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Abstract

This thesis gives a description of a prototype bioimpedance measurement
system based on the integrated circuit AD5933. The prototype operates
from 5 - 100 kHz and covers the impedance range 0.1kΩ - 10 MΩ in six
subranges.

The system is operated from a PC, and the software required for
operation and control has been developed.

Verification testing on R/C modules have shown that the calibration
process and the signal level are critical issues with regard to operational
performance. With carefull calibration the system operates well and whole
body measurements on 11 persons have been performed with satisfactory
and repeatable results. Statistical processing of the results using both a
Standard Deviation approach and a Principal Components Analysis gave
results identifying regions of whole body impedance values as well as
indicators for outliers.

The measurement principle as such is very promising and with a
promised updating of the IC the applicability will improve.
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Chapter 1

Introduction

Bioimpedance measurements are becomming more and more used in
medical situations, since there are becomming more and more applications
where bioimpedance can be used. This thesis is using a fairly new
integrated circuit for impedance measurements named AD5933. With
this device it is possible to make cheap and small instruments. The
AD5933 itself cost only about $19 or less, and is only available in a surface
mounted package. So the system can also be made very compact, since the
integrated circuit itself is small and requires few external parts as well.

1.1 Background and motivation

The body is a good electrical conductor. Its impedance can be measured
by applying a weak signal and detecting the resulting current.

In this thesis, I consider the use of the AD5933 [2, 3] to simplify
measurement procedures and make it possible to build easily portable
equipment for operation in connection with a laptop. The AD5933 is a
impedance converter with an internal frequency generator. The output
excitation can be applied to an impedance, and the response signal will
then be sampled and a Discrete Fourier Transform (DFT) is performed
which returns a real an imaginary part which is used to calculate the
impedance and phase.

We may foresee an interesting development with more advanced and
flexible signal-processing optimized for bioimpedance measurements and
evaluation of result. The AD5933 represent a step in this direction, and it is
thus interesting to look into its application possibilities and shortcomings.
Measurements of this type give information about the electrochemical
processes in the tissue [1] an can be used for characterizing the tissue
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and for monitoring physiological changes. They may be used directly for
detection of an illness like skin cancer [22].

Impedance measurements of the body is a noninvasive technique with
low risk, and the equipment used is in general cheap, compared with
hospital equipment for characterisation of body functionality.

Lately the advancement of IC-technology has opened for even further
reduction in volume and prize [2] and operation in connection with
laptops. Another development trend is the use of statistical interpolation
of data.

The thesis work is focusing on utilization of this new technology,
including making a prototype and developing necessary software for
operation.

1.2 Goals

The main goal for this master thesis is to develop a bioimpedance
measuring system using the integrated circuit AD5933 and perform
verification tests on resistor-capacitor (RC) networks and living tissue to
test the suitability of the system for whole body measurements and for a
possible method for body composition.

1.2.1 Part goals

The main goal can be divided into the following part goals:

• Design and implement a prototype system based on the AD5933,
using a microcontroller as interface between the AD5933 and the PC
used for control and data collection.

• Develop software for the PC and microcontroller.

• Establish operational procedures for performing measurements with
the system.

• Perform verification testing of the system on RC-networks.

• Analysis of results.
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1.3 Structure of the thesis

This thesis is structured as follows:

Chapter 1 provides a background and motivation for the work, and
presents the goals of this thesis.

Chapter 2 provides background information on the electrical properties
of tissue that are of relevance to the usage of the device developed in this
thesis. Relevant body impedance properties are also described.

Chapter 3 gives a description of the hardware of the system and the prop-
erties of the main modules and how they affect the operation of the system.

Chapter 4 discusses the software devloped during the work on this thesis.
It also provides a brief description of third party software used during the
work on this thesis.

Chapter 5 gives a prototype system specification and operational guide-
lines.

Chapter 6 cover the testing of the full prototype system including tests
on resistor/capacitor networks and whole body measurements with anal-
ysis and discussion of results. Encountered problems associated with the
built in properties of the AD5933 and its documentation are discussed.

Chapter 7 discusses possibilities for improvement of the prototype sys-
tem, including using an upcoming improved version of the AD5933.

Chapter 8 presents final discussion and conclusions.

Appendixes

Appendix A gives the full C code for the microcontroller.

Appendix B gives the full Python code for the graphical interface.

Appendix C contains the table with all the body measurement results

Appendix D gives flow-diagrams for the developed software.
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Chapter 2

Theoretical background

This chapter gives a background to the concept of bioimpedance and its
use in body measurements, both for full body composition evaluation and
study of some specific parts of the body.

The goal is to understand the potential of the system built and to give
a background for the made measurements, in particular the total body
measurements.

2.1 Bioimpedance and body composition

The measured response of a biomaterial (e.g., the total body, skin, muscle,
fat, or blood), either dead or living, to an applied current is referred
to as its bioimpedance. More specifically, the bioimpedance is the
biomaterial’s ability to oppose the applied current flow. Bioimpedance
describes the passive electrical properties of biomaterial, and changes in
the bioimpedance can reflect changes in the biomaterial (e.g., changes in
water content, changes in the blood flow, nervous activity, galvanic skin
response). The bioimpedance is a complex quantity, the reason for this is
because the biomaterial not just oppose the applied current flow, it also
phase-shifts the voltage with respect to the current in the time-domain
caused by the built in capacitances at the cell membranes.

The body act as a conductor in combination with the capacitance of the
cell membranes. The part of the body contributing most to the conduction
process is referred to as the fat free mass (FFM). In addition we have the
fat mass (FM) which only contribute a little to the electrical conduction
process. If the FFM is determined from measurements, then FM is given
by the total body weight minus the FFM. From the FFM we have one
part from the extracellular water (ECW), another part intracellular water
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(ICW), the protein and the bone structure with minerals. The total body
water is the sum of ECW (extracellular water) and ICW (intracellular
water). The body cell mass (BCM) which is the protein rich part of
the body is not affected in catabolic states. The challenge is to make
measurements allowing the best possible determination of these different
compartments of the body.

The models describing the composition of the body are under further
development. Ellis has presented a review [10] describing status and
development trends. The basic and original 2-compartment (2-C) model
distinguishing between fat free and fat is still in use. Going to the
3-C model FFM was divided into two parts, total water content and
remaining solids (mainly protein and minerals). The 4-C model included
protein and mineral compartments, and new measurements techniques
like neutron activation analysis for body protein and dual energy X-
ray absorption (DXA) for bone mineral content. This requires highly
specialized equipment and safe operation.

Another 4-C model divides the fat free mass into body cell mass (BCM),
extracellular water (ECW) and extracellular solids (ECS).

Ellis refers to a comprehensive 5-level model originally proposed by
Wang et al. [11]. This model, which is shown in Figure 2.1, together
with the 2-C model, operates with the levels elemental, molecular, cellular,
tissue systems and the total body.

Figure 2.1: Body composition model [10]
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2.2 Electrical properties of tissue

The conductivity of the body is ionic, the reason for this is the existence of
ions in the intra- and extracellular liquid, two of the most important ions
are Cl− and Na+. In ordinary electronics, conduction in metals is a flow
of free electrons in the metal, the conduction in the body is quite different
because the conduction is of the form that the ions are transported around
in the intra- and extracellular liquid. This leads to concentration changes.
Tissue is composed of cells, these cells have unpolare membrane. The cell
membrane consists of two layers of fosfolipid, this fosfolipid has polar
head, but the two tails consist of fat and is therefore unpolar, which
makes the membrane a bad conductor for ions. This property gives the
cells a capacitive property. Because of these capacitive properties of the
cells, tissue can be seen on as a dielectric (but tissue can also be seen on
as a conductor, muscle tissue is more like a conductor with capacitive
properties, while stratum corneum is more like a dielectric with some
conducting properties).

Because of the tissue’s dielectric property, we can use a model of
a capacitor to set up some basic expressions for the admittance and
impedance (impedance Z = 1

Y ) for this capacitor. If we have a capacitor
where A is the plate area and L is the distance between the plates, the
admittance for this capacitor is then given by:

Y = G + jωC (2.1)

Where G is the conductance given by G = σ ′A/L [S] The electrical
properties of tissue vary considerable depending on it’s structure. The
complex impedance is given by [1].

Z = R + jX = R− j
ωC

(2.2)

where the last part is valid for a R-C series combination.

Y =
1
Z

= G + jωC (2.3)

Taking the variations of the properties into account the specific admittance
called admittivity is given by

y = σ + jωε0εr (2.4)

where σ is the conductivity of the tissue locally, ε0 the dielectric constant
of free space, εr the local tissue permittivity. To illustrate:
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From 2.3 to 2.4 the relations

C = ε0εr
A
d

, R = σ
A
d

(2.5)

can be used;
Similarly we have the specific impedance, called impedivity

z = ρ = ρ− j
ε0εrω

(2.6)

Eq. 2.5 and 2.6 shows that local variations inσ , ρ andεr will give variations
in admittivity and impedivity. The electrical properties of tissue do in
general vary with frequency and with variations in the permittivity εr,
as illustrated in Figure 2.2. When tissue is damaged in any way, or

Figure 2.2: Dispersion regions for tissue [1], results in a frequency
dependent permittivity

objects like tumors have developed, the tissue locally will have different
properties including the dielectric properties. This leads to a modification
of the electric field distribution and the impedivity is also changed.
Measurements on normal and cancerous human breast tissues have led to
the conclusion that there are significant differences in electrical impedance
between normal and malignant human breast tissues [12]. The malignant
tissues show a lower impedivity. The changes relative to healthy tissue
are attributed to increased water and salt content, changed membrane
permeability and packing density as well as orientation of the cells.
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2.3 Impedance of the body and living tissue

Starting with a resistivity ρ (Ωm) and a conductivityσ=1/ρ (S/m) the total
resistance of a cylinder of homogeneous material of length L and area A is
given by

R = ρ ∗ L/A = ρ ∗ L2/V (2.7)

Where V is the volume of the water with conductive ions. The water
volume is given by

V = ρ
L2

A
(2.8)

This equation was used by Hoffer et al. [5] making measurements on 20
volunteers with connections to the right hand and the left foot (obtaining
the greatest length of the conductor). In addition, body height, weight
and wrist circumference were measured. Measurements were performed
at 100kHz. Total body water volume was also determined by radioisotope-
dilution measurement and a regression equation on the form

TBW = AT2/Z + B (2.9)

was empirically derived from the volunteers. Comparing with 2.8
indicates that ρ is included in A and T2 corresponds to L2. B is not
commented on in this article. In later development there has been focus
on improving the algorithm as illustrated in Table 3 in the paper by Kyle
et al. [7] where bioimpedance analysis equations reported in the literature
between 1990 and 2004 are listed.

The algorithms are now more sophisticated, taking weight, age and
gender into account in slightly different ways. Similar types of equations
are listed for body cell mass (BCM), intercellular water (ICW), extracellular
water (ECW), body fat (BF) and fat free mass (FFM). However there are
few choices for ICW and BCM, meaning that ICW must be found from
TBW and ECW, and that there may be more problems determining the
body cell mass.

Our main task is to make measurements of the body or living tissue.
The body consists mainly of water containing dissolved ions like Na+ and
K+ making it highly conductive. There are two main types of current
flowing as a response to an excitation voltage, the extracellular current
and the intracellular current.

The cell membrane represents a capacitance and for low frequencies
(dc) there will be no current penetration. At higher frequencies current
flows in and out of the capacitors at the membrane borders. The
body can be modeled as an intracellular part (resistor capacitance in
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series) in parallel with a resistor representing the extracellular part
as shown in Figure 2.3. This model was originally proposed by

Figure 2.3: Model of the body represented as an electrical circuit

Fricke [6] and is referred to as Fricke’s circuit. Here Xc represents
capacitance of the membrane barriers, RICW the intracellular fluid (water)
where conductivity is mainly provided by dissolved K+ ions. For the
extracellular resistance RECW its mainly Na+ ions dissolved in water.

There are other more complex models consisting of several resistors
and capacitances and a pure resistor capacitance series is also used. For
the Fricke model the current at low frequencies is dominated by the extra-
cellular contribution Ro. At high frequencies the body resistance reflects
full contributions from both extracellular and intracellular contributions.
The value is then R∞ representing RICW and RECW in parallel. The re-
sistance is commonly plotted versus the negative reactance value [4], in
a Cole plot as shown in Figure 2.4. In the plot the effect of the dielectric
relaxation τZ used in the Cole empirical equation 2.10

Z = R∞ +
R0 − R∞

1 + ( jωτZ)α
(2.10)

resulting in a displacement of the center of the semicircle from the real axis.
Kyle et al. [7] have reviewed the methods, used for bioelectric impedance
analysis of the body in determining body composition. The basic methods
used can be summarized as:

2.3.1 Single frequency bioelectrical impedance analysis (SF-BIA). For
the single frequency measurement and analysis it is common to

10



Figure 2.4: Illustration of the frequency dependency of the impedance of
living tissue

make measurements at 50kHz using surface electrodes on hand
and foot. At 50kHz the current passes through both the intra-
and extracellular fluids with some individual variations. Thus
the measured resistivity is a weighted sum of extracellular (full
contribution) and intracellular water resistivities. SF-BIA is used
to estimate FFM and TWB based on empirical equations. The
conditions under which this type of equations are valid must be
carefully observed and taken into account.

2.3.2 Multi frequency bioimpedance analysis (MF-BIA). This Method then
includes impedance measurements at different frequencies, typically
1, 5, 50, 100, 200 and 500kHz. However it has been observed
that reproducibility is poor for frequencies below 5kHz and above
200kHz, especially for the reactance at low frequencies [7, 9]. The
AD5933 based device presented here does cover the interesting
region up to 100kHz, and will be tested also in the multi frequency
mode. The multi frequency approach allows evaluation of FFM,
TBW, ICW and ECW.

2.3.3 Segmented bioelectrical impedance analysis. Bioimpedance is
frequency dependent (because of the cell’s capacitive property), and
measuring the bioimpedance over several frequencies (henceforth
bioimpedance spectroscopy) can give valuable information about
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tissue and membrane structures as well as intra- and extracellular
liquid distributions. Because of the tissue’s capacitive properties
the bioimpedance will decrease with increasing frequency. While
whole body bioimpedance analysis (BIA) focuses on the totality, the
localized BIA looks at specified body segments like an arm or a
foot. One could for instance imagine that a circulation problem or
a damage in one of the feet would have an influence on the local
impedance. This is a technique which is being investigated by NASA
for surveyance and study of astronauts during preparation for space
missions [13]. The problem is that the lack of gravitational force
causes a redistribution of fluids in the body (i.e., from thighs toward
head) which severely may affect performance.

2.3.4 Electrical Impedance Scanning. Electrical Impedance Scanning is
a method used for investigation of local variations. One area of
interest is searching for and investigation of possible malignant
tissue, where the impedivity will locally be reduced relative to
healthy surrounding. This problem seem to have been specially
focused on in the USA, where there are restrictions on the use of
mammographic screening for women under 40 years [14].

In the recent ICEBI-conference in Graz there were several papers
focusing on the use of electrical impedance tomography (EIT)
exemplified by [15, 16, 17].

Scanning measurements require a set of electrodes [18] as illustrated
in 2.5. With excitation at one electrode pair, registration is performed
at all the other electrodes. When one registration is ended the
excitation is moved systematically to a new electrode position and
so on. This creates an enormous amount of data, and the challenge
is the data processing needed to give reliable results.

2.4 Application of bioimpedance measurements

2.5 Multivariate analysis

After the whole body measurements was completed I used multivariate
analysis with the measured results, to see if there is a correlation between
the measured data (impedance and phase) and the boddy mass index
(BMI). For this I used a program called The Unscrambler from a company
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Figure 2.5: A measurement object, with regions exhibiting changed
impedivity equipped with electrodes for excitation and detection.

named Camo. In the multivariate analysis I used a multivariate analysis
named PLS1 regression analysis.

2.5.1 Partial Least Squares (PLS) regression analysis

PLS regression analysis is a method for relating the variations in one
or several response variables (Y-variables) to the variations of several
predictors (X-variables), with either explanatory or predictive purposes.
So in the data set the BMI is the Y-variables while the impedance and
the phase is the X variables which I want to find a correlation with the
Y-variables, or so to say predict the Y-variables from the X-variables.

PLS1 regression analysis is a version of the PLS method with only
one Y-variable, there are other versions like PLS2 that have 2 or more Y-
variable’s also but in my measurements I have only used one (BMI).
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Chapter 3

A bioimpedance measurement
system based on the integrated
circuit AD5933

3.1 Description of the system and its main mod-
ules

The system to be built should be a complete system, from measurement
to presentation of final results. Figure 3.1 shows a block diagram for the
main modules of the bioimpedance measurement system consisting of
the AD5933 card, a microcontroller for communication with the AD5933,
and a laptop (PC) communicating with the microcontroller and presenting
results. The software package developed during the work consists of one
part for the microcontroller and one part for the PC. Outer connections to
devices under calibration or measurement are included in the figure. The
hardware blocks and their integration into the system are described in the
following sections (i.e., 3.2 - 3.6), and the software package is described in
Chapter4 with the full code in Appendix A for the microcontroller code
and Appendix B for the graphical interface code.

3.2 The AD5933 integrated circuit and its func-
tionality

The AD5933 is a high precision impedance converter system with an
internal converter system and an internal DDS (Direct Digital Synthesis)
frequency generator for provision of the signal used for excitation of
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Figure 3.1: Main modules of the bioimpedance measurement system

the impedance being tested. The response signal from the impedance is
amplified and then sampled by a 12 bit, 1 MSPS ADC (Analog to Digital
Converter). A discrete Fourier transform (DFT) is performed by using
1024-point DFT processor included in the circuit. This DFT provides a
real and imaginary number for each frequency.

The system can be used to perform impedance measurements from
0.1kΩ to 10MΩ. However, due to operational requirements on calibration
and excitation voltage this measurement domain is divided into 6 ranges,
range 1-6. The frequencies of operation is from 3kHz to 100kHz, where
the low frequency is dependent on the reference oscillator frequency and
stability. A block diagram of the IC AD5933 is shown in Figure 3.2.
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Here are also two external components included, the device under test
representing an impedance Z(ω) = R + jX(ω), and the resistor RFB
which is the reference resistor for a selected measurement range. It is used
for calibration with Z(ω) replaced with a Rcal of the same value as RFB.
RFB is then kept for all measurements in the range where it has been used
for calibration. From an operational point of view the AD5933 consists of

Figure 3.2: Functional block diagram of the AD5933 [2]

the following main parts:

• the transmitter part generating the signal employing a DDS using ei-
ther an external oscillator (MCLK) or an internal reference oscillator,
a DAC transforming the digital signal into a sinusoidal signal used
as excitation signal for the device under test. The signal from the
DAC is sent through a programmable gain stage where the peak-to-
peak output voltage is selected. The output signal can be stepped in
frequency from the operator’s control, giving a start frequency, the
frequency increment and the number of increments.

• when the device under test is excited by this voltage a response
current is set up. This is the input to the current-voltage amplifier
in the receive stage. This amplifier is followed by a programmable
amplifier (PGA) with gain options of 1x and 5x. Figure 3.3 shows the
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receive and on board data handling stage in more detail (this figure
is taken from the AD5933’s datasheet but modified slightly). The
feedback resistor RFB (between Vin and RFB) is assumed identical
with the resistor used for the calibration. The reason for this is
discussed later. This resistor and the gain setting resistor of the
PGA-stage determines the signal level at the ADC input. It must
be kept within the linear range of the ADC (0V-VDD) to avoid
faulty operation. We also see that the voltage values in the system
will change when Z(ω) is varied. This is compensated for by the
possibilities for changing the two variable resistors in the transmit
stage, the feedback resistor and the out resistor Rout. The system is
then operated in 6 ranges with different output excitation voltages
and different values of the calibration resistor and the feedback
resistor RFB of the current to voltage amplifier. The PGA gain is
normally set to 1x. Going to 5x could cause problems with saturation
because this will increase the voltage from the current-to-voltage
amplifier, and if the voltage to the ADC goes out of it’s linear range
(0V-VDD) the ADC will become saturated. The digital data from the
ADC are fed into the digital signal processing part of the system
where a discrete Fourier transform (DFT)

X( f ) =
1023

∑
n=0

(x(n) (cos(n)− j sin(n))) (3.1)

is performed using data from 1024 samples for each frequency
point. The output data is stored in two 16 bits registers for real
and imaginary components respectively in twos complement format.
The impedance value for the device under test is calculated from
these data, using a calibration procedure comparing the magnitude
with a known resistor value.

3.3 The microcontroller and its functions

I have used the ATMEL AVR series of microcontrollers, because I had
some experience with these from before and because they are well
documented.

3.3.1 The ATmega16 microcontroller

I have used the ATmega16 microcontroller for this project, this microcon-
troller has large enough flash memory (16kB memory space) and has the
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Figure 3.3: Details of the AD5933 receive and data handling stage

needed peripheral connections (serial port and I2C/TWI). A discussion on
different parts of the ATmega16 that was used in the project is given here
together with a short introduction to ATmega16 in general. For features
not used in the thesis work or for more details, I refer to the ATmega16
datasheet [19]. The ATmega16 8-bit microcontroller in the AVR family is
based on the AVR enhanced RISC (Reduced Instruction Set Computer).
With less instructions and compilators that are optimized for the RISC ar-
chitecture, a RISC processor may be quicker than more complex processors
because the simplified instructions can be executed faster.

Now I move on to the features used in the thesis work.

The Universal Synchronous and Asynchronous serial Receiver and
Transmitter (USART)

The ATmega16 USART features were used to communicate with the PC
via the serial port. On the STK500 start board there is an integrated circuit
MAX202 that handles the transition from the transistor-transistor logic
level to RS232 level.

The USART takes bytes of data and transmits the individual bits in
sequential order, at the destination (PC) the bits are reassembled to a byte
by the USART.

It is possible to use either synchronous or asynchronous mode, the
synchronous mode require that the sender and receiver have a common
clock, while in asynchronous mode this is not necessary. In asynchronous
mode is used in the code.

The serial port is in a process of being obsolete and removed from
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new products. The serial port has been replaced by the USB for most
applications. A possible solution to add the USB interface to this
measurement system could be to use a integrated circuit FT232R from a
company named FTDI. The FT232R converts the serial UART from the
microcontroller to USB, this could be used instead of the MAX202. This
would not require any change in the software but would require a proper
driver to be installed on the PC to emulate the USB as a serial port.

Inter-Integrated Circuit (I2C)

The IC AD5933 uses a I2C bus for communication with a microcontroller,
the I2C bus is a synchronous bidirectional serial bus that provides an
efficient method for data exchange between devices. In this setting the
microcontroller is the master, while the AD5933 is the slave.

The master start a transmission by sending the 7-bit address of the
slave and a write/read bit to the bus. The write/read bit is 0 when a write
operation is being started, and 1 when a read operation is being started.
Then the slave returns an ack for received address. If the write/read bit
was set low, then a writing process is started by sending one or several
bytes to a specified register location in the slave device, or if low a reading
process is started by reading one or more bytes from a specified register
location in the slave device. After the transmission is completed the master
generates a stop condition on the bus which then ends the transmission
between the master and the current slave. There is also some useful
information on this in the AD5933 datasheet [2].

3.3.2 The development board STK500

The STK500 is a development kit for the Atmel AVR series of microcon-
trollers. With this board you can program most of the AVR microcon-
trollers and access the microcontrollers I/O with headers on the board.
These headers can then be connected with wires to some peripheral, either
on the board itself (push buttons, LED’s, and serial port) or externally. I
have in my thesis used the on board serial port connection and then con-
nected to AD5933 externally with 3 wires (2 for I2C and 1 for ground) go-
ing from the STK500 board to the breadboard and the AD5933. For more
information about the STK500 starter board see [20]
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3.4 The PC and its role in the controll system

The PC has the following main tasks in the controll of the system:

• It runs the graphical interface for operation of the system.

• It receives data from the microcontroller via the serial port.

• It controls calibration runs and stores calibration data.

• It performs correction of measured values based on the calibration
data. We then obtain calibrated values for the real and imaginary
parts from the DFT. The magnitude is given by eq. 3.2

Magnitude =
√

real2 + im2 (3.2)

and the phase is given by eq. 3.3.

θ = tan−1 (im/real) (3.3)

• It stores and present the result.

3.5 The analog digital converter

This module has a 12 bit resolution and a sampling rate of 1 MSPS.
It has turned out to be a critical module in the system due to the
limited linear range of 0V - VDD. I f the signal in exceeds this value the
ADC is in saturation and the data sent from the ADC to Digital Signal
Processor performing the DFT are not representative for the values of the
impedances being tested.

3.6 The direct digital synthesis (DDS) and fre-
quency of operation

Direct Digital Synthesis is generating a function from digital values of
the function generated for selected time intervals and stored in a random
access memory (RAM). The reference clock controls the read out to the
DAC which generates the analog output. The low pass filter following
the DAC filters out higher frequency components. The reference clock
is provided internally at 16.776MHz. An external clock reference may
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give better stability. The reference clock also controls sampling time of the
receive part ADC. In this configuration the system is specified to operate
from 100kHz and down to 5kHz, but we have seen functional operation
down to 3kHz. The upper frequency is set by the low pass filter. For
operation at lower frequencies than 5kHz, the problem is the sampling
time of the ADC [3]. It is recommended to scale down the clock frequency
using a clock frequency of 2MHz, the useful frequency range would be
5kHz-300Hz. The upper frequency of operation, and the sweep span is
also reduced.
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Chapter 4

Software for operation of the
system

In this section I will describe the programs used, and also explain in some
more detail my own developed software. Please also see Appendix D for
a flowchart that shows how the software works.

4.1 Used software

Here I list all the programs used in the development, with a description of
the programs and some of their main features.

4.1.1 WinAVR

This is not a single program, it’s more like a collection of several programs
and header files. The header files can be included in the code and
then add some functions that can be used in the code (like functions
for interrupts, i/o, delays, etc.), while the programs contain tools for
compiling the code, simulating and also programming the compiled code
into the microcontroller. There is also included an editor (Programmers
Notepad). The compiler in the WinAVR is based upon the GNU GCC
compiler.

4.1.2 AVR Studio 4

AVR Studio 4 is an Integrated Development Environment (IDE) for
Atmels AVR series of microcontrollers. One can use AVR studio for
writing, debugging and simulating code, and also program the code to
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the microcontroller. Personally I have only used the simulating and the
programming features.

4.1.3 Notepad++

I have used this editor to write all my code in. It provides a tabbed
interface, this way several files can open at the same time, and it’s easy
to switch between the different source files which are opened. I found
this very practical since my C code is composed of several files (one file
contains all the USART routines, the other contains all the I2C routines and
the last contains the main function). It also supports syntax highlighting,
line numbering and some other features.

4.1.4 Tera Term

Tera Term is a program used for serial port communication, used for
sending the start parameters to the microcontroller and receive the data.
This way I could test the operationality of the I2C connection. When I
received the data I received the value from the real and imaginary register,
which I then could calculate the impedance and phase from. This was
a lengthy process. Once I had confirmed that the connection worked
correctly I wrote a GUI that made this operation more user friendly,
especially since the GUI automatically calculated impedance and phase,
and then plotted the result.

4.1.5 Portmon

Portmon is a program that monitors ports on the computer, I used this in
the start to debug some problems with the serial communication between
the PC and the microcontroller. Portmon displays all sent and received
data.

4.1.6 Python

I have written my GUI using the Python scripting language. Python offers
wide support from libraries and is well suited for efficient prototyping.
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4.2 Developed software

Here I will give a description of the code and provide detailed explanation
of some key points in the code. There are also some comments with
explanation but here some key points are considered.

4.2.1 C code for microcontroller

I split this section into three parts, so that each part explains parts from the
cited program file. The reason for this is to avoid confusion about which
part belongs to which file.

myusart.c & myusart.h

The file myusart.c is the file that contains all the function for using the
USART, while the myusart.h contains some definitions and declarations
of all the functions in myusart.c so that if I include the myusart.h in some
code I can use all the functions in myusart.c. I do not think myusart.h
needs any further explanation, so I go right into explaining the key parts
of the code in myusart.c.

{

UCSRB |= (1 << RXEN) | (1 << TXEN);

UCSRC |= (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1);

UBRRL = BAUD_PRESCALE;

UBRRH = (BAUD_PRESCALE >> 8);

return 1;

}

So this is the function used to initialize the USART. On the second
line I set the RXEN (receiver enable) and TXEN (transmitter enable) in
the UCSRB (usart control and status register B) high, this will activate
both USART receiver and transmitter. This also overrides the normal
port operation of pin 0 and pin 1 of PORTD on the microcontroller.
On the next line I set the URSEL (register select), UCSZ0 and UCSZ1 in the
UCSRC high, setting URSEL high will activate writing to the UCSRC. The
reason that I need to pull URSEL high is because UCSRC shares the I/O
location with the UBRHH (usart baud rate register), and I can only access
UCSRC if URSEL is pulled high. In table 4.1 all the bits in the UCSRC is
shown, I also included the bits that I write to the register.
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Table 4.1: Table of the bits in the UCSRC
Bit URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Writing 1 0 0 0 0 1 1 0

I will now explain further about each bit, except the URSEL bit which
is already covered. The UMSEL (usart mode select) bit will if pulled high
set the operation mode to synchronous, while leaving it low as I do will
set the mode to asynchronous operation. In my design I have chosen
asynchronous operation, mostly because it is simple to work with and I
have some experience with it from before. UPM0 and UPM1 selects the
parity mode, either none, even or odd parity. When both are left low like
in my code, the parity function is disabled. If both were set high the mode
would be set to odd parity, or if UPM1 were set high and UPM0 set low the
mode would be set to even parity operation. The USBS sets the number of
stop bits, if left low there will be 1 stop bit, and if pulled high there will be
2 stop bits. The shown setting of UCSZ1 and UCSZ0 sets the character size
(number of data bits) for the receiver and transmitter to 8 bit. The UCPOL
bit is only used in synchronous operation, so in my case I leave it low. In
synchronous mode this bit sets the relationship between the transmission
change and the data input sample (so one can select which option at either
falling or rising CLK edge).

In the next two lines I write the desired baud rate code to the two
baud rate registers, it should be noted that BAUD_PRESCALE is defined
in myusart.h as:

#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

Where F_CPU is defined as 3686400 in the makefile (this is the mi-
crocontrollers clock frequency), and USART_BAUDRATE is the de-
sired baud rate which I have set to 9600. The UBRRL register
should contain the eight least significant bits while the UBRRH should
contain the four most significant bits. This is the reason I need
to right shift the bits eight times to get the four most significant
bits to the UBRRH register (hence the right shifting in the code).
So with this I think I have explained this function, and I therefore move on
to the next function which handles transmission of one byte.

void USART_transmit(char data)

{

while ((UCSRA & (1 << UDRE)) == 0) {};
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UDR = data;

}

So what this function does is first to wait until UDRE (in the UCSRA
register) is set to high. When UDRE is set to high this means that the buffer
is empty and that one therefore can write new data to the USART. So af-
ter the UDRE bit is set high the UDR is assigned to a new value that is to be
transmitted.
The next function handles receiving of one byte.

int USART_receive(void){

while ((UCSRA & (1 << RXC)) == 0) {};

return UDR;

}

This function first waits until the RXC bit is set to high, which then
indicates that there is unread data in the receive buffer. When this happen
I then return the received data.

The next function is more or less based on the function US-
ART_transmit but it incorporates the possibility to transmit several bytes
stored in a pointer.

void USART_CharTransmit(char* data)

{

int n;

n=0;

while (1)

{

while ((UCSRA & (1 << UDRE)) == 0) {};

UDR =*(data+n);

n++;

if(!(*(data+(n)))){

break;

}

}

USART_transmit('\n');

USART_transmit('\r');

}

First I declare an int variable that is then set to zero, this int is going
to be used as counter to increment the pointer so that the next byte in the
pointer can be transmitted. A loop that is only exited when there are no
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more data in the pointer to be sent is then established. The transmission is
done in the same way as in the USART_transmit function. At the end, the
commands for new line and carriage return are transmitted.

The next and last function, myusart.c, handles receiving of several
bytes. To know when to stop reading more data it is implemented so that
it stops if the received byte is a carriage return.

char* USART_CharReceive(void){

int i;

char* data;

char temp;

data = (char*) malloc(30*sizeof(char));

for(i=0; i<30; i++){

temp =USART_receive();

if(temp=='\r'){

break;

}

*(data+i)=temp;

}

*(data +i)='\0';

return data;

}

An int variable, a char pointer and a char variable are then declared.
The char pointer will be used to store all the received data in, while the
char variable temp will be used for temporary storing the data. The int
variable will be used to increment the pointer so that each received data
don’t overwrite the last. I then allocate memory for the pointer and enter
a for-loop, which for every iteration reads one byte and stores it in the
temp variable. Then it checks if the temp variable contains the symbol for
carriage return. If it does, the loop is exited without saving the carriage
symbol, otherwise the received byte is saved to the pointed location. When
the loop is finished the pointer is returned.

mytwi.c & mytwi.h

These two files contain all the functions used in the I2C communication.
I was without any experience with I2C from before, so this is the part of
the code I used the most time on to get it to work correctly. I start with
describing the function that initializes the I2C communication.
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int TWI_init(void){

TWBR=10;

TWCR=0x04;

return 1;

}

A value of ten is first assigned to the TWBR register, this register sets
the frequency for the SCL. TWBR can be calculated from the following
equation given in ATmega16’s datasheet.

FreqSCL =
FreqCPU

16 + 2(TWBR) ∗ 4TWPS (4.1)

From eq. 4.1 we then get:

FreqSCL ∗ (16 + 2(TWBR) ∗ 4TWPS) = FreqCPU (4.2)

16 + 2(TWBR) ∗ 4TWPS =
FreqCPU

FreqSCL
(4.3)

2(TWBR) ∗ 4TWPS =
FreqCPU

FreqSCL
− 16 (4.4)

TWBR =
FreqCPU
FreqSCL

− 16

2 ∗ 4TWPS =
FreqCPU−16∗FreqSCL

FreqSCL

2 ∗ 4TWPS (4.5)

TWBR =
FreqCPU − 16 ∗ FreqSCL

2 ∗ 4TWPS ∗ FreqSCL
(4.6)

So with this equation the value to be programmed to the TWBR can be
calculated. I decided to use a SCL frequency of 100kHz. So I can then
easily calculate the value to be programmed to the TWBR register by
inserting all the values in the equation. TWPS can operate as a prescaler
but that feature is not used. TWPS is set to zero in my calculations.

TWBR =
3686400Hz− 16 ∗ 100000Hz

2 ∗ 40 ∗ 100000Hz
= 10, 432 (4.7)

I then know I have to program the value 10 to get a close SCL frequency
to what I wanted, the frequency will be a little higher since the number is
rounded down to an integer.

Next I set the TWCR register to the hex value 0x04, this sets the TWEN
(TWI enable) bit high. When this is set high the TWI is enabled and takes
the controll over the SDA and SCL pins.

The next function is just a loop that waits until the TWINT bit in the
TWCR is cleared, since this indicates finished current job.
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void TWI_wait(void){

while(!(TWCR &(1<<TWINT))){

}

}

So this loop goes until the TWINT bit is set, when this loop is finished
the transmission is complete.

The next function handles sending the start condition to the bus that
sets the microcontroller as the master on the bus.

unsigned char Send_start(void)

{

TWCR=START;

TWI_wait();

if((TWSR & 0xF8)!=0x08 || (TWSR & 0xF8)!=0x10)

return TWSR;

return 0xFF;

}

START is defined in the code to the hex value 0xA4. For the
microcontroller to claim to be Master it needs to sets the TWSTA bit in the
TWCR register high. Then I wait until the TWINT flag is cleared since this
indicates a finished transmission. Then the status register is checked to see
if the start condition (or the repeated start condition) has been transmitted
successfully. If it have, then 1 is returned, if not then the value of TWSR is
returned (for possible use in debugging).

The next function issue a stop condition on the bus.

void TWI_stop(void){

TWCR=Stop

}

Where Stop is defined in the code to the hex value 0x94. To generate a
stop condition on the bus I must set the TWSTO bit in the TWCR register
to high, which is done by assigning 0x94 to the TWCR register.

The next function I want to explain a bit deeper is the function that
handles the transmission of the address of the slave device (in this case
AD5933) on the bus.

unsigned char TWI_send_adr(unsigned char adr){

TWDR=adr;
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TWCR=Trans;

TWI_wait();

if((TWSR & 0xF8)!= 0x18){

return TWSR;

}

return 1;

}

Trans is defined in the code as the hex code 0x84. First I assign
the address of the slave to the TWDR (TWI data register), the TWDR
then contains the next byte to be transmitted. Before the address can be
transmitted I need to clear the TWINT bit in the TWCR register by setting
it to one. This will start the operation of the TWI and the byte in the TWDR
will be transmitted on the bus. So the TWIN bit is cleared by setting the
TWCR to the hex value 0x84. Then I need to wait until TWINT flag is set,
since this indicates that TWI has finished the current job. To check if the
transmission has been successful I also need to check if ACK from slave
has been received. In this test I mask out the three last bits in the registers
since these are not relevant for this test. If the test is successful I return 1,
else I return the current value of TWSR.

The next function contains the routines for sending a byte to the TWI
bus.

unsigned char TWI_send_byte(unsigned char data){

TWDR=data;

TWCR=Trans;

TWI_wait();

if((TWSR & 0xF8) != 0x28){

return TWSR;

}

else{

return 1;

}

First I assign the data to be transmitted to the TWDR (TWI data
register), data will then be the next byte to be transfered to the bus. For
the data to be transmitted the TWINT flag needs to be cleared by setting
it to one, which is done with TWCR = Trans. Trans is defined in the
code to the hex value 0x84. Then I wait until the TWINT flag is cleared
(which means that the byte has been transmitted), and then check if the
status register (TWSR) of the bus contains an ack from the slave. If ack
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not received the value of the TWSR is returned, but if ack is received, 1 is
returned to indicate success.

The next function contains the routines for setting the memory location
in the AD5933 to write or read from.

unsigned char TWI_set_memloc(unsigned char mem_location){

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xB0);

TWI_send_byte(mem_location);

return 1; /*Return 1 if succeeded*/

}

SLA_write is defined in the code to the hex value 0x1A. Calling the
function Send_start will make the micocontroller the master on the bus.
Next I send the address of the slave device and that I want to write to the
slave device (so the last bit in the address is left zero to indicate that this
is a write operation). Next I transfer the hex value 0xB0 to the bus, this
will tell the AD5933 that the next byte is an address pointer (see page 26 in
AD5933 manual). Then I transfer the register location that I want to read
or write to. Then I return 1 back to signalize that the operation has been
completed.

The next function handles writing 1 byte to the desired address
(register) in the AD5933.

unsigned char TWI_byte_write(unsigned char reg_addr,\\

unsigned char data){

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(reg_addr);

TWI_send_byte(data);

TWI_stop();

return 1;

}

The two first lines in the function are the same as the last function so
they won’t explain any further. Next I the send the address for the register
I wish to write to, followed by the data I want to write to that register. At
last the function TWI_stop() which will generate a stop condition on the
bus is called.

The next function handles writing several bytes (or so called block
write) to the specified register address in the AD5933.
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unsigned char TWI_block_write(unsigned char reg_location,\\

unsigned char byte_number, unsigned char *TWI_data){

int i;

TWI_set_memloc(reg_location);

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xA0);

TWI_send_byte(byte_number);

for (i=0; i<byte_number; i++){

TWI_send_byte(*(TWI_data+i));

}

TWI_stop();

return 1;

}

An int variable which is to be used as a counter in the for-loop is first
declared. Then I use the function TWI_set_memloc to set the starting
address for the block write. The next two lines are already explained. Then
I write the hex value 0xA0 to the AD5933, this hex value is the AD5933
command for block write so that the AD5933 will initiate the block write
operation. Next I send the number of bytes I am going to transmit. Then
I start a for-loop that goes through all the bytes to be sent. I then send the
byte and use the counter i in the for-loop that goes to all the bytes to be sent
to increment the pointer. At last I use TWI_stop() to send stop condition,
and return 1 when operation is complete.

The next function is for receiving a byte from the AD5933.

unsigned char TWI_byte_read(unsigned reg_addr){

TWI_set_memloc(reg_addr);

Send_start();

TWI_send_adr(SLA_read);

TWCR=Trans;

TWI_wait();

return TWDR;

}

SLA_read is defined in the code to the hex value 0x1B. First I set the
register location I want to read from by using TWI_set_memloc, then I
transmit a start condition on the bus by calling the function Send_start().
Then I transmit the address of the AD5933 and with the last bit high to
indicate that this is a reading operation. Then I enable transmission by
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clearing TWINT in TWCR register, and wait until TWINT is cleared as
this indicate that the transmission is complete. The value received is now
stored in TWDR so I therefore return the value of TWDR.

The next function is for receiving several bytes (block read) from the
AD5933.

unsigned char TWI_block_read(unsigned char reg_add,\\

unsigned char byte_number, unsigned char *TWI_data){

int i;

TWI_set_memloc(reg_addr);

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xA0);

TWI_send_byte(byte_number);

TWI_init();

TWI_send_byte(SLA_read);

for(i=0; i<byte_number; i++){

*(TWI_data +i)=TWDR;

TWI_wait();

TWCR|=(1<<TWEA);

}

TWCR=(0<<TWEA);

TWI_wait();

TWI_stop();

return *TWI_data;

}

This function is pretty much the same as the TWI_block_write function
except some key points that are different. The first one is on the 8th line
where I issue a repeated start condition, which is required in the block
read to set the read bit high. Then I again send the address but with the
last bit high to initialize the reading operation. I then enter a for-loop
where I store the received data in a pointer which is incremented with
the counter i and wait until the TWINT bit is cleared and then an ACK is
sent to the AD5933 device after each received byte. When the for-loop is
completed a NACK is also sent to the AD5933 to signalize the last byte has
been received. When the TWINT bit is cleared (NACK transmitted) and a
stop condition is transmitted to the bus.
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main.c

I have by now explained all the functions that I used in the main function.
It remains to explain the main function. Instead of posting the whole
main function I will rather point out some key points that are important.
Comments are also given in the code. The first part of the code to be
explained is the part where communication between the microcontroller
and PC is started.

com:

val=USART_CharReceive();

if((i=strncmp(val, "Init",4))==0){

USART_CharTransmit("AD5933");

}

else{

goto com;

}

I start by defining a label with the name com. Next I use US-
ART_CharReceive to receive a string from the PC. I then have an if-test
to compare if the received string is equal to ’Init’, if it is then the string
’AD5933’ is transmitted back to the PC. If the string is not equal the code
it goes back to where the label com is defined and repeat until the correct
string is received from the PC.

The next part handles receiving and setting the start parameters of the
AD5933.

startfreq=atoi(USART_CharReceive());

i=startfreq*32.0023195;

*data=0x000000ff & (i>>16);*(data+1)=0x000000ff & (i>>8);

*(data+2)=0x000000ff & i;

TWI_block_write(startfreq_reg, 3,data);

freqinc=atoi(USART_CharReceive());

i=freqinc*32.0023195;

*data=0x000000ff & (i>>16); *(data+1)=0x000000ff & (i>>8);

*(data+2)=0x000000ff & i;

TWI_block_write(freqinc_reg, 3, data);

numbinc=atoi(USART_CharReceive());

*data=0x000000ff & (numbinc>>8); *(data+1)=0x000000ff & numbinc;

TWI_block_write(incsteps_reg, 2, data);
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TWI_byte_write(NumSet_high, 0x00);

TWI_byte_write(NumSet_low, 0x32);

val=USART_CharReceive();

if((i=strncmp(val, "V1",2))==0){

j=1;

}

else if((i=strncmp(val, "V2",2))==0){

j=2;

}

else if((i=strncmp(val, "V3",2))==0){

j=3;

}

else if((i=strncmp(val, "V4",2))==0){

j=4;

}

First the desired start frequency for the frequency sweep is read as a
char string from the PC; it is then converted to an integer and stored in the
int variable startfreq. This start frequency must be transformed to a start
frequency code that the AD5933 will understand, this is done as shown in
eq. 4.8 (this equation is from page 13 in AD5933 datasheet).

Start f req code =

Start f req(
MCLK

4

)
 ∗ 227 = Start f req ∗ 4

MCLK
∗ 227 (4.8)

Now in my case I use the internal oscillator of the AD5933 which is
16.776MHz, if I set in the value for this oscillator frequency for MCLK
in the equation I get the value I need to multiply my start frequency with
to get the required start frequency code of the AD5933.

Start f req code = Start f req ∗ 4
16.776MHz

∗ 227 = 32.0023195 (4.9)

Therefore I need to multiply the start frequency with this value. Since
the start frequency code is stored in three different address locations the
value need to be splitted into three hex values which is done on lines 2 and
3. Next I use my block write function to write the three parts of the start
frequency to the AD5933.

Then the frequency increment (how many Hz each incrementation
increments the excitation frequency with) is received from the PC and
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undergoes similar treatments as the start frequency. Next the number of
increments is read. This value does not need to be scaled, so I only need
to split it in two parts that are written to each address in the AD5933 that
handles the number of increments.

Next I set the number of settling time cycles, this value determines
the number of output excitation cycles that are allowed to pass through
the unknown impedance after each start, increment or repeat frequency
command. I have not implemented this to be user set, but this could be
done. At the moment this value is programmed to be 50 cycles (or 0x32 in
hex format).

In the GUI I have implemented a pull down menu that lets the user
choose between different voltage of the excitation signal of the AD5933.
So depending on which range the user choose the GUI will transmit
either the string ’V1 , ’V2’, V3’ or ’V4’. Where V1=2.0Vp-p. V2=1.0Vp-
p, V3=400mVp-p and V4=200mVp-p. So first the microcontroller read one
of these strings. Then I use if-tests and compare the different strings to
see which voltage range the user has selected. Depending on which string
that match the variable, j is assigned different values which will then later
be used in an if-test where the value determines which hex value will be
written to the AD5933.

With the AD5933 you can also set the internal gain on the input signal
(PGA gain). This can either be 1X or 5X, I have chosen to use 1X in my
code since 5X more easily leads to saturation of the ADC in the AD5933.
So the least significant bit in the MSB of the controll register is always set
to 1 in my code.
I will now jump over many lines of code that I think are pretty well
explained by the comments in my code already and instead explain the
part where the data is received from the AD5933 and sent to the PC.

start:

while(!(TWI_byte_read(status_reg) & 0x02));

real_high=TWI_byte_read(real_high_reg);

real_low=TWI_byte_read(real_low_reg);

R=hextodec(real_high, real_low);

itoa(R, s, 10);

USART_CharTransmit(s);

im_high=TWI_byte_read(im_high_reg);

im_low=TWI_byte_read(im_low_reg);

I=hextodec(im_high, im_low);

itoa(I, x, 10);
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USART_CharTransmit(x);

if((TWI_byte_read(status_reg) & 0x04)==0){

if(j==1){

TWI_byte_write(control_high_reg, 0x31);

}

else if(j==2){

TWI_byte_write(control_high_reg, 0x37);

}

else if(j==3){

TWI_byte_write(control_high_reg, 0x35);

}

else if(j==4){

TWI_byte_write(control_high_reg, 0x33);

}

goto start;

}

else{

TWI_byte_write(control_high_reg, 0xA1);

goto com;

}

}

First there is a while-loop that goes until the status register of the
AD5933 is equal to 0x02, which means that the data in the real and
imaginary data registers are valid. So when the data are valid the while-
loop is finished and the microcontroller starts reading the the two real data
parts. These two values are received as hex values, and to convert them
to a decimal number I have to multiply the MSB (most significant byte)
with 256 and then add LSB (least significant byte). This is exactly what
the function hextodec does. The reason for why I must multiply by 256 is
given by the following calculation.

0xFF00
0xFF

=
65280

255
= 256 (4.10)

So this gives that the MSB is 256 times as large in decimal value as the LSB.
After this the values are then converted to ASCII, since I only can transmit
char variables. In the conversion I have chosen to represent the value as
a string with decimal base. I then transmit the converted value to the PC.
The procedure is exactly the same for the imaginary data parts.

After both the real and imaginary values have been transmitted it is
tested if the frequency sweep is complete (if it is complete the status
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register of AD5933 contains the hex value 0x04). If the sweep is not
completed, I send an increment frequency command to the AD5933.
Notice that all the if-tests are used to program the correct excitation
voltage. If the frequency sweep is completed I program a power-down
command, in this mode the Vin and Vout will be connected internally to
ground so there will be no output excitation signal. When this is finished
the code goes back to where the label com is defined and is therefore ready
for a new run.

4.2.2 Python code for graphical interface

To make the AD5933 based measurement system more user friendly it was
found that the best solution would be to make a simple GUI where the
user could type in the desired start parameters, then run the sweep and
finally get a plot of the result. The only experience I had with GUI’s from
before was with Python, so therefore I decided to use this as a basis for
the new GUI for the AD5933 circuit. First I needed some libraries for the
serial port communication with the microcontroller. I found a solution
that was released under free software license (so that it can be used
commercially and also can be modified), the library is named pySerial (can
be downloaded from http://pyserial.sourceforge.net/).

I also wanted to have a plotting feature that let the user see the
results after the sweep was completed without having to use time to
import the data in Microsoft Excel. I first tried some of Python’s inbuilt
features on this but didn’t find them satisfactory. I then searched the
Internet for a library which supported better and easier plotting. I tried
some and found one named matplotlib/pylab (can be downloaded from
http://matplotlib.sourceforge.net/). This library provides a matlab like
environment for plotting in Python.

Figure 4.1 shows the finished interface. So the graphical interface
consists of some entry fields where the user can write which com port
to connect to, the start frequency, the frequency increment (how many
Hz the excitation signal will be incremented by for each step) and the
number of increments. Then there is a pull down menu that lets the user
choose between the four different excitation voltage ranges (2Vp-p, 1Vp-
p, 400mVp-p or 200mVp-p). Then there are two more entry fields, the
first lets the user input the gain factor to be used in the calculation of the
impedance and the other lets the user type in the value of the calibration
resistor. The value of the calibration resistor is used to calculate the gain
factor for each frequency. These gain factors are then stored on the hard
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Figure 4.1: The finished graphical interface made with Python

drive as a file named gain_factor.txt. The user can open this file and choose
from the different gain factors depending on which range the user is going
to use. Normally you use the gain factor for the middle frequency of the
range. So if the sweep goes from 1kHz to 10kHz you normally choose the
gain factor for 5kHz.

Then there are a set of buttons, first is the button that starts the sweep.
This button will call a function that first sends all the start parameters
and then receive the result from the microcontroller. The next button is
called calibration run and this is used to calibrate the system. This button
calls a function that sends the start parameters to the microcontroller and
the receive the result. From the result the system phase is calculated
and stored to the hard drive in a file named calphase.txt. The gain
factor is then calculated using the results and the user supplied value of
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the calibration resistor. The next button "‘Calculate real and im"’ is for
calculating B, G, theoretical B and theoretical G for measurement data
for a resistor/capacitor parallel measurement. This function requires the
user to start the program from the command line since it requires the
user to supply the value of the resistor and capacitor used. So doing
a measurement with R=1kΩ and C=1nF the program would have to be
started from the command line by typing:

AD5933GUI.py 1000 0.000000001 (4.11)

Then after the sweep is completed one can click on the calculate real and
im and a file named realim.txt will contain all the data. This file can for
example be imported into Microsoft Excel and be used to make a plot.

The next button is the quit button, this terminates the graphical
interface. The next two buttons are the plot impedance and plot phase,
these two buttons call two different functions that either plots the
impedance or the phase. At the bottom is a scrollable text box that will
display some information about the progress of the sweep.

The code is now explained. Instead of posting the whole functions and
classes here I rather refer to the code posted in Appendix B, the reason
for doing this is that the code is somewhat long and that there are lots of
definitions and declaration that doesn’t need any further explanation. I
will though include some code snippets that I think are important.

class AD5933GUI

This class contains all the functions used in the GUI, the communication
with the microcontroller, and calculation and plotting of the results.

Constructor function

The first function in the class is the constructor, this is the function called
when a new instance of the class is created. The constructor takes care
of declaration of variables and graphical interface parts, such as frames
(where the different widgets can be placed), buttons (which when clicked
calls different functions), entry fields (where the user can fill in numbers)
and so on. It also reads in the system phase from the file calphase.txt,
which will then later be used to calculate the phase. I will now show an
example of a declaration of a graphical interface widget to explain how
these are declared. I will only show one but the others are much the same.

This widget is an entry field for the user to enter the number of the com
port that the STK500 board is connected too.
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self.port=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Com port',

entry_width=8,

entry_textvariable=self.com)

So I call this widget self.port (self is a reference to the instance), use a
function in the PMW megawidget pack called EntryField. The first input
to this function is which frame the widget should be in, in my case I have
a frame called self.bottom that I am using for this entry field. Next input
is the label position and I here choose west (w=west) so that the label will
appear on the west of the entry field. Next input specify the label text and
here I choose ’Com port’. Next I can select the width of the entry field and
I set it to eight. The last input is which variable it is going to use to store
the input from the user and I here use a variable called self.com to store
the number of com port to be used. self.com is not an ordinary variable
but is declared using a function from the TkInter toolpack, StringVar(). It
is declared in the following way.

self.com=StringVar()

To get the stored value one then has to use another function get(), like
self.com.get(). And to set the value from the code one has to use a function
set(), like self.com.set(’1’). To pack the widget in the selected frame you
use a function from the TkInter toolpack named pack() is used.

self.port.pack(side='top', anchor='w')

So first I select to pack it in the direction of top (so that the widget
will be under each others). And I choose to anchor it to the west part of
the frame. The last part I will explain in the constructor function is the
reading of the system phase from the file calphase.txt. The code for this is
given under.

try:

ifile=open('calphase.txt', 'r')

trash=ifile.readline()

for line in ifile.readlines():

freq, phase=line.split()

self.cal['Freq'].append(freq)

self.cal['Phase'].append(phase)

except:

print 'error 1'
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The first thing you will note is the try and except, this functionality in
Python will let you first try something and if that doesn’t work instead of
the program crashing you can have an except state where you either can
try something else or print an error message.

realim function

This function calculates B and G and the theoretical values for them for
a resistor in parallel with a capacitor circuit. The theoretical values are
calculated from the resistor and capacitance value supplied by user from
the command line. B and G are calculated from the received measurement
values. The results are written to realim.txt.

calibration function

This function is used for calibration of the measurement system. This
function calculates the system phase and gain factor and store them in
two files on the hard drive.

if self.com.get():

self.comport=int(self.com.get())-1

try:

self.ser = serial.Serial(self.comport)

except:

self.statuslist.insert('end','Could not open specified com port')

else:

self.statuslist.insert('end','Please specify com port to open')

This part tries to open the user specified com port, if not successful it
gives the user feedback that it either could not open the specified com port
(possible because another device is using it) or, if the user haven’t specified
the com port, that the user please specify the com port to open.

The next part is the initiate process for the communication between
microcontroller and PC.

self.ser.write('Init\r')

ID = self.ser.readline()

Pattern="AD5933"

match=re.search(Pattern, str(ID))

if match:

self.statuslist.insert('end', 'Communication with microcontroller established')
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else:

self.statuslist.insert('end', 'Error while initializing communication with microcontroller,')

self.statuslist.insert('end', 'please check specified com port')

So first Init is written to the microcontroller via the serial port (the \r is
carriage return and marks the end of the string). The line is read from the
microcontroller (reads a line terminated with \n). Then, if the line contains
the word AD5933, the user gets a message that the communication with
the microcontroller is established. Otherwise, the user gets an error
message and is asked to check the specified com port.

The next part is the transmission of the start parameters.

self.statuslist.insert('end', '\textsl{Setting startfreq}')

self.ser.write(self.startfreq.get()+'\r')

self.statuslist.insert('end', 'Setting frequency increment')

self.ser.write(self.numbinc.get()+'\r')

self.statuslist.insert('end', 'Setting number of frequency increments')

self.number_increments=int(self.numbsteps.get())+1

self.ser.write(str(self.number_increments)+'\r')

self.statuslist.insert('end', 'Setting excitation voltage')

if self.volt.get()=='2.0Vp-p':

self.ser.write('V1'+'\r')

elif self.volt.get()=='1.0Vp-p':

self.ser.write('V2'+'\r')

elif self.volt.get()=='400mVp-p':

self.ser.write('V3'+'\r')

elif self.volt.get()=='200mVp-p':

self.ser.write('V4'+'\r')

First the start frequency and the frequency increment is transmitted. To
get the correct number of increments I found out that I had to add 1 to the
number of increments, so this is done before the transmission. Then the
code specifying the voltage range is transmitted.

The next part is for receiving the results from the microcontroller and
calculating and storing the gain factor and system phase.

for i in range(0, int(self.number_increments)):

self.savedata(i)
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ofile=open('calphase.txt', 'w')

ofile.write('Freq Phase\n')

ofile2=open('gain_factor.txt', 'w')

ofile2.write('Freq Gain factor\n')

for k in range(0, int(self.number_increments)):

print k

str1='%d %g\n' %(self.data['Freq'][k], self.data['Phase'][k])

gainfac=1/(float(self.calresistor.get()))

gainfac=gainfac/(float(self.data['Mag'][k]))

str2='%d %g\n' %(self.data['Freq'][k], gainfac)

ofile.write(str1)

ofile2.write(str2)

ofile.close()

ofile2.close()

First the program enters a for-loop that lasts as long as the number
of incrementation, each time calling the sampling function savedata with
the variable i. Here i is used as a counter, and is used in the savedata
function to calculate the current frequency from the start frequency and
the frequency incrementation. Next two files are opened for writing, one
is for the system phase and the other for the gain factor. The function
loops through all the results and calculates system phase and gain factor
and write them to file. After the loop is completed the two files are closed.

sample function

This is the function that is called when a measurement sweep is done. It is
essentially the same as the calibration function but with some differences
with the treatment of the received data.

for i in range(0, int(self.number_increments)):

self.savedata(i, 1)

ofile=open('out.txt', 'w')

ofile.write('Freq Phase Impedance\n')

for k in range(0, len(self.data['Freq'])):

str1='%d %g %d\n' %(self.data['Freq'][k], self.data['Phase2'][k], self.data['Impedance'][k])

ofile.write(str1)

ofile.close()
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The first difference is when the sample function calls the savedata
function, the sample function also gives an extra variable 1, with this the
savedata function will also calculate the impedance phase by subtracting
the system phase from the measured phase. File out.txt is open for writing
and the program loops trough all the results and writes them to file. After
the loop is finished the file is closed.

plot_imp function

This function plot the measured impedance as a function of frequency.

def plot_imp(self):

pylab.plot([self.data['Freq']],[self.data['Impedance']], 'ro')

pylab.xlabel('Frequency (Hz)')

pylab.ylabel('Impedance (Ohm)')

pylab.savefig('impedance.png')

pylab.show()

This plots the impedance against the frequency and gives labels for the
x and y axises. It also saves the plot to impedance.png and shows the plot
in a pop up window.

plot_phase function

This function plots the phase as a function of frequency.

def plot_phase(self):

pylab.plot([self.data['Freq']],[self.data['Phase2']], 'ro')

pylab.xlabel('Frequency (Hz)')

pylab.ylabel('Phase (degree)')

pylab.savefig('phase.png')

pylab.show()

This plots the corrected phase against the frequency and gives labels to
the x and y axises. It then shows the plot in a pop up window and saves
the plot to phase.png.

savedata function

This function receives the real and imaginary part from the microcon-
troller and calculates the impedance and phase from these.
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def savedata(self, count, sel=0):

i=0

real=self.ser.readline()

self.data['Real'].append(int(real))

im=self.ser.readline()

self.data['Im'].append(int(im))

freq=int(self.startfreq.get())+int(self.numbinc.get())*count

self.data['Freq'].append(int(freq))

magn=math.sqrt(float(real)**2 +float(im)**2)

self.data['Mag'].append(magn)

self.data['Impedance'].append(float(1/(magn*float(self.gainfactor.get()))))

phase2=math.atan((float(im)/float(real)))*57.2957795

self.data['Phase'].append(phase2)

if sel!=0:

while 1:

if freq>int(self.cal['Freq'][self.k]):

self.k=self.k+1

#else if the freq is the same then the phase is calculated

elif freq==int(self.cal['Freq'][self.k]):

phase=(phase2)-float(self.cal['Phase'][self.k])

if phase>30:

phase=phase-180

break

self.data['Phase2'].append(phase)

This first receives real and imaginary parts and stores them. Then
the current frequency is calculated using the start frequency plus the
frequency increment multiplied with the count. To calculate the final
impedance it is first necessary to calculate the magnitude from the real
and imaginary parts. After the magnitude is calculated the impedance is
calculated using the magnitude and the user provided gain factor. From
the real and imaginary part the phase is then calculated and transformed
to degree by multiplying the value with 57.2957. If it was the calibration
function that called the savedata function this phase will be the system
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phase, if it was called by the sample function this phase is used to calculate
the phase by subtracting the system phase. If the variable sel is not equal to
zero (this only happens when the sample function has called the function)
the program enters an eternal while-loop. To substract the correct system
phase the program has to find the system phase for the same frequency.
This is done by a simple incrementation, if the current frequency is higher
than the calibration frequency a counter is incremented so that the current
frequency will be compared to a higher frequency the next time. If
the current frequency is equal to the calibration frequency the phase is
calculated. Because some measurements may span over two different
quadrants I need to subtract 180 degrees from the positive phases to get all
the results represented in the 4th quadrant. After that the the final phase
is stored.
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Chapter 5

Full specification and operational
guidelines

5.1 Final system specification

The final specification the the AD5933 based bioimpedance measurement
system is listed in table 5.1.

49



Parameter Value
Power supply VDD 2.7-5.5V
Impedance range 0.1kΩ-10MΩ

Excitation frequency 3kHz-100kHz1

Excitation frequency resolution 0.1Hz
Excitation voltage (p-p), selectable from graphical interface 2V, 1V, 400mV, 200mV

Reference frequency oscillator 16.776MHz2

Specified system accuracy 0.5%3

Temperature range for operation -40o-+125o4

Measurement and calibration ranges (selectable by choice of RFB)5:
Range 1 0.1-1kΩ

Range 2 1-10kΩ

Range 3 10-100kΩ

Range 4 100-1000kΩ

Range 5 1-2MΩ

Range 6 9-10MΩ

Receive stage:
Gain 1x or 5x6

ADC resolution 12 bits
ADC sampling rate 1 MSPS

System requirements of operation:
a) operation:

VDD=3.3V IDD=10-15mA
VDD=5.5V IDD=17-25mA
b) standby:
VDD=3.3V IDD=11mA
VDD=5.5V IDD=16ma

c) power down: IDD=1-8µ

Table 5.1: Final specification for the AD5933 based measurement system

1Range for use of 16.776MHz reference oscillator.
2Lower frequency oscillators will give lower excitation frequency.
3The specified accuracy depends strongly on calibration. Accurate measurements

require calibration close to the value of the device tested. Which impedance range that is
used also plays an important role.

4For operation over this range temperature compensation is required.
5Described in operational procedures.
6Could have implemented selection of gain from graphical interface, but gain of 5 will

often cause saturation so I sat the gain factor to 1x in the microcontroller code
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5.2 Operational guidelines
With the developed software package the measurement system is fairly easy to
learn and use, especially because the developed graphical interface. This section
provides guidelines for setup of the measurement system and use of the graphical
interface.

The connection is really simple. First gnd is connected to the pins DGND,
AGND1 and AGND2. Then the supply voltage (2.7V-5.5V, a 7805 voltage
regulator which outputs 5V was used) is connected to the pins DVDD, AVDD1
and AVDD2. The SCL pin is connected to pin 0 on PORTD on the STK500 (with
an ATmega16 microcontroller fitted) and the SDA pin is connected to pin 1 on
PORTD on the STK500. The I2C bus lines also need pull up resistors so a 10kΩ

resistor must be connected between SCL and the 5V supply voltage. The same
goes for the SDA line. The STK500 get supply voltage from a separate wall
adapter. Therefore necessary to connect ground from the STK500 to ground on
the AD5933’s breadboard, so that they get the same reference. It is also important
to remember to use the spare RS232 port on the STK500 board to connect to PC.

Figure 5.1 shows a simple schematic of the system (be aware that the pull
up resistors are not included in this figure). Figure 4.1 shows a picture of the
running graphical interface.

So when you start the graphical interface I have already set some
standard start parameters (these can be edited easily in the code or
entered manually in the interface each time). After deciding on the start
parameters to use calibration is performed. A value of the calibration
resistor must be entered in order to calculate the gain factor. Then a
measurement sweep can be started. After the sweep, the program will
calculate the system phase and store it to file calphase.txt and calculate
gain factor and store to file gain_factor.txt. Then a restart of the program
is required so that the new system phase can be reloaded. At that time the
user must select the gain factor from the gain_factor.txt file and either edit
it into the code or enter it in the gain factor entry field manually each time.
When the program has started again one can click start sweep and the start
parameters will first be transmitted to the microcontroller and then to the
AD5933. After the sweep is complete one can click on plot impedance and
plot phase to plot the impedance and phase. Data will also be stored in
a file called out.txt that will contain the frequency, impedance and phase.
This file can for example be imported in to Excel.

Figure 5.2 shows a picture of the system.
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Figure 5.1: A simple schematic for the system (without the pull up resistor
on SCL and SDA)
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Figure 5.2: Picture of the system with the STK500 and the breadboard with
the AD5933
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Chapter 6

Measurement and evaluation

6.1 Calibration of the system

The calibration of the AD5933 based measurement system is done in two
steps. First you need to calculate the gain factor used to calculate the
impedance from the real and imaginary data parts received from AD5933.
The gain factor is calculated using the equation in eq. 6.1.

Gain Factor =
1

Rcal
Mag

(6.1)

Where Rcal is the resistor with a known value that is used for the
calibration of the system, Rcal should also have the same value as RFB
during the calibration run. Mag is the magnitude calculated from the real
and imaginary values received from the AD5933. Mag is calculated by:

Mag =
√

Real2 + Im2 (6.2)

In the AD5933 datasheet the eq. 6.3 is given to calculate the phase.

Phase = tan−1
(

Im
Real

)
(6.3)

There is very little information about the phase calculations in the AD5933
datasheet, it only says that phase can easily be calculated using eq. 6.3 (this
was updated in a new version from May 2008). Only in the data sheet for
the evaluation board there is some mention of that the phase measured
by the AD5933 takes into account the phase introduced through the entire
signal path (see page 12 of AD5933 evaluation board datasheet). To get
the phase introduced only by the components between Vin and Vout all the
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Figure 6.1: The system phase stored from calibration on a resistor with
value 1.1kΩ in range 2

phase data for each frequency under a calibration with a resistor have to
be saved. Then doing a measurement the phase from the calibration has
to be subtracted from the phase that is being measured for each frequency.
The phase is then given by calculating:

θimpedance = (θunknown −θsystem) (6.4)

whereθsystem is the phase of the system with a calibration resistor between
Vin and Vout. θunknown is the total phase of the system with an unknown
impedance between Vin and Vout. θimpedance is the phase due to this
impedance. The system phase received during calibration is stored on the
PC as a file named calphase.txt, every time the graphical interface starts it
reads the whole file and uses that value to calculate θimpedance. Figure 6.1
shows the system phase as a function of frequency for measurements in
range 2 (1kΩ-10kΩ) for a resistor with value 1100Ω. When a measurement
is made the stored calibration phase (system phase) is subtracted from the
measured phase for corresponding frequency points. Figure 6.2 shows the
resulting phase after measurement of a resistor of the same value as the
calibration resistor. Ideally this phase should have been zero. There are
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Figure 6.2: Calculated phase for a resistor value of 1.1kΩ using eq. 6.4

however some minor randomly distributed contributions, which can be
explained taking into account that the stability of the AD5933’s internal
reference oscillator operated a 16.776MHz is not perfect. Use of an ultra
stable external oscillator could have improved this. The phase plotted in
Figure 6.2 is the difference between two phase values, as shown in eq.
6.4. They are both influenced slightly by the instability of the oscillator.
We may then have stronger fluctuations than shown in Figure 6.1 that
represent one measurement of the system phase.

The calibration has to be rerun if the user changes either of

• Impedance range (changing the RFB).

• The excitation signal voltage.

• The frequency range or incrementation frequency, this is necessary
since we need have to have the system phase for all the frequencies
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in the frequency range used for measurements.

A routine has been implemented in the GUI allowing the user to obtain the
gain factor and the system phase for all the frequencies by only supplying
the value of the calibration resistor. So for a run one would first use the
automated calibration for the desired frequency range and then do the
measurement.

An important thing to be aware of is that the gain factor though
not very frequency independent, changes somewhat with frequency so
measuring on a pure resistor without any reactance one will see because
of this that the impedance seems to increase with the frequency since this
is not adjusted hence to the increased gain factor. See fig 6.3 for a plot that
shows the gain factor as a function of frequency. This measurement is done
with a resistor with value 1.1kΩ. It is seen that the gain factor increases

Figure 6.3: Gain factor variation with frequency

about 6,8% over the frequency range. However for most measurements
and for narrow frequency bands a 1 point calibration may be sufficient.
The gain factor variation is close to a straight line. Thus a two point
calibration as recommended in the data sheet, could improve the system.
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Range no. Value(kΩ) RFB(kΩ) Cal. resistor (kΩ)
1 0.1-1 0.1 0.1
2 1-10 1 1
3 10-100 10 10
4 100-1000 100 100
5 1000-2000 1000 1000
6 9000-10000 9000 9000

Table 6.1: Measurement ranges for AD5933

Another important issue to be aware of is the gain factor variation with
temperature, the typical error variation is 30ppm/o. Figure 6.4 (this is from
[2]) shows the variation in the impedance measured due to temperature
changes.

Figure 6.4: Gain factor variation due to temperature changes

The measurement range of the system as specified is 0.1KΩ to 10MΩ

divided into six ranges as specified in table 6.1 which also gives the
calibration data to be used. It is noted that the ranges 5 and 6 are a bit
different from the other ranges. Range 5 goes from 1MΩ to 2MΩ, and
range 6 goes from 9MΩ to 10MΩ. There is no range covering 2MΩ to
9MΩ.

Calibration measurements have been performed for all ranges using
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available and equal valued resistors for the gain setting resistor RFB and
for the calibration resistor at the test position.

6.2 Special problems to observe

There are two phenomena that may cause problems during measurement.

• Saturation phenomena giving too high input (outside the linear
range) to the ADC.

• Misinterpretation of the phase (θ) information.

It is important that these phenomena, which are not well covered in the
AD5933 datasheet are understood and taken into account during the mea-
surements.

6.2.1 Saturation phenomena that may occur during calibra-
tion and measurement

The critical issue is the dynamic range of the ADC. This is controlled by
the gain through the system as given by equation 6.5.

output excitation voltage ∗ Gain setting resistor
Zunknown

∗ GainPGA (6.5)

The gain is again controlled by

• The selected voltage for the output excitation.

• The current to voltage gain setting resistor (RFB) in combination with
the calibration resistor or during measurement Zunknown.

• The PGA gain.

The data sheet uses calibration resistors at the lower edge of each resistor
range, meaning that the ratio

Gain setting resistor
Zunknown (Zcal)

= 1 (6.6)

With
Zcal = RFB (6.7)
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This means that using the data sheet calibration the device measured will
always have a higher impedance value than the calibration resistor, and
the gain setting resistor. The gain through the system will be lower and
saturation of the ADC will not take place. The data sheet also gives a
graphical illustration of how the impedance error typically varies with
frequency for measurements on resistors higher than the value of the
calibration resistor. Figure 6.5 shows this variation for ranges 1, 2, 3 and
6. For the upper ranges (4-6) the impedance error shows a strong increase

Figure 6.5: The impedance error as function of frequency for ranges 1, 2, 3
and 6 [2]

with frequency, up to -7 and -8% for ranges 5 and 6. The error seems to
increase the further away from the calibration value the measurements
are done as illustrated by the curves for range 5 and 6 where also the
relative deviations from the calibration resistor value are small, meaning
that calibration is critical.

For range 1 the error is up to 3% all over the frequency range. Range 2
and 3 seems to give the best results. Range 2 has an error between 1-1.2%
while range 3 has an error between about 0.24 to -0.27%. This illustrates
that it is critical to have a calibration value close to the value of the resistor
to be measured.
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For measurements on complex impedances there may be strong
variations over the frequency span in both the imaginary part and the
magnitude M. This may result in complications, and a frequency run may
cover more than one range. Separate calibrations for each range may then
be needed.

In the data sheet for the evaluation board for AD5933 [3], Analog
Devices state that the gain factor should be calibrated when the largest
response signal is present on the ADC, and the signal kept within linear
range of interest. This corresponds well with the conditions set in
equations 6.6 and 6.7.

It is also stated ”The user should choose a calibration impedance which
is mid value between the limits of the unknown impedance”. Thus the
user must know the value of the impedance to be measured relatively well
before making a final calibration.

In order to make accurate measurements a two step calibration is
needed. The first will give an approximate impedance value and the
second calibration with an calibration resistor close to the first measured
value. Then the final measurement will give the most accurate value.

For measurements in the low impedance range (0.1-1kΩ) there is
another problem. At approximately 500Ω the current drawn may be to
high for the transmit side amplifier. There may also be corresponding
problems sinking at the receive stage.

The variable resistor Rout at the transmit stage will also contribute in
the gain setting expression in addition to Zunknown giving the modified
expression for the gain through the system

output excitation ∗ Gain Setting Resistor
Zunknown + Rout

∗ GainPGA (6.8)

Rout depends on the output excitation voltage as shown in table 6.2. Taking

Vout Rout
2Vp-p 200Ω

1Vp-p 2400Ω

400mVp-p 1000Ω

200mVp-p 600Ω

Table 6.2: Rout varying with output excitation voltage

these two restrictions into account it should be possible to calibrate and
make measurements also in range 1.
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Another possible solution would perhaps be to make body measure-
ments with a fixed resistor of known value in series, so that the measure-
ment will be in range 2 instead of range 1.This was tested and did not
work well.

Figure 6.6 and 6.7 show the impedance and phase of a measurement
of a R-C parallel combination (R=2.2kΩ, C=3.2nF) and with RFB = 2.2kΩ
where the ADC goes into saturation and one can see some very strange
effects on the impedance and phase because of this. On the plots one can
see that impedance stops at 1kΩ, it doesn’t go any lower, at this point the
ADC is saturated and can’t measure impedances. To start with the phase
is going down, but when the ADC is saturated it for some reason begin to
climb upwards. These two plots illustrate the effects saturation have on
the measurement results.

Figure 6.6: Typical saturation effect on the impedance value from parallell
RC-networks (R=2.2kΩ, C=3.2nF)

6.2.2 The phase-shift calibrated

The complex output values from the AD5933 is stored in separate register
addresses for the real and imaginary parts after each sweep. They are
the real and imaginary components of the DFT and not of the impedance
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Figure 6.7: Saturation effect on the phase with the same measurement
configuration as in Figure 6.6

being measured. The magnitude of the impedance |Z| is calculated by the
magnitude of the DFT components.

MDFT =
√

R2 + I2 (6.9)

and the impedance is found as

MZ =
1

Gain Factor ∗MDFT
(6.10)

using the calibration procedure described in section 6.1 The measured
phase is given by 6.11.

θt = tan−1 (I/R)) = θs +θ (6.11)

This is the total phase from the AD5933 internal system components in
the signal path and the externally connected impedance. The impedance
components are given by

R = Zreal = |Z| cos (θ) (6.12)

X = Zimaginary = |Z| sin (θ) (6.13)
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where
Z = R + jX (6.14)

The phase is converted to degrees by

θ = tan−1 (I/R)
180o

π
(6.15)

The problem arises in connection with equation 6.11 which returns
the correct answer only for one quadrant at a time, so if one want
measurement represented in the 4th quadrant, one will need to correct
the values, that will be represented in the 1th quadrant. Analog Devices
operates with the standard angle taken counter-clock wise from the
positive real x-axis, so that all the phases will be represented from 0
degree to 380 degree. For bioimpedance it is normal to use negative
phase, and this is the reason for chosing somewhat different approach
than Analog Devices. Representing the result measured in 1th quadrant
requires subtraction of 180o from the phase to get the phase represented in
4th quadrant as a negative value. This is also discussed in the new data
sheet available from may 2008.

With this problem there will normally be a step in the phase value as
illustrated in Figure 6.8 showing the phase for a measurement on a R-
C series combination (R=12kΩ, C=3.2nF) for a measurement in range 2.
Figure 6.9 shows the corrected phase for the same measurement.

6.3 Verification tests on resistors and capacitors

Test os resistor and capacitors.

6.3.1 Overview

For testing purposes the impedance Z and the phase θ of resistor and
capacitors of known value were measured.

Resistors of different value were used for calibration and testing. The
AD5933 operates as shown in the system specification in Chapter5.1 in six
ranges from 0.1kΩ-10MΩ in total.

6.3.2 Resistors

A resistor of 580Ω was measured in range 1 with the same calibration as
for the whole body measurements (RFB=Rcal=680Ω). The variations in |Z|
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Figure 6.8: Variation of the phase angle with frequency for a RC-series
combination measured in impedance range 3 with uncorrected positive
phase value

and θ are plotted in Figure 6.10, a) and b) respectively. It is observed that
the |Z| value is somewhat high and is increasing with frequency. The
phase angle shows a variation of ±0.5o which partly is caused by the lack
of stability of the internal reference oscillator.

Resistor tests were also performed going outside the range of calibra-
tion. For range 2 (1kΩ-10kΩ) resistors of 1kΩ, 50kΩ, 1MΩ and 10MΩ

were used. Figures 6.11 and 6.12 are for measurements performed in range
2 (1k-10kΩ) with calibration using RFB=Rcal=1kΩ.

Figure 6.11 shows resistance and phase values for a 1kΩ resistor.
The impedance value measured is correct at the calibration frequency
of 50kHz, but there is a variation of a few percent toward the end of
the measurement range. This indicated that the calibration procedures
covering the full measurement range should be implemented (2 point
calibration procedure).

The phase angle shows again a variation of ±0, 4o partly attributed to
the reference oscillator.

Figure 6.12 shows the corresponding results for a 50kΩ resistor, which
is far above the values of range 2. Both measured resistor value and phase
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Figure 6.9: Variation of the phase angle with frequency for a RC-series
combination measured in impedance range 3 with corrected positive
phase value

angle are totally misleading. This illustrates the problem encountered
when the ratio R/RFB is very different from 1.

The observed values for 1MΩ and 10MΩ resistors were even worse.
Thus, all measurements must be performed in the range of calibration,
and the closest possible to the calibration value.

6.3.3 RC-networks

Network with capacitors turned out to be more complicated to test due to
the strong frequency dependent variation in both phase and magnitude.
For a RC series combination we have:

|Z|s =

√
1 + (ωRC)2

ωC
(6.16)

θs = − tan−1
(

1
ωRC

)
(6.17)
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Figure 6.10: Resistance (a) and phase angle (b) as functions of frequency
for a 580Ω resistor in range 1
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Figure 6.11: Resistance (a) and phase angle (b) for a 1kΩ resistor measured
in range 2 with a 1kΩ calibration
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Figure 6.12: Resistance (a) and phase angle (b) for a 50kΩ resistor
measured in range 2 with a 1kΩ calibration
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For a parallell combination we have:

|Z|p =
R√

1 + (ωRC)2
(6.18)

θp = − tan−1 (ωRC) (6.19)

This shows that there will be strong variations in |Z| due to variations
in frequency, in particular for |Z|s at low frequencies. However it should
be well possible to make measurements in the higher frequency range
calibrating at the resistor value.

For a parallell combination |Z|p decreases with frequency. A
calibration with R is risky because if the resulting resistance become too
low the ADC will be saturated.

It should however be possible to use the value at the upper frequency
for calibration depending on the value of the RC components, but the
parallell circuit has been difficult to handle.

Figure 6.13 shows magnitude and phase for a 2.2kΩ resistor in series
with a 3.2nF capacitor, calibration was performed using a 2.2kΩ resistor.

Fortunately, doing whole body measurements the phase values are
only minus a few degrees, thus problem of this type are not bad, and
suitable calibration values covering the frequency range can be found.

6.4 Verification testing on living tissue

For measurements on the body the contacts must be good. It was decided
make whole body measurements between right hand and right foot. To
best possible eliminate the impedance from the skin it was decided to
use big electrodes consisting of two buckets containing a solution of
salt dissolved in water. A concentration of 32g salt per liter water was
used. Each basket had a hole drilled in the side of the basket, and
the connection to the salt-water solution was established by gluing ECG
electrodes over the holes in the side of the two baskets. The electrodes
were then connected to the breadboard and to the AD5933 with cables
with banana contacts at each end. The measurement set-up is shown in
the picture in figure 6.14 (note that picture is only a illustration, and in the
picture the left foot and hand is used but in my measurements

For the first trial measurement the instrument was calibrated for range
2, when the measurement were done we saw the measured results was in
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Figure 6.13: Magnitude and phase angle for a series resistor capacitance
circuit, R=2.2kΩ, C=3.2nF
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Figure 6.14: Illustration of the measurement setup used under measure-
ments

range 1 and not 2, there there was a need for recalibration for range 1 to be
sure to avoid saturation.

One measurement made in range 1 is shown in figures 6.15 and 6.16.

The measurements were done with 19 incrementations, in total at 20
frequency points.

6.5 Evaluation of the results

6.5.1 Analysis of the body measurements results

Using a frequency scanning system for impedance measurements results
in a large number of data. For the body measurements impedance values
are obtained for 11 persons at 20 frequencies. Analysis of such an amount
of data and larger, required use of statistical methods. Two methods have
been used analysing the data collected from body measurements.

The measured data are given in Appendix C.
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Figure 6.15: Impedance as function of frequency for a whole body
measurement

The standard deviation approach

The standard deviation σ which is a measure of the dispersion of the
values obtained has been calculated for each of the frequency points where
measurements are made using the Microsoft Excel software. The average
values of impedance and phase are plotted as functions of frequency and
the curve also gives the standard derivation ±σ . For the variable x the
average is given by

x =
1
n

n

∑
i=1

xi (6.20)

where n is the number of frequencies used and xi represents either the
impedance or the phase angle. The standard derivation calculated is given
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Figure 6.16: Phase as function of frequency for a whole body measurement

by

σ =

√
1
n

n

∑
i=1

(xi − x)2 (6.21)

The results of this analysis are shown in figures 6.17 and 6.18. The
resulting impedance curve shows a relatively constant average value
down to about 30KHz, then it increases slightly (about 50Ω from 30kHz
down to 3kHz). This is caused by the reduced intracellular conductivity
due to the blocking effect of the capacitances at the cell membranes at
low frequencies. Making an impedance body measurement of a person
of about the same age as the rest of the group used, the resistance value is
expected to be in the same range which is

• relatively constant from 100kHz down to 30kHz, and then it
increases.
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• show a pronounced increase in value of about 8-10% from 20-30kHz
down to 3kHz.

• give a value within the ±σ limits (66% should be within this limit).

Marked deviations from these values should create concern if there is no
obvious explanation.

The phase angle θ curve in 6.18 shows a slight decrease in the average
θ from -2.5o to -4o over the frequency span. For the last measurement point
there is an increase in the value. This however should most probably be
ignored since the measurement at 3kHz lies outside the lower operational
frequency limit of 5kHz using a 16.776MHz oscillator. There is another
close to periodic variation in the data which is not fully explainable, but
a possible effect relating to the heart rhythm has been considered. Again
the curve seems to represent a good reference for measurements.

Figure 6.17: Plot of the average impedance for all the 11 measurements,
shown with the standard deviation

Principal Components Analysis

Another method for analysis of multivariate data like this is the Principal
Components Analysis. The general idea of this analysis is to find
a structure in the data and to reduce the dimensionality of the data
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Figure 6.18: Plot of the average phase for all the 11 measurements, shown
with the standard deviation

set and identify patterns in the data [21]. The process again starts
taking the average values of the measured data and then forming the
different covariance elements, and the matrix of the covariance elements.
Obtaining the eigenvector with the highest eigenvalue is then the principal
component of the data set. Eigenvectors are then ordered by value, which
again means order of significance. If the less important are left out, the
final data set will have a lower dimension than the original. There are
several math programs available that perform this analysis. Using The
Unscrambler software from Camo and using the Body Mass Index ( weight

height2 )
for the measured Y the curve in Figure 6.19 was obtained as the best fit.
The predicted Y should be the closest possible to the measured.

The offset is the point where the regression line crosses the y-axis. The
R2 is a statistical measure of how well a regression line approximates the
real data points, an R2 of 1 represents a perfect fit. The obtained value of
0,76 is not bad, as is also observed from the plots.

RMSEC is the Root Mean Square Error of Calibration. It is expressed as
average modeling error in the same units as the original response values.
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Figure 6.19: Predicted versus measured Y-values

The correlation between measurements and predictions is as high as
0.874. The slope of the regression line is 0.7636. Figure 6.20 shows
the scores plotted the system of PC1 and PC2. The score plot shows
similarities and differences among the samples, allowing for pattern
investigation and identification of outliers. It is observed that the score
of PC1 are much higher than the scores for PC2, and that measurements
8, 9 and 10 could be considered outliers. The lower values of PC2 relative
to PC1, may however imply that sample 9 is the only outlier candidate.
Looking at the first plot it is observed that the predicted value for 10 is
somewhat high, but the deviation from the regression line is less than
for some others. Figure 6.21 shows the residual validation variance used
to find an optimal number of principal components. It is an expression
for the modeling or for the prediction error: Residuals in general detects
lack of fit in the model. The residuals are deviations between observed
data values and the model approximation of those values. It is observed
that the values are close to constant beyond Principal Component 2.
Figure 6.22 shows the regression coefficient for all 20 phase angles and
the impedances for 20 frequencies, f on this figure means phase. The
regression coefficient when the regression line is linear, is the constant that
represent the rate of change of one variable as a function of changes in the
others. Because the phase is mostly zero, the phase does have a big role
in the determination of the BMI. This is because the BMI is calculated by
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Figure 6.20: Scores for the individuals subjects plotted in the PC1/PC2
coordinate system

multiplying each component with its coefficient and then adding all of the
contributions together.
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Figure 6.21: Residual validation variance as function of Principal Compo-
nent number

Figure 6.22: Regression coefficients for the impedance and phase
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Chapter 7

Possible improvements of the
system

The basic principles of the system are very interesting, even though
the functionality of the prototype was not the best. But learning about
problems have also given some ideas on possible improvements, using
both hardware and software.

7.1 External reference oscillator

An external very stable oscillator would improve stability and reduce
the variations observed in the measured θ values. An external unit
with two oscillators one operating at 16.776MHz and the other at 2MHz
would make it possible to measure down to 300Hz in two frequency
measurement ranges, 5-100kHz (as now) and 100Hz-5kHz.

7.2 Improved calibration system

A network with one set of calibration/RFB resistors, one set for each
measurement range would simplify the calibration procedure, which
should be in three steps, the first to identify the measurement range,
the second to function as a reference and check for the range, and as a
reference for the initial measurement. The third would required externally
connected calibration and feed back resistors of value close to the device
under test.
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7.3 Program for calculating the input level to the
ADC

A program for calculating input level to the ADC could be made and
function as a controll of the critical level.

7.4 New device under development by Analog
Devices

Analog Devices has realized that the AD5933 is not well suited for
bioimpedance measurements and has in an email told that they are
currently working on a modified IC. Hopefully most of the developed
software can be used in that module too. The succeeder of AD5933/5934
is planned for release in 2009 sometime. It may also be able to operate at
higher frequencies than the AD5933, possibly up to 200kHz. That would
be an improvement.

7.5 Systems improvement

The prototype as it is, can be used for single frequency measurements,
multifrequency measurements and spectroscopy, but the frequency band
is somewhat narrow. If that could be increased to 200-400kHz the
applicability would increase.

It could also be possible to build a cheap scanner making measure-
ments using a number of contacts. That would require a interface unit
with two contacts in and many out, where the two in contacts could be
switched between the different contacts. For a fixed excitation contact
a swept measurement should be made on the other contacts. The data
would have to be taken from the impedance converter and stored on a PC
for each run, but that could be managed by adding some features to the
existing software code.
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Chapter 8

Conclusion

A prototype of a new system for bioimpedance measurements has been
developed and body measurements performed. The system designed and
implemented is based on use of the integrated circuit AD5933. Opera-
tional procedures have been developed and implemented in operational
software for PC operation via a microcontroller. The prototype which op-
erates in the frequency range 5 - 100 kHz is well suited for single frequency
measurements, multifrequency measuremnts and spectroscopic measure-
ments.

Verification testing performed using fixed components revealed that
the calibration process is very critical due to a saturation effect occuring in
the ADC in the receiver part which was very sensitive to gain variations
and signal level in the signal loop. Though this represents a problem,
the limitations of the circuit have been understood and described. Safe
measurement critera have been established. Performing calibration close
to the value of the device under test, resulted in repeatable and reliable
measurement.

Whole body measurements have been performed and the results have
been statistically analysed using both a Standard Deviation software tool
and a software tool for Principal Components Analysis. They both gave
results that can be used for identification of "normal" measurement values
and also possible outliers.

Even though there were some limitations in device performance, the
goals set have all been met. The principles employed are promising
allowing for collection of large amounts of data that can be treated
statistically for information retrival. With some hardware improvements
a very attractive low cost system could be made something that could also
be of interest for other areas like food control and plant measurements.
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Appendix A

Microcontroller code

A.1 file:main.c

#include <avr/io.h>

#include "myusart.h"

#include "mytwi.h"

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

/*AD5933 registers adresses*/

#define real_high_reg 0x94

#define real_low_reg 0x95

#define im_high_reg 0x96

#define im_low_reg 0x97

#define status_reg 0x8F

#define control_high_reg 0x80

#define control_low_reg 0x81

#define NumSet_high 0x8A

#define NumSet_low 0x8B

#define startfreq_reg 0x82

#define freqinc_reg 0x85

#define incsteps_reg 0x88

#define AD5933CLK 16776000

//Function for converting the two hex values to a decimal value
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unsigned long int hextodec(unsigned char data_high,\\

unsigned char data_low)

{

unsigned long int data, temp;

data=(unsigned long int)data_high*256+data_low;

return data;

}

int main (void)

{

#Declaration of variables

unsigned char* data;

char s[6];

char x[6];

int R, I,j;

unsigned long int i, kl;

char* val;

unsigned char real_high, real_low;

unsigned char im_low, im_high;

unsigned int startfreq, numbinc,freqinc;

DDRB=0xFF;

/*Initializing USART*/

USART_init();

/*Initializing TWI*/

i=TWI_init();

/*Allocating memory for pointer which is

used to store data to be written to the AD5933*/

data = (unsigned char*) malloc(10*sizeof(unsigned char));

/*Allocating memory for pointer which

is used to store data from usart*/

val=(char*) malloc(10*sizeof(char));

//Setting up connection with the PC interface

com:

val=USART_CharReceive();

if((i=strncmp(val, "Init",4))==0){

USART_CharTransmit("AD5933");

}

90



else{

goto com;

}

//Setting startfreq routine

startfreq=atoi(USART_CharReceive());

i=startfreq*32.0023195;

*data=0x000000ff & (i>>16); *(data+1)=0x000000ff & (i>>8);

*(data+2)=0x000000ff & i;

TWI_block_write(startfreq_reg, 3,data);

//Setting frequency increment

freqinc=atoi(USART_CharReceive());

i=freqinc*32.0023195;

*data=0x000000ff & (i>>16); *(data+1)=0x000000ff & (i>>8);

*(data+2)=0x000000ff & i;

TWI_block_write(freqinc_reg, 3, data);

//Setting number of increments

numbinc=atoi(USART_CharReceive());

*data=0x000000ff & (numbinc>>8); *(data+1)=0x000000ff & numbinc;

TWI_block_write(incsteps_reg, 2, data);

/*User input on number of settlings from USART*/

/*Could have been made user settable

the same way as the output excitation voltage*/

TWI_byte_write(NumSet_high, 0x00);

TWI_byte_write(NumSet_low, 0x32);

//receiving desired voltrange from PC

val=USART_CharReceive();

if((i=strncmp(val, "V1",2))==0){

j=1;

}

else if((i=strncmp(val, "V2",2))==0){

j=2;

}

else if((i=strncmp(val, "V3",2))==0){

j=3;

}
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else if((i=strncmp(val, "V4",2))==0){

j=4;

}

/*PLacing AD5933 in standby mode, see manual p. 20-21*/

if(j==1){

PORTB=0x1F;

TWI_byte_write(control_high_reg, 0xb1);

}

else if(j==2){

PORTB=0x2F;

TWI_byte_write(control_high_reg, 0xb7);

}

else if(j==3){

PORTB=0x4F;

TWI_byte_write(control_high_reg, 0xb5);

}

else if(j==4){

PORTB=0x8F;

TWI_byte_write(control_high_reg, 0xb3);

}

//Initialize with start frequency:

if(j==1){

TWI_byte_write(control_high_reg, 0x11);

}

else if(j==2){

TWI_byte_write(control_high_reg, 0x17);

}

else if(j==3){

TWI_byte_write(control_high_reg, 0x15);

}

else if(j==4){

TWI_byte_write(control_high_reg, 0x13);

}

//Some settling time

for(i=0;i==100;i++);

//Start sample routine
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while(1){

val=USART_CharReceive();

if((i=strncmp(val, "StSample",8))==0){

/*Programming start frequency sweep

and voltage range and PGA gain*/

//TWI_byte_write(control_high_reg, 0x25);

if(j==1){

TWI_byte_write(control_high_reg, 0x21);

}

else if(j==2){

TWI_byte_write(control_high_reg, 0x27);

}

else if(j==3){

TWI_byte_write(control_high_reg, 0x25);

}

else if(j==4){

TWI_byte_write(control_high_reg, 0x23);

}

break;

}

}

start:

//Waits until the real and imaginary data in the AD5933 is valid

while(!(TWI_byte_read(status_reg) & 0x02));

//Reads the two hex values from the real register

real_high=TWI_byte_read(real_high_reg);

real_low=TWI_byte_read(real_low_reg);

//Converting the real value to decimal

R=hextodec(real_high, real_low);

//Converts to aascii for transmission to computer

itoa(R, s, 10);

USART_CharTransmit(s);

im_high=TWI_byte_read(im_high_reg);

im_low=TWI_byte_read(im_low_reg);

I=hextodec(im_high, im_low);

itoa(I, x, 10);

USART_CharTransmit(x);

//Test if the sweep is complete, if not complete program increment frequency
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if((TWI_byte_read(status_reg) & 0x04)==0){

for(kl=0; kl==10000; kl++);

if(j==1){

TWI_byte_write(control_high_reg, 0x31);

}

else if(j==2){

TWI_byte_write(control_high_reg, 0x37);

}

else if(j==3){

TWI_byte_write(control_high_reg, 0x35);

}

else if(j==4){

TWI_byte_write(control_high_reg, 0x33);

}

goto start;

}

//If complete programming power down mode

else{

TWI_byte_write(control_high_reg, 0xA1);

goto com;

}

}
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A.2 file:myusart.c

#include <avr/io.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "myusart.h"

int USART_init(void){

//Initializing the USART

// Turn on the transmission and reception :

UCSRB |= (1 << RXEN) | (1 << TXEN);

//Use 8-bit character sizes:

UCSRC |= (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1);

// Load lower 8-bits of the baud rate

//value into the low byte of the UBRR register

UBRRL = BAUD_PRESCALE;

// Load upper 8-bits of the baud rate

//value into the high byte of the UBRR register

UBRRH = (BAUD_PRESCALE >> 8);

return 1;

}

void USART_transmit(char data){

// Do nothing until UDR is ready for more data to be written to it

while ((UCSRA & (1 << UDRE)) == 0) {};

UDR = data;

}

int USART_receive(void){

char data;

// Do nothing until data have been recieved and is ready to be read from UDR

while ((UCSRA & (1 << RXC)) == 0) {};

return UDR;

}

void USART_CharTransmit(char* data)

{

int n;

n=0;
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while (1)

{

// Do nothing until UDR is ready for more data to be written to it

while ((UCSRA & (1 << UDRE)) == 0) {};

UDR =*(data+n);

n++;

if(!(*(data+(n)))){

break;

}

}

USART_transmit('\n');

USART_transmit('\r');

}

char* USART_CharReceive(void){

int i;

char* data;

char temp;

data = (char*) malloc(30*sizeof(char));

for(i=0; i<30; i++){

temp =USART_receive();

//If received data is equal to carriage return stor receiving

if(temp=='\r'){

break;

}

*(data+i)=temp;

}

*(data +i)='\0';

return data;

}
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A.3 file:myusart.h

//Definisjoner:

#define USART_BAUDRATE 9600

#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

#define DEBUG 0

//Funksjonsdefinisjoner:

int USART_init(void);

void USART_transmit(char data);

int USART_receive(void);

void USART_CharTransmit(char* data);

char* USART_CharReceive(void);
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A.4 file:mytwi.c

//Code is written by Bernt Nordbotten as a part of my master thesis

#include <stdint.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/twi.h>

#include "myusart.h"

#include "mytwi.h"

/*Atmega32 I2C bus status*/

#define START 0xa4

#define Stop 0x94

#define Trans 0x84

/*AD5933*/

#define SLA_read 0x1B

#define SLA_write 0x1A

#define SUCCES 0xff

/*Wait for TWINT flag set*/

void TWI_wait(void){

int j=0;

while(!(TWCR &(1<<TWINT))){

j++;

}

}

/*Initialize TWI*/

int TWI_init(void){

TWBR=10; /*Setter SCL frekvensen til ca. 100kHz */

TWCR=0x04; /*Send start condition*/

return 1;

}

unsigned char Send_start(void)
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{

TWCR=START; //Send START

TWI_wait(); //Wait for TWI interrupt flag to be set

if((TWSR & 0xF8)!=0x08 || (TWSR & 0xF8)!=0x10)

return TWSR; //If it failed, return the TWSR value

return 0xFF; //If succeeded, return SUCCESS

}

/*Send stop condition*/

void TWI_stop(void){

TWCR=Stop;

}

/*Send address*/

unsigned char TWI_send_adr(unsigned char adr){

TWI_wait();

TWDR=adr;

TWCR=Trans;

TWI_wait();

/*If nack received from slave:*/

if((TWSR & 0xF8)!= 0x18 || (TWSR & 0xF8)!= 0x40){

return TWSR;

}

return SUCCES;

}

/*Send one byte to the bus*/

unsigned char TWI_send_byte(unsigned char data){

TWI_wait();

TWDR=data;

TWCR=Trans;

TWI_wait();

if((TWSR & 0xF8) != 0x28){ /*If ack received from slave*/

return TWSR;

}

else{

return SUCCES;

}

}
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unsigned char TWI_set_memloc(unsigned char mem_location){

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xB0); /*Adress pointer see page 26 of AD5933 manual*/

TWI_send_byte(mem_location); /*Send memory location*/

return 1; /*Return 1 if succeded*/

}

unsigned char TWI_byte_write(unsigned char reg_addr,\\

unsigned char data){

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(reg_addr);

TWI_send_byte(data);

TWI_stop();

return 1; /*Return 1 when succeded*/

}

/*Write several bytes of data*/

/*byte_number=number of data bytes to be sendt*/

unsigned char TWI_block_write(unsigned char reg_location,\\

unsigned char byte_number, unsigned char *TWI_data)

{

int i;

TWI_set_memloc(reg_location);

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xA0); /*Block write command, page 26 AD5933 manual*/

TWI_send_byte(byte_number);

for (i=0; i<byte_number; i++){

TWI_send_byte(*(TWI_data+i));

}

TWI_stop();

return 1;

}

unsigned char TWI_byte_read(unsigned reg_addr){

TWI_set_memloc(reg_addr);
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Send_start();

TWI_send_adr(SLA_read);

TWCR=Trans;

TWI_wait();

return TWDR;

}

unsigned char TWI_block_read(unsigned char reg_addr,\\

unsigned char byte_number, unsigned char *TWI_data)

{

int i;

TWI_set_memloc(reg_addr);

Send_start();

TWI_send_adr(SLA_write);

TWI_send_byte(0xA0);

TWI_send_byte(byte_number);

TWI_init();

TWI_send_byte(SLA_read);

for(i=0; i<byte_number; i++){

*(TWI_data +i)=TWDR;

TWI_wait();

TWCR|=(1<<TWEA); /*Send ACK after each byte*/

}

TWCR=(0<<TWEA); /*Send NACK to signalise last byte (end of read)*/

TWI_wait();

TWI_stop();

return *TWI_data;

}
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A.5 file:mytwi.h

/*Prosedures*/

int TWI_init(void);

void TWI_wait_int(void);

void TWI_stop(void);

/*Functions*/

unsigned char TWI_send_adr(unsigned char adr);

unsigned char set_memlocation(unsigned char mem_location);

unsigned char TWI_send_byte(unsigned char data);

unsigned char TWI_byte_write(unsigned char reg_addr, unsigned char data);

unsigned char TWI_block_write(unsigned char reg_location,\\

unsigned char byte_number, unsigned char *TWI_data);

unsigned char TWI_byte_read(unsigned reg_addr);

unsigned char TWI_block_read(unsigned char reg_addr,\\

unsigned char byte_number, unsigned char *TWI_data);
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Appendix B

Python code for graphical
interface

#!/usr/bin/env python

#Imports the different libraries that is used.

import os, sys, serial, time, Pmw, re, tkMessageBox, math, pylab

from Tkinter import *

class AD5933GUI:

#The constructor function:

def __init__(self,parent):

#Stores the main frame

#(alle the other frames will be within in this parent frame)

self.parent=parent

self.k=0

self.l=0

self.voltranges=['2.0Vp-p', '1.0Vp-p', '400mVp-p', '200mVp-p']

#Declaration of different TkInter variables that will

#be used to store user given values from the graphical interface:

self.com=StringVar()

self.calresistor=StringVar()

self.startfreq=StringVar()

self.numbinc=StringVar()

self.numbsteps=StringVar()

self.volt=StringVar()

self.gainfactor=DoubleVar()
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self.com.set('1')

self.startfreq.set('3000')

self.numbinc.set('5105')

self.numbsteps.set('19')

#Set a default value for the gain factor

#and for the excitation voltage

self.gainfactor.set(2.44007*(10**-6))

self.volt.set('200mVp-p')

#Declares two dictionaries with several lists in them.

#self.cal is for storing the system phase that is read

#from calphase.txt. self.data is

#used to store the data for the sweep.

self.cal={'Freq':[], 'Phase':[], 'Gain_Fac':[], 'Gain':[]}

self.data={'Real':[] , 'Im':[], 'Freq':[], 'Mag':[],\\

'Impedance':[], 'Phase':[], 'Phase2':[]}

#Set a name for the graphical interface

#that will appear on top part of the interface

self.parent.title('Interface GUI for AD5933 circuit')

#Declared some different frames

#wich will be putted different widgets in.

self.left=Frame(parent)

self.bottom=Frame(parent)

self.plot=Frame(parent)

self.status=Frame(parent)

#Packs the frames. The frames is packed from top to bottom.

#So that self.left frame will appear on top and self.status

#will appear on the bottom.

self.left.pack(side='top', anchor='w')

self.bottom.pack(side='top', anchor='w')

self.plot.pack(side='top', anchor='w')

self.status.pack(side='top', anchor='w')

self.number_increments=0

#Declares some different widgets that will be used in
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#the interface for user input.

#EntryField=Entry field where the user can input numbers or text.

#Button=Each button are linked to different functions in the code,

#clicking a button on the interface will call that's button function.

#OptionMenu=OptionMeny will present the user for a scroll down meny

#with some predefined options that the user can choose between.

#ScrolledListBox=A list box where text can be displayed.

self.port=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Com port',

entry_width=8,

entry_textvariable=self.com)

self.setstartfreq=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Start frequency (Hz)',

entry_width=8,

entry_textvariable=self.startfreq)

self.setnumbinc=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Frequency increment (Hz)',

entry_width=8,

entry_textvariable=self.numbinc)

self.setnumbsteps=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Number of steps',

entry_width=8,

entry_textvariable=self.numbsteps)

self.setgainfactor=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Gain factor',

entry_width=8,

entry_textvariable=self.gainfactor)

self.calres=Pmw.EntryField(self.bottom,

labelpos='w',

label_text='Calibration resistor (ohm)',

entry_width=8,

entry_textvariable=self.calresistor)

self.calc=Button(self.bottom,text='Calculate real and im', width=23,\\

command=self.realim)

self.setvoltrange=Pmw.OptionMenu(self.bottom,

labelpos='w', # n, nw, ne, e, and so on
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label_text='Output voltage range',

items=self.voltranges,

menubutton_textvariable=self.volt,

menubutton_width=8)

self.quit=Button(self.bottom, text=' Quit ', width=23,\\

command=self.quit)

self.calrun=Button(self.bottom, text='Calibration run',\\

width=23, command=self.calibration)

self.sample=Button(self.bottom, text='Start sweep', width=23,\\

command=self.sample)

self.statuslist=Pmw.ScrolledListBox(self.status,

vscrollmode='static', hscrollmode='dynamic',

listbox_width=40, listbox_height=5,

label_text='Status',

labelpos='n')

self.plot_p=Button(self.plot, text='Plot phase', width=23,\\

command=self.plot_phase)

self.plot_impedance=Button(self.plot, text='Plot impedance', \\

width=23, command=self.plot_imp)

#This will align the labels for the widgets, this can be necesary

#because thelabels have different lengths.

widgets=(self.calres, self.port,self.calc, self.setstartfreq,\\

self.setnumbinc, self.setnumbsteps, self.setvoltrange, self.setgainfactor)

Pmw.alignlabels(widgets)

#After the labels are aligned the widgets are packed

#in the different frames.

self.port.pack(side='top', anchor='w')

self.setstartfreq.pack(side='top', anchor='w')

self.setnumbinc.pack(side='top', anchor='w')

self.setnumbsteps.pack(side='top', anchor='w')

self.setvoltrange.pack(side='top', anchor='w')

self.setgainfactor.pack(side='top', anchor='w')

self.calres.pack(side='top', anchor='w')

self.sample.pack(side='top', anchor='w')

self.calrun.pack(side='top', anchor='w')

self.calc.pack(side='top', anchor='w')

self.quit.pack(side='top', anchor='w')
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self.plot_impedance.pack(side='left', anchor='w')

self.plot_p.pack(side='left', anchor='w')

self.statuslist.pack(side='top',expand=1,fill='both');

#This will open the file named calphase.txt for reading

#Then read in every line and store them,

#except for the first line wich only

#is information to the user on wich column\\

#is frequency and wich is the system phase.

#If this doesn't work (for example the file don't exsist)

#the code will go to the except state and \\

#print error 1 on the screen.

try:

ifile=open('calphase.txt', 'r')

ifile2=open('gain_factor.txt', 'r')

trash=ifile.readline()

trash=ifile2.readline()

for line in ifile.readlines():

freq, phase=line.split()

self.cal['Freq'].append(freq)

self.cal['Phase'].append(phase)

for line in ifile2.readlines():

freq, gain=line.split()

self.cal['Gain_Fac'].append(gain)

except:

print 'error 1'

#This function is for calculating G and B (and the theoretical values)

#for an parallell conection between a resistor and capacitor.

def realim(self):

#Reads the resistor and capacitance value from the command line

res=float(sys.argv[1])

cap=float(sys.argv[2])

#Open file realim.txt for writing

ofile2=open('realim.txt', 'w')

ofile2.write('Resistor=%gohm\nCapacitor=%gF\n' %(res, cap))
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ofile2.write('\nFreq G Gteo B Bteo\n')

#Does the calculation and write to file

for i in range(0, len(self.data['Freq'])-1):

f=float(self.data['Freq'][i])

Z=float(self.data['Impedance'][i])

theta=float(self.data['Phase2'][i])

R=float(Z*math.cos(theta/57.2957795))

X=float(Z*math.sin(theta/57.2957795))

G=R/float((R**2)+(X**2))

B=-X/((R**2)+(X**2))*1.56

Gteo=1/res

Bteo=2*3.14*f*cap

ofile2.write('%g %g %g %g %g\n' %(f, G, Gteo, B, Bteo))

#Function for calibration routine.

#Saves the system phase to calphase.txt and calculates the gain

#factor for every frequency and stores to gain_factor.txt

def calibration(self):

self.data={'Real':[] , 'Im':[], 'Freq':[], 'Mag':[],\\

'Impedance':[], 'Phase':[], 'Phase2':[]}

#If the com port is given by the

#user then try to open the com port,

#if the com port for example already is used by another software

#then display a message to user explaining that

#it could not open specified com port.

#If the com port is not defined the display a message to user

#telling the user to specify the com port to use.

if self.com.get():

self.comport=int(self.com.get())-1

try:

#Open the specified com port

self.ser = serial.Serial(self.comport)

except:

self.statuslist.insert('end',\\

'Could not open specified com port')

else:

self.statuslist.insert('end',\\

'Please specify com port to open')

self.ser.flush()
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#Send 'Init\r' to microcontroller via serial port.

#This is the initializing keyword for the microcontroller.

self.ser.write('Init\r')

#Reads from the serial port, if the received data is 'AD5933'

#then it means the microcontroller received the Init,

#and it has sendt AD5933 as an ack of recieved init.

#Is using regex, but could just have checked if equal

ID = self.ser.readline()

Pattern="AD5933"

match=re.search(Pattern, str(ID))

if match:

self.statuslist.insert('end',\\

'Communication with microcontroller established')

else:

self.statuslist.insert('end',\\

'Error while initializing communication with microcontroller,')

self.statuslist.insert('end',\\

'please check specified com port')

#Sending the start frequency to the microcontroller

#and giving the user feedback that the start frequency is beeing set.

self.statuslist.insert('end', 'Setting startfreq')

self.ser.write(self.startfreq.get()+'\r')

#Sending frequency increment,

#and giving feedback to the user of the progress.

self.statuslist.insert('end', 'Setting frequency increment')

self.ser.write(self.numbinc.get()+'\r')

#Sending number of frequency incrementations,

#and giving the user feedback of the progress.

#Had to add 1 to the number of increments

#to get the correct number of increments.

self.statuslist.insert('end', 'Setting number of frequency increments')

self.number_increments=int(self.numbsteps.get())+1

self.ser.write(str(self.number_increments)+'\r')

#If test for sending the correct desired

#voltage range to microcontroller,

#and giving feedback to user of the progress
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self.statuslist.insert('end', 'Setting excitation voltage')

if self.volt.get()=='2.0Vp-p':

self.ser.write('V1'+'\r')

elif self.volt.get()=='1.0Vp-p':

self.ser.write('V2'+'\r')

elif self.volt.get()=='400mVp-p':

self.ser.write('V3'+'\r')

elif self.volt.get()=='200mVp-p':

self.ser.write('V4'+'\r')

#Sending the command for starting sweep to microcontroller

#and giving feedback to user about progress.

self.ser.write('StSample\r')

self.statuslist.insert('end', 'Starting sampling')

count=0

i=0

#For loop that for each time calls

#the sampling function self.savedata

#with the number of increments

#(this is used to calculate the current frequency).

for i in range(0, int(self.number_increments)):

self.savedata(i)

#Open files calphase.txt and gain_factor.txt for writing.

#Writes the frequency and system phase to calphase.txt

#and frequency and gain factor to gain_factor.txt.

ofile=open('calphase.txt', 'w')

ofile.write('Freq Phase\n')

ofile2=open('gain_factor.txt', 'w')

ofile2.write('Freq Gain factor\n')

for k in range(0, int(self.number_increments)):

print k

str1='%d %g\n' %(self.data['Freq'][k], self.data['Phase'][k])

gainfac=1/(float(self.calresistor.get()))

gainfac=gainfac/(float(self.data['Mag'][k]))

str2='%d %g\n' %(self.data['Freq'][k], gainfac)

ofile.write(str1)

ofile2.write(str2)

ofile.close()

ofile2.close()
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#Function used for a measurement sweep

#The starting part is the same as the calibration function,

#so see on those comment.

def sample(self):

self.data={'Real':[] , 'Im':[], 'Freq':[], 'Mag':[],\\

'Impedance':[], 'Phase':[], 'Phase2':[]}

if self.com.get():

self.comport=int(self.com.get())-1

try:

self.ser = serial.Serial(self.comport)

#self.statuslist.insert('end', '%s is open at %s baudrate'\\

%(ser.portstr,ser.baudrate))

except:

self.statuslist.insert('end',\\

'Could not open specified com port')

else:

self.statuslist.insert('end','Please specify com port to open')

self.ser.flush()

self.ser.write('Init\r')

self.ser.flushInput()

self.ser.flush()

ID = self.ser.readline()

Pattern="AD5933"

match=re.search(Pattern, str(ID))

if match:

self.statuslist.insert('end', \\

'Communication with microcontroller established')

else:

self.statuslist.insert('end',\\

'Error while initializing communication with microcontroller,')

self.statuslist.insert('end',\\

'please check specified com port')

self.statuslist.insert('end', 'Setting startfreq')

self.ser.write(self.startfreq.get()+'\r')
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self.statuslist.insert('end', 'Setting frequency increment')

self.ser.write(self.numbinc.get()+'\r')

self.statuslist.insert('end', 'Setting number of frequency increments')

self.number_increments=int(self.numbsteps.get())+1

self.ser.write(str(self.number_increments)+'\r')

self.statuslist.insert('end', 'Setting excitation voltage')

if self.volt.get()=='2.0Vp-p':

self.ser.write('V1'+'\r')

elif self.volt.get()=='1.0Vp-p':

self.ser.write('V2'+'\r')

elif self.volt.get()=='400mVp-p':

self.ser.write('V3'+'\r')

elif self.volt.get()=='200mVp-p':

self.ser.write('V4'+'\r')

self.ser.write('StSample\r')

self.statuslist.insert('end', 'Starting sampling')

count=0

i=0

#Calling the sampling function,

#here I also sendt with an parameter 1

#this paramterer tells the sampling

#function to calulate the impedance phase.

for i in range(0, int(self.number_increments)):

self.savedata(i, 1)

#Open file out.txt for writing

ofile=open('out.txt', 'w')

ofile.write('Freq Phase Impedance\n')

#Loops through all the results and write the frequency,

#phase and impedance to file.

for k in range(0, len(self.data['Freq'])):

str1='%d %g %d\n' %(self.data['Freq'][k],\\

#self.data['Phase2'][k], self.data['Impedance'][k])

ofile.write(str1)
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ofile.close()

#Function for plotting impedance

def plot_imp(self):

pylab.plot([self.data['Freq']],[self.data['Impedance']], 'ro')

pylab.xlabel('Frequency (Hz)')

pylab.ylabel('Impedance (Ohm)')

pylab.savefig('impedance.png')

pylab.show()

#Function for plotting phase

def plot_phase(self):

pylab.plot([self.data['Freq']],[self.data['Phase2']], 'ro')

pylab.xlabel('Frequency (Hz)')

pylab.ylabel('Phase (degree)')

pylab.savefig('phase.png')

pylab.show()

#Function for terminating the parent frame (this closes the interface)

def quit(self):

self.parent.quit()

#Sampling function that receives measured data and calulates results.

def savedata(self, count, sel=0):

i=0

#Reads the value that is stored in the real register in the AD5933

real=self.ser.readline()

self.data['Real'].append(int(real))

#Reads the value that is stored in the imaginary

#register in the AD5933

im=self.ser.readline()

self.data['Im'].append(int(im))

#Calculates the current frequency

#by adding the increment frequncy

#multiplied with the number of current

#incrementation to the start frequency

freq=int(self.startfreq.get())+int(self.numbinc.get())*count

self.data['Freq'].append(int(freq))
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#Calculates the magnitude from

#the received real and imaginary parts.

magn=math.sqrt(float(real)**2 +float(im)**2)

self.data['Mag'].append(magn)

#Calculates and stores the impedance from the

#magnitude and gain factor.

self.data['Impedance'].append(\\

float(1/(magn*float(self.gainfactor.get()))))

#Calculates the phase and stores it

phase2=math.atan((float(im)/float(real)))*57.2957795

self.data['Phase'].append(phase2)

#Routine for getting the correct

#system phase for the current frequency.

if sel!=0:

while 1:

#If the current frequency is higher

#than the frequency for the calibration data

#the counter is incremented

if freq>int(self.cal['Freq'][self.k]):

self.k=self.k+1

#else if the freq is the same then

#the phase is calculated

elif freq==int(self.cal['Freq'][self.k]):

phase=(phase2)-float(self.cal['Phase'][self.k])

#Over the whole frequency span the

#phase might change the quadrant

#and to get the results to the 4th quadrant

#I subtract 180 degrees from

#the results that are larger than 30.

if phase>30:

phase=phase-180

break

self.data['Phase2'].append(phase)

#root is main window where the other frames will be placed

root=Tk()

#Initialises the pmw megawidget pack
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Pmw.initialise(root)

#Lager en ny instance A av klassen AD5933GUI

A=AD5933GUI(root)

#Loop for running the graphical interface

root.mainloop()
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Appendix C

Table from Excel with all the
results

C.1 Table of results
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Appendix D

Flow diagram for software
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Figure D.1: Flow chart for the developed software
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