according to genome size. 

Without this kind of normalization the size of the different genomes will influence the 

clustering process. The output is an ASCII file that has to be edited in Excel before 

further processing in J-Express. 

 

 
 

 

Figure 5: The upper picture shows the output from Testarray prior to any normalization. The lower 
picture shows the output from Testarray-v2, where the primer frequencies have been divided with their 
associated genome size (Screenshot from Excel).  

 

The program can be executed in the following way: 

 

$ Testarray-v2 outputfolder/outputfile.dat outputfolder/genomes.pri > 

outputfolder/outputfile.ary 

 

4.2.5.1 Revperl 

Revperl is a script written to automatically run multiple files through the EMBOSS 

program Revseq (described in 4.2.15.1), which calculates the reverse, the compliment or 

the reverse compliment of the input sequence. When the input sequences have been 
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converted they are merged into the end of their original input file. In this way the 

forward and reverse stretch of DNA can be made available in one single stranded 

FASTA file.  

4.2.5.2 Extract 

Extract is a small Perl script that extracts gene sequences from a multiple FASTA file 

according to one or more specified search word, e.g. “16S” or “ribosomal”. The 

program searches through every file in the folder specified in the program code. 

 

4.2.5.3 Consrun 

Consrun is a script written to automatically run multiple files through the EMBOSS 

program Cons.  

 

4.2.6 ClustalX 

ClustalX is a window interface for the ClustalW multiple sequence alignment program. 

It provides an integrated package for performing multiple sequence alignments, profile 

alignments and result analysis.  

The user can cut-and-paste sequences to change the order of the alignment, select a 

subset of sequences to be aligned and select a sub-range of the alignment to be realigned 

and inserted back into the original alignment. Alignment quality analysis can be 

performed and low-scoring segments or exceptional residues can be highlighted.  

All input sequences must be in 1 file. 7 formats are automatically recognized: Clustal, 

Fasta, PHYLIP, GDE, NBRF/PIR, GCG/MSF, and Nexus. All non-alphabetic 

characters (spaces, digits, punctuation marks) are ignored except "-" which is used to 

indicate a GAP. Unless the sequences are too complex, having large indels and/or being 

of considerable different length, the program will compute an alignment close to ideal. 

The program can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/. 

 

4.2.7 Gblocks 

Gblocks is a program for eliminating poorly aligned positions and divergent regions of 

an alignment of DNA or protein sequences. These positions may not be homologous or 

may have been subject to multiple substitutions and it is convenient to eliminate them 
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prior to phylogenetic analysis. Gblocks selects blocks in a similar way as it is usually 

done by hand, but following a reproducible set of conditions. The selected blocks must 

fulfill certain requirements with respect to the lack of large segments of contiguous 

nonconserved positions, lack of gap positions and high conservation of flanking 

positions, making the final alignment more suitable for phylogenetic analysis. Several 

parameters can be modified to make the selection of blocks more or less stringent. The 

program can be installed on virtually every system, or accessed on the Gblocks web 

server. The advantage of using this application is that it has been shown to give 

alignments that are virtually independent of the different options available in ClustalX 

(Daubin et al., 2002). The application can be accessed on http://woody.embl-

heidelberg.de/phylo/. 

 

4.2.8 PAUP  

Phylogenetic Analysis Using Parsimony (PAUP) is a commercially available program 

for phylogenetic analysis. The package offers a number of options for conducting 

different types of phylogenetic analysis, such as parsimony, maximum likelihood and 

different distance methods. The input file has to be writen in the nexus file format. The 

output created by PAUP is a visualization of the phylogenetic relation between the 

organisms of interest visualized by a phylogenetic tree. Unfortunately PAUP doesn’t 

have the ability to construct maximum likelihood protein trees. The program can be 

ordered at the PAUP home page, http://paup.csit.fsu.edu/index.html. 

 

4.2.9 Modeltest 

Modeltest is designed to compare different nested models of DNA substitution in a 

hierarchical hypothesis-testing framework. It compares 56 (in version 3.06) different 

likelihood models to find the one that bests suits the data set (Posada and Crandall, 

1998). The program is meant to be used together with PAUP.  A script, called 

“modelblock” is inserted at the end of the nexus file that is to be analyzed, PAUP is 

executed and the likelihood scores for 56 different models of evolution will be 

computed. The results will be written to a new file named model.scores. The file 

model.scores can be opened with the program modeltest and the most suitable model 

will be selected, including its parameter settings. A new block containing these data can 
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then be inserted into the nexus file, substituting the first block, “modelblock”. PAUP is 

then executed one more time, using the best model and settings for the data set. The 

application can be downloaded from the Modeltest home page at, 

http://inbio.byu.edu/Faculty/kac/crandall_lab/modeltest.htm. 

 

4.2.10 The PHYLIP package 

The phylogenetic interference package (PHYLIP) is a package of programs for 

construction of phylogenetic trees. Instead of being one program with many different 

functions the PHYLIP package is divided into many small programs having specific 

tasks, making it an extremely dynamic tool. All programs are menu based, but no 

window interface has been developed. The programs read files written in PHYLIP 

format. In this study five different PHYLIP programs has been used, BOOTSEQ, 

PROTDIST, FITCH, NEIGHBOR and CONSENSE. BOOTSEQ is a program for 

resampling datasets by the bootstrapping method, giving multiple datasets that can be 

used as input by most PHYLIP programs. PROTDIST is an application for computation 

of a distance measures for protein sequences using different substitution models. FITCH 

is a program to estimate phylogeny from distance matrix data using the "additive tree 

model". NEIGHBOR is an application for construction of phylogenetic trees by 

Neighbor joining or UPGMA, using a distance matrix as input. CONSENSE is a 

program used to compute consensus trees, using the majority-rule consensus tree 

method. 

 

PHYLIP can be downloaded from the PHYLIP home page at 

http://evolution.genetics.washington.edu/phylip.html. 

 

4.2.11 TREE-PUZZLE 

TREE-PUZZLE is program suitable for maximum likelihood protein analysis. TREE-

PUZZLE uses an algorithm called quartet puzzling, which is a maximum likelihood 

distance method, allowing analysis of large data sets. In addition the program can 

calculate a clock assumption, has a wide range of substitution models and provides 

gamma distribution. The program is relatively computer intensive which makes 

bootstrapping (by using SEQBOOT) virtually impossible when dealing with large data 
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sets. TREE-PUZZLE reads files written in the PHYLIP file format. The program can be 

downloaded from http://www.TREE-PUZZLE.de/ 

 

4.2.12 MrBayes 

MrBayes is a program for phylogenetic studies based on Bayesian analysis (Mau et al., 

1999; Rannala and Yang, 1996) and the idea of posterior probabilities, which is 

estimated probabilities based on a model that has learned something about the data. 

Instead of seeking the best tree, as with maximum likelihood, MrBayes search for the 

best set of trees. From this set a consensus tree is calculated, thus bypassing the time 

consuming bootstrapping algorithm. Since MrBayes as default use four independent 

chains, the probability of being fixed on a local top is smaller than for other likelihood 

methods. For further information see  (Huelsenbeck et al., 2001).  

The program can be downloaded from 

http://morphbank.ebc.uu.se/mrbayes/download.php. 

 

4.2.13 J-Express 

J-Express is a software package for analysis and visualization of microarray data. The 

program gives access to multidimensional scaling and different clustering methods. J-

Express has the ability to read output from TESTARRAY without any further 

conversion. Its efficiently allows interactive clustering of our genomes and construction 

of dendrograms. J-Express is a commercial program owned by MolMine A/S 

(http://www.molmine.com). 
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4.2.14 Readseq 

Readseq is a sequence conversion program that can read, write and convert between any 

file written in one of the following formats:  

 
Abstract syntax notation (ASN.1) 

DNA strider 

European Molecular Biology Laboratory (EMBL) 

Fasta/Pearson  

FITCH  

Genbank 

Genetics Computer Group (GCG) 

Intelligenetics/Stanford 

Multiple Sequence Format (MSF) 

National Biomedical Research Foundation (NBRF) 

Olsen 

Nexus format 

PHYLIP 

Plain text 

Pretty format for publication 

Protein Information Resource (PIR or CODATA) 

Zuker for RNA analysis  

Table 2: Formats accepted by ReadSeq. 

 

The program can be accessed at: http://searchlauncher.bcm.tmc.edu/seq-

util/readseq.html  

 

4.2.15 EMBOSS 

The European Molecular Biology Open Software Suite (EMBOSS) is a package of 

academic sequence analysis software. The software automatically copes with data in a 

variety of formats and allows transparent retrieval of sequence data from the web. The 

EMBOSS package contains more than 100 different applications. EMBOSS can be 

accessed at the Norwegian EMBnet node (http://www.no.embnet.org). Below is a short 

explanation of different EMBOSS programs and scripts used in this study: 

 

4.2.15.1 Revseq 

Revseq takes a sequence and outputs its reverse complement. It can also output just the 

reversed sequence or the complement. 
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4.2.15.2 Compseq 

Compseq counts the composition of dimer/trimer/etc words in the input sequence(s). 

4.2.15.3 Cons 

Cons calculates the consensus sequence from a multiple sequence alignment. To obtain 

the consensus a scoring matrix is used to calculate a score for each position in the 

alignment. 
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4.3 Phylogenetic classification 

In this section methods for construction of the different reference trees will be 

explained. Since phylogenetic analysis based on different genes reveals some 

differences between the final trees, multiple trees should be generated using different 

genes. As a result, four different housekeeping genes have been selected in construction 

of the reference trees. These four genes are the 16S rRNA gene, the ATPase alpha chain 

gene, the Prolyl-tRNA synthetase gene and the Methionyl-tRNA synthetase gene.  

 

4.3.1 Phylogenetic analysis of the 16S rRNA gene 

The 16S rRNA gene is by far the most common sequence used in phylogenetic 

comparison. However when extracting these genes from the different bacterial genomes 

a problem appeared. Most bacteria have multiple copies of the rRNA operon, varying 

from one to more than eight. Aligning these genes revealed small but significant 

differences, thus making further analysis complicated. When doing analysis on the 16S 

rRNA genes from the different species in the EcoSalmoFlex set (see 

Table 3), some of the genes were intermingled between two or more species (see Figure 9, 

page 57).  

 

 

EcoSalmoFlex 
Escherichia coli CFT073 
Escherichia coli K-12 MG1655 
Escherichia coli O157 EDL933 
Escherichia coli O157 Sakai 
Salmonella typhi CT18 
Salmonella typhi Ty2 
Salmonella typhimurium 
Shigella flexneri 2457T (serotype 2a) 
Shigella flexneri 301 (serotype 2a) 
 
Table 3: Set containing 9 different closely  
related enteric Bacteria used in phylogenetic 
analysis.  
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As a result of this phenomenon the phylogenetic comparison of 16S rRNA genes is 

divided in two parts. In the first part the aim is to compare every single gene (a total of 

320 genes from 61 different organisms). In the second part only the consensus sequence 

from each organism will be subject to comparison. The flowchart below shows how this 

was carried out. 

 

 

 

 

Figure 6:  Flow chart showing the procedure for 16S analyses using Extract, Cons, ClustalX, Gblocks, 
Modeltest and PAUP. See below for explanation of the method. 

 

 

 

 

 

Extract 

Alignment 
ClustalX 

 

320 files from 
61 organisms 

PAUP 
Gamma & 
sub. mod. 

Modeltest 

Gblocks Gblocks 

320 files from 
61 organisms 

Cons 
Outputs 61 

files 

Alignment 
ClustalX 

Modeltest 

PAUP 
Gamma & 
sub. mod. 

 

NUC files 



 40 

Genome sequences were obtained for all bacteria listed in Table 4 and used for gene 

extraction in order to generate the reference trees. The same bacteria were also used in 

evaluation of the dendrograms made later in this thesis. All bacteria have a unique 

abbreviation, analogous to the KEGG web site (www.kegg.com/kegg/kegg2.html), in 

order to make file handling more convenient. These abbreviations are used all through 

the study, but always together with a list similar to those below. 

 

 

Gram-positive bacteria 
Bacillus anthracis ban 
Bacillus cereus bce 
Bacillus halodurans bha 
Bacillus subtilis bsu 
Bifidobacterium longum blo 
Clostridium acetobutylicum cac 
Clostridium perfringens cpe 
Clostridium tetani ctc 
Corynebacterium efficiens cef 
Corynebacterium glutamicum cgl 
Enterococcus faecalis efa 
Lactobacillus plantarum lpl 
Lactococcus lactis lla 
Listeria innocua lin 
Listeria monocytogenes lmo 
Mycobacterium bovis mbo 
Mycobacterium leprae mle 
Mycobacterium tuberculosis CDC1551 mtc 
Mycobacterium tuberculosis H37Rv (lab strain) mtu 
Oceanobacillus iheyensis oih 
Staphylococcus aureus Mu50 (VRSA) sav 
Staphylococcus aureus MW2 sam 
Staphylococcus aureus N315 (MRSA) sau 
Staphylococcus epidermidis sep 
Streptococcus agalactiae 2603 sag 
Streptococcus agalactiae NEM316 san 
Streptococcus mutans smu 
Streptococcus pneumoniae R6 spr 
Streptococcus pneumoniae TIGR4 spn 
Streptococcus pyogenes MGAS315 (serotype M3) spg 
Streptococcus pyogenes MGAS8232 (serotype M18) spm 
Streptococcus pyogenes SF370 (serotype M1) spy 
Streptococcus pyogenes SSI-1 (serotype M3) sps 
Streptomyces avermitilis sma 
Streptomyces coelicolor sco 
Thermoanaerobacter tengcongensis tte 
 

Table 4: Lists showing sets of gram-positive bacteria 
and Proteobacteria used in this study. *(The bacteria 
Bordetella bronchiseptica has mistakenly been given a 
faulty abbreviation in some of the analysis). 
 

 

Proteobacteria 
Bordetella bronchiseptica bbr/bre
Bordetella parapertussis bpa 
Bordetella pertussis bpe 
Brucella melitensis bme 
Brucella suis bms 
Campylobacter jejuni cje 
Caulobacter crescentus ccr 

Coxiella burnetii cbu 
Escherichia coli CFT073 ecc 
Escherichia coli K-12 MG1655 eco 
Escherichia coli O157 EDL933 ece 
Escherichia coli O157 Sakai ecs 
Haemophilus ducreyi hdu 
Haemophilus influenzae hin 
Helicobacter hepaticus hhe 
Helicobacter pylori 26695 hpy 
Helicobacter pylori J99 hpj 
Mesorhizobium loti mlo 
Neisseria meningitidis MC58 (serogroup B) nme 
Neisseria meningitidis Z2491 (serogroup A) nma 
Nitrosomonas europaea neu 
Pasteurella multocida pmu 
Pseudomonas aeruginosa pae 
Pseudomonas putida ppu 
Pseudomonas syringae pv. tomato pst 
Ralstonia solanacearum rso 
Rickettsia conorii rco 
Rickettsia prowazekii rpr 
Salmonella typhi CT18 sty 
Salmonella typhi Ty2 stt 
Salmonella typhimurium stm 
Shewanella oneidensis son 
Shigella flexneri 301 (serotype 2a) sfl 
Sinorhizobium meliloti sme 
Vibrio cholerae vch 
Vibrio parahaemolyticus vpa 
Vibrio vulnificus vvu 
Xanthomonas axonopodis xac 
Xanthomonas campestris xcc 
Xylella fastidiosa 9a5c xfa 
Xylella fastidiosa Temecula1 xft 
Yersinia pestis CO92 ype 
Yersinia pestis KIM ypk 
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NUC files, which are multiple nucleotide FASTA files, were downloaded from the 

KEGG database at ftp://ftp.genome.ad.jp/pub/kegg/. Each NUC file contains every 

annotated gene for a certain bacteria, as a result each completely sequenced bacteria has 

its own NUC file (all NUC files used in this study are included on the DVD). All files 

were uploaded to the Biotin server for further analysis. 

 

Before running the program “Extract”, a few script adjustments had to be made in order 

to locate the input/output directories. In addition, two different versions of Extract were 

constructed to obtain as many 16S rRNA genes a possible, respectively “extractA” and 

“extractB”. Version A contains the search strings “16S”, “RNA” and “RIBOSOMAL” 

and only genes annotated with these three words were extracted. Version B contains the 

string “16S_”. Due to insufficient naming only 65 out of 80 bacteria had their 16S 

sequences extracted. It seemed to be virtually impossible to extract genes for the 

remaining bacteria, even by manual inspection. 

 

“Extract” overwrites every file in the output folder after each execution. Since the 

program had to be run two times (version A, B), a temporary folder was made. Files in 

the “extract” output folder were moved to the temporary folder after the first 

computation to conserve the files. Every output file from “extract” was automatically 

given the extension “.16s” by the application. The programs were executed as shown 

below: 

 

$ mkdir output16s 

$ ./extractA.pl  

$ mkdir output16sTmp 

$ mv output16s/* output16sTmp/ 

$ ./extractB.pl  

$ mv output16sTmp/* output16s/ 

$ rm output16s/b.melitensis.nuc.16s  

 

Before “conruns.pl” was executed, a couple enhancements had to be made. This 

involved deleting the file “b.melitensis.nuc.16s”, since in did not contain any 16S rRNA 

genes. Removing a faulty 16S rRNA gene in the 16s file for the bacteria S.flexneri, so 

that a consensus could be calculated. And finally in the 16S file for S.coelicolor a gene 

annotated as probable was removed since it appeared to disturb the final consensus 
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sequence. Here the experiment took two different directions, one in which the 16S 

rRNA consensus for each bacteria were obtained, and one in which all 320 16S rRNA 

genes were concatenated and aligned directly, using ClustalX. The concatenated file 

containing all 320 genes was named “ClustalX16Sallegener” and will be discussed at 

the ending of this chapter. 

 

All of the 65 multiple FASTA files, containing one or more 16S rRNA gene, were then 

run through another script called consrun. By doing this a consensus sequence was 

made for each bacteria and given the extension “.cons”. Cons only outputs a file if the 

input contains two or more 16S rRNA sequences (genes), so for species that only has 

one 16S rRNA gene there will not be an output file. For all species that both had a “16s” 

file and a “cons” file the 16s. file was deleted, leaving only the consensus file. (See list 

with command lines below). 

 

$ ./consruns.pl  

Creates a consensus from multiple alignments 

........................................................................ 

Creates a consensus from multiple alignments 

$ rm output16s/b.anthracis.nuc.16s 

. 

. 

. 

$ rm output16s/y.pestis.nuc.16s       

$ rm output16s/y.pestis_kim.nuc.16s 

 

When all unwanted files were removed the remaining files were concatenated and 

downloaded to a notebook for further analysis. (See command line) 

 

$ cat output16s/* > ClustalXKomplettCons 

 

Sequences for the bacteria H.pylori, S.coelicolor, and R.solanacearum were removed 

because they contained more than 50% unknown characters. After removing unwanted 

sequences the remaining FASTA file contained 16S rRNA genes from 61 different 

bacteria.  
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These genes were aligned by ClustalX using default settings. The final alignment was 

uploaded to the Gblocks server for extraction of conserved regions (the final sequence 

alignments, both before and after block extraction, are included on the DVD). The 

resulting file was converted into the Nexus format, at the ReadSeq server, and some of 

the genes had to be renamed due to restrictions concerning this format. 

Before executing the file in PAUP a “modelblock” was inserted at the end of the file, 

see 4.2.9 for further details. Finally the symbol “*” was replaced by “@” since the 

program mistakenly analyzed it as being a character. After execution the following 

parameters were obtained by Modeltest: 

 

Base frequencies:  

A =  0.2511 

C =  0.2010 

G =  0.2927 

T =  0.2552 

 

Substitution model:  

R(a) [A-C] = 1.0000 

R(b) [A-G] = 2.8866 

R(c) [A-T] = 1.0000 

R(d) [C-G] = 1.0000 

R(e) [C-T] = 3.9617 

R(f) [G-T] = 1.0000 

 

Proportion of invariable sites (I) = 0.4753 

Gamma distribution shape parameter (G) = 0.7353 

 

The Tamura and Nei model was selected to be the most appropriate substitution model 

for this particular set of sequences (Tamura and Nei, 1993). 

 

When running the analysis, using the Tamura and Nei model, maximum likelihood 

would probably have been the method of choice, but it proved to be extremely computer 

intensive. 

So instead a heuristic distance tree was computed using maximum likelihood distance 

measures, with parameters given by “modeltest”. PAUP was set to generate random-

sequence starting trees (10 replicates) by stepwise addition, using the tree-bisection-
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reconnection (TBR) branch-swapping algorithm. Finally the tree was bootstrapped 

using 100 replicates. The final tree was saved and edited in Treeview.  

 

The file containing all 320 16S rRNA genes was treated in the exact same manner as the 

16S rRNA consensus file, using ClustalX, Gblocks, ReadSeq, Modeltest and PAUP (the 

final sequence alignments, before and after block extraction, are included on the DVD). 

After execution in PAUP the following parameters were obtained by Modeltest: 

 

Base frequencies:  

A =  0.2500 

C =  0.2500 

G =  0.2500 

T =  0.2500 

 

Substitution model:  

R(a) [A-C] = 1.0000 

R(b) [A-G] = 3.0400 

R(c) [A-T] = 1.0000 

R(d) [C-G] = 1.0000 

R(e) [C-T] = 3.6190 

R(f) [G-T] = 1.0000 

 

Proportion of invariable sites (I) = 0.0851 

Gamma distribution shape parameter (G) = 0.4741 

 

The Tamura and Nei model, using equal base frequencies, was selected to be the most  

appropriate substitution model for this particular set of sequences (Tamura and Nei, 

1993). 

Due to a much larger set of sequences a less time consuming algorithm had to be 

employed. Thus a Neighbor-joining tree using maximum likelihood distance measures 

with parameters given by “Modeltest” was computed and bootstrapped with 100 

replicates.  
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4.3.2 Phylogenetic analysis of the ATP synthase alpha chain gene 

The gene encoding the ATP synthase � chain has proven to be suitable in phylogenetic 

studies (Gogarten et al., 1992). All genes where obtained from the KEGG database at 

ftp://ftp.genome.ad.jp/pub/kegg/ by downloading a PEP file for each bacteria. A PEP 

file is a multiple FASTA file containing every annotated protein in a particular 

bacterium genome (all PEP files used in this study are included on the DVD). All 79 

files were uploaded to the Biotin server. The program “Extract” had to be modified in 

order to locate the ATPase genes and the output/input folders. The search strings were 

set to “ATP”, “ALPHA” and ”[EC:3.6.3.14]” (the enzyme number), in addition the 

output extension was changed to “.ATPase”. The program was given the name 

“extractATPaseA.pl”, and executed in the following way: 

 

$ mkdir ATPase 

$ ./extractATPaseA.pl  

$ cat ATPase/* > ClustalXATPase 

 

The ClustalXATPase file was downloaded to a notebook and edited with a text editor. 

For both Streptococcus pyogenes SF370  and Streptococcus pyogenes MGAS315, a 

sequence encoding a Na+ driven ATPase was removed. Further on, two duplicated 

genes described as “similar to ATP synthase alpha chain” found in Listeria innocua and 

Listeria monocytogenes were deleted. Finally, one of two sequences was removed from 

the bacterium Lactococcus lactis since it turned out to be encoding the ATPase beta 

chain gene.  

After deleting these five sequences the ATPase alpha chain sequences for Haemophilus 

ducreyi and Helicobacter hepaticus had to be manually inserted into the FASTA file 

due to lack of annotation. Clostridium tetani was not included in this alignment because 

it only has a Na+ driven ATPase.  

A total of 78 ATPase genes from 78 different bacteria were saved and later aligned in 

ClustalX. Genes described as putative were given a “*” and those described as probable 

with “**”.  Only default settings were used in ClustalX. Blocks were obtained at the 

Gblocks server and the file format converted to Nexus, using ReadSeq (the final 

sequence alignments, before and after block extraction, are included on the DVD).  

The ATPase alignment was analyzed using three different phylogenetic programs, 

TREE-PUZZLE, MrBayes and the PHYLIP package (see flowchart below). Although 
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TREE-PUZZLE probably is the most suitable program for doing protein analysis, it 

turned out to be too time consuming to do a bootstrapping using this method. Instead a 

bootstrapped tree was computed by the PHYLIP package, using the Neighbor-joining 

method. In addition a consensus tree was computed by MrBayes. This method is 

summarized in the flowchart below. 

 

 

 

Figure 7: Flow chart showing the phylogenetic classification of protein sequences, and how this analyzes 
were divided into three different techniques subsequent to block extraction using Gblocks. Finally, trees 
from all three methods were constructed in TreeView. 

 

The file was uploaded to the Macduff server and analyzed using MrBayes. The program 

was set to use the JTT substitution model (Jones et al., 1992), gamma correction (using 

invgamma), and to for 1.000.000 generations. To reduce the risk of generating trees 

fixed on local tops it is necessary to run the analysis two times, each execution taking 

more than 70 hours. After the first run the command “sump” was given, revealing a plot 
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showing the probability of observing the data versus the generation. In this way it is 

possible to determine what the burn-in value for the analysis should be, thus discarding 

trees generated before a steady state has been reached. In this case the burn-in value was 

set to 500, discarding the first 5% of the generated trees. In the next step the command 

“sumt burnin = 500” was given, generating a consensus-tree from the remaining 95% of 

the trees. Finally the file generated in this last step can be used as input for Treeview. 

Each clade contains a probability, a number between zero and one, to determine the 

reliability of the clades, resembling the bootstrapping algorithm. MrBayes was executed 

on more time in order to verify the consistency of the tree; the two trees were compared 

and found to be nearly identical. 

 

The output from Gblocks was also converted into the PHYLIP format and executed in 

TREE-PUZZLE on the Biotin server. The program was set to use the JTT substitution 

model and gamma distribution with four gamma rate categories. The output file from 

TREE-PUZZLE can be used directly as input in FITCH. Here the option, global 

rearrangement was activated and the species input order was randomized 10 times to 

make the final tree more reliable. 

 

In a third approach programs from the PHYLIP package were used. In the first step the 

output from Gblocks was converted into the PHYLIP format and executed in 

SEQBOOT, on the Macduff server, giving 100 resampled versions of the original 

alignment. In the second step the output from SEQBOOT was analyzed in PROTDIST 

to generate 100 distance matrixes, one for each set, using the PAM substitution model. 

In the next step the files generated by PROTDIST were used as input in NEIGHBOR, 

thereby calculating 100 phylogenetic trees, the species input order was randomized to 

increase the reliability of the final trees. Finally the program CONSENSE was executed, 

generating a bootstrapped output. 
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4.3.3 Phylogenetic analysis of the Prolyl-tRNA synthetase gene 

A new version of “Extract” was made, “extractPro.pl”, and the same PEP files as 

described above were analyzed. This version of “extract” made use of the search strings 

“PRO”, “TRNA” and “[EC:6.1.1.15]” in order to extract the prolyl-tRNA synthetase 

sequences. The location of the output directory was written into the application and 

named “Prolyl”. The application was executed in the following way: 

 

$ mkdir Prolyl 

$ ./extractPro.pl  

$ cat Prolyl/* > ClustalXPro 

 

The concatenated file ClustalXPro was downloaded to a notebook an edited. All 78 

bacteria had their genes extracted, except from the bacterium Haemophilus ducreyi 

which had its prolyl-tRNA gene inserted manually into the FASTA file. Both Bacillus 

anthracis and Bacillus cereus had two versions of the tRNA synthetase gene, however 

these sequences were included in the final alignment. The final input file for ClustalX 

contained 80 genes from 78 different bacteria. Genes described as putative were given a 

“*” and those described as probable with “**”. ClustalX was executed with standard 

settings and the output was saved as a FASTA file. When obtaining blocks at the 

Gblocks server the options ”Allow smaller final blocks” and “Allow gap positions 

within the final blocks” had to be employed in order to get reasonable sized blocks (the 

final sequence alignments, both before and after block extraction, are included on the 

DVD). The file was converted into the PHYLIP format and uploaded to the Macduff 

server. The file was analyzed using the program TREE-PUZZLE and FITCH, and the 

PHYLIP method (using SEQBOOT, PROTDIST, NEIGHBOR and CONSENSE). All 

programs used the same settings as when conducting the ATPase analysis. In addition 

the Gblocks output was converted into the Nexus format and used as input for MrBayes. 

The burnin-value was set to 1.000 instead of 500, the rest of the settings were identical 

to those used when comparing the ATPase genes. Trees from the first and second 

execution turned out to be almost identical. 
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4.3.4 Phylogenetic analysis of the Methionyl-tRNA synthetase gene 

A fifth version of “Extract” was made, containing the search strings "MET", "TRNA", 

and "[EC:6.1.1.10]". The application was named “extractMet.pl. Sequences from all 

bacteria were obtained, except from Haemophilus ducreyi, which had its sequence 

inserted manually. The application was executed in the following way: 

 

$ mkdir Methionyl 

$ ./extractMet.pl 

$ cat Methionyl /* > ClustalXMet 

 

When editing the file a “putative” gene for the bacteria Bacillus anthracis was removed, 

and for Clostridium perfringens a “probable” gene had to be deleted. For Bacillus 

cereus two tRNA synthase genes were extracted and both were included. Also Ralstonia 

solanacearum had two genes encoding this enzyme, but both were annotated as 

probable, however they were included in the final file. A total of 80 genes were aligned 

with ClustalX. The rest of the analyses were done in the same manner as with the other 

genes (the final sequence alignments, both before and after block extraction, are 

included on the DVD). 
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4.4 Classification using 10-mer oligonucleotides 

In this section a method for classification of bacteria using the genome frequencies of  

10-mer oligonucleotides will be demonstrated. The procedure is divided into four 

different branches, as shown in the flowchart in Figure 8. First suitable genome sets for 

primer selection have to be assembled, 10-mer frequencies determined and finally 

informative primers extracted, as illustrated by the upper left branch in the flowchart. 

This will be done by using the programs Extseq, Gencnt and Selentprim, see program 

description for further details.  

 

 

Figure 8: Flowchart showing the procedure for selection of primer sets and classification of bacterial 
genomes. Testarray takes two input files, the output from Selentprim and Gencnt, and outputs the result 
into a third file. As an alternative a gnuplot between the two files or a 1:1 comparison between all 
genomes, might be constructed, with the program Testprimers. 
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The next step, indicated by the upper right branch in the flowchart above, utilize 

computation of 10-mer oligonucleotide frequencies in genomes to be classified, thus 

ending with the output from Gencnt. The output from these two branches (the output 

from Selentprim and Gencnt) is combined in Testarray and further analyzed using Excel 

and J-Express, as shown in the lower part of the flowchart. An alternative these two 

files might be executed in Testprimers enabling the construction of gnuplots or 1:1 

comparison. The programs Extseq, Gencnt, Selentprim, Testprimers, Gnuplot and the 

1:1 comparison were all executed on the Darwin server. Revperl was executed on the 

Biotin server, and analysis using J-Express and Excel was performed on a laptop. 

4.4.1 Selection of organisms and evaluation of genome sets 

This method relies on the selection of 4.000 primers that will be able to discriminate 

between different bacterial species and strains. The selection of genomes, from which 

these primers will be extracted, is important. As the number of genomes in the 

extraction set increase, the number of possible 10-mer oligonucleotides becomes higher. 

In theory a genome a little larger than 1 million base pairs is sufficient to include all 

possible 10-mer oligonucleotides, if each 10-mer only occurs once. Still, since many 10-

mers occur more than once, as can be seen by making a 10-mer oligonucleotide 

frequency plot (with the EMBOSS program Compseq), the size of a genome containing 

all possible 10-mers probably has to be significantly larger than one Mb. (Mb refers to 

Megabase pair of DNA, while MB is the abbreviation for Megabytes of data. When 

using FASTA files one MB of data is approximately equal to one Mb of DNA). 

A three dimensional plot showing numbers of primers versus megabytes of DNA versus 

species combinations was constructed to see how many genomes or Megabytes (MB) of 

DNA data that is needed to include all possible 10-mer oligonucleotides. Three different 

groups of bacteria were selected, a gram-positive group, a group containing 

Proteobacteria and a mixed species group. Within these three groups sets containing 10, 

20, 40 and 80 MB of DNA were made. The 20 MB set contains all bacteria in the 10 

MB set, the 40 MB set contains all bacteria in the 20 MB and so on. All sets can be 

accessed on the included DVD, in the “Primers_vs_MB_vs_Species” folder. These sets 

were uploaded to the Darwin server and executed using Extseq, Gencnt and finally 

Selentprim. In this way all primers with unacceptable energies and palindromes were 

filtered out, and the number of total available 10-mer oligonucleotides was given by 

Selentprim. See Figure 14 (page 67). 
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Another plot was constructed to reveal the correlation between MB of DNA data and 

the entropy interval needed to give 4000 primers (+/- 10 primers). The experiment was 

conducted by generating different sized genome sets ranging from 10-180 MB (the sets 

can be accessed on the included DVD in the “MB_of_Genomes_vs_Entropy” folder). 

These sets were analyzed using Extseq, Gencnt and Selentprim was executed with GC 

ratio set to 4-5 and f = 2, resembling typical settings later used in the study. The lower 

entropy was set to 0.0 while the upper entropy (Y-axis) and the genome sets were 

changed (X-axis) in order to extract 4000 primers. See Figure 15 (page 68).  

 

Based on the analysis made above, five sets were chosen to be used in the final primer 

extraction. In order to select a satisfactory number of informative primers all genome 

sequences involved in this selection has to be organized into sufficiently large sets. 

Since the size of the genome sets had a significant effect on the primer selection, four 

different sets were constructed, being approximately 40MB and 80MB (+/- 0.1 MB). 

Because one MB (Megabytes) of data is roughly one Mb (Megabase) of DNA, the sets 

have been assembled according to MB of data (these sets are included on the DVD in 

the “Genome_sets_for_primer_extraction” folder). The fifth set, named EcoSalmoFlex, 

contains 9 closely related species and size criteria were not applied (see Table 3 on page 

38). Species in the two gram-positive and Proteobacteria sets were selected in a way 

that best represents the diversity of the group (see Table 5 and Table 6). To reveal the 

correlation between entropy, the minimum frequency “f” and the number of extracted 

primers in these final genome sets, four three-dimensional plots were made. Since all 

four plots reveals the same tendency only diagrams for the Proteobacteria are included 

in this thesis (Figure 16 and Figure 17, page 69).  

40 MB Gram-positive 
Bacillus anthracis ban 
Bacillus halodurans bha 
Bifidobacterium longum blo 
Clostridium tetani ctc 
Corynebacterium glutamicum cgl 
Enterococcus faecalis efa 
Lactococcus lactis lla 
Listeria innocua lin 
Mycobacterium tuberculosis H37Rv (lab strain) mtu 
Oceanobacillus iheyensis oih 
Staphylococcus aureus N315 (MRSA) sau 
Streptococcus mutans smu 
Streptococcus pneumoniae R6 spr 
 
Table 5: Genome sets containing a total of 40 MB (Megabytes) DNA. The set to the left contains 13 
gram-positive bacterial genomes, while the set to the right contains 12 genomes from Proteobacteria. 

40 MB Proteobacteria 
Bordetella pertussis bpe 
Campylobacter jejuni cje 
Coxiella burnetii cbu 
Escherichia coli CFT073 ecc 
Helicobacter pylori J99 hpj 
Neisseria meningitidis MC58 (serogroup B) nme 
Nitrosomonas europaea neu 
Pseudomonas putida ppu 
Pseudomonas syringae pv. tomato pst 
Rickettsia conorii rco 
Vibrio parahaemolyticus vpa 
Xylella fastidiosa Temecula1 xft 
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80 MB Gram-positive 
Bacillus anthracis ban 
Bacillus halodurans bha 
Bacillus subtilis bsu 
Bifidobacterium longum blo 
Clostridium acetobutylicum cac 
Clostridium tetani ctc 
Corynebacterium glutamicum cgl 
Enterococcus faecalis efa 
Lactobacillus plantarum lpl 
Lactococcus lactis lla 
Listeria innocua lin 
Listeria monocytogenes lmo 
Mycobacterium tuberculosis H37Rv (lab strain) mtu 
Oceanobacillus iheyensis oih 
Staphylococcus aureus N315 (MRSA) sau 
Staphylococcus epidermidis sep 
Streptococcus agalactiae 2603 sag 
Streptococcus mutans smu 
Streptococcus pneumoniae R6 spr 
Streptococcus pyogenes MGAS8232 (serotype) spm 
Streptomyces avermitilis sma 
Streptomyces coelicolor sco 
Thermoanaerobacter tengcongensis tte 
 
Table 6: Genome sets containing a total of 80 MB (Megabytes) DNA. The set to the left contains 23 
gram-positive bacterial genomes, while the set to the right contains 20 genomes from Proteobacteria. 
 

4.4.2 Construction of different primer sets  

 

 
 

The sets assembled above were then used with Extseq, Gencnt and informative primers 

extracted using Selentprim. Determining the optimal minimum frequency (the f-value in 

Selentprim) is difficult. As a result, multiple primer sets were constructed for each 

genome set; keeping the entropy interval within 0.3 and 0.7, the GC ratio at 4-5 and 

varying the f-value in order to extract 4000 primers (see Table 10, page 70). Finally these 

primer sets were saved, in total 16, and further analyzed as described below.  

 

80 MB Proteobacteria 
Bordetella pertussis bpe 
Campylobacter jejuni cje 
Caulobacter crescentus ccr 
Coxiella burnetii cbu 
Escherichia coli CFT073 ecc 
Escherichia coli O157 EDL933 ece 
Helicobacter pylori J99 hpj 
Mesorhizobium loti mlo 
Neisseria meningitidis MC58 (serogroup B) nme 
Nitrosomonas europaea neu 
Pseudomonas aeruginosa pae 
Pseudomonas putida ppu 
Pseudomonas syringae pv. tomato pst 
Ralstonia solanacearum rso 
Rickettsia conorii rco 
Shewanella oneidensis son 
Shigella flexneri 301 (serotype 2a) sfl 
Vibrio parahaemolyticus vpa 
Xanthomonas axonopodis xac 
Xylella fastidiosa Temecula1 xft 

The figure to the left 
shows a miniaturized 
picture of the flowchart 
in Figure 8. The branch 
described in this section 
is indicated by the dotted 
circle. 
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An important fact that has to be accounted for is the relatively small number of 10-mer 

oligonucleotides that actually will be available after filtration. As mentioned above (see 

4.2.2) only a little more than 700.000 primers will remain after removing those with 

unfavorable energies and palindromes. Since the differences in GC ratio has to be as 

small as possible, to avoid incomplete hybridization, only a fraction of the 700.000 10-

mers can be chosen, dramatically reducing the number of primers. As a consequence 

some parameters might have to be set to less optimal than preferable, to extract a 

sufficient number of primers. 

 

4.4.3 Computation of 10-mer frequencies in genomes to be classified 

 

 
 

To test the selected primer sets, two large sets of genomes, one containing Gram-

positive bacteria, and one with Proteobacteria (see Table 4 on page 40) were assembled. 

For these genome sets the reverse compliment sequences were computed from the 

original FASTA input files, using revperl.pl (for further details on revperl.pl see 

4.2.5.1), to make both DNA strands available. By making the genome sequences 

double-stranded the number of 10-mer oligonucleotides available for hybridization will 

be the same as it would be in vitro, when conducting a real microarray experiment. The 

new sets containing the double-stranded genomes were then executed in Extseq and 

Gencnt to calculate 10-mer oligonucleotide frequencies for every genome. The outputs 

from Gencnt were later used as one of two input files in Testarray. 

 

 

 

 

The figure to the left 
shows a miniaturized 
picture of the flowchart 
in Figure 8. The branch 
described in this section 
is indicated by the dotted 
circle. 
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4.4.4 Analyzing output from Selentprim and Gencnt in Testarray 

 

 
 

Using the program Testarray, files containing 10-mer oligonucleotide frequencies from 

the genomes that are to be classified (the output from Gencnt) and the primer sets made 

by Selentprim are executed together to mimic the hybridization occurring when using an 

actual microarray (as shown in the flowchart). Only Testarray-v2, which normalizes the 

primer frequencies according to genome size, was used in these final analyses. The 

output from Testarray was later edited in Excel and executed in J-Express in order to 

cluster the array data. In order to find the algorithm that best corresponds with our data 

the sets were analyzed using the clustering algorithms UPGMA, WPGMA, Single-

linkage or Complete-linkage, and a variety of correlations or distance measurements. 

Based on comparing the different dendrograms generated from these algorithms, 

Pearson correlation and UPGMA proved to be most suitable in comparing species at the 

strain level. WPGMA and Canberra distance measures or Pearson correlation seems to 

be most appropriate when making a global tree for all Proteobacteria or Gram-positive 

bacteria. These decisions were made by comparing the dendrograms to the phylogenetic 

trees by visual inspection. The data was also analyzed using �–means clustering and 

SOM. 

 

 

 

 

 

 

The figure to the left 
shows a miniaturized 
picture of the flowchart 
in Figure 8. The branch 
described in this section 
is indicated by the dotted 
circle. 
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4.4.5 Making gnuplots and doing 1:1 comparison 

 

 
 

As an alternative to Testarray and J-Express the output from Selentprim and Gencnt can 

be executed in Testprimers, in order to make a gnuplot or doing a 1:1 comparison. 

Many gnuplots have been made during this study, in addition to the 1:1 comparison, but 

only one of each are included in the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure to the left 
shows a miniaturized 
picture of the flowchart 
in Figure 8. The branch 
described in this section 
is indicated by the dotted 
circle. 
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5 Results and discussion 

Due to the large amount of data produced during this study, and the need for direct 

comparison between the dendrograms and the reference trees, it is more convenient to 

have results and the discussion in the same chapter. This chapter starts with a 

presentation of the reference trees, followed by a discussion concerning their quality. 

Then, results produced by the oligonucleotide classification method are shown, 

compared to the reference trees and finally discussed.  

5.1 Results and discussion of the phylogenetic reference trees 

 

In this section results from the phylogenetic classification are represented. 

Figure 9 shows the intermingling of 16S rRNA genes between closely related species in 

the EcoSalmoFlex (see Table 3, page 38), and explains the need for calculating the 16S 

rRNA consensus sequences for the different organisms. A tree made from these 

consensus sequences and a tree holding all 320 sequences, from 61 bacteria, were 

constructed. 

 

 
Figure 9: Part of phylogenetic tree showing 16S rRNA 
genes from E.coli and S.flexneri intermingling.  
(Screenshot from Treeview). 
 
 
 

In the following section the phylogenetic trees are presented. Due to the need for easy 

file handling, all species in these trees are named by a three letter abbreviation. To 

facilitate interpretation lists with abbreviations and the corresponding bacterial names 

are given on the opposite page of the phylogenetic tree. Similar lists are also included 

when the dendrograms are presented in section 5.2.1. 
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The smallest 16S rRNA tree containing 61 taxas (see Figure 10) was calculated using a 

distance with parameters estimated by Modeltest, the set was randomly generated 10 

times and bootstrapped with 100 replicates. For information on specific settings and 

methods see 4.2.9.  

 

 

Gram-positive bacteria 
ban Bacillus anthracis 
bce Bacillus cereus 
bha Bacillus halodurans 
blo Bifidobacterium longum 
bsu Bacillus subtilis 
cac Clostridium acetobutylicum 
cef Corynebacterium efficiens 
cgl Corynebacterium glutamicum 
cpe Clostridium perfringens 
ctc Clostridium tetani 
efa Enterococcus faecalis 
lin Listeria innocua 
lla Lactococcus lactis 
lmo Listeria monocytogenes 
lpl Lactobacillus plantarum 
mbo Mycobacterium bovis 
mle Mycobacterium leprae 
mtc Mycobacterium tuberculosis CDC1551 
mtu Mycobacterium tuberculosis H37Rv (lab strain) 
oih Oceanobacillus iheyensis 
sag Streptococcus agalactiae 2603 
sam Staphylococcus aureus MW2 
san Streptococcus agalactiae NEM316 
sau Staphylococcus aureus N315 (MRSA) 
sav Staphylococcus aureus Mu50 (VRSA) 
sco Streptomyces coelicolor 
sep Staphylococcus epidermidis 
sma Streptomyces avermitilis 
smu Streptococcus mutans 
spg Streptococcus pyogenes MGAS315 (serotype M3) 
spm Streptococcus pyogenes MGAS8232 (serotype M18) 
spn Streptococcus pneumoniae TIGR4 
spr Streptococcus pneumoniae R6 
sps Streptococcus pyogenes SSI-1 (serotype M3) 
spy Streptococcus pyogenes SF370 (serotype M1) 
tte Thermoanaerobacter tengcongensis 
 

Table 7: Lists showing sets of gram-positive bacteria 
and Proteobacteria used in this study. Due to faulty 
annotation in the NUC files, not all species in these lists 
are included in the 16S rRNA tree. *(The bacteria 
Bordetella bronchiseptica has mistakenly been given a 
faulty abbreviation in some of the analysis).  

Proteobacteria 
bbr/bre Bordetella bronchiseptica 
bme Brucella melitensis 
bms Brucella suis 
bpa Bordetella parapertussis 
bpe Bordetella pertussis 
cbu Coxiella burnetii 
ccr Caulobacter crescentus 
cje Campylobacter jejuni 
ecc Escherichia coli CFT073 
ece Escherichia coli O157 EDL933 
eco Escherichia coli K-12 MG1655 
ecs Escherichia coli O157 Sakai 
hdu Haemophilus ducreyi 
hhe Helicobacter hepaticus 
hin Haemophilus influenzae 
hpj Helicobacter pylori J99 
hpy Helicobacter pylori 26695 
mlo Mesorhizobium loti 
neu Nitrosomonas europaea 
nma Neisseria meningitidis Z2491 (serogroup A) 
nme Neisseria meningitidis MC58 (serogroup B) 
pae Pseudomonas aeruginosa 
pmu Pasteurella multocida 
ppu Pseudomonas putida 
pst Pseudomonas syringae pv. tomato 
rco Rickettsia conorii 
rpr Rickettsia prowazekii 
rso Ralstonia solanacearum 
sfl Shigella flexneri 301 (serotype 2a) 
sme Sinorhizobium meliloti 
son Shewanella oneidensis 
stm Salmonella typhimurium 
stt Salmonella typhi Ty2 
sty Salmonella typhi CT18 
vch Vibrio cholerae 
vpa Vibrio parahaemolyticus 
vvu Vibrio vulnificus 
xac Xanthomonas axonopodis 
xcc Xanthomonas campestris 
xfa Xylella fastidiosa 9a5c 
xft Xylella fastidiosa Temecula1 
ype Yersinia pestis CO92 
ypk Yersinia pestis KIM 
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Figure 10: 16S rRNA consensus phylogenetic tree constructed using ClustalX, Gblocks, Modeltest and 
PAUP, with bootstrapping values. X indicates genes annotated as putative, and XX when annotated as 
probable. 

 

The larger tree containing all 320 16S genes also had its parameters generated by 

Modeltest (see 4.2.9 for settings), and its phylogeny determined by the Neighbor 

Joining method, finally it was bootstrapped. Due to the total size of all 320 branches the 

tree is impractically large and should be viewed directly from its file on the included 

DVD. 
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The first ATP synthase alpha chain tree presented here was constructed using MrBayes. 

The data was executed two times (generating two trees) in order to order to verify the 

consistency of the tree. The execution of MrBayes took more than 140 hours (2 X 70 

hours), on a 2.26 GHz Pentium 4. 

 

Gram-positive bacteria 
ban Bacillus anthracis 
bce Bacillus cereus 
bha Bacillus halodurans 
blo Bifidobacterium longum 
bsu Bacillus subtilis 
cac Clostridium acetobutylicum 
cef Corynebacterium efficiens 
cgl Corynebacterium glutamicum 
cpe Clostridium perfringens 
ctc Clostridium tetani 
efa Enterococcus faecalis 
lin Listeria innocua 
lla Lactococcus lactis 
lmo Listeria monocytogenes 
lpl Lactobacillus plantarum 
mbo Mycobacterium bovis 
mle Mycobacterium leprae 
mtc Mycobacterium tuberculosis CDC1551 
mtu Mycobacterium tuberculosis H37Rv (lab strain) 
oih Oceanobacillus iheyensis 
sag Streptococcus agalactiae 2603 
sam Staphylococcus aureus MW2 
san Streptococcus agalactiae NEM316 
sau Staphylococcus aureus N315 (MRSA) 
sav Staphylococcus aureus Mu50 (VRSA) 
sco Streptomyces coelicolor 
sep Staphylococcus epidermidis 
sma Streptomyces avermitilis 
smu Streptococcus mutans 
spg Streptococcus pyogenes MGAS315 (serotype M3) 
spm Streptococcus pyogenes MGAS8232 (serotype M18) 
spn Streptococcus pneumoniae TIGR4 
spr Streptococcus pneumoniae R6 
sps Streptococcus pyogenes SSI-1 (serotype M3) 
spy Streptococcus pyogenes SF370 (serotype M1) 
tte Thermoanaerobacter tengcongensis 
 
Table 8: Lists showing sets of gram-positive bacteria 
and Proteobacteria used in this study. Due to faulty 
annotation in the PRO files not all species in these lists 
are included in the ATPase tree. *(The bacteria 
Bordetella bronchiseptica has mistakenly been given a 
faulty abbreviation in some of the analysis). 
 

 

Proteobacteria 
bbr/bre Bordetella bronchiseptica 
bme Brucella melitensis 
bms Brucella suis 
bpa Bordetella parapertussis 
bpe Bordetella pertussis 
cbu Coxiella burnetii 
ccr Caulobacter crescentus 
cje Campylobacter jejuni 
ecc Escherichia coli CFT073 
ece Escherichia coli O157 EDL933 
eco Escherichia coli K-12 MG1655 
ecs Escherichia coli O157 Sakai 
hdu Haemophilus ducreyi 
hhe Helicobacter hepaticus 
hin Haemophilus influenzae 
hpj Helicobacter pylori J99 
hpy Helicobacter pylori 26695 
mlo Mesorhizobium loti 
neu Nitrosomonas europaea 
nma Neisseria meningitidis Z2491 (serogroup A) 
nme Neisseria meningitidis MC58 (serogroup B) 
pae Pseudomonas aeruginosa 
pmu Pasteurella multocida 
ppu Pseudomonas putida 
pst Pseudomonas syringae pv. tomato 
rco Rickettsia conorii 
rpr Rickettsia prowazekii 
rso Ralstonia solanacearum 
sfl Shigella flexneri 301 (serotype 2a) 
sme Sinorhizobium meliloti 
son Shewanella oneidensis 
stm Salmonella typhimurium 
stt Salmonella typhi Ty2 
sty Salmonella typhi CT18 
vch Vibrio cholerae 
vpa Vibrio parahaemolyticus 
vvu Vibrio vulnificus 
xac Xanthomonas axonopodis 
xcc Xanthomonas campestris 
xfa Xylella fastidiosa 9a5c 
xft Xylella fastidiosa Temecula1 
ype Yersinia pestis CO92 
ypk Yersinia pestis KIM 
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Figure 11: ATPase alpha chain tree from first execution with MrBayes. The clade reliabilities from first 
and second executions proves to be consistent (within +/- 0.05), with exception of the “lpl” clade thas has 
a difference between 0.51 and 0.99. The scale bar to the left displays number of substitutions per site. X 
indicates genes annotated as putative, and XX when annotated as probable. 
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This tree is also made using the ATP synthase alpha chain gene, calculated and 

constructed by TREE-PUZZLE and FITCH. Unfortunately this tree is not bootstrapped, 

thus no information is given regarding the probability of the clades.  

 

 

 

Gram-positive bacteria 
ban Bacillus anthracis 
bce Bacillus cereus 
bha Bacillus halodurans 
blo Bifidobacterium longum 
bsu Bacillus subtilis 
cac Clostridium acetobutylicum 
cef Corynebacterium efficiens 
cgl Corynebacterium glutamicum 
cpe Clostridium perfringens 
ctc Clostridium tetani 
efa Enterococcus faecalis 
lin Listeria innocua 
lla Lactococcus lactis 
lmo Listeria monocytogenes 
lpl Lactobacillus plantarum 
mbo Mycobacterium bovis 
mle Mycobacterium leprae 
mtc Mycobacterium tuberculosis CDC1551 
mtu Mycobacterium tuberculosis H37Rv (lab strain) 
oih Oceanobacillus iheyensis 
sag Streptococcus agalactiae 2603 
sam Staphylococcus aureus MW2 
san Streptococcus agalactiae NEM316 
sau Staphylococcus aureus N315 (MRSA) 
sav Staphylococcus aureus Mu50 (VRSA) 
sco Streptomyces coelicolor 
sep Staphylococcus epidermidis 
sma Streptomyces avermitilis 
smu Streptococcus mutans 
spg Streptococcus pyogenes MGAS315 (serotype M3) 
spm Streptococcus pyogenes MGAS8232 (serotype M18) 
spn Streptococcus pneumoniae TIGR4 
spr Streptococcus pneumoniae R6 
sps Streptococcus pyogenes SSI-1 (serotype M3) 
spy Streptococcus pyogenes SF370 (serotype M1) 
tte Thermoanaerobacter tengcongensis 
 
Table 9: Lists showing sets of gram-positive bacteria 
and Proteobacteria used in this study. Due to faulty 
annotation in the PRO files not all species in these lists 
are included in the ATPase tree. *(The bacteria 
Bordetella bronchiseptica has mistakenly been given a 
faulty abbreviation in some of the analysis). 
 

 

Proteobacteria 
bbr/bre Bordetella bronchiseptica 
bme Brucella melitensis 
bms Brucella suis 
bpa Bordetella parapertussis 
bpe Bordetella pertussis 
cbu Coxiella burnetii 
ccr Caulobacter crescentus 
cje Campylobacter jejuni 
ecc Escherichia coli CFT073 
ece Escherichia coli O157 EDL933 
eco Escherichia coli K-12 MG1655 
ecs Escherichia coli O157 Sakai 
hdu Haemophilus ducreyi 
hhe Helicobacter hepaticus 
hin Haemophilus influenzae 
hpj Helicobacter pylori J99 
hpy Helicobacter pylori 26695 
mlo Mesorhizobium loti 
neu Nitrosomonas europaea 
nma Neisseria meningitidis Z2491 (serogroup A) 
nme Neisseria meningitidis MC58 (serogroup B) 
pae Pseudomonas aeruginosa 
pmu Pasteurella multocida 
ppu Pseudomonas putida 
pst Pseudomonas syringae pv. tomato 
rco Rickettsia conorii 
rpr Rickettsia prowazekii 
rso Ralstonia solanacearum 
sfl Shigella flexneri 301 (serotype 2a) 
sme Sinorhizobium meliloti 
son Shewanella oneidensis 
stm Salmonella typhimurium 
stt Salmonella typhi Ty2 
sty Salmonella typhi CT18 
vch Vibrio cholerae 
vpa Vibrio parahaemolyticus 
vvu Vibrio vulnificus 
xac Xanthomonas axonopodis 
xcc Xanthomonas campestris 
xfa Xylella fastidiosa 9a5c 
xft Xylella fastidiosa Temecula1 
ype Yersinia pestis CO92 
ypk Yersinia pestis KIM 
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Figure 12: ATPase alpha chain tree from TREE-PUZZLE and FITCH, due to computational limitations 
the trees has not been bootstrapped.  The scale bar to the left displays number of substitutions per site. X 
indicates genes annotated as putative, and XX when annotated as probable. 
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Due to computational limitations the different methods, employed for phylogenetic 

analysis, were not ideal. Although some of the generated trees have a high probability of 

being optimal, no guarantees can be given regarding their reliability. The two factors 

having greatest influence on the final trees is probably the selection/extraction of genes 

from the NUC and PRO files, and the numerous options available in each phylogenetic 

program. Every gene used in this analysis was extracted from NUC or PRO files, 

downloaded from the KEGG database, using Extract (see 4.2.5.1). This program 

extracts any FASTA sequence, from a multiple FASTA file, using gene annotation as 

the only searching criteria. If any of these genes have been given an incorrect annotation 

the final results will be affected. In addition, genes annotated as probable or putative 

were included in the selection. Some of these genes turned out to be false, thus affecting 

the results (see phylogenetic trees for the Prolyl-tRNA synthetase and the Methionyl-

tRNA synthetase gene on the included DVD). These genes should have been removed 

and the dataset reanalyzed, but due to computational limitations this was impractical. 

Only the 16S rRNA and ATP synthase trees are included in the results (the remaining 

phylogenetic trees are available on the included DVD). These trees are consistent with 

those that were excluded, thus being of confirmative value. When picking a method for 

phylogenetic analysis there is always a balance between choosing the most suitable 

method and CPU hours available. Below is a discussion on the four different 

phylogenetic methods employed in constructing the reference trees, one method for 

DNA sequences and three for amino acid analysis; 

 

The 16S rDNA consensus was calculated using a distance method with maximum 

likelihood measures and 10 random starting trees, which is a relatively robust method. 

Still the strength in this tree lies in the parameters suggested by Modeltest, ensuring the 

most suitable model of evolution. Modeltest was also employed in constructing the 16S 

rRNA tree containing all 320 genes. Due to the large number of sequences involved in 

this alignment a less favorable method was used in constructing a phylogenetic tree, the 

Neighbor-joining method. Still it is comparable to the consensus tree in Figure 10, which 

to a certain degree ensures its quality. When looking at the intermingling of 16S rRNA, 

as seen in Figure 9 (page 57), it looks like the majority of the multiple 16S rRNA genes, 

within a single species, are placed together and probably do not affect the final result. 
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Trees made by MrBayes, calculated using maximum likelihood and containing clade 

probabilities, are probably the most certain ones. Any uncertainties should therefore lie 

in the selected substitution model and/or in the gamma distribution. 

 

Having automatic parameter estimation and the ability to compute pairwise maximum 

likelihood distances, trees made by TREE-PUZZLE are likely to be reliable. FITCH 

was later employed in tree construction, taking the distance matrix from TREE-

PUZZLE, using global rearrangement and randomized input order. Unfortunately, 

bootstrapping these results was impractical, thus there is no way to judge the clade 

reliabilities. Still, trees made by TREE-PUZZLE resemble trees made by other methods. 

 

Trees made using different programs in the PHYLIP package are certainly the least 

certain ones. Still it is a good sign that they resemble trees made with other methods, 

and thus strengthen the overall results. Ideally FITCH should have been used in tree 

construction, but due to some unknown computational error causing problems during 

the bootstrapping, NEIGHBOR was used. 

 

Therefore, regarding the reference trees, a conclusion can be drawn that the quality is 

sufficiently high to be used in evaluating trees made by the oligonucleotide method. 
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There is also a lot of on going research to make phylogenetic trees based on multiple 

genes, commonly referred to as supertrees (Brown et al., 2001; Daubin et al., 2002). 

The maximum likelihood tree generated by Daubin et al., from a core of 118 genes, is 

included in this study for comparison, see Figure 13. The supertree represented here 

contains 11 gram-positive and 12 Proteobacterial species. Some of the species included 

in the supertree are not included in the reference trees and vice versa, thus reducing the 

possibilities for comparison. Still, many of the deep branches are included in both the 

supertree and the reference trees, and there seems to be an almost perfect 

correspondence between the different phylograms. 

 

 

 
Figure 13: Maximum likelihood supertree based on 118 genes. Taken from (Daubin et al., 2002).  
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5.2 Results and discussion of the oligonucleotide classification  

 

Before any primer set could be generated a number of analyses had to be conducted in 

order to assemble suitable genome sets (of appropriate size and diversity) for primer 

extraction. The results presented here give the foundation for selecting the first four 

genome sets for primer extraction. First a chart was constructed to reveal the correlation 

between genome set size and the number of total available primers, without using any 

selective parameters. 
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Figure 14: Chart showing number of total available primers vs. size of genome set vs. species set. 

 

The plot shows that a relatively small number of bacterial genomes is sufficient to 

extract all possible 10-mer oligonucleotides. After filtration there is a maximum of 

718.744 available primers. A little more than 10 MB of genome data appears to be 

sufficient to generate an adequate number of primers. 10 MB of genome data 

corresponds to three medium sized single stranded bacterial genomes. There also 

appears to be a correlation between the diversity of the species in the three different sets 

and the number of primers obtained.  

 

 

 

 

 



 68 

The chart below show the relationship between the size of the genome set and the 

entropy interval needed to extract approximately 4000 primers. The diagram was 

constructed with the purpose of finding suitable intervals for primer extraction. 
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Figure 15: Chart revealing the correlation between size of entropy window and size of the genome set 
needed to extract approximately 4000 primers. 

 

This chart shows that, if the genome sets are small it is sufficient with a relatively 

narrow entropy interval in order to extract a satisfactory number a primers. As the 

genome sets increase in size the entropy window has to be expanded to retain the same 

number of 10-mer oligonucleotides. This corresponds to the fact that it is easier to find 

primers with a scattered frequency distribution in a small set of genomes because there 

are more possibilities for variation. As the size of the genome sets increases towards 

100 Mb or more, the entropy window seems to stabilize around 0.70-0.75. It is 

important to remember that when the genome sets becomes large the frequencies of the 

different primers becomes more uniformly distributed, resulting in a lower number of 

primers having a skewered and informative distribution. As a result of this investigation 

it was decided that the entropy used to generate the final primer sets should be kept 

within an interval of 0.3 and 0.7.  
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Four charts revealing the correlation between entropy, minimum frequency and the 

number of extracted primers were made in order to evaluate primer distribution in the 

different genome sets. Two sets for both the gram-positive and the Proteobacteria were 

made, using the 40 and 80 Mb sets. These four sets are the same sets used in the final 

step to extract primers. Only the sets for Proteobacteria are shown here (see Figure 16 

and Figure 17). 
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Figure 16: Chart showing minimum frequency vs. entropy interval vs. available primers,  
calculated by Selentprim using GC ratio 4-5 and input file generated from the  
“40 Mb Proteobacteria” set. 
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Figure 17: Chart showing minimum frequency vs. entropy interval vs. available primers,  
calculated by Selentprim using GC ratio 4-5 and input file generated from the  
“80 Mb Proteobacteria” set. 
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The entropy interval and minimum frequency are relatively limited since most primers 

are concentrated in one corner (see Figure 16 and Figure 17). It is also interesting to see 

that there are more available primers with entropy below 0.7 among both the 

Proteobacterial sets than within the gram-positive sets. This could be due to the fact that 

the species within the Proteobacterial sets are more divergent, thus revealing greater 

differences concerning their primer frequencies. Since neither very high nor very low 

entropy will be suitable in selecting primers, it can be assumed that the entropy interval 

should lie somewhere between 0.3 and 0.7. 

 

Table 10 shows the final primer sets generated from the four different genome sets and 

the parameters employed in order to reach approximately 4000 primers. These sets were 

later used as input in Testarray together with a file containing frequency data for 

genomes that were to be classified. The output from Testarray was edited in Excel and 

further analyzed by J-Express in order to generate dendrograms. These primers sets 

were also used in Testprimers to make gnuplots and 1:1 comparison. Results from these 

analysis will be presented and discussed in the next section. 

 

Set Discarded -e -E f G/C Primers File name 

40Mb Proteobacteria 20 0,3 0,427 1 4-5 3999 030427-c45-f1.dat 

40Mb Proteobacteria 20 0,3 0,5038 2 4-5 3999 0305038-c45-f2.dat 

40Mb Proteobacteria 20 0,3 0,5488 3 4-5 3998 0305488-c45-f3.dat 

40Mb Proteobacteria 20 0,3 0,6065 4 4-5 3996 0306065-c45-f4.dat 

40Mb Proteobacteria 20 0,3 0,6518 5 4-5 4003 0306518-c45-f5.dat 

80Mb Proteobacteria 126882 0,3 0,4764 1 4-5 4004 0304764-c45-f1.dat 

80Mb Proteobacteria 126882 0,3 0,5417 2 4-5 4001 0305417-c45-f2.dat 

80Mb Proteobacteria 126882 0,3 0,5785 3 4-5 4000 0305785-c45-f3.dat 

80Mb Proteobacteria 126882 0,3 0,6266 4 4-5 4003 0306266-c45-f4.dat 

80Mb Proteobacteria 126882 0,3 0,6673 5 4-5 4003 0306673-c45-f5.dat 

40Mb Gram-positive 10 0,3 0,5596 1 4-5 3999 0305596-c45-f1.dat 

40Mb Gram-positive 10 0,3 0,637 2 4-5 4004 030637-c45-f2.dat 

40Mb Gram-positive 10 0,3 0,6967 3 4-5 3999 0306967-c45-f3.dat 

80Mb Gram-positive 10 0,3 0,6299 1 4-5 4003 0306299-c45-f1.dat 

80Mb Gram-positive 10 0,3 0,6859 2 4-5 4001 0306859-c45-f2.dat 

80Mb Gram-positive 10 0,3 0,7303 3 4-5 4001 0307303-c45-f3.dat 

Table 10: Table showing the different primer sets and their settings when executed in Selentprim. “-e” is 
the minimum entropy, while “–E” refers to the maximum entropy. “f” is minimum frequency, “G/C” the 
number of C-bases and “Primers” refers to the total number of extracted primers in each set. Finally, in 
the last column, the file name of the primer set. “Discarded” refers to the number of discarded primers, by 
the program Gencnt, due to sequencing errors.  
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5.2.1 Discussion and results on comparison of distantly related species 

The output from Testarray, made by combining primer sets and files with 10-mer 

oligonucleotide frequencies for the species to be classified, were analyzed in J-Express. 

Different primer sets (see Table 10) were subject to different distance measures and 

clustering algorithms in order to generate a final dendrogram (shown below) that best 

resembles the phylogenetic reference trees. 

 

   

Figure 18: Proteobacteria tree clustered with J-Express using WPGMA and Pearson Correlation. Primer 
set generated from the “Proteobacteria 40 Mb” set, using the following settings in Selentprim; e0.3 
E0.5038 c4 C5 f2. Species marked with a red triangle are included in the primer selection set. 

bbr/bre Bordetella bronchiseptica 
bme Brucella melitensis 
bms Brucella suis 
bpa Bordetella parapertussis 
bpe Bordetella pertussis 
cbu Coxiella burnetii 
ccr Caulobacter crescentus 
cje Campylobacter jejuni 
ecc Escherichia coli CFT073 
ece Escherichia coli O157 EDL933 
eco Escherichia coli K-12 MG1655 
ecs Escherichia coli O157 Sakai 
hdu Haemophilus ducreyi 
hhe Helicobacter hepaticus 
hin Haemophilus influenzae 
hpj Helicobacter pylori J99 
hpy Helicobacter pylori 26695 
mlo Mesorhizobium loti 
neu Nitrosomonas europaea 
nma Neisseria meningitidis Z2491  
nme Neisseria meningitidis MC58  
pae Pseudomonas aeruginosa 
pmu Pasteurella multocida 
ppu Pseudomonas putida 
pst Pseudomonas syringae pv. tomato 
rco Rickettsia conorii 
rpr Rickettsia prowazekii 
rso Ralstonia solanacearum 
sfl Shigella flexneri 301  
sme Sinorhizobium meliloti 
son Shewanella oneidensis 
stm Salmonella typhimurium 
stt Salmonella typhi Ty2 
sty Salmonella typhi CT18 
vch Vibrio cholerae 
vpa Vibrio parahaemolyticus 
vvu Vibrio vulnificus 
xac Xanthomonas axonopodis 
xcc Xanthomonas campestris 
xfa Xylella fastidiosa 9a5c 
xft Xylella fastidiosa Temecula1 
ype Yersinia pestis CO92 
ypk Yersinia pestis KIM 



 72 

A set of dendrograms were constructed for the gram-positive species, analogous to the 

Proteobacterial tree. The gram-positive dendrogram that best resembles the 

phylogenetic reference trees is shown below. 

 

 

 

 
 

 

Figure 19: Gram-positive bacteria tree clustered with J-Express using WPGMA and the Canberra 
algorithm. Primer set generated from the “Gram-positive 80 Mb” set, using the following settings in 
Selentprim; e0.3 E0.7303 c4 C5 f3. Species marked with a red triangle are included in the primer 
selection set. 

 

 

 

ban Bacillus anthracis 
bce Bacillus cereus 
bha Bacillus halodurans 
blo Bifidobacterium longum 
bsu Bacillus subtilis 
cac Clostridium acetobutylicum 
cef Corynebacterium efficiens 
cgl Corynebacterium glutamicum 
cpe Clostridium perfringens 
ctc Clostridium tetani 
efa Enterococcus faecalis 
lin Listeria innocua 
lla Lactococcus lactis 
lmo Listeria monocytogenes 
lpl Lactobacillus plantarum 
mbo Mycobacterium bovis 
mle Mycobacterium leprae 
mtc Mycobacterium tuberculosis CDC1551 
mtu Mycobacterium tuberculosis H37Rv  
oih Oceanobacillus iheyensis 
sag Streptococcus agalactiae 2603 
sam Staphylococcus aureus MW2 
san Streptococcus agalactiae NEM316 
sau Staphylococcus aureus N315 (MRSA) 
sav Staphylococcus aureus Mu50 (VRSA) 
sco Streptomyces coelicolor 
sep Staphylococcus epidermidis 
sma Streptomyces avermitilis 
smu Streptococcus mutans 
spg Streptococcus pyogenes MGAS315  
spm Streptococcus pyogenes MGAS8232  
spn Streptococcus pneumoniae TIGR4 
spr Streptococcus pneumoniae R6 
sps Streptococcus pyogenes SSI-1 
spy Streptococcus pyogenes SF370 
tte Thermoanaerobacter tengcongensis 
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Only two of the 16 generated dendrograms are shown in the section above, one for the 

Proteobacterial species and one for the gram-positive species (see Figure 18 and Figure 

19), the remaining trees are included on the DVD. Since none if these 16 trees were 

identical and the differences turned out to be inconsistent, a selection was made to best 

represent the final dendrograms. There are virtually an infinite number of combinations 

in selecting 4000 primers and it is not possible to evaluate every possibility. The size of 

the genome sets, as well as their composition, most certainly has some effect on the 

final result. Still, it is difficult to point out any rules regarding how the parameters in 

Selentprim should be employed in order to extract a high-quality primer set. Neither can 

any conclusion be drawn regarding the size of the extraction set (40 or 80 MB).  

Comparing trees made in J-Express with the reference trees reveals some differences 

regarding the Proteobacterial trees. Inconsistency is found when looking at the four 

species Xanthomonas axonopodis (xac), Xanthomonas campestris (xcc), Xylella 

fastidiosa 9a5c (xfa) and Xylella fastidiosa Temecula1 (xft) which always appear on a 

common branch, with high bootstrapping values, in the reference trees. Comparing 

these results to those obtained in Figure 18, where the Xanthomonas axonopodis/ 

Xanthomonas campestris pair is placed far away from the Xylella fastidiosa 9a5c/ 

Xylella fastidiosa Temecula1 pair, raises some questions about the oligonucleotide 

method and its ability to classify bacteria. This phenomenon is also observed with some 

of the other species that normally appear on the same branch.  

One explanation to this abnormal classification would be to blame the clustering method 

itself, due to a general limitation in the hierarchical clustering algorithm. If a bad 

assumption is made early in the process it can not be corrected, thus affecting the final 

result (Quackenbush, 2001). When clustering objects the algorithm seeks to find the two 

species that are most closely related, placing them in a common cluster and repeat this 

procedure until all objects are clustered. During this procedure the four species 

mentioned above might have been placed in different cluster even thought they are 

related, and drawn further and further apart in the subsequent clustering process (see 

Figure 20). If the first cluster to be made had been different, resulting in a different 

starting point, the rest of the clustering would probably have been a little different and 

these four organisms possibly would have been clustered together. 
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Figure 20: Illustration demonstrating how different starting points (blue dots) may result in different 
clustering of the objects involved (red dots) causing related objects (green dots) to be placed in separate 
clusters.  

 

As an alternative to hierarchical clustering �-means clustering and SOM were 

conducted. Although they both require knowledge regarding the number of clusters that 

best represents the available data. Unfortunately these methods will not generate any 

phylogenetic tree, only groups or networks. Still, both �-means clustering and SOM 

place the Xanthomonas axonopodis (xac)/Xanthomonas campestris (xcc) pair and the 

Xylella fastidiosa 9a5c (xfa)/Xylella fastidiosa Temecula1 (xft) pair in different groups 

and the grouping strongly resembles those generated by hierarchical clustering.  

 

As pointed out in the introduction, it might be difficult to compare and cluster complex 

profiles if the differences are too large. In Figure 21 the three most similar species were 

obtained by using Euclidian distance measures when Bacillus halodurans C-125  (bha) 

was used as a starting point, Bacillus subtilis 168  (bsu) was the second most similar 

species while Lactobacillus plantarum (lpl) was the third. When using Bacillus subtilis 

168  (bsu) as starting point the most similar species should either be Bacillus 

halodurans C-125   (bha) or Lactobacillus plantarum (lpl), but this is not the case, see 

Figure 22. Instead Listeria monocytogenes (lmo) and Bacillus cereus (bce) were 

calculated to give the most similar profiles.  

 

Different starting 
points might 
generate different 
clusters 
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Figure 21: Figure showing the three most similar profiles when Bacillus halodurans C-125 (bah)  
is used as starting point with Euclidian distance measures. The primer set was generated from the  
“Gram-positive 40 Mb” set, using the following settings in Selentprim; e0.3 E0.6967 c4 C5 f3  
(Screen shot from J-Express). 
 

 
Figure 22: Figure showing the three most similar profiles when Bacillus subtilis 168 (bsu) is  
used as starting point with Euclidian distance measures. The primer set was generated from the  
“Gram-positive 40 Mb” set, using the following settings in Selentprim; e0.3 E0.6967 c4 C5 f3  
(Screen shot from J-Express). 
 
 
One explanation to this phenomenon might be that the patterns are too complex to make 

a reasonable comparison, thus providing more than one possible solution. This problem 

also takes place when using different distance measures or correlations, even though the 

species selected to be the most similar may vary. Another explanation could be that high 

peaks in the primer frequencies, most probably as a result of repeated sequences in 

some genomes, strongly affects the algorithms for distance measures, thus having an 

effect on the final clustering (see Figure 23).  
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Figure 23: Plot showing primer frequencies for different Proteobacterial species,  
made using the output from Testarray. The high peak seen in the figure counts almost  
100 primers with the sequence ACGGCATTTT. Several peaks like this one are  
distributed throughout the file, probably having a significant effect when calculating  
distances between species. 
 

The MUMmer plot below clearly reveals a tighter relationship between Bacillus subtilis 

168 and Bacillus halodurans C-125, than between Bacillus subtilis 168 and Listeria 

monocytogenes EGD-e. 

 

      

Figure 24: The MUMmer plot to the left shows Bacillus subtilis 168 (Y-axis) vs. Bacillus halodurans C-
125 (X-axis).  The plot to the right shows Bacillus subtilis 168 (Y-axis) vs. Listeria monocytogenes EGD-
e (X-axis). Both plots use 20 bp as minimum alignment length. 

 

The rest of the dendrogram for the Proteobacterial species appears to be relatively 

consistent for the remaining species, compared to the phylogenetic reference trees. Taxa 

having high bootstrapping values in the reference trees also seem to be the most 

consistent in the dendrogram. Still there are exceptions, as mentioned above (the 
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Xanthomonas and Xylella species). No significant abnormalities can be found when 

evaluating the most favorable dendrogram for the gram-positive bacteria. The 

inconsistency between the gram-positive dendrogram and the phylogenetic reference 

trees appears to be no larger than the internal variations between the different 

phylogenetic trees. The gram-positive bacteria used in this thesis are less diverse than 

the set containing the Proteobacterial species, and this could explain the better 

clustering results observed for the former group. Despite some irregular clustering in the 

Proteobacterial dendrogram, this method appears to be suitable in classifying distantly 

related organisms. Nevertheless the results might have been even better if some of the 

problems mentioned above, concerning high peaks and clustering algorithms, were 

treated in a reasonable manner. This could be done by a broader evaluation of different 

clustering algorithms and distance measures, in addition to developing a method to 

reduce the influence of high peaks on the final dendrogram. 

5.2.2 Discussion on comparison of closely related species and strains 

In this part of the study the aim is to test how well the oligonucleotide method 

distinguishes between strains from the same species and species that are closely related, 

such as Escherichia coli and Shigella flexneri. Hopefully the generated profiles are 

similar enough not to be mixed with other species and still having a sufficient number 

of differences so that they can be resolved. The figures below shows four different array 

plots, made with J-Express, making it possible to create graphs of each profile in 

relation to another. 

 

 

Figure 25: The plot to the left shows Shigella flexneri 301 (serotype 2a) against it self, while the plot to 
the right shows Shigella flexneri 301 (serotype 2a) vs. Shigella flexneri 2457T (serotype 2a). (Screen shot 
from J-Express). Using the medium EcoSalmoFlex set with the following settings, e0.0 E0.9 c4 C5 f2  
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Figure 26: The plot to the left shows Shigella flexneri 301 (serotype 2a) vs. Salmonella typhi CT18, 
while the plot to the right shows Shigella flexneri 301 (serotype 2a) vs. Escherichia coli K-12 MG1655. 
(Screen shot from J-Express). 

 

Looking at these profiles it is interesting to see that even between these closely related 

species the differences are significant, but far from random. These analyses were 

conducted on an array generated from all nine species in the EcoSalmoFlex set. Since 

some of these 9 species shows nearly 100% homology by DNA::DNA hybridization 

(70-100% between E.coli and S.flexneri and 50% between E.coli and S.typhi (Madigan 

et al., 2003)) it is difficult to find primers having a skewered distribution, which gives a 

set containing a little more than 2400 primers.  

 

 
Figure 27: Gnuplot of the EcoSalmoFlex, showing primer distribution in the different  
genomes. In the largest genome primers are sorted according to their frequency.  
The primer set was generated using e 0.0 E 0.9 c4 C5 f2. 
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The Gnuplot above, constructed using the output from Testprimers, reveals the 

distribution of primers across the different genomes. This kind of plot has two 

advantages; first of all it allows us to see if the primers are evenly distributed between 

and within each genome, which is true in this case. Secondly; it allows us, at least to a 

certain degree, to compare patterns from different species or strains by visual 

inspection. When running this set in Testarray, and analyzing the results in J-Express, 

the dendrogram shown in Figure 28 was generated. In addition, a second primer set was 

generated, using only two species, and executed in Testarray and J-Express,  

see Figure 29. 

 

 

Figure 28: Dendrogram showing the classification of nine closely related enteric bacteria. The primer set 
was generated using e 0.0 E 0.9 c4 c5 f2, giving 2411 primers. The data were clustered using UPGMA 
and Pearson correlation. All species were included in the primer selection set. 

  

Figure 29: Dendrogram showing the classification of nine closely related enteric bacteria. The primer set 
was generated using e 0.15 E 0.581 c4 c5 f1, giving 4636 primers. The data were clustered using 
UPGMA and Pearson correlation. Species marked with a red triangle are included in the primer 
selection set. 

 

Figure 30: Dendrogram showing the classification of nine closely related enteric bacteria. The primer set 
was generated using e 0.0 E 0.9 c4 c5 f2. The data were clustered using UPGMA with Euclidian distance 
measures. All species were included in the primer selection set. 
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The first two trees are identical, only having slightly different branch length, and 

correspond perfectly to the phylogenetic reference trees. Remembering that these trees 

are made by different primer sets generated from different settings and species, this is a 

positive result. The third tree is different, placing Escherichia coli and Salmonella 

strains in the same cluster, which is not in correspondence with the reference trees. This 

faulty clustering is caused by shortcomings in the Euclidian distance measures. While 

Euclidian distance is a measurement of the distance between two profiles, Pearson 

correlation is a similarity measure and probably more suitable for our analysis (for 

further details see 3.2.7.1).  

 

 

Figure 31: Chart showing pairwise Euclidian distances between genomes in the EcoSalmoFlex set, made 
by sorting and visualizing the output from Testprimers in J-Express. The comparison was made using the 
same primer set used in creating the dendrograms in Figure 28 and Figure 30, e 0.0 E 0.9 c4 c5 f2. 

 

Problems occurring from using Euclidian distance measures can also be seen in the 

chart revealing pairwise comparison of species in the EcoSalmoFlex set. Here the 

program Testprimers computes shorter distances between Escherichia coli and 

Salmonella than between Escherichia coli and Shigella flexneri, finally leading to faulty 

grouping (see Figure 31). 

 

The array plot constructed in Figure 25 shows Shigella flexneri 301 vs. Shigella flexneri 

2457T, both serotype 2a. Two genomes from the same serotype, but geographically and 

temporally separated. The 301 strain (Jin et al., 2002) is 7.85 kb larger than the 2457T 

strain, which is largely accounted for by differences in IS complement (Wei et al., 

2003). There are more than 1400 single-nucleotide differences between them, but this is 

a small number compared to their total genome size. Even though the output from 
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Testarray contains detectable variations they are very limited and probably only 

distinguishable in an in silico experiment. If these two serotypes, or any other two 

species being equally related, are to be distinguished, the primer set probably has to be 

more specialized. By designing a set for a certain group of species or strains, and by 

using a more sophisticated algorithm for primer selection, a sufficient resolution should 

be achievable. It is also interesting to note that both Shigella flexneri strains are placed 

in a separate group next to the Escherichia coli group, while these two species tends to 

mix in the reference trees. The inconsistent placements of these species in the reference 

trees are probably due to a very limited number of differences in the specific genes, 

making phylogenetic classification difficult. Looking at the profiles in the array plot 

above confirms the degree of dissimilarity between these species, thus explaining their 

placement in separate clusters. Comparing Shigella flexneri to four other strains of 

Escherichia coli reveals a remarkable number of differences detected by the array, see 

Figure 26. Looking at the dendrograms in Figure 28 and Figure 29, and bearing in mind 

that Shigella strains are probably clones of Escherichia coli (Jin et al., 2002; Lan and 

Reeves, 2002), having nearly 3.000 ORFs in common (Wei et al., 2003), see Figure 32) 

these results clearly reflects the potential of the oligonucleotide microarray 

classification method. 

 
Figure 32: Venn diagram showing the distribution of common and 
unique ORFs among S. flexneri 2a, E. coli K-12, and E. coli O157: H7. 
Only complete protein-coding ORFs, including hypothetical unknowns,  
are included. IS element and phage ORFs, as well as pseudogenes,  
are excluded. Figure taken from (Wei et al., 2003). 
 

The Venn diagram above indicates a closer relationship between Escherichia coli K-12 

and Shigella Flexneri, than between Shigella flexneri and Escherichia coliO157:H7. 

The diagram has been made by comparing the complete genome sequences of these 

three genomes. The same conclusion, regarding the relationship between these three 

organisms, has been reached in other studies involving complete genome comparison 
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(Jin et al., 2002; Lan and Reeves, 2002; Wei et al., 2003). All these results are in perfect 

correspondence to our results, generated by the oligonucleotide method, as can be seen 

in Figure 33, where Escherichia coli K-12 is found to be the most similar bacteria 

compared to Shigella flexneri. The same results were reached using other primer sets 

(those used in Figure 28 and Figure 29) and distance measures (Euclidian and Manhatten).  

 

 

Figure 33: This chart shows the three most similar species when Shigella flexneri 2a 2457T is used as 
starting point using Pearson correlation. The primer set was generated using e 0.15 E 0.581 c4 c5 f1, and 
only two species were used in the primer selection. 

 
Two MUMmer plots were made by aligning two complete genome sequences, using a 

100 bp alignment frame (see Figure 34). Looking a these figures there seems to be a little 

more genome rearrangements between Shigella flexneri 2a 2457T and Escherichia coli 

O157:H7 EDL933 than between Shigella flexneri 2a 2457T and Escherichia coli K12-

MG1655. Even though no large differences can be seen between the two plots, they 

confirm the results reached by other methods and the oligonucleotide method. 

 

             

Figure 34: The MUMmer plot to the left shows Shigella flexneri 2a 2457T (Y-axis) vs. Escherichia coli 
K12-MG1655 (X-axis). The plot to the right shows Shigella flexneri 2a 2457T (Y-axis) vs. Escherichia 
coli O157:H7 EDL933 (X-axis). Both plots use 100 bp as minimum alignment length.       
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6 Conclusion 

The object of this study has been to evaluate an in silico method for bacterial 

classification, using a set of 4000 oligonucleotides, selected according to their entropy. 

To evaluate the outcome of this method, visualized as dendrograms, a wide range of 

phylogenetic trees were constructed using well known techniques, involving 4 different 

genes and 4 different algorithms, giving us a total of 11 phylogenetic trees for 

comparison. Although the ultimate goal of this technique is to construct a microarray for 

classification purposes, this study has only been concentrated on testing the possibilities 

of this method in silico. 

 

Oligonucleotides as a tool for bacterial classification tends to meet some problems at the 

genus level, but has proven to give a remarkably high resolution at the species and strain 

level. In fact the same classification results were obtained by using our method as with 

by whole genome comparison. Most certainly this method can also be applied to 

distinguish other closely related and pathogenic species such as strains of Bacillus 

anthracis or Staphylococcus aureus. Probably it should be possible to obtain even 

higher resolution by tuning the primer selection method and by designing custom made 

oligonucleotide arrays for a certain group of species or strains. The method should also 

be improved in order to handle peaks in the array data, either by filtering or by using a 

distance measures that is unaffected by obstacles.  

 

It is important to remember that this study has been conducted solely in silico. In a real 

life experiment the data scanned from the microarray are inaccurate and contain noise, 

thus leading to a lower resolution. Since the minimum sequence length used in 

oligonucleotide microarrays is approximately 25 bases, the single base extension 

technique will probably be employed (Nikiforov et al., 1994) in conducting the 

experiment. The extracted 10-mer oligonucleotides will be used as primers in a single 

base extension reaction, providing a fluorescent or radioactively signal for detection. In 

order to immobilize the primers and to facilitate the enzymatical reaction the array can 

be covered with a polyacrylamide gel (Strizhkov et al., 2000; Vasiliskov et al., 1999). 

 

 

 



 84 

7 Bibliography 

 

Amaratunga, D. and Cabrera, J. (2003) Exploration and Analysis of DNA Microarray and Protein Array 
Data. Wiley-Interscience. 

 
Gibson, G. and Muse, S.V. (2002) A Primer of Genome Science. Sinauer Associates, Inc., Sunderland, 

Massachusetts. 
 
Hall, B.G. (2001) Phylogenetic Tress Made Easy. Sinauer. 
 
Lengeler, W., Drews, G. and Schlegel, H. (1999) Biology of the Prokaryotes. Blackwell Science. 
 
Madigan, M.T., Martinko, J.M. and Parker, J. (2003) Brock Biology of Microorganisms. Pearson 

Education. 
 
Mount, D.W. (2001) Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory 

Press, New York. 

8 References 

 

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., 
Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Jr., Lu, L., Lewis, 
D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, 
J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O. and 
Staudt, L.M. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene 
expression profiling. Nature, 403, 503-511. 

Brazma, A. and Vilo, J. (2000) Gene expression data analysis. FEBS Lett, 480, 17-24. 
Brochier, C., Philippe, H. and Moreira, D. (2000) The evolutionary history of ribosomal protein RpS14: 

horizontal gene transfer at the heart of the ribosome. Trends Genet, 16, 529-533. 
Brown, J.R. and Doolittle, W.F. (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol 

Mol Biol Rev, 61, 456-502. 
Brown, J.R., Douady, C.J., Italia, M.J., Marshall, W.E. and Stanhope, M.J. (2001) Universal trees based 

on large combined protein sequence data sets. Nat Genet, 28, 281-285. 
Carver, T. (2000) Cons. EMBOSS, Cambrigde. 
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in 

phylogenetic analysis. Molecular Biology and Evelution, 17, 540-552. 
Daubin, V., Gouy, M. and Perriere, G. (2001) Bacterial molecular phylogeny using supertree approach. 

Genome Inform Ser Workshop Genome Inform, 12, 155-164. 
Daubin, V., Gouy, M. and Perriere, G. (2002) A phylogenomic approach to bacterial phylogeny: evidence 

of a core of genes sharing a common history. Genome Res, 12, 1080-1090. 
Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O. and Salzberg, S.L. (1999) Alignment 

of whole genomes. Nucleic Acids Res, 27, 2369-2376. 
Delcher, A.L., Phillippy, A., Carlton, J. and Salzberg, S.L. (2002) Fast algorithms for large-scale genome 

alignment and comparison. Nucleic Acids Res, 30, 2478-2483. 
Doolittle, W.F. (1999) Phylogenetic classification and the universal tree. Science, 284, 2124-2129. 
Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J.M. (1999) Expression profiling using cDNA 

microarrays. Nat Genet, 21, 10-14. 
Dysvik, B. and Jonassen, I. (2001) J-Express: exploring gene expression data using Java. Bioinformatics, 

17, 369-370. 
Eisen, J.A. (2000) Horizontal gene transfer among microbial genomes: new insights from complete 

genome analysis. Curr Opin Genet Dev, 10, 606-611. 



 85 

Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of 
genome-wide expression patterns. Proc Natl Acad Sci U S A, 95, 14863-14868. 

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol 
Evol, 17, 368-376. 

Felsenstein, J. (1993) Phylogeny Inference Package. 
Fitch, W.M. (1970) Distinguishing homologous from analogous proteins. Syst Zool, 19, 99-113. 
Fitch, W.M. and Margolia.E. (1987) Construction of Phylogenetic Trees. Science, 155, 279-&. 
Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., 

Tomb, J.F., Dougherty, B.A., Merrick, J.M. and et al. (1995) Whole-genome random sequencing 
and assembly of Haemophilus influenzae Rd. Science, 269, 496-512. 

Gilbert, D. (1999) Readseq. Bloomington, Indiana. 
Gogarten, J.P., Starke, T., Kibak, H., Fishman, J. and Taiz, L. (1992) Evolution and isoforms of V-

ATPase subunits. J Exp Biol, 172, 137-147. 
Grimont, F. and Grimont, P.A. (1986) Ribosomal ribonucleic acid gene restriction patterns as potential 

taxonomic tools. Ann Inst Pasteur Microbiol, 137B, 165-175. 
Hasegawa, M., Kishino, H. and Yano, T. (1985) Dating of the human-ape splitting by a molecular clock 

of mitochondrial DNA. J Mol Evol, 22, 160-174. 
Higgins, D.G., Thompson, J.D. and Gibson, T.J. (1996) Using CLUSTAL for multiple sequence 

alignments. Methods Enzymol, 266, 383-402. 
Huelsenbeck, J.P. and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. 

Bioinformatics, 17, 754-755. 
Huelsenbeck, J.P., Ronquist, F., Nielsen, R. and Bollback, J.P. (2001) Bayesian inference of phylogeny 

and its impact on evolutionary biology. Science, 294, 2310-2314. 
Jain, R., Rivera, M.C. and Lake, J.A. (1999) Horizontal gene transfer among genomes: the complexity 

hypothesis. Proc Natl Acad Sci U S A, 96, 3801-3806. 
Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. (1996) 

Evaluation of the DNA fingerprinting method AFLP as an new tool in bacterial taxonomy. 
Microbiology, 142 ( Pt 7), 1881-1893. 

Jin, L. and Nei, M. (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. 
Mol Biol Evol, 7, 82-102. 

Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., Wang, J., Liu, H., Yang, J., Yang, F., Zhang, X., 
Zhang, J., Yang, G., Wu, H., Qu, D., Dong, J., Sun, L., Xue, Y., Zhao, A., Gao, Y., Zhu, J., Kan, 
B., Ding, K., Chen, S., Cheng, H., Yao, Z., He, B., Chen, R., Ma, D., Qiang, B., Wen, Y., Hou, 
Y. and Yu, J. (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity 
through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res, 30, 
4432-4441. 

Jones, D.T., Taylor, W.R. and Thornton, J.M. (1992) The rapid generation of mutation data matrices from 
protein sequences. Comput Appl Biosci, 8, 275-282. 

Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. Mammalian Protein Metabolism, 21-
32. 

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through 
comparative studies of nucleotide sequences. J Mol Evol, 16, 111-120. 

Kostman, J.R., Edlind, T.D., LiPuma, J.J. and Stull, T.L. (1992) Molecular epidemiology of Pseudomonas 
cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol, 30, 2084-2087. 

Lan, R. and Reeves, P.R. (2002) Escherichia coli in disguise: molecular origins of Shigella. Microbes 
Infect, 4, 1125-1132. 

Lawrence, J.G. and Ochman, H. (1997) Amelioration of bacterial genomes: rates of change and exchange. 
J Mol Evol, 44, 383-397. 

Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, 
C., Kobayashi, M., Horton, H. and Brown, E.L. (1996) Expression monitoring by hybridization 
to high-density oligonucleotide arrays. Nat Biotechnol, 14, 1675-1680. 

MacQueen, J.B. (1967) Some methods for classification and analysis of multivariate observations. Proc. 
Fifth Berkeley Symp. Mathematical Statistics and Probability, 1, 281-297. 

Martin, W. (1999) Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays, 
21, 99-104. 

Mau, B., Newton, M.A. and Larget, B. (1999) Bayesian phylogenetic inference via Markov chain Monte 
Carlo methods. Biometrics, 55, 1-12. 

Nikiforov, T.T., Rendle, R.B., Goelet, P., Rogers, Y.H., Kotewicz, M.L., Anderson, S., Trainor, G.L. and 
Knapp, M.R. (1994) Genetic Bit Analysis: a solid phase method for typing single nucleotide 
polymorphisms. Nucleic Acids Res, 22, 4167-4175. 



 86 

Posada, D. and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. 
Bioinformatics, Vol. 14, pp. 817-818. 

Quackenbush, J. (2001) Computational analysis of microarray data. Nat Rev Genet, 2, 418-427. 
Rannala, B. and Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method 

of phylogenetic inference. J Mol Evol, 43, 304-311. 
Read, T.D., Peterson, S.N., Tourasse, N., Baillie, L.W., Paulsen, I.T., Nelson, K.E., Tettelin, H., Fouts, 

D.E., Eisen, J.A., Gill, S.R., Holtzapple, E.K., Okstad, O.A., Helgason, E., Rilstone, J., Wu, M., 
Kolonay, J.F., Beanan, M.J., Dodson, R.J., Brinkac, L.M., Gwinn, M., DeBoy, R.T., Madpu, R., 
Daugherty, S.C., Durkin, A.S., Haft, D.H., Nelson, W.C., Peterson, J.D., Pop, M., Khouri, H.M., 
Radune, D., Benton, J.L., Mahamoud, Y., Jiang, L., Hance, I.R., Weidman, J.F., Berry, K.J., 
Plaut, R.D., Wolf, A.M., Watkins, K.L., Nierman, W.C., Hazen, A., Cline, R., Redmond, C., 
Thwaite, J.E., White, O., Salzberg, S.L., Thomason, B., Friedlander, A.M., Koehler, T.M., 
Hanna, P.C., Kolsto, A.B. and Fraser, C.M. (2003) The genome sequence of Bacillus anthracis 
Ames and comparison to closely related bacteria. Nature, 423, 81-86. 

Rychlik, W. (1995) Selection of primers for polymerase chain reaction. Mol Biotechnol, 3, 129-134. 
Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing 

phylogenetic trees. Mol Biol Evol, 4, 406-425. 
Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression 

patterns with a complementary DNA microarray. Science, 270, 467-470. 
Schmidt, H.A., Strimmer, K., Vingron, M. and von Haeseler, A. (2002) TREE-PUZZLE: maximum 

likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, Vol. 18, 
pp. 502-504. 

Sokal, R.R. and Michener, C.D. (1958) A statistical method for evaluating systematic relationships. Univ. 
Kansas Sci. Bull., 38. 

Southern, E.M. (1975) Detection of Specific Sequences among DNA Fragments Separated by Gel-
Electrophoresis. Journal of Molecular Biology, 98, 503-&. 

Strizhkov, B.N., Drobyshev, A.L., Mikhailovich, V.M. and Mirzabekov, A.D. (2000) PCR amplification 
on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-
resistant genes and their mutations. Biotechniques, 29, 844-848, 850-842, 854 passim. 

Swofford, D.L. (1993) Paup - a Computer-Program for Phylogenetic Inference Using Maximum 
Parsimony. Journal of General Physiology, 102, A9-A9. 

Swofford, D.L. (1998) Phylogenetic Analysis Using Parsimony. Sinauer Associates, Sunderland 
Massachusetts. 

Tajima, F. and Nei, M. (1984) Estimation of evolutionary distance between nucleotide sequences. Mol 
Biol Evol, 1, 269-285. 

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S. and Golub, 
T.R. (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and 
application to hematopoietic differentiation. Proceedings of the National Academy of Sciences of 
the United States of America, 96, 2907-2912. 

Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region 
of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 10, 512-526. 

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. and Church, G.M. (1999) Systematic determination 
of genetic network architecture. Nat Genet, 22, 281-285. 

Thompson, J.D., Higgins, D. G. and Gibson, T. J. (1994) ClustalW: improving the sensitivity of 
progressive multiple sequence alignment through sequence weighting, position-specific gap 
penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680. 

Toronen, P., Kolehmainen, M., Wong, C. and Castren, E. (1999) Analysis of gene expression data using 
self-organizing maps. Febs Letters, 451, 142-146. 

Vasiliskov, A.V., Timofeev, E.N., Surzhikov, S.A., Drobyshev, A.L., Shick, V.V. and Mirzabekov, A.D. 
(1999) Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization. 
Biotechniques, 27, 592-594, 596-598, 600 passim. 

Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., 
Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., 
Robinson, E., Mittmann, M., Morris, M.S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., 
Rozen, S., Hudson, T.J., Lander, E.S. and et al. (1998) Large-scale identification, mapping, and 
genotyping of single-nucleotide polymorphisms in the human genome. Science, 280, 1077-1082. 

Wei, J., Goldberg, M.B., Burland, V., Venkatesan, M.M., Deng, W., Fournier, G., Mayhew, G.F., 
Plunkett, G., 3rd, Rose, D.J., Darling, A., Mau, B., Perna, N.T., Payne, S.M., Runyen-Janecky, 
L.J., Zhou, S., Schwartz, D.C. and Blattner, F.R. (2003) Complete genome sequence and 



 87 

comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun, 71, 2775-
2786. 

Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic 
Acids Res, 18, 7213-7218. 

Williams, G. (1999) Revseq. Genome Campus, Hixton, Cambridge. 
Williams, G. (2000) Comseq. Genome Campus, Hinxton, Cambrigde. 
Woese, C.R. and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary 

kingdoms. Proc Natl Acad Sci U S A, 74, 5088-5090. 
Woese, C.R., Fox, G.E., Zablen, L., Uchida, T., Bonen, L., Pechman, K., Lewis, B.J. and Stahl, D. (1975) 

Conservation of primary structure in 16S ribosomal RNA. Nature, 254, 83-86. 
Zuckerkandl, E. and Pauling, L. (1965) Molecules as documents of evolutionary history. J Theor Biol, 8, 

357-366. 
 
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 


