
Thomas Kleine Büning

Learning in the Presence of
Cooperative, Adversarial and
Strategic Agents

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

2024

© Thomas Kleine Büning, 2024

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo

No. 2796

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without permission.

Cover: UiO.

Print production: Graphic center, University of Oslo.

In memory of Klaus

Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Christos
Dimitrakakis and Ingrid Chieh Yu. This work was supported by the Norwegian
Research Council through the grant No 302203 “Algorithms and Models for
Socially Beneficial AI”.

The thesis is a collection of five papers, which are preceded by three
introductory chapters. The papers were authored in collaboration with several
co-authors. I am the main contributor for four out of the five papers. All authors
of the remaining paper contributed equally.

Acknowledgements

I want to thank my advisors, Christos and Ingrid, for their continuous support
and for being accepting of all the research directions I wanted to explore during
my PhD. Many thanks also to the other members of Christos’ group, including
Meirav and Marie for the fun trips and discussions in Oslo; Emilio, Hannes,
Divy, and Milad for the interesting chats during group meetings, retreats, and
at Chalmers; and Victor and Andreas for their warm welcome when visiting
Neuchatel. I also want to thank my other co-authors Aadirupa, Debabrota, and
Haifeng for their support and the things they taught me. Finally, I am also
grateful to the many people at UiO for their help when setting up in Oslo.

Thomas Kleine Büning
Oslo, February 2024

iii

Abstract

Machine learning has found application in various fields, such as healthcare,
robotics, and personalized recommendations. In many of these applications,
learning algorithms interact with other agents that can exhibit diverse behaviors.
For instance, in scenarios of human-AI collaboration, the objective of the
learning algorithm is to jointly complete a task in cooperation with a benevolent
human. These situations frequently arise in, e.g., robotics and human-assisted
autonomous driving, where effective collaboration requires the learning algorithm
to understand and adapt to its human partner. In yet other scenarios such as
online recommendation, learning algorithms interact with users who directly
influence decision outcomes and whose preferences may evolve over time.
Sometimes agents may also respond strategically to the learning algorithm to
maximize their own benefit. For example, e-commerce retailers or web designers
may game a learning algorithm, e.g., a recommendation system or search engine,
to improve their rank and maximize their exposure to potential customers.

We see that there are many ways a learning algorithm can interact with agents.
Here, we distinguish between three types of agents depending on their objectives.
Generally speaking, cooperative agents are aligned with the goals of the learning
algorithm as is the case in human-AI collaboration. Conversely, adversarial agents
oppose the learning algorithm’s objective and act maliciously so as to impede
the learning algorithm as much as possible. Finally, we call agents strategic when
they are neither fully aligned nor opposed to the learning algorithm’s goals, but
instead have an own objective which places them somewhere between cooperative
and adversarial behavior. Learning in the presence of each of these types of agents
brings its own challenges and peculiarities. In this thesis, we study these within
the reinforcement learning framework, which involves sequential interactions
with an unknown environment and cooperative, adversarial, or strategic agents
directly or indirectly influencing the environment and the rewards the learning
algorithm receives.

As an instance of learning in the presence of cooperative agents, we study the
problem of collaborating with a potentially suboptimal human partner without
access to the joint reward function. This connects to the problem of inferring
a reward function from demonstrations, called inverse reinforcement learning,
and we propose interactive learning setups which allow for actively querying
information about the unknown reward function from a human partner. We
theoretically and empirically demonstrate the benefits of inverse reinforcement
learning in a collaborative environment where the learning algorithm gets to
repeatedly interact with a human and probe their behavior.

In the adversarial setting, we first study the scenario where the environment
undergoes adversarial changes over time, which could be due to malicious attacks

v

Abstract

or evolving user preferences. Here, we focus on dynamic regret minimization in
non-stationary dueling bandits, which requires the learning algorithm to detect
and adapt to changes in an online fashion. We study and discuss several notions
of non-stationary complexity in dueling bandits and propose a learning algorithm
that achieves near-optimal dynamic regret w.r.t. the number of best arm switches,
without prior knowledge of the number of switches. As another instance of
learning in the presence of adversarial agents, we also study the situation where
an adversary chooses a worst-case problem instance (or distribution over problem
instances) in response to our learning algorithm. Here, we consider the Bayesian
setting where the problem can be viewed as a minimax-Bayes game. We show
that solutions to this minimax game between the learning algorithm and the
adversary can yield more robust reinforcement learning policies.

Finally, we study online learning in the presence of agents that respond
strategically to the learning algorithm so as to maximize their payoffs. We
propose a strategic variant of the multi-armed bandit problem and construct an
incentive-aware learning algorithm that incentivizes desirable agent strategies
while minimizing regret. We thereby connect online learning and mechanism
design, two popular and influential research areas, which, however, have been
mostly studied separately so far. For the proposed strategic multi-armed bandit
problem, we derive trade-offs between regret minimization and incentivizing all
agents to act in a desirable fashion. Moreover, our work provides insights into
the complexity of online mechanism design under uncertainty.

vi

Sammendrag
Maskinlæring har funnet anvendelse på en rekke områder, for eksempel innen
helsevesenet, robotteknologi og personaliserte anbefalinger. I mange av disse
bruksområdene samhandler læringsalgoritmer med andre agenter som kan oppføre
seg på ulike måter. I scenarier med menneske-AI-samarbeid er målet for
læringsalgoritmen for eksempel å fullføre en oppgave i samarbeid med et velvillig
menneske. Slike situasjoner oppstår ofte innen for eksempel robotteknologi
og menneskeassistert autonom kjøring, der et effektivt samarbeid krever at
læringsalgoritmen forstår og tilpasser seg den menneskelige partneren. I andre
scenarier, for eksempel i forbindelse med nettbaserte anbefalinger, samhandler
læringsalgoritmer med brukere som direkte påvirker beslutningsutfallet og hvis
preferanser kan endre seg over tid. Noen ganger kan også agenter reagere
strategisk på læringsalgoritmen for å maksimere sine egne fordeler. For eksempel
kan nettbutikker eller webdesignere spille på en læringsalgoritme, f.eks. et
anbefalingssystem eller en søkemotor, for å forbedre sin egen rangering og
maksimere eksponeringen for potensielle kunder.

Vi ser at det er mange måter en læringsalgoritme kan samhandle med agenter
på. Her skiller vi mellom tre typer agenter avhengig av hvilke mål de har.
Generelt sett er kooperative agenter på linje med læringsalgoritmens mål, slik
tilfellet er i menneske-AI-samarbeid. Motsatt motsetter adversarial agenter seg
læringsalgoritmens mål og opptrer ondsinnet for å hindre læringsalgoritmen så
mye som mulig. Til slutt kaller vi agenter strategiske når de verken er helt på linje
med eller motstander av læringsalgoritmens mål, men i stedet har et eget mål som
plasserer dem et sted mellom samarbeid og motstand. Læring i nærvær av hver
av disse agenttypene medfører sine egne utfordringer og særegenheter. I denne
avhandlingen studerer vi disse innenfor rammeverket for forsterkningslæring,
som innebærer sekvensielle interaksjoner med et ukjent miljø og kooperative,
kontradiktoriske eller strategiske agenter som direkte eller indirekte påvirker
miljøet og belønningen læringsalgoritmen mottar.

vii

List of Papers

Paper I

Interactive Inverse Reinforcement Learning for Cooperative Games.
Thomas Kleine Buening, Anne-Marie George, Christos Dimitrakakis. In 39th
International Conference on Machine Learning (ICML) 2022.

Paper II

Environment Design for Inverse Reinforcement Learning. Thomas
Kleine Buening, Christos Dimitrakakis. Presented at the Human in the Loop
Learning Workshop at NeurIPS 2022.

Paper III

ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive
Non-Stationary Dueling Bandits. Thomas Kleine Buening, Aadirupa
Saha. In 26th International Conference on Artificial Intelligence and Statistics
(AISTATS) 2023.

Paper IV

Minimax-Bayes Reinforcement Learning. Thomas Kleine Buening∗,
Christos Dimitrakakis∗, Hannes Eriksson∗, Divya Grover∗, Emilio Jorge∗. In
26th International Conference on Artificial Intelligence and Statistics (AISTATS)
2023.

Paper V

Bandits Meet Mechanism Design to Combat Clickbait in Online
Recommendation. Thomas Kleine Buening, Aadirupa Saha, Christos
Dimitrakakis, Haifeng Xu. To appear in 12th International Conference on
Learning Representations (ICLR) 2024.

(∗ denotes equal contribution)

ix

List of Papers

Other publications by the author that are not included in this thesis are:

On Meritocracy in Optimal Set Selection. Thomas Kleine Buening, Meirav
Segal, Debabrota Basu, Anne-Marie George, Christos Dimitrakakis. In Equity
and Access in Algorithms, Mechanisms, and Optimization (EAAMO) 2022.

x

Contents

Preface iii

Abstract v

List of Papers ix

Contents xi

1 Introduction 1
1.1 Thesis Outline . 2
1.2 Research Questions . 2
1.3 Summary of Papers . 5
References . 6

2 The Reinforcement Learning Framework 11
2.1 Bandits . 11
2.2 Markov Decision Processes 15
References . 16

3 Main Findings and Conclusions 19
3.1 Future Directions . 22
References . 24

Papers 28

I Interactive Inverse Reinforcement Learning for Coopera-
tive Games 31
I.1 Introduction . 31
I.2 Related Work . 33
I.3 Setting . 34
I.4 Cooperating with Optimal Agents 37
I.5 Cooperating with Suboptimal Agents 41
I.6 Experiments . 43
I.7 Discussion and Future Work 45
References . 46
A.1 Proofs . 49
A.2 Cooperative Stackelberg Games with Suboptimal Followers 57
A.3 Experimental Details . 58
A.4 Influence . 61

xi

Contents

II Environment Design for Inverse Reinforcement Learning 63
II.1 Introduction . 63
II.2 Related Work . 65
II.3 Problem Formulation . 66
II.4 Environment Design via Minimax Bayesian Regret 67
II.5 Inverse Reinforcement Learning with Multiple Environments 70
II.6 Experiments . 71
II.7 Discussion . 74
References . 74
B.1 Proofs . 78
B.2 More Experimental Details 78

III ANACONDA: An Improved Dynamic Regret Algorithm
for Adaptive Non-Stationary Dueling Bandits 81
III.1 Introduction . 81
III.2 Problem Setting . 84
III.3 Proposed Algorithm: ANACONDA 87
III.4 Regret Analysis of ANACONDA 90
III.5 Tighter Bounds Under SST and STI 94
III.6 Discussion . 95
References . 96
C.1 Proof of Theorem III.3.1 100
C.2 Missing Details from Section III.5 114
C.3 More Related Work . 119

IV Minimax-Bayes Reinforcement Learning 121
IV.1 Introduction . 121
IV.2 Setting . 122
IV.3 Properties of the regret . 125
IV.4 Minimax theorems . 128
IV.5 Algorithms . 129
IV.6 Experiments . 133
IV.7 Discussion and Conclusion 136
References . 137
D.1 Gradient calculations . 139
D.2 Omitted proofs . 143
D.3 Additional results for finite MDPs 146

V Bandits Meet Mechanism Design to Combat Clickbait in
Online Recommendation 149
V.1 Introduction . 149
V.2 Related Work . 151
V.3 The Strategic Click-Bandit Problem 152
V.4 Limitations of Incentive-Unaware Algorithms 155
V.5 No-Regret Incentive-Aware Learning: UCB-S 156
V.6 Simulating Strategic Arm Behavior via Repeated Interaction 160

xii

Contents

V.7 Discussion . 162
References . 162
E.1 Proof of Proposition V.4.1 166
E.2 Proof of Lemma V.5.1 . 168
E.3 Proof of Theorem V.5.2 . 170
E.4 Proof of Theorem V.5.3 . 179
E.5 Proof of Corollary V.5.4 182
E.6 Proof of Theorem V.5.5 . 184
E.7 Technical Lemmas . 185
E.8 More Related Work . 186
E.9 Future Work . 186

xiii

Chapter 1

Introduction

The field of artificial intelligence, and specifically machine learning, has seen
tremendous advances in recent years, driven by breakthroughs in deep learning,
reinforcement learning, and the availability of large datasets. As a result,
AI systems have been deployed in various applications, including natural
language processing, autonomous vehicles, healthcare diagnostics, and online
recommendation. In many cases, these systems operate in environments where
other agents are present and directly or indirectly influence the environment and
decision outcomes.

Despite this, the nature of other agents is frequently overlooked. For example,
we may assume that a human user is oblivious and impartial in the sense that
they do not wish to help, hinder, or influence the AI system in any specific
way. Of course, this is often not the case. In collaborative scenarios, such as
human-assisted autonomous driving, the human user actively tries to assist the
AI system in driving safely. Conversely, malicious actors may manipulate the
environment and training data to impede the AI system’s learning process and
cause failures. Adversarial notions are also useful for modeling arbitrary behavior
or changes in the environment. For example, user behavior may drastically shift
due to seasonality or other external factors, which then an online recommendation
system must detect and adapt to. In other cases, agents may act strategically so
as to maximize their own benefit, neither fully aligning with nor fully opposing
the AI system’s goals. For instance, vendors on e-commerce platforms may game
the recommendation system to maximize their exposure and click-rates.

We see that there are different ways in which an AI system can interact with
its environment and the agents that are a part of it. In this thesis, we analyze
such situations in the context of reinforcement learning and study learning in
the presence of cooperative, adversarial, and strategic agent behavior.

Reinforcement learning is a learning paradigm where one or several agents
interact with an unknown environment to maximize the total reward they
receive over time. For instance, the reinforcement learning framework can model
human-AI collaboration tasks as two agents interacting with the environment and
maximizing a common reward. When acting in the presence of adversarial agents,
we typically assume that these adversaries try to impede the learning algorithm
as much as possible by choosing worst-case problem instances or altering the
environment over time. In strategic problems, we can consider the situation
where the learner and the strategic agents all interact with the same environment,
however, every party wants to maximize their own reward, which may be different
for all agents. We study several different reinforcement learning frameworks in
this thesis, ranging from multi-armed bandits to two-player Markov games, and
hope to shed some light on the advantages and disadvantages of learning in the

1

1. Introduction

presence of cooperative, adversarial, and strategic agents.

1.1 Thesis Outline

The thesis is structured as follows.

• The remainder of this Chapter 1 states the main research questions. This
is then followed by an overview and a short summary of the papers.

• Chapter 2 contains a brief introduction to the reinforcement learning
framework and provides some basic background to the problems studied
in this thesis.

• Chapter 3 discusses the main findings of this thesis and derives conclusions
from them. The main contributions of the thesis are summarized and
presented with respect to the main research questions. In addition, a few
future directions for research are outlined.

• Finally, Papers contains all the papers which are a part of this thesis.

1.2 Research Questions

We wish to understand both the benefits and the challenges when learning in the
presence of cooperative, adversarial, and strategic agents. We organize our main
research questions accordingly. We first provide a one to two sentence high-level
question which is then followed by a brief discussion.

Q1. (Cooperative): Can we learn an unknown reward function more precisely
and more efficiently by actively seeking information from a human partner
through repeated interaction? And if so, how much is the benefit of such repeated
interaction?

As AI systems become more powerful, it is important to align such systems’
goals with that of their human users and society as a whole, which was recently
once again highlighted by the development and dissemination of powerful large
language models [Kad+23; Zie+19]. This is generally known as the value
alignment problem and is based on the premise that a human system designer
cannot reliably hand-specify a goal to the AI system prior to deployment [Gab20;
Rus21]. In fact, the challenge of specifying suitable reward functions, i.e.,
a numerical objective to maximize, is one of the main barriers to the wider
application of reinforcement learning in real-world settings. In particular, when
manually designing reward functions, unsafe agent behavior as well as phenomena
such as reward hacking have been observed [CA16; Ska+22].

A popular approach to address this challenge within the reinforcement
learning framework is Inverse Reinforcement Learning (IRL) which aims to
infer the reward function from human demonstrations [NR+00; Rus98]. The
basic IRL setup assumes that the learner observes the human demonstrate the

2

Research Questions

task in the environment first, on the basis of which the learner then attempts
to estimate the reward function that the human is (implicitly) maximizing.
However, IRL suffers from several limitations, one of the most severe being
that it is generally impossible to fully recover the human’s true reward function
[CCS21; Kim+21]. As a result, even though some recent work has attempted to
quantify the estimation error of IRL and derive theoretical guarantees [LKR22;
Zen+22, e.g.], the inherent limitations of IRL in its classical setup cannot be
overcome. In view of this, it is natural to ask what additional assumptions or
different learning setups may improve the reward inference and could enable us
to provably recover the human’s true reward function.

Naturally, the human expert in IRL can be assumed to be cooperative and
willing to help the AI system infer the reward function. We can thus consider
the IRL problem as a cooperative game. Taking this perspective, prior work
has viewed the human as a teacher with the goal of finding the best teaching
strategy for the human demonstrator in order to provide better data for the
learner [BN19; CL12; Had+16; Tsc+19]. However, such teaching strategies may
be difficult to implement for a human and even if implemented can be insufficient
to recover the true reward function. Alternatively, we can hypothesize that direct
interaction of the learner and the human via joint completion of a collaborative
task may help the inference of the reward function. For example, when the
learner and human jointly solve a collaborative task, as in robotic assistance
scenarios, the human partner may indirectly provide feedback that allows us to
learn a robust and safe reward function. If the IRL agent is able to properly
interpret such interactions with the human, it may benefit the reward inference
due to the diversity of interactions and the learner’s ability to query for specific
scenarios. The inference thus becomes an active (or interactive) learning problem
[BCN18; LKR22; LMM09]. More generally, in view of the limitations of IRL, it
is interesting to study what data would be sufficient to learn a (near-)optimal
representation of the true reward functions, and how we could actively seek such
data from a human demonstrator.

Q2. (Adversarial): What if the environment is chosen adversarially and
changes over time? How does this impact our ability to learn efficiently?

Typically, reinforcement learning is studied under the assumption that the
environment is fixed a priori and does not change over time. However, this
assumption is often violated in practice, as many real-world environments are
dynamic and undergo changes.

To address such non-stationary environments, many adversarial versions of
traditional reinforcement learning problems have been studied [Aue+95; Pin+17;
RM20]. In these models, the environment is no longer a passive entity providing
transitions and rewards; instead, it actively impedes the learner. This requires
the learning algorithm to detect and adapt to changes in the environment to be
robust, which is crucial for systems that operate over extended periods, where
optimal actions may shift over time.

In adversarial problems, we often adopt a worst-case perspective, granting

3

1. Introduction

the adversary unlimited power over the environment. However, this assumption
can be overly pessimistic in practice and can hinder our understanding of the
relationship between non-stationarity and learning efficiency. For this reason, it
can be insightful to study the situation where the adversary has bounded influence
[BGZ14; GM11]. The first question we then have to address is how to measure
the adversary’s influence on the environment, i.e., non-stationarity, and what
constitutes a good (or even the right) measure of non-stationary complexity. In
a next step, our goal becomes to design algorithms which adapt to the amount of
non-stationarity they experience and thereby perform well under different degrees
of non-stationary complexity. In particular, deriving performance guarantees
with dependencies on the amount of non-stationarity, e.g., the number of times
the environment changes, can help us to better understand the challenges of
learning in adversarial environments.

The second challenge we address is robustness against misspecification. In real-
world applications, there is often uncertainty in the dynamics of the environment
and the model parameters. Bayesian methods provide a natural framework for
modeling and updating uncertainty [Gha+15; Str00]. At the basis of the Bayesian
RL framework is a subjective prior belief over the environments. However, it
is not clear how such a prior can be selected from first principles if we have no
domain knowledge, but still want to be robust. One idea is to assume that an
adversary chooses a worst-case distribution over environments in response to the
learning algorithm [Ber13]. This leads to a minimax-Bayes formulation of the
reinforcement learning problem. We are then interested in the properties of this
minimax-Bayes game and whether solving for minimax solutions can yield more
robust policies.

Q3. (Strategic): When learning in the presence of agents that are neither purely
cooperative nor adversarial but instead act strategically so as to maximize their
own benefit, how can we incentivize desirable agent behavior under uncertainty
while simultaneously minimizing regret? What is the cost of mechanism design
under uncertainty and what are the trade-offs between regret minimization and
incentive design?

In some cases the other agents do not pursue the same goals as the AI
system, nor do they want to explicitly harm it. Instead, each agent may have
their own objective (i.e., utility) which they try to maximize by strategizing
in response to the AI system. For example, consider an e-commerce platform
deploying an online recommendation system to suggest products to sequentially
arriving customers. A strategic agent, such as an e-commerce retailer, may
attempt to maximize their exposure and click-through rate by manipulating
item descriptions or misreporting parameters to the platform.

By viewing such self-interested agents as purely adversarial, i.e., simply
assuming worst-case behavior, we could try to achieve robustness. However, the
result would be an extremely pessimistic system, which fails to utilize the control
the AI system has over the interactions and the utility of the other agents. Could
we make the agents behave in a desirable fashion by aligning agent incentives

4

Summary of Papers

Paper No. Title Research Question

Paper I Interactive Inverse Reinforcement Learning for
Cooperative Games [BGD22]

Q1. (Cooperative)

Paper II Environment Design for Inverse Reinforcement
Learning [BD22]

Q1. (Cooperative)

Paper III An Improved Dynamic Regret Algorithm for Adap-
tive Non-Stationary Dueling Bandits [BS23]

Q2. (Adversarial)

Paper IV Minimax-Bayes Reinforcement Learning [Bue+23b] Q2. (Adversarial)

Paper V Bandits Meet Mechanism Design to Combat Click-
bait in Online Recommendation [Bue+23a]

Q3. (Strategic)

with our, e.g., the e-commerce platform’s, goals?
In game theory this question is studied under the name of mechanism

design [Mye89; Nis+07]. In mechanism design, the goal is to create incentives
(through mechanisms) which—provided that agents act rationally—result in
desirable game outcomes. The problem formulation typically involves a principal
committing to a mechanism, e.g., an allocation rule, and several agents
strategically responding to the committed mechanism. Here, a mechanism is
said to be incentive-compatible if being truthful, i.e., sharing private information
truthfully with the principal, is a dominant strategy for all agents. That is, being
truthful is as least as good as any other strategy regardless of what other agents
do. Such inverse game design is at the core of many real-world applications,
including efficient market design, auction design, and network routing.

We quickly notice that the objectives of online regret minimization and
mechanism design may clash when combining the two areas. While in the former
our goal is to minimize regret by learning an optimal policy and playing optimal
actions, the latter is primarily interested in incentivizing truthful agent behavior.
In many cases, algorithmic actions that serve as incentives for the agents could
be costly (i.e., suboptimal) for the algorithm. For example, to ensure truthful
behavior across all agents, we may have to allocate customers to bad retailers
as well. This could result in a trade-off between incentivizing all agents to be
truthful and minimizing regret. Such dynamics could even be exacerbated when
the environment and agent strategies are unknown to us in advance and must
be learned through interaction. In this case, it is also not clear how to design
mechanisms which learn over time and incentivize agents under environment-
and strategy-uncertainty.

1.3 Summary of Papers

We here briefly summarize the papers and match them to the stated research
questions. A more thorough discussion of the contributions of the papers can be
found in Chapter 3.

5

1. Introduction

Paper I studies the situation where the learner has to solve a task in collaboration
with a human without access to the joint reward function. This is modeled
by an episodic two-player Stackelberg game in which the learner commits
to their policy first. We analyze how the learner should act in order to
learn the joint reward function as quickly as possible and so that the joint
policy is as close to optimal as possible.

Paper II formulates a framework of environment design for inverse reinforcement
learning in which the learner can choose environments, i.e., transition
dynamics, for the human expert to demonstrate the task in. We propose
a minimax-regret objective to choose these environments and empirically
show the benefits of learning from demonstrations in a diverse set of
environments.

Paper III studies non-stationary dueling bandits and various notions of non-
stationary complexity. We propose a schedule-based algorithm that achieves
near-optimal regret w.r.t. the number of best arm switches adaptively, i.e.,
without prior knowledge of the non-stationary complexity.

Paper IV studies minimax-Bayes solutions in reinforcement learning. Here, the
problem is viewed as a game between learning algorithm (i.e., policy)
and nature which select a worst-case prior distribution. We analyze the
properties of this game and show that minimax-Bayes policies can be more
robust than those that assume a standard (e.g., uniform) prior.

Paper V proposes a strategic variant of the multi-armed bandit problem, called
the strategic click-bandit. This model is motivated by applications in online
recommendation where the choice of recommended items depends on both
the click-through rates and the post-click rewards. Like in classical bandits,
rewards follow a fixed unknown distribution. However, we assume that the
click-through rate of each arm is chosen strategically by the arm in order
to maximize the number of times it gets clicked. To solve this problem,
we design an incentive-aware learning algorithm, which simultaneously
incentivizes desirable arm strategies and minimizes regret.

References

[Aue+95] Auer, P. et al. “Gambling in a rigged casino: The adversarial
multi-armed bandit problem”. In: Proceedings of IEEE 36th annual
foundations of computer science. IEEE. 1995, pp. 322–331.

[BCN18] Brown, D. S., Cui, Y., and Niekum, S. “Risk-aware active inverse
reinforcement learning”. In: Conference on Robot Learning. PMLR.
2018, pp. 362–372.

6

References

[BD22] Buening, T. K. and Dimitrakakis, C. “Environment Design for In-
verse Reinforcement Learning”. In: arXiv preprint arXiv:2210.14972
(2022).

[Ber13] Berger, J. O. Statistical decision theory and Bayesian analysis.
Springer Science & Business Media, 2013.

[BGD22] Buening, T. K., George, A.-M., and Dimitrakakis, C. “Interactive
Inverse Reinforcement Learning for Cooperative Games”. In:
International Conference on Machine Learning. PMLR. 2022,
pp. 2393–2413.

[BGZ14] Besbes, O., Gur, Y., and Zeevi, A. “Stochastic multi-armed-bandit
problem with non-stationary rewards”. In: Advances in neural
information processing systems vol. 27 (2014).

[BN19] Brown, D. S. and Niekum, S. “Machine teaching for inverse rein-
forcement learning: Algorithms and applications”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 7749–7758.

[BS23] Buening, T. K. and Saha, A. “ANACONDA: An Improved Dynamic
Regret Algorithm for Adaptive Non-Stationary Dueling Bandits”.
In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2023, pp. 3854–3878.

[Bue+23a] Buening, T. K. et al. “Bandits Meet Mechanism Design to
Combat Clickbait in Online Recommendation”. In: arXiv preprint
arXiv:2311.15647 (2023).

[Bue+23b] Buening, T. K. et al. “Minimax-Bayes Reinforcement Learning”. In:
International Conference on Artificial Intelligence and Statistics.
PMLR. 2023, pp. 7511–7527.

[CA16] Clark, J. and Amodei, D. “Faulty reward functions in the wild”. In:
Internet: https://blog. openai. com/faulty-reward-functions (2016).

[CCS21] Cao, H., Cohen, S., and Szpruch, L. “Identifiability in inverse
reinforcement learning”. In: Advances in Neural Information
Processing Systems vol. 34 (2021), pp. 12362–12373.

[CL12] Cakmak, M. and Lopes, M. “Algorithmic and Human Teaching of
Sequential Decision Tasks”. In: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence. AAAI’12. Toronto,
Ontario, Canada: AAAI Press, 2012, pp. 1536–1542.

[Gab20] Gabriel, I. “Artificial intelligence, values, and alignment”. In: Minds
and machines vol. 30, no. 3 (2020), pp. 411–437.

[Gha+15] Ghavamzadeh, M. et al. “Bayesian reinforcement learning: A
survey”. In: Foundations and Trends® in Machine Learning vol. 8,
no. 5-6 (2015), pp. 359–483.

7

1. Introduction

[GM11] Garivier, A. and Moulines, E. “On upper-confidence bound policies
for switching bandit problems”. In: International Conference on
Algorithmic Learning Theory. Springer. 2011, pp. 174–188.

[Had+16] Hadfield-Menell, D. et al. “Cooperative inverse reinforcement
learning”. In: Advances in neural information processing systems
vol. 29 (2016).

[Kad+23] Kaddour, J. et al. “Challenges and applications of large language
models”. In: arXiv preprint arXiv:2307.10169 (2023).

[Kim+21] Kim, K. et al. “Reward identification in inverse reinforcement
learning”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 5496–5505.

[LKR22] Lindner, D., Krause, A., and Ramponi, G. “Active exploration for
inverse reinforcement learning”. In: Advances in Neural Information
Processing Systems vol. 35 (2022), pp. 5843–5853.

[LMM09] Lopes, M., Melo, F., and Montesano, L. “Active learning for reward
estimation in inverse reinforcement learning”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2009, pp. 31–46.

[Mye89] Myerson, R. B. Mechanism design. Springer, 1989.
[Nis+07] Nisan, N. et al. Algorithmic Game Theory. Cambridge University

Press, 2007.
[NR+00] Ng, A. Y., Russell, S., et al. “Algorithms for inverse reinforcement

learning.” In: Icml. Vol. 1. 2000, p. 2.
[Pin+17] Pinto, L. et al. “Robust adversarial reinforcement learning”. In:

International Conference on Machine Learning. PMLR. 2017,
pp. 2817–2826.

[RM20] Rosenberg, A. and Mansour, Y. “Stochastic shortest path with
adversarially changing costs”. In: arXiv preprint arXiv:2006.11561
(2020).

[Rus21] Russell, S. “Human-compatible artificial intelligence”. In: Human-
like machine intelligence (2021), pp. 3–23.

[Rus98] Russell, S. “Learning agents for uncertain environments”. In:
Proceedings of the eleventh annual conference on Computational
learning theory. 1998, pp. 101–103.

[Ska+22] Skalse, J. et al. “Defining and characterizing reward gaming”. In:
Advances in Neural Information Processing Systems vol. 35 (2022),
pp. 9460–9471.

[Str00] Strens, M. “A Bayesian framework for reinforcement learning”. In:
ICML. Vol. 2000. 2000, pp. 943–950.

[Tsc+19] Tschiatschek, S. et al. “Learner-aware teaching: Inverse reinforce-
ment learning with preferences and constraints”. In: Advances in
neural information processing systems vol. 32 (2019).

8

References

[Zen+22] Zeng, S. et al. “Maximum-likelihood inverse reinforcement learning
with finite-time guarantees”. In: Advances in Neural Information
Processing Systems vol. 35 (2022), pp. 10122–10135.

[Zie+19] Ziegler, D. M. et al. “Fine-tuning language models from human
preferences”. In: arXiv preprint arXiv:1909.08593 (2019).

9

Chapter 2

The Reinforcement Learning
Framework

We now give a brief introduction to the reinforcement learning framework, ranging
from multi-armed bandits to Markov games. In short, reinforcement learning
concerns learning how to act in an unknown environment from interaction so as
to maximize rewards. When formalizing the various models that fall under the
umbrella of reinforcement learning, the differences mainly boil down to different
interpretations of the environment, the actions, and the type of reward signal.
However, the common ground is that in all of these settings a learning agent, also
called the learning algorithm or simply the learner, sequentially takes actions,
upon which some feedback is observed.

Throughout this chapter we try to be as concise as possible and restrict our
attention to the classical problem setups only. For further details we refer to the
several great textbooks in this field, including [DO18; Put90; SB+98] as well as
[LS20; Sli+19] who specifically discuss the bandit problem.

2.1 Bandits

Multi-Armed Bandits (MABs) [Tho33] have been extensively studied in the past
several decades, both due to their practical applications, such as clinical trials
or recommendation systems, but also because the multi-armed bandit problem
is perhaps the simplest instance of the exploration-exploitation dilemma. As
a result, many fundamental algorithmic and technical tools for online regret
minimization such as the optimism in the face of uncertainty principle [ACF02;
LR85], were first developed for bandits and then later extended to richer
reinforcement learning models like the Markov decision process [AJO08, e.g.].

There is an abundance of extensions and variants to the classical multi-armed
bandit problem, which are far too many to cover here. In the following, we
therefore only introduce the standard stochastic MAB problem as well as the
case of stochastic preference-based feedback, also known as the dueling bandit.

2.1.1 Stochastic Multi-Armed Bandits

The stochastic MAB consists of K ∈ N so-called arms with each arm i being
associated with a reward distribution Pi. In MABs, the learner and environment
interact over the course of T ∈ N rounds. In each round t ∈ [T], the learner
selects an arm it ∈ [K] and receives a numerical reward rt,it

∈ R independently
drawn from arm it’s reward distribution Pit

. It is assumed that the learner has

11

2. The Reinforcement Learning Framework

Figure 2.1: Multiple one-armed bandit slot machines next to one another.
Suppose that each slot machine follows some unknown payoff distribution and
we want to maximize our cumulative payoff over T rounds [Pik23].

no prior knowledge of the reward distributions and acts on the basis of past
reward observations only (except for knowledge of K and possibly T as well).

A typical choice for the family of reward distributions is the Bernoulli
distribution, which can be a natural choice for applications in online platforms
which aim to maximize click-rates. More generally, the standard assumption
is that of sub-Gaussian reward distributions, which includes all distributions
with bounded support and which ensures that the rewards concentrate around
their mean at a sufficiently fast rate. Without such restrictions on the reward
distributions, more sophisticated concentration bounds and approaches are
required (see, e.g., heavy-tailed bandits [AJK21; BCL13; Yu+18]).

Regret. The goal of the learner is to maximize the sum of rewards collected
over the course of all T rounds, given by

∑T
t=1 rt,it

. This quantity is
random and we are usually happy with just maximizing the expected return∑T

t=1 µit
= E[

∑T
t=1 rt,it

], where µi := E[rt,i] denotes the mean of arm i’s reward
distribution Pi. To evaluate the learner, we then compare the learner’s expected
return against that of the optimal policy, defined as the policy which picks the
arm with largest mean reward µ∗ := maxi∈[K] µi every round. This quantity is
called the regret of the learner, formally defined as

RT = T · µ∗ −
T∑

t=1
µit
.

Note that the learner’s decisions it may be random, since it can depend on the
randomness of observed rewards or a deliberate randomization of the learner’s
selection rule. Again, we are usually happy to minimize the expected regret E[RT]
and not care too much about the specific realization of RT as we often derive
high-probability bounds on RT .

2.1.2 Dueling Bandits

The stochastic MAB framework has been generalized to different settings, among
which a popular variant is known as the dueling bandit [Yu+18]. Dueling bandits

12

Bandits

are a preference-based version of MABs, where at every round t, the learner
cannot directly observe the random rewards of an arm, but can only indirectly
compare two arms. This is frequently used to model human preferences [Ben+21;
Sui+18], where you ask a person to compare two items, without asking them to
give an absolute evaluation for each one. The randomness in that case can be
due to the random sampling of individuals or individually stochastic responses.

For that reason, instead of reward distributions, it is simpler (and more
general) to define the K-armed (stochastic) dueling bandit through a preference
matrix P = [pi,j]i,j∈[K] ∈ [0, 1]K satisfying pi,j = 1− pj,i. The probability pi,j

is interpreted as the probability that arm i is winning in a duel against arm j.
If pi,j > 0.5, we then say that arm i is preferred over arm j and write i ≻ j to
express this relation. The interaction proceeds again in rounds. Each round
t ∈ [T], the learner selects two arms it, jt ∈ [K] upon which the winner of the
duel is observed, where it wins the duel against jt with probability pit,jt .

In stochastic MABs, it is well-known that the optimality gap ∆i = µ∗ − µi

can be used to characterize the learning complexity of a given MAB problem.
The reason for this is that the gap ∆i governs the number of samples required
to distinguish arm i’s mean reward µi from the maximal mean µ∗. In dueling
bandits, we observe that the closer pi,j is to 0.5, the more difficult it becomes to
distinguish arm i and j. Hence, a reasonable notion of gap in dueling bandits,
which is sometimes also called the preference strength, is

δi,j := pi,j − 0.5.

Solution Concepts. It is not immediately clear how to measure the perfor-
mance of a learning algorithm in dueling bandits. An intuitive choice for a
benchmark is to compare the algorithm’s actions against the arm that is pre-
ferred over any other arm, the so-called Condorcet winner, defined as i∗ ∈ [K]
such that pi∗,i > 0.5 for all i ∈ [K] \ {i∗}. With the Condorcet winner as a
benchmark the learner’s regret is then defined as

RT =
T∑

t=1

δi∗,it + δi∗,jt

2 .

However, notice that the Condorcet winner may not always exist, namely, if for
all i ∈ [K] there exists j ̸= i with j ≻ i. For this reason, several other solution
concepts, where a “best arm” always exists, have been studied in the dueling
bandit literature.

The Copeland winner is the arm that is preferred over the most other arms
[Zog+15]. More precisely, let ci = 1

K−1#{j ∈ [K] : pi,j > 0.5} denote the
normalized Copeland score of arm i. The Copeland winner is then given by
i∗ ∈ argmaxi∈[K] ci and regret defined as

RT =
T∑

t=1
(2ci∗ − cit

− cjt
).

13

2. The Reinforcement Learning Framework

The Borda winner follows a similar idea and is the arm that has the
highest winning probability against a uniformly selected opponent arm [BSH14;
Bus+13]. Formally, letting bi = 1

K−1
∑

j ̸=i pi,j , we define the Borda winner as
i∗ ∈ argmaxi∈[K] bi and define regret as

RT =
T∑

t=1
(2bi∗ − bit − bjt).

Arguably the most elegant definition of a benchmark in dueling bandits
is that of the von Neumann winner [Dud+15]. This notion of benchmark is
particularly intriguing as it naturally brings out the close relationship between
dueling bandits and normal-form zero-sum games. Given a preference matrix P
we can define a zero-sum game matrix as Q = 2P − 1 (i.e., qi,j = 2δi,j). The
interpretation of Q is as follows. Let the outcome of a duel (i, j) be +1 when
arm i wins and −1 if j wins. Then, the entry qi,j denotes the expected outcome
of the duel (i, j). We assume that a duel (i, j) is equivalent to the negation of the
duel (j, i) as well as qii = 0, so that P is skew-symmetric, i.e. P⊤ = −P. Here,
von Neumann’s minimax theorem ensures the existence of a maximin strategy
w ∈ ∆(K), that is, w⊤Qu ≥ 0 for all u ∈ ∆(K). This maximin strategy w is
called the von Neumann winner and is a direct generalization of the Condorcet
winner in the sense that if there exists a Condorcet winner i∗, then the pure
strategy w = Dirac(i∗) is maximin. The regret is then defined similarly to the
Condorcet winner regret as

RT = max
k∈[K]

T∑
t=1

δk,it + δk,jt

2 .

Additional Assumptions on the Preference Model. In dueling bandits, there
are certain preference matrices that are particularly hard to deal with such as
preference matrices with cyclic preferences where i ≻ j and j ≻ k, but k ≻ i.
Such preferences can be difficult to learn efficiently since the estimation of pi,j

and pj,k does not necessarily yield any useful information about pi,k. However,
in practice it is often reasonable to assume some additional properties of the
preference model. For instance, if a user prefers action movies over comedies
and comedies over thrillers, then action movies should also be preferred over
thrillers. For this reason, dueling bandits are often studied under two additional
assumptions on the preference model: Strong Stochastic Transitivity (SST) and
the Stochastic Triangle Inequality (STI).

(SST) If i ≻ j ≻ k, then δi,k ≥ max{δi,j , δj,k}.

(STI) If i ≻ j ≻ k, then δi,k ≤ δi,j + δj,k.

SST and STI imply some useful properties of the preference matrix, which
sometimes allow us to approach the dueling bandit problem similarly to MABs.
Most notably, for i ≻ j and i ≻ k, we obtain δi,j ≤ 2δi,k + δk,j , which can be
useful to decompose the regret (see, e.g., Paper III).

14

Markov Decision Processes

Figure 2.2: The interaction protocol in a Markov decision process.

2.2 Markov Decision Processes

We now introduce the Markov Decision Process (MDP), which extends the
reinforcement learning problem to the case where actions have to be taken in
different situations, i.e., states of the environment.

In an MDP, every round t ∈ [T], the learner observes the current state
of the environment st ∈ S and chooses an action at ∈ A, where S denotes
the state space and A the action space of the MDP. In the next time step,
the environment transitions to state st+1 ∈ S and the learner receives a
reward rt+1 ∈ R. Here, the transition to the next state st+1 is assumed to
depend only on the prior state st and action at and is modeled by a transition
function P(· | s, a) := P(· | st = s, at = a), mapping state-action pairs to a
distribution over next states. The reward signal rt+1 also depends on the state-
action pair (st, at) and is assumed to be sampled from a reward distribution
ρ(· | s, a) := P(· | st = s, at = a). However, often it is enough and more
convenient to consider the expected reward function R : S ×A→ R, defined by
R(s, a) = Eρ[rt+1 | st = s, at = a]. In MDPs, we define the utility of the learner
as

U =
T∑

t=1
γt−1rt,

where γ ∈ (0, 1] is a discount factor. We then also define the utility after round
ℓ as Uℓ =

∑T −ℓ
t=1 γ

t−1rℓ+t.
Broadly speaking, there are two types of situations that require slightly

different modeling assumptions. The first is that of episodic tasks, which consist
of a series of episodes with each episode comprising a finite number of rounds.
In this case, the utility is often undiscounted, i.e., γ = 1. The second situation
is that of an indefinitely continuing tasks, i.e., infinite horizon T =∞. In this
case, the objective of maximizing U can become ill-posed and the discount factor
serves the practical purpose of ensuring that the utility is finite for γ < 1. In the
remainder, to save us some notation, we will consider infinite horizon discounted
MDPs, i.e., T =∞ and γ < 1.

Policies and Value Functions. A history-dependent policy is defined as a
distribution over actions given past observations and the current state, denoted

15

2. The Reinforcement Learning Framework

π(at | st, . . . , s1, at−1, . . . , a1). Often it is enough to restrict our attention to
memoryless policies for which π(at | st) = π(at | st, . . . , s1, at−1, . . . , a1).

Under a given policy π, we then define the value of state s as Vπ(s) = Eπ[Ut |
st = s]. Similarly, we can define the value of a state-action pair under policy
π as Qπ(s, a) = Eπ[Ut | st = s, at = a], which is often called the Q-value. The
optimal policy π∗ in a given MDP is then defined as the policy that maximizes
the value function in every state, i.e., π∗ satisfies Vπ∗(s) ≥ Vπ(s) for all s ∈ S
and policies π.

2.2.1 Markov Games

Markov games, which are sometimes also called multi-agent MDPs or stochastic
games, extend the MDP formulation to the situation where multiple agents
simultaneously act in the same environment. An n-player Markov game consists of
n possibly different action spaces A1, . . . , An and reward distributions ρ1, . . . , ρn.
In each round t ∈ [T], every agent i ∈ [n] takes an action at,i ∈ Ai upon which
the next state is sampled from the transition function P(· | st, at,1, . . . , at,n),
which depends on all agent actions. Each agent i then receives a reward rt,i

from their reward distribution ρi(· | st, at,1, . . . , at,n), and attempts to maximize
their utility U i =

∑T
t=1 γ

t−1rt,i, where γ is some discount factor.
In Markov games the dynamics between agents when the agents’ objectives

are cooperative, competitive, or mixed-motive are particularly interesting. In
the fully cooperative case, all agents have a joint reward function so that
rt,1 = · · · = rt,n. In a two-player Markov game, an interesting special case is
that of fully competitive objectives, i.e., the game becomes zero-sum so that
rt,1 = −rt,2 always.

Another important aspect of learning and interacting in Markov games is the
knowledge each agent possesses and is able to share with other agents. This can
range from a fully centralized setting, where all agents make joint observations,
to a fully decentralized setting with private observations and no communication
between agents.

References

[ACF02] Auer, P., Cesa-Bianchi, N., and Fischer, P. “Finite-time analysis
of the multiarmed bandit problem”. In: Machine learning vol. 47
(2002), pp. 235–256.

[AJK21] Agrawal, S., Juneja, S. K., and Koolen, W. M. “Regret minimization
in heavy-tailed bandits”. In: Conference on Learning Theory. PMLR.
2021, pp. 26–62.

[AJO08] Auer, P., Jaksch, T., and Ortner, R. “Near-optimal regret bounds
for reinforcement learning”. In: Advances in neural information
processing systems vol. 21 (2008).

16

References

[BCL13] Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. “Bandits with heavy
tail”. In: IEEE Transactions on Information Theory vol. 59, no. 11
(2013), pp. 7711–7717.

[Ben+21] Bengs, V. et al. “Preference-based online learning with dueling
bandits: A survey”. In: The Journal of Machine Learning Research
vol. 22, no. 1 (2021), pp. 278–385.

[BSH14] Busa-Fekete, R., Szörenyi, B., and Hüllermeier, E. “PAC rank
elicitation through adaptive sampling of stochastic pairwise pref-
erences”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 28. 1. 2014.

[Bus+13] Busa-Fekete, R. et al. “Top-k selection based on adaptive sampling
of noisy preferences”. In: International Conference on Machine
Learning. PMLR. 2013, pp. 1094–1102.

[DO18] Dimitrakakis, C. and Ortner, R. “Decision making under un-
certainty and reinforcement learning”. In: Book available at
http://www. cse. chalmers. se (2018).

[Dud+15] Dudik, M. et al. “Contextual dueling bandits”. In: Conference on
Learning Theory. PMLR. 2015, pp. 563–587.

[LR85] Lai, T. L. and Robbins, H. “Asymptotically efficient adaptive
allocation rules”. In: Advances in applied mathematics vol. 6, no. 1
(1985), pp. 4–22.

[LS20] Lattimore, T. and Szepesvári, C. Bandit algorithms. Cambridge
University Press, 2020.

[Pik23] Pike-Burke, C. Multi-Armed Bandits. online. 2023.
[Put90] Puterman, M. L. “Markov decision processes”. In: Handbooks in

operations research and management science vol. 2 (1990), pp. 331–
434.

[SB+98] Sutton, R. S., Barto, A. G., et al. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge, 1998.

[Sli+19] Slivkins, A. et al. “Introduction to multi-armed bandits”. In:
Foundations and Trends® in Machine Learning vol. 12, no. 1-2
(2019), pp. 1–286.

[Sui+18] Sui, Y. et al. “Advancements in Dueling Bandits.” In: IJCAI. 2018,
pp. 5502–5510.

[Tho33] Thompson, W. R. “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples”. In:
Biometrika vol. 25, no. 3-4 (1933), pp. 285–294.

[Yu+18] Yu, X. et al. “Pure Exploration of Multi-Armed Bandits with
Heavy-Tailed Payoffs.” In: UAI. 2018, pp. 937–946.

[Zog+15] Zoghi, M. et al. “Copeland dueling bandits”. In: Advances in neural
information processing systems vol. 28 (2015).

17

Chapter 3

Main Findings and Conclusions

In this chapter, we outline the main findings of this thesis. We organize these
along our research questions from Section 1.2 and the included five papers.
Finally, future research directions are discussed in Section 3.1.

Towards Research Question Q1. (Cooperative): Can we learn rewards more
precisely and efficiently by actively seeking information from a human partner
through repeated interaction?

In Paper I, we address this question first from a human-AI collaboration
perspective and consider the problem of repeatedly assisting a human partner in
a two-player Markov game without knowledge or observations of the joint reward
function. We quickly notice that in order to infer the joint reward function
from interactions with the human, we must be able to contextualize observed
human behavior. To this end, when the interaction between learner and human
is sequential, it is natural to assume that the human will adapt their behavior to
the learner’s policy. By equipping the human with a behavioral model, such as
Boltzmann-rationality, and a belief over the learner’s policy in the next episode,
this can be made concrete and can allow us to properly interpret any observed
behavior by viewing the human’s actions as an (approximately) best response to
the learner’s policy.

We distill this model further in Paper I by studying the Stackelberg formulation
of the Markov game in which at the beginning of every episode the learner publicly
commits to a policy before the human does. With knowledge of the learner’s
policy, the human can be viewed as planning and acting in the marginalized single-
agent MDP, which is obtained from the two-player Markov game by marginalizing
over the learner’s policy. Consequently, for the purpose of reward inference,
the learner can actively seek human demonstrations in various scenarios by
committing to a specific policy which in turn implies a marginalized single-agent
MDP for the human to act in.

Based on this observation, Paper I shows that not only is it possible to learn
about the joint reward function when simultaneously acting in a two-player
Markov game, but by observing the human respond to various policies we can
learn a better representation of the reward function with fewer observations
compared to standard IRL settings. In fact, while other work [CCS21; Kim+21,
e.g.] shows that in the standard IRL formulation recovering the true reward
function is generally impossible, we show under mild assumptions that through
repeated interaction we can provably learn a reward function that yields an
optimal policy for the learner when optimized.

The perspective of actively seeking demonstrations in specific scenarios, i.e.,
MDPs, also leads us to questions about what scenarios carry the most useful

19

3. Main Findings and Conclusions

information about the reward function. In Paper II, we expand on this question
and study how to design environments for the human expert to act in so as
to learn their reward function more efficiently and precisely. Our experimental
results suggest that a minimax regret-based objective yields useful demonstration
environments which help us to infer nearly all performance-relevant aspects of
the reward function. More generally, the results of Paper II illustrate the benefits
of active IRL through environment design, and we observe that the reward
functions learned through the interactive environment design process are more
robust against variations in the transition dynamics and transfer better to new
environments.

Towards Research Question Q2. (Adversarial): What if the environment is
chosen adversarially and changes over time? How does this impact our ability to
learn efficiently?

In Paper III, we study non-stationary dueling bandits, where the underlying
preference matrix undergoes adversarial changes over time. Prior work [KBH22;
SG22] studied the number of changes in the preference matrix as a measure
of non-stationary complexity. While the number of such preference switches
indeed relates to the hardness of the problem, it is without doubt a pessimistic
measure of non-stationarity. For example, a change in the preference between
two widely suboptimal arms or a minor change in the preference matrix under
which the optimal arm remains optimal should not significantly impact our
ability to achieve low regret.

To this end, we propose three new notions of non-stationary complexity
for dueling bandits: (1) the number of Condorcet winner switches, (2) the
total variation in the sequence of Condorcet winners, and (3) the number of
“significant” Condorcet winner switches. The novelty of our proposed non-
stationarity measures lies in capturing only the non-stationarity observed for
the ‘best arms’ of the preference sequences. They remain unaffected by any
changes in the suboptimal arms, which makes them less pessimistic. We then
design a learning algorithm which achieves near-optimal dynamic regret w.r.t.
the number of Condorcet winner switches without prior knowledge of the number
of switches, i.e., adaptively. Under additional assumptions on the preference
model, we then also derive sublinear dynamic regret bounds w.r.t. Condorcet
winner variation and significant Condorcet winner switches.

Interestingly, our results suggested that the effect of non-stationarity in
dueling bandits is more severe than in classical multi-armed bandits. While
it is always possible to achieve sublinear dynamic regret w.r.t. significant
switches in multi-armed bandits [SK22], to do so for dueling bandits we had to
impose additional transitivity properties on the preference model, namely, strong
stochastic transitivity and the stochastic triangle inequality (see Section 2.1.2). In
fact, [SA23b] recently showed that it is generally impossible to achieve sublinear
dynamic regret w.r.t. significant Condorcet winner switches if the preference
matrices do not satisfy the aforementioned transitivity assumptions.

In Paper IV, we study worst-case prior distributions in Bayesian reinforcement

20

learning, which is modeled as a minimax game between the learning algorithm,
i.e., policy, and an adversarial nature that selects a worst-case prior distribution
over problem instances, i.e., MDPs. We show that while the minimax-Bayes
game in terms of utility can be degenerate with vacuous solutions, the game
where the learning algorithm minimizes, and the adversary maximizes, regret is
well-defined and minimax theorems hold. We find that minimax-Bayes policies
not only appear to be feasible, but also that such policies can be significantly
more robust than those based on standard uninformative priors.

Towards Research Question Q3. (Strategic): When learning in the presence
of agents that are neither purely cooperative nor adversarial but instead act
strategically so as to maximize their own benefit , how can we incentivize desirable
agent behavior under uncertainty while simultaneously minimizing regret? What
is the cost of mechanism design under uncertainty and what are the trade-offs
between regret minimization and incentive design?

In Paper V, we introduce the strategic click-bandit problem in which each
arm is associated with a click-rate, chosen strategically by the arms, and an
immutable post-click reward. The algorithm designer does not know the post-
click rewards nor the arms’ actions (i.e., strategically chosen click-rates) in
advance, and must learn both values over time. To model the arms’ strategic
behavior, we assume that the arms respond in Nash equilibrium to the learning
algorithm, that is, they choose strategies so as to maximize their total number
of clicks given the algorithm and the environment.

We show that designing the right incentives for the arms by means of an
incentive-aware selection policy is necessary to achieve low regret in the strategic
click-bandit. In particular, incentive-agnostic algorithms, i.e., those that do not
account for the arms’ strategic behavior, imply undesirable equilibria among
arms, which results in linear regret. To address this challenge, we then design
an incentive-aware online learning algorithm, called UCB-S, that combines a
UCB-type selection policy with an additional screening rule. The idea behind
the screening rule is to sanction arms with elimination if they are deviating from
the desired strategies. Due to arm strategies and reward distributions being
unknown in advance, we use confidence bounds to ensure that any elimination is
justified and credible.

Due to the learner’s uncertainty about strategies and reward distributions,
the mechanism design of UCB-S is approximate and leaves room for arms to
exploit the learner’s uncertainty. This leads to an interesting regret bound which
makes the intuition precise that arms can exploit the learner’s uncertainty about
their strategies. More precisely, we observe that the cost of incentive design and
the strategic behavior of the arms is of order

√
KT , which primarily stems from

“optimal” arms deviating by roughly
√
K/T from the desired equilibrium.

Hereto related, we find that the selection policy directly impacts the
truthfulness of the arms, since more frequently selected arms are forced to
choose strategies closer to the desired equilibrium because our estimate of their
strategies is better. This results in a trade-off between incentivizing all arms to

21

3. Main Findings and Conclusions

be truthful by selecting the arms almost uniformly at random and minimizing
regret by selecting only the best arms. More generally, our results suggest that
under strategy-uncertainty, i.e., when strategies are not directly observable but
must be learned over time, precisely incentivizing desirable equilibria is generally
impossible, but, instead, the mechanism design has to be approximate. Moreover,
the “approximation error” and, by extension, the cost of strategy-uncertainty
usually depends on the observational model. For example, in the strategic
click-bandit, the estimates of the arms’ strategies concentrated at a similar rate
as the estimates of the post-click rewards, so that the cost of strategy-uncertainty
roughly matched the MAB learning complexity.

3.1 Future Directions

There are many future directions and open questions related to learning in the
presence of either cooperative, adversarial, or strategic agents. Here, I will
highlight two specific research directions that have received limited attention in
the literature so far.

Modeling Human Choices for Human-AI Alignment. Understanding human
choices is fundamental for building intelligent systems that can interact with
users effectively, align with their preferences, and contribute to the development
of ethical and user-centric AI applications. Recently, this challenge was once
again prominently highlighted by the development and dissemination of large
language models such as ChatGPT, which are fine-tuned using human evaluations
[Ouy+22]. However, the human choice models used in both research and practice
are often overly simplistic and can fail to capture actual human decision-making.
For example, the literature on learning from human demonstrations, including
this thesis’ work on IRL, almost exclusively assumes humans to act rationally
as modeled by a Boltzmann distribution [JMD20], or, even worse, assumes
humans to act optimally w.r.t. some reward model [NR+00]. Moreover, several
other assumptions about human decision-making remain mostly unchallenged in
the human-AI alignment literature [Ji+23; LE22]. For example, current choice
models assume that human decisions are unbiased, and do not take into account
systematic or cognitive biases [Sha+19]. Moreover, it is typically assumed that
human behavior is static in the sense that human choices do not depend on past
interactions or accumulated knowledge.

Clearly, most of these assumptions are violated in practice. Despite this, so
far, there have been barely any attempts at incorporating richer human choice
models into human-AI alignment, let alone studies of the risks of overly restrictive
modeling assumptions [Cas+23; Ji+23]. To this end, to ensure effective human-
AI alignment and collaboration, it is important to reevaluate current choice
models and assumptions, for which we may want to derive insights from other
research areas, such as behavioral psychology, as well. There are also obvious
technical challenges arising from deploying more realistic human models, and
we can expect that designing tractable algorithms for richer human models will

22

Future Directions

be more difficult. In practice, this could lead to a trade-off between choice
model complexity and tractability of the learning algorithms. Moreover, based
on the premise that mathematical choice models cannot accurately model real-
world human decision-making, it is also important to study the effect of human
model misspecification on the performance, robustness, and safety of AI systems,
e.g., those that are trained using human evaluations, or those that use reward
functions learned through IRL [FSD21; HBD22; SA23a].

Online Learning and Mechanism Design. Online learning and algorithmic
mechanism design, two in themselves widely popular areas of research, have
been mostly studied as separate streams. However, incorporating mechanism
design into the algorithm design, that is, taking into account the incentives
created by an algorithm, holds the promise of more efficient and robust systems
that discourage harmful behavior and encourage collaboration among multiple
self-interested agents.

One interesting direction is to study problems at the intersection of
reinforcement learning and mechanism design. So far, this has only been studied
in a few specific cases such as auction design (e.g., pay-per-click auctions) [BKS15;
BSS09] and certain strategic-variants of multi-armed bandits [Bra+19; FPX20]
including our Paper V. However, a clear and general understanding of incentive-
aware regret minimization and the trade-offs between incentive design and regret
is still missing from the literature. There have also been some attempts at solving
mixed-motive Markov games with the help of incentive design, e.g., by equipping
each agent with the ability to share rewards with other agents [Wil+23; Yan+20].
While these works do not necessarily view this as a mechanism design problem,
it could be treated as a problem of decentralized mechanism design, where each
agent has the ability to influence the game outcome by designing incentives for
the other agents.

There has also been a number of works studying strategic agent behavior
in classification, where individuals strategically manipulate their attributes in
response to a classifier so as to obtain a desired classification outcome [Don+18;
Har+16]. While these works take the strategic responses of individuals into
account, they do not design incentives, but instead treat the problem similar to
a robust classification task. As a result, to make these problems tractable, it is
necessary to assume that agents are limited by either a budget or suffer a cost for
manipulating their attributes. However, when the classification task is online and
we encounter the same agents repeatedly, we may be able to design incentives
so as to prevent harmful manipulation and unwanted strategic behavior at its
root. Thus, another interesting direction for future work could be to introduce
active incentive design into online learning problems, apart from reinforcement
learning, such as repeated classification or algorithmic recourse.

23

3. Main Findings and Conclusions

References

[BKS15] Babaioff, M., Kleinberg, R. D., and Slivkins, A. “Truthful mech-
anisms with implicit payment computation”. In: Journal of the
ACM (JACM) vol. 62, no. 2 (2015), pp. 1–37.

[Bra+19] Braverman, M. et al. “Multi-armed bandit problems with strategic
arms”. In: Conference on Learning Theory. PMLR. 2019, pp. 383–
416.

[BSS09] Babaioff, M., Sharma, Y., and Slivkins, A. “Characterizing truthful
multi-armed bandit mechanisms”. In: Proceedings of the 10th ACM
conference on Electronic commerce. 2009, pp. 79–88.

[Cas+23] Casper, S. et al. “Open problems and fundamental limitations of
reinforcement learning from human feedback”. In: arXiv preprint
arXiv:2307.15217 (2023).

[CCS21] Cao, H., Cohen, S., and Szpruch, L. “Identifiability in inverse
reinforcement learning”. In: Advances in Neural Information
Processing Systems vol. 34 (2021), pp. 12362–12373.

[Don+18] Dong, J. et al. “Strategic classification from revealed preferences”.
In: Proceedings of the 2018 ACM Conference on Economics and
Computation. 2018, pp. 55–70.

[FPX20] Feng, Z., Parkes, D., and Xu, H. “The intrinsic robustness of
stochastic bandits to strategic manipulation”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 3092–3101.

[FSD21] Freedman, R., Shah, R., and Dragan, A. “Choice set misspecification
in reward inference”. In: arXiv preprint arXiv:2101.07691 (2021).

[Har+16] Hardt, M. et al. “Strategic classification”. In: Proceedings of the 2016
ACM conference on innovations in theoretical computer science.
2016, pp. 111–122.

[HBD22] Hong, J., Bhatia, K., and Dragan, A. “On the Sensitivity of Reward
Inference to Misspecified Human Models”. In: arXiv preprint
arXiv:2212.04717 (2022).

[Ji+23] Ji, J. et al. “Ai alignment: A comprehensive survey”. In: arXiv
preprint arXiv:2310.19852 (2023).

[JMD20] Jeon, H. J., Milli, S., and Dragan, A. “Reward-rational (implicit)
choice: A unifying formalism for reward learning”. In: Advances in
Neural Information Processing Systems vol. 33 (2020), pp. 4415–
4426.

[KBH22] Kolpaczki, P., Bengs, V., and Hüllermeier, E. “Non-stationary
dueling bandits”. In: arXiv preprint arXiv:2202.00935 (2022).

[Kim+21] Kim, K. et al. “Reward identification in inverse reinforcement
learning”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 5496–5505.

24

References

[LE22] Lindner, D. and El-Assady, M. “Humans are not Boltzmann
Distributions: Challenges and Opportunities for Modelling Human
Feedback and Interaction in Reinforcement Learning”. In: arXiv
preprint arXiv:2206.13316 (2022).

[NR+00] Ng, A. Y., Russell, S., et al. “Algorithms for inverse reinforcement
learning.” In: Icml. Vol. 1. 2000, p. 2.

[Ouy+22] Ouyang, L. et al. “Training language models to follow instructions
with human feedback”. In: Advances in Neural Information
Processing Systems vol. 35 (2022), pp. 27730–27744.

[SA23a] Skalse, J. and Abate, A. “Misspecification in inverse reinforcement
learning”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 37. 12. 2023, pp. 15136–15143.

[SA23b] Suk, J. and Agarwal, A. “When Can We Track Significant
Preference Shifts in Dueling Bandits?” In: arXiv preprint
arXiv:2302.06595 (2023).

[SG22] Saha, A. and Gupta, S. “Optimal and efficient dynamic regret
algorithms for non-stationary dueling bandits”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 19027–19049.

[Sha+19] Shah, R. et al. “On the feasibility of learning, rather than assuming,
human biases for reward inference”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 5670–5679.

[SK22] Suk, J. and Kpotufe, S. “Tracking most significant arm switches
in bandits”. In: Conference on Learning Theory. PMLR. 2022,
pp. 2160–2182.

[Wil+23] Willis, R. et al. “Resolving social dilemmas with minimal reward
transfer”. In: arXiv preprint arXiv:2310.12928 (2023).

[Yan+20] Yang, J. et al. “Learning to incentivize other learning agents”. In:
Advances in Neural Information Processing Systems vol. 33 (2020),
pp. 15208–15219.

25

Papers

References

Remarks

There have been no modifications made to contents of the published versions of
the papers, except for minor attempts at unifying the notation in Paper I and II.

29

Paper I

Interactive Inverse Reinforcement
Learning for Cooperative Games

Thomas Kleine Buening, Anne-Marie George,
Christos Dimitrakakis
Published in 39th International Conference on Machine Learning (ICML), 2022.

I

Abstract

We study the problem of designing autonomous agents that can learn to
cooperate effectively with a potentially suboptimal partner while having
no access to the joint reward function. This problem is modeled as
a cooperative episodic two-agent Markov decision process. We assume
control over only the first of the two agents in a Stackelberg formulation
of the game, where the second agent is acting so as to maximise expected
utility given the first agent’s policy. How should the first agent act in
order to learn the joint reward function as quickly as possible and so
that the joint policy is as close to optimal as possible? We analyse how
knowledge about the reward function can be gained in this interactive
two-agent scenario. We show that when the learning agent’s policies have
a significant effect on the transition function, the reward function can be
learned efficiently.

I.1 Introduction

Recent applications of autonomous systems in our daily lives show that
autonomous agents are no longer deployed in isolation only, but in situations
where they are in close interaction with humans. To facilitate successful and
safe cooperation between autonomous systems and humans, we need to design
agents that can learn about human preferences as well as adapt to suboptimal
human behaviour. We focus on the situation where the autonomous agent and
the human simultaneously act in the same environment. As a result, observed
human behaviour, which could be used to infer preferences, depends on the
learning agent’s actions. This leads to the problem of learning preferences and
intentions from interactions. Learning in these interactive scenarios brings its
own challenges, but also significant benefits as we will see in the following.

In this paper, we consider the problem of learning to cooperate with a
potentially suboptimal partner while having no access to the joint reward function.

31

I. Interactive Inverse Reinforcement Learning for Cooperative Games

This problem is modeled as a cooperative episodic Markov Decision Process
(MDP) between two agents A1 and A2. While agent A2 (the human) knows
the joint reward function, we take the perspective of agent A1 (the learner)
that has to cooperate with A2 without knowing or observing the rewards. As
an example, consider a maze in which the human tries to reach a target while
the learning agent can unlock doors to help the human move, but without
knowing the precise target location. We focus on the Stackelberg formulation of
the game, in which at the beginning of each episode the learner commits to a
policy before the human does. This allows us to view the learning agent as a
designer of environments that the human operates in. For instance, when the
learning agent’s actions correspond to unlocking doors in a grid world, then, in
the Stackelberg game, we can interpret the learner’s policy as choosing a maze
layout, which is communicated to the human at the beginning of the episode
and in which she operates.

Inverse Reinforcement Learning (IRL) [Rus98] can be used to infer the
reward function of an agent from observations of that agent’s behaviour, which is
assumed to be (near-)optimal. In our case, the learner also obtains observations
of the human’s behaviour through interactions, which could then be used to
infer the joint reward function. However, the human’s actions, e.g. the path
taken in a maze, depend on the learner’s policy, e.g. the maze layout, so that in
contrast to the standard IRL formulation the learner now actively influences the
demonstrations of the human expert. This leads to an interesting Interactive
IRL setting, where the learner can actively seek information about the joint
reward function by playing specific policies. In this paper, we analyse how to
infer the unknown (joint) reward function from interactions with the expert
and how the learner should choose its policy so that the two agents collaborate
efficiently over both the short and long term. We lay an emphasis on the role of
the learner as the designer of environments and investigate what environments
allow the learning agent to infer the reward function quickly while achieving
high levels of cooperation.

Outline and Contribution. We discuss related work in Section I.2 and formally
introduce the setting in Section I.3. Section I.4 considers the case where A2 plays
optimally. We show how to learn about the reward function from interactions
with A2 and prove the existence of ideal reward learning environments. We then
construct an algorithm that is no-regret under mild assumptions. Section I.5
considers the case where A2 responds suboptimally. In Section I.5.1, we adapt
conventional Bayesian IRL methods for estimating the reward function to our
setting. We then analyse optimal commitment strategies for cooperating with
suboptimal followers in Section I.5.2. Section I.6 describes the experiments,
which we perform on random MDPs and specially constructed maze problems.
Our experiments support our theoretical results and show that the interactive
nature of our setting allows the learning agent to obtain a much better estimate
of the reward function (compared to the standard IRL setting). We thus achieve
better cooperation by intelligently probing the human’s responses. Future work

32

Related Work

is discussed in Section I.7. Finally, omitted proofs, experimental details and
algorithms are collected in the appendix.

I.2 Related Work

Since our setting requires (a) inferring the joint reward function, as in IRL, and
(b) collaborating with a potentially suboptimal agent, in this section we present
related work in those two domains.

Inverse Reinforcement Learning. IRL [Rus98] aims to find a reward function
that explains observed behaviour of an agent. We face the same problem, with the
main difference being that two agents act in the environment simultaneously, one
of which (the human) knows the reward function and the other (the learner) does
not. Our algorithm for the case when A2 is optimal is based on a characterisation
of reward functions consistent with an optimal policy, similarly to [NR00]. We
extend their characterisation to our interactive setting and prove the existence
of ideal (reward) learning environments. [RA07] adopt a Bayesian perspective to
the IRL problem as it provides a principled way to reason under uncertainty. The
Bayesian formulation of the IRL problem can naturally account for suboptimal
demonstrations as well as partial information and we will show how to translate
the Bayesian approach to our interactive IRL setting.

[Had+16] introduce the problem of cooperative IRL in which a robot must
cooperate with a human but does not initially know the reward function. Their
work focuses on apprenticeship learning, where the robot and the human take
turns demonstrating and performing a task. In particular, they examine the
problem of calculating optimal human demonstrations for the robot to observe.
Instead, we consider the situation when the agents interact by simultaneously
acting in the same environment.

Our setting also notably differs from apprenticeship learning [AN04] and
imitation learning [RBZ06] more generally in that our goal is not to mimic
the behaviour of A2, as effective cooperation between A1 and A2 may require
both agents to perform entirely different tasks. [NS13] consider a cross-training
approach in which a human expert and a robot repeatedly switch roles. In the
first of two phases, the expert operates in an environment, which is influenced by
the robot. The learner then observes the expert and updates its estimates of the
reward function. In the second phase, the robot then demonstrates the learned
policy while the expert influences the transitions. Crucially, in this approach
the human steers the learning of the robot similar to teaching approaches for
IRL [BN19; Par+19]. In contrast, we consider the situation where the learner
actively seeks information from the human over whom we have no control.

[Nat+10] consider a multi-agent extension of IRL in which the learner observes
multiple experts maximising a joint reward function. Similarly, [LAB19] address
the problem of multi-agent IRL in certain general-sum games. In contrast to
their work, we consider the case where the learner is not a passive observer,

33

I. Interactive Inverse Reinforcement Learning for Cooperative Games

but interacts with the other agent and thereby influences what observations it
collects.

[ZP08] and [ZPC09] consider the problem of environment design: how to
modify an environment so as to influence an agent’s decisions. They analyse how
to construct reward incentives to induce a particular policy when the reward
function of the acting agent is unknown. In our setting, we can also view the
learner as a designer of environments that the human operates in, however, with
the difference that the learner influences transitions, but not the underlying
reward function. Moreover, our goal is generally not to steer the human towards
certain behaviour, but rather to learn from and cooperate with a human expert.

Cooperating with suboptimal partners. In the context of human-AI
collaboration, there have been recent efforts addressing the problem of
cooperating with a potentially suboptimal partner when the reward function
is known. In particular, [Dim+17] and [Rad+19] consider a setting where the
human responds suboptimally to the learning agent’s policy. The former focuses
on a single-stage Stackelberg game, while the latter on an online learning variant
of the problem. However, in both cases the learning agent knows the human’s
reward function.

Our work also has some links to the problem of optimal commitment in
Stackelberg games [CS06; Let+12]. While prior work assumes optimal responses
and a potentially competitive game, we focus on finding optimal commitment
strategies when playing with a suboptimal follower in a strictly cooperative
setting.

I.3 Setting

We model this problem as a cooperative two-agent MDP (S,A1, A2,P, R, γ)
between agents A1 and A2, where S denotes a finite state space, Ai a finite
action space of agent Ai with i ∈ {1, 2}, P : S ×A1 ×A2 → ∆(S) the transition
function, R : S → R the joint reward function and γ ∈ [0, 1) the discount factor.
We will take the perspective of agent A1 that, without knowing or observing the
joint reward function, aims to cooperate with its partner A2. We assume that
the interaction between the two agents and the environment takes place in a
sequence of episodes, where at the beginning of each episode, A1 commits to a
policy π1 first. Agent A2 then responds with a policy π2 and the joint policy is
executed until the end of the episode.1 We assume that agents A1 and A2 know
the transition function.

Interaction. The repeated interaction of both agents can be specified as the
following Stackelberg game. In episode t:

1) A1 commits to policy π1
t ,

1Even in MDPs without termination condition, discounting corresponds to episodes that
end with probability 1 − γ each time step.

34

Setting

2) A2 observes π1
t and responds with policy π2

t ,
3a) A1 observes the fully specified policy π2

t , or
3b) A1 observes a trajectory τt = (s0, a0, b0, . . . , sH , aH , bH) of length H + 1.

Alternative 3a) describes the full information setting in which the complete
policy π2

t is available to the learner at the end of each episode. This could, for
instance, be the case when interaction takes place for a sufficiently long time in
each episode, or the same policy is committed by A1 several times so that A1
can effectively observe A2’s response. Alternative 3b) corresponds to the partial
information setting, where A1 interacts with A2 in a series of H + 1 time steps
and observes the generated trajectory only.

I.3.1 Preliminaries

By a slight abuse of notation, we sometimes refer to functions f : S → R as
vectors f ∈ R|S|. For instance, when convenient, we treat reward functions
R : S → R as vectors R ∈ R|S|. Let Vπ1,π2 denote the value function under the
joint policy (π1, π2). The value function satisfies the Bellman equation, which
we can concisely express in matrix-form as

Vπ1,π2 = (I − γPπ1,π2)−1R,

where Vπ1,π2 and R are column vectors and Pπ1,π2 is the transition matrix
obtained from P by marginalising over policy (π1, π2). Let Qπ1,π2(s, a, b) denote
the value of taking joint action (a, b) in state s under policy (π1, π2). When
A1 commits to a policy π1 first, agent A2 gets to plan under the marginalised
transitions Pπ1 : S × A2 → ∆(S) given by Pπ1(s′|s, b) = Ea∼π1 [P(s′|s, a, b)].
The Q-values for A2 under Pπ1 equal Qπ1,π2(s, b) = Ea∼π1 [Qπ1,π2(s, a, b)]
and we denote the optimal Q-value with respect to Pπ1 by Q∗

π1(s, b) =
maxπ2 Qπ1,π2(s, b).

Behavioural Models for A2. A typical assumption about the behaviour of
a partner (or opponent) in game theory [Nis+07] and IRL [NR00] is that of
optimal behaviour, sometimes referred to as fully rational behaviour. In our
case, this means that in episode t, agent A2 plays an optimal response π2

t (π1
t) to

the policy π1
t committed by agent A1. Note that we will simply write π2

t when
the dependence on π1

t is clear from the context.
We are also interested in the case when A2 is suboptimal. A common decision-

model for suboptimal human behaviour in IRL [JMD20], economics [Luc59],
and cognitive science [BST09] are Boltzmann-rational policies for which the
probability of choosing an action is exponentially dependent on its expected
value:

π2(b | s, π1) ∝ exp
(
βQ∗

π1(s, b)
)
.

Here, β ≥ 0 is called the inverse temperature of the distribution and indicates
how rationally A2 is behaving. In particular, for β = 0, A2 acts uniformly at

35

I. Interactive Inverse Reinforcement Learning for Cooperative Games

random, and for β →∞, A2 acts perfectly rational, i.e. optimally in response to
A1’s committed policy.

Objective and Regret. Agent A1 aims to maximise the expected sum of
discounted rewards by learning about the joint reward function and cooperating
with A2. In general, due to the possibly suboptimal nature of A2, we have
that maxπ1 Vπ1,π2(π1) ⪯ maxπ1,π2 Vπ1,π2 , i.e. the value of the game under A2’s
behavioural model is bounded by the value of the joint optimal policy. For
an initial state distribution D, we define the value of the optimal commitment
strategy as

V ∗ = max
π1

Es0∼D

[
Vπ1,π2(π1)(s0)

]
,

where π2(π1) denotes the response of A2 to policy π1. Note that the optimal
value V ∗ may only be well-defined with respect to a specific initial state
distribution as a dominating commitment strategy may fail to exist when A2
responds suboptimally (see Section I.5.2). We define the (per-episode) regret
of playing policy π1 as the difference L (π1) = V ∗ − Es0∼D[Vπ1,π2(π1)(s0)].
Similarly, we define the (online) regret of playing policies π1

1 , . . . , π
1
T as the sum

L (π1
1 , . . . , π

1
T) =

∑T
t=1 L (π1

t).

I.3.2 Interactive IRL

In the classical IRL problem, the learner is able to observe an expert performing
a task. The observations are then interpreted as demonstrations of approximately
optimal behaviour in a fixed single-agent MDP with unknown reward function.
Our setting is substantially different, as two agents must collaborate in the same
two-agent MDP, with the first agent not knowing the common reward function.
As a result, the second agent’s demonstrations depend on the first agent’s policy
and so become context-dependent. In addition, learning must take place in an
online fashion, as the first agent must adapt its policy to extract information
and to better collaborate.

A1 as an MDP Designer. When the learner, A1, commits to a policy π1 at
the beginning of an episode, then — with knowledge of π1 — the expert, A2,
can be seen as planning in a single-agent MDP with transition function Pπ1 .
Consequently, from the perspective of the learner, choosing a policy π1 is
equivalent to designing single-agent MDPs for the human expert to act in. While
the state space, A2’s action space, the (unknown) reward function as well as
the discount factor remain the same across these simplified MDPs, A2 may
face different environment dynamics Pπ1 depending on A1’s policy. This is in
contrast to the standard IRL setting in which demonstrations always take place
in the same fixed MDP. An abstract example where the learner creates different
environments for the expert to operate in is illustrated in Figure I.1(a).

36

Cooperating with Optimal Agents

Figure I.1: (a) A1 designs a maze for A2 to navigate in and collect a reward
in the top right corner. A2 behaves differently, i.e. chooses a different path,
depending on the maze created by A1. (b) The mean reward function computed
using Bayesian IRL [RA07] when observing A2 navigate in each of the three
mazes. Dark colours denote higher estimated rewards.

Context-Dependent Responses. The learner can now interpret the ex-
pert’s response to a policy π1 as a demonstration in the single-agent MDP
(S,A2,Pπ1 , R∗, γ), where R∗ is the true reward function that is unknown and
unobserved by A1. Since A2 faces possibly different environment dynamics
across episodes, we can also expect A2’s behaviour to vary between episodes. In
Figure I.1(a), for instance, the expert adapts their policy to the specific maze
layout created by the learner. As a result, A2’s responses (and thus demonstra-
tions) become context-dependent in the sense that they always depend on A1’s
policy, i.e. the environment that is implicitly generated by A1.

In particular, we see that even though the underlying reward function remains
the same, the results of IRL methods vary depending on the environment in which
demonstrations were provided. Figure I.1(b) also illustrates that reward learning
may overfit to specific environment dynamics, which has also been observed by,
e.g., [Toy+20]. While there may exist certain environment dynamics that are
better suited for learning rewards, in this paper we focus on designing a sequence
of environments, based on past data, to learn the reward function efficiently.

Online Learning. As the game progresses, the learner interacts with the expert
in a series of episodes, thereby collecting a stream of observations. Then, in
order to extract more information as well as to improve cooperation in the next
episode, the learner may want to leverage the observations up to episode t to
learn about the joint reward function and to inform its decisions in episode t+ 1.
Naturally, since the learner actively influences the demonstrations by the expert,
we ask ourselves whether demonstrations under some environment dynamics Pπ1

are more informative than others. In particular, how much more information
(if any) can be gained from demonstrations in unseen environments? In the
following, we will address these questions both theoretically and empirically.

I.4 Cooperating with Optimal Agents

Here we consider the case when A2 responds optimally to the commitment of A1.
In Section I.4.1, we characterise the set of feasible reward functions, i.e. those that
are consistent with observed responses, and prove the existence of ideal (reward)
learning environments. We then describe an algorithm that is no-regret under

37

I. Interactive Inverse Reinforcement Learning for Cooperative Games

an assumption on the identifiability of suboptimal behaviour in Section I.4.2.
The omitted proofs from this section can be found in Appendix A.1.

I.4.1 Learning from Optimal Responses

For our theoretical analysis, we focus on the full information setting in which
A1 observes the fully specified policy played by the expert at the end of each
episode. In a first step, we define a feasible reward function under (π1, π2) as a
reward function for which A2’s response to the commitment of A1 is optimal.

Definition I.4.1. We say that a reward function R is feasible when observing policy
π2 in response to π1 if π2 is optimal in the single-agent MDP (S,A2,Pπ1 , R, γ).

We now adapt the standard result by [NR00] to obtain a characterisation
of the set of feasible reward functions under policies π1 and π2. Here, we let ⪰
denote element-wise inequality.

Theorem I.4.2 ([NR00]). Let there be an MDP without reward function
(S,A1, A2,P, γ). A reward function R is feasible under policies π1 and π2

if and only if (
Pπ1,π2 − Pπ1,b

)(
I − γPπ1,π2

)−1
R ⪰ 0 ∀b ∈ A2,

where Pπ1,b is the one-step transition matrix under policy π1 and action b ∈ A2.

Since A1 and A2 repeatedly interact in a series of episodes, a reward function
is feasible after t episodes if and only if it is feasible under all policies π1

1 , . . . , π
1
t

and corresponding responses π2
1 , . . . , π

2
t . As an immediate consequence of

Theorem I.4.2, we then obtain the following characterisation of reward functions
that are feasible under multiple observations.

Corollary I.4.3. Let there be an MDP without reward function (S,A1, A2,P, γ).
A reward function R is feasible when observing policies (π1

1 , π
2
1), . . . , (π1

t , π
2
t) if

and only if (
Pπ1

1 ,π2
1
− Pπ1

1 ,b

)(
I − γPπ1

1 ,π2
1

)−1
R ⪰ 0 ∀b ∈ A2,

. . .(
Pπ1

t ,π2
t
− Pπ1

t ,b

)(
I − γPπ1

t ,π2
t

)−1
R ⪰ 0 ∀b ∈ A2.

We denote the set of reward functions that satisfy these constraints by Rt =
R((π1

1 , π
2
1), . . . , (π1

t , π
2
t)).

The IRL problem is an inherently ill-posed problem as degenerate solutions
such as constant reward functions explain any observed behaviour. In fact, we
see that any reward function R ∈ R|S| is indistinguishable from its positive affine
transformations Aff(R) = {λ1R+ λ21 : λ1 ≥ 0, λ2 ∈ R}.

Lemma I.4.4. If A2 responds optimally to the commitment of A1, any reward
function R is indistinguishable from its positive affine transformations, i.e. R is
feasible iff every R̄ ∈ Aff(R) is feasible.

38

Cooperating with Optimal Agents

In particular, Lemma I.4.4 states that all positive affine transformations of
the true reward function R∗ are always feasible.2 However, since any reward
function in Aff(R∗) induces the same optimal (joint) policy, finding it is sufficient
for optimally solving the IRL problem.

Perhaps surprisingly, we find that if A1’s policies can induce any transition
matrix for A2, then there exists a policy π1 such that its optimal response π2(π1)
can only be explained by positive affine transformations of the true reward
function.

Theorem I.4.5. (A) If A2 responds optimally and (B) if for all T : S×A2 → ∆(S)
there exists π1 such that Pπ1 ≡ T , then there exists a policy π1 with optimal
response π2 such that the feasible set of reward functions under (π1, π2) is given
by Aff(R∗), i.e. R((π1, π2)) = Aff(R∗).

To emphasise the interpretation and relevance of Theorem I.4.5 in the
standard single-agent IRL setting, we can also rephrase Theorem I.4.5 as follows:

Remark I.4.6. For any state space S, action space A, reward function R∗ and
discount factor γ ∈ [0, 1), there exists a transition matrix T : S × A → ∆(S)
such that the optimal policy π in (S,A, T , R∗, γ) uniquely characterises R∗ up
to positive affine transformations.

This leads to the following corollary, which shows that it is possible to check
in a single episode whether any given reward function is an affine transformation
of R∗.

Corollary I.4.7. Under Assumptions (A) and (B) of Theorem I.4.5, the learner
can verify in any episode whether a reward function R is a positive affine
transformation of the unknown and unobserved reward function R∗.

We have shown that for any reward function R∗ there exists an environment
T : S × A2 → ∆(S) such that the optimal policy with respect to T and R∗

characterises R∗ up to positive affine transformations (Theorem I.4.5). This
implied that the learner, without knowledge of R∗, can verify whether a reward
function is element in Aff(R∗) by playing a specific policy (Corollary I.4.7).
However, the assumption that A1 can create any environment dynamics is very
strong and we notice that, while retrieving the set Aff(R∗) is clearly desirable,
it is generally not necessary in order to cooperate optimally as other reward
functions may also induce optimal behaviour. Thus, milder assumptions may be
sufficient to learn about the reward function so that A1 is an optimal partner
to A2. In the following, we propose an algorithm that learns about the reward
function by adaptively designing environments and that is no-regret under mild
assumptions.

2We generally denote the true underlying reward function by R∗. Note that R∗ is unknown
to and unobserved by A1.

39

I. Interactive Inverse Reinforcement Learning for Cooperative Games

Algorithm 1 Interactive IRL via Linear Programming
1: input: (S,A1, A2,P, γ), initial policy π1

1
2: for t = 1, 2, . . . do
3: commit to policy π1

t

4: observe response π2
t

5: get constraints Ct = C((π1
1 , π

2
1), . . . , (π1

t , π
2
t))

6: sample objective vector c uniformly at random
7: find solution Rt ∈ Rt of LP (I.1) for Ct and c
8: compute π1

t+1 ∈ Πopt
1 (Rt)

I.4.2 An Algorithm for Interactive IRL

We now present an online algorithm for learning from and cooperating with
an optimally responding agent A2 when agent A1 gets to observe the fully
specified policy of A2 at the end of each episode. Note that we can always
restrict the space of reward functions to the |S|-dimensional unit simplex ∆(S)
as any positive affine transformation of R ∈ ∆(S) is equivalent to R in the
sense that they are feasible under the same observations and induce the same
optimal (joint) policies (Lemma I.4.4). Now, as the constraints characterising
the feasible set Rt = R((π1

1 , π
2
1), . . . , (π1

t , π
2
t)) are linear in the reward function

(Corollary I.4.3), we can use a Linear Program (LP) to find a reward function in
Rt ∩∆(S). Let C((π1

1 , π
2
1), . . . , (π1

t , π
2
t)) denote the set of constraints induced

by (π1
1 , π

2
1), . . . , (π1

t , π
2
t). In episode t + 1, we then sample an |S|-dimensional

objective function c uniformly at random and solve the following LP:

max
R∈∆|S|

c⊤R subject to C((π1
1 , π

2
1), . . . , (π1

t , π
2
t)). (I.1)

In the unlikely event that the LP computes the constant reward function in
∆(S), we resample the objective c and solve the LP again. Given a prospective
reward function R, we then want to compute an optimal commitment strategy
in (S,A1, A2,P, R, γ). We see that if A2 responds optimally, it suffices to find
an optimal joint policy as it yields an optimal commitment strategy for A1.

Lemma I.4.8. Let (π̄1, π̄2) be an optimal joint policy. If agent A2 responds
optimally to the commitment of A1, then Vπ̄1,π2(π̄1) = Vπ̄1,π̄2 . In particular, this
entails that maxπ1 Vπ1,π2(π1) = maxπ1,π2 Vπ1,π2 .

Note that an optimal joint policy and thus an optimal commitment strategy
for A1 can be computed in time polynomial in the number of states and actions.
In episode t+ 1, the algorithm then commits to a policy π1

t+1 ∈ Πopt
1 (R), where

R is the solution of the LP (I.1) and Πopt
1 (R) is the set of optimal commitment

strategies under R. A description of this approach is given by Algorithm 1.
In fact, we can show that Algorithm 1 is no-regret under the assumption that
reward functions that induce suboptimal joint policies are identifiable in the
sense that these also induce suboptimal responses.

40

Cooperating with Suboptimal Agents

Proposition I.4.9. Suppose that for any non-constant reward function R ∈ ∆(S)
it holds that if an optimal joint policy (π1, π2) under R is suboptimal under
R∗, then in return there exists an optimal response π2(π1) under R∗ that is
suboptimal under R. Moreover, assume that A2 responds optimally and breaks
ties between equally good policies uniformly at random. Then, the average regret
suffered by Algorithm 1 converges to zero almost surely.

Proof Sketch. The proof relies on a finite cover of the space of reward functions.
We can show that in every step of the algorithm either an optimal policy was
played (generating no regret) or with positive probability the reward functions in
at least one of the sets of the cover become infeasible - thus ultimately reducing
the set of feasible reward functions to only those that yield optimal policies. ■

I.5 Cooperating with Suboptimal Agents

We now consider the case when A2 responds suboptimally according to some
behavioural model such as Boltzmann-rational policies. Section I.5.1 extends the
Bayesian IRL formulation to our setting and Section I.5.2 analyses the problem
of computing optimal commitment strategies when A2 is playing suboptimally.
The omitted proofs from this section can be found in Appendix A.1.

I.5.1 Learning from Suboptimal Responses

When demonstrations are possibly suboptimal, it is natural to take a Bayesian
perspective [RA07] as it provides a principled way to reason under uncertainty.
Moreover, the Bayesian approach naturally extends to the partial information
setting, where only trajectories generated by both agents’ policies are available
for learning. We assume that A2 responds with Boltzmann-rational policies with
unknown inverse temperature β3 and adapt the Bayesian IRL formulation to
our setting. Suppose that in the first t episodes A1 observes (π1

1 , τ1), . . . , (π1
t , τt),

where τi is the trajectory generated by A1’s policy π1
i and A2’s response π2

i (π1
i)

for i ∈ [t].4 Bayesian IRL aims to estimate the posterior

P(R, β | (π1
1 , τ1), . . . , (π1

t , τt))

= P((π1
1 , τ1), . . . , (π1

t , τt) | R, β)P(R)P(β)
P((π1

1 , τ1), . . . , (π1
t , τt))

,

given priors P(R) and P(β) over reward functions and inverse temperatures,
respectively. We notice that the observations (π1

1 , τ1), . . . , (π1
t , τt) are condi-

tionally independent under measure P(· | R, β). As a result, we can express

3Note that any other parameterised behavioural model could also be modeled by this
Bayesian formulation.

4For notational conciseness, we assume here that the length of a trajectory is fixed across
all episodes.

41

I. Interactive Inverse Reinforcement Learning for Cooperative Games

their likelihood as P((π1
1 , τ1), . . . , (π1

t , τt) | R, β) =
∏t

i=1 P((π1
i , τi) | R, β). The

likelihood for each observation (π1
i , τi) can then be computed as

P((π1
i , τi) | R, β) =

H∏
h=0

π2(bi,h | si,h, π
1
i , R, β)

∝ exp
(
β

H∑
h=0

Q∗
π1

i
(si,h, bi,h, R)

)
.

The Bayesian method we employ generates samples from the posterior via Markov
Chain Monte Carlo (MCMC), similarly to [RA07; RD11]. At a high level, we
employ a Metropolis-Hastings algorithm on the reward simplex, with a uniform
prior on the reward function and an exponential prior on the inverse temperature
(see Algorithm 4 in Appendix A.3).

I.5.2 Planning with Suboptimal Agents

Prior work on computing optimal commitment strategies in stochastic games
typically assumes that the follower is responding optimally [Let+12; VS12].
In this section, we analyse optimal commitment strategies for the cooperative
Stackelberg game from Section I.3 when agent A2, i.e. the follower, responds
suboptimally according to some behavioural model, e.g. Boltzmann-rational
policies or ε-greedy policies. For this, the concept of dominating policies play a
crucial role.

Definition I.5.1. A policy π1 is dominating if Vπ1,π2(π1)(s) ≥ Vπ̄1,π2(π̄1)(s) for all
policies π̄1 and states s ∈ S.

The existence of dominating policies is closely linked to our capacity to
compute an optimal commitment strategy efficiently as it is a key requirement
for dynamic programming. We show that if A2 plays proportionally with respect
to the expected value of taking an action, there may not exist dominating policy
for A1 to commit to.

Theorem I.5.2. If π2(b | s) ∝ f(Q∗
π1(s, b)) for any strictly increasing function

f : [0,∞)→ [0,∞), then a dominating commitment strategy for agent A1 may
not exist.

In particular, this means that if A2 plays Boltzmann-rational policies, a
dominating commitment strategy may fail to exist. Note that Theorem I.5.2
generally only holds for strictly increasing functions f , as, for instance, there
always exists a dominating commitment strategy when A2 plays uniformly at
random. However, even for behavioural models as simple as ε-greedy, we see
that a dominating commitment strategy does not necessarily exist.

Lemma I.5.3. If A2 plays ε-greedy, a dominating commitment strategy for A1
may not exist.

42

Experiments

Despite these difficulties, we provide algorithms to approximate optimal
commitment strategies for the case of Boltzmann-rational responses (Algorithm 2)
and ε-greedy responses (Algorithm 3), which can be found in Appendix A.2.
The proposed methods correspond to approximate value iteration algorithms
that keep track of two value functions, each modelling one agent. We include
an empirical evaluation of the proposed algorithms in Appendix A.2.3, which
demonstrates that accounting for the suboptimal nature of A2 reliably improves
performance.

I.6 Experiments

In our experiments, we investigate how much the learner benefits from repeatedly
interacting with the expert. To address this question and emphasise the potential
benefit of demonstrations in different environments, we include the situation
where A1 only observes the response of A2 to the initial policy π1

1 played by A1.
This resembles the standard IRL setting where we observe the expert only in a
single fixed environment (S,A2,Pπ1

1
, R, γ).

Here, the initial policy π1
1 is chosen uniformly at random. We model the

standard IRL setting by repeatedly generating responses of A2 with respect
to π1

1 , i.e. in the implied environment Pπ1
1
. Using these observations, we then

estimate the reward function using standard IRL, compute the optimal policy
with respect to the estimated rewards, and evaluate the regret of this policy. In
contrast, in the Interactive IRL setting, the learner gets to choose a different
policy in subsequent episodes. In this case, we report the online regret of the
actually played policies, i.e. the actual regret of the learner. More details are
provided in Appendix A.3.

I.6.1 Environments

Maze-Maker. In this environment, agents A1 and A2 jointly control a cart in
a 7 × 7 grid world. In this grid world, the doors leading from one cell to the
neighbouring ones are locked. However, A1 can unlock exactly two doors at any

(a) (b) (c)

Figure I.2: Maze-Maker Environment. (a) The initial game setup with starting
position in the center and three rewards scattered across the grid world. (b)
When A1 commits to a policy it implicitly creates a maze for A2 to navigate the
cart in. (c) An exemplary path taken by A2 in the maze implied by A1’s policy.

43

I. Interactive Inverse Reinforcement Learning for Cooperative Games

time step before they fall shut again. Agent A2 can attempt to move the cart
through a door to a neighbouring cell. However, when the door is locked, the
cart stays where it was. The agents are tasked with collecting three rewards
of different value (+1, +2, +3), which disappear once collected. While the
expert, A2, knows where the rewards are placed, the helper, A1, does not know
their location. We model this environment as a two-agent MDP with 392 states
(49× 8) and discount factor γ = 0.9, where A1 has six actions (unlocking two
out of four doors) and A2 four actions (moving the cart North, East, South,
West). An illustration of the environment is given in Figure I.2.

Random MDPs. We also randomly generated MDPs with 200 states and four
actions for each agent. We randomly draw the transition dynamics from a
Dirichlet distribution, with restrictions on the influence of each agent on the
transitions, and the rewards from an i.i.d. Beta distribution. The discount factor
is set to γ = 0.9.

I.6.2 Results

Optimal Responses and Full Information. In Figure I.3a and I.3b, we
observe that the per-episode regret suffered by Algorithm 1 in both environments
decreases notably with the number of episodes played. In particular, we see that
after only a few episodes the per-episode regret of Algorithm 1 is significantly
lower than for maximum-margin IRL [NR00] when A1 only observes the response
to the initial policy π1

1 . This roughly corresponds to the standard IRL setting in
which demonstrations are obtained in a single environment only. We thus find
that the learner significantly benefits from observing A2’s behaviour in new and
different environments, i.e. with respect to different policies of A1. In particular,
it appears to be necessary to observe the expert’s response to several different
policies in order to infer an approximately optimal reward function. The results
are averaged over 5 runs.

0 5 10 15 20 25 30
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-E

pi
so

de
 R

eg
re

t

Interactive IRL via Linear Programming
Max-Margin IRL in Fixed Environment

(a) Maze-Maker

0 5 10 15 20 25 30
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-E

pi
so

de
 R

eg
re

t

Interactive IRL via Linear Programming
Max-Margin IRL in Fixed Environment

(b) Random MDPs

Figure I.3: Optimal Responses and Full Information. Blue lines show the per-
episode regret L (π1

t) of Algorithm 1. Green lines correspond to the regret of
maximum-margin IRL [NR00] performed with observation (π1

1 , π
2
1) only.

44

Discussion and Future Work

0 5 10 15 20 25 30
Episode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pe

r-E
pi

so
de

 R
eg

re
t

Bayesian Interactive IRL
Bayesian IRL in Fixed Environment

(a) Maze-Maker

0 5 10 15 20 25 30
Episode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pe
r-E

pi
so

de
 R

eg
re

t

Bayesian Interactive IRL
Bayesian IRL in Fixed Environment

(b) Random MDPs

Figure I.4: Suboptimal Responses and Partial Information. Blue lines show the
per-episode regret of Bayesian Interactive IRL (Algorithm 4 in Appendix A.3).
Green lines refer to Bayesian IRL performed for trajectories repeatedly generated
by π1

1 and π2
1 .

Suboptimal Responses and Partial Information. For the case of suboptimal
responses and partial information, we let A2 respond with Boltzmann-rational
policies with inverse temperature β = 10 in both environments. We assume that
the inverse temperature, i.e. the optimality of A2, is unknown to the learner and
simulate the partial information setting by generating trajectories according to
policies π1

t and π2
t in episode t. We let an episode end with probability 1 − γ

each time step so that the lengths of observed trajectories are random.
Figure I.4a and I.4b show that Bayesian Interactive IRL (Algorithm 4) reliably

improves its estimate of the true reward function with the number of episodes
played and that the learner again substantially benefits from observing A2 act in
different environments. While obtaining an increasing amount of trajectories in
the same environment improves the estimate of the reward function as well, we
see that trajectories generated in new environments, i.e. with respect to different
policies of A1, yield much more information and thus allow for a better estimate
of the unknown reward function. The results are averaged over 10 runs.

I.7 Discussion and Future Work

We considered an interactive cooperation problem when the objective is unknown
to one of the agents. This can be seen as a two-agent version of the IRL problem,
where one agent is actively trying to infer the preferences of the other in order to
cooperate. While the classical IRL problem is generally ill-posed, the interactive
version that we study here can indeed be solved if the learning agent has sufficient
power to affect the transitions. This is supported by both our experimental and
theoretical results. In particular, the experiments clearly show that we can more
accurately estimate the reward function (and hence collaborate more effectively)
if we intelligently probe the other agent’s responses.

An open theoretical question is whether upper and lower problem-dependent
bounds on the episodic regret could be obtained in this setting. We presume
that such bounds would involve a characterisation of A1’s power to affect the

45

I. Interactive Inverse Reinforcement Learning for Cooperative Games

transitions. A natural extension of our setting would be the case where A1 does
not reveal its policy to A2, but instead the latter simply observes the former’s
actions. In future work, it will also be interesting to construct Interactive IRL
algorithms that scale to large state spaces (or continuous domains) and test
these in real-world applications.

Our observation that reward learning benefits from demonstrations under
different environment dynamics also opens up a new and interesting perspective
on IRL more generally. While current IRL methods still struggle to learn
satisfactory reward functions in certain domains (even with abundant data), it
could be promising to try to infer the reward function from demonstrations in
slight variations of the target environment (when possible). Moreover, our results
suggest that receiving samples under new environment dynamics is generally
more valuable than collecting additional samples from the same environment.
Thus, such an approach could be useful in domains where resources are limited
and samples expensive.

References

[AN04] Abbeel, P. and Ng, A. Y. “Apprenticeship learning via inverse
reinforcement learning”. In: Proceedings of the twenty-first Inter-
national Conference on Machine learning. Banff, Alberta, Canada,
2004, p. 1.

[BN19] Brown, D. S. and Niekum, S. “Machine teaching for inverse rein-
forcement learning: Algorithms and applications”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 7749–7758.

[BST09] Baker, C. L., Saxe, R., and Tenenbaum, J. B. “Action understanding
as inverse planning”. In: Cognition vol. 113, no. 3 (2009), pp. 329–
349.

[CS06] Conitzer, V. and Sandholm, T. “Computing the optimal strategy
to commit to”. In: Proceedings of the 7th ACM conference on
Electronic commerce. 2006, pp. 82–90.

[Dim+17] Dimitrakakis, C. et al. “Multi-View Decision Processes: The Helper-
AI Problem”. In: Advances in Neural Information Processing
Systems. 2017, pp. 5449–5458.

[Gho+19] Ghosh, A. et al. “Towards deployment of robust AI agents for
human-machine partnerships”. In: arXiv preprint arXiv:1910.02330
(2019).

[Had+16] Hadfield-Menell, D. et al. “Cooperative inverse reinforcement
learning”. In: Advances in neural information processing systems
vol. 29 (2016).

46

References

[JMD20] Jeon, H. J., Milli, S., and Dragan, A. “Reward-rational (implicit)
choice: A unifying formalism for reward learning”. In: Advances in
Neural Information Processing Systems vol. 33 (2020), pp. 4415–
4426.

[LAB19] Lin, X., Adams, S. C., and Beling, P. A. “Multi-agent inverse
reinforcement learning for certain general-sum stochastic games”.
In: Journal of Artificial Intelligence Research vol. 66 (2019), pp. 473–
502.

[Let+12] Letchford, J. et al. “Computing optimal strategies to commit to in
stochastic games”. In: Twenty-Sixth AAAI Conference on Artificial
Intelligence. 2012, pp. 1380–1386.

[Luc59] Luce, R. D. Individual choice behavior: A theoretical analysis.
Courier Corporation, 1959.

[Nat+10] Natarajan, S. et al. “Multi-agent inverse reinforcement learning”.
In: 2010 Ninth International Conference on Machine Learning and
Applications. 2010, pp. 395–400.

[Nis+07] Nisan, N. et al. Algorithmic Game Theory. Cambridge University
Press, 2007.

[NR00] Ng, A. Y. and Russell, S. J. “Algorithms for Inverse Reinforce-
ment Learning”. In: Proceedings of the Seventeenth International
Conference on Machine Learning. 2000, p. 2.

[NS13] Nikolaidis, S. and Shah, J. “Human-Robot Cross-Training: Compu-
tational Formulation, Modeling and Evaluation of a Human Team
Training Strategy”. In: Proceedings of the 8th ACM/IEEE Inter-
national Conference on Human-Robot Interaction. HRI ’13. Tokyo,
Japan, 2013, pp. 33–40.

[Par+19] Parameswaran, K. et al. “Interactive teaching algorithms for inverse
reinforcement learning”. In: 28th International Joint Conference
on Artificial Intelligence, 2019. CONF. 2019.

[Put14] Puterman, M. L. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[RA07] Ramachandran, D. and Amir, E. “Bayesian Inverse Reinforcement
Learning”. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence. 2007, pp. 2586–2591.

[Rad+19] Radanovic, G. et al. “Learning to collaborate in Markov decision
processes”. In: International Conference on Machine Learning. 2019,
pp. 5261–5270.

[RBZ06] Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. “Maximum
margin planning”. In: Proceedings of the 23rd International
Conference on Machine learning. 2006, pp. 729–736.

47

I. Interactive Inverse Reinforcement Learning for Cooperative Games

[RD11] Rothkopf, C. A. and Dimitrakakis, C. “Preference elicitation and
inverse reinforcement learning”. In: Joint European conference
on machine learning and knowledge discovery in databases. 2011,
pp. 34–48.

[Rus98] Russell, S. “Learning agents for uncertain environments”. In:
Proceedings of the eleventh annual conference on Computational
learning theory. 1998, pp. 101–103.

[Toy+20] Toyer, S. et al. “The MAGICAL Benchmark for Robust Imitation”.
In: Advances in Neural Information Processing Systems. 2020.

[VS12] Vorobeychik, Y. and Singh, S. “Computing stackelberg equilibria
in discounted stochastic games”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 26. 1. 2012, pp. 1478–
1484.

[ZP08] Zhang, H. and Parkes, D. “Enabling environment design via
active indirect elicitation”. In: 4th Multidisciplinary Workshop on
Advances in Preference Handling. 2008.

[ZPC09] Zhang, H., Parkes, D. C., and Chen, Y. “Policy Teaching through
Reward Function Learning”. In: EC ’09. Stanford, California, USA:
Association for Computing Machinery, 2009, pp. 295–304.

48

Proofs

A.1 Proofs

A.1.1 Proof of Theorem I.4.2

Proof of Theorem I.4.2. Substituting transition matrix P by Pπ1 in the proof
by [NR00] readily implies Theorem I.4.2. Note that if π2(s) = b̄ for all s ∈ S,
the inequality vacuously holds for b = b̄. Thus, in general we obtain |A2| − 1
many of the above vector inequalities. ■

A.1.2 Proof of Lemma I.4.4

Proof of Lemma I.4.4. We write Vπ1,π2(R) for the value function under joint
policy (π1, π2) and reward function R. The Bellman equation tells us that the
value function under (π1, π2) and reward function λ1R+ λ21 ∈ Aff(R) is given
by

Vπ1,π2(λ1R+ λ21) = (I − γPπ1,π2)−1(λ1R+ λ21).

Now, since Pπ1,π2 is a stochastic matrix, it is easy to check that (I −
γPπ1,π2)−11 = (1− γ)−11. It then follows that

Vπ1,π2(λ1R+ λ21) = λ1Vπ1,π2(R) +K,

where K = λ2(1 − γ)−11. Hence, we find that any policy π2 that maximises
Vπ1,π2(R) also maximises Vπ1,π2(λ1R + λ21) for λ1 ≥ 0 and λ2 ∈ R, and vice
versa. This means that R is feasible if and only if every R̄ ∈ Aff(R) is feasible. ■

A.1.3 Proof of Theorem I.4.5

For the proof of Theorem I.4.5, we will need the following technical lemma.

Lemma A.1.1. Any (two-dimensional) plane R ⊆ RN can be uniquely
characterized by the intersection of N−1 many half-spaces Hi = {x ∈ RN : φ⊤

i x ≥
0}, where φ1, . . . , φN−1 ∈ RN are vectors orthogonal to R.

Proof of Lemma A.1.1. W.lo.g. let R be some plane in RN through the origin.
Let the vectors V1 and V2 denote an orthogonal basis of R, i.e. R = {λ1V1 +
λ2V2 : λ1, λ2 ∈ R} and V⊤

1 V2 = 0. We can then find vectors φ1, . . . , φN−2 such
that {φ1, . . . , φN−2,V1,V2} forms an orthogonal basis of RN . In particular, we
then have φ⊤

i x = 0 for all x ∈ R and i ∈ [N − 2]. Moreover, we define the vector

φN−1 = −(φ1 + · · ·+ φN−2)

and note that φN−1 is orthogonal to R as well. Let the half-spaces induced by
vectors φ1, . . . , φN−1 be given by Hi = {x ∈ RN : φ⊤

i x ≥ 0} for i ∈ [N − 1]. We
now show that H1 ∩ · · · ∩HN−1 = R.

We begin by verifying that H1 ∩ · · · ∩HN−1 ⊆ R. Suppose this is not true
and there exists a vector w /∈ R such that φ⊤

i w ≥ 0 for all i ∈ [N − 1], i.e.
w ∈ H1 ∩ · · · ∩ HN−1. Then, we must have φ⊤

j w > 0 for some j ∈ [N − 2]

49

I. Interactive Inverse Reinforcement Learning for Cooperative Games

as the orthogonal complement of span(φ1, . . . , φN−2) is given by R and we
assumed w /∈ R. By definition of φN−1, we have φ1 + · · ·+ φN−1 = 0 and thus,
(φ1 + · · ·+ φN−1)⊤w = 0. However, it also holds that

φ⊤
1 w + · · ·+ φ⊤

N−1w > 0,

since φ⊤
i w ≥ 0 for i ∈ [N − 1] and φ⊤

j w > 0 for some j ∈ [N − 2]. Thus, such w
cannot exist and we have shown that H1 ∩ · · · ∩HN−1 ⊆ R. Finally, the relation
R ⊆ H1 ∩ · · · ∩HN−1 also holds as φ1, . . . , φN−1 are chosen orthogonal to R
and thus, φ⊤

i x = 0 for all i ∈ [N − 1] and x ∈ R.
Note that we can analogously prove that any line C = {λv : λ ∈ R} in RN

can be uniquely characterised by N half-spaces. In this case, we can find an
orthogonal basis {φ1, . . . , φN−1, v} and define φN = −(φ1 + · · ·+ φN−1). The
remainder of the proof then follows the same line of argument as before. ■

Proof of Theorem I.4.5. Let N = |S|. We will now show that under the
assumptions of Theorem I.4.5, there exists a policy π1 with optimal response π2

so that only positive affine transformations of R∗ are feasible under observation
(π1, π2), i.e. R((π1, π2) = Aff(R∗).

First we observe that we can w.l.o.g. assume only two actions for A2, i.e.
|A2| = 2. To see this suppose that |A2| > 2 and consider an action space
A′

2 ⊂ A2 with |A′
2| ≥ 2 and transition kernel P ′

π1 : S × A′
2 → ∆(S) defined as

P ′
π1(· | s, b) = Pπ1(· | s, b) for b ∈ A′

2. If π2(s) ∈ A′
2 for all s ∈ S, then the

feasible set under action space A2 is subset of the feasible set under action space
A′

2. Thus, we can assume w.l.o.g. that A2 = {b1, b2}. From hereon out, we
assume that the true reward function R∗ is non-constant. The special case of a
constant true reward function is addressed at the end.

We first construct an orthogonal basis {φ1, . . . , φN} such that the corre-
sponding half-spaces characterise Aff(R∗ and then show that there exists π1 such
that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)−1 = (φ1, . . . , φN)⊤.

For non-constant R∗ we have that R ≜ span(R∗,1) describes a plane in RN and
Aff(R∗) ⊂ R. By Lemma A.1.1, there exist vectors φ1, . . . , φN−1 ∈ RN such that
φ⊤

i x = 0 for all x ∈ R and H1∩ · · ·∩HN−1 = R with Hi = {x ∈ RN : φ⊤
i x ≥ 0}.

In particular, it holds that φ⊤
i 1 = 0, i.e. ∥φi∥1 = 0 for all i ∈ [N − 1].

Now, let us consider the orthogonal projection of R∗ given by R∗ = α1+w for
α ∈ R and w ∈ RN with w⊤1 = 0. It follows that w⊤R∗ = w⊤(α1+w) = w⊤w >
0, since R∗ is non-constant and thus, w ̸= 0. Let us define φN = ηw for some
scalar η > 0. Then, we have φ⊤

Nx ≥ 0 for all x ∈ {λ1R
∗ + λ21 : λ ≥ 0, λ2 ∈ R},

since w⊤R∗ > 0 and w⊤1 = 0. Similarly, we have φ⊤
N x̂ < 0 for all

x̂ ∈ {λ1R
∗ + λ21 : λ1 < 0, λ2 ∈ R}. It then follows that

H1 ∩ · · · ∩HN = R∩HN = Aff(R∗),

where HN = {x ∈ RN : φ⊤
Nx ≥ 0}. Note that every φi with i ∈ [N] satisfies

∥φi∥1 = 0 and that the half-spaces Hi are invariant under positive linear

50

Proofs

transformation of φi. We can therefore assume that φ1, . . . , φN take values in
[1

N −1, 1
N]. We denote with Φ = (φ1, . . . , φN)⊤ the matrix with rows φ1, . . . , φN .

Recall that A2 = {b1, b2}. We will now show that there exists a policy π1
such that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)−1 = Φ.

By assumption, there exists a π1 such that Pπ1,b1 ≡ B1 and Pπ1,b2 ≡ B2 for any
two stochastic matrices B1 and B2. We set Pπ1,b1(s′ | s) = 1

N for all s, s′ ∈ S,
which yields

Φ(I − γPπ1,b1) = Φ− γΦPπ1,b1 = Φ, (2)

since ∥φi∥1 = 0 for all i ∈ [N] and Pπ1,b1 is a constant matrix. Now, set
Pπ1,b2 ≡ Pπ1,b1 − Φ and note that since ∥φi∥1 = 0 for all i ∈ [N], the matrix
Pπ1,b2 is indeed stochastic. It then follows that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)−1 = Φ(I − γPπ1,b1)−1 = Φ,

by equation (2). Note that this means that indeed action b1 is the optimal
response to policy π1 as ΦR∗ ⪰ 0 by construction of Φ.5 Therefore, from
Theorem I.4.2 it follows that any feasible reward function R must satisfy

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)−1R = ΦR ⪰ 0,

i.e. φ⊤
i R ≥ 0 for all i ∈ [N]. Hence, any feasible reward function must be in

H1 ∩ · · · ∩HN and thus element in Aff(R∗). So, we have shown that the feasible
set of reward functions under π1 with response π2 ≡ b1 is given by Aff(R∗).

In the special case of the constant reward function R∗, we have that the set
Aff(R∗) = {λ1 : λ ∈ R} becomes not a plane, but a line in RN . The proof for
this case then progresses similarly to the proof above with the difference that we
describe Aff(R∗) by N many half-spaces and that there is no need to consider
the orthogonal projection of R∗ as done before.

■

A.1.4 Proof of Corollary I.4.7

Proof. Recall that it follows from Lemma I.4.4 that Aff(R∗) ⊆ R((π1, π2)) for
any policy π1 with optimal response π2. In other words, the positive affine
transformations of the unknown reward function R∗ are always feasible as R∗ is
always feasible. Now, let R ∈ R|S| be some reward function and suppose that
A1 plays the “ideal” policy π1 with respect to R as it is constructed in the proof
of Theorem I.4.5. Let π2 be an optimal response to π1. It follows from the
combination of Lemma I.4.4 and Theorem I.4.5 that R((π1, π2)) = Aff(R) if
and only if R ∈ Aff(R∗). Now, using linear programming, we can check whether
R((π1, π2)) = Aff(R) holds true. If R((π1, π2)) = Aff(R), we know that R must
be a positive affine transformation of R∗. On the other hand, if we observe
R((π1, π2)) ̸= Aff(R), then R cannot be element in Aff(R∗).

■
5This can, for instance, be verified using Theorem I.4.2.

51

I. Interactive Inverse Reinforcement Learning for Cooperative Games

A.1.5 Proof of Lemma I.4.8

Proof of Lemma I.4.8. Let (π̄1, π̄2) ∈ argmaxπ1,π2 Vπ1,π2 . Suppose A1 commits
to π̄1. Then, A2 responds with π2(π̄1) such that Vπ̂1,π2(π̄1) ⪰ Vπ̄1,π2 for all π2

by optimality of A2. Now, since Vπ̄1,π̄2 ⪰ maxπ1 Vπ1,π2(π1) always, we also have

max
π1
Vπ1,π2(π1) ⪰ Vπ̄1,π2(π̄1) ⪰ Vπ̄1,π̄2 ⪰ max

π1
Vπ1,π2(π1).

Thus, maxπ1 Vπ1,π2(π1) = Vπ̄1,π̄2 = maxπ1,π2 Vπ1,π2 . In other words, Lemma I.4.8
states that the optimal joint policy yields an optimal commitment strategy for
A1 when A2 responds optimally. ■

A.1.6 Proof of Proposition I.4.9

Proposition A.1.1. Suppose that for any non-constant reward function R ∈ ∆(S)
it holds that if an optimal joint policy (π1, π2) under R is suboptimal under R∗,
then in return there exists an optimal response π2(π1) under R∗ that is suboptimal
under R. Moreover, assume that A2 responds optimally and breaks ties between
equally good policies uniformly at random. Then, the average regret suffered by
Algorithm 1 converges to zero almost surely.

For the proof of Proposition I.4.9, we will need the following sets: Let Πopt(R)
denote the set of optimal joint policies under reward function R, i.e. the set of
optimal joint policies in the MDP (S,A1, A2,P, R, γ). Further, we denote the
set of optimal responses under policy π1 and reward function R by Πopt

2 (R, π1).
A key object of interest is the following set of reward functions. Let O be the
set of reward functions in ∆(S) that always induce an optimal joint policy, i.e.

O = {R ∈ ∆(S) : Πopt(R) ⊆ Πopt(R∗)}.

Note that by Lemma I.4.8 any optimal joint policy yields an optimal commitment
strategy for agent A1, i.e. any R ∈ O induces an optimal commitment strategy.
We can easily check that O is a convex set.

Lemma A.1.2. The set O is convex.

Proof of Lemma A.1.2. Let R1, R2 ∈ O. We show that λR1 + (1−λ)R2 ∈ O for
any λ ∈ [0, 1]. Recall that the value function Vπ(R) = (I−γPπ)−1R is linear in R
and we therefore have Vπ(λR1 +(1−λ)R2) = λVπ(R1)+(1−λ)Vπ(R2). In a first
step, we prove Πopt(λR1 +(1−λ)R2) ⊆ Πopt(R∗). Let π ∈ Πopt(λR1 +(1−λ)R2).
Then, for all policies ν it must hold that

Vπ(λR1 + (1− λ)R2) ⪰ Vν(λR1 + (1− λ)R2), (3)

where ≻ denotes element-wise inequality. Now, suppose that π /∈ Πopt(R∗). It
follows that Vπ(R1) ⪯ Vν(R1) and Vπ(R2) ⪯ Vν(R2) for some ν ∈ Πopt(R∗) =
Πopt(R1) = Πopt(R2) with strict inequality for at least one s ∈ S. This
contradicts equation (3) and it follows that Πopt(λR1 + (1− λ)R2) ⊆ Πopt(R∗).
We will now verify the relation Πopt(R∗) ⊆ Πopt(λR1 + (1 − λ)R2). For

52

Proofs

any π ∈ Πopt(R∗), we have Vπ(R1) ⪰ Vν(R1) and Vπ(R2) ⪰ Vν(R2) for all
policies ν. It then directly follows that π ∈ Πopt(λR1 + (1 − λ)R2) and thus,
Πopt(R∗) ⊆ Πopt(λR1 + (1− λ)R2), i.e. λR1 + (1− λ)R2 ∈ O. ■

Interestingly, Lemma A.1.2 implies that the set of reward functions that
induce an optimal commitment strategy is a connected set. We will now prove
Proposition I.4.9.

Proof of Proposition I.4.9. As Algorithm 1 only considers reward functions in
the simplex ∆(S), we will simply write Rt instead of Rt ∩∆(S) for notational
convenience.

In episode t, Algorithm 1 chooses a vertex of the set of feasible solutions of
the linear program, i.e. a reward function Rt ∈ Rt. Note that by construction
of Algorithm 1 we never select the constant reward function in ∆(S). For any
Rt ∈ Rt obtained from the LP (I.1) with uniformly random objective function
c there are two possible cases: Rt ∈ O or Rt /∈ O. If Rt ∈ O, then Rt induces
an optimal joint policy, i.e. an optimal commitment strategy by Lemma I.4.8.
Accordingly, Algorithm 1 commits to an optimal commitment strategy and thus
suffers zero regret in episode t + 1. We want to highlight that the proof does
not require that the objective function in Algorithm 1 is being chosen in a
randomised fashion. However, randomising the choice of the objective improved
exploration in our experiments.

In the following, we show that for the case of Rt /∈ O, Algorithm 1 strictly
decreases the set of feasible reward functions with positive probability. In order
to show this, we first construct a finite cover of ∆(S). Let Π1 and Π2 denote the
sets of deterministic policies for A1 and A2, respectively.6 Note that both Π1
and Π2 are finite as we assumed finite action spaces A1 and A2. Let 2Π2 denote
the power set of Π2. For π1 ∈ Π1 and Π̄2 ∈ 2Π2 , we define

B(π1, Π̄2) = {R ∈ ∆(S) : Π̄2 = Πopt
2 (R, π1)}.

The set B(π1, Π̄2) thus describes the reward functions that make the policies
in Π̄2 optimal in response to π1. Indeed, for any fixed π1 ∈ Π1, the collection
B(π1) = {B(π1, Π̄2) : Π̄2 ∈ 2Π2} forms a finite partition of ∆(S)⋃

Π̄2∈2Π2
B(π1, Π̄2) = ∆(S),

as for any R ∈ ∆(S) there always exists at least one deterministic optimal
policy in the MDP (S,A2,Pπ1 , R, γ) [Put14]. In other words, for any π1 ∈ Π1,
we partition ∆(S) into sets that induce the same set of optimal responses to
π1. Naturally, due to B(π1) being a finite partition of ∆(S) for any π1, the
Lebesgue-measure for all but finitely many B(π1, Π̄2) must be larger than some
constant ε > 0.

6We assume here that A2 responds with deterministic policies in order to keep the proof
as comprehensible as possible. However, this assumption can be dropped as we can still give a
finite partition of ∆(S) when A2 also responds with optimal stochastic policies.

53

I. Interactive Inverse Reinforcement Learning for Cooperative Games

We now show that if Rt /∈ O, then with positive probability the set of feasible
solutions is decreased by at least ε. If Rt /∈ O, then Algorithm 1 computes
an optimal commitment strategy π1

t+1 ∈ Πopt
1 (Rt) (by computing the optimal

joint policy under Rt, see Lemma I.4.8), which may be suboptimal under R∗, i.e.
π1

t+1 /∈ Πopt
1 (R∗).

Now, if π1
t+1 is suboptimal under R∗, then by assumption7 there exists

an optimal response π2
t+1 ∈ Πopt

2 (R∗, π1
t+1) that is suboptimal under Rt, i.e.

π2
t+1 /∈ Πopt

2 (Rt, π
1
t+1). Recall that by our assumption A2 selects its response

uniformly at random from Πopt
2 (R∗, π1

t+1). Since Πopt
2 (R∗, π1

t+1) is finite, A2 will
respond with π2

t+1 /∈ Πopt
2 (Rt, π

1
t+1) with positive probability.

In that case, after observing π2
t+1 the reward function Rt cannot

be feasible anymore, i.e. Rt /∈ Rt+1. In addition, we then also have
that B(π1

t+1,Π
opt
2 (Rt, π

1
t+1)) ∩ Rt+1 = ∅, as all reward functions in

B(π1
t+1,Π

opt
2 (Rt, π

1
t+1)) induce the same optimal responses Πopt

2 (Rt, π
1
t+1) and

π2
t+1 is not in Πopt

2 (Rt, π
1
t+1). In other words, any R ∈ B(π1

t+1,Π
opt
2 (Rt, π

1
t+1))

cannot satisfy the constraints of Corollary I.4.3.
As seen before, for all but finitely many Π̄2 ∈ 2Π2 we have λ(B(π1, Π̄2)) > ε,

where λ is the Lebesgue-measure. As a consequence, if Rt /∈ O, then we have
for all but finitely many cases that λ(Rt+1) ≤ λ(R \B(π1

t+1,Π
opt
2 (Rt, π

1
t+1)) ≤

λ(Rt)− ε.
Therefore, every time when Algorithm 1 chooses a reward function Rt /∈ O8

inducing a suboptimal commitment strategy, (with positive probability) Rt will
not be feasible anymore and (except for finitely many times) we reduce the size
of the feasible set by at least the constant amount ε. As a result, the feasible
set of reward function Rt will eventually become smaller than or equal to O, i.e.
Rt ⊆ O. Consequently, Algorithm 1 will almost surely converge to choosing only
reward function in O and will thus only play optimal commitment strategies. ■

A.1.7 Proof of Theorem I.5.2

Proof of Theorem I.5.2. We provide a problem instance for which there exists
no dominating policy for any strictly increasing function f : [0,∞) → [0,∞).
Consider the two-agent MDP in Figure A.1.5. We omitted consecutive transitions
in Figure A.1.5, but assume that states s1, s3, and s4 lead to the same (terminal)
state with probability one.

We will show that the strictly optimal policy when in state s0 is strictly
suboptimal when in state s2 for specific choices of x > 0 and y > 0. For simplicity,
we omit the discount factor γ in the following.
A1 only influences transitions in state s2 and thus there are essentially only

two deterministic policies for A1, namely π1 with π1(s2) = a1 and π̄1 with
π̄1(s2) = a2. Since y > 0, action a1 is optimal in state s2 and so π1 is the

7Note that if π1 is a suboptimal commitment strategy, then the joint policy (π1, π2) is
suboptimal for any π2.

8Recall that the special case of the constant reward function (which is not in O) can be
ignored.

54

Proofs

s0

s1

x

s2

s3

y

s4

0

b1

b2 a1

a2

Figure A.1.5: Counterexample. All transitions are deterministic. The action of
A2 alone determines the transitions from state s0 to states s1 and s2, whereas in
state s2 only the action of A1 affects transitions. The green x, y and 0 denote
the rewards obtained in states s1, s3, and s4, respectively. States s0 and s2 yield
zero reward.

optimal policy in state s2. We now show that there exists x, y > 0 such that
Vπ1,π2(π1)(s0) < Vπ̄1,π2(π̄1)(s0), i.e. π̄1 is strictly better than π1 when in state s0.

Omitting the discount factor, we have Q∗
π1(s0, b1) = x and Q∗

π1(s0, b2) = y
as well as Q∗

π̄1(s0, b1) = x and Q∗
π̄1(s1, b2) = 0. We therefore want to show that

there exist x, y > 0 such that

Vπ1,π2(π1)(s1) = x
f(x)

f(x) + f(y) + y
f(y)

f(x) + f(y)

< x
f(x)

f(x) + f(0) = Vπ̄1,π2(π̄1)(s1).

Suppose the contrary is true. Then, for all x, y > 0 it must hold that

x
f(x)

f(x) + f(y) + y
f(y)

f(x) + f(y) ≥ x
f(x)

f(x) + f(0)

⇔ x
(f(x)
f(x) + f(0) −

f(x)
f(x) + f(y)

)
≤ y f(y)

f(x) + f(y)

⇔ xf(x)
(f(x) + f(y)
f(x) + f(0) − 1

)
≤ yf(y)

⇔ xf(x) f(y)− f(0)
f(x) + f(0) ≤ yf(y). (4)

Note that f(y) − f(0) > 0, since f is strictly increasing. Now, for any fixed
y > 0, we have that f(x) f(y)−f(0)

f(x)+f(0) → 1 as x→∞, and the expression is therefore
bounded from below by some positive value for x sufficiently large. Hence, for any
fixed y there exists an x > 0 such that (4) does not hold. This shows that in fact
for any y > 0 there exists x > 0 such that Vπ1,π2(π1)(s0) < Vπ̄1,π2(π̄1)(s0), whereas
we have seen before that Vπ1,π2(π1)(s2) > Vπ̄1,π2(π̄1)(s2). Hence, no dominating
commitment strategy exists for the MDP depicted in Figure A.1.5. ■

55

I. Interactive Inverse Reinforcement Learning for Cooperative Games

s0

s1

+1

s2

s3

+2

s4

− 2(2−δ)(1−ε/2)
ε

s5

0

b1

b2 (a1, b1)

(a1, b2)

a2

Figure A.1.6: Counterexample for ε-greedy responses. All transitions are
deterministic. The actions from agent A2 alone determine the transitions from
state s0 to states s1 and s2. The green numbers denote the rewards obtained in
the respective states. States s0 and s2 yield zero reward.

A.1.8 Proof of Lemma I.5.3

We define an ε-greedy response to a policy π1 as the policy

π2
ε(s, π1) =

{
π2

∗(s, π1) w.p. 1− ε
U(A2) w.p. ε,

where ε ∈ [0, 1], π2
∗(π1) is an optimal response to π1, and U(A2) the uniform

distribution over A2.

Proof of Lemma I.5.3. We prove Lemma I.5.3 by means of the counterexample
shown in Figure A.1.6. For convenience, we omit the discount factor here and
assume that states s1, s3, s4, and s5 lead to some terminal state with probability
one. There are two (deterministic) policies A1 can commit to: π1(s2) = a1 and
π̄1(s2) = a2.

For notational convenience, we write Va1(s) ≜ Vπ1,π2
ε(π1)(s) and

Va2(s) ≜ Vπ̄1,π2
ε(π̄1)(s). Note that if A1 commits to π1, the optimal action

for A2 in state s0 is to play b2 followed by b1 in state s2. Recall that A2 is
assumed to play ϵ-greedy, i.e. in any state, A2 plays the optimal response with
probability (1− ϵ) and with probability ϵ selects an action uniformly at random.
As a result, we have

Va1(s2) = 2(1− ε/2)− (2− δ)(1− ε/2) = δ(1− ε/2) > 0
Va1(s0) = δ(1− ε/2)2 + ε/2.

On the other hand, if A1 commits to π̄1, it is optimal for A2 to play b1 in
state s0, i.e. Va2(s0) = (1 − ε/2). We observe that in state s2, playing a1 is
optimal as Va1(s2) > Va2(s2) = 0. However, we also have Va1(s0)− Va2(s0) =
ε + δ(1 − ε/2)2 − 1. As we can choose δ arbitrarily close to 0, we then have
Va1(s0) < Va2(s0) for some δ > 0. Thus, π1 is strictly optimal in state s2,
whereas π̄1 is strictly optimal in state s0. Therefore, there exists no dominating
commitment strategy for the MDP in Figure A.1.6.

■

56

Cooperative Stackelberg Games with Suboptimal Followers

A.2 Approximate Algorithms for Cooperative Stackelberg
Games with Suboptimal Followers

In this section, we first describe approximate value iteration algorithms for
Boltzmann-rational policies as well as ε-greedy policies. We then evaluate both
algorithms in the Maze-Maker and Random MDP environment for different
levels of rationality (i.e. optimality) of agent A2.

A.2.1 A2 responds with Boltzmann-rational policies

Theorem I.5.2 states that no dominating commitment strategy may exist
when agent A2 responds with Boltzmann-rational policies. In its essence, the
approximate value iteration algorithm for Boltzmann-rational responses described
in Algorithm 2 acts as if a dominating commitment strategy does exist and could
therefore converge to suboptimal solutions. However, it aims to account for the
suboptimality of agent A2 and keeps track of two sets of value functions: one
value function corresponding to what A1 believes to be the actual value given
that A2 plays Boltzmann, and one value function that aims to approximate the
belief of agent A2 about the value of the game.

Algorithm 2 Approximate Value Iteration for Boltzmann-Rational Responses

1: initialise V and V̂
2: repeat until V converges:
3: for s ∈ S do
4: for (a, b) ∈ A1 ×A2 do
5: Q̂(s, a, b) = R(s) + γ

∑
s′ P(s′|s, a, b)V̂ (s′)

6: π2(b | s, a) = exp(βQ̂(s, a, b))/Z
7: π1(s) = argmaxa

∑
s′ Eb∼π2 [P(s′|s, a, b)]V (s′)

8: V (s) = R(s) + γ
∑

s′ Eb∼π2 [P(s′|s, π1(s), b)]V (s′)
9: V̂ (s) = maxb Q̂(s, π1(s), b)

A.2.2 A2 responds with ε-greedy policies

The problem of planning with an agent that responds with ε-greedy policies is
similar to the setting considered by [Dim+17] in the sense that A2 plans with
the original transition kernel P (by computing an optimal response π2

∗(π1)),
whereas A1 plans (or should plan) with the “correct” transition kernel

Pε(· | s, a, b) ≡ εP(· | s, a,U(A2)) + (1− ε)P(· | s, a, b).

In particular, note that εP(s′ | s, a,U(A2)) is independent of the choice of b.
Algorithm 3 approximately solves the planning problem. While Lemma I.5.3
states that a dominating commitment policy need not exist, Algorithm 3 simply
acts as if one exists. Similarly to Algorithm 2, the idea is to maintain two value
functions, one representing the value from the perspective of A1 and the other
the value from the perspective of A2.

57

I. Interactive Inverse Reinforcement Learning for Cooperative Games

Algorithm 3 Approximate Value Iteration for ε-Greedy Responses

1: initialise V and V̂
2: repeat until V converges:
3: for s ∈ S do
4: for a ∈ A1 do
5: π2(s, a) = argmaxb

∑
s′ P(s′|s, a, b)V̂ (s′)

6: π1(s) = argmaxa

∑
s′ Eb∼π2 [Pε(s′|s, a, b)]V (s′)

7: V (s) = R(s) + γ
∑

s′ Eb∼π2 [Pε(s′|s, π1(s), b)]V (s′)
8: V̂ (s) = R(s) + γ

∑
s′ Eb∼π2 [P(s′|s, π1(s), b)]V̂ (s′)

A.2.3 Evaluation of Algorithm 2 and Algorithm 3

In this section, we empirically evaluate our approximate value iteration
algorithms for Boltzmann-rational responses (Algorithm 2) and ε-greedy
responses (Algorithm 3). We compare Algorithm 2 and Algorithm 3 in the
Maze-Maker and Random MDP environment against committing A1’s part of
the optimal joint policy. Note that by Lemma I.4.8, committing A1’s part of an
optimal joint policy is optimal when A2 responds optimally.

In both environments, we test the performance of our algorithms for
different levels of rationality of A2. For the case of Boltzmann-rational
responses (Figure A.2.7), we increase the inverse temperature of agent A2, which
corresponds to the rationality (i.e. optimality) of A2. We see in Figure A.2.7
that Algorithm 2 consistently outperforms playing A′

1s part of the optimal joint
policy. In particular, the more suboptimal A2 is playing (lower values of β), the
larger the advantage of Algorithm 2 is compared to playing A1’s part of the
optimal joint policy. If A2 responds almost optimally (β = 20), the performance
of both approaches is almost identical as expected.

For the case of ε-greedy responses (Figure A.2.8), we increase the rationality
of A2 by decreasing the probability ε of random actions. Figure A.2.8 shows
that Algorithm 3 outperforms playing the optimal joint policy for all values of ε
in both environments. In particular, for ε = 0 agent A2 responds optimally and
both approaches play an optimal commitment strategy.

A.3 Experimental Details

The experiments were carried out on a virtual machine with 32 CPUs,
60GB RAM, and CentOS Linux 8 operating system. The experiments were
implemented in Python 3.7 and the libraries matplotlib 3.2.1, numpy 1.20.1,
and scipy 1.6.2 (for the linear program) were used. The code is available at
https://github.com/InteractiveIRL/src.

For the case of suboptimal responses and partial information, we assume that
A2 responds with Boltzmann-rational policies with inverse temperature β = 10
in both environments. We assume that the inverse temperature, that is, the
optimality of the second agent, is unknown to the learner and must therefore be

58

Experimental Details

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Beta

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Va

lu
e

Approximate Value Iteration
Commitment of Optimal Joint Policy

(a) Maze-Maker

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Beta

5.0

5.5

6.0

6.5

7.0

Va
lu

e

Approximate Value Iteration
Commitment of Optimal Joint Policy

(b) Random MDPs

Figure A.2.7: Evaluation of Approximate Value Iteration for Boltzmann-Rational
Responses (Algorithm 2) in the Maze-Maker and Random MDP environment
for increasing values of β. The green line describes the return of playing A1’s
part of an optimal joint policy.

0.0 0.2 0.4 0.6 0.8 1.0
1-Epsilon

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Va
lu

e

Approximate Value Iteration
Commitment of Optimal Joint Policy

(a) Maze-Maker

0.0 0.2 0.4 0.6 0.8 1.0
1-Epsilon

5.5

6.0

6.5

7.0

7.5

8.0

Va
lu

e

Approximate Value Iteration
Commitment of Optimal Joint Policy

(b) Random MDPs

Figure A.2.8: Evaluation of Approximate Value Iteration for ε-Greedy Responses
(Algorithm 3) in the Maze-Maker and Random MDP environment for decreasing
values of ε. The green line describes the return of playing A1’s part of an optimal
joint policy.

inferred. We simulate the partial information setting by generating trajectories
according to policies π1

t and π2
t in episode t, where the length of the episode is

random. More precisely, we let an episode end with probability 1− γ = 0.1 each
time step.9

A.3.1 Bayesian Interactive IRL

We employ a Bayesian approach using the Metropolis-Hastings algorithm to
sample from the posterior, with a uniform prior on the reward function and
an exponential prior on the inverse temperature. Our approach is specified in
Algorithm 4. As a proposal distribution for the reward function, we consider a
discretisation of the |S|-dimensional unit simplex ∆(S) with step size δ, similarly
to [RA07]. The Metropolis-Hastings algorithm then generates a Markov chain

9We impose a minimal trajectory length of 2 time steps to prevent vacuous episodes.

59

I. Interactive Inverse Reinforcement Learning for Cooperative Games

Algorithm 4 Bayesian Interactive IRL via Simplex Walk
1: input: (S,A1, A2,P, γ), priors P(R), P(β), proposal distributions g1, g2,

sample size K
2: initialise: choose π1

1 uniformly at random, sample R0
0 ∼ P(R) and β0

0 ∼ P(β)

3: for t = 1, 2, . . . do
4: commit to policy π1

t

5: observe trajectory τt

6: // sample from posterior via Metropolis-Hastings
7: for k = 1, . . . ,K do
8: sample R ∼ g1(· | Rt

k−1)
9: sample β ∼ g2(· | βt

k−1)
10: compute p = P((π1

1 ,τ1),...,(π1
t ,τt)|R,β)P(R)P(β)

g1(R|Rt
k−1)g2(β|βt

k−1)

11: w.p. min{1, p
pk−1
}: Rt

k = R, βt
k = β, pt

k = p

12: else: Rt
k = Rk−1, βt

k = βk−1, pt
k = pt

k−1
13: set Rt+1

0 = Rt
K , βt+1

0 = βt
K , pt+1

0 = pt
K

14: calculate mean reward function R̄t and beta β̄t

15: compute π1
t+1 under R̄t and β̄t via Algorithm 2

on the discretised simplex. To sample from the posterior given the last candidate
Rt

k−1 then means to choose a neighbour in the discretised simplex. This type
of proposal distribution, which we refer to as Simplex Walk, proved to be a
more efficient and robust sampling strategy as other proposal distributions (e.g.
Dirichlet distributions). For the inverse temperature, we use a Gamma proposal
distribution. Similarly to Algorithm 1, we play greedily with respect to our
current estimate of the true reward function. After sampling K times from the
posterior, we take the empirical means R̄t and β̄t and compute an approximately
optimal commitment strategy under R̄t and β̄t by means of Algorithm 2. As a
natural burn-in we use the last sampled reward and inverse temperature from
episode t as the first candidate in episode t+ 1.

A.3.2 Environments: Maze-Maker

In the Maze-Maker environment, agents A1 and A2 jointly control a cart in
a 7 × 7 grid world. In this grid world, the doors leading from one cell to the
neighbouring ones are locked. However, A1 can unlock exactly two doors at
any time step before they fall shut again. A2 can attempt to move the cart
through a door to a neighbouring cell. However, when the door is locked, the cart
stays where it was. We assume that any attempted move of the cart succeeds
with probability 0.8 and that with probability 0.2 the cart moves to a random
neighbouring cell. Agents A1 and A2 are tasked with collecting three rewards of
different value (+1, +2, +3), which are scattered in the grid world and disappear
once collected. While A2 knows where the rewards are placed, A1 does not know

60

Influence

their location. An illustration of the environment is given by Figure I.2. We
model this environment as a two-agent MDP with 392 states (49×8) and discount
factor γ = 0.9, where A1 has six actions (unlocking two out of four doors) and
A2 four actions (attempting to move the cart North, East, South, West). As we
consider a Stackelberg game, A2 knows beforehand which doors A1 will unlock.
Therefore, A1 essentially selects a maze layout, which is communicated to A2
and through which A2 can move the cart.

A.3.3 Details on Figure I.1

In Figure I.1b, we assumed that A2 plays a Boltzmann-rational policy with
inverse temperature β = 10. For simplicity and proper comparison, we assume
that we can observe the fully specified Boltzmann policy played by A2 in each
of the mazes. We use an adaption if Bayesian IRL [RA07] and display the mean
reward function in Figure I.1b, where the colour scale, i.e. colour transparency,
is obtained from the mean reward function in a given cell. More precisely, we use
the Metropolis-Hastings algorithm with uniform prior and a Dirichlet proposal
to sample from the posterior distribution P(R | (π1, π2)), where π1 describes the
maze layout.

A.4 Influence

Prior work on two-agent cooperation has considered measurements of how much
one agent can influence the transition probabilities. [Dim+17] define the influence
of agent A1 (analogously for A2) on the transition probabilities as

I(A1) = max
s

max
a1,a2,b

∥P(· | s, a1, b)− P(· | s, a2, b)∥1,

which has also been adopted by [Rad+19] and [Gho+19]. They use this definition
of influence to bound the performance gap when the beliefs or the behaviour
of the two agents are misaligned. In our setting, however, the influence of an
agent also relates to the IRL problem and our capacity to solve it. In particular,
if I(A1) = 0, agent A1 does not influence the transition probabilities and it is
therefore irrelevant what actions A1 takes. In terms of the IRL problem, we are
then in the typical single-agent setting as A2 can ignore the presence of agent A1.
On the other hand, if I(A2) = 0, then A2 does not influence transitions at all
and the IRL problem becomes intractable as A2’s actions yield no information
about the underlying reward function.

61

Paper II

Environment Design for Inverse
Reinforcement Learning

Thomas Kleine Buening, Christos Dimitrakakis
Presented in the Human in the Loop Learning Workshop at NeurIPS, 2022. II

Abstract

The task of learning a reward function from expert demonstrations suffers
from high sample complexity as well as inherent limitations to what can be
learned from demonstrations in a given environment. As the samples used
for reward learning require human input, which is generally expensive,
much effort has been dedicated towards designing more sample-efficient
algorithms. Moreover, even with abundant data, current methods can still
fail to learn insightful reward functions that are robust to minor changes in
the environment dynamics. We approach these challenges differently than
prior work by improving the sample-efficiency as well as the robustness of
learned rewards through adaptively designing a sequence of demonstration
environments for the expert to act in. We formalise a framework for this
environment design process in which learner and expert repeatedly interact,
and construct algorithms that actively seek information about the rewards
by carefully curating environments for the human to demonstrate the task
in.

II.1 Introduction

Reinforcement Learning (RL) has proven to be a powerful framework for
autonomous decision-making in games [Mni+15], continuous control prob-
lems [Lil+15], and robotics [Lev+16]. However, the challenge of specifying
suitable reward functions remains one of the main barriers to the wider appli-
cation of reinforcement learning in real-world settings. To this end, methods
that allow us to communicate tasks without manually defining such reward
functions could be of great practical value. One of such approaches is Inverse Re-
inforcement Learning (IRL), which aims to find a reward function that explains
observed (human) behaviour [NR00; Rus98].

Much of the progress and recent efforts in IRL have been devoted to making
existing methods more sample-efficient as well as robust to changes in the
environment dynamics [AD21; FLL18]. Sample-efficiency is crucial for practical
applications of IRL as the data used for learning requires human input, which

63

II. Environment Design for Inverse Reinforcement Learning

is typically expensive. Moreover, inferring robust estimates of the unknown
reward function that induce near-optimal policies across slight variations of the
original environment is paramount for ensuring the safeness and the success of
autonomous agents in real-world scenarios.

However, recent work has found that IRL methods tend to overfit to the spe-
cific transition dynamics under which the demonstration were provided, thereby
failing to generalise even across minor changes in the environment [Toy+20].
More generally, even with unlimited access to expert demonstrations, we may
still fail to learn suitable reward functions from a fixed environment. In par-
ticular, prior work has explored the identifiability problem in IRL [CCS21;
Kim+21], illustrating the inherent limitations of IRL when learning from expert
demonstrations in a single environment.

We address these challenges differently than prior work. Instead of trying
to improve upon existing IRL methods directly, we aim to improve the data
generation process by actively seeking information from the human expert by
designing a sequence of demonstration environments. Our hypothesis is that
intelligently choosing such demo environments will allow us to improve the
sample-efficiency of IRL methods and the robustness of learned rewards against
variations in the environment dynamics.

We consider the situation when there is a known set of demo environments
in which the expert could potentially demonstrate the task in. Often this set
is given by variants of some base environment. For example, when the task
is to navigate to a goal state without crossing dangerous states, the set of
demo environments could be given by the original world layout with obstacles
being added, moved, or removed. We propose an environment design approach
based on minimax Bayesian regret that aims to select demo environment so as
to discover all performance-relevant aspects of the unknown reward function.
An example of the environments generated by this approach is illustrated in
Figure II.1.

Outline. After discussing related work in Section II.2, we will formally establish
our framework of Environment Design for Inverse Reinforcement Learning in
Section II.3. In Section II.4 we then propose an environment design approach
based on a minimax Bayesian regret objective and explain how to compute demo
environments efficiently when the set of environments exhibits useful structure.
Section II.5 extends Bayesian IRL methods to the setting of learning from
demonstrations in multiple environments. Finally, we perform a preliminary set
of experiments in Section II.6 with the goal of evaluating the benefits of carefully
curating the set of demo environments for reward learning.1

1In this preliminary version of this work, we will focus on the Bayesian formulation of the
problem. We will briefly comment on how to extend this work to non-Bayesian IRL frameworks
such as Maximum Entropy IRL in the Appendix. However, we defer extensive discussion and
evaluation of this to a future version of this work.

64

Related Work

(a) 1st round (b) 2nd round (c) 3rd round

Figure II.1: The expert navigates to three possible goal states while avoiding lava
in adaptively designed maze environments. For three consecutive rounds (a)-(c),
we display the mazes constructed by ED-BIRL as well as the estimated reward
functions after observing an expert trajectory in the current and past mazes. By
adaptively designing environments and combining the expert demonstrations,
we can recover the locations of goal states and lava states. In contrast, from
observations in a fixed environment, e.g. repeatedly observing the expert in
maze (a), it would be impossible to recover all relevant aspects of the reward
function, i.e. goal states, as only the closest goal state will be visited by the
expert (repeatedly). Observing the human expert’s actions in new and carefully
constructed environments can thus lead to a more precise and robust estimate
of the unknown reward function.

II.2 Related Work

(Active) IRL. The goal of IRL [NR00; Rus98] is to find a reward function that
explains observed behaviour, which is assumed to be approximately optimal. Two
of the most popular approaches to the IRL problem are Bayesian IRL [CK11;
RA07; RD11] and Maximum Entropy IRL [FLA16; HE16; Zie+08]. In this
work, we focus on extending the Bayesian IRL formulation to demonstrations in
multiple environments as it provides a principled way to reason under reward
uncertainty. This is also the typical IRL formulation under which Active IRL
has been addressed in prior work.

In particular, the environment design problem that we consider can be viewed
as one of active reward elicitation [LMM09]. Prior work on active reward learning
has focused on querying the expert for additional demonstrations in specific states
[BCN18; Lin+21; LMM09], mainly with the goal of resolving the uncertainty
that is due to the expert’s policy not being specified accurately in these states.
In contrast, we consider the situation where we cannot directly query the expert
for additional information in specific states, but instead sequentially choose demo
environments for the expert to act in. Importantly, in our setting, the same
state can be visited under different transition dynamics, which can be crucial
to distinguish between two plausible reward functions. Hereto related, [AJS17]
consider a repeated IRL setting in which the learner can choose any task for
the expert to complete (with full information of the expert policy). Recently,
[BGD22] also introduced Interactive IRL in which the learner interacts with
a human in a collaborative Stackelberg game without knowledge of the joint
reward function. This setting is similar to the framework presented here in that
the leader in a Stackelberg game can be viewed as designing environments by

65

II. Environment Design for Inverse Reinforcement Learning

committing to specific policies.

Environment Design for Reinforcement Learning. Environment Design and
Curriculum Learning for RL aim to design a sequence of environments with
increasing difficulty to improve the training of an autonomous agent [Nar+20].
However, in contrast to our problem setup, observations in a generated training
environments are cheap, as this only involves actions from an autonomous agent,
not a human expert. As such, approaches like domain randomisation [Akk+19;
Tob+17] can be practical for RL, whereas they can be extremely inefficient and
wasteful in an IRL setting. Moreover, in IRL we typically work with a handful of
rounds only, so that slowly improving the environment generation process over
thousands of training episodes (i.e. rounds) is impractical [Den+20; Gur+21].
Finally, we also have to deal with the additional challenge of not knowing the
true reward function according to which the expert is going to act, which makes
reliably predicting the expert’s behaviour in an environment difficult.

II.3 Problem Formulation

We now formally introduce the Environment Design for Inverse Reinforce-
ment Learning framework. A Markov Decision Process (MDP) is a tuple
(S,A,P, R∗, γ, ω), where S is a set of states, A is a set of actions, P : S×A×S →
[0, 1] is a transition function, R∗ : S → R is a reward function, γ a discount factor,
and ω an initial state distribution. We assume that there is a set transition
functions T from which P can be selected. Similar models have been consid-
ered for the RL problem under the name of Underspecified MDPs [Den+20] or
Configurable MDPs [MMR18; Ram+21].

We assume that the true reward function, denoted R∗, is unknown to the
learner and consider the situation where the learning agent gets to interact with
the human expert in a sequence of m rounds.2 More precisely, every round
k ∈ [m], the learner gets to select a demo environment Pk ∈ T for which
an expert trajectory τk is observed. Our objective is to adaptively select a
sequence of demo environments P1, . . . ,Pm so as to recover a robust estimate
of the unknown reward function. We describe the general framework for this
interaction between learner and human expert in Algorithm 5. To summarise, a
problem-instance in our setting is given by (S,A, T , R∗, γ, ω,m), where T is a
set of environments, R∗ is the unknown reward function, and m the learner’s
budget.

2Typically, expert demonstrations are a limited resource as they involve expensive human
input. We thus consider a limited budget of m expert trajectories that the learner is able to
obtain.

66

Environment Design via Minimax Bayesian Regret

Framework 5 Environment Design for Inverse Reinforcement Learning
1: input set of environments T , resources m ∈ N
2: for k = 1, . . . , m do
3: Choose an environment Pk ∈ T (Environment Design)
4: Observe expert trajectory τk in environment Pk

5: Estimate rewards from observations up to round k (IRL)

From Framework 5 we see that the Environment Design for IRL problem has
two main ingredients: a) choosing useful demo environments for the human to
demonstrate the task in (Section II.4), and b) inferring the reward function from
expert demonstration in multiple environments (Section II.5).

II.3.1 Preliminaries and Notation

Throughout the paper, note that R denotes a generic reward function, whereas
R∗ refers to the true (unknown) reward function. We let Vπ

R,P(s) :=
E[
∑∞

t=0 γ
tR(st) | π,P, s0 = s] denote the expected discounted return, i.e. value

function, of a policy π under some reward function R and transition function P
in state s. For the value under the initial state distribution ω, we then merely
write Vπ

R,P := Es∼ω[Vπ
R,P(s)] and denote its maximum by V∗

R,P := maxπ Vπ
R,P .

We accordingly refer to the Q-values under a policy π by Qπ
R,P(s, a) and their

optimal values by Q∗
R,P(s, a). In the following, we let πR,P always denote the

optimal policy w.r.t. R and P , i.e. the policy maximising the expected discounted
return in the MDP (S,A,P, R, γ, ω).

We generally write τ for expert trajectories. In particular, these expert
trajectories are always observed with respect to a specific transition function
P. We therefore summarise the observation of an expert trajectory τk in
an environment Pk by Dk = (τk,Pk) and write D1:k = (D1, . . . ,Dk) for all
observations up to (and including) the k-th round. We let P(· | D1:k) denote
the posterior over reward functions given observations D1:k. For the prior
P(·), we introduce the convention that P(·) = P(· | D1:0). Out of convenience,
we sometimes refer to transition functions P as environments. In particular,
when speaking of expert demonstrations in an environment P, we refer to
expert demonstrations in the MDP (S,A,P, R∗, ω, γ), where R∗ denotes the
true (unknown) reward function that the expert is maximising.

II.4 Environment Design via Minimax Bayesian Regret

Our goal is to adaptively select demo environments for the expert based on our
current belief about the reward function. We consider the situation where at
round k+ 1 we have access to a posterior belief P(· | D1:k) over reward functions,
which in practice can be approximated using a Bayesian IRL approach whose
discussion we postpone to Section II.5. In Section II.4.1, we will introduce a
minimax Bayesian regret objective for the environment design process which
aims to select demo environments so as to ensure that our reward estimate is

67

II. Environment Design for Inverse Reinforcement Learning

robust and risk-averse. Section II.4.2 then deals with the computation of such
environments when the set of demo environments exhibits a useful structure.

II.4.1 Minimax Bayesian Regret

We begin by reflecting on the potential loss of an agent when deploying a policy
π under transition function P and the true reward function R∗, given by the
difference

ℓR∗(P, π) := V∗
R∗,P − Vπ

R∗,P .

The reward function R∗ is unknown to us, so that we can instead use our belief
P over reward functions and consider the Bayesian regret, i.e. loss, of a policy π
under P and P, i.e.

BRP(P, π) := ER∼P
[
ℓR(T, π)

]
= ER∼P

[
V∗

R,P − Vπ
R,P
]
.

The concept of Bayesian regret is well-known from, e.g. online optimisation and
online learning [RV14] and has been utilised for IRL in a slightly different form
by [BCN18]. The idea is that given a (prior) belief about some parameter, we
evaluate our policy against an oracle that knows the true parameter. Typically,
under such uncertainty about the true parameter (here, reward function) we are
interested in risk-averse policies minimising the Bayesian regret, i.e.

min
π

BRP(P, π).

To derive an objective for the environment design problem, we then consider
a minimax game where one player selects the environment and the other the
policy:3

max
P∈T

min
π∈Π

BRP(P, π). (II.1)

What this means is that we search for an environment P ∈ T such that the regret-
minimising policy w.r.t. P suffers maximal regret against the optimal policies
w.r.t. reward candidates R ∼ P. Note that this objective has the advantage
of generally selecting environments that the expert can solve, as the regret in
degenerate or purely adversarial environments will be close to zero. Moreover,
the minimax Bayesian regret objective is performance-based and not purely
uncertainty-based (such as prior objectives based on entropy, e.g. [LMM09]).
This is typically desired as reducing our uncertainty about the rewards in states
that are not relevant under any transition function in T (e.g. states that are not
being visited by any optimal policy) is unnecessary and generally a wasteful use
of our budget. Finally, we also see that if the Bayesian regret objective becomes
zero, the posterior mean is guaranteed to be optimal in every demonstration
environment.

Lemma II.4.1. If maxP∈T minπ∈Π BRP(P, π) = 0 for some posterior P(· | D),
then the posterior mean R̄ = EP[R] is optimal for every P ∈ T , i.e. R̄ induces
an optimal policy in every environment in T .

68

Environment Design via Minimax Bayesian Regret

Algorithm 6 ED-BIRL: Environment Design for Bayesian IRL
1: input environments T , prior distribution P, resources m ∈ N
2: for k = 1, . . . ,m do
3: Sample rewards from P(· | D1:k−1) using BIRL(D1:k−1) (Section II.4.2)
4: Construct empirical distribution P̂k−1 from sampled rewards
5: Find Pk ∈ argmaxP minπ BRP̂k−1(P, π) (Section II.5.1)
6: Observe expert trajectory τk in Pk and let Dk = (τk,Pk)
7: return BIRL(D1:m)

In our algorithm ED-BIRL, we sample from the posterior to construct
an empirical distribution for which we then find the maximin transition
function (II.1). To sample from the posterior, we use an extension of Bayesian
IRL methods to the case where we observe expert demonstrations in multiple
environments as described in Section II.5. The algorithm ED-BIRL is detailed
in Algorithm 6. In the following, we will discuss how the maximin transition
function argmaxP minπ BRP̂(P, π) can be computed efficiently and consider the
special case when the set of environments, T , has a useful structure that we can
exploit.

II.4.2 Environment Generation

Structured Environments. Often the set of environments has a useful structure
that can be used to search the space of environments T efficiently. We begin by
recalling that the value function is linear in the rewards, so that we can rewrite
equation (II.1) as

max
P

min
π

BRP(P, π) = max
P

{
ER∼P[V∗

R,P(s0]−max
π
Vπ

R̄,P(s0)]
}
,

where R̄ = ER∼P[R] is the mean of P. We now consider the special case where
each environment P ∈ T is build from a collection of transition matrices Ps.

Let Ps ∈ RS×A denote a state-transition matrix dictating the transition
probabilities in state s. Clearly, we can identify any transition function P with
a family of state-transition matrices {Ps}s∈S . We now say that an environment
set T allows us to make state-individual transition choices if there exist sets Ts

such that T = {{Ps}s∈S : Ps ∈ Ts}. In other words, we can construct a new
environment P by arbitrarily combining transition matrices for each state. Note
that this of course allows for the case when the transitions in some state s are
fixed, i.e. we have the singleton Ts = {Ps}. When we can make such state-
individual transition choices, we can use an extended value iteration approach
as detailed in Algorithm 7 that takes as input an empirical distribution P̂ as in
Line 4 in Algorithm 6.

3Note that we here consider maxP minπ and not the reverse, as we are interested in finding
the maximin demo environment (and not a minimax policy).

69

II. Environment Design for Inverse Reinforcement Learning

Algorithm 7 Extended Value Iteration for Structured Environments

1: input environments T = {Ts}s∈S , empirical distr. P̂, mean R̄ = ER∼P̂[R]
2: repeat until VR̄ and VR converge:
3: for s ∈ S do
4: Ps = argmax

Ps∈Ts

{
ER∼P̂

[
max
a∈A
P⊤

s,aVR

]
−max

b∈A
P⊤

s,bVR̄

}
5: VR(s) = max

a∈A
R(s) + γP⊤

s,aVR for every R ∼ P̂

6: VR̄(s) = max
b∈A

R̄(s) + γP⊤
s,bVR̄

7: return environment P = {Ps}s∈S

II.5 Inverse Reinforcement Learning with Multiple
Environments

We now analyse how we can learn about the reward function from demonstrations
that were provided under multiple, different environment dynamics. Recall that
we consider the situation where the learner observes expert trajectories with
respect to the same reward function under possibly different transition dynamics.
In the following, we explain how to extend Bayesian IRL methods to this setting.

II.5.1 Bayesian IRL

The Bayesian perspective to the IRL problem provides a principled way to
reason about reward uncertainty [RA07]. Typically, the human is modelled by a
Boltzmann-rational policy [JMD20]. This means that for a given reward function
R and transition function P the expert is acting according to a policy

πsoftmax
R,P (a | s) =

exp(cQ∗
R,P(s, a))∑

a′ exp(cQ∗
R,P(s, a′)) , (II.2)

where the parameter c relates to our judgement of the expert’s optimality.4 Given
a prior distribution P(·), the goal of Bayesian IRL is to recover the posterior
distribution P(· | D) and to either sample from the posterior using MCMC [RA07;
RD11] or perform MAP estimation [CK11]. In our case, the data is given by
the sequence D1:k = (D1, . . . ,Dk) with Dk = (τk,Pk). We see that this is no
obstacle as the likelihood factorises as

P(D1:k | R) =
∏
i≤k

P(τi | R,Pi),

since the expert trajectories (i.e. expert policies) are conditionally independent
given the reward function and transition function. The likelihood of each expert
demonstration is then given by P(τi | R,Pi) =

∏
(s,a)∈τi

πsoftmax
R,Pi

(a | s), where
4Note that when using MCMC Bayesian IRL methods we can also perform inference over

the parameter c and must not assume knowledge of the expert’s optimality.

70

Experiments

πsoftmax
R,Pi

is the Boltzmann-rational policy as defined in (II.2). As a result, we
can, for instance, sample from the posterior using the Policy-Walk algorithm
from [RA07] with minor modifications or the Metropolis-Hastings Simplex-Walk
algorithm from [BGD22]. Other Bayesian approaches, e.g. those that model the
reward function as a Gaussian process [LPK11] or take a variational inference
approach [CS21], can similarly be adapted to demonstrations from multiple
environments by using the factorisation of the likelihood. We generally denote
any Bayesian IRL algorithm that is capable of sampling from the posterior by
BIRL.

II.6 Experiments

We perform a preliminary set of experiments on a maze task as well as randomly
generated MDPs. Our primary goal is to address the following two questions:

1. Can we recover the true reward function by adaptively designing demo
environments?

2. Can we learn more robust reward functions by adaptively designing demo
environments?

II.6.1 Recovering the True Reward Function

In this experiment, we consider a maze task in which the learner has the ability
to add obstacles to a base layout of the maze. We visualise the designed mazes
and estimated rewards and evaluate whether our approach can recover the true
reward function by adaptively constructing these mazes.

Experimental Setup. We consider a maze task in which the goal is to reach one
of three goal states while avoiding lava. Here, the learner is able to add obstacles
to cells and observes two expert trajectories for each constructed maze, which is
done to give a stronger learning signal to BIRL so as to require fewer samples.
The true reward function, which is unknown to the learner, yields reward 1 in
goal states and reward −1 in lava states. We consider two different base layouts:
a basic layout with goal states and lava evenly spread out, Figure II.2 (a)-(c), and
a second layout with vertical strips of lava which make it challenging to construct
mazes so that the right side of the world is being visited, Figure II.2 (d)-(f). We
compare our approach, ED-BIRL, with learning from a fixed maze, and learning
from mazes that were randomly created. We randomly generate these mazes by
adding an obstacle to a cell with probability 0.3.5 The inference for all three
approaches is done using BIRL and the computed reward estimates are scaled to
[0, 1] and rounded.

5Naturally, such randomly generated mazes can be very different every iteration and we
can only display exemplary mazes for domain randomisation in Figure II.2. However, the
presented examples can nevertheless serve as an illustration of the disadvantages of using
domain randomisation for IRL.

71

II. Environment Design for Inverse Reinforcement Learning

Constructed Maze Estimated Rewards

(a) ED-BIRL

Fixed Maze Estimated Rewards

(b) Fixed Environment

Random Maze Estimated Rewards

(c) Domain Randomisation

Constructed Maze Estimated Rewards

(d) ED-BIRL

Fixed Maze Estimated Rewards

(e) Fixed Environment

Random Maze Estimated Rewards

(f) Domain Randomisation

Figure II.2: Comparison of ED-BIRL, Fixed Environment, and Domain
Randomisation for two versions of the maze problem: (a)-(c) and (d)-(f). In
each case, we display three consecutive rounds and the corresponding mazes and
estimated rewards. We use the same colour scale as in Figure V.1, which ranges
from black (0.0) to red (0.5) to white (1.0).

Results. In Figure II.2, we observe that ED-BIRL recovers the location of
all three goal states after three rounds in both maze layouts. Moreover, the
learner is able to identify the location of all lava strips in Figure II.2a, i.e. states
with negative reward. In Figure II.2d, ED-BIRL also recovered the rewards of
the upper lava region, whereas the estimates for the lower lava region are more
imprecise (while they are also less performance-relevant). By adaptively designing
a sequence of demo environments, ED-BIRL is thus capable of recovering (all
performance-relevant aspects of) the unknown reward function.

72

Experiments

In contrast, learning from a fixed environment (Figure II.2b, II.2e) as well
as domain randomisation (Figure II.2c, II.2f) fail to recover the location of all
goal states, let alone lava. In a fixed maze, any near-optimal policy will visit
the closest goal state only, which in this case is the top right corner in both
versions of the maze. We also see that using domain randomisation is impractical
for IRL, as we require carefully constructed mazes to recover the true reward
function. Even worse, by obliviously randomising the maze layout, we may create
unsolvable environments for the human expert, which yield no information at all
(see e.g. Figure II.2c).

II.6.2 Learning Robust Reward Functions

In this experiment, we provide the learner with a set of demo environments they
can select for a demonstration. Afterwards, the agent is evaluated on a set of
test environments. The performance in the test set captures the generalisation
ability of the learned rewards to new dynamics.

Experimental Setup. We first randomly generate a base MDP
(S,A,Pbase, R∗, γ, ω) with base transition function Pbase. We then construct the
set of possible demo environments, here denoted Tdemo instead of T to clearly
distinguish between demo and test environments, by sampling state-transition
functions that differ from the base transitions Pbase by at most some value ρdemo
in terms of ℓ∞-distance. In our experiments, we set the maximum amount of
variation in the demo environments to ρdemo = 0.5. Similarly, we create a set
of test environments Ttest with a maximum amount of perturbation ρtest on
which we evaluate the learned reward functions. For all three approaches, we
evaluate the posterior mean, which is computed using BIRL. For all P ∈ Ttest,
we optimise a policy w.r.t. the posterior mean and P and evaluate the computed
policy under the true reward function R∗ and transition function P . Finally, we
average the results over all environments in Ttest. We want to emphasise that
the way we construct Tdemo and Ttest, these sets are completely disjunct except
for the base transition function, i.e. Tdemo ∩ Ttest = {Pbase}. We therefore do not
observe the expert in the environments that we evaluate our approaches on.

Results. In Figure II.3a, we observe that ED-BIRL outperforms domain
randomisation and learning from a fixed environments over the course of all
rounds. As expected, the loss of all three approaches increases the more diverse
the test environments are and the more they differ from the base environment,
which can be seen in Figure II.3b. Interestingly, even for ρtest = 0, i.e. evaluation
on the base environment only, ED-BIRL slightly outperforms learning directly
from the fixed base environment suggesting a superior sample-efficiency of
ED-BIRL.

73

II. Environment Design for Inverse Reinforcement Learning

(a) Average utility loss of ED-BIRL,
Domain Randomisation, and Fixed
EnvironmentIRL over 10 rounds. The
learned rewards are evaluated on a set of
test environments that differ from the
base environment by at most ρtest = 0.5.

(b) Along the x-axis we increase ρtest,
i.e. the amount of variation in the test
environments. We evaluate the learned
reward functions after 10 rounds of in-
teraction with the expert, i.e. the final
reward estimate from Figure II.3a.

Figure II.3: On a randomly generated MDP task, we evaluate the robustness
of reward estimates learned by ED-BIRL, Domain Randomisation, and Fixed
EnvironmentIRL, respectively.

II.7 Discussion

The presented work gives a first glance into Environment Design for Inverse
Reinforcement Learning. In this paper, we focus on the Bayesian setting, where
a belief about the reward function is computed using Bayesian IRL (with
observations from multiple environments). This allowed us to reason about
reward uncertainty in a principled way, guiding our environment design approach
via a minimax Bayesian regret objective. A future version of this work will
consider non-Bayesian IRL frameworks and explain how to perform environment
design with point estimates of the reward function (instead of Bayesian beliefs).
In future work it will also be interesting to consider a batch version of this
setting, where the learner has to decide on a batch of demo environments every
round.

References

[AD21] Arora, S. and Doshi, P. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: Artificial Intelligence
vol. 297 (2021), p. 103500.

[AJS17] Amin, K., Jiang, N., and Singh, S. “Repeated inverse reinforcement
learning”. In: Advances in neural information processing systems
vol. 30 (2017).

[Akk+19] Akkaya, I. et al. “Solving rubik’s cube with a robot hand”. In:
arXiv preprint arXiv:1910.07113 (2019).

74

References

[BCN18] Brown, D. S., Cui, Y., and Niekum, S. “Risk-aware active inverse
reinforcement learning”. In: Conference on Robot Learning. PMLR.
2018, pp. 362–372.

[BGD22] Büning, T. K., George, A.-M., and Dimitrakakis, C. “Interactive
Inverse Reinforcement Learning for Cooperative Games”. In:
International Conference on Machine Learning. PMLR. 2022,
pp. 2393–2413.

[CCS21] Cao, H., Cohen, S., and Szpruch, L. “Identifiability in inverse
reinforcement learning”. In: Advances in Neural Information
Processing Systems vol. 34 (2021), pp. 12362–12373.

[CK11] Choi, J. and Kim, K.-e. “MAP Inference for Bayesian Inverse
Reinforcement Learning”. In: Advances in Neural Information
Processing Systems. Vol. 24. 2011.

[CS21] Chan, A. J. and Schaar, M. van der. “Scalable Bayesian Inverse
Reinforcement Learning”. In: arXiv preprint arXiv:2102.06483
(2021).

[Den+20] Dennis, M. et al. “Emergent complexity and zero-shot transfer
via unsupervised environment design”. In: Advances in Neural
Information Processing Systems vol. 33 (2020), pp. 13049–13061.

[Fin+16] Finn, C. et al. “A connection between generative adversarial
networks, inverse reinforcement learning, and energy-based models”.
In: arXiv preprint arXiv:1611.03852 (2016).

[FLA16] Finn, C., Levine, S., and Abbeel, P. “Guided cost learning: Deep
inverse optimal control via policy optimization”. In: International
conference on machine learning. PMLR. 2016, pp. 49–58.

[FLL18] Fu, J., Luo, K., and Levine, S. “Learning Robust Rewards with
Adverserial Inverse Reinforcement Learning”. In: International
Conference on Learning Representations. 2018.

[Gur+21] Gur, I. et al. “Environment generation for zero-shot compositional
reinforcement learning”. In: Advances in Neural Information
Processing Systems vol. 34 (2021), pp. 4157–4169.

[HE16] Ho, J. and Ermon, S. “Generative adversarial imitation learning”. In:
Advances in neural information processing systems vol. 29 (2016).

[JMD20] Jeon, H. J., Milli, S., and Dragan, A. “Reward-rational (implicit)
choice: A unifying formalism for reward learning”. In: Advances in
Neural Information Processing Systems vol. 33 (2020), pp. 4415–
4426.

[Kim+21] Kim, K. et al. “Reward identification in inverse reinforcement
learning”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 5496–5505.

75

II. Environment Design for Inverse Reinforcement Learning

[Lev+16] Levine, S. et al. “End-to-end training of deep visuomotor policies”.
In: The Journal of Machine Learning Research vol. 17, no. 1 (2016),
pp. 1334–1373.

[Lil+15] Lillicrap, T. P. et al. “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[Lin+21] Lindner, D. et al. “Information Directed Reward Learning for
Reinforcement Learning”. In: Advances in Neural Information
Processing Systems vol. 34 (2021), pp. 3850–3862.

[LMM09] Lopes, M., Melo, F., and Montesano, L. “Active learning for reward
estimation in inverse reinforcement learning”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2009, pp. 31–46.

[LPK11] Levine, S., Popovic, Z., and Koltun, V. “Nonlinear inverse
reinforcement learning with gaussian processes”. In: Advances in
neural information processing systems vol. 24 (2011).

[MMR18] Metelli, A. M., Mutti, M., and Restelli, M. “Configurable Markov
decision processes”. In: International Conference on Machine
Learning. PMLR. 2018, pp. 3491–3500.

[Mni+15] Mnih, V. et al. “Human-level control through deep reinforcement
learning”. In: nature vol. 518, no. 7540 (2015), pp. 529–533.

[Nar+20] Narvekar, S. et al. “Curriculum learning for reinforcement learn-
ing domains: A framework and survey”. In: arXiv preprint
arXiv:2003.04960 (2020).

[NR00] Ng, A. Y. and Russell, S. J. “Algorithms for Inverse Reinforce-
ment Learning”. In: Proceedings of the Seventeenth International
Conference on Machine Learning. 2000, p. 2.

[RA07] Ramachandran, D. and Amir, E. “Bayesian Inverse Reinforcement
Learning”. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence. 2007, pp. 2586–2591.

[Ram+21] Ramponi, G. et al. “Learning in Non-Cooperative Configurable
Markov Decision Processes”. In: Advances in Neural Information
Processing Systems vol. 34 (2021).

[RD11] Rothkopf, C. A. and Dimitrakakis, C. “Preference elicitation and
inverse reinforcement learning”. In: Joint European conference
on machine learning and knowledge discovery in databases. 2011,
pp. 34–48.

[Rus98] Russell, S. “Learning agents for uncertain environments”. In:
Proceedings of the eleventh annual conference on Computational
learning theory. 1998, pp. 101–103.

[RV14] Russo, D. and Van Roy, B. “Learning to optimize via information-
directed sampling”. In: Advances in Neural Information Processing
Systems vol. 27 (2014).

76

References

[Tob+17] Tobin, J. et al. “Domain randomization for transferring deep neural
networks from simulation to the real world”. In: 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE. 2017, pp. 23–30.

[Toy+20] Toyer, S. et al. “The magical benchmark for robust imitation”. In:
Advances in Neural Information Processing Systems vol. 33 (2020),
pp. 18284–18295.

[Zie+08] Ziebart, B. D. et al. “Maximum entropy inverse reinforcement
learning.” In: Aaai. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

77

II. Environment Design for Inverse Reinforcement Learning

B.1 Proofs

Proof of Lemma II.4.1. For simplicity of exposition, we assume here that the
posterior P is discrete. Now, as the value function is linear in rewards, we have

min
π

BRP(P, π) = BRP(P, πR̄,P),

where πR̄,P is the optimal policy w.r.t. the posterior mean R̄ = ER∼P[R] and the
transition function P. If maxP∈T minπ∈Π BRP(P, π) = 0, it then follows that
maxP∈T BRP(P, πR̄,P) = 0, i.e. V∗

R,P = VπR̄,P
R,P for all R ∈ supp(P) and P ∈ T .

This must imply that V∗
R∗,P = VπR̄,P

R∗,P for all P ∈ T . In other words, R̄ is optimal
for all P ∈ T (under the initial state distribution ω). ■

B.2 More Experimental Details

The BIRL method we used for the experiments is a straightforward extension of
Algorithm 1 in [RD11] to multiple environments following our explanations in
Section II.5.1.

Recovering the True Reward Function. For the experiments in Section II.6.1,
we let the learner observe two trajectories for each maze. This was done in
order to speed up the inference of BIRL and reduce the computational cost. The
expert was modeled by a Boltzmann-rational policy and thus uniformly selected
an optimal action when there were several optimal ones in a given state.

Learning Robust Reward Functions. For the experiments in Section II.6.2,
we randomly generated an MDP with 50 states and 4 actions using a Dirichlet
distribution for the transitions and a Beta distribution for the reward function.
For each state we let the demo set of environments contain 15 choices. The size
of the test environments was set to be |Ttest| = 500. Every round, the learner
got to select a demo environment and observe a single expert trajectory in that
environment. We limited the amount of deviation from the base transitions in
our experiments according to ρdemo and ρtest. In particular, note that any choice
of ρdemo implies that ∥Pbase−P∥∞ = maxs,a∥Pbase(· | s, a)−P(· | s, a)∥1 ≤ ρdemo
for all P ∈ Tdemo. The results were averaged over 5 complete runs, i.e. for 5
randomly generated problem instances.

B.2.1 Environment Design with Arbitrary Environments

In some situations, the set of demo environments T may not exhibit any useful
structure. Moreover, we may not even have explicit knowledge of the transition
functions in T , but can only access a set of corresponding simulators. In this
case, we are left with approximating the maximin environment (II.1) by sampling
simulators from T and performing policy rollouts (see Algorithm 8).

78

More Experimental Details

Algorithm 8 Environment Design with Arbitrary Environments
1: input set of environments T , rewards {R1, . . . , Rk}, best guess R̄
2: // if necessary, sample a subset T⊂ from T
3: for P ∈ T do
4: calculate π∗ = π∗

¯̄R,P
(policy optimisation)

5: for R ∈ {R1, . . . , Rk} do
6: evaluate Vπ∗

R,P (policy evaluation)
7: calculate V∗

R,P = maxπ Vπ
R,P (policy optimisation)

8: ℓ(R) = maxπ V∗
R,P − Vπ∗

R,P
9: BR(P) =

∑
R∈{R1,...,Rk} ℓ(R)

10: return P∗ = argmaxP∈T BR(P)

B.2.2 Maximum Entropy IRL with Multiple Environments

In the following, we give a brief outline of how Maximum Entropy (MaxEnt) IRL
methods can be extended to multiple environments. For a practical algorithm
we choose to extend the popular Adversarial IRL algorithm [FLL18].

In MaxEnt IRL, the reward function is assumed to be parameterised by some
vector θ. While some work has considered non-linear parameterisation of the
reward function, e.g. [FLA16], we can generally think of the reward function
being linear in some feature vector f , i.e. Rθ(s) = θ⊤fs. Under the MaxEnt
model, the probability of trajectories is exponentially dependent on their value:

P(τ | θ,P) = eRθ(τ)

Z(θ,P)

|τ |∏
t=1
P(st+1 | st, at), (3)

where Z(θ,P) is the partition function given by

Z(θ,P) =
∑

τ

eRθ(τ)
|τ |∏
t=1
P(st+1 | st, at). (4)

Note that here the sum over τ is over all possible trajectories. Our goal is then
to solve the maximum likelihood problem

argmax
θ

∑
(τ,P)∈D

logP(τ | θ,P). (5)

We see that the only difference to the original MaxEnt IRL formulation is
that we now sum over pairs (τ,P) instead of just τ . As a scalable solution to
the MaxEnt IRL problem, Adversarial IRL [FLL18] as well as GAIL [Fin+16;
HE16] cast the optimisation of (5) as a generative adversarial network (with
different discriminators). To extend Adversarial IRL, we consider a set of
policies π1, . . . , πk, used to generate trajectories in environments P1, . . . ,Pk, and
discriminators D1,θ,ϕ, . . . Dk,θ,ϕ given by

Di,θ,ϕ(s, a, s′) = exp(fθ,ϕ(s, a, s′))
exp(fθ,ϕ(s, a, s′)) + πi(a | s)

(6)

79

II. Environment Design for Inverse Reinforcement Learning

with
fθ,ϕ(s, a, s′) = gθ(s) + γhϕ(s′)− hϕ(s), (7)

where gθ(s) is the reward approximator and hϕ a shaping term (see [FLL18]).

Algorithm 9 Adversarial IRL with Multiple Environments
1: input Observations D = (D1, . . . ,Dk) with Di = (τi,Pi)
2: Initialise policies π1, . . . , πk and discriminators D1,θ,ϕ, . . . , Dk,θ,ϕ

3: for t = 0, 1, . . . do
4: Collect trajectories τG

i,j = (s0, a0, . . . , sH , aH) by executing πi in Pk for
i ∈ [k].

5: Train discriminators D1,θ,ϕ . . . , Dk,θ,ϕ to classify expert data τ1, . . . , τk

from samples {τG
1,j}j , . . . , {τG

k,j}j , respectively, via logistic regression with
shared parameter θ.

6: Update reward Rθ,ϕ(s, a, s′) ←
∑k

i=1

(
logDi,θ,ϕ(s, a, s′) − log(1 −

Di,θ,ϕ(s, a, s′))
)

.
7: Update π1, . . . , πk with respect to Rθ,ϕ using any policy optimisation

method.

With minor modifications, a justification of Algorithm 9 can be done
analogous to that in [FLL18].

80

Paper III

ANACONDA: An Improved Dynamic
Regret Algorithm for Adaptive
Non-Stationary Dueling Bandits

Thomas Kleine Buening, Aadirupa Saha
Published in 26th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2023.

III

Abstract

We study the problem of non-stationary dueling bandits and provide
the first adaptive dynamic regret algorithm for this problem. The only
two existing attempts in this line of work fall short across multiple
dimensions, including pessimistic measures of non-stationary complexity
and non-adaptive parameter tuning that requires knowledge of the number
of preference changes. We develop an elimination-based rescheduling
algorithm to overcome these shortcomings and show a near-optimal
Õ(

√
SCWT) dynamic regret bound, where SCW is the number of times the

Condorcet winner changes in T rounds. This yields the first near-optimal
dynamic regret bound for unknown SCW. We further study other related
notions of non-stationarity for which we also prove near-optimal dynamic
regret guarantees under additional assumptions on the preference model.

III.1 Introduction

Multi-Armed Bandits (MAB) [LS18; Rob52; Tho33] are a well-studied online
learning framework, which can be used to model online decision-making under
uncertainty. Due to its exploration-exploitation tradeoff, the MAB framework is
able to model situations such as clinical trials or job scheduling, where the goal
is to keep selecting the ‘best item’ in hindsight through sequentially querying
one item at a time and subsequently observing a noisy reward feedback for the
queried item [AB10; ACF02; AG12; BC+12].

The MAB framework has been studied and generalized to different settings,
among which a popular variant is known as Dueling Bandits (DB) which has
gained much attention in the machine learning community over the last two
decades [WL16; Yue+12; Zog+14a; Zog+15]. DB are a preference-based variant
of MAB in which every round the learner selects a pair of items (or arms)

81

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

whereupon a noisy preference between the two items is observed. Such a model is
particularly useful in applications, where direct numerical feedback is unavailable,
but observed feedback or behavior implies a preference of one item over the other.
For instance, the DB framework can be used for search engine optimization
through interleaved comparisons [HWD11; RC13].

In the classical stochastic dueling bandit problem, it is assumed that the
underlying preferences between items remain fixed over time. However, this
assumed stationarity of preferences is likely to be violated in many applications.
For example, preferences over movies may change depending on the season
or other external influences. Despite its strong practical motivation, regret
minimization in non-stationary dueling bandits has only recently been studied
for the fist time [GS22b; KBH22]. In contrast to the classical stochastic [Ben+21;
Yue+12; Zog+14b] and adversarial [GUC15; SG22; SKM21] dueling bandit
problem, which measures performance in terms of static regret w.r.t. a fixed
benchmark (or best item in hindsight), in non-stationary dueling bandits we
consider the stronger dynamic regret, which compares the algorithm’s selection
against a dynamic benchmark every round.

In general, the achievable dynamic regret depends on the amount of non-
stationarity in the environment. Here, prior work [GS22b; KBH22] studied
the number of changes in the preference matrix as a measure non-stationary
complexity. While the number of such preference switches indeed relates to the
hardness of the problem, it is, however, a pessimistic measure of non-stationarity.
For example, a change in the preference between two widely suboptimal arms or
a minor change in the preference matrix under which the optimal arm remains
optimal should not significantly impact our ability to achieve low dynamic regret.
To this end, one question that we aim to address in this paper for the paradigm
of non-stationary dueling bandits is:

Q.1: Can we guarantee low dynamic regret for stronger and more
meaningful notions of non-stationarity?

Moreover, prior work in non-stationary dueling bandits [GS22b; KBH22] assumes
knowledge of the non-stationary complexity, i.e. prior knowledge of the total
number of preference switches (or total variation), which is a highly impractical
assumption. The second question we thus address is:

Q.2: Can we achieve near-optimal dynamic regret in non-stationary
dueling bandits adaptively, without the knowledge of the underlying
non-stationary complexity?

III.1.1 Our Contributions

We answer these two questions affirmatively. Our main contribution is a new
algorithm ANACONDA that adaptively achieves near-optimal regret with respect
to the number of ’best arm’ switches—a measure that is sensitive only to the
variations of the best arms in the preference sequence and indifferent to any other

82

Introduction

‘background noise’ due to suboptimal arms. More precisely, our contributions
can be listed as follows:

• Connecting Different Notions of Non-Stationary Complexity in DB.
We first give an overview over different notions of non-stationarity measures
for dueling bandits and analyze their interdependencies towards a better
understanding of the implications of one to another (Section III.2.2).

• Proposing Tighter Notions of Non-Stationarity (towards Q.1). We
propose three new notions of non-stationary complexity for dueling bandits:
(i) SCW which measures the number of Condorcet Winner Switches in the
preference sequence, (ii) Ṽ which measures the preference variation of the
Condorcet arms, and (iii) S̃CW that counts only the ‘significant variations’ in
the Condorcet arms (Section III.2.2).
The novelty of our proposed non-stationarity measures lies in capturing only
the non-stationarity observed for the ‘best arms’ of the preference sequences.
They remain unaffected by any changes in the suboptimal arms, which of
course captures a stronger notion of non-stationarity than simply counting
the number of preference shifts SP, or total variation V , of the preference
sequence {Pt}t∈[T], as studied in prior work [GS22b; KBH22]. In particular, we
show that S̃CW ≤ SCW ≤ SP and Ṽ ≤ V justifying the strength of our proposed
non-stationarity measures.

• Adaptive Algorithm (towards Q.2). Besides using weaker notions of
non-stationary complexity, another drawback of existing work on non-stationary
dueling bandit is that, in order to optimize dynamic regret, their algorithms
require exact knowledge of the non-stationary complexity (e.g. SP or V), which is
in practice of course expected to be unknown to the system/algorithm designed
ahead of time. Our next main contribution lies in designing an adaptive
algorithm (ANACONDA, Algorithm 10) that does not require knowledge of any
underlying non-stationary complexity—it can adapt to any unknown number
of best arm switches SCW and yields a near-optimal regret bound of Õ

(√
SCWT

)
(Theorem III.3.1, Section III.3).1

• Improved and (Near-)Optimal Dynamic Regret Bounds. Owing
to the fact that SCW ≤ SP, our dynamic regret bounds can be much tighter
compared to the previous results by [GS22b; KBH22] which can only give a
regret guarantee of Õ

(√
SPT

)
(Remark III.2.2). Further our regret bound is

also provably order optimal in T and SCW as justified in Remark III.3.3.

• Better Guarantees for Structured Preferences. Moreover, in
Section III.5 we discover a special class of preference matrices, those that respect
a type of transitive property, for which we can prove even stronger dynamic
regret guarantees of Õ

(√
S̃CWT

)
in terms of Significant CW Switches S̃CW and

Õ
(
Ṽ 1/3T 2/3

)
in terms of Condorcet Winner Variation Ṽ . The optimality of

these bounds is discussed in Remark III.5.5 and Remark III.5.7.
1Here, Õ notation hides logarithmic dependencies.

83

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

III.1.2 Related Works

The non-stationary MAB problem has been extensively studied for various non-
stationarity measures, such as total variation [BGZ14; BGZ15], distribution
switches [AFM17; AGO19; GM11], or best arm switches [AGL22; SK22b].
Moreover, its study has been extended to more complex setups including linear
bandits [RCG20; RVC19] and contextual MAB [Che+19; Luo+18; WIW18]. We
will particularly take inspiration from the recent advances of [AGL22; AGO19;
SK22b] that were able to achieve near-optimal dynamic regret rates without
knowledge of the number of distribution (or best arm) changes.

While the non-stationary MAB problem has seen much attention in recent
years, its DB counterpart remains widely unexplored. The only two earlier
works that address the non-stationary dueling bandit problem are [GS22b] and
[KBH22]. However, these works are limited in a) the weakness of the analyzed
non-stationarity measures, namely, general preference switches or total variation
(see Section III.2.2), and b) in the fact that their algorithms require knowledge of
the total amount of non-stationarity in advance, an unrealistic assumption. Here,
we improve upon prior work by designing an adaptive algorithm ANACONDA that
does not require knowledge of the amount of non-stationarity in the environment
and achieves near-optimal dynamic regret w.r.t. the number of Condorcet winner
switches, a stronger notion of non-stationarity than general preference switches.
A more detailed review of previous work that is related to the non-stationary
MAB and DB problem is provided in Appendix C.3.

III.2 Problem Setting

We consider preference matrices P ∈ [0, 1]K×K such that P (a, b) indicates
the probability of arm a being preferred over arm b. Here, P satisfies
P (a, b) = 1 − P (b, a) and P (a, a) = 0.5 for all a, b ∈ [K]. We say that a
dominates b and write a ≻ b if P (a, b) > 0.5, i.e. arm a has a higher chance of
winning than arm b in a duel (a, b). A well-studied concept of a good benchmark
arm in dueling bandits is the Condorcet Winner (CW): Given any preference
matrix P ∈ [0, 1]K×K , an arm a∗ ∈ [K] is called a Condorcet winner of P if
P (a∗, b) > 0.5 for all b ∈ [K] \ {a∗} [Ben+21; Kom+15; SG22; WL16; Zog+14b].

Note that any preference matrix with a total ordering over arms invariably
has a Condorcet winner. For example, assuming a total ordering 1 ≻ 2 ≻ . . . ≻ K
implies that the Condorcet winner is arm 1. Any RUM-based preference matrix
[SG19a; SG20a; SPX13], or more generally any P that satisfies stochastic
transitivity [YJ09], always respects a total ordering. However, note that CW-
based preference matrices consider a much bigger class of pairwise relations than
total ordering. Despite this, in general a preference matrix might not have a
Condorcet winner, which led to more general notions of benchmark arms in DB,
such as the Borda winner [SKM21], the Copeland winner [Zog+15] or the von
Neumann winner [Dud+15b; SK22a].

84

Problem Setting

III.2.1 Non-Stationary Dueling Bandits (NSt-DB)

We consider a decision space of K arms denoted by [K]. At each round t ∈ [T],
the task of the learner is to select a pair of actions (at, bt) ∈ [K] × [K], upon
which a preference feedback ot(at, bt) ∼ Ber(Pt(at, bt)) is revealed to the learner
according to the underlying preference matrix Pt ∈ [0, 1]K×K . The sequence of
preferences P1, P2, . . . , PT is generated adversarially and for any such preference
matrix Pt we define

δt(a, b) := Pt(a, b)− 1/2

as the gap or preference-strength of arm a over arm b in round t. We here assume
that every preference matrix Pt has a Condorcet winner, which we denote by a∗

t .
ParagraphStatic Regret in Dueling Bandits. In classical (stochastic) dueling

bandits, where it is assumed that P1 = . . . = PT = P for some fixed preference
matrix P , the performance of the learner is often measured w.r.t. the CW of P ,
described by the static regret

R(T) :=
T∑

t=1

δt(a∗, at) + δt(a∗, bt)
2 ,

where a∗ is the CW of P [Ben+21; SG21; Sui+18; YJ09]. Note that here
δt(a∗, a) = Pt(a∗, a)− 1/2 essentially quantifies the net loss of arm a against the
fixed benchmark arm a∗.

However, regret with respect to any fixed benchmark (comparator arm) soon
becomes meaningless when the underlying preference matrices are changing over
time, since no single fixed arm may represent a reasonably good benchmark over
T rounds. Consider the following simple motivating example:

Example III.2.1. Let K = 2 and define

P1 =

0.5 1

0 0.5

 , P2 =

0.5 0

1 0.5

 .
Now, assume a preference sequence such that Pt = P1 for the first ⌊T/2⌋ rounds
and Pt = P2 for the last ⌈T/2⌉ rounds. We see that a policy that plays any of
the two arms all T rounds, e.g. Pit = 1 for all t ∈ [T], has regret O(1) against
any fixed benchmark arm, since δt(1, 2) = 1/2 for the first T/2 rounds and
δt(1, 2) = −1/2 for last T/2 rounds. However, against a dynamic benchmark, e.g.
arm 1 for t < T/2 and arm 2 for t ≥ T/2, any policy that plays a fixed arm all
T rounds suffers O(T/2) regret (while suffering only constant regret against any
fixed benchmark).

Dynamic Regret in Dueling Bandits. Drawing motivation from the
above, we seek to formulate a stronger and more meaningful notion of dueling
bandit regret, where the benchmark in every round is chosen dynamically based

85

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

on Pt. More precisely, letting a∗
t be the CW of Pt, we define dynamic regret as

DR(T) :=
T∑

t=1

δt(a∗
t , at) + δt(a∗

t , bt)
2 .

III.2.2 Measures of Non-Stationarity

Clearly, without any control over the amount of non-stationarity in the sequence
{Pt}t∈[T], it is impossible for any learner to achieve sublinear o(T) dynamic
regret in the worst case. To see this, consider the matrices from Example III.2.1
and note that for any choice of arms (at, bt), the adversary can choose a matrix
so as to guarantee instantaneous regret of at least 1/2. This consequently leads
to linear regret for the learner, implying that to achieve sublinear dynamic regret,
we need to restrict the adversary in terms of the total amount of non-stationarity
it can induce in the sequence P1, . . . , PT . But what could be a good measure of
non-stationarity? In this paper, we study several of these measures, which we
will now formally introduce and put in relation to one another.

Paragraph1. Pv. A non-stationarity measure that has been studied in the
previous work on NSt-DB is the number of times Pt changes [GS22b; KBH22]:

SP :=
T∑

t=2
1{Pt ̸= Pt−1}.

However, SP can be a quite pessimistic measure of non-stationarity, as changes in
the preference between two suboptimal arms or minor preference shifts that do
not change the CW are counted toward SP, whereas they should not significantly
affect the performance of a good learning algorithm.

2. Condorcet Winner Switches. A naturally stronger measure of non-
stationarity is the total number of Condorcet Winner Switches, i.e. the number
of times the identity of a∗

t changes:

SCW :=
T∑

t=2
1{a∗

t ̸= a∗
t−1}.

Remark III.2.2 (SP vs SCW). Of course, we always have SCW ≤ SP. In fact, it
is easy to construct a simple scenario where SCW ≪ SP: Assume K = 3 and
consider the following two preference matrices

P1 =


0.5 0.55 0.55

0.45 0.5 1

0.45 0 0.5

 , P2 =


0.5 0.55 0.55

0.45 0.5 0

0.45 1 0.5

 ,
and a preference sequence such that Pt = P1 when t is odd and Pt = P2 otherwise.
We then find that SCW = 0 (since 1 is the CW in all rounds t), whereas SP = T .

86

Proposed Algorithm: ANACONDA

3. Significant Condorcet Winner Switches. Recently, [SK22b] proposed
a new (and strong) notion of non-stationarity for multi-armed bandits, called
Significant Shifts, that aims to account only for severe distribution shifts and
comprises previous complexity measures. We can define a similar concept for
dueling bandits: Let ν0 := 1 and define νi+1 recursively as the first round in
[νi, T) such that for all arms a ∈ [K] there exist rounds νi ≤ s1 < s2 < νi+1
such that

s2∑
t=s1

δt(a∗
t , a) ≥

√
K(s2 − s1).

Let S̃CW denote the number of such Significant CW Switches ν1, . . . , νS̃CW . We
immediately see that we have S̃CW ≤ SCW, since not all CW Switches are also
Significant CW Switches. For example, a ’non-severe’ and quickly reverted
change of the Condorcet winner may not be counted towards S̃CW.

4. Total Variation. Another common notion of non-stationarity studied in
the multi-armed bandits literature is the total variation in the rewards [BGZ14;
Luo+18]. Its analogue in dueling bandits can be defined as

V :=
T∑

t=2
max

a,b∈[K]
|Pt(a, b)− Pt−1(a, b)|,

which has been previously studied in [GS22b]. However, V can also be a
pessimistic measure of complexity, as it can be of order O(T) even though the
Condorcet winner remains fixed throughout all rounds.

5. Condorcet Winner Variation. We can then formulate a more refined
version of total variation by accounting only for the maximal drift in the winning
probabilities of the current Condorcet winner:

Ṽ :=
T∑

t=2
max
a∈[K]

|Pt(a∗
t , a)− Pt−1(a∗

t , a)|.

Remark III.2.3 (V vs Ṽ). It is clear from the definition that Ṽ ≤ V . Moreover,
we again see that the Condorcet Winner Variation can be much smaller than
the Total Variation in the preference sequence, i.e. Ṽ ≪ V . For example, in the
problem instance of Remark III.2.2, we find that Ṽ = 0, whereas V = T . Thus,
a regret bound in terms of the Condorcet Winner Variation Ṽ can potentially
be much stronger.

III.3 Proposed Algorithm: ANACONDA

Following recent advances in non-stationary multi-armed bandits [AGL22;
AGO19; Che+19] and especially [SK22b], we construct an episode-based
algorithm with a carefully chosen replay schedule, called ANACONDA.

87

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

Algorithm 10 ANACONDA: Adaptive Non-stationAry CONdorcet Dueling Algorithm
1: input: horizon T
2: t← 1
3: while t ≤ T do
4: tℓ ← t � start of the ℓ-th episode
5: Agood ← [K]
6: for m ∈ {2, . . . , 2⌈log(T)⌉} and s ∈ {tℓ + 1, . . . , T} do
7: Sample Bs,m ∼ Bern

(
1√

m(s−tℓ)

)
� set replay schedule

8: Run CondaLet(tℓ, T + 1− tℓ) � root replay in ℓ-th episode

Algorithm 11 CondaLet(t0,m0)
1: input: scheduled time t0, duration m0, replay schedule {Bs,m}s,m

2: initialize: t← t0, At ← [K]
3: while t ≤ T and t ≤ t0 +m0 and Agood ̸= ∅ do
4: Play arm-pair (at, bt) ∈ At with each arm being selected w.p. 1/|At|
5: Agood ← Agood \ {a ∈ [K] : ∃[s1, s2] ⊆ [tℓ, t) s.t. (III.2) holds}
6: Alocal ← At � save active set of arms locally
7: t← t+ 1
8: if ∃m such that Bt,m = 1 then � check for scheduled child replays
9: Run CondaLet(t,m) with m = max{m ∈ {2, . . . , 2⌈log(T)⌉} : Bt,m = 1}

10: At ← Alocal \ {a ∈ [K] : ∃[s1, s2] ⊆ [t0, t) s.t. (III.2) holds}

Recall that our goal is to minimize dynamic regret w.r.t. a changing
benchmark a∗

t . However, we quickly notice that we cannot reliably track the
dynamic regret of some arm a ∈ [K], i.e.

∑
t δt(a∗

t , a), as the identity of the
benchmark, a∗

t , changes at unknown times. As a resolution to this, we aim to
detect relevant changes in the preference matrix by tracking the static regret
maxa′∈[K]

∑s2
t=s1

δt(a′, a) instead. It will be the main challenge of our analysis
to ensure that properly timed replays will occur (and not too many of these) so
that it is in fact sufficient to track the static regret to guarantee low dynamic
regret.

In the following, we explain our algorithmic approach in more detail. The
algorithm is organized in episodes, denoted ℓ. Similar to recent approaches to
non-stationary multi-armed bandits [AGL22; AGO19; SK22b], the algorithm
maintains a set of good arms, Agood, and a replay schedule, {Bs,m}s,m, within
each episode. When no good arms are left in Agood, a new episode begins and
the set of good arms and the replay schedule are being reset. Here, ANACONDA
(Algorithm 10) is the meta procedure that initializes each episode by resetting
the set of good arms to [K], sampling a new replay schedule, and triggering the
root call of CondaLet(tℓ, T + 1− tℓ).

When active in round t, a run of CondaLet(t0,m0) (Algorithm 11) samples
two arms uniformly at random from the active set of arms at round t, denoted
At. The set At is globally maintained by all calls of CondaLet and reset to

88

Proposed Algorithm: ANACONDA

[K] at the beginning of each replay, i.e. call of CondaLet. When a child replay
CondaLet(t,m) is scheduled in round t, i.e. Bt,m = 1 for some m, the parent
algorithm, say CondaLet(t0,m0), is interrupted (before eventually resuming if
t ≤ t0 +m0 and Agood ̸= ∅). To not overwrite arm eliminations of a parent by
resetting At to [K] in interrupting calls of CondaLet, each version of CondaLet
saves a local set of arms, Alocal, before checking for children.

Gap Estimates. Recall the definition of the gap between two arms as
δt(a, b) = Pt(a, b) − 1/2. Based on observed outcomes of duels, ANACONDA
maintains the following importance weighted estimates of δt(a, b):

δ̂t(a, b) = |At|21{at=a,bt=b}ot(a, b)− 1/2. (III.1)

Wee see that whenever a, b ∈ At, i.e. both arms are in the active set in round t,
the estimator δ̂t(a, b) is an unbiased estimate of δt(a, b), as we select a pair of
arms uniformly at random from At every round (see Line 4 in Algorithm 11).

Elimination Rule. In Line 5 and Line 10 of Algorithm 11, we eliminate an arm
a ∈ [K] in round t if there exist rounds 0 ≤ s1 < s2 ≤ t such that

max
a′∈[K]

s2∑
t=s1

δ̂t(a′, a) > C log(T)K
√

(s2 − s1) ∨K2, (III.2)

where C > 0 is some universal constant that does not depend on T , K, or SCW,
and can be derived from the regret analysis.

III.3.1 Main Result

The main result of this paper is a Õ(
√
SCWT) dynamic regret bound of ANACONDA

without knowledge of the number of CW Switches SCW. When SCW ≪ SP, this
bound substantially improves upon the non-adaptive Õ(

√
SPT) rates in [GS22b]

and [KBH22]. In particular, as previously mentioned, the number of preference
switches SP can be a very pessimistic measure of complexity. For example, a
change in the preference between two suboptimal arms, or a minor change of the
winning probabilities of the Condorcet winner under which it remains optimal,
should not substantially affect our performance (see Remark III.2.2).

Theorem III.3.1 (Dynamic Regret of ANACONDA). Let SCW denote the unknown
number of Condorcet Winner Switches. Let τ1, . . . , τSCW be the unknown times
of these switches and let τ0 := 1 and τSCW+1 := T . For some constant c > 0, the
dynamic regret of ANACONDA is bounded as

DR(T) ≤ c log3(T)K
SCW∑
i=0

√
τi+1 − τi.

An application of Jensen’s inequality shows that this implies a dynamic regret
bound of order Õ(K

√
SCWT), stated in the following corollary.

89

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

Corollary III.3.2 (Dynamic Regret w.r.t. SCW). For some constant c > 0, the
dynamic regret of ANACONDA is bounded as

DR(T) ≤ c log3(T)K
√

(SCW + 1)T .

Remark III.3.3 (Regret Lower Bound and Tightness of Theorem III.3.1). Note
that a lower bound of Ω(

√
KSPT) has recently been shown by [GS22b], which

can also be seen to give a lower bound Ω(
√
KSCWT) in terms of CW Switches SCW

as SCW ≤ SP (in particular, the lower bound problem instance used in [GS22b]
is precisely such that SCW = SP). As a result, we find that the above bound is
optimal up to logarithmic factors in its dependence on SCW and T , whereas its
dependence on K may not be tight.

III.4 Regret Analysis of ANACONDA

We build on recent advances in non-stationary multi-armed bandits, which are
able to achieve near-optimal dynamic guarantees [AGL22; AGO19; SK22b]
without knowledge of the non-stationary complexity. A common basis of the
regret analysis in these works is a decomposition of the dynamic regret using
the notion of good arms.

Challenges in the Dueling Setting. More precisely, within each episode ℓ,
prior work in multi-armed bandits [AGL22; AGO19; SK22b] decomposes the
regret of their algorithm’s selection, say, at into its relative regret against the
last good arm ag

ℓ ∈ Agood, and the relative regret of ag
ℓ against the best arm, say,

a∗
t . A key advantage of this decomposition is that estimating the relative regret

of some arm a w.r.t. ag
ℓ instead of a∗

t is much easier. In particular, since ag
ℓ is by

definition considered good throughout the episode, it is always actively played,
which guarantees unbiased estimates of the difference in rewards between any
played arm a and the last good arm ag

ℓ .
However, pairwise preferences are generally not transitive, let alone linear,

so that a triangle inequality does not hold, i.e. δt(a∗
t , a) ̸≤ δt(a∗

t , a
g
ℓ) + δt(ag

ℓ , a).
In NSt-DB, we can thus generally not utilize ag

ℓ , or any other temporarily fixed
arm, as a benchmark to detect large regret. Instead, in contrast to prior work in
multi-armed bandits, we face the difficulty of having to argue directly that we
can guarantee low dynamic regret

∑
t δt(a∗

t , a) without a proxy benchmark such
as ag

ℓ .

Key Ideas to Overcome these Challenges. To overcome these challenges,
we consider every fixed arm a ∈ [K] in isolation and split each episode ℓ into
the rounds before arm a gets eliminated from Agood and the rounds after it gets
eliminated from Agood. Letting taℓ be the elimination round of arm a, we will
then argue that taℓ will occur sufficiently early to guarantee low regret (in episode
ℓ) before round taℓ . For the rounds after elimination from Agood, it will be key
to dissect each possible replay of the eliminated arm and obtain replay-specific

90

Regret Analysis of ANACONDA

regret bounds, where we distinguish between ’confined’ and ’unconfined’ replays
of arms. We now give an outline of our regret analysis.

III.4.1 Proof Sketch of Theorem III.3.1

In the following, we let c̃ > 0 denote a positive constant that does not
dependent on T , K, or SCW, but may change from line to line. To begin our
analysis, we state a concentration bound on the martingale difference sequence
δ̂t(a, b) − E[δ̂t(a, b) | Ft−1] as it can be found in similar form in [Bey+11]
and [SK22b].

Lemma III.4.1. Let E be the event that for all rounds 1 ≤ s1 < s2 ≤ T and all
arms a, b ∈ [K]:

|
s2∑

t=s1

δ̂t(a, b)−
s2∑

t=s1

E
[
δ̂t(a, b) | Ft−1

]
| ≤ c̃ log(T)

(
K
√

(s2 − s1) +K2
)

(III.3)

for a sufficiently large constant c̃ > 0 and where F = {Ft}t∈N0 denotes the
canonical filtration. Then, event E occurs with probability at least 1− 1/T 2.

Note that our elimination rule (III.2) has been chosen in accordance with
the above concentration bound. In particular, let taℓ denote the round in episode
ℓ in which arm a is eliminated from Agood. Then, on the concentration event E ,
if a′ ∈ Agood for all tℓ ≤ t < taℓ , we must have

ta
ℓ −1∑

t=tℓ

δt(a′, a) =
ta

ℓ −1∑
t=tℓ

E
[
δ̂t(a′, a) | Ft−1

]
≤ c̃ log(T)K

√
(taℓ − tℓ) ∨K2,

where the initial identity holds as δ̂t(a′, a) is unbiased when a, a′ ∈ At and
the inequality follows from the elimination rule (III.2) and the concentration
bound (III.3). However, note that the above crucially used that both a and
a′ are actively played throughout the interval [tℓ, taℓ), as we are otherwise not
able to accurately estimate

∑
t δt(a′, a). It will be the primary challenge of our

analysis to ensure that through properly timed replays, i.e. calls of CondaLet, we
can obtain unbiased estimates w.r.t. the changing CW that allow us to eliminate
bad arms before they amass large regret.

Bounding Regret Within Episodes. We proceed by bounding regret within
each episode separately. Recall that we let τ1 < . . . < τSCW denote the (unknown)
rounds in which the Condorcet winner changes. We then refer to the interval
[τi, τi+1) as the i-th phase, i.e. the interval for which a∗

t = a∗
τi

for all t ∈ [τi, τi+1).
Let Phases(t1, t2) = {i : [τi, τi+1) ∩ [t1, t2) ̸= ∅} be the set of phases i such that
[τi, τi+1) intersects with the interval [t1, t2). Our main claim is the following

91

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

upper bound on the dynamic regret within each episode:

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
≤ c̃K log3(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 .
(III.4)

By conditioning on tℓ and carefully applying the tower property, we can
rewrite the expected dynamic regret within an episode in terms of fixed arms
a ∈ [K]:

Lemma III.4.2. We have

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
= E

[
K∑

a=1

tℓ+1−1∑
t=tℓ

δt(a∗
t , a)
|At|

1{a∈At}

]
.

In a next step, we split the RHS into the rounds before a fixed arm a ∈ [K]
has been eliminated from the good set, and the rounds after its elimination.
Recall taℓ to be the round in episode ℓ in which arm a is eliminated from Agood
and consider

E

[
K∑

a=1

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)
|At|

]
︸ ︷︷ ︸

R1(ℓ)

+E

[
K∑

a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At}

]
︸ ︷︷ ︸

R2(ℓ)

,

where we could drop the indicator in R1(ℓ), since Agood ⊆ At by construction of
these sets. The remainder of our analysis is mostly concerned with showing that
both, R1(ℓ) and R2(ℓ), are upper bounded by the RHS in (III.4).

Regret Before Elimination. The main difficulty in bounding R1(ℓ) lies in the
fact that some arm could have been eliminated due to being suboptimal, only
to become the Condorcet winner shortly after. As a result, large regret could
go undetected, as the current Condorcet winner is not being actively played
anymore. To this end, we have to argue that with high probability there will
always be a replay scheduled that eliminates any bad arm from Agood in a timely
manner, thereby eventually triggering a restart.

Here, we specifically consider calls of CondaLet(s,m) that provably eliminate
bad arms from Agood. Importantly, by construction of our elimination rule (III.2),
we can guarantee on the concentration event E that any run of CondaLet that
is scheduled within some phase i will actively play the Condorcet winner of said
phase.

Lemma III.4.3. On event E, no call of CondaLet(s,m) with τi ≤ s < τi+1
eliminates arm a∗

i before round τi+1.

Roughly speaking, we can then argue that a replay that eliminates arm a will
be scheduled with high probability before the smallest round s(a) > tℓ such that

92

Regret Analysis of ANACONDA

∑s(a)
t=tℓ

δt(a∗
t , a) ≳

√
s(a)− tℓ. In other words, arm a is going to be eliminated

from Agood before it suffers too much regret. Since taℓ is defined as the round in
episode ℓ in which a is eliminated from Agood, we must have taℓ < s(a), which
implies that the inner sum in R1(ℓ) is at most of order

√
taℓ − tℓ for every fixed

arm a ∈ [K]. Finally, using that√
taℓ − tℓ ≤

∑
i∈Phases(tℓ,ta

ℓ
)

√
τi+1 − τi

and summing over all arms, we obtain the desired bound of (III.4). Note that
here summing over arms can be seen to account for a log(K) factor which we
coarsely upper bound by log(T).

Regret After Elimination. R2(ℓ) can be viewed as the regret due to replaying
arms after they have been eliminated from the good set Agood. We here
distinguish between two types of replays, i.e. calls of CondaLet:

Definition III.4.4. We call CondaLet(s,m) confined if there exists i ∈
Phases(tℓ, T) s.t. [s, s+m] ⊆ [τi, τi+1). In turn, we say that CondaLet(s,m) is
unconfined if for all i ∈ Phases(tℓ, T), we have [s, s+m] ⊆ [τi, τi+1).

To bound the regret within a confined replay, we recall that according to
Lemma III.4.3, on the concentration event E , no call of CondaLet will eliminate
the Condorcet winner within the phase it is scheduled in. Thus, whenever some
arm a is being played by a confined replay, we obtain unbiased estimates of
δt(a∗

t , a). It is then straightforward to show that for any confined CondaLet(s,m),
we have that

∑s+m
t=s δt(a∗

t , a) is at most of order
√
m.

A similar line of argument does not work for unconfined replays, as they
intersect with several phases. We then face a similar difficulty as when bounding
R1(ℓ), where the Condorcet winner of the current phase could have been
eliminated (from the replay) in an earlier phase. Using similar arguments
than for bounding R1(ℓ), we show that for any unconfined CondaLet(s,m), we
have that

∑s+m
t=s δt(a∗

t , a) is at most of order
√
s− tℓ +

√
m.

Lastly, recall that in episode ℓ a replay CondaLet(s,m) is scheduled with
probability 1/

√
m(s− tℓ). Crucially, any unconfined CondaLet scheduled in

[τi, τi+1) must have duration at least m ≥ τi+1−s (otherwise it is not unconfined).
Careful summation over confined and unconfined CondaLet then yields the
desired upper bound (III.4).

Counting Episodes. Lastly, we show that ANACONDA only restarts if there has
been a CW switch.

Lemma III.4.5. On event E, for all episodes ℓ but the last there exists a change
of the CW tℓ ≤ τi < tℓ+1.

This follows directly from the fact that on the concentration event within a
single phase the CW will never be eliminated from Agood. Thus, if there is a
restart, i.e. every arm has been eliminated from Agood, there must have been

93

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

a change of CW. Lemma III.4.5 thus tells us that any phase intersects with at
most two episodes. Summing the RHS of (III.4) over episodes then gives the
claimed upper bound of

E

[
T∑

t=1

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
≤ 2c̃K log3(T)E

 SCW∑
i=1

√
τi+1 − τi

 .
A detailed proof of Theorem III.3.1 is given in Appendix C.1.

III.5 Tighter Bounds Under SST and STI

We show that ANACONDA can in fact yield a stronger regret guarantee in terms
of a more refined notion of non-stationarity, Significant Condorcet Winner
Switches (see Section III.2.2), under additional assumptions on the preference
sequence P1, . . . , PT : Strong Stochastic Transitivity (SST) and Stochastic
Triangle Inequality (STI) [YJ09; YJ11; Yue+12]. Let a, b, c ∈ [K] and let
a ≻t b denote that a is preferred over b in round t.

Assumption III.5.1 (Strong Stochastic Transitivity). Every preference matrix Pt

satisfies that if a ≻t b ≻t c, we have δt(a, c) ≥ δt(a, b) ∨ δt(b, c).

Assumption III.5.2 (Stochastic Triangle Inequality). Every preference matrix Pt

satisfies that if a ≻t b ≻t c, we have δt(a, c) ≤ δt(a, b) + δt(b, c).

Remark III.5.3 (Example of SST & STI). Among the preference models that
satisfy Assumption III.5.1 and Assumption III.5.2, are utility-based models with
a symmetric and monotonically increasing link function σ. In these models,
every arm a has an associated (time-dependent) utility ut(a) and the probability
of arm a winning a duel against arm b is given by Pt(a ≻ b) = σ(ut(a)− ut(b)),
where σ is an increasing function satisfying σ(x) = 1− σ(−x) and σ(0) = 1/2
that maps utility differences to probabilities [Ben+21; Yue+12].

III.5.1 Improved Dynamic Regret Analysis

We now show that ANACONDA achieves strong regret guarantees in terms of
Significant CW Switches and CW Variation under SST and STI.

Significant Condorcet Winner Switches. Under Assumption III.5.1 and
Assumption III.5.2, we are able to obtain the following adaptive dynamic regret
bound in terms of S̃CW.

Theorem III.5.4. Let S̃CW be the unknown number of Significant Condorcet Winner
Switches. Under Assumption 1 and Assumption 2, ANACONDA has dynamic regret
Õ
(
K
√
S̃CWT

)
.

Remark III.5.5. Recall from Section III.2.2, since S̃CW ≤ SCW (as not all CW
Switches are also Significant CW Switches), Theorem III.5.4 gives a tighter

94

Discussion

dynamic regret guarantee for the class of non-stationary preference sequences
with SST and STI. Also note that this bound does not violate the Ω(

√
KSPT)

lower bound from III.3.3, as the lower bound is shown for a worst-case preference
sequence P1, . . . , PT where S̃CW = SCW = SP.

Proof Overview. With some additional effort, Assumption III.5.1 and Assump-
tion III.5.2 allow us to utilize a dynamic regret decomposition similar to prior
work in non-stationary multi-armed bandits [AGL22; AGO19; SK22b]. Roughly
speaking, this allows us to reuse the regret analysis for CW Switches (Theo-
rem III.3.1) in the analysis under Significant CW Switches. ■

We want to give a brief intuition about why additional assumptions are
necessary when bounding dynamic regret w.r.t. Significant CW Switches S̃CW

opposed to CW Switches SCW.2 Consider a phase [νi, νi+1) in the sense of
Significant CW Switches as defined in Section III.2.2. As previously mentioned,
the definition of a Significant CW Switch allows for several (non-severe) CW
changes within each phase [νi, νi+1). As a result, we cannot guarantee that
there will be any intervals during which the CW remains fixed, which would
enable us to accurately estimate the relative regret

∑
t δt(a∗

t , a) so as to eliminate
bad arms. Broadly speaking, assuming a sort of transitivity (i.e. SST and STI)
enables us to identify bad arms based on knowledge of

∑
t δt(a′, a) for some

temporarily fixed benchmark a′. More details and a complete proof can be found
in Appendix C.2.

Condorcet Winner Variation. Recall the definition of the Condorcet Winner
Variation Ṽ from Section III.2.2. As a consequence of Theorem III.5.4, we can
show that ANACONDA also achieves near-optimal dynamic regret w.r.t. Ṽ .

Corollary III.5.6. Let Ṽ be the unknown Condorcet Winner Variation. Under
Assumption III.5.1 and Assumption III.5.2, ANACONDA has dynamic regret
Õ
(
K
√
T + Ṽ 1/3(KT)2/3

)
.

Remark III.5.7. By definition, we have Ṽ ≤ V , which means that Corollary III.5.6
may yield a tighter dynamic regret bound than the (non-adaptive) guarantee w.r.t.
V in [GS22b]. In view of the lower bound of Ω

(
(KV)1/3T 2/3

)
shown in [GS22b],

the regret guarantee of ANACONDA is also tight up to logarithmic factors and a
factor of K1/3. Note once again that the lower bound in [GS22b] is not violated
as their lower bound uses a worst-case preference sequence P1, . . . , PT where
Ṽ = V .

III.6 Discussion

We studied the problem of dynamic regret minimization in non-stationary dueling
bandits and proposed an adaptive algorithm that yields provably optimal regret

2Note that this is a limitation of our regret analysis. It is an open question whether it is
possible to achieve O(

√
S̃CWT) dynamic regret in NSt-DB with general preference models.

95

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

guarantees in terms of strong notions of non-stationary complexity. Our proposed
algorithm is the first to achieve optimal dynamic dueling bandit regret without
prior knowledge of the underlying non-stationary complexity. While our results
certainly close some of the practical open problems in preference elicitation in
time-varying preference models, it also leads to plethora of new questions along
the line. We provide an outlook to future directions and open problems in the
supplementary material.

Future Work. While our results certainly address some of the practical open
problems for preference elicitation in time-varying preference models, it also
leads to plethora of new questions along the line. In particular, as an extension
to this work, one obvious question would be to understand non-stationary
dueling bandits for more general preference matrices: What happens if the
preference sequences do not have a Condorcet winner in each round? What
could be a good dynamic benchmark in that case? Hereto related, another
open question is whether it is possible to obtain dynamic regret bounds in
terms of Significant CW Switches (S̃CW) for general preference sequences (without
transitivity assumptions). Extending the considered pairwise preference setting
to more general subsetwise feedback [GS22a; SG18; SG19b; SG20b] would be
another interesting direction from a practical point of view.

References

[AB10] Audibert, J.-Y. and Bubeck, S. “Best arm identification in multi-
armed bandits”. In: COLT-23th Conference on Learning Theory-
2010. 2010, 13–p.

[ACF02] Auer, P., Cesa-Bianchi, N., and Fischer, P. “Finite-time analysis
of the multiarmed bandit problem”. In: Machine learning vol. 47,
no. 2-3 (2002), pp. 235–256.

[AFM17] Allesiardo, R., Féraud, R., and Maillard, O.-A. “The non-stationary
stochastic multi-armed bandit problem”. In: International Journal
of Data Science and Analytics vol. 3 (2017), pp. 267–283.

[AG12] Agrawal, S. and Goyal, N. “Analysis of Thompson sampling for the
multi-armed bandit problem”. In: Conference on Learning Theory.
2012, pp. 39–1.

[AGL22] Abbasi-Yadkori, Y., Gyorgy, A., and Lazic, N. “A New Look at
Dynamic Regret for Non-Stationary Stochastic Bandits”. In: arXiv
preprint arXiv:2201.06532 (2022).

[AGO19] Auer, P., Gajane, P., and Ortner, R. “Adaptively tracking the best
bandit arm with an unknown number of distribution changes”. In:
In Proceedings of the 32nd International Conference on Learning
Theory vol. 99 (2019), pp. 138–158.

96

References

[AKJ14] Ailon, N., Karnin, Z. S., and Joachims, T. “Reducing Dueling
Bandits to Cardinal Bandits.” In: ICML. Vol. 32. 2014, pp. 856–
864.

[BC+12] Bubeck, S., Cesa-Bianchi, N., et al. “Regret analysis of stochastic
and nonstochastic multi-armed bandit problems”. In: Foundations
and Trends® in Machine Learning vol. 5, no. 1 (2012), pp. 1–122.

[Ben+21] Bengs, V. et al. “Preference-based Online Learning with Dueling
Bandits: A Survey.” In: Journal of Machine Learning Research
(2021).

[Bey+11] Beygelzimer, A. et al. “Contextual bandit algorithms with su-
pervised learning guarantees”. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 19–26.

[BGZ14] Besbes, O., Gur, Y., and Zeevi, A. “Stochastic multi-armed-bandit
problem with non-stationary rewards”. In: Advances in Neural
Information Processing Systems vol. 27 (2014), pp. 199–207.

[BGZ15] Besbes, O., Gur, Y., and Zeevi, A. “Non-stationary stochastic
optimization”. In: Operations research vol. 63, no. 5 (2015),
pp. 1227–1244.

[Che+19] Chen, Y. et al. “A new algorithm for non-stationary contextual
bandits: Efficient, optimal, and parameter-free”. In: In Proceedings
of the 32nd Conference on Learning Theory vol. 99 (2019), pp. 1–30.

[Dud+15a] Dudik, M. et al. “Contextual Dueling Bandits”. In: Conference on
Learning Theory (2015), pp. 563–587.

[Dud+15b] Dudík, M. et al. “Contextual Dueling Bandits”. In: Conference on
Learning Theory. 2015, pp. 563–587.

[GM11] Garivier, A. and Moulines, E. “On upper-confidence bound policies
for switching bandit problems”. In: International Conference on
Algorithmic Learning Theory. Springer. 2011, pp. 174–188.

[GS22a] Ghoshal, S. and Saha, A. “Exploiting Correlation to Achieve Faster
Learning Rates in Low-Rank Preference Bandits”. In: International
Conference on Artificial Intelligence and Statistics. PMLR. 2022,
pp. 456–482.

[GS22b] Gupta, S. and Saha, A. “Optimal and efficient dynamic regret
algorithms for non-stationary dueling bandits”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 19027–19049.

[GUC15] Gajane, P., Urvoy, T., and Clérot, F. “A Relative Exponential
Weighing Algorithm for Adversarial Utility-based Dueling Bandits”.
In: Proceedings of the 32nd International Conference on Machine
Learning. 2015, pp. 218–227.

97

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

[HWD11] Hofmann, K., Whiteson, S., and De Rijke, M. “A probabilistic
method for inferring preferences from clicks”. In: Proceedings of the
20th ACM international conference on Information and knowledge
management. 2011, pp. 249–258.

[KBH22] Kolpaczki, P., Bengs, V., and Hüllermeier, E. “Non-Stationary
Dueling Bandits”. In: arXiv preprint arXiv:2202.00935 (2022).

[Kom+15] Komiyama, J. et al. “Regret Lower Bound and Optimal Algorithm
in Dueling Bandit Problem.” In: COLT. 2015, pp. 1141–1154.

[LS18] Lattimore, T. and Szepesvári, C. “Bandit Algorithms”. In: preprint
(2018).

[Luo+18] Luo, H. et al. “Efficient contextual bandits in non-stationary
worlds”. In: In Proceedings of the 31st Conference On Learning
Theory vol. 75 (2018), pp. 1739–1776.

[RC13] Radlinski, F. and Craswell, N. “Optimized interleaving for online
retrieval evaluation”. In: Proceedings of the sixth ACM international
conference on Web search and data mining. 2013, pp. 245–254.

[RCG20] Russac, Y., Cappé, O., and Garivier, A. “Algorithms for
non-stationary generalized linear bandits”. In: arXiv preprint
arXiv:2003.10113 (2020).

[Rob52] Robbins, H. “Some aspects of the sequential design of experiments”.
In: Bulletin of the American Mathematical Society vol. 58, no. 5
(1952), pp. 527–535.

[RVC19] Russac, Y., Vernade, C., and Cappé, O. “Weighted linear bandits for
non-stationary environments”. In: Advances in Neural Information
Processing Systems vol. 32 (2019).

[SG18] Saha, A. and Gopalan, A. “Battle of Bandits”. In: Uncertainty in
Artificial Intelligence. 2018.

[SG19a] Saha, A. and Gopalan, A. “Combinatorial bandits with relative
feedback”. In: Advances in Neural Information Processing Systems.
2019.

[SG19b] Saha, A. and Gopalan, A. “PAC Battling Bandits in the Plackett-
Luce Model”. In: Algorithmic Learning Theory. 2019, pp. 700–737.

[SG20a] Saha, A. and Gopalan, A. “Best-item learning in random utility
models with subset choices”. In: International Conference on
Artificial Intelligence and Statistics. PMLR. 2020, pp. 4281–4291.

[SG20b] Saha, A. and Gopalan, A. “From PAC to instance-optimal
sample complexity in the Plackett-Luce model”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 8367–8376.

[SG21] Saha, A. and Gaillard, P. “Dueling Bandits with Adversarial
Sleeping”. In: Advances in Neural Information Processing Systems
vol. 34 (2021), pp. 27761–27771.

98

References

[SG22] Saha, A. and Gaillard, P. “Versatile Dueling Bandits: Best-of-
both-World Analyses for Online Learning from Preferences”. In:
International Conference on Machine Learning. PMLR. 2022.

[SK22a] Saha, A. and Krishnamurthy, A. “Efficient and Optimal Algorithms
for Contextual Dueling Bandits under Realizability”. In: Interna-
tional Conference on Algorithmic Learning Theory. PMLR. 2022,
pp. 968–994.

[SK22b] Suk, J. and Kpotufe, S. “Tracking Most Significant Arm Switches
in Bandits”. In: Conference on Learning Theory. PMLR. 2022,
pp. 2160–2182.

[SKM21] Saha, A., Koren, T., and Mansour, Y. “Adversarial Dueling
Bandits”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 9235–9244.

[SPX13] Soufiani, H. A., Parkes, D. C., and Xia, L. “Preference Elicitation
For General Random Utility Models”. In: Uncertainty in Artificial
Intelligence. Citeseer. 2013, p. 596.

[Sui+17] Sui, Y. et al. “Multi-dueling bandits with dependent arms”. In:
Conference on Uncertainty in Artificial Intelligence. UAI’17. 2017.

[Sui+18] Sui, Y. et al. “Advancements in Dueling Bandits.” In: IJCAI. 2018,
pp. 5502–5510.

[Tho33] Thompson, W. R. “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples”. In:
Biometrika vol. 25, no. 3-4 (1933), pp. 285–294.

[WIW18] Wu, Q., Iyer, N., and Wang, H. “Learning contextual bandits
in a non-stationary environment”. In: In Proceedings of the 41st
International ACM SIGIR Conference on Research & Development
in Information Retrieval (2018), pp. 495–504.

[WL16] Wu, H. and Liu, X. “Double Thompson sampling for dueling
bandits”. In: Advances in Neural Information Processing Systems.
2016, pp. 649–657.

[YJ09] Yue, Y. and Joachims, T. “Interactively optimizing information
retrieval systems as a dueling bandits problem”. In: Proceedings
of the 26th Annual International Conference on Machine Learning.
ACM. 2009, pp. 1201–1208.

[YJ11] Yue, Y. and Joachims, T. “Beat the mean bandit”. In: Proceedings
of the 28th International Conference on Machine Learning (ICML-
11). 2011, pp. 241–248.

[Yue+12] Yue, Y. et al. “The k-armed dueling bandits problem”. In: Journal
of Computer and System Sciences vol. 78, no. 5 (2012), pp. 1538–
1556.

99

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

[Zog+14a] Zoghi, M. et al. “Relative confidence sampling for efficient on-line
ranker evaluation”. In: Proceedings of the 7th ACM international
conference on Web search and data mining. ACM. 2014, pp. 73–82.

[Zog+14b] Zoghi, M. et al. “Relative upper confidence bound for the k-armed
dueling bandit problem”. In: JMLR Workshop and Conference
Proceedings. 32. JMLR. 2014, pp. 10–18.

[Zog+15] Zoghi, M. et al. “Copeland dueling bandits”. In: Advances in Neural
Information Processing Systems. 2015, pp. 307–315.

Notation

at, bt Arms selected by the algorithm in round t
a, a′, b Generic fixed arms in [K]
δt(a, b) Gap between arm a and arm b

δ̂t(a, b) Importance weighted gap estimate
a∗

t Condorcet winner in round t
tℓ First round in the ℓ-th episode
taℓ Round in the ℓ-th episode in which a is eliminated

from Agood
SCW Number of Condorcet Winner Switches
τ1, . . . , τSCW Rounds in which the Condorcet winner changes
a∗

i Condorcet winner in phase i ∈ [SCW], i.e. a∗
t = a∗

i

for t ∈ [τi, τi+1)
S̃CW Number of Significant Condorcet Winner Switches
ν1, . . . , νS̃CW Rounds of Significant CW Switches
as

i Last safe arm in phase [νi, νi+1), i.e. last arm to
satisfy (29)

Ṽ Condorcet Winner Variation

C.1 Proof of Theorem III.3.1

We organize the proof of Theorem III.3.1 as follows. Section C.1.1 contains basic
preliminary facts that will be the foundation of the upcoming proof. Section C.1.2
then bounds the regret any fixed arm suffers within each episode before being
eliminated from the good set. Complementary to this, Section C.1.3 then deals
with the regret an arm suffers after being eliminated.

C.1.1 Preliminaries

In this preliminary section, we introduce a concentration bound on the sum of
our estimates δ̂t in Section C.1.1.1. We then show in Section C.1.1.2 that the
beginning of a new episode implies that the Condorcet winner has changed (on
the concentration event), which will be useful later. Finally, Section C.1.1.3

100

Proof of Theorem III.3.1

decomposes the regret in terms episodes, arms, and rounds, which will form the
basis of our analysis.

C.1.1.1 Martingale Concentration Bound

We will rely on a similar martingale tail bound as [Bey+11] and [SK22b], which
is based on a version of Freedman’s inequality given below.

Lemma C.1.1 (Theorem 1 in [Bey+11]). Let (Xt)t∈N be a martingale difference
sequence w.r.t. some filtration (Ft)t∈N0 . Assume that is Xt is almost surely
uniformly bounded, i.e. Xt ≤ R a.s. for some constant R. Moreover, suppose
that

∑t
s=1 E[X2

s | Fs−1] ≤ Vt a.s. for some sequence of constants (Vt)t∈N. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, we have

t∑
s=1

Xs ≤ (e− 1)
(√

Vt log(1/δ) +R log(1/δ)
)
. (5)

Proof. See Theorem 1 in [Bey+11] and Lemma 1 in [SK22b]. ■

We now apply the above concentration bound to the martingale difference
sequence δ̂t(a, b)− E[δ̂t(a, b) | Ft−1].

Lemma C.1.2. Let E be the event that for all rounds s1 < s2 and all arms
a, b ∈ [K]:

|
s2∑

t=s1

δ̂t(a, b)−
s2∑

t=s1

E
[
δ̂t(a, b) | Ft−1

]
| ≤ c1 log(T)

(
K
√

(s2 − s1) +K2
)

(6)

for an appropriately large constant c1 > 0 and where F = {Ft}t∈N0 is the
canonical filtration generated by observations in past rounds. Then, event E
occurs with probability at least 1− 1/T 2.

Proof. Note that δ̂t(a, b)− E[δ̂t(a, b) | Ft−1] is naturally a martingale difference,
since E

[
δ̂t(a, b) − E[δ̂t(a, b) | Ft−1] | Ft−1

]
= 0 a.s. Using that |At| ≤ K, we

have that Xt ≤ 2K2 a.s. for all rounds t. Moreover, we get that

s2∑
t=s1

E
[
δ̂2

t (a, b) | Ft−1

]
≤

s2∑
t=s1

|At|4E
[
1{at=a,bt=b} | Ft−1

]
=

s2∑
t=s1

|At|2 ≤ K2(s2 − s1).

We can thus apply Lemma C.1.1 with R = K2 and Vt = 2K2t. Using
|x− y| ≤ |x|+ |y| and taking union bounds over a, b and s1, s2, we then obtain
Lemma C.1.2. ■

101

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

C.1.1.2 Episodes and Condorcet Winner Switches

Lemma C.1.3. On event E, for each episode [tℓ, tℓ+1) with tℓ+1 ≤ T , there exists
a change of the CW τi ∈ [tℓ, tℓ+1).

This implies that any phase [τi, τi+1) will intersect with at most two episodes.

Proof. The start of a new episode means that every arm a ∈ [K] has been
eliminated from Agood at some round in taℓ ∈ [tℓ, tℓ+1). As a result, there must
exist an interval [s1, s2] ⊆ [tℓ, taℓ) and some arm a′ ∈ [K] so that the elimination
rule (III.2) holds. Using Lemma C.1.2, we then find that for some constant
c2 > 0:

s2∑
t=s1

E
[
δ̂t(a′, a) | Ft−1

]
> c2 log(T)K

√
(s2 − s1) ∨K2. (7)

Note that by construction of δ̂t(a′, a), we always have δt(a′, a) ≥ E[δ̂t(a′, a) |
Ft−1] since

E[δ̂t(a′, a) | Ft−1] =
{
δt(a′, a) a′, a ∈ At

−1/2 otherwise.
(8)

Thus, in view of inequality (7), there exists no arm a ∈ [K] such that
maxa′ δt(a′, a) = 0 for all t ∈ [tℓ, tℓ+1), i.e. no fixed arm is optimal throughout
the episode and there must have been a change of Condorcet winner. ■

C.1.1.3 Decomposing Regret across Episodes and Arms

We will bound regret of the algorithm withing each episode separately, i.e. we
consider

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
, (9)

where tℓ is the first round in episode ℓ and a∗
t is the Condorcet winner in round

t ∈ [T].
Recall that, every round t ∈ [T], the algorithm selects an arm a uniformly at

random from the active set At. It will then be useful to rewrite (11) in terms of
fixed arms a ∈ [K].

Lemma C.1.4. We can write (11) in terms of the regret suffered by fixed arms:

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
= E

[
K∑

a=1

tℓ+1∑
t=tℓ

δt(a∗
t , a)
|At|

1{a∈At}

]
(10)

Proof. As the algorithm independently and symmetrically selects two arms
(at, bt) in each round (Line 4 in Algorithm 11), we can focus on bounding regret
for one of the two arms, say at, by writing

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
= E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at)

]
. (11)

102

Proof of Theorem III.3.1

Conditioning on tℓ and using the tower property, we then further find that

E

[
tℓ+1∑
t=tℓ

δt(a∗
t , at)

]
= E

[
E

[
tℓ+1∑
t=tℓ

δt(a∗
t , at) | tℓ

]]

= E

[
T∑

t=tℓ

E
[
1{t<tℓ+1}E [δt(a∗

t , at) | Ft−1] | tℓ
]]

= E

[
T∑

t=tℓ

∑
a∈At

E
[
1{t<tℓ+1} | tℓ

] δt(a∗
t , a)
|At|

]

= E

[
tℓ+1∑
t=tℓ

∑
a∈At

δt(a∗
t , a)
|At|

]
,

where we used that 1{t<tℓ+1} is Ft−1-measurable and

E [δt(a∗
t , at) | Ft−1] =

∑
a∈At

δt(a∗
t , a)
|At|

.

Lastly, Lemma C.1.4 then follows from rewriting the sum over a ∈ At using the
indicator 1{a∈At} and swapping the order of the sums. ■

In an important next step, we split the dynamic regret for each fixed arm
a ∈ [K] into:

(i) the regret we suffer from playing arm a in the ℓ-th episode before its
elimination from Agood,

(ii) the regret we suffer from (re)playing arm a in the ℓ-th episode after its
elimination from Agood.

Recall that taℓ ∈ [tℓ, tℓ+1) denotes the time that arm a is eliminated from Agood
in episode ℓ. Using Lemma C.1.4, we then decompose the dynamic regret in
episode ℓ as

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]

= E

 K∑
a=1

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)
|At|


︸ ︷︷ ︸

R1(ℓ)

+E

 K∑
a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At}


︸ ︷︷ ︸

R2(ℓ)

,

where for R1(ℓ) we used that a ∈ Agood implies a ∈ At by construction of these
sets. For every fixed arm, R1(ℓ) corresponds to the regret suffered before said
arm is eliminated from the master set. Accordingly, R2(ℓ) is the regret due to
replaying an arm after its elimination from the master set. The remainder of
the proof is mainly concerned with bounding R1(ℓ) and R2(ℓ) appropriately.

103

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

C.1.2 Bounding R1(ℓ): Regret Before Elimination

We begin by assuming w.l.o.g. that t1ℓ ≤ · · · ≤ tKℓ so that for each round t < taℓ
all arms a′ ≥ a are element in Agood ⊆ At. As a result, we have |At| ≥ K+1−a
for all t ≤ taℓ , and thus

E

 K∑
a=1

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)
|At|

 ≤ E

 K∑
a=1

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)

K + 1− a

 . (12)

As we can see, the denominator will eventually account for a factor of
log(K) ≈

∑K
a=1 1/a. We now concentrate on bounding the inner sum in (12),

i.e. the regret of any fixed arm before being eliminated in the ℓ-th episode.

C.1.2.1 Bounding E[
∑ta

ℓ −1
t=tℓ

δt(a∗
t , a)] for any fixed arm a ∈ [K]

This section is devoted to proving the following upper bound.

Lemma C.1.5. For some constant c > 0:

E

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)

 ≤ c log2(T)K E

 ∑
i∈Phases(tℓ,ta

ℓ
)

√
τi+1 − τi

+ K

T 2 + 1
T
. (13)

To prove Lemma C.1.5, we will divide the interval [tℓ, taℓ) into segments over
the course of which arm a suffers large regret and show that not too many of such
segments will occur in interval [tℓ, taℓ), i.e. until arm a is being eliminated from
Agood. The definition of such bad segments is analogous to their construction in
[AGL22] and [SK22b]. Whereas prior work utilizes such segments to bound the
regret of the last arm considered good in an episode, i.e. the last arm in Agood,
we will instead derive a regret bound for any fixed arm a. While the according
regret bound will be in some sense weaker, it will still be sufficiently tight for
our purposes. We here follow the notation in [SK22b].

Definition C.1.6 (Bad Segments). Fix tℓ and let [τi, τi+1) be any phase
intersecting [tℓ, T). For an arm a, define rounds si,j(a) ∈ [tℓ∨τi, τi+1) recursively
as follows: let si,0(a) = tℓ ∨ τi and define si,j+1(a) as the smallest round in
(si,j(a), τi+1) such that arm a satisfies for some constant c3 > 0:

si,j+1(a)∑
t=si,j(a)

δt(a∗
i , a) > c3 log(T)K

√
si,j+1(a)− si,j(a), (14)

if such round si,j+1(a) exists. Otherwise, we let si,j+1(a) = τi+1 − 1. We refer
to the intervals [si,j , si,j+1) as bad segments if (14) is satisfied. If a segment
does not satisfy (14), we refer to them as non-bad segments.3

3Note that by definition every segment but the last segment in a given phase must always
satisfy (14)

104

Proof of Theorem III.3.1

Note that the concept of bad segments will become useful later as, for a fixed
tℓ, by definition of the bad segments, we can always upper bound the dynamic
regret on an interval [si,j(a), si,j+1(a)) by

si,j+1(a)−1∑
t=si,j(a)

δt(a∗
t , a) ≤ c3 log(T)K

√
si,j+1(a)− si,j(a). (15)

We now define the bad round for an arm a as the smallest round when the
aggregated regret of bad segments exceeds

√
interval length regret.

Definition C.1.7 (Bad Round). Fix tℓ and some arm a. The bad round s(a) > tℓ
is defined as the smallest round which satisfies for some universally fixed constant
c4 > 0: ∑

(i,j) : si,j+1(a)<s(a)

√
si,j+1(a)− si,j(a) > c4 log(T)

√
s(a)− tℓ, (16)

where the sum is over all bad segments with si,j+1(a) < s(a).

For a given episode ℓ, we will show that arm a is eliminated with high
probability by the time the bad round s(a) occurs. To this end, we will introduce
perfect replays, i.e. those runs of CondaLet which are properly timed and
eliminate arm a before it aggregates large regret.

C.1.2.2 Perfect Replays

The following result will become very useful and makes the intuition precise that
on the concentration event the Condorcet winner will not be eliminated. More
precisely, any run of CondaLet(s,m) scheduled in phase i will never eliminate
a∗

i inside phase i as long as our concentration bound holds.

Lemma C.1.8. On event E, no run of CondaLet(s,m) with s ∈ [τi, τi+1) ever
eliminates arm a∗

i before round τi+1.

Proof. Suppose the contrary that some CondaLet(s,m) with s ∈ [τi, τi+1)
eliminates arm a∗

i before round τi+1. Then, we must have for some arm a ∈ [K]
and interval [s1, s2] ⊆ [s, τi+1) that

C log(T)K
√

(s2 − s1) ∨K2 <

s2∑
t=s1

δ̂t(a, a∗
i), (17)

which using the concentration bound (6) implies on event E that

c2 log(T)K
√

(s2 − s1) ∨K2 <

s2∑
t=s1

E
[
δ̂t(a, a∗

i) | Ft−1

]
≤

s2∑
t=s1

δt(a, a∗
i), (18)

where the last inequality holds by merit of (8). Now, by the definition of arm a∗
i

as the Condorcet winner in phase i, we must have δt(a, a∗
i) ≤ 0 for all t ∈ [τi, τi+1)

and all a ∈ [K]. Lemma C.1.8 then follows from contradiction. ■

105

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

This leads to the following important property of CondaLet that states that
properly timed replays of sufficient length will eliminate arms from Agood in the
course of their bad segments. We call such calls of CondaLet perfect replays.

Proposition C.1.9 (Perfect Replay). Suppose that event E holds. Let
[si,j(a), si,j+1(a)) be a bad segment w.r.t. arm a and let s̃i,j(a) =⌈ si,j(a)+si,j+1(a)

2
⌉

be the midpoint of the interval. It holds that any run of
CondaLet(s,m) with s ∈ [si,j(a), s̃i,j(a)] and m ≥ si,j+1(a)− si,j(a) will elimi-
nate arm a from Agood. We refer to such calls of CondaLet as perfect replays
w.r.t. arm a.

Proof. Let CondaLet(s,m) be a replay such that s ∈ [si,j(a), s̃i,j(a)] and
m ≥ si,j+1(a)− si,j(a). As any bad segment is by definition contained inside a
phase, Lemma C.1.8 tells us that a∗

i ∈ At for all t ∈ [s̃i,j(a), si,j+1(a)]. Recall
that the estimates δ̂t(a∗

i , a) are unbiased if a, a∗
i ∈ At and we are thus able to

obtain unbiased estimates of
∑si,j+1(a)

t=s̃i,j(a) δt(a∗
i , a). What is left to show is that in

fact arm a suffers sufficiently large regret to cause its elimination on this interval.
To this end, by definition of the bad segments and basic algebraic manipulation,
we find that
si,j+1(a)∑
t=s̃i,j(a)

δt(a∗
i , a) =

si,j+1(a)∑
t=si,j(a)

δt(a∗
i , a)−

s̃i,j(a)−1∑
t=si,j(a)

δt(a∗
i , a)

(14)
≥ c3 log(T)K

(√
si,j+1(a)− si,j(a)−

√
s̃i,j(a)− 1− si,j(a)

)
≥ c3

4 log(T)K
√
si,j+1(a)− s̃i,j(a).

Using that
∑si,j+1(a)

t=s̃i,j(a) δ̂t(a∗
i , a) is an unbiased estimate of

∑si,j+1(a)
t=s̃i,j(a) δt(a∗

i , a)
and applying the concentration bound (6), this shows that arm a satisfies the
elimination rule (III.2) over interval [s̃i,j(a), si,j+1(a)] and will thus be eliminated
by CondaLet(s,m). ■

C.1.2.3 Perfect replays are scheduled w.h.p.

Following [SK22b], we will now show that a perfect replay that eliminates arm a
is scheduled before round s(a) with high probability. A replay CondaLet(s,m) is
scheduled if Bs,m = 1 and the random variables Bs,m with s ≥ tℓ are conditionally
independent on tℓ (see Line 7 in Algorithm 10). We are thus interested in perfect
replays CondaLet(s,m) such that for any bad segment [si,j(a), si,j+1(a)) with
si,j+1(a) < s(a), we have s ∈ [si,j(a), s̃i,j(a)] and m ≥ si,j+1(a) − si,j(a).
Moreover, we define mi,j as the smallest element in {2, . . . , 2⌈log(T)⌉} such that
mi,j ≥ si,j+1(a)− si,j(a), which implies that si,j+1(a)− si,j(a) ≥ mi,j

2 . We will
obtain the high probability guarantee via concentration on the sum

X(tℓ, s(a)) =
∑

(i,j) : si,j+1(a)<s(a)

s̃i,j(a)∑
s=si,j(a)

Bs,mi,j
. (19)

106

Proof of Theorem III.3.1

Lemma C.1.10. Let E ′(tℓ) denote the event that X(tℓ, s(a)) ≥ 1 for all arms
a, i.e. a perfect replay is scheduled before round s(a). We have P(E ′(tℓ) | tℓ) ≥
1−K/T 3.

Proof. Recalling that Bs,m | tℓ ∼ Bernoulli
(

1√
m(s−tℓ)

)
, we find that

E[X(tℓ, s(a)) | tℓ] ≥
1√
2

∑
(i,j) :

si,j+1(a)<s(a)

s̃i,j(a)− si,j(a)√
si,j+1(a)− si,j(a)

√
s(a)− tℓ

≥ 1
4

∑
(i,j) :

si,j+1(a)<s(a)

√
si,j+1(a)− si,j(a)

s(a)− tℓ

(16)
≥ c4

4 log(T)

For c4 sufficiently large the standard Chernoff bound tells us that

P
(
X(tℓ, s(a)) ≤ E[X(tℓ, s(a)) | tℓ]

2 | tℓ
)
≤ exp

(
−E[X(tℓ, s(a)) | tℓ]

8

)
≤ 1
T 3 .

The desired bound then follows from taking a union bound over all arms in
[K]. ■

Now, on event E ∩ E ′(tℓ), it must hold that taℓ < s(a) for all arms a ∈ [K],
since otherwise a would have been eliminated by some perfect replay before
round taℓ (by definition of event E ′(tℓ)). As the bad round s(a) is defined as the
smallest round satisfying (16), we then have

∑
(i,j) : si,j+1(a)<ta

ℓ

√
si,j+1(a)− si,j(a) ≤ c4 log(T)K

√
taℓ − tℓ. (20)

Hence, in view of equation (15), over the bad segments, the regret of arm a is
at most of order log2(T)

√
taℓ − tℓ. Moreover, for every last segment in some

phase i, [si,j , si,j+1(a)), as well as the final segment [si,j(a), taℓ), we know that
the regret suffered from playing a is upper bounded by c3 log(T)√τi+1 − τi by
definition of non-bad segments (Definition C.1.6). Therefore, on event E ∩ E ′(tℓ),
it follows from equation (20) and the above that

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a) ≤ c5K log2(T)

∑
i∈Phases(tℓ,ta

ℓ
)

√
τi+1 − τi, (21)

where we used that
√
taℓ − tℓ ≤

∑
i∈Phases(tℓ,ta

ℓ
)
√
τi+1 − τi. Finally, we obtain

Lemma C.1.5 by taking expectation and using that E ∩ E ′(tℓ) holds with high

107

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

probability,

E

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)

 ≤ E

[1{E∩E′(tℓ)}

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a) | tℓ

]+ T
(
P(Ec) + P(E ′(tℓ)c | tℓ)

)

≤ c5K log2(T)E

 ∑
i∈Phases(tℓ,ta

ℓ
)

√
τi+1 − τi

+ 1
T

+ K

T 2 .

C.1.2.4 Summing Over Arms

Note that taℓ ≤ tℓ+1 for all a ∈ [K] by definition of taℓ . Then, summing over all
arms, it follows from Lemma C.1.5 and (12) that for some constant c6 > 0:

E

 K∑
a=1

ta
ℓ −1∑

t=tℓ

δt(a∗
t , a)
|At|

 ≤ c6K log3(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 , (22)

where we loosely upper bound log(K) by log(T).

C.1.3 Bounding R2(ℓ): Regret After Elimination

Before we can begin, we will have to lay some groundwork to simplify the analysis
in later steps. Recall the definition of bad segments from Section C.1.2 and define
for every phase [τi, τi+1) intersecting with [taℓ , tℓ+1), i.e. i ∈ Phases(taℓ , tℓ+1), the
segments [si,j(a), si,j+1) as in Definition C.1.6.

We will split the regret due to bad segments, i.e. those that satisfy (14), from
the regret due to non-bad segments, i.e. the last segments in a phase that do no
satisfy (14). For a fixed arm a ∈ [K], we let bad(a) denote the rounds t ∈ [tℓ, tℓ+1)
such that t ∈ [si,j(a), si,j+1(a)) for any bad segment [si,j(a), si,j+1(a)).

By the definition of a non-bad segment (w.r.t. arm a), we know that that
there is at most one such segment in every phase and that the regret of arm
a in each segment is upper bounded by c3 log(T)√τi+1 − τi, where [τi, τi+1) is
the phase that contains the segment. To take care of the denominator |At|,
assume w.l.o.g. that there is a run of CondaLet(taℓ ,m) that remains active and
uninterrupted until the final round T .4 We can then reorder arms a ∈ [K]
according to the round that they are being eliminated by CondaLet(taℓ ,m),
which gives |At| ≥ K + 1− a whenever a ∈ At. As before, this yields a factor
of log(K) when summing over all arms. We then bound R2(ℓ) over non-bad
segments as

E

 K∑
a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At,t̸∈bad(a)}

 (23)

4Note that this is w.l.o.g. when bounding 1/|At| as any interrupting call of CondaLet would
only increase |At| by resetting it to [K].

108

Proof of Theorem III.3.1

≤ c3K log(K) log(T)E

 ∑
i∈Phases(ta

ℓ
,tℓ+1)

√
τi+1 − τi

 .
The more challenging task is now to bound R2(ℓ) for rounds in bad segments.

Recall that, for a fixed arm a ∈ [K], the sum in question relates to the expected
regret suffered within an episode from replaying arm a after it has been eliminated
from Agood, i.e. after time taℓ . We begin by a straightforward upper bound. To
this end, for a given replay CondaLet(s,m), let M(s,m, a) be the last round in
[s, s+m], where arm a is active in CondaLet(s,m) and all of its children. Then,

E

 K∑
a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At,t∈bad(a)}

 (24)

≤ E

 K∑
a=1

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a)
|At|

1{t∈bad(a)}

 ,
where the most inner sum on the right hand side is for m ∈ {2, . . . , 2⌈log(T)⌉}.
We will keep the convention that whenever a sum over m is not further specified,
it will be over the above set. Note that (24) is a loose upper bound. While of
course only a single call of CondaLet can be active at any point in time, we here
sum over every possible replay and ignore the potential nesting and interleaving
of replays. In particular, this upper bound is justified as each δt(a∗

t , a) is non-
negative by definition of the CW a∗

t . The looseness of (24) will pose no obstacle,
as the remainder of our upper bounds will be sufficiently tight as we will see.

Again, we first take care of the dependence on K due to the denominator on
the right hand side of (24). Note that for a fixed CondaLet(s,m) if ak is the k-th
arm to be eliminated by CondaLet(s,m), then mint∈[s,M(s,m,ak)]|At| ≥ K+1−k.
Similarly to before, this will result in a multiplicative log(K) term when
eventually switching the order of the sums and summing over all arms. For now,
we therefore focus on the expression

E

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a)1{t∈bad(a)}

 (25)

for any fixed arm a ∈ [K]. To deal with this quantity, it will be helpful to
distinguish between two types of replays, i.e. calls of CondaLet, which we refer
to as confined and unconfined replays.

Definition C.1.11 (Confined and Unconfined Replays). For a fixed tℓ, we call
CondaLet(s,m) confined if there exists i ∈ Phases(tℓ, T) such that [s, s+m] ⊆
[τi, τi+1), i.e. the replay intersects with a single phase only. In turn, we
say that CondaLet(s,m) is unconfined if for all i ∈ Phases(tℓ, T), we have
[s, s+m] ̸⊆ [τi, τi+1).

An illustration of confined and unconfined replays is given in Figure .1.

109

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

tℓ taℓ tℓ+1s s+m

confined replay

M s′ s′ +m′

unconfined replay

M ′τi

a∗
i a∗

i+1

Figure .1: For some episode [tℓ, tℓ+1) and arm a ∈ [K], an example of a confined
replay and a unconfined replay, where M = M(s,m, a) and M ′ = M(s′,m′, a).
When a replay CondaLet(s′,m′) intersects with more than one phase, the CW
in the next phase [τi, τi+1), denoted a∗

i+1, could be evicted before the beginning
of that phase, i.e. in the interval [s′, τi).

We proceed by upper bounding the inner sum
∑M(s,m,a)

t=s∨ta
ℓ

δt(a∗
t , a)1{t∈bad(a)}

for confined and unconfined replays separately. The bound for confined replays
comes with no major intricacies, whereas bounding the regret due to unconfined
replays is slightly more involved.

C.1.3.1 Bounding Regret for Confined Replays

We begin by bounding, the inner sum
∑M(s,m,a)

t=s∨ta
ℓ

δt(a∗
t , a) for any confined replay

in terms of the replay duration m.

Lemma C.1.12. On event E, for any fixed arm a and confined replay (s,m), it
holds that

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a) ≤ c2 log(T)K

√
m.

Proof of Lemma C.1.12. Consider any confined replay CondaLet(s,m) with
[s, s+m] ⊆ [τi, τi+1) for some phase i. This implies that on interval [s, s+m]
the Condorcet winner remains the same, i.e. a∗

t = a∗
i for all t ∈ [s, s+m]. Now,

recall from Lemma C.1.8 that, on event E , arm a∗
i will not be eliminated inside of

[s, s+m] as it is a subset of phase [τi, τi+1). As a result, we must have a, a∗
i ∈ At

for all t ∈ [s ∨ taℓ ,M(s,m, a)] and our estimate δ̂t(a∗
i , a) is thus unbiased. Since

M(s,m, a) is the last round that arm a is retained by CondaLet(s,m) (and
its children), it follows from the elimination rule (III.2) and the concentration
bound (6) that

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
i , a) ≤ c2 log(T)K

√
M(s,m, a)− s ∨ taℓ ≤ c2 log(T)K

√
m,

where the last inequality uses that M(s,m, a) ≤ s+m. ■

110

Proof of Theorem III.3.1

C.1.3.2 Bounding Regret for Unconfined Replays

Lemma C.1.13. On event E ∩ E ′′(tℓ), for any fixed arm a and unconfined replay
(s,m), it holds that

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a)1{t∈bad(a)} ≤ c5 log2(T)K

(√
s− tℓ + 2

√
m
)
.

Here, the event E ′′(tℓ) is a concentration event similar to that in Lemma C.1.10
and will be defined in the following.

Proof of Lemma C.1.13. Consider any unconfined replay CondaLet(s,m) with
s ∈ [tℓ, tℓ+1). Let i be the phase so that s ∈ [τi−1, τi). We can then split the
sum over t ∈ [s ∨ taℓ ,M(s,m, a)] into the rounds before the Condorcet winner
changes for the first time within [s, s+m] and the remaining rounds, i.e.

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a) =

τi−1∑
t=s∨ta

ℓ

δt(a∗
i , a) +

M(s,m,a)∑
t=τi

δt(a∗
t , a). (26)

Note that the interval [τi,M(s,m, a)] can itself span over several phases. The
first sum on the right hand side can be bounded as in Lemma C.1.12. Using
Lemma C.1.8, the elimination rule, and the concentration bound, we get

τi−1∑
t=s∨ta

ℓ

δt(a∗
i , a) ≤ c2 log(T)K

√
m.

The second sum cannot be bounded in a similar way, as we cannot guarantee that
the Condorcet winner in some round t ∈ [τi,M(s,m, a)] has not been eliminated
in prior rounds [s ∨ taℓ , τi). For example in Figure .1, the unconfined replay
CondaLet(s′,m′) could have eliminated a∗

i+1 on interval [s′, τi) before it became
the Condorcet winner. We may therefore fail to detect that a suffers large regret
without additional replays.

To resolve this difficulty, we can reuse part of the arguments from Section C.1.2.
Define the bad segments [sk,j(a), sk,j+1(a)) for k ≥ i as in Definition C.1.6.
Similarly to before, we now define the bad round s′(a) as the smallest round
s′(a) > τi such that for the same constant c4 > 0 as in (16)∑

(k,j) : sk,j+1(a)<s′(a)

√
sk,j+1(a)− sk,j(a) > c4 log(T)

√
s′(a)− tℓ, (27)

where the sum is over all bad segments with k ≥ i and sk,j+1(a) < s′(a).
Importantly, for this definition of s′(a) and with the sum X(tℓ, s′(a)) defined

accordingly, the high probability guarantee of Lemma C.1.10 still holds. This
implies that a perfect replay (see Proposition C.1.9) that eliminates arm a (from
the unconfined replay CondaLet(s,m)) is scheduled w.h.p. before the bad round
s′(a) occurs. Let the corresponding event denote E ′′(tℓ) as in Lemma C.1.10.

111

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

The round M(s,m, a) was defined as the last round for which a is retained
in CondaLet(s,m) and all of its children. Hence, on event E ∩ E ′′(tℓ), we
must have M(s,m, a) < s′(a) as otherwise a would have been eliminated from
CondaLet(s,m) (or one of its children) before round M(s,m, a), a contradiction.
By merit of (15), this yields∑

(k,j) : sk,j+1(a)<M(s,m,a)

√
sk,j+1(a)− sk,j(a) ≤ c4 log(T)K

√
M(s,m, a)− tℓ

The regret on the final segment [sk,j(a),M(s,m, a)] can trivially be bounded by
c3 log(T)K

√
m, as it must be a non-bad segment and M(s,m, a)− sk,j(a) ≤ m.

Finally, in view of (15), it follows that
M(s,m,a)∑

t=s∨ta
ℓ

δt(a∗
t , a)1{t∈bad(a)} ≤ c5 log2(T)K(

√
M(s,m, a)− tℓ +

√
m)

≤ c5 log2(T)K(
√
s− tℓ + 2

√
m),

where the second inequality uses
√
M(s,m, a)− tℓ ≤

√
s− tℓ +

√
m, since

M(s,m, a) ≤ s+m and s ≥ tℓ.
■

C.1.3.3 Combining Confined and Unconfined Replays

We will now conclude the bound on R2(ℓ). To this end, recall that the replay
schedule is chosen according to Bs,m | tℓ ∼ Bern

(
1/
√
m(s− tℓ)

)
. Then,

conditioning on tℓ, we have

E

[
tℓ+1∑

s=tℓ+1

∑
m

1{Bs,m}

]
= E

[
T∑

s=tℓ+1

∑
m

E
[
1{Bs,m} | tℓ

]
E
[
1{s<tℓ+1} | tℓ

]]

= E

tℓ+1−1∑
s=tℓ+1

1√
m(s− tℓ)

 .
Moreover, note that we can rewrite a sum over s ∈ [tℓ + 1, tℓ+1) as a double
sum over i ∈ Phases(tℓ, tℓ+1) and s ∈ [τi ∨ (tℓ + 1), τi+1 ∧ tℓ+1). For unconfined
replays, we notice that when CondaLet(s,m) is scheduled with s ∈ [τi, τi+1),
it must hold that m ≥ τi+1 − s, as CondaLet(s,m) would otherwise not be
unconfined.

Now, combining Lemma C.1.12 and Lemma C.1.13, we obtain

E

1{E∩E′′(tℓ)}

K∑
a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At,t∈bad(a)}



≤ E

1{E∩E′′(tℓ)}

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨ta

ℓ

δt(a∗
t , a)
|At|

1{t∈bad(a)}


112

Proof of Theorem III.3.1

≤ c2K log(K) log(T)E
[

tℓ+1−1∑
s=tℓ

∑
m

√
m√

m(s− tℓ)

]

+ c5K log(K) log2(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

τi+1−1∑
s=τi

∑
m≥τi+1−s

√
s− tℓ + 2

√
m√

m(s− tℓ)


≤ c2K log3(T)E

[√
tℓ+1 − tℓ

]
+ c5K log3(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

τi+1−1∑
s=τi

1√
τi+1 − s

+ 2
√
tℓ+1 − tℓ



≤ c7K log3(T)E

2
∑

i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi + 5

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi



≤ 7c7K log3(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 .

We here repeatedly used that
∑n

k=1 1/
√
k ≤ 2

√
n in the third and

fourth inequality. In particular, the fourth inequality holds as
√
tℓ+1 − tℓ ≤∑

i∈Phases(tℓ,tℓ+1)
√
τi+1 − τi and

τi+1−1∑
s=τi

1√
τi+1 − s

=
τi+1−τi−1∑

s=1

1√
s
≤
√
τi+1 − τi.

Further note that, as explained before, the denominator |At| can be seen
to account for a factor of log(K), which we loosely upper bounded by log(T).
Together with (23), we then obtain for some constant c8 > 0 the desired bound
of

E

 K∑
a=1

tℓ+1−1∑
t=ta

ℓ

δt(a∗
t , a)
|At|

1{a∈At}

 ≤ c8K log3(T)E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 .
(28)

C.1.4 Summing Over Episodes

In Section C.1.2 and Section C.1.3, we bounded the regret of arms within an
episode before and after their elimination, respectively. Combining (22) and

113

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

(28), and summing over episodes, we then obtain

E

[
T∑

t=1

δt(a∗
t , at) + δt(a∗

t , bt)
2

]

≤ c9K log3(T)E

1{E}

L∑
ℓ=1

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

+ 1
T
.

Now, on the concentration event E , Lemma C.1.3 tells us that any phase [τi, τi+1)
intersects with at most two episodes. Recall that τ0 := 1 and τSCW+1 := T . It
then follows from the above that

E

[
T∑

t=1

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
≤ 2c9K log3(T)

SCW∑
i=0

√
τi+1 − τi + 1

T
.

C.2 Missing Details from Section III.5

C.2.1 Significant CW Switches

Let us first recall the definition of Significant Condorcet Winner Switches from
Section III.2.2. Let ν0 := 1 and define νi+1 recursively as the first round in [νi, T)
such that for all arms a ∈ [K] there exist rounds νi ≤ s1 < s2 < νi+1 such that

s2∑
t=s1

δt(a∗
t , a) ≥

√
K(s2 − s1). (29)

Let S̃CW denote the number of such Significant CW Switches ν1, . . . , νS̃CW . The key
idea of [SK22b] when developing this notion of non-stationarity (for multi-armed
bandits) is that a restart in exploration is only warranted if there are no safe
arms left to play, i.e. there is no arm left that does not suffer regret (29) on
some interval [s1, s2]. For every phase [νi, νi+1), we denote by as

i the last safe
arm in phase i, i.e. the last arm to satisfy (29) in phase i. Moreover. we define
the sequence of safe arms as as

t = as
i for t ∈ [νi, νi+1).

Significant CW Switches are able to reconcile switch-based non-stationarity
measures such as CW Switches SCW and variation-based non-stationarity measures
such as the CW Variation Ṽ . More specifically, it naturally holds that S̃CW ≤ SCW

and Corollary III.5.6 shows that near-optimal dynamic regret w.r.t. S̃CW also
implies near-optimal dynamic regret w.r.t. Ṽ .

C.2.2 Proof of Theorem III.5.4

For convenience, we recall the assumptions of Theorem III.5.4.

Assumption C.2.1 (Strong Stochastic Transitivity). Every preference matrix Pt

satisfies that if a ≻t b ≻t c, we have δt(a, c) ≥ δt(a, b) ∨ δt(b, c).

114

Missing Details from Section III.5

Assumption C.2.2 (Stochastic Triangle Inequality). Every preference matrix Pt

satisfies that if a ≻t b ≻t c, we have δt(a, c) ≤ δt(a, b) + δt(b, c).

We see that together Assumption III.5.1 and Assumption III.5.2 imply a
more general type of triangle inequality for any triplet a, b, c ∈ [K] with a ≻ b
and a ≻ c.

Lemma C.2.3. Under Assumption 1 and Assumption 2, for any triplet a, b, c ∈
[K] with a ≻t b and a ≻t c, it holds that

δt(a, c) ≤ 2δt(a, b) + δt(b, c).

Proof. Suppose that b ≻t c. Then, the claim follows directly from the stochastic
triangle inequality, since δt(a, c) ≤ δt(a, b) + δt(b, c). Suppose that c ≻t b.
Leveraging strong stochastic transitivity of the triplet a ≻t c ≻t b, we have

δt(a, b) ≥ δt(a, c) ∨ δt(c, b).

This implies that δt(a, c) ≤ δt(a, b) as well as δt(c, b) ≤ δt(a, b). By definition of
the gaps, this also yields |δt(b, c)| ≤ δt(a, b), since c ≻t b. Consequently, it holds
that δt(a, c) ≤ 2δt(a, b) + δt(b, c). ■

As briefly discussed in Section III.5, these assumptions on the preference
sequence P1, . . . , PT allow us to decompose the dynamic regret so that we can
compare against a temporarily fixed benchmark.

We can w.l.o.g. assume that a∗
t ≻t at and a∗

t ≻t as
t . To see that this

assumption is valid, note that a∗
t is the Condorcet winner in round t and it is

then easy to verify that Lemma C.2.3 also holds if a∗
t equals one (or both) of at

and as
t . Applying Lemma C.2.3 to a∗

t , as
t and at, we have

δt(a∗
t , at) ≤ 2δt(a∗

t , a
s
t) + δt(as

t , at).

Recalling equation (11) from Section C.1, we then get the following decomposition
of the dynamic regret within each episode as

E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
≤ 2E

[
tℓ+1−1∑

t=tℓ

δt(a∗
t , a

s
t)
]

︸ ︷︷ ︸
R̃1(ℓ)

+E

[
tℓ+1−1∑

t=tℓ

δt(as
t , at)

]
︸ ︷︷ ︸

R̃2(ℓ)

.

C.2.2.1 Bounding R̃1(ℓ)

We can bound R̃1(ℓ) directly using the definition of Significant CW Switches.
By definition of as

i as the last safe arm in phase [νi, νi+1), i.e. the last arm to
satisfy (29) for some interval [s1, s2] ⊆ [νi, νi+1), it holds that

νi+1∑
t=νi

δt(a∗
t , a

s
i) ≤

√
K(νi+1 − νi).

115

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

We can then sum over all phases i ∈ [S̃CW] to obtain

T∑
t=1

δt(a∗
t , a

s
t) ≤

S̃CW∑
i=1

√
K(νi+1 − νi).

C.2.2.2 Bounding R̃2(ℓ)

As briefly mentioned in the main text, the difficulty in bounding
∑tℓ+1−1

t=tℓ
δt(a∗

t , at)
for Significant CW Switches is that the identity of the Condorcet winner, i.e. a∗

t ,
may change several times within each significant phase i ∈ [S̃CW]. This makes
accurately tracking δt(a∗

t , a) (nearly) impossible even across small intervals and
the arguments that we used to prove Theorem III.3.1 fail.

In contrast, when we consider the relative regret of at against the last safe
arm as

t (or sequence thereof), this difficulty can be resolved. Considering as
t

(instead of a∗
t) as a benchmark ensures that within each phase i ∈ [S̃CW] the

comparator arm is fixed, since as
t = as

i for all t ∈ [νi, νi+1). Hence, the relative
regret w.r.t. as

t can still be dealt with. In particular, the proof of Theorem III.3.1
from Section C.1 can be seen to hold with minor changes when swapping a∗

t

for as
t and considering significant phases ν1, . . . , νS̃CW . For completeness, we

reformulate and prove two important lemmas from Section C.1 that relied on
properties of a∗

t and τ1, . . . , τSCW . We want to emphasise that we here again rely
on Assumption III.5.1 and Assumption III.5.2.

The following lemma shows that the beginning of a new episode implies a
Significant CW Switch, i.e. every arm suffers at least (29) much regret over some
interval within the episode.

Lemma C.2.4 (Lemma C.1.3 for S̃CW). On event E, for each episode [tℓ, tℓ+1)
with tℓ+1 ≤ T , there exists a Significant CW Switch νi ∈ [tℓ, tℓ+1).

Proof. The start of a new episode means that every arm a ∈ [K] has been
eliminated from Agood at some round in taℓ ∈ [tℓ, tℓ+1). As a result, there must
exist an interval [s1, s2] ⊆ [tℓ, taℓ) and some arm a′ ∈ [K] so that the elimination
rule (III.2) holds. Using Lemma C.1.2, we then find that for some constant
c2 > 0:

s2∑
t=s1

E
[
δ̂t(a′, a) | Ft−1

]
> c2 log(T)K

√
(s2 − s1) ∨K2. (30)

Note that by construction of δ̂t(a′, a), we always have δt(a′, a) ≥ E[δ̂t(a′, a) |
Ft−1] since

E[δ̂t(a′, a) | Ft−1] =
{
δt(a′, a) a′, a ∈ At

−1/2 otherwise.
(31)

Applying Lemma C.2.3 to the triplet (a∗
t , a

′, a), we get that δt(a∗
t , a) ≥

2δt(a∗
t , a

′) + δt(a′, a) ≥ δt(a′, a). Thus, (30) tells us that there exists no arm

116

Missing Details from Section III.5

a ∈ [K] such that for all [s1, s2] ⊆ [tℓ, tℓ+1)

s2∑
t=s1

δt(a∗
t , a) <

√
K(s2 − s1).

In other words, there is no arm that remains safe to play throughout the episode
and there must have been a Significant CW Switch νi ∈ [tℓ, tℓ+1). ■

The following lemma ensures that the last safe arm as
i within phase i is

not being eliminated before round νi+1 by any replay CondaLet(s,m) that is
scheduled in said phase.

Lemma C.2.5 (Lemma C.1.8 for as
t). On event E, no run of CondaLet(s,m)

with s ∈ [νi, νi+1) ever eliminates arm as
i before round νi+1.

Proof. Suppose on the contrary that some CondaLet(s,m) with s ∈ [νi, νi+1)
eliminates arm as

i before round νi+1. Then, we must have for some arm a ∈ [K]
and interval [s1, s2] ⊆ [s, νi+1) that

C log(T)K
√

(s2 − s1) ∨K2 <

s2∑
t=s1

δ̂t(a, as
i), (32)

In view of the concentration bound (6), this implies on event E that

c2 log(T)K
√

(s2 − s1) ∨K2 <

s2∑
t=s1

E
[
δ̂t(a, as

i) | Ft−1

]
≤

s2∑
t=s1

δt(a, as
i), (33)

where the last inequality holds by merit of (31). Now, by the definition of as
i as

the last safe arm in phase i, it must hold that δt(a, as
i) <

√
K(s2 − s1) for all

t ∈ [νi, νi+1) and all a ∈ [K]. This stands in contradiction to the above which
proves Lemma C.2.5. ■

Now, following the same steps as in the proof of Theorem III.3.1 in Section C.1,
we obtain for some constant c̃ > 0

R̃2(ℓ) ≤ c̃K log3(T)E

 ∑
i∈PhasesS̃CW (tℓ,tℓ+1)

√
νi+1 − νi

 ,
where νS̃CW+1 := T and PhasesS̃CW(t1, t2) := {i ∈ [S̃CW] : [νi, νi+1) ∩ [t1, t2) ̸= ∅}.
Lastly, in view of the modified Lemma C.2.4, it follows that (cf. Section C.1.4)

DR(T) = E

[
T∑

t=1

δt(a∗
t , at) + δt(a∗

t , bt)
2

]
≤ 2̃cK log3(T)

S̃CW∑
i=0

√
νi+1 − νi. (34)

An application of Jensen’s inequality shows that DR(T) ≤ Õ(K
√
S̃CWT).

117

III. An Improved Dynamic Regret Algorithm for Non-Stationary Dueling Bandits

C.2.3 Proof of Corollary III.5.6

Recall the definition of the Condorcet Winner Variation from Section III.2.2:

Ṽ :=
T∑

t=2
max
a∈[K]

|Pt(a∗
t , a)− Pt−1(a∗

t , a)|.

We define the CW Variation over phase [νi, νi+1) as Ṽ[νi,νi+1) :=∑νi+1
t=νi+1 maxa∈[K]|Pt(a∗

t , a) − Pt−1(a∗
t , a)|. Note that in view of the bound

in (34), it suffices to show that
∑S̃CW

i=0 K
√
νi+1 − νi ≤ K

√
T + Ṽ 1/3(KT)2/3.

Consider a phase [νi, νi+1) with 0 ≤ i < S̃CW. By definition of Significant CW
Switches, every arm a ∈ [K] must satisfy on some interval [s1, s2] ⊆ [νi, νi+1)
that

s2∑
t=s1

δt(a∗
t , a) ≥

√
K(s2 − s1).

In particular, this is also the case for the Condorcet winner a∗
νi+1

in round νi+1.
Then, since

√
s2 − s1 >

∑s2
t=s1

1
νi+1−νi

, there exists a round t ∈ [s1, s2] such that

δt(a∗
t , a

∗
νi+1

) ≥
√

K
νi+1−νi

. We then have√
K

νi+1 − νi
≤ δt(a∗

t , a
∗
νi+1

)

≤ δt(a∗
t , a

∗
νi+1

) + δνi+1(a∗
νi+1

, a∗
t)

≤ δt(a∗
t , a

∗
νi+1

)− δνi+1(a∗
t , a

∗
νi+1

)

≤ |δt(a∗
t , a

∗
νi+1

)− δνi+1(a∗
t , a

∗
νi+1

)|

= |Pt(a∗
t , a

∗
νi+1

)− Pνi+1(a∗
t , a

∗
νi+1

)|

≤
νi+1∑

s=t+1
max
a∈[K]

|Pt(a∗
t , a)− Pt−1(a∗

t , a)| ≤ Ṽ[νi,νi+1],

where we used that δνi+1(a∗
νi+1

, a∗
t) ≥ 0 and δνi+1(a∗

νi+1
, a∗

t) = −δt(a∗
t , a

∗
νi+1

)
in the second and third inequality, respectively. We can now apply Hölder’s
inequality to obtain

S̃CW∑
i=0

K
√
νi+1 − νi ≤ K

√
T +

S̃CW−1∑
i=0

K
√
νi+1 − νi

≤ K
√
T +

 S̃CW∑
i=0

√
K

νi+1 − νi

1/3 S̃CW∑
i=0

K5/4(νi+1 − νi)

2/3

≤ K
√
T +

 S̃CW∑
i=0

Ṽ[νi,νi+1)

1/3

K5/6 T 2/3

118

More Related Work

= K
√
T + Ṽ 1/3K5/6 T 2/3.

The above dependence on K can be improved to K4/9 (which is even smaller
than the K2/3 dependence in Corollary III.5.6) by modifying the definition of
Significant CW Switches so that νi+1 is the first round in [νi, T) such that for
all arms a ∈ [K] there exist rounds νi ≤ s1 < s2 < νi+1 with

s2∑
t=s1

δt(a∗
t , a) ≥ K

√
s2 − s1.

It is straightforward to check that Theorem III.5.4 holds true also for this
definition of Significant CW Switches.

C.3 More Related Work

Related to the non-stationary dueling bandit problem studied in this paper are
adversarial dueling bandits [AKJ14; GUC15; SKM21; Sui+17]. Here, [AKJ14]
was the first to study the dueling bandit problem in an adversarial setup and
introduced a popular sparring idea, which has been picked up by many follow-
up works [Dud+15a; GS22b; GUC15; SKM21]. The settings in [AKJ14] and
[GUC15] are restricted to utility-based preference models, where each arm has
an associated utility in each round. This entails a complete ordering over the
arms in each round, which only covers a small subclass of [K]× [K] preference
matrices. Moreover, [GUC15] assume that the feedback includes not only the
winner but also the difference in the utilities between the winning and losing
arm, which is more similar to MAB feedback and than the 0/1 one bit preference
feedback considered by us. [SKM21] consider the dueling bandit setup for general
adversarial preferences, but they measure performance in terms of (static) regret
w.r.t. Borda-scores. This measure of regret is very different from our preference-
based regret objective. In general, the adversarial dueling bandit problem aims to
minimize static regret w.r.t. some fixed benchmark a∗, whereas we study dynamic
regret w.r.t. a time-varying benchmark a∗

t . As discussed in Section III.2, static
regret can be an undesirable measure of performance when no single fixed arm
represents a reasonably good benchmark over all rounds (see Example III.2.1).

Another somewhat related line of work considers the sleeping dueling bandit
problem, where the action space is non-stationary (as opposed to the preference
sequence). The objective here is to be competitive w.r.t. the best active arm
at each round. [SG21] studies the setup for adversarial sleeping but assumes a
fixed preference matrix across all rounds.

119

Paper IV

Minimax-Bayes Reinforcement
Learning

Thomas Kleine Buening, Christos Dimitrakakis, Hannes
Eriksson, Divya Grover, Emilio Jorge
Published in 26th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2023.

IV

Abstract

While the Bayesian decision-theoretic framework offers an elegant solution
to the problem of decision making under uncertainty, one question is how
to appropriately select the prior distribution. One idea is to employ a
worst-case prior. However, this is not as easy to specify in sequential
decision making as in simple statistical estimation problems. This paper
studies (sometimes approximate) minimax-Bayes solutions for various
reinforcement learning problems to gain insights into the properties of
the corresponding priors and policies. We find that while the worst-case
prior depends on the setting, the corresponding minimax policies are more
robust than those that assume a standard (i.e. uniform) prior.

IV.1 Introduction

Reinforcement learning is the problem of an agent learning how to act in an
unknown environment through interaction and reinforcement. In the standard
setting, the learning agent acts in an unknown Markov Decision Process µ,
within some class of MDPs M. The agent observes the state st ∈ S of the
MDP and selects an action at ∈ A using a policy π. It then observes a reward
rt ∈ R and the next state st+1. The agent’s goal is to maximise utility, defined
as the sum of rewards to some horizon T , u =

∑T
t=1 rt, in expectation, i.e.,

Eπ
µ[u], where Eπ

µ is the expectation under the MDP and policy. Since the true
µ is unknown, this optimisation problem is ill-posed. In the Bayesian setting,
this conundrum is solved by selecting some subjective prior distribution β over
MDPs and maximising Eπ

β [u] =
∫

M Eπ
µ[u] dβ(µ). Then it remains to compute

the optimal adaptive (i.e., history-dependent) policy, something that can be
only done approximately in general, due to the fact that the number of adaptive
policies increases exponentially with the problem horizon.

121

IV. Minimax-Bayes Reinforcement Learning

The above discussion assumes that the agent has somehow chosen a prior.
However, it is not clear how such a prior can be selected from first principles, if
we have no domain knowledge, but still want to be robust. The minimax-Bayes
idea [Ber85] is to assume that nature selects the worst possible prior β∗ for
the agent, but without knowledge of the agent’s policy. This can be formalised
by having nature play the minimising player in a simultaneous-move zero-sum
game defined by the expected utility Eπ

β [u], where the agent (who maximises)
chooses π, and nature (who minimises) chooses β. In simple Bayesian decision
problems (e.g. linear regression) the minimax-Bayes problem is well-studied
and β∗ sometimes corresponds to a maximum entropy prior. However, in an
interactive setting, results are limited to one-shot experiment design [GD04],
which shows that maximum entropy priors are not the worst-case priors generally.

In reinforcement learning, which can be seen as a sequential generalisation
of one-shot experiment design, this problem has not received much attention
in the past. Sometimes, the concept of maximum entropy has been used in
reinforcement learning as a penalty term on the policy [e.g. EL21; Haa+18;
Tod06] as well as in the context of inverse reinforcement learning [Zie10], but
an explicit connection to the minimax-Bayes literature has not been made. In
preliminary work, [AD14] analysed variants of the weighted majority algorithm
for finding minimax priors in a restricted version of this setting.

Contributions. In this paper, we study the basic theoretical and algorithmic
properties of minimax-Bayes reinforcement learning. This includes (a) character-
ising the existence of solutions under different assumptions on the policy and
MDP space (b) defining algorithms, together with convergence guarantees when
possible, and (c) performing numerical experiments to illustrate the behaviour
of (approximate) minimax-Bayes algorithms and contrast them with Bayesian
RL algorithms that assume a standard maximum-entropy (e.g. uniform) prior.

The paper is organised as follows. In Section IV.2, we formally introduce
the setting. In Section IV.3, we introduce regret definitions and prove some
basic properties of the regret as well as relations between Bayesian regret and
Bayes-optimal regret. Section IV.4 discusses the existence of a value for the
game between a Bayesian agent and Nature, which selects the prior. Section IV.5
develops algorithms for finding approximately minimax policies in certain policy
classes. In particular, we consider (a) finite-horizon Bayes-optimal policies (b)
posterior sampling policies, and (c) parametrised adaptive policies. Our results
indicate that, not only is an approximate minimax solution achievable in many
settings but that they are much more robust than Bayes-adaptive policies under
common priors. Finally, Section IV.7 contains the related work and conclusions.

IV.2 Setting

A Markov Decision Process (MDP) is a tuple µ = ⟨S,A,P, ρ, T ⟩, where S is a
set of states, A is a set of actions, P : S × A → ∆(S) is a transition function,

122

Setting

ρ : S ×A→ [0, 1] is a reward function, and T is a (potentially random) horizon.
Let M denote the space of MDPs.

For simplicity, in our theoretical development, we focus on the setting where
the agent is acting in a finite state space S with a finite set of actions A, the
reward function ρ is known, and the horizon T is fixed and finite, although
many of our results could be more generally applicable. In each round t, the
agent observes state st ∈ S, chooses an action at ∈ S and receives a reward
rt = ρ(st, at). We write st = (s1, . . . , st) and at = (a1, . . . , at) for the sequence
of states and actions up to round t. Given the reward function, the history
ht = (st, at−1) describes the information available to the agent before choosing
an action in round t. The agent’s utility u is an additive function of individual
rewards u ≜

∑T
t=1 rt. The agent is acting in an MDP through a policy π ∈ Π,

where we let Π denote a generic policy space. For a fixed MDP µ ∈ M and
policy π ∈ Π, the expected utility is given by U(π, µ) ≜ Eπ

µ[u] with maximal
utility denoted by U∗(µ) ≜ maxπ∈Π U(π, µ).

When the MDP is unknown, as in the reinforcement learning problem, the
policy is adaptive and the agent’s actions can depend on what it has been
observed in the past, as we explain below.

IV.2.1 Policies.

Let H be the set of all histories. A (stochastic) policy π is a set of probability
measures {π(· | h) | h ∈ H} on the set of actions A. We denote the set of
all behavioural1 policies by ΠS. A policy is deterministic if, for each history
ht = (st, at−1), there exists an action a ∈ A such that π(at = a | ht) = 1. We
denote the set of deterministic policies by ΠD. A policy is memoryless (or reactive)
if, for all histories ht with st = s, we have π(at = a | ht) = π(at = a | st = s). We
denote the set of memoryless (stochastic) policies by ΠS

1 . The set of memoryless
deterministic policies is denoted by ΠD

1 . Obviously, ΠD
1 ⊂ ΠD ⊂ ΠS and

ΠD
1 ⊂ ΠS

1 ⊂ ΠS. Finally, for any MDP µ there exists a deterministic, memoryless
policy that is optimal, i.e., U∗(µ) = maxπ∈Π U(π, µ) = maxπ∈ΠD

1
U(π, µ) [Put14].

Strategies. Typically, minimax results rely on the notion of mixed strategies.
Here, we let σ ∈ ∆(Π) denote a probability measure over a set of base policies Π.

Fact IV.2.1. For any strategy σ ∈ ∆(ΠD) there exists an equivalent stochastic
policy π ∈ ΠS such that σ(at|ht) = π(at | ht) for all histories ht with positive
probability.

1That is, history-dependent and stochastic policies.

123

IV. Minimax-Bayes Reinforcement Learning

IV.2.2 Utility and Beliefs

In the following, we overload the U(π, β) to also mean the expected utility of π
with respect to a distribution β over MDPs:

U(π, β) ≜ Eπ
β [u] =

∫
M
U(π, µ) dβ(µ), (IV.1)

under appropriate measurability assumptions.
There are two possible ways to interpret the distribution β, depending on

how it is chosen. If β is chosen by the agent selecting π, it corresponds to the
subjective belief of the decision maker about which is the most likely MDP a
priori. Then, U(π, β) corresponds to the expected utility of a particular policy
under this belief. Let

U∗(β) ≜ max
π∈Π

U(π, β)

denote the Bayes-optimal utility for a belief. We recall the fact that this is a
convex function [c.f. DeG70]. By definition, the following bounds hold:

U(π, β) ≤ U∗(β) ≤
∫

M
U∗(µ) dβ(µ), ∀π ∈ Π,

so that U∗(β) is convex with respect to β. In the above, the left-hand side is the
utility of an arbitrary policy, while the right side can be seen as the expected
utility we would obtain if the true MDP was revealed to us.

The second view of β is to assume that the MDP is actually drawn randomly
from the distribution β. If this is known, then the subjective value of a policy is
equal to its true expected value. However, it is more interesting to consider the
case where nature arbitrarily selects β from a set of possible priors B. Then we
wish to find a policy π∗ achieving:

max
π∈Π

min
β∈B

U(π, β). (IV.2)

A minimax solution exists if the game has a value, i.e., maxπ∈Π minβ∈B U(π, β) =
minβ∈B maxπ∈Π U(π, β). Then there exists a maximin policy π∗ which is optimal
in response to some minimax belief β∗, and vice versa. A sufficient condition for
this to occur is for U∗(β) to be convex and differentiable everywhere [c.f. GD04].
In particular, a maximin strategy (i.e., a distribution over policies) can always
be found when Π is finite. On the other hand, for any fixed prior β, there is
always an optimal deterministic policy. Note that this is only a best-response
policy and not a solution to the maximin problem (IV.2).

Fact IV.2.2. For any distribution β over MDPs, there exists a deterministic,
history-dependent policy that is optimal, i.e. U∗(β) = maxπ∈Π U(π, β) =
maxπ∈ΠD U(π, β).

Unfortunately, looking at the problem from the point of view of utility
maximisation is somewhat problematic. This is because an unrestricted set of
priors for nature may lead to absurd solutions: nature could pick a prior so that

124

Properties of the regret

all rewards are zero, thus trivially achieving minimal utility. For that reason,
we actually focus on the problem of minimax regret, i.e., the gap between the
agent’s policy and that of an oracle. We give the appropriate definitions in the
next section.

IV.3 Properties of the regret

We generally write R(π, I) to mean the regret of some algorithmic policy π
relative to an oracle with information I.

Let us start with the regret of a policy relative to an oracle that knows the
underlying MDP:

Definition IV.3.1 (Regret). The regret of a policy π for an MDP µ is R(π, µ) ≜
U∗(µ)− U(π, µ).

Since this regret notion may be too strong, it is also interesting to define the
regret of a policy with respect to the oracle that knows β. This allows us to take
into account oracles which have less knowledge than the actual MDP.

Definition IV.3.2 (Bayes-optimal Regret). This is the regret of a policy π with
respect to the Bayes-optimal policy2 for β: R(π, β) ≜ U∗(β) − U(π, β) =∫

M dβ(µ)[U(π∗(β), µ)− U(π, µ)], where π∗(β) = arg maxπ U(π, β).

This notion of regret tells us how much we lose relative to a computationally
unbounded oracle that knows the prior. We can use it to measure the loss
both due to a misspecified prior, by fixing π∗(β0) to some prior β0 and
examining R(π∗(β0), β) as the actual prior β varies, and due to computational
approximations, by measuring R(π∗

ϵ (β), β) for policies calculated with some
approximate algorithm.

Finally, we may wish to subjectively calculate our expected regret under
an oracle that knows the underlying MDP. Since the agent does not know the
underlying MDP, it necessarily measures regret under a Bayesian prior.

Definition IV.3.3 (Bayesian regret). The Bayesian regret of a policy π under
a prior β is L(π, β) ≜ Eµ∼β [R(π, µ)] =

∑
µ β(µ)R(π, µ) =

∑
µ β(µ)[U∗(µ) −

U(π, µ)].

These definitions of regret are closely related, as we shall show in the
remainder. It will be illuminating to look at the difference between the regret
the agent subjectively expects to suffer with respect to some prior distribution β,
relative to the regret of the same policy compared to the Bayes-optimal policy
for the same prior.

Remark IV.3.4. The Bayesian regret of a policy π is greater than the Bayes-
optimal regret, i.e., R(π, β) ≤ L(π, β).

2Generally this policy will belong to the set of history-dependent policies, but in some
cases, it makes sense to restrict them to e.g. a subset of parametrised policies.

125

IV. Minimax-Bayes Reinforcement Learning

R(π0, µ)

U(π0, β)

U(π∗(β0), β)

U(π∗(β), β)

U∗(µ0)
U∗(µ1)

Bayesian regret
L(π0, β)

Bayes-optimal
regret R(π0, β)

δ(µ0) δ(µ1)β′
β

Figure IV.1: Illustration of the notions of regret for different policies with a
belief β over two MDPs µ1 and µ2, where δ(µ) denotes the Dirac belief on µ.
Any fixed policy π0 will have a utility that is a linear function of the belief
(green dotted line). The blue curve shows the utility of the Bayes-optimal policy
π∗(β) = argmaxπ U(π, β). This policy is prior-aware, and hence not fixed, but
depends on the prior β. Note that by definition, U(π∗(β), β) is convex. However,
if we fix a Bayes-optimal policy for a specific prior β0, we obtain a tangent
U(π∗(β0), β) to the Bayes-optimal curve at β0. The Bayesian regret (of π0) (red
line) is the expected regret of a policy compared against an oracle that knows
the MDP (black dotted line). The Bayes-optimal regret (of π0) is the difference
in performance to the Bayes-optimal policy (purple line).

Proof. Note thatR(π, β) =
∫

M dβ(µ)[U(π∗(β), µ)−U(π, µ)] ≤
∫

M dβ(µ)[U∗(µ)−
U(π, µ)] = L(π, β), since U(π∗(β), µ) ≤ U∗(µ) by definition of U∗(µ). ■

The above also follows from the fact that for any policy π and prior β, the
Bayesian regret of π equals the Bayesian regret of the Bayes-optimal policy3

plus the Bayes-optimal regret of π, that is, L(π, β) = L(π∗(β), β) + R(π, β).
Geometrically, this follows from the fact that the utility of any fixed policy
is lower bounding the convex Bayes-optimal utility curve, as can be seen in
Figure IV.1. The following fact also follows from a simple geometrical argument:

Remark IV.3.5. R(π, β) is convex in β.

Proof. By definition of the Bayesian-optimal regret, we have R(π, β) = U∗(β)−
Eµ∼β [U(π, µ)]. As U∗(β) is convex in β and Eµ∼β [U(π, µ)] is linear in β, their
difference is also convex. ■

Of course, the game where nature sees the agent’s policy π first before
selecting a prior is strictly determined and nature can simply select a single

3This is equal to the difference between the Bayes-optimal value and the upper bound.

126

Properties of the regret

MDP (Dirac distribution) as its best response to π. In this particular case, this
follows directly from the convexity of the Bayes-optimal regret.

Following the steps of the proof by [Lat21] for the bandit case, we can show
that the maximum regret is attained in Dirac beliefs. Here, we let B denote the
set of beliefs and we work under the assumption that the degenerate beliefs are
contained in the belief space.

Lemma IV.3.6 ([Lat21]). If for each MDP µ ∈M there exists an associated Dirac
belief βµ ∈ B, then for any policy π we have maxµ∈M R(π, µ) = maxβ∈B R(π, β).

This immediately implies that the minimax regret is the same over both
beliefs and MDPs:

min
π∈Π

max
µ∈M

R(π, µ) = min
π∈Π

max
β∈B

R(π, β) (IV.3)

We find a similar result for the Bayesian regret.

Lemma IV.3.7. If for each MDP µ ∈M there exists an associated Dirac belief
βµ ∈ B, then for any π:

max
µ∈M

R(π, µ) = max
β∈B

L(π, β). (IV.4)

Proof. For any β ∈ B, we have

max
µ∈M

R(π, µ) ≥ max
µ∈supp(β)

R(π, µ)

= max
µ∈supp(β)

U(π∗(µ), µ)− U(π, µ)

≥
∫

supp(β)
dβ(µ)[U(π∗(µ), µ)− U(π, µ)]

= L(π, β).

Consequently maxµ R(π, µ) ≥ maxβ L(π, β). Using δ(M) to denote the
set of Dirac beliefs over M, we have: maxβ L(π, β) ≥ maxβ∈δ(M) L(π, β) =
maxµ∈M R(π, µ), due to the fact that R(π, µ) = L(π, βµ) for the singular
belief βµ on MDP µ. As a result, it must hold that maxµ∈M R(π, µ) ≥
maxβ∈B L(π, β) ≥ maxµ∈M R(π, µ). ■

[LS19] show that for the problem of prediction with partial information, the
minimax regret equals the minimax Bayesian regret. We show that this also
holds in a general setting, as an immediate consequence of Lemma IV.3.7.

Corollary IV.3.8. If for each MDP µ ∈M there exists an associated Dirac belief
βµ ∈ B, then for any π:

min
π∈Π

max
µ∈M

R(π, µ) = min
π∈Π

max
β∈B

L(π, β) (IV.5)

Equations (IV.3) and (IV.5) can be made intuitive through a simple geometric
argument. Due to the linearity of the expected regret with respect to the belief
for any fixed policy, the best response for nature always includes singular beliefs.

127

IV. Minimax-Bayes Reinforcement Learning

IV.4 Minimax theorems

The above results merely make precise the intuition that when playing second,
nature does not need to randomise: it can simply pick the worst-case MDP for
the policy we have chosen. However, we typically want to model a worst-case
setting by assuming nature picks its distribution without knowing which policy
the decision maker will pick. For that reason, it is important to investigate
whether the normal form game against nature, where nature and the agent play
without seeing each other’s move, has a value. We would expect this to be the
case if the regret was a bilinear function of the policy and prior. Consequently,
the answer is positive with respect to both the Bayesian regret and the utility in
the finite setting. However, this is not the case for the Bayes-optimal regret.

Corollary IV.4.1. For a finite set of MDPs in a finite state-action space, with
a known reward function and a finite horizon, the utility and Bayesian regret
satisfy:

min
β∈B

max
π∈Π

U(π, β) = max
π∈Π

min
β∈B

U(π, β), (IV.6)

max
β∈B

min
π∈Π

L(π, β) = min
π∈Π

max
β∈B

L(π, β) (IV.7)

Proof. First note that, due to Fact IV.2.1, the stochastic policy π can
always be written as a distribution σ over deterministic behavioural policies
d ∈ ΠD so that U(π, β) =

∑
µ

∑
d β(µ)U(d, µ)σ(d). The result follows from

the standard minimax theorem. Similarly for regret, we use L(π, β) =∑
µ

∑
d β(µ)R(d, µ)σ(d). ■

The same does not hold for the Bayes-optimal regret, since for arbitrary
policy spaces the agent’s Bayes-optimal policy has zero Bayes-optimal regret, as
it is aware of the prior distribution. However, the minimax value is generally
greater than zero.

Lemma IV.4.2. The game R(π, β) does not have a value when M contains at
least two MDPs µ, µ′ whose optimal policy sets have an empty intersection.

Proof. For π ∈ ΠD, we have maxβ minπ R(π, β) = 0, so that
minπ maxβ R(π, β) ≥ maxβ minπ R(π, β) = 0. From (IV.3), it then follows
that minπ maxµ R(π, µ) = minπ maxβ R(π, β) ≥ maxβ minπ R(π, β) = 0. It
remains to show that minπ maxµ R(π, µ) > 0. Assume the contrary. Then there
is some policy π∗ for which maxµ R(π∗, µ) = 0. However, there exists at least
one µ′ whose optimal policy does not coincide with π∗, hence R(π∗, µ′) > 0. ■

Finally, it is interesting to consider the Bayesian regret of the Bayes-optimal
policy. For the worst-case Bayesian regret of the Bayes-optimal policy, we find
that it is equal to the minimax Bayesian regret.

Lemma IV.4.3. For finiteM, the worst-case Bayesian regret of the Bayes-optimal
policy equals the minimax Bayesian regret, i.e.,

max
β∈B

L(π∗(β), β) = max
β∈B

min
π∈Π

L(π, β) = min
π∈Π

max
β∈B

L(π, β).

128

Algorithms

Proof. By definition of the Bayes-optimal policy, we have U(π∗(β), β) =
maxπ U(π, β). Thus,

max
β

L(π∗(β), β) = max
β

∑
µ

β(µ)[U∗(µ)− U(π∗(β), µ)]

= max
β

min
π

∑
µ

β(µ)[U∗(µ)− U(π, µ)]

= max
β

min
π
L(π, β).

While the above holds for arbitrary M, for the second equality we need to use
Corollary IV.4.1, which states that the game has a value when M is finite, so
that maxβ minπ L(π, β) = minπ maxβ L(π, β). ■

It is important to emphasise that this does not imply that π∗(β∗) is a minimax
policy, but merely that its value at the worst-case belief β∗ is equal to the value
of the game. As we shall see in Section IV.6.2, in settings with a finite number
of policies, β∗ is located at a vertex with at least two best response policies π∗,
where the minimax policy must be a mixture between those.

Open questions. This concludes our preliminary discussion of minimax values
for Bayesian games on MDPs. While it is clear that standard minimax theorems
apply in the discrete case when we consider stochastic policies, it is an open
question whether those can be extended to a more general setting. In particular,
do the utility and Bayesian regret game have a value with an uncountable family
of priors such as the Dirichlet-product prior? It is also an open question whether
a value for the game exists when we are restricted to deterministic policies in
some cases. We conjecture that this is generally not the case. For example in
discrete, finite horizon problems, the set of policies pure deterministic policies
is finite, and so it is unlikely that one of them is maximin. We explore these
questions experimentally, after we first develop some algorithms in the following
section.

IV.5 Algorithms

In this section, we attempt to answer some of the above questions empirically.
In particular, does there exist an equilibrium for bandit problems, where the
Bayes-optimal policy can be efficiently approximated through Gittins indices?
What about settings where we must restrict the policy space to parametrised or
tree policies? Does solving the minimax problem approximately lead to robust
policies? Are the worst-case priors we obtain through optimisation actually
preferable in some way to standard priors such as the uniform one? For example,
do they lead to more robust policies?

For the infinite horizon case, we cannot consider the Bayes-optimal regret,
as it requires us to compute the Bayes-optimal policy. However, we can always
target the Bayesian regret, which is an upper bound on the Bayes-optimal regret.

129

IV. Minimax-Bayes Reinforcement Learning

(And since the former is usually the same as the minimax regret, it gives us a
minimax policy).

Section IV.5.1 describes a stochastic gradient descent-ascent algorithm for
finding an approximate minimax regret pair. For the finite horizon case, we can
obtain the Bayes-optimal response to any prior distribution. More specifically,
when the set of possible MDPs is finite, and we have an optimal policy oracle, we
can employ a cutting plane algorithm, described in Section IV.5.2. This allows
us to obtain the set of all best response policies to the worst-case prior, and
hence the minimax policy.

IV.5.1 Gradient descent ascent

We want to calculate the minimax pair (π∗, β∗) for the Bayesian regret. This
can be done through gradient descent-ascent (GDA) [LJJ20], which alternates
performing a gradient step for the prior and performing a gradient step for the
policy. We show convergence guarantees for GDA in the finite MDP setting, for
certain parametrisations of the policy. To calculate the minimax solution for the
Bayesian regret, we need the gradient with respect to the policy and the prior.

∇πL(π, β) = −
∫

M
dβ(µ)∇πU(π, µ) (IV.8)

∇βL(π, β) =
∫

M
R(π, µ)∇βdβ(µ). (IV.9)

Intuitively, Algorithm 12 works as follows: First, we sample M MDPs from
the current prior βt−1. We use those to do a policy gradient step and obtain a
new policy πt using standard policy gradient algorithms, as well as a gradient
step in the prior space to obtain a new prior βt. Since each gradient may not be
exact, we use Gπ(π, β) and Gβ(π, β) to denote the approximate gradient with
respect to the policy and prior respectively. Appendix D.1 describes how we
obtain those in detail. Since gradient steps may lead us outside the feasible prior
space B, we use a projection PB to ensure we have a valid prior distribution.
Finally, we return a randomly selected policy-prior pair from the ones generated
during the algorithm’s run.

IV.5.1.1 Convergence guarantees for finite set of MDPs

In the MDP setting with n MDPs, we have B as the probability simplex which
has the diameter D =

√
2. Additionally, the gradient

∇βL(π, β) =
n∑
i

R(π, µi)∇βP (µi|β) (IV.10)

∇βi
L(π, β) = R(π, µi) (IV.11)

is constant and therefore convex.

130

Algorithms

Algorithm 12 Stochastic GDA
input: policy π0, belief β0, learning rates (ηπ, ηβ) and stochastic gradient
estimators Gπ, Gβ for ∇πL,∇βL
for t = 1, . . . , T do

Using M i.i.d. samples, get directions

gβ = 1
M

∑
i

G
(i)
β (πt−1, βt−1) and gπ = 1

M

∑
i

G(i)
π (πt−1, βt−1).

πt ← πt−1 − ηπgπ

βt ← PB

(
βt−1 + ηβgβ

)
return: β∗, π∗ uniformly at random from {(β1, π1), . . . , (βT , πT)}

Lemma IV.5.1. If the policy π is parameterised as a softmax over actions,
independently for each ht and the horizon T is fixed. Then L(π, β) is T 2(|A|+1)-
smooth and L(·, β) is T 2-Lipschitz

With these properties, and a batch size M = 1, the requirements of
Theorem 4.9 of [LJJ20] are fulfilled and Algorithm 12 will find a ϵ−stationary
point in terms of Moreau envelopes, given appropriate step sizes, with an iteration
complexity of

O

(
|A|3T 6

((
T 4 + σ2) ∆̂Φ

ϵ6
+ ∆̂0

ϵ4

)
max

{
1, σ

2

ϵ2

})
, (IV.12)

as long as EG

[
∥G(π, β)−∇L(π, β)∥2] ≤ σ2. Note that no guarantees exist for

general non-convex non-concave Bayesian regret L, as is the case for Dirichlet
beliefs and parametric policies.

Here the stationarity is defined as ∥∇Φ1/2l(π)∥2 ≤ ϵ as in [LJJ20]. We
have Φ(·) = maxβ∈B L(·, β) and Φλ(π) = minw∈Π Φ(w) + (1/2λ)∥ω − π∥2

2 is the
Moreau envelope of Φ. Finally we obtain ∆̂Φ = Φ1/2l(π0)−minπ Φ1/2l(π) and
∆̂0 = Φ(π0)− L(π0, β0).

IV.5.2 Cutting planes

In this section we demonstrate an efficient method for localising the minimax
pair (π∗, β∗) for beliefs over a finite set of MDPs, given that an oracle for the
Bayes-optimal policy for a given belief is available. This could for example be
obtained in finite horizon tasks with a sufficiently small horizon such that a
tree-policy is tractable. An example of this can be found in [Duf02, Section 1.5].

We use the approximate centroid cutting plane algorithm from [BV04],
which can be seen as a high dimensional extension of the bisection algorithm.
The goal here is to find a way to repeatedly obtain a plane where we can
reject one side of the half-plane, quickly shrinking the plausible set of beliefs.

131

IV. Minimax-Bayes Reinforcement Learning

L(π∗(β0), β)
L(π∗(β), β)

δ(µ0) δ(µ1)β0

β

L(π∗(β0), β)
L(π∗(β), β)

δ(µ0) δ(µ1)β0β1

β

Figure IV.2: Illustration of cutting plane algorithm for two dimensions. The left
image illustrates the Bayesian regret plane obtained for queried belief β0 while
the right image shows how the cut obtained by the plane discards the right side
of the belief space and a new queried belief β1 is obtained.

Each policy π has a corresponding regret plane4 L(π, β) over β. Since
L(π∗(β), β)) ≤ maxβ∈B L(π∗(β), β)), any β : L(π∗(β′), β′)) > L(π∗(β′), β))
can not be the minimax β and can be discarded. This is the same as discarding
the half-plane given by the descent direction of the Bayesian regret plane. An
illustration of this principle in two dimensions can be found in Figure IV.2.

Selecting a new approximate centroid as the next β to query guarantees
fast convergence in the volume of the plausible set of beliefs given the following
lemma.

Lemma IV.5.2 (Lemma 5 [BV04]). Each cut in Algorithm 13 will reduce the
volume of the set Kt by at least 1/3 with high probability.

The full procedure is described in Algorithm 13. Here βt is the approximate
centroid (through one of the methods in [BV04], such as hit-and-run sampling)
of the set Kt. Kt contains the plausible beliefs that could be the minimax belief,
at step t of the algorithm. The cut is given by Ct which is the normal to the
Bayes regret plane at βt where each element C(i)

t = R(π∗(βt), β = δµi
).

Algorithm 13 Cutting plane algorithm for finding minimax belief
input: Initial belief set of constraints K0, optimal policy oracle, policy
evaluation oracle
for t ∈ 0, . . . , T − 1 do

Obtain βt ≈ EKt
[x]

Obtain optimal policy π∗
βt

and C
(i)
t = R(π∗(βt), β = δµi

).
Kt+1 = Kt ∩ {β : CT

t (β − βt) > 0}
return: β∗ ∈ KT that has VOL(KT)

VOL(K0) <
(2

3
)T w.h.p. and corresponding π∗(β∗).

This method is also applicable when the policy space is a set of ϵ-optimal
policies Πϵ ⊂ Π, i.e., such that maxπ∈Πϵ U(π, β) ≥ maxπ∈Π U(π, β)− ϵ for any
β ∈ B. It is natural to look at such a policy space, because policies obtained
through look-ahead tree search or neural network may be adaptive, but they can
only be ϵ-optimal in general.

4Due to the Bayesian regret being an expectation over MDPs and hence is linear.

132

Experiments

Lemma IV.5.3. If maxπ∈Πϵ L(π, β) ≤ maxπ∈Π L(π, β) + ϵ for all β ∈ B then

min
π∈Π

L(π, βϵ,∗) ≥ max
β∈B

min
π∈Π

L(π, β)− ϵ (IV.13)

where βϵ,∗ = argmaxβ∈B minπ∈Πϵ L(π, β). Additionally, if minπ∈Π L(π, β) is
c-concave in β then ||βϵ,∗ − β∗||2 <

√
ϵ/c.

A proof is provided in the appendix.

IV.6 Experiments

We perform three experiments to see how minimax priors differ from common
uniform priors, and examine the relative robustness of the corresponding policies.
The first characterises worst-case priors for Bernoulli bandits. The second
experiment is on finite MDP sets with a finite horizon. Here we verify the
feasibility of the cutting plane algorithm for finding minimax solutions. We also
illustrate the regret of posterior sampling. The final experiment is for the general
case of discrete MDPs and parametric adaptive policies, where a value may not
exist.5

IV.6.1 Illustrations of Worst-Case Priors for Bernoulli Bandits

We are interested in analysing the worst-case priors when the Bayesian agent is
responding to nature’s prior with a Bayes-optimal policy. In general, computing
the Bayes-optimal policy is intractable. However, for Bernoulli bandits with
infinite horizon and geometrically discounted rewards, so that the utility is
defined as u =

∑
t γ

trt, Gittins [GGW11; Git79] showed that an index policy,
the so-called Gittins index, yields a Bayes-optimal policy.

For K-armed Bernoulli bandits θ = (θ1, . . . , θK) with θk ∈ [0, 1], we then
consider Beta product priors such that β(θ) =

∏K
k=1 Beta(ak, bk){θk}. To

illustrate how the Bayes-expected regret of the Bayes-optimal policy changes
with respect to the prior, we consider a two-armed Bernoulli bandit, where the
first arm’s prior is fixed to some distribution Beta(a1, b1) and the second arm’s
prior Beta(a2, b2) is set to different values. Figure IV.3 shows the Bayesian
regret for different fixed priors for arm 1 and varying prior for arm 2.

We observe that high Bayesian regret is typically suffered when the
second prior’s mean approximately matches the mean of the first arm’s prior,
i.e. E[Beta(a1, b1)] = E[Beta(a2, b2)]. Moreover, it seems that maximal
Bayesian regret is achieved at a completely symmetric prior, i.e. Beta(a1, b1) =
Beta(a2, b2), irrespective of how the first arm’s prior is chosen. More generally,
we can observe that lower values of a and b yield higher Bayesian regret, making
the intuition precise that the Bayes-optimal policy suffers higher Bayesian regret
when the prior provides less information. Based on this, a worst-case prior can

5The code is made available at https://github.com/minimaxBRL/minimax-bayes-rl.

133

IV. Minimax-Bayes Reinforcement Learning

(a) Beta(1, 1) (b) Beta(3, 3) (c) Beta(4, 2) (d) Beta(2, 4)

Figure IV.3: The Bayesian regret of the Bayes-optimal policy in two-armed
Bernoulli bandits, where the first arm’s prior is fixed. The x- and y-axis denote
the two parameters of the second arm’s prior.

be conjectured to make arms maximally indistinguishable a priori; as one may
expect.

We also allowed all priors to vary to discover the actual worst-case prior. We
found this depends heavily on the discount factor γ and the number of arms K.
For K = 2 and γ = 0.9, we found it is approximately Beta(0.8, 0.8) for both
arms. In general, the worst-case prior is symmetric with parameters increasing
in the number of arms and the discount factor, i.e. moving towards short-tailed
priors.

IV.6.2 Finite Set of MDPs

In this section, we study the properties of minimax problems where we have a
belief over a finite set of MDPs. The transition matrix is randomly sampled from
an exponential distribution before being normalised. The agent starts in state
1, and the reward is 1 for taking the first action in state N, and zero elsewhere.
We use a finite horizon T = 5 to allow exact computation of the optimal policies
and Bayesian regret. Additionally we use γ = 1.

Figure IV.4 show the Bayesian regret for a two-MDP task. This helps us
visualise that the Bayes-optimal value is a piecewise linear function consisting of
the minimum over locally optimal policies. We also compare with the Bayesian
regret of the PSRL policy [Str00], which for every episode acts optimally with
respect to a sampled MDP from the belief. The quadratic curve for PSRL is
due to the fact that we allow the policy to change with the belief.

In additional experiments in Appendix D.3, we study the Bayesian regret
landscape for a three MDP setup (see Figure .6). We also compare the worst
case Bayesian regret of the minimax policy and of the Bayes optimal policy for
the uniform belief for a few different setups with 16 different MDPs in Table .1
and can see that the minimax policy significantly outperforms the uniform best
response policy.

IV.6.3 Infinite Set of MDPs

In the following experiments, we study priors over an infinite space of MDPs.
The main prior of interest is Dirichlet product-priors. We use the minimax
policy gradient algorithm to simultaneously update the parameters of the belief

134

Experiments

Figure IV.4: This figure shows the Bayesian regret of different policies. The
dashed lines show the value of three adaptive policies optimal for the maximin-
regret prior. Two of them are best responses, which are also optimal on either
side of the maximin point. The minimax-regret policy is shown in green, and it
has a uniform regret no matter what the actual prior is. The solid lines show
policies which have knowledge of the MDP prior: the Bayes-optimal policy and
the best PSRL policy for that specific prior. Their dependency on the prior
makes their regret a concave function.

β and the parameters of the policy π. We choose a history-dependent policy
parametrisation using a softmax rule. In these experiments we study MDPs with
5 states and two actions. Further, we consider problems with horizon T = 1000.

In Figure IV.5 we investigate the performance of the minimax policy π∗

compared to the baseline best response adaptive policies, π∗(β1), π∗(β∗), to the
uniform prior β1 and the maximin prior β∗, respectively. The three policies are
evaluated on six different priors. These are, the uniform prior β1, the maximin
prior β∗, two priors interpolated between the uniform and the maximin prior,
a uniform prior over deterministic MDPs βD and a delta distribution over the
parameters of the Chain environment [Str00], βChain.

In this setting we can only expect to find approximate minimax solutions.
Thus, there is no guarantee the obtained minimax solution is globally robust to
changes in belief. However, in Figure IV.5 we observe the minimax policy π∗ to
be the most robust taking all priors into account.

135

IV. Minimax-Bayes Reinforcement Learning

Figure IV.5: βD is approximately uniform over deterministic MDPs. βChain is
a delta distribution over the Chain MDP. The MDPs in between β1 (Uniform)
and β∗ (Maximin) are interpolated. The mean is depicted with a dashed line,
the solid line is the median and the upper whisker is the 99.9% percentile.

IV.7 Discussion and Conclusion

Related work We studied the problem of minimax-Bayes reinforcement
learning. Although minimax-Bayes problems are well-known in statistical
inference [c.f. Ber85], they have received little attention in sequential problems.
Older work such as [ABG49] is interested in minimax and Bayes optimal solutions
to decision making tasks but without combining them. Similarly, [HL52] relaxes
the property of minimax risk to restricted Bayes solutions where the maximal
risk is bounded while also changing the objective to an interpolation between
the expected and maximal risk. While this is work in the same spirit as ours it
is fundamentally different. [GD04] studied the problem of one-shot experiment
design prior to estimation. In the partial monitoring setting, [LS19] made
connections between the Bayesian minimax regret and the minimax regret.

There have been a variety of work interested in using meta learning to create
Bayes-(adaptive) optimal agents such as [HYC01; Mik+20; Wan+16; Zin+21].
They use recurrent neural networks to encode an episode’s history so as to
adapt optimally in a new episode in a new MDP. As they are interested in
optimising for specific MDP distribution, β is considered fixed and they solve
maxπ Eµ∼βU(µ, π) without studying β’s impact on the utility or regret.

Work on Bayesian robust reinforcement learning [Der+20; PR19] is related
in the manner that they search for policies that are robust against interference
from nature. The difference is that they wish to find policies that are good

136

References

against the worst MDP from the set of MDPs that are plausible with respect to
a specific posterior, rather than against an adversarial prior.

Conclusion In this work we study the computation of minimax-Bayes policies,
which have not been previously considered. We also include conditions for when
the solutions can be guaranteed to be found efficiently. Experimentally we find
that these policies not only appear to be feasible, but also that such policies can
be significantly more robust than those based on standard uninformative priors.
Finally, we make exposition of many important properties of minimax-Bayes
solutions for reinforcement learning to make a basis for future work in this area.

References

[ABG49] Arrow, K. J., Blackwell, D., and Girshick, M. A. “Bayes and mini-
max solutions of sequential decision problems”. In: Econometrica,
Journal of the Econometric Society (1949), pp. 213–244.

[AD14] Androulakis, E. G. and Dimitrakakis, C. “Generalised entropy
MDPs and minimax regret”. In: arXiv preprint arXiv:1412.3276
(2014).

[Ber85] Berger, J. O. Statistical decision theory and Bayesian analysis.
Springer, 1985.

[BV04] Bertsimas, D. and Vempala, S. “Solving Convex Programs by
Random Walks”. In: J. ACM vol. 51, no. 4 (July 2004), pp. 540–
556.

[DeG70] DeGroot, M. H. Optimal Statistical Decisions. John Wiley & Sons,
1970.

[Der+20] Derman, E. et al. “A bayesian approach to robust reinforcement
learning”. In: Uncertainty in Artificial Intelligence. PMLR. 2020,
pp. 648–658.

[DO18] Dimitrakakis, C. and Ortner, R. “Decision making under un-
certainty and reinforcement learning”. In: Book available at
http://www. cse. chalmers. se (2018).

[Duf02] Duff, M. O. “Optimal Learning Computational Procedures for
Bayes-adaptive Markov Decision Processes”. PhD thesis. University
of Massachusetts at Amherst, 2002.

[EL21] Eysenbach, B. and Levine, S. “Maximum entropy rl (prov-
ably) solves some robust rl problems”. In: arXiv preprint
arXiv:2103.06257 (2021).

[GD04] Grünwald, P. D. and Dawid, A. P. “Game theory, Maximum
Entropy, Minimum Discrepancy and Robust Bayesian decision
Theory”. In: Annals of Statistics (2004).

137

IV. Minimax-Bayes Reinforcement Learning

[GGW11] Gittins, J., Glazebrook, K., and Weber, R. Multi-armed bandit
allocation indices. John Wiley & Sons, 2011.

[Git79] Gittins, J. C. “Bandit processes and dynamic allocation indices”. In:
Journal of the Royal Statistical Society: Series B (Methodological)
vol. 41, no. 2 (1979), pp. 148–164.

[HL52] Hodges Jr, J. L. and Lehmann, E. L. “The use of previous experience
in reaching statistical decisions”. In: The Annals of Mathematical
Statistics (1952), pp. 396–407.

[HYC01] Hochreiter, S., Younger, A. S., and Conwell, P. R. “Learning to learn
using gradient descent”. In: International conference on artificial
neural networks. Springer. 2001, pp. 87–94.

[Haa+18] Haarnoja, T. et al. “Soft actor-critic algorithms and applications”.
In: arXiv preprint arXiv:1812.05905 (2018).

[Lat21] Lattimore, T. Personal Communication. Mar. 2021.
[LJJ20] Lin, T., Jin, C., and Jordan, M. “On gradient descent ascent

for nonconvex-concave minimax problems”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 6083–6093.

[LS19] Lattimore, T. and Szepesvári, C. “An information-theoretic ap-
proach to minimax regret in partial monitoring”. In: Conference
on Learning Theory. PMLR. 2019, pp. 2111–2139.

[Mik+20] Mikulik, V. et al. “Meta-trained agents implement bayes-optimal
agents”. In: Advances in neural information processing systems
vol. 33 (2020), pp. 18691–18703.

[PR19] Petrik, M. and Russel, R. H. “Beyond confidence regions: Tight
bayesian ambiguity sets for robust mdps”. In: Advances in neural
information processing systems vol. 32 (2019).

[Put14] Puterman, M. L. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[Str00] Strens, M. “A Bayesian framework for reinforcement learning”. In:
ICML. Vol. 2000. 2000, pp. 943–950.

[Tod06] Todorov, E. “Linearly-solvable Markov decision problems”. In:
Advances in neural information processing systems vol. 19 (2006).

[Wan+16] Wang, J. X. et al. “Learning to reinforcement learn”. In: arXiv
preprint arXiv:1611.05763 (2016).

[Zie10] Ziebart, B. D. Modeling purposeful adaptive behavior with the
principle of maximum causal entropy. Carnegie Mellon University,
2010.

[Zin+21] Zintgraf, L. et al. “VariBAD: variational Bayes-adaptive deep RL
via meta-learning”. In: The Journal of Machine Learning Research
vol. 22, no. 1 (2021), pp. 13198–13236.

138

Gradient calculations

D.1 Gradient calculations

For solving the minimax problem either for the expected utility or the expected
regret, we need to calculate the appropriate gradient for both the policy and the
prior. The gradients for the expected utility are as follows:

∇πU(π, β) =
∫

M
dβ(µ)∇πU(π, µ), ∇βU(π, β) =

∫
M
U(π, µ)∇βdβ(µ).

The Bayesian regret gradient is similarly obtained:

∇πL(π, β) = −
∫

M
dβ(µ)∇πR(π, µ) ∇βL(π, β) =

∫
M
R(π, µ)∇βdβ(µ).

Since in the minimax regret scenario, the agent is minimising rather than
maximising, the policy update is identical. However, the prior gradient is scaled
with respect to the regret rather than the utility. Let us now look at how to
calculate those gradients in more detail.

D.1.1 Policy gradient

Here we look at two classes of policies. The first occurs when there is a finite
number of bases (possibly stochastic and behavioural) policies from which the
agent chooses one randomly. The second is a class of parametrised stochastic
behavioural policies.

Finite policy distributions. For a strategy σ = (σ1, . . . , σn) over a finite set
of n policies Π ⊂ ΠS, we can write

U(σ, β) =
∑
π,µ

σ(π)U(π, µ)β(µ).

We then obtain
∂

∂σi
U(σ, β) =

∑
µ

U(πi, µ)β(µ).

We do not use this setting in practice in the paper, but it is an interesting special
case.

Stochastic policies. Stochastic policies π in a parametrised policy space
ΠW ⊂ ΠS can be an arbitrary neural network policy. For a finite set of MDPs,
the gradient is:

∇πU(π, β) =
∑

µ

∇πU(π, µ)β(µ).

For an infinite set of MDPs, we have

∇πU(π, β) =
∫

M
∇πU(π, µ) dβ(µ) ≈ 1

M

M∑
k=1
∇πU(π, µ(k)), µk ∼ β(µ)

139

IV. Minimax-Bayes Reinforcement Learning

So it is only necessary to compute

∇πU(π, µ) =
∑

h

U(h)Pπ
µ(h)

∑
t

∇π ln π(at | ht)

=
∑

h

U(h)Pπ
µ(h)

∑
t

∇ππ(at | ht)
π(at | ht)

,

where for a given history h = (s1, r1, a1, . . . , sT , rT), ht = (s1, r1, a1, . . . , st, rt).
It remains to compute ∇ππ(at | ht), which can be done automatically using
auto-grad software.

However, one particular case is when the policy is parametrised with
wa = (wa,i)n

i=1 vectors combined with a statistic ϕ : H → Rn
+ so that

π(at = a | ht) = w⊤
a ϕ(ht)∑

b w⊤
b ϕ(ht)

=
∑

i wa,iϕi(ht)∑
b

∑
i wb,iϕi(ht)

∂

∂wa,i
πw(at = a | ht) =

ϕi(ht)[
∑

(b,j)̸=(a,i) wb,jϕj(ht)]
[
∑

b

∑
j wb,jϕj(ht)]2

∂

∂wb,i
πw(at = a | ht) = −

ϕi(ht)
∑

j wa,jϕj(ht)
[
∑

b

∑
j wb,jϕj(ht)]2

.

With a feature representation ϕ : H×A→ Rn and a softmax policy then

π(at | ht) = ew⊤ϕ(ht,at)∑
b e

w⊤ϕ(ht,b)

∇w ln π(at | ht) = ϕ(ht, at)−
∑
a∈A

π(at = a | ht)ϕ(ht, a).

For the case where ϕ(ht, a) simply partitions the history, so that w⊤ϕ(h, a) =
wh,a, the above becomes

∂

∂wh,a
ln π(at | ht) =


1− π(a|h), at = a, ht = h

−π(a|h), at ̸= a, ht = h

0, ht ̸= h

(14)

D.1.2 Prior gradient

The steps above were all standard policy gradient steps, which can be
implemented with sampled MDPs from the current prior. However, we also need
to update the prior distribution with a gradient step. Here we distinguish two
cases: a belief over a finite number of MPDs and a Dirichlet belief.

Finite M. Now let us represent the belief as a finite-dimensional vector β = (βi)
on the simplex. The partial derivative is then:

∂

∂βi
U(π, β) =

∑
j

U(π, µj) ∂

∂βi
βj = U(π, µj)

140

Gradient calculations

Dirichlet M. Let us first consider the general case of an infinite MDP space.
Then we can approximate the gradient of the expected utility through sampling:

∇βU(π, β) =
∫

M
U(π, µ)∇β ln[β(µ)]dβ(µ) ≈ 1

M

M∑
k=1

U(π, µ(k))∇β ln[β(µ(k))],

where µ(k) ∼ β are samples from the current prior.
For discrete state-action MDPs for a certain number of states and actions, we

can use a Dirichlet-product distribution. This means that for each state-action’s
(s, a) transition distribution, we define a separate Dirichlet distribution β(µs,a)
with parameter vector αs,a ∈ R|S|

+ :

β(µ) =
∏

(s,a)

β(µs,a), β(µs,a) = 1
B(αs,a)

∏
i

µ
αs,a,i−1
s,a,i

where µs,a,i = P(st+1 = i|st = s, at = a). For the sequel, it is notationally
convenient to ignore the s, a subscript and focus only on the next state
distribution i

∂

∂αj
ln β(µ) = ∂

∂αj
ln
{

1
B(α)

∏
i

µαi−1
i

}

= ∂

∂αj

{
ln 1
B(α) +

∑
i

(αi − 1) lnµi

}

= ∂

∂αj
ln 1
B(α) + lnµj

Note that

ln 1/B(α) = ln
Γ(
∑

i αi)∏
i Γ(αi)

= ln Γ(
∑

i

αi)−
∑

i

log Γ(αi)

So that

∂

∂αj
ln 1/B(α) = ∂

∂αj
ln Γ(

∑
i

αi)−
∂

∂αj
ln Γ(αj)

= 1
Γ(
∑

i αi)
∂

∂αj
Γ(
∑

i

αi)−
1

Γ(αj)
∂

∂αj
Γ(αj)

= ψ(
∑

i

αi)− ψ(αj)

where ψ is the digamma function.

141

IV. Minimax-Bayes Reinforcement Learning

This means that the overall derivative is
∂

∂µs,a,i
ln β(µ) = ∂

∂µs,a,i
ln
∏

(s′,a′)

β(µs′,a′)

= ∂

∂µs,a,i

∑
s′,a′

ln β(µs′,a′)

= ∂

∂µs,a,i
ln β(µs,a)

= ψ(
∑

j

αs,a,j)− ψ(αs,a,i) + ln(µs,a,i)

Combining the above, we get

α
(k)
s,a,i = α

(k−1)
s,a,i − δ

(k)U(π, µ(k))

ψ(
∑

j

αs,a,j)− ψ(αs,a,i) + ln(µ(k)
s,a,i)

 ,
where δ(k) is the step-size.

Reward prior. We can derive a similar update for Beta-distributed rewards,
with

α(k)
s = α(k−1)

s − δ(k)U(π, µ(k))
[
ψ(αs + βs)− ψ(αs) + ln(ρ(k)

s)
]

β(k)
s = β(k−1)

s − δ(k)U(π, µ(k))
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)

s)
]
.

We can also define the Beta-distribution with alternate parametrisation:
ps = αs/(αs + βs), ns = αs + βs which implies αs = psns, βs = ns(1− ps). We
then obtain

∂

∂ps
ln β(µ) = ns

∂

∂αs
ln β(µ)− ns

∂

∂βs
ln β(µ)

= ns

[
−ψ(αs) + ψ(βs) + ln(ρ(k)

s)− ln(1− ρ(k)
s)
]

= ns

[
−ψ(αs) + ψ(βs) + ln

(
ρ

(k)
s

1− ρ(k)
s

)]

∂

∂ns
ln β(µ) = p

∂

∂αs
ln β(µ) + (1− p) ∂

∂βs
ln β(µ)

= p
[
−ψ(αs) + ψ(βs) + ln(ρ(k)

s)− ln(1− ρ(k)
s)
]

+
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)

s)
]

= p

[
−ψ(αs) + ψ(βs) + ln

(
ρ

(k)
s

1− ρ(k)
s

)]
+
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)

s)
]

142

Omitted proofs

D.2 Omitted proofs

Proof of Lemma IV.3.6. For any β

max
µ∈M

R(π, µ) ≥ max
µ∈supp(β)

R(π, µ)

= max
µ∈supp(β)

U(π∗(µ), µ)− U(π, µ)

≥ max
µ∈supp(β)

U(π∗(β), µ)− U(π, µ)

≥
∑

µ∈supp(β)

β(µ)[U(π∗(β), µ)− U(π, µ)]

= U(π∗(β), β)− U(π, β) = R(π, β).

Since the above holds for any β, maxµ R(π, µ) ≥ maxβ R(π, β). Letting δ(M)
denote the degenerate distributions on individual members of M, we have:

max
β

R(π, β) ≥ max
β∈δ(M)

R(π, µ) = max
µ∈M

R(π, µ)

■

Proof of Lemma IV.5.1. Let π, π′, π′′ ∈ Π. To verify that L(π, β) is l-smooth we
study if

||∇L(π, β)−∇L(π′, β′)|| ≤ l||(π, β)− (π′, β′)||.

||∇L(π′′, β′′)−∇L(π′, β′)||22
≤||(π′′, β′′)− (π′, β′)||22(sup

π,β
||∇2L(π, β)||22)

=||(π′′, β′′)− (π′, β′)||22(sup
π,β
||∇2

πL(π, β)||22)

≤||(π′′, β′′)− (π′, β′)||22(sup
π,β
||∇2

πL(π, β)||2F)

Here the second transformation is due to the fact that any derivative with respect
to β is constant, and therefore the second order derivatives are zero except for
∇2

π. ||.||F denotes the Frobenius norm.
For stochastic policies π in a parametrised policy space ΠW ⊂ ΠS , we can

write (cf. [DO18]):

∇πL(π, β) = ∇πU(π, β) =
∑

β

∇πU(π, µ)β(µ).

Similarly, we obtain, for the Hessian:

∇2
πL(π, β) = ∇2

πU(π, β) =
∑

β

∇2
πU(π, µ)β(µ).

143

IV. Minimax-Bayes Reinforcement Learning

So it is only necessary to compute

∇2
πU(π, µ) =

∑
h

U(h)∇π(Pπ
µ(h)

∑
t

∇π ln π(at | ht))

=
∑

h

U(h)(∇π(Pπ
µ(h))

∑
t

∇π ln π(at | ht))

+ Pπ
µ(h)

∑
t

∇2
π ln π(at | ht))

=
∑

h

U(h)(Pπ
µ(h)

∑
t

∇π ln π(at | ht)
∑

t

∇π ln π(at | ht)T

+ Pπ
µ(h)

∑
t

∇2
π ln π(at | ht))

=
∑

h

U(h)(Pπ
µ(h)

∑
t

∇π ln π(at | ht)∇π ln π(at | ht)T

+ Pπ
µ(h)

∑
t

∇2
π ln π(at | ht))

where for a given history h = (s1, r1, a1, . . . , sT , rT), ht = (s1, r1, a1, . . . , st, rt).
From the setting of a softmax policy and a partitioned history in Eq (14).

∂

∂wh,a
ln π(at | ht) =


1− π(a|h), at = a, ht = h

−π(a|h), at ̸= a, ht = h

0, ht ̸= h

(15)

∂∂

∂wh,a∂wh,a′
ln π(at | ht) =


π(a|h)(π(a|h)− 1), a = a′, ht = h

π(a|h)π(a′|h), a ̸= a′, ht = h

0, ht ̸= h.

(16)

We then get Let ∇2
πU(π, µ) = G1 +G2 where

G1 =
∑

h

U(h)Pπ
µ(h)

∑
t

∇π ln π(at | ht)∇π ln π(at | ht)T

G2 =
∑

h

U(h)Pπ
µ(h)

∑
t

∇2
π ln π(at | ht).

||G1||F =||
∑

h

U(h)Pπ
µ(h)

∑
t

∇π ln π(at | ht)∇π ln π(at | ht)T ||F (17)

≤max
h
|U(h)|||

∑
h

Pπ
µ(h)

∑
t

∇π ln π(at | ht)∇π ln π(at | ht)T ||F (18)

≤T ||
∑

h

Pπ
µ(h)

∑
t

∇π ln π(at | ht)∇π ln π(at | ht)T ||F (19)

=T

√√√√∑
ht

∑
a∈A

∑
a′∈A

(
Pπ

µ(ht)T
∂ ln π(at | ht)

∂ωht,a

∂ ln π(at | ht)
∂ωht,a′

)2
(20)

144

Omitted proofs

≤T
√∑

ht

T 2Pπ
µ(ht)2

∑
a∈A

∑
a′∈A

12 (21)

≤T
√
T 2
∑
ht

Pπ
µ(ht)

∑
a∈A

∑
a′∈A

1 (22)

≤T
√
T 2|A|2 (23)

≤|A|T 2 (24)

Here equation (20) comes from the definition of the Frobenius norm
and the fact that every element (ht, a, a

′) in the matrix corresponds to∑
h Iht∈hPπ

µ(h)∂ ln π(at|ht)
∂ωht,a

∂ ln π(at|ht)
∂ωht,a′

and that Pπ
µ(ht) =

∑
h Pπ

µ(ht|h)Pπ
µ(h) =∑

h Iht∈h1/TPπ
µ(h). Equation (21) follows from the absolute value of equa-

tion (15) being bounded by one.

||G2||F = ||
∑

h

U(h)Pπ
µ(h)

∑
t

∇2
π ln π(at | ht)||F

≤T ||
∑

h

Pπ
µ(h)

∑
t

∇2
π ln π(at | ht)||F

≤T ||
∑
ht

TPπ
µ(ht)∇2

π ln π(at | ht)||F

≤T
√∑

ht

T 2Pπ
µ(ht)21

≤T
√
T 2
∑
ht

Pπ
µ(ht)1

≤T 2

Similarly to the case for G1, the steps follow the definition of the Frobenius
norm, the observation that each element is weighted by Pπ

µ(ht)T , and that the
absolute value of the partial derivatives is bounded by 1.

Finally this yields

l ≤ ||∇2
πU(π, µ)||F ≤ ||G1||F + ||G2||F ≤ T 2(|A|+ 1).

L(., β) is L-Lipschitz if ||∇πU(π, µ)||2 ≤ L.

||∇πU(π, µ)||2 = ||
∑

h

U(h)Pπ
µ(h)

∑
t

∇π ln π(at | ht)||2

≤ ||
∑

h

U(h)Pπ
µ(h)

∑
t

∇π ln π(at | ht)||F

≤ T
√
T 2
∑
ht

Pπ
µ(ht)212

145

IV. Minimax-Bayes Reinforcement Learning

Figure .6: Visualisation of Bayesian regret for three finite-horizon MDPs. The
arrows show the gradients of the Bayesian regret for the corresponding Bayes-
optimal policy. The axes represent the belief of two of the MDPs while the belief
of the final MDP is given by 1-x-y.

≤ max
h

(|U(h)|)T.

This then gives L ≤ T 2.
■

Proof of Lemma IV.5.3. Firstly,

min
π∈Π

L(π, βϵ,∗) ≥ min
π∈Πϵ

L(π, βϵ,∗)− ϵ ≥ min
π∈Πϵ

L(π, β∗)− ϵ ≥ min
π∈Π

L(π, β∗)− ϵ

which completes the first part of the proof.
Secondly from the definition of c-convexity, and the fact that

∇β minπ∈Π L(π, β∗)T (β − β∗) must be zero since the gradient must be zero in
any direction that does not move out of B, we have

min
π∈Π

L(π, β) ≤ min
π∈Π

L(π, β∗)− c||β∗ − β||22.

Rearranging and setting β = βϵ,∗ finishes the proof. ■

D.3 Additional results for finite MDPs

In this section we generate MDPs as in the same way as in Section IV.6.2, with
the difference that Table .1 uses γ = 0.9.

Figure .6 gives an example of what the Bayesian regret landscape looks like
for a task with three MDPs. The change in Bayesian regret for the fixed optimal
policy of a certain belief is visualised with arrows.

146

Additional results for finite MDPs

Table .1: Comparison of worst-case Bayesian regret for optimal policies at
minimax and uniform belief for 16 MDP tasks.

Seed 1 2 3 4 5

Minimax 0.247 0.314 0.348 0.342 0.363

Uniform 0.640 0.554 0.484 0.646 0.850

In Table .1 we have some additional results comparing the performance of
the uniform-prior and worst-case prior policies. In particular, we generate 5
sets of 16 MDPs. For each set, we calculate the minimax policy and the best
response to the uniform prior. We then calculate the worst-case Bayesian regret
for each policy. As we can expect, the minimax policy significantly outperforms
the uniform best response policy.

147

Paper V

Bandits Meet Mechanism Design to
Combat Clickbait in Online
Recommendation

Thomas Kleine Buening, Aadirupa Saha, Christos Dimi-
trakakis, Haifeng Xu
To appear at the International Conference on Learning Representations, 2024.

V

Abstract

We study a strategic variant of the multi-armed bandit problem, which we
coin the strategic click-bandit. This model is motivated by applications in
online recommendation where the choice of recommended items depends
on both the click-through rates and the post-click rewards. Like in classical
bandits, rewards follow a fixed unknown distribution. However, we assume
that the click-rate of each arm is chosen strategically by the arm (e.g., a
host on Airbnb) in order to maximize the number of times it gets clicked.
The algorithm designer does not know the post-click rewards nor the arms’
actions (i.e., strategically chosen click-rates) in advance, and must learn
both values over time. To solve this problem, we design an incentive-aware
learning algorithm, UCB-S, which achieves two goals simultaneously: (a)
incentivizing desirable arm behavior under uncertainty; (b) minimizing
regret by learning unknown parameters. We characterize all approximate
Nash equilibria among arms under UCB-S and show a Õ(

√
KT) regret

bound uniformly in every equilibrium. We also show that incentive-unaware
algorithms generally fail to achieve low regret in the strategic click-bandit.
Finally, we support our theoretical results by simulations of strategic arm
behavior which confirm the effectiveness and robustness of our proposed
incentive design.

V.1 Introduction

Recommendation platforms act as intermediaries between vendors and users
so as to recommend items from the former to the latter. On Amazon, vendors
sell physical items, while on Youtube the recommended items are videos. The
recommendation problem is how to select one or more items to present to each
user so that they are most likely to click on at least one of them.

149

V. Bandits Meet Mechanism Design

Figure V.1: Examples of unrepresentative or clickbait headlines and thumbnails
on Bing News, Airbnb, Youtube, and Facebook Marketplace (identifying
information partly redacted).

However, vendor-chosen item descriptions are an essential aspect of the
problem that is often ignored. These invite vendors to exaggerate their true
value in the descriptions in order to increase their Click-Through-Rates (CTRs).
As a consequence, even though online learning algorithms can generally identify
relevant items, the existence of unrepresentative or exaggerated item descriptions
remains a challenge [HBR12; YPR10]. These include thumbnails or headlines
that do not truly reflect the underlying item (see Figure V.1)—a well-known
internet phenomenon called the clickbait [Wan+21]. While moderately increasing
user click-rates through attractive descriptions is often encouraged since it helps
to increase the overall user activity, clickbait can be harmful to a platform as it
leads to bad recommendation outcomes and damage to the platform’s reputation
which may exceed the value of any additional clicks. A key reason for such
dishonest or exaggerated item deceptions is the strategic behavior of vendors
driven by their incentive to increase their item’s exposure and click probability.
Thus naturally, vendors are better off carefully choosing descriptions so as to
increase click-rates, which leads to phenomena such as clickbait.1

To address this issue, we take an approach that marries mechanism design
without payments with online learning, which are two celebrated research areas,
however, mostly studied as separate streams. Since clickbait is fundamentally
driven by vendor incentives, we believe that the novel design of online learning
policies that can carefully align vendor incentives with the platform’s overall
objective may help to resolve this issue from its root.

To incorporate vendor-chosen item descriptions in this setting, we propose
and study a natural strategic variant of the classical Multi-Armed Bandit (MAB)
problem, which we call the strategic click-bandit in order to emphasize the
strategic role that clicks and CTRs play in our setup.2 Concretely, in strategic
click-bandits, each arm i is characterized by (a) a reward distribution with mean
µi, inherent to the arm; and (b) a click probability si ∈ [0, 1], chosen freely by
the arm at the beginning. Since the learner (i.e., the recommendation system)
knows neither of these values in advance, it must learn them through interaction.
The learner’s objective is represented through a general utility function u(si, µi)
that depends on both click-rate and post-click rewards.

1This is possible because most platforms rely on vendors to provide descriptions about
their items. For instance, the images of restaurants on Yelp, rentals on Airbnb, hotels on
Expedia, title and thumbnails of Youtube videos, and descriptions of products on Amazon are
all provided by the vendors.

2We use the terms click-through-rate, click-rate, and click probability interchangeably.

150

Related Work

We highlight two fundamental differences between strategic click-bandits and
standard MABs. First, each arm in the strategic click-bandit is a self-interested
agent whose objective is to maximize the number of times it gets clicked. This
captures the strategic behavior of many vendors in online recommendations,
especially those who are rewarded based on user clicks (e.g., [You23]). Second,
si is a freely chosen action by arm i, rather than a fixed parameter of arm i. We
believe these modeling adjustments more realistically capture vendor behaviors
in real applications. They also lead to intriguing mechanism design questions
since the bandit algorithm not only needs to learn the unknown parameters,
but also has to carefully align incentives to avoid undesired arm behavior. In
summary, our contributions are:

1. We introduce the strategic click-bandit problem, which involves strategic
arms manipulating click-rates so as to maximize their own utility, and
show that incentive-unaware algorithms generally fail to achieve low regret
in the strategic click-bandit (Section V.3, Proposition V.4.1).

2. We design an incentive-aware learning algorithm, UCB-S, that combines
mechanism design and online learning techniques and effectively incentivizes
desirable arm strategies while minimizing regret by making credible and
justified threats to arms under uncertainty (Section V.5).

3. We characterize the set of Nash equilibria for the arms under the UCB-S
mechanism and show that every arm i’s strategy is Õ

(
max

{
∆i,

√
K/T

})
close to the desired strategy in equilibrium (Theorem V.5.2). We then show
that UCB-S achieves Õ

(√
KT

)
strong strategic regret (Theorem V.5.3)

and complement this with an almost matching lower bound of Ω
(√
KT

)
for weak strategic regret (Theorem V.5.5).

4. We simulate strategic arm behavior through repeated interaction and
gradient ascent and empirically demonstrate the effectiveness of the
proposed UCB-S mechanism (Section V.6).

V.2 Related Work

The MAB problem is a well-studied online learning framework, which can be
used to model decision-making under uncertainty [Aue02; LR85]. Since it
inherently involves sequential actions and the exploration-exploitation trade-
off, the MAB framework has been applied to online recommendations [Li+10;
WWW17; Zon+16] as well as a myriad of other domains [BRA20]. While there is
much work studying strategic machine learning [e.g., Fre+20; Har+16; ZC21], we
here wish to highlight related work that connects online learning (and specifically
the MAB formalism) to mechanism design [NR99]. Additional related work is
discussed in Appendix E.8.

To the best of our knowledge, [Bra+19] are the first to study a strategic
variant of the MAB problem. In their model, when an arm is pulled, it receives
a privately observed reward ν and chooses to pass on a portion x of it to the

151

V. Bandits Meet Mechanism Design

principal, keeping ν − x for itself. The goal of the principal is then to incentivize
arms to share as much reward with the principal as possible. In contrast to our
work, the principal must not learn the underlying reward distribution or the
arm strategies, but instead design an auction among arms based on the shared
rewards. [FPX20] and [Don+22] study the robustness of bandit algorithms
to strategic reward manipulations. However, neither work attempts to align
incentives by designing mechanisms, but instead assume a limited manipulation
budget. [SLO22] study MABs with strategic replication in which agents can
submit several arms with replicas to the platform. They design an algorithm,
which separately explores the arms submitted by each agent and in doing so
discourages agents from creating additional arms and replicas. Another line of
work studies auction-design in MAB formalisms, often motivated by applications
in ad auctions [BKS15; BSS09; DK09]. In these models, in every round the
auctioneer selects one advertiser’s item, which is subsequently clicked or not,
and the goal of the auctioneer is to incentivize advertisers to truthfully bid their
value-per-click by constructing selection and payment rules.

To the best of our knowledge, our work is the first to study the situation
where the arms’ strategies (as well as other parameters) are initially unobserved,
and must be learned from interaction while simultaneously incentivizing arms
under uncertainty without payments. As a result, while other work is usually
able to precisely incentivize certain arm strategies, our mechanism design and
characterization of the Nash equilibria are approximate.

V.3 The Strategic Click-Bandit Problem

We consider a natural strategic variant of the classical MAB, motivated by
applications in online recommendation. Unlike classical MABs, strategic click-
bandits feature decentralized interactions with the learner and multiple self-
interested arms.

Let [K] := {1, . . . ,K} denote the set of arms, each being viewed as a strategic
agent. The strategic click-bandit proceeds in two phases. In the first phase,
the learner commits to an online learning policy M , upon which each arm i
chooses a description, which results in a corresponding click-rate si ∈ [0, 1].
The second phase proceeds in rounds. At each round t: (1) the algorithm M
pulls/recommends an arm it based on observed past data; (2) arm it is clicked
with probability sit

; (3) if it is clicked, arm it receives utility 1 (whereas all other
arms i receive utility 0) and the learner observes a post-click reward rt,it

∈ [0, 1]
drawn from it’s reward distribution with mean µit

∈ [0, 1]. If it is not clicked,
all arms receive 0 utility and the learner does not observe any post-click rewards.
The post-click mean µi is fixed for each arm i and captures the true value of the
arm. From the learner’s perspective, both si and µi of each arm are unknown but
can be learned from online bandit feedback, that is, whether the recommended
arm is clicked and, if so, what its realized reward is. In the following, we will
also refer to the online learning policy M as a mechanism to emphasize its dual
role in learning and incentive design. We summarize the interaction in Model 14.

152

The Strategic Click-Bandit Problem

Model 14 The Strategic Click-Bandit Problem
1: Learner commits to algorithm M , which is shared with all arms
2: Arms choose strategies (s1, . . . , sK) ∈ [0, 1]K (unknown to M)
3: for t = 1, . . . , T do
4: Algorithm M selects arm it ∈ [K]
5: Arm it is clicked with probability sit

, i.e., ct,it
∼ Bern(sit

)
6: if it was clicked (ct,it

= 1) then
7: Arm it receives utility 1 from the click
8: M observes post-click reward rt,it drawn from a distr. with mean µit

V.3.1 Learner’s Utility

The learner’s utility of selecting an arm i with CTR si and post-click value µi is
denoted u(si, µi). One example of this utility function is u(s, µ) = sµ. In this
case, the learner monotonically prefers large s and does not care about how much
the click-rate s differs from the post-click value µ. However, we believe that
the learner (e.g., a platform like Youtube or Airbnb) usually values consistency
between the click-rates and the post-click values of arms. This could be captured
by a penalty term for how much si differs from µi; for instance, a natural choice
is u(s, µ) = sµ − λ(s − µ)2 for some weight λ > 0. Such non-monotonicity of
the learner’s utility u(si, µi) in si versus arm i’s monotonic preference of larger
click-rates forms the fundamental tension in the strategic click-bandit model and
is also the reason that mechanism design is needed. We keep the above utility
functions in mind as running examples, but derive our results for a much more
general class of functions satisfying the following mild regularity assumptions:

(A1) u : [0, 1]× [0, 1]→ R is L-Lipschitz w.r.t. the ℓ1-norm.

(A2) u∗(µ) := max
s∈[0,1]

u(s, µ) is monotonically increasing.

(A3) s∗(µ) := argmax
s∈[0,1]

u(s, µ) is H-Lipschitz and is bounded away from zero.

Assumption (A1) bounds the loss of selecting a suboptimal arm. (A2) states
that, in the (idealized) situation when the arms choose click-rates so as to
maximize the learner’s utility u, then arms with larger post-click rewards µ are
always preferred. (A3) then ensures that from the perspective of the learner
most desired strategy s∗(µ) does not change abruptly w.r.t. µ and the learner
wishes to incentivize non-zero click-rates. In what follows, the function s∗(µ)
will play a central role as it describes the arm strategy that maximizes the
learner’s utility. For instance, in the case of u(s, µ) = sµ− λ(s− µ)2 it is given
by s∗(µ) = (1 + 1

2λ)µ. As such, the learner will typically try to incentivize an
arm with post-click reward µi to choose strategy s∗(µi).

153

V. Bandits Meet Mechanism Design

V.3.2 Arms’ Utility and Nash Equilibria Among Arms

The mean post-click reward µi of each arm i is fixed, whereas arm i can freely
choose the CTR si. In the strategic click-bandit, the objective of each arm
i is to maximize the number of times it gets clicked

∑T
t=1 1{it=i} ct,i, which

captures the objectives of vendors on internet platforms for whom user traffic
typically proportionally converts to revenue.3 We now introduce the solution
concept for the game among arms defined by a mechanism M and post-click
rewards µ1, . . . , µK , often referred to as an equilibrium. Let s−i denote the K−1
strategies of all arms except i. Each arm i chooses si to maximize their expected
number of clicks vi(M, si, s−i), which is a function of the mechanism M , their
own action si as well as all other arms’ actions s−i. Concretely,

vi(M, si, s−i) := EM

[
T∑

t=1
1{it=i} ct,i

]
(V.1)

where the expectation is taken over the mechanism’s decisions and the
environment’s randomness. We generally write s := (s1, . . . , sK) to summarize a
strategy profile of the arms. Let Σ denote the set of probability measures over
[0, 1]. Given a mixed strategy profile σ = (σi, σ−i) ∈ ΣK , i.e., a distribution over
[0, 1]K , arm i’s utility is then defined as vi(M,σi, σ−i) := Es∼σ[vi(M, si, s−i)].

Definition V.3.1 (Nash Equilibrium). We say that σ = (σ1, . . . , σK) ∈ ΣK is a
Nash equilibrium (NE) under mechanism M if vi(M,σi, σ−i) ≥ vi(M,σ′

i, σ−i)
for all i ∈ [K] and strategies σ′

i ∈ Σ.

In other words, σ is in NE if no arm can increase its utility by unilaterally
deviating to some other strategy. If some NE σ ∈ ΣK has weight one on a pure
strategy profile s ∈ [0, 1]K , this equilibrium is said to be in pure-strategies. Let
NE(M) := {σ ∈ ΣK : σ is a NE under M} denote the set of all (possibly mixed)
NE under mechanism M . Following conventions in standard economic analysis,
we assume that the arms will form a NE in NE(M) in response to an algorithm
M .4

Remark V.3.2 (Existence of Nash Equilibrium). In general, the arms’ utility
functions vi(M, si, s−i) may be discontinuous in the arms’ strategies due to their
intricate dependence on the learning algorithm M . It is well-known that in
games with discontinuous utilities, a NE may not exist [Ren99]. However, for
all subsequently considered algorithms we will prove the existence of a NE by
either explicitly describing the equilibrium or implicitly proving its existence.

3More generally, different arms i may have a different value-per-click νi that could as well
depend on µi so that vi(M, si, s−i) = EM [

∑
t
1{it=i} ct,i νi]. This can easily be accommodated

for by our model and our results readily extend to this case since each arm’s goal still boils
down to maximizing the number of clicks.

4For instance, a sufficient condition for the arms to find a NE is their knowledge about
how far away they are from the best arm, i.e., their optimality gap in post-click rewards
∆i := maxj∈[K] µj − µi.

154

Limitations of Incentive-Unaware Algorithms

V.3.3 Strategic Regret

The learner’s goal is to maximize
∑T

t=1 u(sit
, µit

) which naturally depends on the
arm strategies s1, . . . , sK . For given post-click values µ1, . . . , µK , the maximal
utility u(s∗, µ∗) is then achieved for µ∗ := maxi∈[K] µi and s∗ := s∗(µ∗), that is,
u(s∗, µ∗) = maxi∈[K] maxs∈[0,1] u(s, µi). With u(s∗, µ∗) as a benchmark, we can
define the strategic regret of a mechanism M under a pure-strategy equilibrium
s ∈ NE(M) as

RT (M, s) := E

[
T∑

t=1
u(s∗, µ∗)− u(sit

, µit
)
]
. (V.2)

For some mixed-strategy equilibrium σ ∈ NE(M), we then accordingly define
strategic regret as RT (M,σ) := Es∼σ[RT (M, s)]. In general, there may exist
several Nash equilibria for the arms under a given mechanism M . We can then
consider the strong strategic regret of M given by the regret under the worst-case
equilibrium:

R+
T (M) := max

σ∈NE(M)
RT (M,σ),

or the weak strategic regret given by the regret under the most favorable
equilibrium:

R−
T (M) := min

σ∈NE(M)
RT (M,σ),

where R−
T (M) ≤ R+

T (M). The regret upper bound of our proposed algorithm,
UCB-S, holds under any equilibrium in NE(UCB-S), thereby bounding strong
strategic regret (Theorem V.5.3). On the other hand, the proven lower bounds
(Proposition V.4.1 and Theorem V.5.5) hold for weak strategic regret and thus
also apply to its strong counterpart.

V.4 Limitations of Incentive-Unaware Algorithms

We start our analysis of the strategic click-bandit problem by showing that
simply finding the arm with the largest post-click reward, argmaxi µi, or largest
utility, argmaxi u(si, µi), is insufficient to achieve o(T) weak strategic regret. In
fact, we find that even with oracle knowledge of µ1, . . . , µK and s1, . . . , sK , an
algorithm may suffer linear weak strategic regret if it fails to account for the
arms’ strategic nature. For such incentive-unaware oracle algorithms, we show a
Ω(T) lower bound for weak strategic regret on any non-trivial problem instance.

Recall that µ∗ := maxi∈[K] µi and s∗ := s∗(µ∗) and suppose that the arm
i∗ = argmaxi∈[K] µi with maximal post-click rewards is unique. Our negative
results rely on the following problem-dependent gaps in terms of utility:

β := u(s∗, µ∗)− u(1, µ∗) and η := u(s∗, µ∗)− max
i∈[K]\{i∗}

u∗(µi).

Here, β denotes the cost of the optimal arm i∗ deviating from the desired strategy
s∗ = s∗(µ∗) by playing si∗ = 1. The quantity η denotes the gap between the
maximally achievable utility u(s∗, µ∗) and the utility of the second best arm.

155

V. Bandits Meet Mechanism Design

Proposition V.4.1. Let µ-Oracle be the algorithm with oracle knowledge of
µ1, . . . , µK that plays it = argmaxi∈[K] µi in every round t, whereas (s, µ)-Oracle
is the algorithm with oracle knowledge of µ1, . . . , µK and s1, . . . , sK that always
plays it = argmaxi∈[K]u(si, µi) with ties broken in favor of the larger µ. We
then have

(i) Under every equilibrium σ ∈ NE(µ-Oracle), the µ-Oracle suffers
regret Ω

(
βT
)
, i.e.,

R−
T (µ-Oracle) = Ω

(
βT
)
.

(ii) Under every σ ∈ NE((s, µ)-Oracle), the (s, µ)-Oracle suffers regret
Ω
(

min{β, η}T
)
, i.e.,

R−
T ((s, µ)-Oracle) = Ω

(
min{β, η}T

)
.

Proof Sketch. (i): We show that s = 1 is a strictly dominant strategy for arm
i∗ under the µ-Oracle. This implies that arm i∗ plays si∗ = 1 with probability
one in every NE under the µ-Oracle. The claimed lower bound then follows
from bounding the instantaneous regret per round from below by β. (ii): Let
j∗ ∈ argmaxi ̸=i∗ µi. It can be seen that in any NE, arm i∗ will play the largest
s ∈ [0, 1] such that u(s, µi∗) ≥ u(sj∗ , µj∗). We then show that either si∗ = 1
or u(si∗ , µi∗) = u(s∗(µj∗), µj∗). Once again this allows us to lower bound the
regret per round by min{β, η}. ■

As a concrete example of the failure of the µ-Oracle and the (s, µ)-Oracle,
let us consider the running example of u(s, µ) = sµ − λ(s − µ)2. In this case,
letting λ = 5 and µi∗ = 0.8 and µi ≤ 0.7 for i ̸= i∗, we get β ≥ 0.1 and η ≥ 0.1
so that both oracles suffer Ω(T) regret in every equilibrium.

V.5 No-Regret Incentive-Aware Learning: UCB-S

The results of Proposition V.4.1 suggest that any incentive-unaware learning
algorithm that is oblivious to the strategic nature of the arms will generally fail
to achieve low regret. In particular, “unconditional” selection of any arm will
likely result in undesirable equilibria among arms. For these reasons, we deploy
a conceptually simple screening idea, which threatens arms with elimination
when deviating from the desired strategies.

Let denote nt(i) be the number of times up to (and including) round t that
arm i was selected, and let mt(i) denote the number of times post-click rewards
were observed for arm i up to (and including) round t. Let ŝt

i be the average
observed click-rate and µ̂t

i the average observed post-click reward for arm i. We
then define the pessimistic and optimistic estimates of si and µi as

st
i = ŝt

i −
√

2 log(T)/nt(i), st
i = ŝt

i +
√

2 log(T)/nt(i),

µt
i = µ̂t

i −
√

2 log(T)/mt(i), µt
i = µ̂t

i +
√

2 log(T)/mt(i).

156

No-Regret Incentive-Aware Learning: UCB-S

Mechanism 15 UCB with Screening (UCB-S)
1: initialize: A0 = [K]
2: for t = 1, . . . , T do
3: if At−1 ̸= ∅ then
4: Select it ∈ argmaxi∈At−1 µ

t−1
i

5: else
6: Select it uniformly at random from [K]
7: Arm it is clicked with probability sit

, i.e., ct,it
∼ Bern(sit

)
8: if it was clicked (ct,it

= 1) then
9: Observe post-click reward rt,it

10: if st
it
< minµ∈[µt

it
,µt

it
] s

∗(µ) or st
it
> maxµ∈[µt

it
,µt

it
] s

∗(µ) then
11: Ignore arm it in future rounds: At ← At−1 \ {it}

where st
i = −∞ and st

i = +∞ for nt(i) = 0 as well as µt
i

= −∞ and µt
i = +∞

for mt(i) = 0.
In every round, UCB-S (Mechanism 15) selects arms optimistically according

to their post-click rewards and subsequently observes if the arm is clicked, i.e.,
ct,it

, and, if so, a post-click reward rt,it
. However, if an arm’s click-rate si is

detected to be different from the learner’s desired arm strategy s∗(µi), the arm
is eliminated forever, expressed by the screening rule in line 10:

st
it
< min

µ∈[µt
it

,µt
it

]
s∗(µ) or st

it
> max

µ∈[µt
it

,µt
it

]
s∗(µ).

The only exception is when all arms have been eliminated. Then, UCB-S plays
them all uniformly for the remaining rounds. To ensure that the elimination of an
arm is credible and justified with high probability, we leverage confidence bounds
on si and µi. More precisely, if an arm is truthful and chooses si = s∗(µi), then
with probability 1− 1/T 2 it will not be eliminated by the screening rule.

As a prelude to the analysis of the UCB-S mechanism, we begin by showing
that there always exists a NE among the arms under UCB-S. As mentioned
briefly in Section V.3, the existence of a NE among the arms is not guaranteed
under an arbitrary mechanism due to the arms’ continuous strategy space and
possibly discontinuous utility function.

Lemma V.5.1. For any post-click rewards µ1, . . . , µK , there always exists a
(possibly mixed) Nash equilibrium for the arms under the UCB-S mechanism.

V.5.1 Characterizing the Nash Equilibria under UCB-S

We now approximately characterize all NE for the arms under the UCB-S
mechanism. In order to prove a regret upper bound for UCB-S, it will be key
to ensure that each arm i plays a strategy si which is sufficiently close to the
desired strategy s∗(µi) (i.e., the strategy that maximizes the learner’s utility).
This is particularly important for arms i∗ with maximal post-click rewards

157

V. Bandits Meet Mechanism Design

µi∗ = maxi∈[K] µi. If such arms i∗ were to deviate substantially from s∗(µi∗),
e.g., by a constant amount, the learner would be forced to suffer constant regret
even when selecting arms with maximal post-click rewards, making it impossible
to achieve sublinear regret.

In the following, we show that under the UCB-S mechanism every NE
is such that the strategies of arms with maximal post-click rewards deviate
from the desired strategies by at most Õ(

√
K/T). We then also show that for

suboptimal arms the difference between each arm i’s strategy si and the desired
strategy s∗(µi) is governed by their optimality gap in post-click rewards, given
by ∆i := µ∗ − µi. Recall that H denotes the Lipschitz constant of s∗(µ).

Theorem V.5.2. For all s ∈ supp(σ) with σ ∈ NE(UCB-S) and all i ∈ [K]:

si = s∗(µi) +O
(
H ·max

{
∆i,

√
K log(T)

T

})
.

In particular, for all arms i∗ ∈ [K] with ∆i∗ = 0, i.e., maximal post-click
rewards:

si∗ = s∗(µi∗) +O
(
H

√
K log(T)

T

)
.

The derivation of Theorem V.5.2 can be best understood by noting that the
estimates of each arm’s strategy roughly concentrate at a rate of 1/

√
t. Then,

depending on how often an arm expects to be selected by UCB-S, it can exploit
our uncertainty about its strategy and safely increase its click-rates to match
our confidence. Generally, optimal arms expect at least T/K allocations while
preventing elimination, which can be seen to imply NE strategies that deviate
by at most

√
K/T . On the other hand, suboptimal arms can expect roughly

log(T)/∆2
i allocations as long as they can prevent elimination and all other arms

act rationally, which results in the linear dependence on ∆i. Hence, interestingly
UCB-S’ selection policy directly impacts the truthfulness of the arms, as arms
that are selected more frequently are forced to choose strategies closer to s∗(µi).
We thus observe a trade-off between incentivizing all arms to be truthful and
recommending only the best arms. The proof of Theorem V.5.2 (Appendix E.3)
then relies on the above observation and careful and repeated application of the
best response property of the Nash equilibrium.

V.5.2 Upper Bound of the Strong Strategic Regret of UCB-S

With the approximate NE characterization from Theorem V.5.2 at our disposal,
we are ready to prove a regret upper bound for UCB-S. We show that the strong
strategic regret of the UCB-S mechanism is upper bounded by Õ

(√
KT

)
, that is,

for any σ ∈ NE(UCB-S) the regret guarantee holds.

Theorem V.5.3. Let ∆i := µ∗−µi and let L and H denote the Lipschitz constants
of u(s, µ) and s∗(µ), respectively. The strong strategic regret of UCB-S is bounded

158

No-Regret Incentive-Aware Learning: UCB-S

as

R+
T (UCB-S) = LH · O

√KT log(T) +
∑

i:∆i>0

log(T)
∆i

 . (V.3)

In other words, the above regret bound is achieved under any equilibrium
σ ∈ NE(UCB-S).

Proof Sketch. As suggested by the regret bound there are two sources of
regret. Broadly speaking, the first term on the right hand side of (V.3)
corresponds to the regret UCB-S suffers due to arms with maximal post-
click rewards (i.e., ∆i = 0) deviating from the utility-maximizing strategy
s∗(µ∗). For such arms Theorem V.5.2 bounded the deviation by a term of
order

√
K/T , thereby leading to at most order

√
KT regret. The second

term in (V.3) corresponds to the regret suffered from playing arms with
suboptimal post-click rewards, i.e., ∆i > 0. Using a typical UCB argument,
the Lipschitzness of u(s, µ) and s∗(µ), and again Theorem V.5.2 applied to
|s∗(µ∗) − si| ≤ |s∗(µ∗) − s∗(µi)| + O(H∆i) ≤ H∆i + O(H∆i) we obtain the
claimed upper bound. ■

Similarly to classical MABs we can state a regret bound independent of the
instance-dependent quantities ∆i and translate Theorem V.5.3 into a minimax-
type guarantee.

Corollary V.5.4. The strong strategic regret of UCB-S is bounded as

R+
T (UCB-S) = O

(
LH

√
KT log(T)

)
.

In other words, the above regret bound is achieved under any equilibrium
σ ∈ NE(UCB-S).

Theorem V.5.3 nicely shows that the additional cost of the incentive design
and the strategic behavior of the arms is of order

√
KT which primarily stems

from arms with maximal post-click rewards deviating by roughly
√
K/T from

the desired strategy (see Theorem V.5.2). The dishonesty of suboptimal arms
does not notably contribute to the regret and is contained in the log(T)/∆i

expressions as we can bound the number of times suboptimal arms are played
sufficiently well. As a result, the total cost of incentive design and strategic
behavior matches the minimax learning complexity of MABs so that we obtain
an overall Õ(

√
KT) strategic regret bound under every equilibrium.

V.5.3 Lower Bound for Weak Strategic Regret

Complementing our regret analysis, we prove a lower bound on weak strategic
regret in the strategic click-bandit. By definition, weak strategic regret lower
bounds its strong counterpart, i.e., R−

T (M) ≤ R+
T (M), so that the shown lower

bound directly applies to strong strategic regret as well, which implies that
UCB-S is near-optimal.

159

V. Bandits Meet Mechanism Design

Theorem V.5.5. Let M be any mechanism with NE(M) ̸= ∅. There exists a
utility function u satisfying (A1)-(A3) and post-click rewards µ1, . . . , µK such
that for all Nash equilibria σ ∈ NE(M):

RT (M,σ) = Ω
(√
KT

)
.

In other words, R−
T (M) = Ω

(√
KT

)
.

Proof Sketch. Consider the utility function u(s, µ) = sµ. Intuitively, for any low
regret mechanism M the NE for the arms will be in (s1, . . . , sK) = (1, . . . , 1)
as these strategies maximize the learner’s utility u and are to the advantage of
the arms. In this case, the learning problem reduces to a classical MAB and we
inherit the well-known minimax

√
KT lower bound. However, it is not directly

clear that there exists no better mechanism that would, e.g., incentivize arm
strategies (s1, . . . , si∗ , . . . , sK) = (0, . . . , 1, . . . , 0) under which i∗ = argmaxi µi

becomes easier to distinguish from i ̸= i∗. For this reason, we argue via the arms’
utilities and lower bound the minimal utility a suboptimal arm must receive in
any NE. This directly implies a lower bound on the number of times we must
play any suboptimal arm in equilibrium, which yields the claimed result.

■

V.6 Simulating Strategic Arm Behavior via Repeated
Interaction

Goal of the experiments is to analyze the effect of the proposed incentive-aware
learning algorithm UCB-S on strategically responding arms. Strategic arm
behavior is here modeled through decentralized gradient ascent and repeated
interaction with the mechanism. Contrary to the assumption of arms playing in
NE, arms follow a simple gradient ascent strategy to adapt to the mechanism,
which serves as a realistic and natural model of strategic behavior. This requires
no prior knowledge from the point of view of the arms and all learning is
performed through sequential interaction with the mechanism. For this reason,
the final strategies in our experiments may not necessarily be in NE. Despite
this, we want to see whether the mechanism is still able to incentivize arms to
behave in the desired manner which will also provide insight into the robustness
of the proposed incentive design.

Experimental Setup. We consider the earlier introduced utility function
defined as u(s, µ) = sµ − λ(s − µ)2 such that the desired (learner’s utility-
maximizing) strategy given µ is s∗(µ) = (1 + 1

2λ)µ. We let λ = 5. To model
the strategic behavior of arms in response to UCB-S, we let the strategic arms
interact with the mechanism over the course of 20 epochs (x-axis) and model each
arm’s strategic behavior via gradient ascent w.r.t. its utility vi. More precisely,
after every epoch (i.e., interaction over T = 50k rounds), each arm performs an
approximated gradient step with respect to its utility vi. We initialized the arm
strategies to si = 1, however, our experiments show that other initialization,

160

Simulating Strategic Arm Behavior via Repeated Interaction

(a) Optimal arm
with µ1 = 0.75.

(b) Suboptimal arm
with µ2 = 0.725.

(c) Suboptimal arm
with µ3 = 0.7.

(d) Suboptimal arm
with µ4 = 0.675.

Figure V.2: The strategic behavior of K = 4 arms when each arm uses gradient
ascent to maximize their utility vi in response to the UCB-S mechanism. In
red, the desired strategy s∗(µi) for each arm i, respectively. As suggested by
Theorem V.5.2, the truthfulness, i.e., distance to s∗(µi), of a suboptimal arm i is
governed by the arm’s optimality gap ∆i. We see this confirmed as the distance
si − s∗(µi) increases as ∆i increases. In accordance with our theoretical results,
the optimal arm 1 has the largest incentive to play close to the desired strategy
(as it loses the most when eliminated).

Figure V.3: Strategic arm behavior
in response to the incentive-unaware
standard UCB algorithm. UCB fails
to incentivize desirable arm strategies.
The strategies are plotted jointly and
all 4 arms exhibit similar behavior.

Figure V.4: Strategic regret of UCB-S
and standard UCB as arms adapt their
strategies in response to the respective
algorithm. The more the arms have
interacted with the UCB-S mechanism,
the less regret UCB-S suffers.

such as si = 0 or si = 0.5, yield similar results. All results are averaged over 10
complete runs and the standard deviation shown in shaded color.

Results. In Section V.5 we have theoretically shown that our mechanism
incentivizes desirable NE among arms. The conducted simulations show that
under natural greedy behavior as modeled by gradient ascent, the incentive design
of UCB-S is still effective and desirable arm strategies incentivized (Figure V.2).
Most notably, the optimal arm (having the largest incentive to be truthful)
converges to a strategy close to the desired strategy s∗(µ1). The suboptimal
arms do not converge to a strategy close to the desired strategy and we observe
that the distance to s∗(µi) depends on the optimality gap ∆i, which mirrors
our theoretical results (Theorem V.5.2). In addition, Figure V.4 shows that as
the arms interact with UCB-S and adapt their strategies, the regret of UCB-S

161

V. Bandits Meet Mechanism Design

improves substantially. In contrast, incentive-unaware algorithms like UCB
fail to incentivize desirable strategies (all arm strategies remain close to 1, see
Figure V.3) and UCB accordingly suffers large regret (Figure V.4) throughout all
epochs. The observation that UCB-S initially suffer larger regret than UCB can
be explained by the elimination rule causing UCB-S to select arms uniformly at
random when arms are notably untruthful. This threat of elimination, however,
incentivizes the arms to adapt their strategies in the next epoch and eventually
leads to smaller regret for UCB-S.

V.7 Discussion

We study the strategic click-bandit problem in which each arm is associated
with a click-rate, chosen strategically by the arms, and an immutable post-click
reward. We show the necessity of incentive design in this model and design
an incentive-aware online learning algorithm that incentivizes desirable arm
strategies under uncertainty. As the learner has no prior knowledge of the arm
strategies and the post-click rewards, the mechanism design is approximate
and leaves room for arms to exploit the learner’s uncertainty. This leads to
an interesting regret bound which makes the intuition precise that arms can
exploit the learner’s uncertainty about their strategies. In our simulations we
then observe that our incentive design is robust and still effective under natural
greedy arm behavior and that the design of incentive-aware learning algorithms
is necessary to achieve low regret under strategic arm behavior. Some interesting
open questions which we leave for future work include whether the proposed
incentive design remains effective under adaptive arm strategies and whether we
can construct a mechanism under which there exists a desirable NE in dominant
strategies.

References

[Aue02] Auer, P. “Using Confidence Bounds for Exploitation-Exploration
Trade-offs”. In: Journal of Machine Learning Research vol. 3 (2002),
pp. 397–422.

[BKS15] Babaioff, M., Kleinberg, R. D., and Slivkins, A. “Truthful mech-
anisms with implicit payment computation”. In: Journal of the
ACM (JACM) vol. 62, no. 2 (2015), pp. 1–37.

[Bra+19] Braverman, M. et al. “Multi-armed bandit problems with strategic
arms”. In: Conference on Learning Theory. PMLR. 2019, pp. 383–
416.

[BRA20] Bouneffouf, D., Rish, I., and Aggarwal, C. “Survey on applications
of multi-armed and contextual bandits”. In: 2020 IEEE Congress
on Evolutionary Computation (CEC). IEEE. 2020, pp. 1–8.

162

References

[BSS09] Babaioff, M., Sharma, Y., and Slivkins, A. “Characterizing truthful
multi-armed bandit mechanisms”. In: Proceedings of the 10th ACM
conference on Electronic commerce. 2009, pp. 79–88.

[BV19] Bergemann, D. and Välimäki, J. “Dynamic mechanism design: An
introduction”. In: Journal of Economic Literature vol. 57, no. 2
(2019), pp. 235–274.

[DK09] Devanur, N. R. and Kakade, S. M. “The price of truthfulness for
pay-per-click auctions”. In: Proceedings of the 10th ACM conference
on Electronic commerce. 2009, pp. 99–106.

[Don+22] Dong, J. et al. “Combinatorial Bandits under Strategic Manipula-
tions”. In: Proceedings of the Fifteenth ACM International Confer-
ence on Web Search and Data Mining. 2022, pp. 219–229.

[FPX20] Feng, Z., Parkes, D., and Xu, H. “The intrinsic robustness of
stochastic bandits to strategic manipulation”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 3092–3101.

[Fre+20] Freeman, R. et al. “No-regret and incentive-compatible prediction
with expert advice”. In: arXiv preprint arXiv:2002.08837 (2020).

[Gao+21] Gao, G. et al. “Auction-based combinatorial multi-armed bandit
mechanisms with strategic arms”. In: IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE. 2021, pp. 1–10.

[GH13] Ghosh, A. and Hummel, P. “Learning and incentives in user-
generated content: Multi-armed bandits with endogenous arms”.
In: Proceedings of the 4th conference on Innovations in Theoretical
Computer Science. 2013, pp. 233–246.

[Gli52] Glicksberg, I. L. “A further generalization of the Kakutani fixed
point theorem, with application to Nash equilibrium points”. In:
Proceedings of the American Mathematical Society vol. 3, no. 1
(1952), pp. 170–174.

[GLT12] Gatti, N., Lazaric, A., and Trovò, F. “A truthful learning
mechanism for contextual multi-slot sponsored search auctions
with externalities”. In: Proceedings of the 13th ACM Conference
on Electronic Commerce. 2012, pp. 605–622.

[GMS19] Garivier, A., Ménard, P., and Stoltz, G. “Explore first, exploit next:
The true shape of regret in bandit problems”. In: Mathematics of
Operations Research vol. 44, no. 2 (2019), pp. 377–399.

[Har+16] Hardt, M. et al. “Strategic classification”. In: Proceedings of the 2016
ACM conference on innovations in theoretical computer science.
2016, pp. 111–122.

[HBR12] Hofmann, K., Behr, F., and Radlinski, F. “On caption bias in
interleaving experiments”. In: Proceedings of the 21st ACM inter-
national conference on Information and knowledge management.
2012, pp. 115–124.

163

V. Bandits Meet Mechanism Design

[Hro+22] Hron, J. et al. “Modeling content creator incentives on algorithm-
curated platforms”. In: arXiv preprint arXiv:2206.13102 (2022).

[Hu+23] Hu, X. et al. “Incentivizing High-Quality Content in Online
Recommender Systems”. In: arXiv preprint arXiv:2306.07479
(2023).

[Kan+23] Kandasamy, K. et al. “VCG Mechanism Design with Unknown
Agent Values under Stochastic Bandit Feedback”. In: Journal of
Machine Learning Research vol. 24, no. 53 (2023), pp. 1–45.

[LH18] Liu, Y. and Ho, C.-J. “Incentivizing high quality user contributions:
New arm generation in bandit learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[Li+10] Li, L. et al. “A contextual-bandit approach to personalized news
article recommendation”. In: Proceedings of the 19th international
conference on World wide web. 2010, pp. 661–670.

[LR85] Lai, T. L. and Robbins, H. “Asymptotically efficient adaptive
allocation rules”. In: Advances in applied mathematics vol. 6, no. 1
(1985), pp. 4–22.

[LS20] Lattimore, T. and Szepesvári, C. Bandit algorithms. Cambridge
University Press, 2020.

[MT04] Mannor, S. and Tsitsiklis, J. N. “The sample complexity of
exploration in the multi-armed bandit problem”. In: Journal of
Machine Learning Research vol. 5, no. Jun (2004), pp. 623–648.

[Naz+16] Nazerzadeh, H. et al. “Where to sell: Simulating auctions from
learning algorithms”. In: Proceedings of the 2016 ACM Conference
on Economics and Computation. 2016, pp. 597–598.

[NR99] Nisan, N. and Ronen, A. “Algorithmic mechanism design”. In:
Proceedings of the thirty-first annual ACM symposium on Theory
of computing. 1999, pp. 129–140.

[Par07] Parkes, D. C. “Online mechanisms”. In: (2007).
[PST14] Pavan, A., Segal, I., and Toikka, J. “Dynamic mechanism design:

A myersonian approach”. In: Econometrica vol. 82, no. 2 (2014),
pp. 601–653.

[Ren99] Reny, P. J. “On the existence of pure and mixed strategy Nash
equilibria in discontinuous games”. In: Econometrica vol. 67, no. 5
(1999), pp. 1029–1056.

[Sli+19] Slivkins, A. et al. “Introduction to multi-armed bandits”. In:
Foundations and Trends® in Machine Learning vol. 12, no. 1-2
(2019), pp. 1–286.

[SLO22] Shin, S., Lee, S., and Ok, J. “Multi-armed Bandit Algorithm against
Strategic Replication”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2022, pp. 403–431.

164

References

[Wan+21] Wang, W. et al. “Clicks can be cheating: Counterfactual recommen-
dation for mitigating clickbait issue”. In: Proceedings of the 44th
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. 2021, pp. 1288–1297.

[WWW17] Wang, H., Wu, Q., and Wang, H. “Factorization bandits for inter-
active recommendation”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 31. 1. 2017.

[You23] Youtube. How to earn money on YouTube. 2023.
[YPR10] Yue, Y., Patel, R., and Roehrig, H. “Beyond position bias:

Examining result attractiveness as a source of presentation bias
in clickthrough data”. In: Proceedings of the 19th international
conference on World wide web. 2010, pp. 1011–1018.

[ZC21] Zhang, H. and Conitzer, V. “Incentive-aware PAC learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 6. 2021, pp. 5797–5804.

[Zon+16] Zong, S. et al. “Cascading bandits for large-scale recommendation
problems”. In: arXiv preprint arXiv:1603.05359 (2016).

165

V. Bandits Meet Mechanism Design

The appendix is arranged as follows:

• Section E.1 contains the proof of Proposition V.4.1.

• Section E.2 proves the existence of a NE under UCB-S (Lemma V.5.1).

• Section E.3 contains the proof of the NE characterization (Theorem V.5.2).

• Section E.4 contains the regret upper bound of UCB-S (Theorem V.5.3).

• Section E.5 contains the proof of Corollary V.5.4.

• Section E.6 contains the proof of the lower bound (Theorem V.5.5).

• Section E.7 contains basic technical lemmas that are used in the proofs.

• Section E.8 discusses additional related work.

E.1 Proof of Proposition V.4.1

Proof of Proposition V.4.1. (i): Under any strategy profile s =
(s1, . . . , sK), arm i ̸= i∗ has utility vi(µ-Oracle, si, s−i) = 0, while arm i∗

has utility
vi∗(µ-Oracle, si∗ , s−i∗) = Tsi∗ .

Hence, the pure strategy s = 1 is a strictly dominant strategy for arm i∗, which
implies that i∗ plays si∗ = 1 with probability one in every Nash equilibrium.
Now,

u(s∗, µi∗)− u(si∗ , µi∗) = u(s∗, µi∗)− u(1, µi∗) = β

and the µ-Oracle thus suffers regret β every round, which implies the claimed
Ω(βT) lower bound in every equilibrium.

(ii): Let j∗ ∈ argmaxi ̸=i∗ µi be the arm with second largest post-click value
and define u∗

j∗ := u(s∗(µj∗), µj∗). Let s′ be the largest s ∈ [0, 1] such that
u(s′, µi∗) ≥ u∗

j∗ . We distinguish between two cases:

Case 1. Suppose that u(s′, µi∗) > u∗
j∗ . From the continuity of u it then follows

that s′ = 1. To see this, suppose the contrary is true. Then, for all s′′ > s′ with
s′′ ∈ [0, 1] it must hold that u(s′′, µi∗) < u∗

j∗ by definition of s′ as the largest
s ∈ [0, 1] such that u(s, µi∗) ≥ uj∗ . However, this contradicts the continuity of
u(s, µ) in s, since we have just shown that u(s′′, µi∗) < u∗

j∗ < u(s′, µi∗) for all
s′′ > s′. We have thus shown by contradiction that s′ = 1.

Then, if arm i∗ chooses strategy si∗ = 1, arm i∗ is pulled every round by
(s, µ)-Oracle for all s−i∗ ∈ [0, 1]K−1 so that vi∗((s, µ)-Oracle, 1, s−i∗) = T . This
immediately implies that si∗ = 1 is a strictly dominant strategy for i∗, since
vi∗((s, µ)-Oracle, s, s−i∗) ≤ Ts < T for all s ∈ [0, 1). Thus, arm i∗ plays si∗ = 1
in every Nash equilibrium of the arms. Analogous to the proof of (i), this yields
|u(s∗, µ∗)− u(si∗ , µi∗)| = β, which implies that the (s, µ)-Oracle suffers Ω(βT)
under any Nash equilibrium of the arms.

166

Proof of Proposition V.4.1

Case 2. Suppose that u(s′, µi∗) = u∗
j∗ . In a first step, we show that arm i∗

plays s′ with probability one in every Nash equilibrium. We begin by noting that
if arm i∗ plays si∗ = s′, then for any opponent strategies s−i∗ ∈ [0, 1]K−1 arm i∗

is played all T rounds so that vi∗((s, µ)-Oracle, s′, s−i∗) = Ts′. Naturally, s′ thus
strictly dominates any other strategy s′′ < s′, since vi((s, µ)-Oracle, s′′, si∗) ≤
Ts′′.

Next, suppose that arm i∗ plays some strategy s′′ > s′ with probability one.5
Then, by definition of s′, we have u(s′′, µi∗) < u∗

j∗ := u(s∗(µj∗), µj∗). As a
result, arm j∗’s best response sj∗ to s′′ will be such that u(s′′, µi∗) < u(sj∗ , µj∗),
thereby obtaining utility vj∗((s, µ)-Oracle, sj∗ , s−j∗) ≥ Ts∗(µj∗). As a result, if
j∗ plays a best response, arm i∗ receives utility 0 when playing s′′, whereas arm
i∗ receives utility Ts′ when playing s′. Hence, any s′′ > s′ cannot be part of an
equilibrium for arm i∗ and we have shown that arm i∗ plays s′ with probability
one in every equilibrium. Finally, by definition of s′, we have

u(s∗, µ∗)− u(s′, µi∗) ≥ u(s∗, µ∗)− u(s∗(µj∗), µj∗) = u(s∗, µ∗)− u∗(µj∗) = η

which implies that (s, µ)-Oracle suffers Ω(ηT) regret under any Nash equilibrium
of the arms. Hence, we obtain the claimed lower bound of Ω

(
min{β, η}T

)
.

■

Remark E.1.1. Interestingly, when the (s, µ)-Oracle from Proposition V.4.1 (ii)
does not break ties in favor of the larger µ but instead uniformly at random,
it can be shown that in all but a few problem instances no Nash equilibrium
for the arms exists. However, for any ε > 0 we can explicitly construct an
ε-Nash equilibrium for the arms under which the algorithm suffers Ω(min{β, η T)
strategic regret.

Before proving the statement of Remark E.1.1, we formally introduce the
concept of an ε-Nash equilibrium among the arms here.

Definition E.1.2 (ε-Nash Equilibrium). For ε > 0, we say that strategies
σ = (σ1, . . . , σK) form an ε-Nash equilibrium under M if vi(M,σi, σ−i) ≥
vi(M,σ′

i, σ−i)− ε for all i ∈ [K] and σ′
i ∈ Σ.

For Remark E.1.1, we will show that there exists an ε-Nash equilibrium
in pure-strategies s ∈ [0, 1]K such that the oracle algorithm that breaks ties
uniformly suffers linear strategic regret.

Proof of Remark E.1.1. As in the proof of Proposition V.4.1 (ii), let j∗ ∈
argmaxi̸=i∗ µi be the arm with second largest post-click value and define
u∗

j∗ := u(s∗(µj∗), µj∗). Now, let s′ be the largest s ∈ [0, 1] such that

u(s′, µi∗) ≥ u∗
j∗ and u(s′ − ε′, µi∗) > u∗

j∗ for all ε′ > 0.

Note that such s′ exists since u is continuous and u(s∗(µi∗), µi∗) > u∗
j∗ . We

again distinguish between two cases, similarly to the proof of Proposition V.4.1.
5For simplicity, we assume that arm i∗ plays the strategy with probability one. The case

where i∗ plays s′′ > s′ with some positive probability can be treated analogously.

167

V. Bandits Meet Mechanism Design

Case 1. If u(s′, µi∗) > u∗
j∗ , it follows that s′ = 1. This means that

s = (si∗ , s−i∗) with si∗ = 1 and arbitrary s−i∗ ∈ [0, 1]K−1 form a pure strategy
Nash equilibrium for the arms. As in the proof of (i), we then obtain

u(s∗, µ∗)− u(si∗ , µi∗) = β

which implies order Ω(βT) regret under (si∗ , s−i∗).

Case 2. Now, suppose that u(s′, µi∗) = u∗
j∗ . Let si∗ = s′ − ε′ and si = s∗(µi)

for all i ̸= i∗. We see that (si∗ , s−i∗) is a (Tε′)-Nash equilibrium under the oracle
algorithm. Hence, for any ε > 0, the strategy profile sε′ := (s′ − ε′, s−i∗) is a
ε-Nash equilibrium for all ε′ < ε

T . Using that u is L-Lipschitz, we have

|u(s′ − ε′, µi∗)− u(sj∗ , µj∗)| = |u(s′ − ε′, µi∗)− u(s′, µi∗)| ≤ Lε′,

and it follows that

|u(s∗, µ∗)− u(s′ − ε′, µi∗)| ≥ |u(s∗, µ∗)− u(sj∗ , µj∗)| − Lε′ ≥ η − Lε′,

We can choose ε′ < ε
T sufficiently small so that Lε′ < 1/T . Hence, over T rounds

the oracle algorithm suffers Ω(ηT) regret under the ε-Nash equilibrium given by
sε′ . This yields the claimed lower bound.

■

E.2 Proof of Lemma V.5.1

Proof of Lemma V.5.1. We use Glicksberg’s theorem [Gli52], which guar-
antees the existence of a Nash equilibrium in continuous games with compact
strategy space and continuous utility functions vi. The strategy space [0, 1] is
compact and we are left with proving the continuity of vi(UCB-S, s) in s ∈ [0, 1]K .
Since vi(UCB-S, s) = Es[nT (i)]si, the question is whether Es[nT (i)] is continu-
ous in s under UCB-S. The choice of s influences the actions of UCB-S when
through the screening rule in line 10, but also the UCB-type selection in line 4,
since post-click rewards are only observed when the arm is clicked.

Let Ht denote the history of the mechanism’s selections and observations up
to round t, consisting of tuples (it, ct,it

, rt,it
). Even though rt,it

is sometimes not
observed, we include it here and note that it will not matter as the realizations
of rt,it are independent of s. We let Ht up round t denote the set of all possible
histories.

While we are interested in Es[nT (i)], for technical reasons, it will be more
convenient to prove the continuity of Ps(Ht ∈ ·) as a function of s. We will do
so by induction over t ∈ [T]. Naturally, Ps(H1 ∈ ·) is continuous in s, since
Ps(c1,i1 = 1) = si1 and we break ties in line 4 independent of s. For the proof by
induction, let us now assume that Ps(Ht ∈ ·) is continuous in s. Then, for t+ 1
we find that again Ps(ct+1,it+1 = 1) = 1− Ps(ct+1,it+1 = 0) = sit+1 is continuous
in s.6 The interesting part is then whether Ps(it+1 = i) is continuous in s.

6Note that rt+1,it+1 is independent of s.

168

Proof of Lemma V.5.1

Lemma E.2.1. For any event A, if Ps(A | Ht) and Ps(Ht) are continuous in s
for all Ht ∈Ht, then Ps(A) is also continuous in s.

Proof. This follows from the law of total probability. ■

We begin by analyzing the dependence of the screening rule in line 10 on
s. First of all, note that for all i ∈ At−1 \ {it}, we always have i ∈ At, i.e.,
no other arm than it will ever be eliminated at the end of round t. Moreover,
since Ps(ct,it = 1) = sit is continuous in s, it follows that Ps(st

it
> a) and

Ps(st
it
> a | Ht) are also continuous in s for all a ∈ R. Consequently, the

probability that arm it is eliminated in line 10 at the end of round t, i.e.,
Ps(it ̸∈ At), must be continuous in s.

Let us assume that At ̸= ∅, since Ps(it+1 = i) is always continuous in s if
At = ∅. If i ̸∈ At, we have Ps(it+1 = i) = 0. Note that for all i ≠ it, we have
µt

i = µt−1
i . We will now first consider any i ̸= it. If i ∈ At, we then have

Ps(it+1 = i | Ht)

= Ps

(
µt

i > max
j∈At\{i,it}

µt
j | it ̸∈ At,Ht

)
· Ps(it ̸∈ At | Ht)

+ Ps

(
µt

i > max
j∈At\{i}

µt
j | it ∈ At,Ht

)
· Ps(it ∈ At | Ht) (4)

= P
(
µt−1

i > max
j∈At\{i,it}

µt−1
j | it ̸∈ At,Ht

)
· Ps(it ̸∈ At | Ht)

+ P
(
µt−1

i > max
j∈At\{i,it}

µt−1
j | it+1 ̸= it,Ht

)
(5)

· Ps(it+1 ̸= it | it ∈ At,Ht) · Ps(it ∈ At | Ht).

The leading factors are independent of s and we have already shown that
Ps(it ̸∈ At+1) is continuous in s. We are thus left with proving the continuity of
Ps(it+1 ̸= it | it ∈ At+1,Ht).

It holds that Ps(µt
it
∈ · | Ht) = sit

P(µt
it
∈ · | ct,it

= 1,Ht) + (1− sit
)P(µt

it
∈

· | ct,it
= 0,Ht), where we used that Ps(µt

it
∈ · | ct,it

,Ht) = P(µt
it
∈ · | ct,it

,Ht)
is independent of s (conditional on the click-event ct,it

). Hence, as a sum and
product of continuous functions Ps(µt

it
∈ · | Ht) is continuous in s and we get

that

Ps(it+1 = it | Ht) = Ps(µt
it
> max

j ̸=it

µt−1
j | Ht)Ps(it ∈ At+1 | Ht)

is continuous in s, where we used that µt
j = µt−1

j for all j ̸= it independent of
s.7 Then, since Ps(it+1 = it | it ̸∈ At) = 0, we have

Ps(it+1 = it | Ht) = Ps(it+1 = it | it ∈ At,Ht)Ps(it ∈ At | Ht),

which shows the continuity of Ps(it+1 = it | it ∈ At,Ht). Hence, in view
of equation (4), we obtain that Ps(it+1 = i | Ht) is continuous in s. Finally,

7Note that µt−1
i is Ht-measurable for all i.

169

V. Bandits Meet Mechanism Design

Lemma E.2.1 tells us that, since Ps(Ht) is assumed to be continuous, Ps(it+1 = i)
is continuous as well. Hence, Ps(Ht+1) is continuous and by induction we get
that Ps(HT) is continuous, which implies the continuity of Es[nT (i)] in s for all
i.

■

E.3 Proof of Theorem V.5.2

Proof of Theorem V.5.2. In the following let σ = (σ1, . . . , σK) ∈
NE(UCB-S) and s ∈ supp(σ). We start of with some preliminaries. Re-
call that the arm i’s utility function given algorithm UCB-S and strategies
s = (si, s−i) can be expressed as

vi(UCB-S, si, s−i) = E(UCB-S,si,s−i)[nT (i)]si,

and vi(UCB-S, si, σ−i) = Es−i∼σ−i [vi(UCB-S, si, s−i)] = E(si,σ−i)[nT (i)]si. For
convenience, we omit the argument UCB-S in the following, as every probability
and expectation will be w.r.t. UCB-S. The following variables will prove useful.
Let τi be the first round that arm i is not in the active set At anymore,

τi := min{t ∈ [T] : i ̸∈ At},

and let τ be the first rounds in which At is empty,

τ := min{t ∈ [T] : At = ∅}.

Here, we introduce the convention that τi = T if i ∈ AT and τ = T if AT ̸= ∅.
To characterize the strategy profiles in the support of any Nash equilibrium

under UCB-S, we are going to rely on the best response property of the Nash
equilibrium. More precisely, for any s ∈ supp(σ) with σ ∈ NE(UCB-S) arm i’s
strategy, si, must be a best response to σ−i, i.e., for all s′

i ∈ [0, 1]:

vi(si, σ−i) ≥ vi(s′
i, σ−i).

In a first step, we show that UCB-S incentivizes arms to choose strategies
si at least as large as the desired strategy s∗(µi). While this seems obvious at
first since each arm i’s utility includes a linear factor of si, we notice that in the
click-bandit model arms can prevent the principal from learning about their true
post-click value µ by choosing low click-rates s. This could in theory be a viable
strategy for suboptimal arms, i.e., µi < µ∗, since it would delay the principal
from detecting that the arm is suboptimal. However, we quickly notice that
delaying UCB-S from learning about µ1, . . . , µK is to each arm’s disadvantage
as any delay simply delays the round in which it receives utility. Moreover, while
an arm may delay the learning of µi, UCB-S still improves its estimate of si and
the threat of elimination becomes more imminent.

Lemma E.3.1. For all s ∈ supp(σ) with σ ∈ NE(UCB-S) and all i ∈ [K]:

si ≥ s∗(µi).

170

Proof of Theorem V.5.2

Proof. Let σ ∈ NE(UCB-S). We begin by making some fundamental
observations about UCB-S in the click-bandit model. Let t < T . If ct,it

= 0
and it ∈ At, then it+1 = it.8 To see this, note that the estimates of µ1, . . . , µK

and their confidence bounds do not change from t to t+ 1 if ct,it
= 0, since no

post-click reward was observed for any of the arms. Hence, given that it ∈ At,
we have

it+1 = argmax
i∈At

µt
i = argmax

i∈At−1

µt−1
i = it.

Thus, given that it is not eliminated in the mean time, UCB-S plays arm it until
arm it is clicked, i.e., until the arm receives utility 1, or we’ve reached round T .
Hence, whenever ct,it

= 0, it simply delays the UCB selection rule by one round
as the estimates and confidences of µ1, . . . , µK do not change. At the same time,
arm i with i = it still only receives utility 1 for this sequence of selections by
UCB-S, since the UCB selection rule “progresses” once ct,it

= 1.
More formally, we can define the phases of the UCB selection rule recursively

by ηk := min{t > ηk−1 : ct,it
= 1} with η0 := 0 and ηk =∞ if round T is exceeded

without a click. We define the number of such rounds as N := max{k : ηk <∞}
and remark that N ≤ T always.

We first note that conditional on Aηk−1 the identity of iηk
is independent of

si (and σ−i), but only depends on µ1, . . . , µK and their realization at rounds
η1, . . . , ηk−1, i.e., P(si,σ−i)(iηk

= i | Aηk−1) = P(iηk
= i | Aηk−1). Moreover, we

also see that P(si,σ−i)(Aηk
= · | i ∈ Aηk

) is independent of si.9 Then, since

P(si,σ−i)(iηk
= i | i ∈ Aηk−1)

=
∑

A

P(si,σ−i)(iηk
= i | Aηk−1 = A ∪ {i})P(Aηk−1 = A | i ∈ Aηk−1),

this implies that P(si,σ−i)(iηk
= i | i ∈ Aηk−1) is independent of si. Using the

shown independence, let us then write

P(si,σ−i)(iηk
= i) = P(iηk

= i | i ∈ Aηk−1)P(si,σ−i)(i ∈ Aηk−1)
+ P(si,σ−i)(iηk

= i | i ̸∈ Aηk−1)P(si,σ−i)(i ̸∈ Aηk−1).
(6)

Now, it holds that P(iηk
= i | i ∈ Aηk−1) ≥ P(si,σ−i)(iηk

= i | i ̸∈ Aηk−1) always.
Naturally, for si < s∗(µi) we have P(si,σ−i)(i ∈ Aηk−1) ≤ P(s∗(µi),σ−i)(i ∈ Aηk−1)
so that from equation (6) it follows that

P(si,σ−i)(iηk
= i) ≤ P(s∗(µi),σ−i)(iηk

= i). (7)

8W.l.o.g. we assume that there are no ties (ignoring the rounds where no post-click rewards
have yet been observed). In fact, when there is a possibility of a tie, it can be seen that the
arms have an even larger incentive to choose si ≥ s∗(µi), since they are not guaranteed to be
pulled again in the ensuing round when not clicked.

9However, note that the value of At for general t is not independent of si conditional on
i ∈ At, since, e.g., for small si other arms will be played fewer times before round t, thereby
reducing the probability of them being eliminated by round t.

171

V. Bandits Meet Mechanism Design

We also see that as si decreases the number of utility-yielding rounds decreases
in expectation, i.e., for si < s∗(µi):

E(si,σ−i)[N] < E(s∗(µi),σ−i)[N] (8)

since ηk − ηk−1 ∼ Geom(siηk
). Finally, it follows from equations (7) and (8) and

a technical lemma about the comparison of expectation under two measures
(Lemma E.7.1 in Appendix E.7) that

E(si,σ−i)[mT (i)] = E(si,σ−i)

[
N∑

k=1
1{iηk

=i}

]

< E(s∗(µi),σ−i)

[
N∑

k=1
1{iηk

=i}

]
= E(s∗(µi),σ−i)[mT (i)].

Since a post-click reward is observed with probability si every time an arm
is pulled by the learner, we have E(si,σ−i)[mt(i)] = E(si,σ−i)[nt(i)]si so that
vi(si, σ−i) = E(si,σ−i)[mt(i)]. Now, from the above we see that for any
si < s∗(µi), the strategy s∗(µi) is a strictly better response to σ−i than si, i.e.,
vi(s∗(µi), σ−i) > vi(si, σ−i). This shows that si ≥ s∗(µi) for any si ∈ supp(σi)
with σ ∈ NE(UCB-S).

■

We continue the proof of Theorem V.5.2 by decomposing the number of times
each arm is selected by UCB-S. Given (si, σ−i) we can split E(si,σ−i)[nT (i)] into
the time steps before τi and after τ , since arm i is never played in the rounds
between τi and τ . Recall that UCB-S plays arms uniformly at random after
round τ so that

E(si,σ−i)[nT (i)] = E(si,σ−i)

[
τi∑

t=1
1{it=i} +

T∑
t=τ+1

1{it=i}

]

= E(si,σ−i)[nτi
(i)] + E(si,σ−i)

[T − τ
K

]
. (9)

The proof of Theorem V.5.2 proceeds by upper and lower bounding the
quantities in (9), which will eventually lead to an approximate characterization
of the best response si. More precisely, we establish the following bounds for
σ ∈ NE(UCB-S) and si ∈ supp(σi):

Lemma E.3.2: E(si,σ−i)[nτi
(i)] ≤ O

(
H2 log(T)

si(si−s∗(µi))2

)
.

Lemma E.3.4: T − E(si,σ−i)[τ] ≤ O(1).

Lemma E.3.5: E(si,σ−i)[nT (i)] = Ω
(

min{ log(T)
si∆2

i
, s∗(µi) T

K }
)

.

172

Proof of Theorem V.5.2

E.3.1 Bounds on nT (i), nτi(i), τi, and τ under UCB-S

We begin by bounding the number of allocations arm i receives before elimination.
As one expects, UCB-S is able to detect that si ≠ s∗(µi) with high probability
after at most O(1/(si − s∗(µi))2) selections.

Lemma E.3.2. Let σ ∈ NE(UCB-S) and si ∈ supp(σi) with si ̸= s∗(µi). Then,
the number of times that i is being selected before elimination, nτi)(i), satisfies
the following. For some constant c1 > 0, it holds that

P(si,σ−i)

(
nτi(i) ≤ c1

H2 log(T)
si(si − s∗(µi))2

)
≥ 1− 3

T 2 ,

and as an immediate consequence for some c2 > 0:

E(si,σ−i)[nτi(i)] ≤ c2
H2 log(T)

si(si − s∗(µi))2 .

Proof. For simplicity, we consider w.l.o.g. the one-sided elimination rule checking
whether the arm i’s strategy si exceeds the desired strategy s∗(µi):

st
i > max

µ∈[µt
i
,µt

i]
s∗(µ). (10)

Let αt(i) =
√

2 log(T)
nt(i) and βt(i) =

√
2 log(T)

mt(i) . Recall that s∗(µ) is H-Lipschitz.
Then,

max
µ∈[µt

i
,µt

i]
s∗(µ) ≤ s∗(µ̂t

i) +Hβt(i).

As a consequence, we see that a sufficient condition for the elimination rule (10)
to trigger is given by

ŝt
i − αt(i) > s∗(µ̂t

i) +Hβt(i), (11)

where by definition st
i = ŝt

i − αt(i). The following statements are always w.r.t.
(si, σ−i), i.e., w.r.t. the probability measure P(si,σ−i). From Hoeffding’s inequality,
we know that with probability at least 1− 1/T 2:

|ŝt
i − si| ≤ αt(i).

Similarly, using the Lipschitzness of s∗(µ), Hoeffding’s inequality implies that
with probability at least 1− 1/T 2:

|s∗(µ̂t
i)− s∗(µi)| ≤ H |µ̂t

i − µi| ≤ Hβt(i).

It then follows that with probability at least 1− 2/T 2

ŝt
i − s∗(µ̂t

i) ≥
(
si − s∗(µi)

)
−
(
αt(i) + βt(i)

)
≥
(
si − s∗(µi)

)
− (H + 1)βt(i),

173

V. Bandits Meet Mechanism Design

where we used that αt(i) =
√

2 log(T)
nt(i) ≤

√
2 log(T)

mt(i) = βt(i), since nt(i) > mt(i)
by definition. Therefore, the sufficient condition in equation (11) is satisfied
with probability 1− 2/T 2 for

si − s∗(µi) > 2(H + 1)βt(i) = 2(H + 1)

√
2 log(T)
mt(i)

.

In other words, arm i has been eliminated by round t with probability at least
1− 2/T 2 if

mt(i) >
16H2 log(T)

(si − s∗(µi))2 . (12)

Lastly, we translate this to a statement about nt(i). Recall that conditional on
nt(i), we have E[mt(i) | nt(i)] = nt(i)si, since arm i is clicked with probability
si. From Hoeffding’s inequality, we then again have with probability 1− 1/T 2

|mt(i)− nt(i)si| ≤
√

2nt(i) log(T)

and thus mt(i) ≥ nt(i)si −
√

2nt(i) log(T). Then, in view of equation (12), if

nt(i) > c1
H2 log(T)

si(si − s∗(µi))2

for some sufficiently large c2 > 0, then with probability at least 1− 3/T 2 arm
i has been eliminated before round t. Since τi denotes the round in which i is
eliminated from At, this means that with probability 1− 3/T 2:

nτi(i) ≤ c1
H2 log(T)

si(si − s∗(µi))2 .

Since by definition τi ≤ T , this implies that for some c2 > 0:

E(si,σ−i)[nτi
(i)] ≤ c2

H2 log(T)
si(si − s∗(µi))2 .

■

We briefly recall a standard result often used in the context of MABs, which
states that any probably correct decision rule needs Ω(1

ε2) samples to distinguish
between two hypotheses for which the Bernoulli means lie ε apart. We only give
a short outline of the proof and refer to the many expositions of such bounds for
more detail (see, e.g., Theorem 1 in [MT04], Section 2 in [Sli+19], Section 14 in
[LS20]).

Lemma E.3.3. In order for us to reuse our current notation, suppose that K = 1.
In this case, nτ1(1) simply denotes the number of samples from arm 1 before it
gets eliminated, i.e., UCB-S asserts that s1 ̸= s∗(µ1). For s1 ̸= s∗(µ1), it holds
that

Es1 [nτ1(1)] ≥ Ω
(

log(T)
(s1 − s∗(µ1))2

)
.

174

Proof of Theorem V.5.2

Proof. W.l.o.g. we can assume that rt,1 = µ1 for all t so that we are only
concerned with the estimation of the Bernoulli mean s1 (this clearly only
reduces the number of samples the elimination rule would need). Note that
the elimination rule is correct with probability 1− 1/T 2 by construction of the
confidence sets around s1, i.e., only eliminates arm 1 if it in fact deviated from
s∗(µ1). We can then consider the hypotheses

H0 : s1 = s∗(µ1) and H1 : s1 = s∗(µ1) + ε.

Then, since the elimination rule is correct with probability 1−1/T 2, the standard
hypothesis testing argument (see, e.g., Theorem 1 in [MT04]) yields for some
constant c > 0 that Es1 [nτ1(1)] ≥ c log(T)

ε2 = c log(T)
(s1−s∗(µ1))2 .

■

The next lemma states that E(si,σ−i)[τ] is close to T . The intuition of this is
quickly explained. If the set At becomes empty, UCB-S plays arms uniformly
at random. However, if one arm would happen to remain in At this arm would
always be played (as it has no competition). To do so, an arm simply has to
ensure that it does not get eliminated too early. Now, in view of Lemma E.3.3,
an arm can be sampled order x more times without getting eliminated for
moving its strategy order

√
x closer to s∗(µi). Writing the arms’ utility as

vi(si, σ−i) = E(si,σ−i)[nT (i)]si = E(si,σ−i)[nT (i)]
(
s∗(µi) + (si − s∗(µi))

)
we see

that a quadratic increase in E(si,σ−i)[nT (i)] will dominate a linear decrease in
si − s∗(µi).

Lemma E.3.4. Let σ ∈ NE(UCB-S) and si ∈ supp(σi). Then,

E(si,σ−i)[τ] ≥ T −O(1).

Proof. Let s∗(µi) ≤ s′
i < si. Due to delays for smaller click-rates (see proof

of Lemma E.3.1) and the fact that under s′
i the probability of arm i being

eliminated at any given round is smaller than under si, it holds for all j ̸= i that

E(s′
i
,σ−i)[nτj

(j)] ≤ E(si,σ−i)[nτj
(j)].

By definition of τ , we have E(si,σ−i)[τ] =
∑

j∈[K] E(si,σ−i)[nτj
(j)] so that the

above implies∑
j ̸=i

E(s′
i
,σ−i)[nτj

(j)] ≤ E(si,σ−i)[nτj
(j)] = E(si,σ−i)[τ]− E(si,σ−i)[nτi

(i)].

In other words, under any strategy s∗(µi) ≤ s′
i < si, all arms j ≠ i will be

eliminated after a total of E(si,σ−i)[τ]− E(si,σ−i)[nτi(i)] rounds so that there are
at least E(si,σ−i)[nτi

(i)] + T − E(si,σ−i)[τ] many “uncontested” rounds.
For convenience, let N(si, σ−i) = T − E(si,σ−i)[τ], i.e., the expected number

of rounds that At is empty and arms are being selected uniformly at random.
Now, in view of Lemma E.3.3, there exists s′

i with

s′
i − s∗(µi) ≥ Ω

(√
log(T)

E(si,σ−i)[nτi
(i)] +N(si, σ−i)

)

175

V. Bandits Meet Mechanism Design

such that E(s′
i
,σ−i)[nτi

(i)] ≥ E(si,σ−i)[nτi
(i)] +N(si, σ−i).

The proof proceeds by contradiction. To this end, suppose the contrary
is true, namely, that N(si, σ−i) is not constant, but in fact increasing in T ,
i.e., N(si, σ−i) = w(1). We then show that vi(s′

i, σ−i) > vi(si, σ−i), which is a
contradiction to si being a best response to σ−i. From Lemma E.3.2 we know
that

si − s∗(µi) ≤ O
(√

log(T)
s∗(µi)E(si,σ−i)[nτi(i)]

)
,

where we used that si ≥ s∗(µi) by Lemma E.3.1. Using that E(s′
i
,σ−i)[nT (i)] ≥

E(s′
i
,σ−i)[nτi(i)], we then obtain

vi(s′
i, σ−i)

= E(s′
i
,σ−i)[nT (i)]s′

i

≥ E(s′
i
,σ−i)[nτi

(i)]
(
s∗(µi) + (s′

i − s∗(µi))
)

≥
(
E(si,σ−i)[nτi

(i)] +N(si, σ−i)
)(

s∗(µi) + Ω
(√

log(T)
E(si,σ−i)[nτi(i)] +N(si, σ−i)

))
≥
(
E(si,σ−i)[nτi(i)] +N(si, σ−i)

)
s∗(µi)

+ Ω
(√

log(T)
(
E(si,σ−i)[nτi

(i)] +N(si, σ−i)
))

> E(si,σ−i)[nτi
(i)]s∗(µi) + 2N(si, σ−i)

K
s∗(µi) +O

(√
log(T)E(si,σ−i)[nτi

(i)]
)

≥
(
E(si,σ−i)[nτi

(i)] + N(si, σ−i)
K

)(
si + (si − s∗(µi)

)
≥ E(si,σ−i)[nT (i)]si

= vi(si, σ−i).

Hence, s′
i is a better response to σ−i than si, which is a contradiction to

si ∈ supp(σi).
■

The next lemma lower bounds E(si,σ−i)[nT (i)] for which we distinguish
between optimal and suboptimal arms in terms of post-click rewards µ.

Lemma E.3.5. Let σ ∈ NE(UCB-S).

(i) For all i∗ ∈ [K] with ∆i∗ = 0 and si∗ ∈ supp(σi∗):

E(si∗ ,σ−i∗)[nT (i∗)] ≥ s∗(µi∗) Ω
(
T

K

)
.

176

Proof of Theorem V.5.2

(ii) For all i ∈ [K] with ∆i > 0 and si ∈ supp(σi):

E(si,σ−i)[nT (i)] ≥ Ω
(

min
{

log(T)
si∆2

i

, s∗(µi)
T

K

})
.

Proof. (i): Let σ ∈ NE(UCB-S) and let i∗ ∈ [K] such that ∆i∗ = 0. Recall that
when playing strategy s∗(µi∗) arm i∗ is eliminated with low probability so that

P(s∗(µi∗),σ−i∗)(i∗ ∈ AT) ≥ 1− 1/T 2.

Now, given that i∗ is not going to be eliminated, the UCB-type selection rule
of UCB-S selects any arm i∗ with maximal post-click reward µi∗ = µ∗ at least
Ω(T/K) times so that E(s∗(µi∗),σ−i∗)[nT (i∗)] ≥ Ω(T/K). Then, since si∗ has to
be a best response to σ−i∗ , we obtain

E(si∗ ,σ−i∗)[nT (i∗)] ≥ si∗E(si∗ ,σ−i∗)[nT (i∗)]
= vi∗(si∗ , σ−i∗)
≥ vi∗(s∗(µi∗), σ−i∗)

≥ s∗(µi∗)E(s∗(µi∗),σ−i∗)[nT (i∗)] ≥ s∗(µi∗) Ω
(
T

K

)
.

(ii): Once again, we use the desired strategy s∗(µi) to infer properties of si.
Let us be reminded that under s∗(µi) arm i is eliminated with low probability,
i.e.,

P(s∗(µi),σ−i)(i ∈ AT) ≥ 1− 1/T 2

so that when studying (s∗(µi), σ−i) the potential elimination of arm i is negligible.
We will argue about E(s∗(µi),σ−i)[nT (i)] via E(s∗(µi),σ−i)[mT (i)]. To isolate

the rounds in which arms are clicked, i.e., post click-rewards are observed, we will
re-use the rounds η1, η2, . . . , which determine the phases of the UCB selection
rule (introduced in Lemma E.3.1). On the rounds η1, η2, . . . , the UCB-selection
rule of line 4 is analogous to standard UCB in a MAB. We can then use well-
known results from the instance-dependent lower bound analysis of the MAB
problem. From Lemma 16.3 in [LS20] it then follows that for some constant
c1 > 0:10

E(s∗(µi),σ−i)[mT (i)] ≥
1
2 log(T) + log

(
c1∆i√

K

)
2∆2

i

.

We see that this lower bound is only meaningful for sufficiently large ∆i,
as the numerator may become negative for ∆i = O

(√
K/T

)
. For now let

us assume that ∆i is sufficiently large. Recall that E(s∗(µi),σ−i)[mT (i)] =

10We here used that the standard minimax bandit regret of UCB in MABs is bounded by
Õ(

√
KT).

177

V. Bandits Meet Mechanism Design

E(s∗(µi),σ−i)[nT (i)]s∗(µi) as arm i is clicked with probability s∗(µi). Since si

must be a best response to σ−i, it must then hold that

E(s∗(µi),σ−i)[nT (i)]si = vi(si, σ−i)

≥ vi(s∗(µi), σ−i)

= E(s∗(µi),σ−i)[mT (i)] ≥ c2
log(T)

∆2
i

for some c2 > 0. Solving for E(s∗(µi),σ−i)[nT (i)] then yields

E(s∗(µi),σ−i)[nT (i)] ≥ c2
log(T)
si∆2

i

.

Next, for ∆i ≤ O(
√
K/T) it is well-known that the number of times UCB plays

arm i is order at least Ω(T/K). We then have Es∗(µi,σ−i)[nT (i)] = Ω
(

T
K

)
, so

that

E(si,σ−i)[nT (i)] ≥ siE(si,σ−i)[nT (i)]

= vi∗(si, σ−i)

≥ vi(s∗(µi), σ−i)

≥ s∗(µi)E(s∗(µi),σ−i)[nT (i)] ≥ s∗(µi) Ω
(
T

K

)
.

■

E.3.2 Connecting the Bounds

Finally, using the lower and upper bound on E(si,σ−i)[nT (i)], we obtain the
following approximate characterization of the strategies in the Nash equilibrium
σ ∈ NE(UCB-S). For i∗ ∈ [K] with ∆i∗ = 0, it follows from equation (9) and
Lemma E.3.2, Lemma E.3.4, Lemma E.3.5 that

s∗(µi∗) Ω
(
T

K

)
≤ E(si∗ ,σ−i∗)[nT (i∗)] ≤ O

(
H2 log(T)

si∗(si∗ − s∗(µi∗))2

)
+O

(
1
K

)
.

Solving for si∗ − s∗(µi∗), we obtain

si∗ť
(
si∗ − s∗(µi∗)

)2 ≤ O
(
H2K log(T)
T s∗(µi∗)

)
,

Finally, using that s∗(µi∗) ≤ si∗ by Lemma E.3.1 yields the claimed bound (note
that s∗(µ) is bounded away from zero by assumption (A3))

si∗ − s∗(µi∗) ≤ O
(
H

√
K log(T)
T s∗(µi∗)2

)
.

178

Proof of Theorem V.5.3

For i ∈ [K] with ∆i > 0 suppose that log(T)
si∆2

i
≤ s∗(µi) T

K . Then, we have

Ω
(

log(T)
si∆2

i

)
≤ E(si,σ−i)[nT (i∗)] ≤ O

(
H2 log(T)

si(si − s∗(µi))2

)
+O

(
1
K

)
,

which after solving for si − s∗(µi) yields

si − s∗(µi) ≤ O (H∆i) .

For i ∈ [K] with log(T)
si∆2

i
> s∗(µi) T

K , it follows, analogously to the case of ∆i = 0,
from Lemma E.3.2, Lemma E.3.4, and Lemma E.3.5 that

si − s∗(µi) ≤ O
(
H

√
K log(T)
T s∗(µi)2

)
.

■

E.4 Proof of Theorem V.5.3

Proof of Theorem V.5.3. Let σ ∈ NE(UCB-S) and let i∗ ∈ [K] be any arm
with ∆i∗ = 0. We begin with a standard regret decomposition into the number
of times each arm is played and the rounds before i∗ is eliminated. It holds that

RT (UCB-S,σ)

= Es∼σ

[
T∑

t=1
u(s∗, µ∗)− u(sit , µit)

]

= Es∼σ

[
τi∗∑
t=1

u(s∗, µ∗)− u(sit
, µit

)
]

+ Es∼σ

[
T∑

t=τi∗ +1
u(s∗, µ∗)− u(sit

, µit
)
]

≤ Es∼σ

∑
i∈[K]

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)+ (T − Eσ[τi∗]). (13)

From Lemma E.4.1 we know that T − Eσ[τi∗] ≤
√
KT . We continue to split the

arms into two cases. To this end, let ∆′
i :=

√
K log(T)
T s∗(µi)2 and let ∆′

∗ =
√

K log(T)
T s∗(µ∗)2 .

For i ∈ [K], we then distinguish between two cases: (a) ∆i ≤ ∆′
i and (b)

∆i > ∆′
i.

We begin with (a). Recall that s∗ := s∗(µ∗). For the proof we will need one
last technicality, namely, that ∆′

i ≤ 2∆′
∗. We here assume that s∗(µ∗) > 2H∆′

i.11

11Otherwise there is nothing to prove since the regret bound of Theorem V.5.3 is of order T .

179

V. Bandits Meet Mechanism Design

Then, since |s∗(µ∗)− s∗(µi)| ≤ H∆i ≤ H∆′
i, we get

∆′
i = 1

s∗(µi)

√
K log(T)

T

≤ 1
s∗(µ∗)−H∆′

i

√
K log(T)

T

≤ 2
s∗(µ∗)

√
K log(T)

T
= 2∆′

∗.

We can now apply Theorem V.5.2 to obtain for any s ∈ supp(σ) that∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ L

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
|s∗(µ∗)− si|+ |µ∗ − µi|

)

≤ L
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]
(
|s∗(µ∗)− s∗(µi)|+O

(
H

√
K log(T)
T s∗(µi)2

)
+ ∆i

)

≤ L
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]
(

(H + 1)∆i +O
(
H

√
K log(T)
T s∗(µi)2

)
+ ∆i

)

≤ L(H + 2)
∑

i:∆i≤∆′
i

Es[nτi∗ (i)] ∆′
i (14)

≤ 2L(H + 2)∆′
∗

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]

≤ LH · O

(
H

√
K log(T)
T s∗(µ∗)2

) ∑
i:∆i≤∆′

i

Es[nτi∗ (i)]

≤ LH

s∗(µ∗) O
(√

KT log(T)
)
,

where we used that
∑

i:∆i≤∆′
i
Es[nτi∗ (i)] ≤ T in the last line.

For taking care of the sum over arms satisfying (b), define the “good event”
E = {µt

i
≤ µi ≤ µt

i ∀i ∈ [K] ∀t ∈ [T]}. We know that E occurs with probability
at least 1− 1/T 2 for any s ∈ [0, 1]K by merit of Hoeffding’s inequality. Under E ,
we obtain from the standard UCB argument for all t ≤ τi∗ that

µit
+ 2

√
2 log(T)
mt(it)

≥ µt
it
≥ µt

i∗ ≥ µi∗ .

This implies that ∆i ≤ 2
√

2 log(T)
mτi∗ (i) . Hence, i ∈ [K] with ∆i > 0 we get that

mτi∗ (i) ≤ c log(T)
∆2

i
. Now, post-click rewards are observed for arm i with probability

180

Proof of Theorem V.5.3

si every time i is played by UCB-S, which tells us that Es[mτi∗ (i)] = Es[nτi∗ (i)]si.
It follows from Theorem V.5.2 that

∑
i:∆i>∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤

∑
i:∆i>∆′

i

Es[nτi∗ (i)] u(s∗, µ∗)− u(si, µi)
si

≤ L
∑

i:∆i>∆′
i

Es[nτi∗ (i)] |s
∗(µ∗)− si|+ |µ∗ − µi|

si

≤ L
∑

i:∆i>∆′
i

Es[nτi∗ (i)] |s
∗(µ∗)− s∗(µi)|+O(H∆i) + ∆i

si

≤ L
∑

i:∆i>∆′
i

c log(T) H∆i +O(H∆i) + ∆i

si∆2
i

≤ LH
∑

i:∆i>∆′
i

O
(

log(T)
si∆i

)

≤ LH
∑

i:∆i>∆′
i

O
(

log(T)
s∗(µi)∆i

)
,

where the last line used that si ≥ s∗(µi) for all si ∈ supp(σi) shown in
Lemma E.3.1. This completes the proof of Theorem V.5.3.

■

Lemma E.4.1. Let i∗ ∈ [K] with ∆i∗ = 0. For all δ > 0:

Pσ

(
τi∗ > T −

√
KT

1− δ

)
> 1− δ.

Proof. Suppose the contrary is true, i.e., Pσ

(
τi∗ > T−

√
KT

1−δ

)
≤ δ. Since τi∗ ≤ T

by definition, this implies that

Eσ[τi∗] ≤ δ · T + (1− δ)
(
T −

√
KT

1− δ

)
= T −

√
KT. (15)

Now, let si∗ ∈ supp(σi∗) with E(si∗ ,σ−i∗)[τi∗] ≤ T −
√
KT . Note that such si∗

must exist for (15) to hold. We now show that there exists a strategy s′
i∗ which

is a better response to σ−i∗ than si∗ . To this end, similarly to the proof of
Lemma E.3.4, Lemma E.3.3 tells us that there exists s′

i∗ ∈ [0, 1] with

s′
i∗ − s∗(µi∗) = Ω

(√
log(T)

E(si,σ−i)[nτi
(i)] +

√
KT

)

181

V. Bandits Meet Mechanism Design

such that E(s′
i∗ ,σ−i∗)[τi∗] = T −O(1). Moreover, recall from Lemma E.3.4 that

T − E(si∗ ,σ−i∗)[τ] < O(1). Then, using x+ y
K√

x+y
≥
√
x+ y − y√

x+y
, equation (9),

and Lemma E.3.2, we obtain

vi∗(si∗ , σ−i∗)

≤ E(si∗ ,σ−i∗)[nτi∗ (i∗)]si∗ +O(1/K)

≤ E(si∗ ,σ−i∗)[nτi∗ (i∗)]
(
s∗(µi∗) + (si∗ − s∗(µi∗)

)
+O(1/K)

≤ E(si∗ ,σ−i∗)[nτi∗ (i∗)]
(
s∗(µi∗) +O

(√
log(T)

E(si∗ ,σ−i∗)[nτi∗ (i∗)]

))

≤ E(si∗ ,σ−i∗)[nτi∗ (i∗)]s∗(µi∗) +O
(√

log(T)E(si∗ ,σ−i∗)[nτi∗ (i∗)]
)

≤ E(si∗ ,σ−i∗)[nτi∗ (i∗)]s∗(µi∗) +O
(√

log(T)(E(si∗ ,σ−i∗)[nτi∗ (i∗)] +
√
KT)

)

<

(
E(si∗ ,σ−i∗)[nτi∗ (i∗)] +

√
KT

K

)(
s∗(µi∗) + Ω

(√
log(T)

E(si,σ−i)[nτi
(i)] +

√
KT

))

≤

(
E(si∗ ,σ−i∗)[nτi∗ (i∗)] +

√
KT

K

)(
s∗(µi∗) + (s′

i∗ − s∗(µi∗))
)

≤ E(s′
i∗ ,σ−i∗)[nT (i∗)]s′

i∗ = vi∗(s′
i∗ , σi∗).

Hence, vi∗(si∗ , σ−i∗) < vi∗(s′
i∗ , σ−i∗), a contradiction. ■

E.5 Proof of Corollary V.5.4

Proof of Corollary V.5.4. The argument roughly follows the standard way
to translate an instance-dependent regret bound in multi-armed bandits to a
minimax bound (see, e.g., [LS20]). However, the difference lies in that we split
the arms not according to some fixed gap ∆′, but according to the arm-specific
gap

∆′
i :=

√
K log(T)
T s∗(µi)2 ,

which we already used in the proof of Theorem V.5.3. This is necessary due to
the guarantees of Theorem V.5.2 being gap-dependent.

We begin by recalling from equation (14) in the proof of Theorem V.5.3 that∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ L(H + 2)

∑
i:∆i≤∆′

i

Es[nτi∗ (i)] ∆′
i (16)

182

Proof of Corollary V.5.4

≤
∑

i:∆i≤∆′
i

LH

s∗(µi)
O
(√

KT log(T)
)
,

where we coarsely upper bounded Es[nτi∗ (i)] ≤ T .
For all arms i with ∆i > ∆′

i, we also get similarly to the proof of
Theorem V.5.3:∑

i:∆i>∆′
i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ LH

∑
i:∆i>∆′

i

O
(

log(T)
s∗(µi)∆′

i

)

≤ LH
∑

i:∆i>∆′
i

O

(√
T log(T)

K

)
(17)

≤
∑

i:∆i>∆′
i

LH

s∗(µi)
O
(√

KT log(T)
)
,

where we used a very coarse upper bound in the last line by simply adding
a factor of K/s∗(µi). Note that the bound in the second last line is a much
stronger bound than the one claimed in Corollary V.5.4. Combining these two
bounds yields the first statement of the corollary.

Recall the definition of smin := mini∈[K] s
∗(µi) and note that√

K log(T)
T s2

min
= max

i∈[K]
∆′

i. (18)

To get the more refined bound in Corollary V.5.4, we can continue from
equation (16) and bound the right hand side via a maximum using (18) to
get

L(H + 2)
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]∆′
i ≤

LH

smin
O
(√

KT log(T)
)
.

Lastly, note that in view of equation 17, we have∑
i:∆i>∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ LHO

(√
KT log(T)

)
≤ LH

smin
O
(√

KT log(T)
)
.

The corollary then follows from the regret decomposition in equation (13)
■

183

V. Bandits Meet Mechanism Design

E.6 Proof of Theorem V.5.5

Proof of Theorem V.5.5. We work under the utility function u(s, µ) = sµ.
In the strategic click-bandit model there are two distributions associated with
each arm, the click distribution Psi

= Bern(si) and the reward distribution Pµi

with mean µi. We here assume that arm i’s reward distribution is Bernoulli with
mean µi ∈ [0, 1]. For convenience, w.l.o.g. we assume that the learner observes
both, the click-event and the post-click reward every round. This clearly makes
the learning problem easier for the learner. To summarise the distributions of
arm i we let Psi,µi = Psi × Pµi denote the product distribution.

We consider problem instances

µ =
(1

2 , . . . ,
1
2 ,

1
2 + ∆, 1

2 , . . . ,
1
2
)

with µi∗ = 1
2 + ∆. For convenience, we assume that M is index-independent, i.e.,

if arm i and arm j have identical distributions Psi,µi
= Psj ,µj

, then (nT (i), nT (j))
and (nT (j), nT (i)) have the same distribution. If M is not index-independent,
we can consider different indices i∗ for the maximal element in µ. Let us choose
∆ = c

√
K/T for some constant c > 0 to be chosen sufficiently small later.

Let us suppose that M is better than the claimed lower bound so that
RT (M, s,µ) ≤ o(

√
KT) for some s ∈ NE(M,µ).12 By choice of ∆ in µ, it then

directly follows that Es,µ[nT (i)] ≤ o
(

T
K

)
for all i ≠ i∗, otherwise RT (M, s,µ) ≥

Ω
(√
KT

)
. Since

∑
i∈[K] Es,µ[nT (i)] = T , this entails Es,µ[nT (i∗)] ≥ Ω

(
T
K

)
.

We now show that Es,µ[nT (i)] = o
(

T
K

)
cannot hold when s is a Nash

equilibrium. To this end, consider an alternative strategy s′
i. Now, let s′

i = sj

with

j = argmax
k∈[K]

E(sk,s−i)[nT (k)].

Generally, we would expect j = i∗, however, j could be any other index in [K]
(except for i as we see now). Since

∑
k∈[K] Es̃[nT (k)] = T for any s̃, we get that

E(s′
i
,s−i),µ[nT (j)] ≥ T

K . If i = j, this would be a contradiction to the statement
that E(si,s−i),µ[nT (i)] = o

(
T
K

)
.

If j ≠ i∗, we find that KL(Psj ,µj
, Ps′

i
,µi

) = 0, since i and j have identical
click and reward distribution. More generally, we obtain from the chain rule that

KL(Psj ,µj
, Ps′

i
,µi

) = KL(Psj
, Ps′

i
) + KL(Pµj

, Pµi
) = KL(Pµj

, Pµi
) ≤ 8∆2,

where we used that KL(Pµj , Pµi) ≤ KL(Pµi∗ , Pµi) = KL
(
Bern(1

2),Bern(1
2 +

∆)
)
≤ 8∆2 (see, e.g., Theorem 2.4 in [Sli+19]). Recall that ∆ = c

√
K/T . For

sufficiently small constant c > 0, Theorem 3 in [GMS19] then yields that either

E(s′
i
,s−i),µ[nT (i)] ≥ T

K
or E(s′

i
,s−i),µ

[
nT (i)
nT (j)

]
≥ 1

2 . (19)

12We consider pure strategy NE here, though, mixed strategies can be handled analogously.

184

Technical Lemmas

Assuming nT (j) ≥ 1, using some algebra (Lemma E.7.2), the latter can be seen
to imply that

E(s′
i
,s−i),µ[nT (i)] ≥ 1

2E(s′
i
,s−i),µ[nT (j)] ≥ T

2K ,

where the last inequality holds due to the choice of j. Hence, from equation 19
we obtain that

E(s′
i
,s−i),µ[nT (i)] ≥ T

2K .

This leads to a contradiction, as s′
i is a better response to s−i than si. We have

thus shown that RT (M, s,µ) = Ω
(√
KT

)
for any s ∈ NE(M,µ).

■

E.7 Technical Lemmas

Lemma E.7.1. Let P and P̃ be two probability measure (and let E and Ẽ denote
the respective expectations). Suppose that for integer-valued random variables
N,X1, X2, . . . , it holds for all k ∈ N and some i ∈ N:

E[N] < Ẽ[N] and 0 < P(Xk = i | N) ≤ P̃(Xk = i | N) a.s. (20)

Then,

E

[
N∑

k=1
1{Xk=i}

]
< Ẽ

[
N∑

k=1
1{Xk=i}

]
. (21)

Proof. Note that if N and X1, X2, . . . were independent and X1, X2, . . . i.i.d.
this would immediately follow from Wald’s lemma.

We prove the lemma via factorization. It holds that

E

[
N∑

k=1
1{Xk=i}

]
=

∞∑
n=1

E

[
n∑

k=1
1{Xk=i} | N = n

]
P(N = n)

=
∞∑

n=1

n∑
k=1

P(Xk = i | N = n)P(N = n)

≤
∞∑

n=1

n∑
k=1

P̃(Xk = i | N = n)P(N = n)

= E

[
N∑

k=1
P̃(Xk = i | N)

]

< Ẽ

[
N∑

k=1
P̃(Xk = i | N)

]
= Ẽ

[
N∑

k=1
1{Xk=i}

]
,

where in the last line we used that P̃(Xk = i | N) > 0 almost surely. ■

185

V. Bandits Meet Mechanism Design

Lemma E.7.2. Let X and Y be two random variables (which are not necessarily
independent) and Y ≥ 1. Suppose that

E
[
X

Y

]
≥ 1

2 .

Then,

E[X] ≥ E[Y]
2 .

Proof. Basic algebra yields that

E
[

2X
Y

]
− 1 = E

[
2X
Y

]
− E

[
Y

Y

]
= E

[
2X − Y

Y

]
≤ E [2X − Y] .

Hence, if E
[2X

Y

]
≥ 1, it follows that E[2X] ≥ E[Y].

■

E.8 More Related Work

In other related work, [GH13; Hro+22; Hu+23; LH18] study incentive design in
online recommendation and are interested in incentivizing agents to contribute
high-quality content. They differ to our work primarily in that either the
strategies are directly observable, or no bandit learning together with incentive
design is performed simultaneously. There is also a multitude of additional
work on auction-based mechanism design with unknown agent values and bandit
feedback [GLT12; Kan+23; Naz+16, e.g.]. Similar to the previously discussed
auction design in MABs [BKS15; BSS09; DK09], [Gao+21] study an auction-
based combinatorial multi-armed bandit with payments, where each arm can
misreport the cost for its selection. Other related areas of research are dynamic
mechanism design [BV19; PST14] as well as online mechanism design [Par07].

E.9 Future Work

A natural extension to the studied setting would be to assume that CTRs are
user-dependent or more generally dependent on contextual information. Another
direction would be to consider multi-slot recommendations in which the learner
selects a subset of arms every round and the selected arms compete for the click
(and our observations are therefore relative). In fact, the case where the learner
selects a set of arms and each arm i is clicked with probability si independently
of the other arms can be handled with exactly the same methods as presented in
this paper. More generally, we believe that the idea of introducing a screening
rule based on confidences of each arm’s strategy can be extended to various
settings and many of our techniques reused.

186

Future Work

187

Thomas Kleine Büning

Learning in the Presence of
Cooperative, Adversarial and
Strategic Agents

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

2024

