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1. SHORT WORD ABOUT SUPERCONDUCTIVITY

This work presents theoretical results in the physics of superconductivity. The first

part of the work is dedicated to the problem of thermomagnetic instabilities and flux

avalanches in thin film superconductors. The second part describes the problem of flux

trapped in the hole of the superconducting ring.

Superconductivity in general occupies very specific place in physics. Discovered in

1911 by Heike Kamerlingh Onnes it fast became one of the most intriguing phenomena.

In superconducting state materials have zero electric resistance, which means that

current can flow without any loss. In superconducting wire loops current can persist

for years without any external support – such effects had been never seen before in

classical physics. In fact superconductivity was one of the first quantum effects which

can be observed in ”classical world”. Apart from zero-resistivity effect superconducting

material almost totaly push-out magnetic field from its body. The other side of this

effect is that magnets based on superconductors can create very high magnetic fields,

which can never be achieved with conventional materials.

All these facts made superconductors very promising material for application in

science, industry and even everyday life. However there is one serious drawback –

superconductivity exists only at very low temperatures. In first discovered materials

(Hg, Pb, Nb) the temperature of superconducting transition (Tc) was not higher than

20K, which is 250 degrees lower than temperature of water freezing. Of course this

condition prevented wide spreading of superconductors.

However in 1986 high-temperature superconductor (HTSC) LaBaCuO was discov-

ered by Bednorz and Muller [1] with Tc around 40K. Lately more similar HTSCs were

discovered with highest transition temperature around 160K (e.g. HgBa2Ca2Cu3O9

under pressure). It becomes very easy to study high-temperature superconductors with
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help of the liquid nitrogen (very cheap coolant) which temperature is around 77K.

At present days application of superconductivity is spreading to different fields of

science, industry, medicine and so on. There are still some drawbacks such as: working

temperature is still far below zero and structure of HTSC materials is not well suited

for industrial use. But nevertheless high-field superconducting magnets are widely used

everywhere in industry. Super high-speed trains based on magnetic levitation works in

several countries carrying passengers with speed up to 580 km/h. Extremely sensitive

devices known as SQUIDs (Superconducting quantum interference devices) are used

not only for research purposes but also in medicine for scanning electrical activity in

the brain. High frequency generators for cell-phone industry are based on quantum

effects in superconductors.

New materials with unique properties are still discovered after almost one hundred

years since discovery of the first superconductors. One of such materials MgB2 was

discovered in 2001 [2]. Even with Tc only around 40K MgB2 fast became very promis-

ing material because it is very easy to produce it and use in commercial applications.

Besides application in nanoelectronics MgB2 is used for production of superconducting

wires. Some of these wires can be made up to 10km in length without any junction

(Figure 1.1). Electrical current in such wires can be conducted without any losses at

very large distances. There is even a plan to replace conventional wires with supercon-

ducting ones in several large cities .

To use superconductors in most efficient way we should carefully studied them in all

aspects. For example it was found that at certain conditions (e.g. high magnetic fields)

thermomagnetic instabilities can arise in superconducting device. From practical point

of view this means loss of superconducting current, abrupt temperature increasing,

magnetic noise and sometimes complete destruction of the device. During studies

of such instabilities it was discovered that they can be in two forms: uniform and

fingering-like, depending on the sample properties. Paper 1 and Paper 2 are dedicated

to finding of conditions for development of these instabilities. We find the threshold

magnetic field Hfing(E, h0) corresponding to arising to instability. Thin films are found

to be much more unstable than bulk superconductors, and have a stronger tendency for
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Fig. 1.1: Superconducting wire based on MgB2. Black dots in the wire are MgB2 itself, the

rest is Cu surroundings. Maximum current of the wire at 27.5K – 330A. Stan-

dard batch length: in 2005 year - 1.6km, in 2006 year - 7km. Taken from site of

COLUMBUS SUPERCONDUCTORS SPA (www.columbussuperconductors.com).
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formation of fingering (dendritic) pattern. All these studies and results are presented

in Chapter 2. At the end of the Chapter 2 we give possible solution how to completely

avoid instability in the sample (e.g. MgB2).

Another interesting problem in physics of superconductivity is flux trapping. By

controlling the motion of magnetic vortices with help of asymmetric pinning in the

sample one can remove unwanted trapped flux in devices or even guide vortices in cho-

sen direction. By creating special arrays of dots and antidots which serve as pinning

sites in the sample it is possible to trap large quantity of magnetic flux quanta without

destruction of superconducting state. This allows to use superconductors in higher

magnetic fields increasing the range of their possible applications. Most of such ex-

periments were performed on thin-film superconductors. Many models were proposed

how to guide vortices and which geometry of antidots must be used. But all these

models are based on the fact that artificial hole can trap magnetic flux. However no

answer had been given to the general problem - how many vortices can be trapped by

one hole in thin superconducting film. In Chapter 3 the solution to this problem is

shown. We found how many flux quanta can be trapped in thin superconducting ring.

We also compare this result for thin-films with the similar answer obtained for bulk

superconductors.



2. THERMOMAGNETIC INSTABILITIES

2.1 General description of the phenomena

Phenomena that create intriguing traces of activity that can be observed by di-

rect visual methods are among the most fascinating things in nature. Penetration

of magnetic flux in type-II superconductors seen by magneto-optical (MO) imaging is

one example, where spectacular dendritic flux patterns occurs in superconducting films

(Figure 2.1).

The phenomenon has been observed in a large number of materials: YBa2Cu3Ox,

Nb, MgB2, Nb3Sn, NbN, YNi2B2C and Pb [3–9] (all films). All of them show essentially

the same characteristic behavior. In abrupt bursts the film becomes invaded by flux

in narrow finger-like regions that often form a complex and sample-spanning dendritic

structure. These sudden events occur typically during a slow ramping of the applied

magnetic field, and at temperatures below a certain fraction of the superconducting

transition temperature Tc. It is also characteristic that the flux patterns are never

reproduced when experiments are repeated (Figure 2.2), thus ruling out possible expla-

nations based on material defects guiding the flux motion. The massive experimental

data existing today [3–17] indeed suggest that the phenomenon is a generic instability

of the vortex matter in superconducting films. The emerging dendritic patterns are

reminiscent of those formed during the crystal growth [18], viscous fluid flow [19] and

electric discharge [20].

Dendrites can look very fascinating but their appearance in the sample means

thermomagnetic instability . Such instabilities can be the reason for huge magnetic

noises, they reduce the effective critical current density and even can lead to total

malfunction of the superconducting device. Because of these reasons such instabilities
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Fig. 2.1: Various images of dendrites in MgB2. Bright green color corresponds to magnetic

field penetrated into body of superconductor. The dendrites were formed at applied

field 17mT and temperature 9.9K. Pictures are taken from the internet site of Su-

perconductivity Laboratory at the University Oslo (http://www.fys.uio.no/super/).
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Fig. 2.2: (a) Three MO images of flux penetration in MgB2 taken during repeated identical

experiments. (b) Image obtained by adding the 3 complementary colored images

above. In the sum image the grey tone regions are those of repeated behavior,

whereas colors show where there is no or only partial overlap. Strong irrepro-

ducibility is seen in the dendrite shapes, while the penetration near the edge and

along static defects is reproducible. The dendrites tend to nucleate at preferred sites

along the edge, which is due to small edge cavities giving local field amplification.

The experiments were performed after cooling to 9.2 K and applying a magnetic

field of 20 mT.

must be avoided in most superconducting applications.

2.2 Experimental setup

There are many methods to observe magnetic field penetration into superconduc-

tor. However method used in Superconductivity Laboratory at University of Oslo is

one of the most fascinating. Method of Magneto-Optical imaging allows to actually

”see” (with help of microscope or digital camera) how magnetic field distributed in the

superconductor. This method based on well known Faraday effect, i.e., rotation of the

plane of polarized light in the Faraday-active crystal induced by magnetic field. On 13

September, 1845, Michael Faraday wrote in his diary ”...magnetic force and light were

proved to have relation to each other. This fact will most likely prove exceedingly fertile

and of great value in the investigation of both conditions of natural force”. A number

of different materials have been applied as indicators in MO imaging: cerous nitrate-
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glycerol [21], various europium compounds (EuS, EuSe) [22] and bismuth-substituted

iron garnets [23]. Today, the most popular indicator is the ferri-magnetic Bi : Y IG

film with in-plane spontaneous magnetization [24]. Application of a perpendicular

magnetic field creates an out-of-plane component of the magnetization responsible for

the Faraday rotation. A single-crystal film with typical thickness of a few microns can

be grown by liquid-phase epitaxy on a gadolinium-gallium-garnet (GGG) substrate.

The Magneto-Optical indicator (made of Faraday-active crystals) is placed in the light

beam path between a polarizer and an analyzer crossed by 90 degrees. If a magnetic

field is present perpendicularly to the film, the magnetization of the Bi : Y IG will be

tilted out of the plane. The perpendicular component of the magnetization will cause

a Faraday rotation of the light. The rotation angle will be small where the magnetic

field is small, and large in regions of high fields. After leaving the analyzer the light

will therefore have an intensity distribution that reflects the magnitude of the field in

the plane of the indicator film (Figure 2.3).

Using magneto-optical technique one able to see the general picture of flux pen-

etration in the sample with size around several mm. Moreover it is also possible to

visualize single vortices with size of several μm in the flux front (specific samples must

be used for this task). One can even see the Abrikosov lattice formed by these vortices

(Figure 2.4) or how vortices enters the sample and move with increasing magnetic field.

2.3 Model and basic equations

The dendrites is commonly observed at low temperatures in type-II superconductor

films with strong pinning [25–28]. Experimentally dendrites always occurs in thin

films only, however thermomagnetic instability in general can also develop in bulk

superconductors.

Let’s begin with general picture of instability process in superconductor. It is the

nature of superconductor material to totally push magnetic field from its body. Mag-

netic field penetrates the superconductor only in very thin skin layer, the depth of

penetration is commonly designated as λL. However if we apply high enough magnetic



2.3. Model and basic equations 9
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Fig. 2.3: Schematic description of Faraday-active crystal and Magneto-Optical Imaging ex-

perimental setup. Pictures are taken from the internet site of Superconductivity

Laboratory at the University Oslo (http://www.fys.uio.no/super/).
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Fig. 2.4: Magneto-optical images of vortices in a NbSe2 superconducting crystal at 4.3 K

after cooling in magnetic field of 3 and 7 Oe [5].
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field it will begin to further penetrate the superconductor. For type-II superconductors

this leads to destruction of superconducting state in the region where magnetic field

entered the sample. It also should be noted that this penetration process is quan-

tized as was discovered by Abrikosov [29]. The field enters the superconductor in the

form of small vortices each carrying one flux quantum Φ0 = h/2e. These vortices do

not move freely inside the sample because they pinned by microscopic inhomogeneities

which naturally exist in the material or artificially created. In the vortex free region

superconductivity still exists. But application of even higher magnetic field can lead

to depining and motion of vortices. The motion of vortices releases energy, and hence

increases the local temperature. The temperature rise reduces flux pinning, and facil-

itates further vortex motion. As a result it will be more easier for magnetic field to

penetrate the superconductor in the given region, which means more vortex motion and

more heat dissipation. Such positive feedback loop leads to formation of abrupt flux

avalanches [25,27], and consequently to thermal runaways and abrupt field penetration.

However, why such avalanches should develop into dendritic patterns was a topic

under vivid discussion, and several competing theories were proposed. They include

a stability analysis taking into account the complex non-local electrodynamics of thin

film superconductors (Paper 1 and [30]), a boundary layer model assuming shape-

preserving fronts [31], and a shock wave approach [32], all leading to substantially

different predictions. It is shown that the model proposed in this thesis (Paper 1)

provides an excellent quantitative description of key features. One of such features is

the instability threshold field Hfing – the magnetic field when the first avalanche occurs,

within our model we can also predict how Hfing depends on both temperature and the

sample size.

The first theories [25,26] which were developed for description of avalanche processes

could only explain ”uniform flux jumps”. The uniform instability starts simultaneously

in a large area near edge of the sample and then one enormous ”uniform flux jump”

occurs containing several thousands of vortices with smooth and essentially straight flux

front. This picture was observed experimentally in a bulk superconductors. However

for certain conditions the instability can develop much more differently. Numerous



12 2. Thermomagnetic instabilities

experiments [3–15,33,34] confirms that magnetic field can penetrate the superconductor

in the form heavily branched ”dendritic” patterns.

The pattern of each dendritic instability can differ much from each other depend-

ing on the material and quality of the sample (and substrate) and parameters of the

system (temperature, applied electromagnetic fields and so on). It was already stated

(Figure 2.2) that even with the same parameters process of dendrites formation can be

completely random. It is very hard to describe the development of such process but

is possible to find conditions for its initial start. The model presented here describes

initial conditions for thermomagnetic instability.

Initially the problem of flux pattern was examined in the slab geometry [35]. Ex-

perimentally, however, the dendritic flux patterns are mostly observed in thin film

superconductors placed in a perpendicular magnetic field. A first analysis of this per-

pendicular geometry was published by Aranson et al. [30]. In this chapter we present

more exact and complete picture of the dendritic instability and analyze the criteria of

its realization.

In the following we restrict ourselves to a conventional linear analysis [25,26,36] of

the instability and consider the space-time development temperature T . In contrast to

the slab case [35], the heat transfer from the superconductor to a substrate as well as

the nonlocal electrodynamics in thin films are taken into account. Consequently, the

results depend significantly on the heat transfer rate h0, as well as on the film thickness

d. Our main result is that the instability in the form of narrow fingers perpendicular

to the background field E occurs much easier in thin films than in slabs and bulk

samples, and the corresponding threshold field Ec is found to be proportional to the

film thickness d.

Consider the perpendicular geometry shown in Figure 2.5, with a thin supercon-

ducting strip placed in a transverse magnetic field, H. The strip is infinite along the

y axis, and occupies the space from 0 to d in the z-direction and from 0 to 2w in the

x-direction. It is assumed that d � w. In the unperturbed state the screening current

flows along the y-axis.

The distributions of the current density j and magnetic induction B in the flux
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Fig. 2.5: A superconductor strip on a substrate. The dark gray area is the flux-penetrated

region.

penetrated region 0 < x < � are determined by the Maxwell equation

curl B = μ0j , (2.1)

where the common approximation B = μ0H is used. To find the electric field and the

temperature we use another Maxwell equation together with the equation for thermal

diffusion,

curl E = −∂B/∂t , (2.2)

C(∂T/∂t) = κ∇2T + jE . (2.3)

Here C and κ are the specific heat and thermal conductivity, respectively.

Equations (2.1)-(2.3) should be supplemented by a current-voltage relation j =

j(E, B, T ). For simplicity we assume a current-voltage curve of the form

j = jc(T )g(E) (E/E) . (2.4)

A strong nonlinearity of the function g(E) leads to formation of a quasi-static critical

state with j ≈ jc(T ), where jc is the critical current density [37]. We neglect any B-

dependence of jc, i. e., adopt the Bean model. The exact form of g(E) is not crucially

important, the only issue is that it represents a very steep E(j) curve having a large

logarithmic derivative,

n(E) ≡ ∂ ln E/∂ ln j ≈ jc/σE � 1 . (2.5)
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Here σ is the differential electrical conductivity, σ(E) ≡ ∂j/∂E. The parameter n

generalizes the exponent in the frequently used power-law relation E ∝ jn with n

independent of E.

The key dimensionless parameter of the model is the ratio of thermal and magnetic

diffusion coefficients [25]:

τ ≡ μ0κσ/C . (2.6)

The smaller τ is, the slower heat diffuses from the perturbation region into the sur-

rounding areas. Hence, one can expect that for smaller τ : (i) the superconductor is

more unstable, and (ii) the formation of instability-induced nonuniform structures is

more favorable.

In the following we assume that the strip is thinner than the London penetration

depth, λL, and at the same time much wider than the effective penetration length,

λeff = λ2
L/d,

d ≤ λL �
√

dw .

The stationary current and field distributions in a thin strip under such conditions

were calculated by several authors [38–40], finding that the flux penetration depth � is

related to the applied field by the expression

� / w = π2H2/2d2j2
c (2.7)

Here it is assumed that the penetration is shallow, or more precisely that λeff � � � w.

2.4 Perturbation analysis

We seek solutions of equations (2.1)-(2.4) in the form

T + δT (x, y, z, t), E + δE(x, y, z, t), j + δj(x, y, z, t)

where T , E and j are background values. The background electric field may be cre-

ated, e.g., by ramping the external magnetic field, and for simplicity we assume it to be

coordinate independent. Allowing for such a dependence would only lead to insignifi-

cant numerical corrections, as discussed in [35]. Similarly, we will assume a uniform

background temperature.
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Whereas it follows from symmetry considerations that Ex = 0, both components of

the perturbation δE will in general not vanish. Linearizing the current-voltage relation,

Eq. (2.4) one obtains:

δj =

(
∂jc

∂T
δT + σ δEy

)
E

E
+ jc

δEx

E
. (2.8)

We shall seek perturbations in the form

δT = T ∗θ exp(λt/t0 + ikxξ + ikyη) ,

δEx,y = Eεx,y exp(λt/t0 + ikxξ + ikyη) , (2.9)

δjx,y = jcix,y exp(λt/t0 + ikxξ + ikyη) ,

where θ, ε and i are z-dependent dimensionless Fourier amplitudes. The coordinates

are normalized to the adiabatic length a =
√

CT ∗/μ0j2
c , where T ∗ = −(∂ ln jc/∂T )−1 is

the characteristic scale of the temperature dependence of jc, so that ξ = x/a, η = y/a,

ζ = z/a. The time is normalized to t0 = σCT ∗/j2
c = μ0σa2, which is the magnetic

diffusion time for the length a. Re λ is the dimensionless instability increment, which

when positive indicates exponential growth of the perturbation.

We can now use the formulas (2.9) to rewrite the basic equations in dimension-

less variables. From Eq. (2.8) one finds for the components of the current density

perturbation i,

ix = εx , iy = −θ + n−1εy . (2.10)

Combining the Maxwell equations (2.1) and (2.2), and the thermal diffusion equation

(2.3) yields

k × [k × ε] = λn i , (2.11)

λθ = τ

(
−k2

yθ +
∂2θ

∂ζ2

)
+ (iy + εy)/n . (2.12)

In components, equation (2.11) reads as

iky

(
∂εy

∂ξ
− ikyεx

)
− ∂2εx

∂ζ2
= −λnεx , (2.13)

∂

∂ξ

(
∂εy

∂ξ
− ikyεx

)
+

∂2εy

∂ζ2
= λnf(λ, ky)εy , (2.14)

∂

∂ζ

(
∂εx

∂ξ
+ ikyεy

)
= 0 . (2.15)
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Magneto-optical imaging shows that flux patterns produced by the dendritic insta-

bility [3–15,33,34] are characterized by having ky � kx. Therefore, we have neglected

the heat flow along x direction compared to that along the y direction. Later we will

check the consistency of this assumption by showing that indeed the fastest growing

perturbation has ky � kx.

2.5 Boundary conditions

We assume that heat exchange between the superconducting film and its environ-

ment follows the Newton cooling law. For simplicity we let the boundary condition,

κ∇(T +δT ) = −h0(T +δT −T0), apply to both film surfaces. Here T0 and h0 are the ef-

fective environment temperature and heat transfer coefficient, respectively. Eqs. (2.10)

and (2.12) can now be integrated over the film thickness to yield:

θ =
(1 + n−1)εy

nλ + nτ(k2
y + h) + 1

, (2.16)

where

h = 2h0a
2/κd . (2.17)

In the remaining part of the paper we let θ, ε and i denote perturbations averaged over

the film thickness.

We seek a solution of the electrodynamic equations in the flux penetrated region,

0 ≤ ξ ≤ �/a. At the film edge, ξ = 0, one has δjx = 0 and, consequently, δEx = 0.

In the Meissner state both the electric field and heat dissipation are absent, so that

δEy = δT = δjy = 0 at the flux front, ξ = �/a. Thus, the Fourier expansions for the x

and y components of electric field perturbation will contain only sin(kxξ) and cos(kxξ),

respectively. Then the boundary conditions are satisfied for

kx = (πa/2�) (2s + 1) , s = 0, 1, 2, . . . .

Since � depends on magnetic field, the values of kx are also magnetic field dependent.

Now we can integrate Eq. (2.11) over the film thickness and employ the symmetry
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of the electrodynamic problem with respect to the plane z = d/2. It yields

−iky(kxεy + ikyεx) − 2a

d
ε′x = −λnεx,

−kx(kxεy + ikyεx) +
2a

d
ε′y = −λnf(λ, ky)εy . (2.18)

We have here introduced the function

f(λ, ky) ≡ iy
εy

1

n
− 1 + n−1

nλ + nτ(k2
y + h) + 1

.

Note that the equation for the z-component of the field is satisfied automatically. The

derivatives ε′x,y with respect to ζ are taken at the film surface, ζ = d/2a. To calculate

them, one needs the electric field distribution outside the superconductor, where the

flux density is given by the Bio-Savart law,

B(r) = μ0H +
μ0

4π

∫
d3r′

j × (r − r′)
|r − r′|3 .

The perturbation of flux density is then,

δBx,y = ±μ0ζd

∫ �/a

0

dξ′
∫ ∞

−∞
dη′G(ξ − ξ′, η − η′)δjy,x,

G(ξ, η) =
1

4π (ξ2 + η2 + (d/2a)2)3/2
.

Here we have approximated the average over ζ ′ substituting ζ ′ = 0. In this way we

omit only terms of the order of (d/a)2 � 1. The integration over ξ′ should, in principle,

cover also the Meissner region, ξ′ > l/a. Though the flux density there remains zero

during the development of perturbation, the Meissner current will be perturbed due

to the nonlocal current-field relation. However the kernel G(ξ, η) decays very fast at

distances larger than d/a and therefore the Meissner current perturbation produces

only insignificant numerical corrections.

The perturbation of magnetic field can be related to that of electrical field by

Eq. (2.2), which can be rewritten as

δE′
x,y/E = ∓λn δBy,x/μ0ajc . (2.19)

Due to continuity of the magnetic field tangential components Eq. (2.19) is also valid

at the film surface, ζ = d/2a. Thus it can be substituted into Eq. (2.18). The Fourier
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components of the kernel function G(ξ, η) with respect to η can be calculated directly

yielding

G(ξ, ky) =
kya

2π�
·
K1

(
ky

√
ξ2 + (d/2a)2

)
√

ξ2 + (d/2a)2
(2.20)

where K1 is the modified Bessel function of the second kind.

The above Fourier expansions in cos(kxξ) and sin(kxξ) correspond to the finite

interval −2�/a < ξ < 2�/a. Therefore we should continue εx,y from 0 < ξ < �/a to

this interval and then introduce Gx and Gy as analytical continuations of G(ξ − ξ′, ky)

having the same symmetry as εx and εy, respectively (see Appendix A for details). All

this allows us to rewrite the set (2.18) as

−ikxkyεy + (k2
y + λn)εx

= (d/2a)λn
∑
k′

x

Gx(kx, k
′
x, ky)εx(k

′
x) , (2.21)

(k2
x + λnf)εy + ikxkyεx

= (d/2a)λnf
∑
k′

x

Gy(kx, k
′
x, ky)εy(k

′
x) , (2.22)⎧⎨⎩ Gx(kx, k

′
x, ky)

Gy(kx, k
′
x, ky)

⎫⎬⎭ = 4

∫ �/a

0

dξ

∫ �/a

0

dξ′G(ξ − ξ′, ky)

×
⎧⎨⎩ sin(kxξ) sin(k′

xξ
′)

cos(kxξ) cos(k′
xξ

′)

⎫⎬⎭ . (2.23)

We are interested only in the specific case of very thin strip,

α = d/2� � 1 . (2.24)

One can then find analytical expressions for the kernel, and it turns out that only

its diagonal part, kx = k′
x, is important. In this manuscript we present analytical

expressions up to the first order in α, while the plots are calculated up to the second

order. The second-order analytical expressions along with detailed description of kernel

G (2.23) are shown in Appendix A. The kernel (2.23) can be written as

Gx,y(kx, kx, ky) =
a

�

[
1 − γ(α, kx)α

α

]
, (2.25)
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where γ(α, kx) is a dimensionless function. In what follows we shall consider only the

main instability mode, kx = πa/2�, which turns out always to be the most unstable

one. For this mode, and in the limit α → 0, the function γ(α, kx) approaches a constant

value ≈ 5.

Substituting the above expression for G into Equations (2.21) and (2.22) one obtains

the dispersion relation for λ(kx, ky):

A1λ
2 + A2λ + A3 = 0 . (2.26)

Here

A1 = nγα , A2 = k2
y(1 + τA1) + nk2

x + A1(hτ − 1) ,

A3 = k4
yτ + nk2

xk
2
yτ + nk2

x(hτ + 1/n) + k2
y(hτ − 1).

2.6 Threshold values of electric and magnetic fields

Let us first consider the simple case of a uniform perturbation, ky = 0. One finds

from Eq. (2.26) that the perturbation will grow (Re λ > 0) if

hτ < 1 − k2
x/γα . (2.27)

When the flux penetration region, �, is small, i. e., kx is large, the system is stable. As

the flux advances, kx decreases, and the system can eventually become unstable. The

instability will take place, however, only if hτ < 1. Otherwise the superconducting

strip of any width will remain stable no matter how large magnetic field is applied.

This size-independent stability means that at hτ ≥ 1 the heat dissipation due to flux

motion is slower than heat removal into the substrate.

Equation (2.27) further simplifies in the adiabatic limit, τ → 0, when the heat

production is much faster than heat diffusion within the film or into the substrate.

The instability then develops at k2
x/(γα) < 1, which in dimensional variables reads as

μ0j
2
c ld > CT ∗(π2/2γ). Assuming small penetration depth, l � w, and using Eq. (2.7)

this criterion can be rewritten as H > Hadiab, with the adiabatic instability field,

Hadiab =

√
d

w

CT ∗

γμ0

∼
√

d

w
Hslab

adiab . (2.28)
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Fig. 2.6: Solutions of dispersion equation (2.26) for small and large τ , for α = 0.001 and

n=20.
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dy

Fig. 2.7: Evolution of the temperature and flux density distributions (white color) produced

by simulations. The instability is triggered by applying a magnetic field [42].

Here Hslab
adiab is the adiabatic instability field for the slab geometry [25–28, 36]. This

result coincides up to a numerical factor with the adiabatic instability field for a thin

strip found recently in Ref. [41].

Solutions of Eq. (2.26) for perturbations with arbitrary ky are presented in Fig-

ure 2.6. The upper panel shows Re λ(ky) curves for τ = 0.01 and different values of kx.

For large kx, i. e., small magnetic field, Re λ is negative for all ky. It means that the

superconductor is stable. However, at small kx, the increment Re λ becomes positive

in some finite range of ky. Hence, some perturbations with a spatial structure will

start growing. They will have the form of fingers of elevated T and E directed per-

pendicularly to the flux front. We will call this situation the fingering (or dendritic)

instability.

Simulations (Figure 2.7) showing step-by-step development of fingering instability

was obtained by my co-authors in their early work [42]. It is seen how magnetic field

starts to penetrate superconductor with smooth front, but then some fingers begin to

form. Eventually dendrites develop from these initial fingers.

For large τ an instability also develops at small kx, however in a different manner, see

Figure 2.6 (lower panel). Here the maximal Re λ always corresponds to ky = 0. Hence,

the uniform perturbation will be dominant. The uniform growth of perturbations for
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Fig. 2.8: Dependencies of k∗
y and k∗

x on h for n=20, τ = 0.01, α = 0.001 according to

Eq. (2.29).

large τ has been recently predicted in [30, 35] and explained by the prevailing role of

heat diffusion.

Let us now find the critical k∗
y and k∗

x for the fingering instability, see Figure 2.6

(upper panel). The k∗
x determines the applied magnetic field when the instability first

takes place, while k∗
y determines its spatial scale. These quantities can be found from

the requirement max{Re λ(ky)} = 0 for ky �= 0. In the limit α � 1 we can put A1 = 0

in Eq. (2.26) and then rewrite it in the form

λ = −(k2
y + h)τ +

(k2
y − k2

x)

k2
y + nk2

x

.

From this expression we obtain

k∗
x =

(√
n + 1 −

√
nhτ

)
/n

√
τ , (2.29)

k∗
y =

[√
nhτ + 1

(√
n + 1 −√

nhτ + 1
)]1/2

/
√

nτ .

The dependencies of k∗
x, k∗

y on the heat transfer coefficient h are shown in Figure 2.8.

One can see that k∗
y is always larger than k∗

x implying that fingers of elevated T and

E are extended in the direction normal to the film edge. For h � 1/τ and n � 1

we find k∗
y ≈ n1/4k∗

x � k∗
x ≈ 1/

√
nτ . Both k∗

x and k∗
y tend to zero as h → 1/τ , while

for larger h the system is always stable due to fast heat removal to the substrate. It
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Fig. 2.9: Stability diagram in the plane electric field – heat transfer coefficient according to

equation (2.31) and condition 1 − hτ > 0 for n = 30 and α = 0.001.

follows from Figure 2.6 that for large enough τ the instability will develop uniformly,

while for small τ it will acquire a spatially-nonuniform structure. Let us find now

the critical value τc that separates these two regimes. It can be obtained from the

equality Re λ(kx = k∗
x, ky = 0) = 0. When it is fulfilled Re λ = 0 both for ky = 0

and for ky = k∗
y �= 0. We find using Eq. (2.26) that the instability will evolve in a

spatially-nonuniform way if

τ < τc =
(
1 − k∗2

x /γα
)
/h . (2.30)

Substituting here α and k∗
x we find a transcendental relation between τc and h. For

n � 1 it reduces to
√

nτc

(
1 +

√
hτc

)
= πa/γd . (2.31)

Using this result we can construct a stability diagram in the E − h0 plane shown in

Figure 2.9. The curved line marks the critical electric field Ec(h0) that separates two

types of instability: fingering (E > Ec) and uniform (E < Ec). This line is calculated

from Eq. (2.31), where the electric field is expressed via τ as E = jcμ0κ/nCτ according

to equations (2.5) and (2.6). The straight line is given by the condition hτ = 1.

Below this line the superconductor is always stable, as follows from Eq. (2.27) for the

uniform perturbations, and from Eq. (2.29) for the nonuniform case. At a certain value
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Fig. 2.10: Stability diagram in the H-E plane according to Eq. (2.27) and Eq. (2.29).

h0 = hcrit, the two lines intercept. We find

hcrit =
2γ2μ2

0j
4
c d

3κn

π2T ∗2C2
, (2.32)

and the critical electric field Ec for h0 = 0 is

Ec(0) =
γ2μ2

0κj3
c

π2C2T ∗ d2 , (2.33)

while Ec(hcrit) = 4Ec(0).

For any point (h0,E) belonging to the stable phase in the stability diagram, Fig-

ure 2.9, the flux distribution is stable for any applied magnetic field. For the points

belonging to unstable phases, the instability develops above some threshold magnetic

field, either Hfing(h0, E) or Huni(h0, E) for fingering or uniform instability, respectively.

Shown in Fig. 2.10 are three sets of Hfing(E) and Huni(E) curves for different values

of h0. They represent boundaries between the three phases, stable and unstable with

respect to either fingering or uniform instability, as shown in the inset. Using Eq. (2.7)

one can rewrite the expression Eq. (2.27) for Huni as

Huni = Hadiab

(
1 − 2T ∗h0

nd jcE

)−1/2

. (2.34)

In the absence of heat removal to the substrate, h0 = 0, we obtain the adiabatic

instability field, Eq. (2.28), and the Huni(E) curve becomes a horizontal line.
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Strictly speaking Huni should increase at very small E the same way it does in

bulk superconductors [25, 35]. This behavior is not reproduced in our model since we

neglected the heat flow in the x direction. This flow becomes important only in the

limiting case h0 → 0. In practice, the heat removal from a thin film to the substrate

usually dominates the lateral heat diffusion in the film.

The threshold magnetic field for the fingering instability Hfing is calculated from

Eq. (2.29). A simplified expression obtained for h � 1/τ and n � 1,

Hfing =

(
jcd

2

πw

√
κT ∗jc

E

)1/2

, (2.35)

shows that at large electric fields Hfing decays as E−1/4. At h0 ≤ hcrit the curves

Hfing(E) and Huni(E) intercept at the critical electric field Ec determined by Eq. (2.30).

At h0 ≥ hcrit we have Hfing(E) < Huni(E) for any E, so the lines do not intercept and

the instability will develop into a fingering pattern.

2.7 Comparison with experiment

Let us compare the present results for a thin film in a perpendicular magnetic field

with results of [35] for a bulk superconductor. In both cases the instability develops

into a fingering pattern if the background electric field in the superconductor exceeds

some critical value Ec. The values of Ec are however different. Their ratio for a thin

strip and a slab,
Ec(0)

Eslab
c

=
γ2

π2

d2j2
c μ0

CT ∗ , (2.36)

is expected to be much less than unity. For jc = 1010 A/m2, C = 103 J/Km3, κ =

10−2 W/Km, T ∗ = 10 K and d = 0.3 μm, we find from Eq. (2.33) that Ec ≈ 4 ·
10−4 V/m, while according to [35], Eslab

c = 0.1 V/m. Consequently, the development

of thermomagnetic instability into a fingering pattern is much more probable in thin

films than in bulk superconductors.

The threshold magnetic field for the fingering instability Hfing is also much smaller

for thin films. Comparing Eq. (2.35) with the results for a slab [35] we find

Hfing

Hslab
inst

=

√
2

π

d√
wl∗

. (2.37)



26 2. Thermomagnetic instabilities

Here l∗ = (π/2)
√

κT ∗/jcE is the flux penetration depth at the threshold of the fingering

instability, H = Hfing. Experimentally, the fingering instability always starts after the

flux has penetrated a noticeable distance from the edges, such that l∗ � d [3–15,33,34].

Hence, for a thin film the fingering instability should start at much smaller applied fields

than in bulk samples (by a factor of ∼ 103 for films with d ∼ 10−4w). The difference

between the threshold fields for the two geometries here is even stronger than for

the case of uniform instability in the adiabatic limit, see Eq. (2.28). Assuming the

above values of parameters and w = 2 mm we find from Eq. (2.35) that Hfing[Ec(0)] =

Hadiab ≈ 1 mT. This value becomes larger if we take into account the heat transfer to the

substrate. It is therefore in excellent agreement with experiment, [4, 6–8, 10, 12, 14, 41]

where the threshold field is typically of the order of a few milliTesla.

The spatial structure of the instability predicted by our linear analysis is a periodic

array of fingers perpendicular to the film edge. Its period can be estimated from

Eq. (2.29). For E = Ec, h = 0 and n � 1 one finds

dy =
π2CT ∗

2γn1/4μ0j2
c d

, (2.38)

which yields dy ≈ 100 μm for n = 30. Numerical analysis of the instability development

shows [30,35] that beyond the linear regime the periodic structure is destroyed and only

one (strongest) finger invades the Meissner region. This scenario is indeed reproduced

experimentally, and the observed width of individual fingers, 20-50 μm, [3–5,14] is very

close to our estimate, dy/2.

The finger width and the threshold magnetic field also depend on the dimensionless

parameter h characterizing the thermal coupling to the substrate, Eq. (2.17). In turn,

h, grows rapidly with temperature because of a strong T dependence of C and jc. One

can therefore make several testable predictions from the dependencies k∗
x(h) and k∗

y(h)

shown in Figure 2.8: (i) There must be a threshold temperature Tth above which the

instability is not observed. (ii) When approaching Tth, the instability field diverges

since k∗
x → 0. (iii) When approaching Tth the characteristic width of individual fingers

increases since k∗
y → 0. All these predictions will be proven in later sections of the this

Chapter when we introduce temperature dependencies into our equations. The last

prediction has also been obtained in the boundary layer model allowing calculation of
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the exact finger shape [31]. The first and the second predictions have already been

confirmed experimentally [5, 12]. There is a solid experimental evidence [4, 5, 7, 12] for

an enhanced degree of branching as T → Tth that can be quantitatively described as a

larger fractal dimension of the flux pattern [7]. This abundant branching could be an

indirect consequence of the increased finger width since wider fingers are presumably

more likely to undergo splitting.

The present problem of fingering instability in a thin film has two new features

compared to a similar problem for a bulk superconductor, (i) nonlocal electrodynamics

and (ii) thermal coupling to the substrate. The nonlocality results in much smaller

values of the threshold magnetic field Hfing and the critical electric field Ec in films

than in bulks. If a film is made thinner, it becomes even more unstable since Hfing ∝ d,

and has a stronger tendency to form a fingering pattern since Ec(0) ∝ d2. The thermal

coupling to the substrate has a somewhat opposite effect. It can lead to an ultimate

stability if h > 1/τ – a situation that is never realized in bulks. A moderate coupling,

h � 1/τ , slightly renormalizes Hfing and Ec, i.e. makes the film a little bit more stable

and less inclined to fingering.

Let us now compare the results presented in this work to those obtained in a

similar model by Aranson et al [30]. Our expressions for the “fingering” threshold

field , Eq. (2.35), and for the finger width, Eq. (2.38), agree with their results up to

a numerical factor. For τ � 1 our results for the “uniform” threshold field (derived

from Eq. (2.27)) are also similar to results of [30]. As a new result, we find that

there exists a critical value of the parameter τ , Eq. (2.30), which controls whether the

instability evolves either in the uniform, or in the fingering way. Shown in Figure 2.9 is

the stability diagram where the line Ec(h0) separates regimes of fingering and uniform

instability. Other new results of this paper are: (i) the existence of a field-independent

“critical point”, hcrit, such that for h0 > hcrit the instability always develops into a

fingering pattern, and (ii) the full stability diagram in the H-E plane, Figure 2.10,

containing all three phases.

The background electric field needed to nucleate the fingering instability can be

induced by ramping the magnetic field, E ∼ Ḣl ∝ ḢH2 for l � w, where Ḣ is the
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ramp rate. This is the lowest estimate since the flux penetration in practice is strongly

nonuniform in space and in time, [43] and there can be additional sources of E due to

random fluctuations of superconducting parameters. The occurrence of the fingering

instability even at rather low ramp rates [4,6–10,12,14,33] is therefore not surprising.

The build-up time of the instability can be estimated as t0 ≈ 0.1μs if the flux-flow

conductivity σ = 109 Ω−1m−1. Our linear analysis assumes that the perturbations of

T and E grow in amplitude, but remain localized within the initial flux penetrated

region. Numerical results show [30,35] that at t � t0 the perturbations also propagate

into the Meissner region. This propagation can be described by recent models [32, 44]

that predict a characteristic propagation speed in agreement with experimental values

of 10-100 km/s [3, 11].

2.8 Specific experiments on thin-films

To further check the validity of purposed model several experiments were specifically

designed. Thin films of MgB2 were fabricated by a two step process [45], where first a

film of amorphous boron was deposited on an Al2O3 (11̄02) substrate using a pulsed

laser. The B film and high-purity Mg were then put into a Nb tube, which was sealed

in a high purity Ar atmosphere and post-annealed at 900◦C. To eliminate possible

contamination with oxygen, water, and carbon, the samples were not exposed to air

until the final form of the film was produced. The MgB2 films possess c-axis orientation,

as confirmed by scanning electron microscopy, and magnetization data show a sharp

superconducting transition at 39 K. The film thickness was 300 nm.

A set of eight MgB2 film samples was shaped by photo-lithography into 3 mm long

rectangles having different widths ranging from 0.2 mm to 1.6 mm. All the samples

were made from the same mother film, allowing simultaneous and comparative space-

resolved magnetic observation. An additional 5 mm wide sample was made using the

same preparation conditions. A standard MO imaging setup with crossed polarizers

and a ferrite garnet indicator was used to visualize flux distributions.

In principle, having several superconducting samples next to each other leads to
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crosstalk, i.e., field expelled by one enhances the field experienced by another. This is

a price to pay for being able to make direct comparative observations. Our distance

between the strips was sufficiently large, as clearly seen from Figure 2.11 where flux

penetrates each strip equally from both sides. Had crosstalk been important, substan-

tial asymmetry would be visible, especially in the upper sample having a neighbor only

on one side.

Shown in Figure 2.11 is the flux penetration pattern when the eight samples, initially

zero-field-cooled to 4 K, were exposed to a perpendicular applied magnetic field slowly

ramped to 15 mT. The magnetic flux enters the superconductor in a form very much

dominated by abrupt dendritic avalanches, although quite differently for the various

samples. It is evident that the number of dendrites, their size and branching habit

depend strongly on the sample width. Whereas the wide strips become densely filled

with flux dendrites, the more narrow samples contain fewer, until at the 0.2 mm wide

strip flux dendrites almost never appear.

This qualitative result, was followed up by measuring how the instability threshold

field Hfing depends on the strip width. Results obtained for all eight strips are shown in

Figure 2.12, where each data point represents an average over 4 repeated experiments

using identical external conditions. The error bars indicate the scatter in the observed

Hfing. A variation as much as 30% implies that the nucleation of this instability is

strongly affected by random processes, which is also consistent with earlier experi-

ments [4, 5, 7, 8, 10, 12]. Nevertheless, the data in Figure 2.12 show a clear increase in

the threshold field as the strip becomes narrower. In other words, reducing the sample

width increases the stability of the superconductor.

Measurements of the temperature dependence of Hfing are shown in Figure 2.13.

One sees that Hfing not only increases with temperature, but appears to diverge at a

certain temperature. Above this threshold temperature, Tth, found to be close to 10

K for MgB2 films, the dendritic instability disappears entirely. Included in the figure

are also data we have extracted from a previous MO investigation of dendritic flux

penetration in Nb films [12]. The two behaviors show remarkable similarities, although

with different threshold temperatures, approximately 6 K in the Nb case.
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1.6 mm

0.2 mm

Fig. 2.11: MO image showing flux distribution in MgB2 strip-shaped samples at 4 K and

15 mT applied field. The image brightness represents the local flux density. Both

the number and size of the dendrites are larger for the wider samples.



2.9. Temperature dependencies 31

0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

T
hr

es
ho

ld
 fi

el
d,

 μ
0H

fin
g 

(m
T

)

Film halfwidth, w (mm)

no dendrites

 dendritic 
instability

82 μm

Fig. 2.12: Threshold magnetic field for onset of the dendritic instability in MgB2 strips of

different width (symbols) plotted together with a fitted theoretical curve (full line),

which diverges at a finite w indicated by the dashed asymptote.

2.9 Temperature dependencies

To explain these observations we further develop the model of thermomagnetic

instabilities (Paper 1). The threshold flux penetration depth, �∗, when the supercon-

ducting strip first becomes unstable, is given by Eq.(2.29), which can be expressed

as

�∗ =
π

2

√
κ

|j′c|E

(
1 −

√
2h0

nd|j′c|E

)−1

. (2.39)

Here we used equations (2.5), (2.6) and relation � = π/2kx. We also introduced here

j′c as the temperature derivative of the critical current density. Approximation n �
1 was used which characterizes the strongly nonlinear current-voltage curve of the

superconductor, described by the commonly used relation for the electrical field, E ∝
jn.

To obtain more accurate results we replace equation (2.7) with exact expression for

the flux penetration depth of a long thin strip in a perpendicular applied field [39,40]:

� =

(
1 − 1

cosh(πH/jc)

)
w (2.40)

By combing equations (2.39) and (2.40) we obtain the threshold field, Hfing:
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Fig. 2.13: Temperature dependence of the threshold magnetic field. Experimental data ob-

tained for the 5 mm wide MgB2 sample and for a 1.8 mm wide Nb film [12] are

plotted as • and �, respectively. The full lines are theoretical fits. The dashed

lines show the limiting temperature above which the instability vanishes.

Hfing =
jcd

π
arccosh

(
w

w − �∗

)
. (2.41)

Plotted in Figure 2.12 as a solid line is function (2.41) using jc = 9× 1010 A/m2, a

value obtained for MgB2 at 4 K by extrapolation of jc(T )-curves measured under the

stable conditions above Tth. The only adjustable parameter, �∗, was chosen equal to

82 μm, which gives an excellent agreement with our data. It follows from Eq. (2.41)

that narrower strips need a larger field to reach the critical penetration depth �∗,

which is exactly what we find experimentally. Furthermore, the model predicts that

Hfing should diverge when the strip halfwidth decreases towards w = �∗, also this fully

consistent with our MO observations.

To fit the data observed on Figure 2.13 Hfing(T ) one needs temperature dependent

model parameters. We assume then a cubic dependence of the thermal conductivity,

κ = κ̃ (T/Tc)
3, as suggested by low-temperature data for MgB2 [46]. Similarly, a cubic

dependence of the heat transfer coefficient, h0 = h̃0 (T/Tc)
3 is chosen in accordance

with the acoustic mismatch model confirmed experimentally for many solid-solid in-

terfaces [47]. Furthermore, we assume a linear temperature dependence for the critical
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current density, jc = jc0(1 − T/Tc), and with a pinning potential, U ∝ 1 − T/Tc, the

exponent n ∼ U/kT also becomes T -dependent, n = ñ (Tc/T − 1):

κ = κ̃ (T/Tc)
3 ,

h0 = h̃0 (T/Tc)
3 , (2.42)

jc = jc0(1 − T/Tc),

n = ñ (Tc/T − 1)

Combining all these temperature dependencies into equation (2.41), one obtains

a theoretical Hfing(T ), and such curves fitted to experimental data for MgB2 and Nb

films [12] are shown in Figure 2.13. MgB2 data are presented for the largest (5 mm wide)

film since here the instability is observed in the broadest temperature range. The model

clearly reproduces the two key features; (i) the existence of a threshold temperature

Tth above which the instability is absent, and (ii) a steep increase of the threshold field

Hfing when T approaches Tth. For MgB2 the fit was made with jc0 = 1011 A/m2, and

κ̃ = 160 W/Km [46], and choosing ñ = 10 corresponding at T = 10 K to the commonly

used n = 30. The remaining parameters are the electric field and the heat transfer

coefficient, where best fit was obtained with E = 30 mV/m and h̃0 = 17 kW/Km2. It

should be emphasized that the experimental data for both Hfing(w) and Hfing(T ) were

fitted using the same parameter values, and in both cases giving excellent quantitative

agreement. Figure 2.13 also shows a similar fit for the data obtained for Nb, using

Tc = 9.2 K, jc0 = 1011 A/m2, w = 0.9 mm, d = 0.5 μm, [12] κ̃ = 120 W/Km, [48]

ñ = 40, E = 200 mV/m and h̃0 = 36 kW/Km2. Again the model excellently describes

the experimental behavior.

The fitted electric fields represent upper limiting values, since we used bulk values

for thermal conductivity, which in general are larger than for films. Nevertheless, both

values largely exceed the estimate, E ∼ Ḣ�∗, expected for a uniform and gradual flux

penetration with a ramp rate of Ḣ ≈ 1 mT/s as used in the experiments. We believe

this discrepancy is due to the fact that local, rather than global, conditions govern

the onset of the instability. Assuming that the flux dendrites are nucleated by abrupt

microscopic avalanches of vortices [43], local short-lived electric fields can easily reach
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Fig. 2.14: Theoretical stability diagram predicting the threshold temperature Tth for different

film width. The curve is plotted for parameter values corresponding to MgB2 films.

those high values. In fact, such avalanches consisting of 102 − 104 vortices occurring in

an area of ∼ 20 μm were recently observed by high-resolution MO imaging in MgB2

films [41]. Electric fields close to 30 mV/m would be created if such avalanches occur

during a time span of the order of 10−5 seconds. Randomness in such avalanches

may also explain the large scatter of the observed Hfing values. We also note that the

estimated electric field at the nucleation stage is still much lower than E values at the

tip of an already propagating dendrite [44]. This fact is in agreement with expectations.

Finally, we emphasize that the two functions Hfing(w) and Hfing(T ) have a similar

feature, namely a divergence at some value of the argument beyond which the system

becomes stable, see Figure 2.12 and Figure 2.13. These stability thresholds are actually

related to each other by the condition �∗(Tth) = w. The relation between the threshold

temperature and the strip width is shown in Figure 2.14, and represents the stability

diagram in w − T coordinates, here plotted for parameters valid for MgB2. It follows

from the model that the temperature range of the instability increases monotonously

with the strip width, but is limited upwards by a temperature close to 10 K for large-size

films, as confirmed by many previous experiments [5, 10, 14–16]. More over instability

at the given temperature may be suppressed by making samples narrow enough. For

example for MgB2 at temperatures around 4 K the width of the sample must be around
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Fig. 2.15: Dependence of the dendrite width (2.43) on the background temperature.

150 μm or less to completely suppress thermomagnetic instabilities (Figure 2.14).

Another interesting result can be obtained if we substitute all temperature depen-

dencies in the expression (2.30) for ky as we did this for kx (2.29). ky corresponds to

the width of the dendrite in the same way as kx corresponds to penetration depth �:

dy =
π

2

a
√

nτ

(
√

nhτ + 1(
√

n + 1 −√
nhτ + 1))1/2

(2.43)

To be more precise dy corresponds to the dendrite’s halfwidth as was initially shown

with help of equation (2.38). Substituting into (2.43) equations (2.5), (2.6) along

with temperature dependencies (2.42) we can show the growth of dendrite width with

temperature (Figure 2.15).

Due to its complexity the formula corresponding to curve on Figure 2.15 is not

shown. However it is seen that with increasing background temperature dendrite’s

size also increases. The largest dendrites will be for temperature around 10K, but

experimentally it will be nearly impossible to observe because threshold magnetic field

needed to achieve such instability tends to infinity. Divergence of the dy curve near

threshold temperature also suggest that development of narrow finger-like instability

is not favorable in such conditions.

It is also interesting to analyze changing of dendrites properties with decreasing film

thickness (as thinner samples more unstable). We again substitute all dependencies
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Fig. 2.16: Dependence of the dendrite width (2.43) on film thickness.

into formula (2.43), but this time we plot graph for dy depending on thickness d (see

Figure 2.16).

It is seen that for the samples with thickness larger than 50μm dendrite width

changes very slightly and tends to saturation. For very thin film (d < 100nm) there is

the divergence of the same nature as seen on Figures 2.12, 2.13, 2.15. But experimen-

tally it is very hard to produce the such thin films, most commonly the experimental

dendrite width is corresponding to saturation limit 20−70 μm for temperatures around

4 − 7 K. All parameters used for Figures 2.15, 2.16 are the same as for Figures 2.12,

2.13.

In the end of this chapter it is also interesting to note one recent paper about

thresholds fields for thermomagnetic instabilities [49]. It was discovered the existence of

upper threshold magnetic Hth
2 (see Appendix B). For fields higher than H th

2 instability

cease to exist, which can be used as another measure to avoid instability.

2.10 Results

The linear analysis of thermal diffusion and Maxwell equations shows that a ther-

momagnetic instability in a superconducting film may result in either uniform or finger-

like distributions of T , E and B. The fingering distributions will be observed if the
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background electric field E > Ec, where Ec grows with the film thickness, the critical

current density, the thermal conductivity and the thermal coupling to the substrate.

Due to nonlocal electrodynamics in thin films they turn out to be more unstable than

bulk superconductors and more susceptible to formation of a fingering pattern. This

result is presented in Paper 1.

We have showed a detailed comparison of experimental data and theoretical pre-

dictions for the dendritic flux instability in superconducting films. It was shown that

a thermo-magnetic model can describe key features of the instability with an excellent

quantitative agreement. This includes how the onset magnetic field for the instabil-

ity Hfing depends on both temperature and sample size. The general result that the

instability is suppressed for sufficiently narrow strips, is of particular importance for

design of superconducting electronic devices or other applications making use of thin

film superconductors operating at temperatures below the instability threshold value.

This result is presented in Paper 2.

Here shown conditions how to avoid instability in thin film superconductors:

• The temperature should be higher threshold value Tth (10K for MgB2).

• Magnetic fields should be outside critical range (lower than Hfing and higher than

H th
2 ).

• For temperatures lower than Tth instability can be suppressed by making super-

conducting strip sufficiently narrow (for MgB2 sample width must be less than

150 μm).
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3. FLUX IN THIN FILM RINGS

3.1 Motivation

Use of thin film superconductors integrated in nanodevices requires precise knowl-

edge of the film behavior in the presence of both external and self induced magnetic

fields. Recent experiments have shown that properly designed arrays of dots and an-

tidots can serve as effective traps for magnetic flux [50–52]. It has also been shown

that patterned superconducting films allow for the motion of magnetic vortices to be

guided over the film area [53–57], opening up for a new field of physics often called

fluxonics. However, at present time one of the main goal is to trap the largest possible

number of flux quanta inside a hole (which is called the flux saturation number nfilm)

thus allowing higher magnetic field to be applied.

The models for flux trapping used in past years did not take into account the

precise geometry of the patterned film samples. This conventional models were based

on approximations applicable either to a single vortex in an infinite film, equivalent

to having a hole of zero radius (Pearl vortex [58]), or to an infinitely long hollow

cylinder [59, 60]. Both geometries are far from realistic for thin film devices. However

recently several works considering dynamics of vortices, current and field distributions

in thin-film superconductor with finite hole have been published [61–65]. Yet the flux

saturation number has not been calculated so we dedicate our work to this task.

In this chapter we examine the problem of trapped flux in a thin-film superconduc-

tor ring by solving London equations. This geometry allows one to model a realistic

situation of a single anti-dot in a finite thin-film sample. We will consider the case of

zero external magnetic field and show that the saturation number for a thin ring can

differ significantly from that of a hollow cylinder with the same radius. The satura-
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tion number for bulk samples was found using magnetic field distribution from [60].

It is reported how the difference depends on the ratio between the inner radius and

the thickness of the ring, r1/d. Including external magnetic field into calculations will

not change the general picture but will overcomplicate equations so it will be omit-

ted. These results may be interesting for some authors [51, 56, 57], who described flux

distribution in thin-film superconductors with different arrays of antidots based on

saturation number calculated for bulk samples [59, 60].

3.2 Calculation of current distribution

We consider a ring where the outer radius, r2, is much larger than the inner radius

r1 (Figure 3.1). This assumption is made in order to simulate a small hole of several

μm in the film sample with the size of several mm. It will be assumed that the film

thickness d is negligible compared to both r1, r2, and the London penetration depth

λL of the superconducting material. In order to successfully apply London equation

the superconducting coherence length ξ also should be smaller than radius of the hole

r1. We focus on determining the trapped flux in the ring in a remanent state where

flux due to some magnetic prehistory has been trapped in the hole. It will be assumed

that vortex pinning elsewhere is absent. The self-induced magnetic field depends on

the current distribution, which is determined by the amount of flux Φ trapped by the

ring.

In the ring r1 < r < r2, the distributions of current density j and induction B

are given by the London equation, which in terms of the vector potential A, where

curlA = B, reads

curl(λ2
Lμ0j + A) = 0 . (3.1)

Due to the symmetry of our problem the current and vector potential have in cylindrical

coordinates only one component, j = (0, j, 0) and A = (0, A, 0), respectively. The

argument of the curl-operator in Eq. (3.1) is proportional to the trapped flux Φ.

μ0λ
2
Lj(r) + A(r) =

Φ

2πr
(3.2)
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Fig. 3.1: Sketch of the thin ring geometry.

Φ here is introduced as flux free parameter which can be found from boundary condi-

tions. We however is not interested in exact flux distribution inside the hole of the ring.

For our task it is enough to know the current distribution which can be calculated using

equation (3.2). Flux trapped by the ring is defined as Φring = 2π
∫ r2

0
curl A(r)rdr. The

equation similar to (3.2) was analyzed in [65] in order to find the field distribution.

Here we focus on the calculation of the flux saturation number.

In general case when λL > 0 and flux is distributed between the hole, supercon-

ducting area and outside area of the ring, the hole itself can contain fractional number

of superconducting flux quanta (Φ0 = h/2e), so the number of trapped fluxes may not

be integer.

Since the external field is switched off, the vector potential is only due to the current

in the ring induced by the trapped flux. Thus, it can be expressed as

A =
μ0

4π

∫
j · dr′
|r − r′| . (3.3)

For the film geometry one can neglected variations of the field and current across

the sample thickness and average Eq. (3.3) over z. To simplify our further equations

we introduce the sheet current I(r), the effective penetration depth λeff and the dimen-

sionless variables for current Ĩ and radius r̃:
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I(r) =

∫ d

0

j(r)dz, (3.4)

λeff = λ2
L/d, (3.5)

Ĩ = (μ0λ
2
eff/Φ)I, (3.6)

r̃ = r/λeff. (3.7)

Substituting equations (3.4)-(3.7) into dependence of vector potential on current

(3.3) we get our main equation to solve:

Ĩ(r̃) +
1

4π

∫ r̃2

r̃1

∫ 2π

0

Ĩ(r̃′) cos θ√
(r̃/r̃′)2 + 1 − 2(r̃/r̃′) cos θ

dθdr̃′

= 1/2πr̃ . (3.8)

This Fredholm integral equation of the second kind was solved numerically by con-

verting it into a set of linear equations corresponding to discrete values of the coordinate

r:

Ĩi +
1

4π

∑
ij

Qij Ĩj =
1

2πr̃i

, (3.9)

Qij ≡
∫ 2π

0

cos θ√
(r̃i/r̃j)2 + 1 − 2(r̃i/r̃j) cos θ

dθ (3.10)

The diagonal elements of kernel (3.10) are divergent for θ = 0, however after double

integration of equation (3.8) the final result is finite. To get correct result during

numeric calculation we had to carefully choose kernel diagonal elements. For details

about numeric calculations see Appendix C. The results of the calculations are seen

in the Figure 3.2, where the full curves show the radial distribution of the current for

different hole sizes. These results are similar to current distributions obtained in the

work of Brandt and Clem [65]. For comparison, the plot also shows (as dash-dot curve)

the current distribution around a single Pearl vortex in an infinite film [58]:

ĨPearl(r̃) = [S1(r̃/2) − K1(r̃/2) − 2/π] /8 (3.11)
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Fig. 3.2: Current distribution in superconducting thin ring. The distance is measured in λeff

and the current is measured in Φ/μ0λeff. There are 3 calculated current distributions

corresponding to the different size of the hole: r1/λeff = 1, 25 and 100, respectively.

r2/λeff = 1000.

Here S1 is first order Struve function and K1 is first order Bessel function of the

second kind. For the small hole case, r1/λeff = 1, our numerical result is almost

identical to the Pearl solution, as one should expect. Obviously, our calculations must

reproduce this result in the limiting case r1/λe � 1. For the holes with r1 � λeff the

current profiles differ significantly from the Pearl solution in regions near both edges,

where the ring solution has an upturn. All three calculated distributions have identical

behavior close to the outer edge, when they begin to deviate from the Pearl solution

curve. This means that for sufficiently large rings the inner edges does not influence

outer edge.

Shown in Figure 3.3 is the vector potential A(r) and magnetic field distribution

B(r) corresponding to shown current distribution. A(r) and B(r) were calculated using

equation (3.3), relation B = curlA and assuming the amount of trapped flux is equal

to one quantum. (For better visualization r2 was chosen to be equal to 4r1). It is seen

that vector potential A(r) tends to 0 when r is going to 0 or to infinity. However for the

hole region the A(r) distribution may not be precisely like shown in Figure 3.3 because

we don’t take into account exact flux distribution inside the hole. For magnetic field

B the picture is different – the field generated by trapped flux is mostly concentrated
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with one flux quanta trapped. Inner radius of the ring r1 is equal to 25λeff and outer

radius r2 is equal to 100λeff.

in the hole, while in the superconducting film it is almost completely suppressed (it

decays exponentially from the edges with characteristic length λeff ). Behind the outer

radius of the ring B is also neglible compare to the inside region, but it should be noted

that it have opposite sign there.

One more thing that will be interesting to analyze is total amount of flux trapped

inside the ring. Magnetic flux trapped inside the whole ring Φring can be calculated

using vector potential A(r):

Φring = 2π

∫ r

0

curl A(r)rdr = 2πrA(r), r1 ≤ r ≤ r2 (3.12)
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Shown in Figure 3.4 is the flux Φring calculated by formula (3.12). Different lines

correspond to rings with different r1 and r2 and the trapped flux is normalized to Φ

equal to one flux quantum Φ0. Normalized flux trapped inside the ring is always less

than unity. This means that some portion of the flux escapes the ring and redistributes

behind the outer radius (r > r2). However flux distribution is close to initial value of

Φ = Φ0, and for λeff � r2 (r2 → ∞) the trapped flux Φring will almost equal to Φ.

3.3 Flux saturation number

Our main interest lies in finding the flux saturation number for a finite-radius hole

in a thin film. Since I ∝ Φ we can calculated saturation number by calculating the

maximum current. We estimate the sheet current, which can flow inside the ring

without destroying the superconductivity as the “depairing” current [66],

Idp =
Φ0d

3
√

3πλ2
Lξμ0

. (3.13)

According to Figure 3.2 the current is maximum at the inner edge of the ring. Thus

to get the saturation number nfilm the number of trapped fluxes Φ/Φ0 must be scaled
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by factor Idp/I(r1):

nfilm =
ΦIdp

Φ0I(r1)
=

1

3
√

3π

1

Ĩ1

λeff

ξ
(3.14)

where Ĩ1 ≡ Ĩ(r1).

It should be noted when current approaches depairing value (3.13) the supercon-

ducting order parameter is going to zero, so the actual number of quanta trapped

inside the ring will be less than saturation number nfilm. However it will not break the

logic of our paper since saturation number nfilm still corresponds to maximum possible

number of trapped fluxes.

The current density is always increasing near the edges comparing to the Pearl’s

solution (Figure 3.2). Consequently, the actual number of fluxes trapped inside the hole

of a finite size will be always less than value obtained using Pearl solution. However,

for sufficiently small values of the ratio r1/λeff the calculated values of Ĩ1 are very

close to the ĨPearl(r̃1), so we can approximate Ĩ1 by Eq. (3.11). This expression can be

further simplified in the limiting cases r/λeff � 1 (ĨPearl(r̃) = 1/2πr̃) and r/λeff � 1

(ĨPearl(r̃) = 1/πr̃2) [58] to obtain:

nPearl =
r

3
√

3ξ

⎧⎨⎩ 2 , r � λeff; (a)

r/λeff , r � λeff. (b)
(3.15)

Eq. (3.15a) can be used for estimation of the flux quantity trapped inside the ring

with small hole. However, in the case of a large hole the trapped flux turns to be

less than that following from Eq. (3.15b). To analyze this difference we take into

account the well known divergence of current distribution, 1/
√

r − r1, near the edge of

a hole [67] and replace the Pearl’s expression for r̃ � 1, ĨPearl(r̃) = 1/πr̃2, by

Ĩapprox(r̃) =
1

πr̃
√

r̃2 − r̃2
1

. (3.16)

Approximation (3.16) describes the current distribution very well (Figure 3.5).

However it cannot be used for estimation of the current at the very edge r = r1.

Here we have to cut off the difference |r−r1| by λeff, so the current will be expressed as

Ĩapprox(r̃1) = 1/(
√

2πr̃3/2). Now we can finally calculate the actual saturation number

for a thin ring in the large hole approximation:
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nfilm =
r
3/2
1

3
√

3ξ

√
2

λeff

, r � λeff . (3.17)

Equation (3.17) works well for the estimation of the trapped flux, the difference

between values given by this formula and numerical calculations is no more than 3%

for the wide range of ratio r/λeff.

Now it will be interesting to compare the flux saturation number for a thin film

and a bulk superconductor. As follows from [60], in a hollow cylinder

B(r′)
B0

=
K0(r

′)
K0(r′1)

, B0 =
2nbulkK0(r

′
1)

κr′1[2K1(r′1) + r′1K0(r′1)]
. (3.18)

K0 and K1 here are zero and first order Bessels functions of the second kind.

The scaling in the Eq. (3.18) is a bit different: r′ is measured in units of λL, B is

normalized by Φ0/2πλLξ, κ ≡ λL/ξ and nbulk is cavity saturation number. By taking

derivative with respect to r′ we can derive the current on edge of the cavity as

jbulk(r
′
1) =

μ0nbulk

κr′1

2K1(r
′
1)

2K1(r′1) + r′1K0(r′1)
. (3.19)
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Fig. 3.6: Trapped flux inside the hole of thin superconducting film (blue line) and inside

the infinite cavity in bulk superconductor (red line) depending on the size of the

hole/cavity. Here values of YBaCuO film are used: ξ = 3nm, λL = 150nm, d =

100nm.

Using normalizing constants and putting jbulk(r
′
1)d equal to Idp we can calculate

the quantity of trapped flux nbulk:

nbulk =
2

3
√

3

r1

ξ

[
1 +

r1

2λL

K0(r1/λL)

K1(r1/λL)

]
. (3.20)

Figure 3.6 shows the dependence of flux saturation number on the size of the hole

in the ring (blue line) and infinite cavity in the bulk superconductor (red line). We

used Eq. (3.14) for nfilm calculation and Eq. (3.20) for calculations in the bulk. It is

seen that a small hole can hold equal numbers of quanta in the bulk and thin films

superconductor. As the size of the hole increases the curves diverge and it is obvious

that thin film superconductors can trap much less flux than the bulk ones. For the

limiting cases of r1/λL � 1 and r1/λL � 1 Bessels functions K0 and K1 from Eq. (3.20)

can be simplified:

nbulk ≈ 2r1

3
√

3ξ

(
1 +

r1

2λL

ln λL/r1

λL/r1

)
=

2r1

3
√

3ξ
, r1/λL � 1,

nbulk ≈ 2r1

3
√

3ξ

(
1 +

r1

2λL

K0(r1/λL)

K0(r1/λL)

)
=

r2
1

3
√

3ξλL

, r1/λL � 1,
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nbulk ≈ r1

3
√

3ξ

⎧⎨⎩ 2 , r1 � λL (a),

r1/λL , r1 � λL (b).
(3.21)

Thus, for the small hole size, the expression for the trapped flux are the same for

the cases of a film and a bulk sample. For the case of large hole size the ratio nbulk/nfilm

is
nbulk

nfilm

=

√
r1

2d
. (3.22)

With the decreasing thickness of the film the difference between saturation numbers

grows as d−1/2. For typical parameters [50] – d ≈ 100 nm, r1 ≈ 500 − 600 nm – this

ratio is about 2.

3.4 Conclusion

Most important results of this chapter are presented in Paper 3. We have derived

flux saturation number for the thin superconducting films with a hole of finite radius. In

the limit of small hole r1 � λL the result is approximately equal to the flux saturation

number for the bulk superconductors with a cylindric cavity of infinite height. However

in the limit of large hole r1 � λL the hole saturation number in thin film is less that

corresponding quantity in bulk superconductor by a factor
√

r1/2d. Results obtained

in this paper can be directly applied for a superconducting film with a single dot.

Even more, knowing the exact flux saturation number, one can accurately predict

vortex-dot interaction in various experimental setups with multi-dots arrays. This

result promises to be of considerable importance for applications of patterned various

thin-film structures, such as vortex ratchet-based rectifiers, pumps and lenses.
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APPENDIX





A. PROPERTIES OF KERNEL G

A.1 Transition from Eq.(2.20) to Eq.(2.23)

The Fourier transformation for the kernel function G (2.20) with respect to variable

η reads

G(ξ, η, α) =

∫ ∞

−∞

dky

2π
G(ξ, ky, α)eikyη , (A.1)

G(ξ, ky, α) =

∫ ∞

−∞
dηG(ξ, η, α)e−ikyη , (A.2)

Substituting Fourier transformation of kernel G into Eqs. (2.19) and (2.19), we find

ε′x(ξ, ky) = 2α2λn

∫ �/a

0

dξ′G(ξ − ξ′, ky)εx(ξ
′, ky), (A.3)

ε′y(ξ, ky) = 2α2λnf(λ, ky)

∫ �/a

0

dξ′G(ξ − ξ′, ky)εy(ξ
′, ky). (A.4)

These are two linear independent integral equations with difference kernel. Each of

these equations can be solved separately by a standard method.

Although the procedure of solution of Eqs. (A.3) and (A.4) is standard, we describe

it in details to avoid any mistakes. In a strict sense, the symmetry of the Fourier

expansions with cos(kxξ) and sin(kxξ) corresponds to the interval −2�/a < ξ < 2�/a

for these trigonometric functions to be orthogonal at different kx. Thus, we should

formally continue analytically εx,y on this interval. These continuations are different

for the sine and cosine functions. It could be easily found that the symmetry of

the function εy(ξ) corresponds to the following continuation ε̃y(ξ) from the interval

0 < ξ < �/a to −2�/a < ξ < 2�/a

ε̃y(ξ) = εy(2�/a − ξ) at �/a < ξ < 2�/a (A.5)
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and ε̃y(ξ) is an odd function with respect to ξ = 0. The continuation ε̃x(ξ) of the

function εx(ξ) is

ε̃x(ξ) = −εx(2�/a − ξ) at � < ξ < 2�/a (A.6)

and is even with respect to ξ = 0. The functions ε̃x,y(ξ) coincide with εx,y(ξ) at

0 < ξ < �/a and can be expanded using the same trigonometrical functions. So, we

get

εx(kx) =
1

2

∫ 2�/a

−2�/a

ε̃x(ξ) cos(kxξ)dξ = 2

∫ �/a

0

εx(ξ) cos(kxξ)dξ, (A.7)

εy(kx) =
1

2

∫ 2�/a

−2�/a

ε̃y(ξ) sin(kxξ)dξ = 2

∫ �/a

0

εy(ξ) sin(kxξ)dξ. (A.8)

Let us produce a similar continuations with the function G. First, we consider

G(ξ − ξ′) in Eq. (A.3) as a function of two independent arguments, G(ξ, ξ′). Then we

can define the continuation G̃x(ξ
′) of G(ξ′) as

G̃x(ξ
′) = −G(2�/a − ξ′) at �/a < ξ′ < 2�/a (A.9)

and even with respect to ξ′ = 0. Second, in Eq. (A.4), we can define the continuation

G̃y(ξ
′) of G(ξ′) as

G̃y(ξ
′) = G(2�/a − ξ′) at �/a < ξ′ < 2�/a (A.10)

and G̃y(ξ
′) is an odd function with respect to ξ′ = 0. The functions G̃x,y(ξ, ξ

′) obey

the same symmetry with respect to the other argument ξ since G[(ξ−ξ′)] is symmetric

with respect to a permutation of ξ and ξ′ as follows from (2.19).

The integrals, Eqs. (A.3) and (A.4), can now be written as

ε̃x
′(ξ) =

α2λn

2

∫ 2�/a

−2�/a

dξ′G̃x(ξ, ξ
′)ε̃x(ξ

′), (A.11)

ε̃y
′(ξ) =

α2λnf(λ, ky)

2

∫ 2�/a

−2�/a

dξ′G̃y(ξ, ξ
′)ε̃y(ξ

′). (A.12)

The solutions of these equations coincide with the solutions of the original Eqs. (A.3)

and (A.4) at 0 < ξ < �/a and have the symmetry necessary for the suggested Fourier

transformations.
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Let us introduce the Fourier transformations

G̃x(ξ, ξ
′) =

∑
kx,k′

x

Gx(kx, k
′
x) cos(kxξ) cos(k′

xξ
′), (A.13)

G̃y(ξ, ξ
′) =

∑
kx,k′

x

Gy(kx, k
′
x) sin(kxξ) sin(k′

xξ
′), (A.14)

where

Gx(kx, k
′
x) = 4

∫ �/a

0

dξ

∫ �/a

0

dξ′Gx(ξ, ξ
′) cos(kxξ) cos(k′

xξ
′), (A.15)

Gy(kx, k
′
x) = 4

∫ �/a

0

dξ

∫ �/a

0

dξ′Gy(ξ, ξ
′) sin(kxξ) sin(k′

xξ
′), (A.16)

and Gx,y(kx, k
′
x) = Gx,y(k

′
x, kx). Equations (A.15),(A.16) lead to (2.23)

A.2 Approximation of kernel G (2.20)

First, note that we do not disregard the value of the order of (d/�)2 in the denom-

inator of the function G (2.20). It seems as an exceeding of accuracy since previously

we neglect the z dependence of electric field and temperature across the film. In other

words, in the film

εi(ζ) = εi(0) +
ζ2

2

∂2εi

∂ζ2
+ ... , (A.17)

where the first derivative is omitted due to the symmetry. We neglect all the terms

in the right hand side of Eq. (A.17), except the first. That is, we should seemingly

neglect all the values of the order of (d/�)2 and for the temperature perturbation as

well. However, it is not so since the derivatives across the film thickness includes

additional smallness. In the case of electromagnetic values it is due to the assumption

that d ≤ λL and for the temperature due to the smallness of Bio number Bi = h0d/κ

in any realistic situation for a thin film.

As in the previous study [35], we analyze here the stability in the linear approx-

imation following two different ways. In qualitative approach, we do not specify the

boundary conditions exactly assuming that kx is of the order of a/�, and analyze evo-

lution of perturbations with each kx independently. In this approach we evidently need

only diagonal component of the kernel G with kx = k′
x. If we specify the boundary
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conditions and try to find exact expressions for the stability criterion and characteristic

time and spatial scales, we need to know kernel function in a more general form. Both

the approaches should give rise to qualitatively the same results.

A.3 Transition from Equations (2.21) and (2.23) to formula (2.25)

Performing the integration of Fourier transformation for the kernel function G (2.23)

we get

G(ξ, ky) =
kya

2π�
√

ξ2 + α2
K1

(
ky

√
ξ2 + α2

)
, (A.18)

where K1 is the modified Bessel function of the second kind. In general case, the kernel

function G(kx, k
′
x, ky) could not be found in the explicit form and Eqs. (2.21) and (2.22)

should be solved numerically. However, we are interested here only in the specific case

α � 1. Within these limit the analytical expressions for the kernel can be found.

The expressions for the Fourier components of the function G read

Gx(kx, k
′
x, ky) = (A.19)

=
2kya

π�

∫ �/a

0

dξ

∫ �/a

0

dξ′
K1

[
ky

√
(ξ − ξ′)2 + α2

]
cos(kxξ) cos(k′

xξ
′)√

(ξ − ξ′)2 + α2
,

Gy(kx, k
′
x, ky) = (A.20)

=
2kya

π�

∫ �/a

0

dξ

∫ �/a

0

dξ′
K1

[
ky

√
(ξ − ξ′)2 + α2

]
sin(kxξ) sin(k′

xξ
′)√

(ξ − ξ′)2 + α2
.

Under conditions specified for (A.19),(A.20), the main contribution to these inte-

grals evidently comes from the region |ξ − ξ′| < α. At larger |ξ − ξ′| the functions

under integrals decays exponentially. So, we can replace the Bessel function K1(x)

under integrals by its expression at small value of argument x up to the order of x

K1(x) ≈ 1

x
+

x

2
ln x (A.21)

From Eqs. (A.19) and (A.20) we find in the main approximation accounting for the

first term in the right hand side of Eq. (A.21)
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G1
x(kx, k

′
x, ky) =

2a

π�

∫ �/a

0

dξ

∫ �/a−ξ

−ξ

du
cos(kxξ) cos[k′

x(ξ + u)]

u2 + α2
, (A.22)

G1
y(kx, k

′
x, ky) =

2a

π�

∫ �/a

0

dξ

∫ �/a−ξ

−ξ

du
sin(kxξ) sin[k′

x(ξ + u)]

u2 + α2
, (A.23)

where we proceed to integration over u = ξ′ − ξ.

We need to compute following integrals, the first one for G1
x and the second for G1

y:∫ �/a

0

cos kxξ cos k′
xξdξ

∫ �/a−ξ

ξ

du
cos k′

xu

u2 + α2
−

−
∫ �/a

0

cos kxξ sin k′
xξdξ

∫ �/a−ξ

ξ

du
sin k′

xu

u2 + α2
(A.24)∫ �/a

0

sin kxξ sin k′
xξdξ

∫ �/a−ξ

ξ

du
cos k′

xu

u2 + α2
+

+

∫ �/a

0

sin kxξ cos k′
xξdξ

∫ �/a−ξ

ξ

du
sin k′

xu

u2 + α2
(A.25)

The calculation of this integrals are almost identical, so we show only computing of

the first one. In the beginning we need to compute following integral

∫ �/a−ξ

−ξ

du
cos kxu

u2 + α2
=

∫ �/a−ξ

−ξ

du

u2 + α2
−

∫ �/a−ξ

−ξ

du
1 − cos kxu

u2 + α2
. (A.26)

The first integral yields α−1 [arctan(ξ/α) + arctan(�/a − ξ)/α]. Thus we have to cal-

culate
2a

π�

∫ �/a

0

dξ cos kxξ cos k′
xξ [arctan(ξ/α) + arctan(�/a − ξ)/α] .

One can show that off-diagonal integrals, i. e. for kx �= k′
x, are very small, and we

will keep only diagonal elements which are the same for all kx. Let us denote them as

[1 − c(α)]/α. For α � 1 one finds c(α) ∝ α, while a good approximation for α � 1

case is c(α) ≈ 1.6a0.84. Even though c(α) → 0 for α → 0 its account is important since

c(α) will enter the dispersion law with the factor ∝ k2.

The second integral in Eq. (A.26) can be calculated numerically, it has the order

of k2
x, let us denote this integral as r(α, kx). The values of r(α, kx) in the limit α � 1

depend on kx, namely r(α, kx) = 0 for kx = 0 and r(α, kx) → kx for kx � 1.
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Fig. A.1: Plot of the product γα versus α for the lowest instability mode, kx = πa/2�. Shown

in inset is the plot for small values of α.

To complete computation of Eqs. (A.22) and (A.23) we also need to calculate

integral ∫ �/a

0

cos kxξ sin k′
xξdξ

∫ �/a−ξ

ξ

du
sin k′

xu

u2 + α2
, (A.27)

which for kx = (πa/2�)(2n + 1) is equal to zero. The same results one can obtain for

G0
y. Despite the fact that Eq. (A.22) contains cos and Eq. (A.23) contains sin the

final results are the same thus we employ the approximation

G1
x,y(kx, kx; ky) =

a

�

[
1 − c(α)

α
− r(α, kx)

]
(A.28)

Denoting c(α)/α+r(α, kx) as γ(α, kx) we get equation (2.25) in the main text. The

dependence of γ(α, kx) on α for the main instability mode kx = πa/2� is shown on

Figure A.1.

A.4 Calculation of kernel G up to the second order

To calculate second order of kernel G2
x,y (2.25) we need to take into account loga-

rithmic term when we approximate Bessel function in equation (A.21). Thus we the

the following integral:
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k2
ya

π�

∫ �/a

0

cos kxξdξ

∫ �/a

0

dξ ln(ky

√
(ξ − ξ′)2 + α2) cos k′

xξ
′) (A.29)

To do this we have to split ln(ky

√
(ξ − ξ′)2 + α2) into ln(ky) + 1

2
ln((ξ − ξ′)2 + α2).

The first part of integral can be solved analytically quite easily and using that kx =

πa
2�

(1 + 2n) we get following result:

k2
ya ln ky

π�k2
x

(A.30)

The second part of integral (A.29) cannot be solved analytically. Using numerical

computation for α � 1 we find an approximately linear dependence of this integral on

α: a+ bα. For kx = (πa)(2�) this will be −1.386+3.1α. The full equation for Gx,y will

be:

G2
x,y(kx, kx, ky) =

a

�

[
1 − γ(α, kx)α

α
+

k2
y ln ky

πk2
x

+
k2

y

2π
(a + bα)

]
(A.31)

Using (A.31) we can get more precise equations for (2.26). The changes will be very

simple - all terms containing γα will transform into (γα − α
k2

y ln ky

πk2
x

− α
k2

y

2π
(a + bα)):

A1 = n(γ − k2
y ln ky

πk2
x

− k2
y

2π
(a + bα)α , (A.32)

A2 = k2
y(1 + τA1) + nk2

x + A1(hτ − 1) ,

A3 = k4
yτ + nk2

xk
2
yτ + nk2

x(hτ + 1/n) + k2
y(hτ − 1).
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Fig. B.1: The lower and upper threshold fields Hfing (disks) and Hth
2 (triangles) mea-

sured at different frozen-in fields after field-cooling to 4 K. For magnetic fields

higher than Hth
2 thermomagnetic instability is completely suppressed in the sam-

ple. [V. Yurchenko et al, Reentrant stability of superconducting films, cond-

mat/0702683]
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C. CALCULATION OF KERNEL QIJ ELEMENTS

The main problem with calculation of kernel Qij (3.10) is its diagonal elements,

which are divergent for θ = 0. However if we first analytically integrate kernel (3.10)

over θ we get divergence in the following form:

Qθ=0(r, r
′) = C1 + C2 ln(r − r′) (C.1)

C1 and C2 here are some yet unknown coefficients. Next we integrate equation (C.1)

over r−r′ from 0 to s/2 and from 0 to −s/2 and normalize the answer to s/2 - thus we

get weighted value of diagonal element. Here s is our grid step, s = ri − rj. Effectively

this operation means that equation (C.1) transforms to:

Qθ=0(ri, rj) = C1 + C2(ln(s/2) − 1) (C.2)

To accurately find coefficients C1 and C2 we should calculate Qθ=0(ri, rj) in several

points close to ri = rj. In this work kernel values were calculated at points ri = rj+s/2,

ri = rj + s/4, ri = rj − s/2, ri = rj − s/4. Doing so we can calculate two approximate

values of diagonal element Qii when approaching point ri = rj from left and right.

Then we take average of this two values and find our final answer for Qii. It also

should be noted that values of step s can vary depending on chosen grid for ri and

rj. This method is not fast, because to find kernel diagonal value we should calculate

equation (3.10) in four points instead of one, but it gives high accuracy (relative error

is no more than 10−3).

The rest non-diagonal elements were calculated in straight-forward way. The num-

ber of grid points for calculated current distribution shown in Figure 3.2 is 1000 with

constant step, which gives high accuracy even in logarithmic scale.
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