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Abstract

The Standard Model serves as the fundamental framework for
describing elementary particles and their interactions. During my
doctoral studies as a member of the ATLAS collaboration, my primary
focus centered on statistical methods, particularly their application in
searches searches for new particles. Even though all particles within
the Standard Model have been discovered, particle searches remain
relevant, especially in anticipation of future runs of the Large Hadron
Collider, such as Run 3 and the High Luminosity LHC, spanning several
decades from today. These upcoming experiments aim to uncover
new particles that may provide explanations for missing components
of the Standard Model, such as Dark Matter, Neutrino masses, or
Gravitational forces.

A key contribution is a novel method for calculating the global
significance in the search for new resonances within particle physics.
This method employs a Gaussian Process to model the significance in
the search area, utilizing an approximate covariance matrix derived
from a carefully designed set of Asimov datasets. This innovative
approach enables precise and computationally efficient calculation of
the trials factor.

Notably, this research has yielded the SigCorr framework, a
versatile tool for constructing analytical pipelines in particle physics.
While the published works delve into specific methodologies, SigCorr
holds the promise of enabling exploration across a broad spectrum of
approaches to trials factor calculations.

I had an opportunity to contribute to a range of significant open-
source projects through collaborations facilitated by my membership
in the Marie Curie Innovative Training Network “INSIGHTS”. In
addition to the aforementioned SigCorr, I also developed Cicliminds
for climate data visualization, and contributed enhancements to the
Boost.Math C++ library, the Sherpa Monte Carlo generator, the
MGVI.jl Bayesian inference framework, and the Statsmodels Python
library for descriptive statistics.

In summary, this doctoral thesis presents groundbreaking statistical
methods and software for high-energy physics, aligning with the
mission of INSIGHTS. Its contributions could greatly improve precision
and efficiency in particle searches and statistical analysis in physics and
other fields.
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Sammendrag

Standardmodellen fungerer som det grunnleggende rammeverket for
å beskrive elementære partikler og deres interaksjoner. Under
doktorgradsstudiene mine som medlem av ATLAS-kollaborasjonen, var
mitt primære fokus på statistiske metoder, spesielt søket etter nye
partikler. Selv om alle partikler i standardmodellen er oppdaget, forblir
søket etter nye partikler relevante, spesielt i påvente av fremtidige
“runs” av Large Hadron Collider, som Run 3 og den planlagte High
Luminosity LHC, som spenner over flere tiår fra i dag. Disse kommende
eksperimentene tar sikte på å avdekke nye partikler som kan gi
forklaringer på manglende komponenter i standardmodellen, slik som
mørk materie, nøytrinomasser og gravitasjonskrefter.

Et nøkkelbidrag er en ny metode for å beregne den globale
signifikansen i jakten på nye partikler innen partikkelfysikk. Denne
metoden bruker en Gaussisk prosess for å modellere signifikansen i
søkeområdet, ved å bruke en omtrentlig kovariansmatrise avledet fra et
nøye designet sett av Asimov datasett. Denne innovative tilnærmingen
muliggjør presis og effektiv beregning av prøvefaktoren.

Spesielt har forskningen gitt opphav til Sigcorr-rammeverket,
et allsidig verktøy for å konstruere analytiske arbeidsflytkjeder for
partikkelfysikk. Selv om de publiserte verkene fokuserer på spesifikke
metoder, har Sigcorr potensialet til å muliggjøre utforskninger som
spenner over et bredt spekter av tilnærminger i beregningene av
prøvefaktorer.

Jeg hadde mulighet til å bidra til en rekke betydelige open source-
prosjekter gjennom samarbeid som er tilrettelagt av mitt medlemskap i
Marie Curie Innovative Training Network “INSIGHTS”. I tillegg til den
nevnte Sigcorr, utviklet jeg også Cicliminds for klimadatavisualisering,
og bidro med forbedringer for Boost.Math C ++ biblioteket, Sherpa
Monte Carlo Generator, MGVI.JL Bayesian Inference Framework, og
Statsmodels Python Library for beskrivende statistikk.

Oppsummert presenterer denne doktorgradsavhandlingen banebry-
tende statistiske metoder for høyenergifysikk, og samsvarer med IN-
SIGHTS’ oppdrag. Bidragene kan forbedre presisjonen og effek-
tiviteten i partikkelsøk og statistisk analyse innen fysikk og andre felt.
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Chapter 1

Introduction

Paper geckos bend.
Fairy tales become math —
the Standard Model.
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Chapter 1. Introduction

The Standard Model (SM) of particle physics is the commonly accepted model
of the Universe at the microscopic level. It assumes that the world is built of
elementary particles, and the Standard Model is the essence of our knowledge
about the properties of these particles and their interactions (Figure 1.1).
Statistical data analysis plays an important role in extracting this knowledge from
complex measurements probing the intricate fabric of the Universe.

Advancement of statistical methods for data analysis was one of the major
goals of the International Training Network of Statistics for High Energy Physics
and Society (INSIGHTS ITN) [1], which I am proud to have been a member
of. The network was focusing on multivariate analysis, parametric modeling, and
Bayesian computation, to address the challenges posed by high-energy physics
experiments, particularly at the Large Hadron Collider, training a new generation
of physicists and fostering collaborations with interdisciplinary partners for broader
societal impact. As a consequence, a significant part of my research achievements
is associated with statistical methods in high energy physics.

Standard Model of Elementary Particles

Figure 1.1: Elementary particles of the Standard Model divided into two groups: fermions
which constitute all known matter, and bosons which mediate the interactions. The 6
anti-quarks and 6 anti-leptons are not shown. (Taken from Ref. [2].)

Development of the Standard Model. Historically, the first experimentally
confirmed particles predicted by the SM were W ± and Z0, so called weak bosons.1
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They were observed at the European Organization for Nuclear Research (CERN)
in 1983 using the Super Proton Synchrotron [3, 4]. This was a major success
of CERN and the SM, which encouraged the scientific community to continue
searching for other SM particles not yet observed at the time.

By the time of discovery of the weak bosons most of the fermions had been
already discovered. The only ones missing were the top quark, which got confirmed
in 1995 [5] by the CDF and DØ experiments [6], and the tau neutrino, first directly
observed in 2000 [7]. It was already known, therefore, that most of the fermions
in the SM have a non-zero mass.

It turns out that naive mass terms in the fermionic equations make quantum
calculations in the Standard Model (SM) divergent at high energies [8]. However,
there is a procedure called renormalization, which suggests to conceal these infinite
terms in the fundamental parameters of the theory. Since experimental observables
would include the quantum corrections, the divergent raw values will not make
any harm. According to ’t Hooft and Veltman [9], the renormalization procedure
can always be implemented for theories that are symmetric in a particular way,
respecting the so-called Gauge symmetry.

The famous Higgs mechanism [10–12] suggests a way to include the fermionic
mass terms into the theory while respecting the Gauge symmetries required
for renormalizability. In the big picture, the electro-weak sector consists of
a complex vector weak triplet and a complex singlet B0, with a scalar Higgs
doublet constituting the Higgs sector. Consequently, the Higgs mechanism assumes
that the world we observe can be described in terms of small excitations of the
Higgs field around some local minimum of its potential. The approximate model
including these excitations can, again, be reformulated as a particle model but
less symmetric. In other words, the Higgs mechanism is a symmetry-breaking
procedure.

As a result of the symmetry breaking [13], the weak triplet, B0 and the Higgs
doublet are replaced by massive W ±, Z, Higgs, and massless photon fields. Yukawa
couplings, initially describing the interactions between fermions and the Higgs field,
generate fermion masses and the couplings of the fermions to the Higgs boson,
which, in turn, constitute the intimate connection between the masses of fermions
and the decay rates of the Higgs boson to the fermions.

The search for the Higgs boson, the direct evidence of the existence of the Higgs
field needed for the SM to be consistent, was one of the major reasons for building
the Large Hadron Collider (LHC) (Figure 1.2). It was built by CERN between
1998 and 2008 and lies in a 27 kilometer long circular tunnel, around 100 meters
underground at the France-Switzerland border near Geneva.

The LHC is a machine designed for accelerating and colliding protons and
heavy nuclei, such as lead, at high energies. The data produced as a result of
these collisions is recorded with the detectors installed across the LHC ring. The
Compact Muon Solenoid (CMS) and A Toroidal LHS Apparatus (ATLAS) are two
large multi-purpose detectors installed at two of the points where the LHC beam

1Technically, most of the leptons and quarks were the first, but the discovery of the weak
bosons confirmed the existence of the electroweak sector, which was a major step verifying the
unified theory of interactions, i.e. the Standard Model we know today.
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Figure 1.2: CERN Accelerator Complex. (Taken from Ref. [14]).

crossings produce collisions. The corresponding collaborations were the ones that
discovered the long-sought Higgs boson in 2012 [15, 16].

Scientific accomplishments presented in this thesis are directly related to the
ATLAS Collaboration, as I was an ATLAS member while doing the underlying
research, and, therefore, will focus on the ATLAS detector in more detail.

The search for the Standard Model Higgs boson was used as a benchmark
during the design of the ATLAS detector. The design was supposed to cover a
wide range of the Higgs decay channels, sensitivity of the measurements of which
depended on the then unknown mass of the boson. To illustrate how strongly
the search is affected by the Higgs mass, we refer to Figure 1.3, which shows
the dependency of the branching ratios of the Higgs decay channels on the Higgs
boson mass. The mass range on the plot is constrained to 100-200 GeV, where the
lower bound of 114.4 GeV was set by the Large Electron-Positron Collider [17], the
predecessor of the LHC, and the approximate upper bound was estimated from
the electroweak processes [18].

Although the branching ratio of a channel does not necessarily reflect the
sensitivity of this channel, it, at least, can help us grasp the variability the
experiment should be prepared for. This and other new physics searches motivated
such aspects of the detector construction as high acceptance in pseudorapidity and
azimuthal angle coverage, very good calorimetry and charged particle momentum
resolution with a special focus on high pT muons [19].

Progressing through the Run 1 (2009–2013) and Run 2 (2015–2018) phases,
the LHC has developed towards the higher collision energies and gained enough
resilience to operate stably in the 13-14 TeV regime. After the second long
shutdown (2018–2022) with the main focus on improving the luminosity, today, we
are in the Run 3 phase, which began in July 2022 and is an intermediate step before
the High Luminosity LHC, which is planned for 2029-2041. With the precision
measurements of the Standard Model particles being of major interest [21] for the
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Figure 1.3: Higgs decay branching ratios as a function of its mass. (Taken from Ref. [20].)

Run 3, a special attention is dedicated to the precision measurements of the Higgs
boson interactions, a potential proxy to the new physics.

For the analysis part, as the most sensitive, at least, for the Higgs searches,
the observable based on the invariant mass of the decay products was used. Such
searches, also known as resonance searches, are still relevant in the context of the
Run 3 and the High Luminosity LHC, as we are looking for new particles that
could explain such missing parts of the SM as Dark matter, Neutrino masses or
Gravitational forces. In the next paragraph I will proceed by introducing resonance
searches in more detail, explaining the arising challenges and how a Gaussian
process can help tackle them.

Gaussian process approach to Look-elsewhere effect. In a resonance search,
one typically scans a range of masses, aiming to find a significant peak at
one or another mass. A quantitative measure of incompatibility between the
observed data and the background model is typically determined by applying
Wilks’ theorem [22] to the likelihood-ratio test statistic (LRT) [23]. The test
is conducted for a set of mass points in the search region with the resulting
probability, in each point, usually being expressed in terms of local p-value (local
p0), as the probability for the background to give an excess larger than the one
observed in the search data. Alternatively, one can associate the p-value to the
number of standard deviations (Z) for a Gaussian distribution, and, when applied
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Chapter 1. Introduction

to the search region, the procedure results in a field of varying significance levels
across the region, shown in Figure 1.4.

Although the resonance could appear at any point in the search region,
the search typically focuses on the area with the highest (local) significance.
This situation presents a common challenge: accurately determining the global
significance of the observation. It is crucial to take into account that random
background fluctuations might produce a peak of significance anywhere in the
search area, generating a “fake” point of highest significance. This concept is often
referred to as the look-elsewhere effect (LEE). The probability for a background
fluctuation anywhere in the search region to be larger than the largest excess
observed in the data defines the global p-value (global p0), and is the major target
of the research presented in this thesis.

If every mass point in the search region were tested, the collection of
measured significances would form a field of normally distributed random variables.
Importantly, these variables are not independent; they are interconnected due to
the non-zero width of the signal model and, as explored in Paper I, the rigidity
of the background model. Similar to the multivariate Gaussian distribution, this
group of variables, known as a Gaussian process, can be defined by specifying a
mean for each point and a two-point correlation function, the Gaussian process
kernel.

A number of studies have explored the look-elsewhere effect (LEE), and in
my research, I specifically focus on those that model the significance field using a
Gaussian process.

The direct method for estimating the trials factor involves analyzing a large
number of Monte Carlo datasets — toy datasets created from the background
model, each simulating one experimental measurement — and counting how often
the significance curve surpasses a certain local significance level. Even the analysis
of these Monte Carlo toy simulations is often computationally intensive, which is
why the toys are commonly referred to as “brute force toys”.

Typically, analyses set only an upper limit on the trials factor (TF) [24–26],
by converting a local p-value into a global one, employing a Gaussian process
indirectly to connect areas of low and high significance.

Gross and Vitells explored the look-elsewhere effect in their research [24, 25].
They proposed a method to approximate the upper bound on the trials factor,
which also tends to approach the true value for local significances ≳ 3σ. Their
technique involves setting this upper limit based on the average Euler characteristic
of the χ2 field, which arises from scanning the signal nuisance parameter. In one
dimensional cases, this average Euler characteristic can be roughly calculated using
the mean count of so-called up-crossings (Figure 1.4) at a certain local significance
level and then extrapolated to higher levels. However, this approach tends to
be overly conservative for lower significances, and also requires a relatively large
amount of toys to get a precise estimate for the average number of up-crossings.

In Paper I, it was proposed that a small set of purposefully crafted background
samples could be used efficiently for more precise estimations of the trials factor,
and also for better predictions of low-significance up-crossings. Notably, the
described method required explicit values for the parameters of the Gaussian
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from Paper I.)

process, unlike the well-established implicit approach. The latter utilizes the up-
crossings count at some reference level to compensate for the lack of information
about the covariance and, by doing this, it sacrifices the precision of the trials
factor estimate in exchange for avoiding the need to estimate the full covariance.

In works presented in this thesis the focus is on models where the test statistic
is based on a χ2 distribution with 1 degree of freedom, a fairly common case in
High Energy Physics. Models that incorporate the signal through an extra signal
strength parameter usually fit this requirement. This lets the χ2 field to be changed
into a field of significances (Figure 1.4). In Paper I, a Gaussian Process (GP) was
suggested to be used for approximation of this field. Similarly to how a single
Asimov dataset [23] is usually used to estimate expected significance, a special
set of Asimov-like background samples (Section 2) was introduced to calculate a
covariance matrix that approximates the GP kernel.

This GP facilitates making approximate Monte Carlo simulations (called GP
toys), which represent the approximate significance2 levels of the fitted Monte
Carlo background samples straightforwardly, skipping the usual fitting step. This
method is a fast way to estimate the trials factor using an approximate light-weight
brute force approach.

It is important to note that the concept of applying the GP to hypothesis
testing in scenarios where a nuisance parameter exists only under the alternative
hypothesis, is not new and has been previously explored by Davies [26]. However,
the contribution elaborated in Paper I, is an enhancement of this concept, in which
a practical method for estimating the GP kernel was proposed.

2Later in the text we do not specify again that the constructed toy significances are
approximate, as, we assume, it is implied that any use of Monte Carlo toys is an approximation.
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Chapter 1. Introduction

Paper II presents a model which linearly approximates the fluctuations around
the Asimov dataset. As also detailed in Section 2 of this thesis, this procedure
enables an analytical approach to optimizing the log-likelihood, resulting in a
closed form expression for significances. It, consequently, allows for analytical
calculation of the significance covariance matrix, an integral part of the proposed
GP-based method.

This linear model is beneficial as it eliminates the need for complex “toy
fits” previously necessary in Paper I, replacing them with the requirement for
calculations of derivatives from the best-fit background model, which are often
available through fitting software.

Importantly, the foundational assumptions in Paper II are in alignment with
those in the empirical study of Paper I. Consequently, Paper II not only lays
the theoretical basis for the applications of set of Asimov background samples
introduced in Paper I, but also benefits from its extensive validations.

Scientific software. It may already be evident that in this research field, up-
crossings, the Euler characteristic, and Gaussian processes are frequently utilized.
When combined, they offer numerous advantageous properties for estimating trials
factors. This is how SigCorr (Paper III), a pioneering project that integrates
all these elements into a single Python package, was born. This package was
instrumental in generating, fitting, and visualizing the datasets used for the studies
contributing to this thesis.

SigCorr is equipped with tools that enable parallel analysis of both MC toys
and GP toys in a cohesive manner. In conjunction with the fitting framework, it
facilitates the path from statistical model definition to estimating a trials factor.
Moreover, SigCorr incorporates validated approximations and asymptotics, derived
from seminal papers in the field, for rapid computation of the trials factor and its
upper limit.

The modular yet coherent nature of SigCorr sets it apart in this domain, offering
users the flexibility to experiment with various methods, conduct cross-validations,
and select or develop the most appropriate approach for their analysis.

Furthermore, the data and Jupyter notebooks [27] employed for creating figures
in Paper I are designed to be compatible with the SigCorr package, facilitating
their reuse in future studies. For instance, this same data was utilized to validate
the findings of Paper II.

Apart from SigCorr, more open-source contributions are presented in
Chapter B. The list of contributions includes improvements of already existing
software, like Monte Carlo generator Sherpa [28] and Boost C++ Library [29], as
well as new projects: Cicliminds [30], a climate visualization toolkit developed in
collaboration with the Center for International Climate Research CICERO, and
MGVI.jl [31], which implements an optimization method for Bayesian statistical
analysis and was developed in collaboration with Max Planck Institute for Physics.
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Chapter 2

Set of Asimov background samples

In resonance searches, typically, there is a unique nuisance parameter M in
the signal model, which is absent in the background-only hypothesis. Values
of this parameter, M , represent the points that define the search region. The
dimensionality of the search region can vary: it might be one-dimensional, as in
the case where the mass of a hypothetical particle is unknown, or it can extend to
multiple dimensions. For instance, a two-dimensional search region is considered
when, also, the decay width is not specified uniquely. The details of a two-
dimensional search region are discussed in Section 3.3 of Paper I. Additionally,
the fundamental structure of a statistical model, typically employed in high-
energy physics experiments for new particle or resonance discovery, is thoroughly
explained in Paper I.

First, the proposed method using the model described by Gross and Vitells
in their study of trials factor and up-crossings [24] was successfully verified.
Subsequently, to showcase the efficacy of the set of Asimov background samples, a
more complex example, drawing inspiration from the Higgs searches in the H → γγ
channel, was created.

In this H → γγ-inspired binned model, where i denotes the bins and
θ denotes the vector of nuisance parameters, the expected background bi(θ)
has an exponential shape and serves as the null hypothesis H0. Both the
normalization and width parameters of the exponential function are treated as
nuisance parameters. The expected signal µsi(θ) has a Gaussian form, and in
conjunction with the background bi, it constitutes the alternative hypothesis H1,
an estimate of the expected signal + background:

ni(µ, θ, M) = µsi(θ, M) + bi(θ), (2.1)

where µ is the signal strength parameter.
The search utilizes the likelihood ratio test statistic, as detailed in [22], which

is calculated for each point M within the search grid M.
To illustrate the model inspired by H → γγ, Figure 2.5 displays the predicted

background-only hypothesis bi, a dataset sampled from it, and the resulting
significance curve obtained from applying the LRT at each point in the search
grid M. This figure shows how noticeable fluctuations in the data correspond to
peaks in the significance curve. The significance derived from the LRT appears

9



Chapter 2. Set of Asimov background samples

negative in places where there is a deficit in the data compared to the predicted
background, and positive when there are data excesses.
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Figure 2.5: One brute force toy (orange) sampled from a background-only hypothesis
(blue) of the H → γγ inspired model. The signal significance curve is plotted below
(green), where each point of the curve corresponds to a different choice of the signal
hypothesis. (Taken from Paper I.)

Set of Asimov background samples. Paper I proposes to approximate the
ensemble of curves Z(M) with a family of samples from some Gaussian Process.
Such an approximation increases the performance of the sampling without
introducing significant bias. Properties of Z-curves (significance curves) are
reflected in the GP mean, that should be set to 0, and the kernel, which must
have 1 on the diagonal.1

Similarly to the concept of the representative Asimov dataset that may be used
to estimate the expected local significance [23], we propose to use a special set of
background Asimov datasets to estimate the GP covariance between the points
of the significance curves (see Figure 2.5), and subsequently estimate the global
significance based on a few generic assumptions for the set of background Asimov
datasets:

1. the background model should be well approximated by its linear expansion
around the best fit parameters,

2. the data can be binned and fluctuations in different bins of the dataset are
independent,

1The diagonal elements, in the limit of infinite statistics, are expected to converge to 1.0,
because the test statistic for each individual mass hypothesis should be distributed as χ2 with
1 degree of freedom, which consequently makes the significance normally distributed with unit
variance.
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3. the fluctuations in each bin follow a Gaussian distribution.
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Figure 2.6: A background sample, an Asimov toy and the corresponding significance
curves from the H → γγ inspired model. In (a), as an example, a brute force toy
sampled from the background template (orange dots) and one data set from the set
of Asimov data sets (blue dots) are shown. The red arrow specifies the bin that was
distorted in this particular Asimov data set. In (b) the significance curves from the
signal plus background fits for the toy sample (orange line) and the Asimov data set
(blue line) are shown. (Taken from Paper I.)

When the requirements are met, the set of Asimov datasets, according to
Paper I, is constructed as follows:

1. Specify the binning of the data (for example invariant mass m) and the grid
of scan points for the signal hypothesis (i.e. values for M).

2. Construct the Asimov dataset for the background model.

3. For each chosen data bin produce a new dataset, where a 1σ upward
fluctuation2 is introduced in that bin of the background Asimov dataset
(see an example of such a dataset in Figure 2.6a).

Figure 2.6b shows a significance curve for one dataset of the set of Asimov
datasets. Interestingly, although an excess of data was introduced in the middle of
the mass range, the significance undershoots zero on the sides of the search region,
which later results in anti-correlations visible in the significance covariance matrix.

The covariance matrix of the GP can now be determined by calculating the
sample covariance using the assembled set of Asimov samples. However, it is
important to note that this dataset incorporates only upward fluctuations, based
on the assumption that errors will become symmetric in the asymptotic regime.
As a result, the calculation of the sample covariance must be approached with
caution.

2The precise magnitude and direction of the introduced fluctuation are not important and
are accounted for by additionally normalizing the estimated covariance, as part of the method
described in Paper I.
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Chapter 2. Set of Asimov background samples

It is worth mentioning that the approximate linearity assumption was not
foreseen at the time of writing Paper I, but in the following work (Paper II) it
was identified as required.

If the assumption holds, the relation between significance and signal strength
becomes linear, resulting in the covariance contribution of each dataset from the
set of Asimov datasets to become independent of the sign and magnitude of the
artificial 1σ fluctuation. It also allows the partial contributions of each Asimov
sample to be assembled into a single estimate for the GP covariance, becoming a
basis for the superposition principle assumed in Paper I.

Linear approximation to the covariance matrix. In Paper II, a series of simple
steps were developed with a goal to derive the trials factor from a linear
approximation of a non-linear parametric statistical model by estimating the
covariance matrix of the significance field. Notably, the process only involves a
single background-only fit to the data. Demortier briefly touched upon a method
for calculating the covariance matrix from a linear model in his work [32, p. 23-
33]. The contribution of this thesis extends Demortier’s method by providing a
rigorous mathematical framework for the method and showcasing its application to
non-linear background shapes. In Paper II, the estimated covariance matrix acts
as a proxy for the calculation of the trials factor estimate, either via the analytic
calculation of average up-crossings or using the GP toys.

This method was studied in application to the same statistical model structure
used to introduce the set of Asimov samples (see Equation 2.1). Also, it was
assumed that the best fit of the background model bi to the data di, represented
as bi(θ̂) = b̂i, was known for the analysis. To simplify the explanation, the reference
point for the model parameters θ was chosen to be θ̂ = 0.

Following the approach in Paper II, it became possible to calculate the
autocovariance matrix ΣMN of the significance field between two signal mass
hypotheses M and N . This calculation used the signal model sM and derivatives
of the background model ∂b

∂θ
:

ΣMN = ⟨sM |√
⟨sM | P |sM⟩

P
|sN⟩√

⟨sN | P |sN⟩
, M, N ∈ M

P = 1 − ∆(∆⊺∆)−1∆⊺, (2.2)

∆iα = ∂bi(θ)
∂θα

|θ=0,

where bra-ket notation was used to reduce the number of indices. The elements
of the ket-vector |sM⟩ are associated with different dataset bins, and the index M
marks the signal locations on the search grid M, each representing a unique signal
hypothesis.

This result makes the direct method for calculating up-crossings, as well as
the trials factor, detailed in Chapter 2.1 of Paper I, even more practical, and
helps avoid the need for sampling to estimate the average number of up-crossings.
Although, the calculation does require knowing the covariance matrix, it is now
easier to calculate with this new linear approximation method.

12



When presenting the method of Asimov datasets in application to estimation
of the trials factor [33], along with the excitement of the audience, numerous
questions suggesting to go beyond binned models were brought up. As a first step
towards unbinned analysis, in Appendix A, the steps from Paper II were repeated,
but the starting point was set to a more general model. The calculation resulted in
a closed form expression for the significance for a general quadratic log-likelihood
(Equation A.8), with the Equation 2.17 from Paper II being its partial case.

Taking this farther towards closed form covariance matrix estimates will open
opportunities for analyses with low bin counts that are usually not suitable for a
binned approach.

13
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Chapter 3

Conclusion

This doctoral thesis has addressed several crucial aspects of statistical methods
in the field of high-energy physics and beyond, particularly focusing on searches
for new resonances involving the precise estimation of the trials factor, a task
for which existing methods have a tendency to become excessively conservative,
especially when dealing with lower local significance regions. To address this issue,
in Paper I, a novel approach based on Gaussian processes was introduced.

The newly proposed method does not entirely eliminate the need for Monte
Carlo simulations but significantly enhances the computational efficiency of the
process. Extensive testing of the suggested method was conducted on various
models, even those with multiple nuisance parameters, designed intentionally to
exhibit diverse statistical characteristics. The results demonstrated remarkable
agreement between the trials factors calculated using our new approach and those
derived from large samples of brute force Monte Carlo simulations. As part of
a comprehensive cross-check, the results from the Gross and Vitells paper [24],
which introduced the high-significance approximation based on up-crossings, were
successfully reproduced .1

The practical realization of the method and the implementation of test models
suggested in Paper I have been made available for the research community
through our published work (Paper III) and the SigCorr package itself, shared
on GitLab [34]. The extensive documentation provided with SigCorr is intended
to lower the threshold for the use and further developments of the package.
For example, one can consider the possible integration of SigCorr into the
ScikitHEP [35] environment with particular focus on pyhf [36] and HepStats [37]
packages.

Another major contribution of this thesis is the development of an efficient
method for estimating the covariance matrix of statistical significance in new
particle searches (Paper II). This method relies on a linear expansion of the
statistical model around its background-only best fit to the data. We not only
derived a closed-form expression for the linear approximation of the significance
covariance matrix but also provided elegant expressions for the best-fitted signal
strength and statistical significance within this approximation. To judge the

1The data sets and the Jupyter notebooks that have been used for the cross-checks are
available on Zenodo [27].
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Chapter 3. Conclusion

validity of the linear approximation for the search in question, one can compare
our approximate results to the results of a full fit to the data.

Crucially, it was demonstrated that the suggested covariance matrix adheres
to the superposition principle with regard to the data fluctuations, making it
a suitable proxy for the covariance matrix constructed using the set of Asimov
background samples. Comparing these two approaches, particularly in the context
of a Higgs boson decay model, the differences between the values of the covariance
matrices constructed using the two methods were found to be small. Consequently,
all validations conducted as part of the empirical study, i.e. trials factor estimation
with a set of Asimov background samples, can be applicable to the linear
approximation approach, which itself may serve as a theoretical foundation for
the empirical method of the set of Asimov background samples.

In addition to the above, the research results of this thesis also delivered a
practical expression approximating the mode of the non-central χ2 distribution
in Paper IV. This expression, based on an asymptotic expansion, has a practical
utility as an initial guess for iterative procedures approximating the mode of the
non-central χ2 distribution numerically. As a result, the Boost.Math C++ library
received a contribution for this small improvement [38]

Beyond the primary research in statistical methods for high-energy physics,
through collaborative work contributions to the advancement of research tools
across diverse technologies and scientific domains were published. The list includes
such famous software as Sherpa for which support for custom form factors for
models defined with UFO format [39] was enabled, and no less known Statsmodels,
which now allows omnibus survival tests for data with any number of groups [40].

The close collaboration with CICERO resulted in the development of
Cicliminds [30], a versatile tool for comprehensive climate data analysis, and Max-
Planck Institute for Physics, together with which MGVI.jl [31], a Julia package
offering efficient estimation for a posterior distribution, was introduced.

In summary, this doctoral thesis has introduced innovative statistical methods,
addressed challenging issues in high-energy physics, and made contributions to
the field’s ongoing research efforts that fit precisely the mission statement of the
INSIGHTS ITN [1]. These findings have the potential to significantly enhance the
precision and efficiency of new particle searches and statistical analysis in physics
and beyond.
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1 Introduction

In a typical search for a new particle or resonance in a high-energy physics experiment, the statistical
model consists of a relatively narrow signal peak on top of a broad background in the invariant mass
spectrum. In general, the location of the signal is not known a priori so the likelihood is maximized
for signal masses and amplitudes in the “search region” of mass. In some models the width of
the signal is not uniquely specified, leading to a 2-dimensional search region. The background
model has typically one or more nuisance parameters that describe the form and normalization
of the background distribution. The signal parameters such as width and mass, however, are not
defined under the background hypothesis. In this case, the significance at the location of maximum
likelihood of the signal plus background hypothesis (local significance) should be reduced to account
for random fluctuations of the background that can occur anywhere in the search region. The
corrected significance is called “global significance”, and the ratio between the corresponding global
and local p-values or tail probabilities, which is a function of the observed local significance, is
called the “trials factor” (TF). The whole situation is often referred to in high energy physics as the
“look-elsewhere effect”.

The most straightforward way to estimate the trials factor is to analyse a large ensemble of
Monte Carlo data sets (toy data sets or “toys”) generated from the background model and to count
how many times the significance exceeds a local significance level. However, Monte Carlo toys are
usually expensive to analyse in terms of computational resources.

Gross and Vitells, in their studies of the look-elsewhere effect [1, 2], suggested a way to estimate
the upper bound on the trials factor, which for large local significances ≳ 3𝜎 approaches the true
value. Their method sets the upper bound to the trials factor based on the average Euler characteristic

– 1 –
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of the 𝜒2 field, a field that emerges from the signal nuisance parameter scan. In the one-dimensional
case the average Euler characteristic can be estimated from the average number of upcrossings
(figure 1) counted at some reference level of local significance and then propagated to higher levels.
This method, however, can be very conservative when applied to lower significances. In this work,
we argue that a relatively small number of carefully designed background toys can be used efficiently
to provide more precise and less conservative estimates for the trials factor, as well as more precise
estimates for low-significance upcrossings.

We focus on models with a test statistic that follows a 𝜒2 distribution with 1 degree of freedom.
This allows us to turn the 𝜒2 field into a significance field (figure 1) that we then propose in section 2
to approximate with a Gaussian Process (GP) whose kernel is approximated with a covariance
matrix calculated with the carefully designed toys. The resulting GP allows us to efficiently sample
approximate Monte Carlo toys and, therefore, to quickly evaluate the trials factor via an approximate
brute force method.

It is worth mentioning that the idea of using the GP in relation to hypothesis testing when a
nuisance parameter is present only under the alternative is not new and was studied by Davies [3].
We, however, build on top of this idea with a suggestion of a practical way to estimate the GP kernel.

As described in section 2.1, once the covariance of the GP is determined, the average number of
upcrossings can, in fact, be computed analytically. We also discuss some peculiarities of the trials
factor estimation on a finite grid in section 2.2.

We demonstrate our method applied to the background template model used by Gross and Vitells
(GV) in their study (section 3.1) as well as exponential background models with 1-dimensional
(section 3.2) and 2-dimensional (section 3.3) search regions inspired by searches for a resonance due
to 𝐻 → 𝛾𝛾 decays in proton-proton collisions at the Large Hadron Collider [4, 5].
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Figure 1. An example of a significance field (blue curve) for a likelihood ratio scan of the invariant mass of
the Higgs boson in a study of brute force (BF) toys. Red dots denote locations of the upcrossings of threshold
0.5 by this significance curve.

The Jupyter notebook and the data that were used to produce figures for this paper are publicly
available at Zenodo [6]. The Python package that we developed and used to produce and fit the data
sets, which is also extensively used in the notebook for visualizations, is also publicly available [7] and
includes the documentation [8] with recipes of how to reproduce the results we present in this work.
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2 Method

In resonance searches the signal model has a nuisance parameter 𝑀 that is not present under the
background-only hypothesis and that denotes the set of points that constitute the search region. The
search region itself may be one-dimensional, for a case when the mass of a hypothetical particle
is unknown, or many dimensional, for example 2-dimensional, when the decay width is also not
specified uniquely. We elaborate on the 2-D search region in section 3.3.

We focus on the case where the signal model has 1 free parameter (e.g. signal amplitude
or strength 𝜇, that we assume is fitted unconstrained1) for each point in 𝑀, therefore the profile
likelihood test statistic

𝑡 (𝑀) = −2 ln𝜆(𝑀), 𝜆(𝑀) = L(0, ˆ̂𝜃)
L( 𝜇̂, 𝑀, 𝜃) (2.1)

follows a 𝜒2 distribution with 1 degree of freedom in the large sample limit [9]. Here 𝜃 is one or
more additional nuisance parameters that maximize the likelihood under the background ( ˆ̂𝜃) or
signal plus background (𝜃) hypotheses.

We want to construct a standard normal random variable from 𝑡 (𝑀). For large samples:
√︁
𝑡 (𝑀) ∼

√︃
𝜒2

1 = |𝑁 (0, 1) | . (2.2)

To restore the sign of the standard normal distribution we use the sign of the signal strength 𝜇̂, which
is known to be normally distributed around 0 in the absence of signal, in the large sample limit as a
maximum likelihood estimator.

We then construct the normally distributed significance 𝑍 (𝑀) as follows:

𝑍 (𝑀) =
√︁
𝑡 (𝑀) sign 𝜇̂. (2.3)

To compute the trials factor we need to determine, under the background hypothesis 𝐻0 : 𝜇 = 0,
the probability that 𝑍 (𝑀) exceeds the local significance observed in the data for any 𝑀 in the
search region.

We propose to approximate the ensemble of curves 𝑍 (𝑀) with a family of samples from some
Gaussian Process. Such an approximation increases the performance of the sampling without
introducing significant bias. Properties of 𝑍-curves (significance curves) are reflected in the GP
mean, that should be set to 0, and the kernel 𝐾 with 𝐾 (𝑀𝑖 , 𝑀𝑖) = 1, i.e., the kernel must have 1 on
the diagonal.

The crucial step of our proposal is to estimate Σ̂, which is the covariance matrix, an approximation
of the GP kernel evaluated on the grid specific to the problem. Properties of the kernel 𝐾, and
subsequently of the covariance matrix Σ̂, can be formally expressed as follows:

Σ̂𝑖 𝑗 = cov
[
𝑍 (𝑀𝑖), 𝑍 (𝑀 𝑗)

]
, (2.4)

Σ̂𝑖𝑖 = 1.

1We need both positive and negative values of the best-fit signal strength 𝜇̂ to be able to reconstruct the sign of the
significance and, therefore, both sides of its distribution. This is a crucial step required to treat the significance as a GP,
which is at the core of the method suggested in this paper. We, however, argue that unconstrained fits generally are not an
issue for analyses of large samples, while analyses of small samples can benefit from brute force calculations of the TF
with no significant penalty in performance.
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The significance 𝑍 evaluated on the grid becomes a multivariate Gaussian random vector 𝑍̂ with
covariance Σ̂:

𝑍̂ ∼ N(®0, Σ̂). (2.5)

Similarly to the concept of the Asimov data set that may be used to estimate the expected local
significance [10], we propose to use a special set of background Asimov data sets to estimate the GP
covariance, and subsequently estimate the global significance.

The set of Asimov data sets is constructed as follows:

1. Specify the binning of the data (for example invariant mass 𝑚) and the grid of scan points for
the signal hypothesis (i.e. values for 𝑀).

2. Construct the Asimov data set for the background model.

3. For each chosen data bin produce a new data set, where a 1𝜎 upward fluctuation is introduced
in that bin of the background Asimov data set (see section 3 for concrete examples).

We assume that the data in different bins are uncorrelated.2 To construct the approximate
covariance, using eq. (2.4), we also use the fact that the covariance matrix of a sample of independent
measurements can be decomposed into a sum of the partial covariances, in our case calculated from
the set of Asimov data sets:

𝐶̂𝑎
𝑖 𝑗 = 𝑍

𝑎 (𝑀𝑖) · 𝑍𝑎 (𝑀 𝑗), (2.6)

𝐶̂ =
∑︁
𝑎

𝐶̂𝑎, (2.7)

where index 𝑎 enumerates Asimov data sets and 𝐶̂ is a sum of partial covariances. Note, however,
the expression for the partial covariance 𝐶̂𝑎 does not include the sample mean. It was intentionally
set to 0, because we know the mean of the significance should be 0. We also know that variance
of the significances is 1, so the final touch is to impose 1 on the diagonal of Σ̂ by rescaling the 𝐶̂
as follows:

Σ̂𝑖 𝑗 =
𝐶̂𝑖 𝑗√︃
𝐶̂𝑖𝑖𝐶̂ 𝑗 𝑗

. (2.8)

By normalizing this way, we again use the assumption that data in the bins are uncorrelated and we
also assume that the covariance structure is approximately independent of the scale of a fluctuation.

2.1 Number of upcrossings directly from the covariance matrix

Given a differentiable kernel for a Gaussian Process, it is possible to calculate the average number of
upcrossings at any level without recourse to any random sampling [11, 12]. This represents a small
advancement with respect to the Gross and Vitells extrapolation method.

To motivate the formula in eq. (2.14) for the density of upcrossings that we used directly in the
form presented by Lutes et al. [11, Example 7.2], we first cite the generic expression for the density

2There are situations when this assumption is not valid. This happens, for example, in analyses that allow each event to
be reconstructed in multiple ways, and these reconstructed configurations contribute to the distribution of the observable
simultaneously. One can also think of events recorded very closely in time becoming correlated due to out of time pile-up,
when the detector does not have time to relax to its initial state.
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𝜈+𝑋 (𝑢, 𝑡) of the average number of upcrossings of the level 𝑢 by any stochastic process 𝑋 (𝑡) [11,
eq. (7.3)]:

𝜈+𝑋 (𝑢, 𝑡) = 𝑝𝑋 (𝑡 ) (𝑢)
∫ ∞

0
𝜈𝑝 ¤𝑋 (𝑡 ) [𝜈 | 𝑋 (𝑡) = 𝑢]d𝜈. (2.9)

When 𝑋 (𝑡) is a Gaussian process, 𝑝𝑋 (𝑡 ) is the corresponding Gaussian density. The derivative
¤𝑋 (𝑡), when conditioned on 𝑋 (𝑡) = 𝑢, follows a Gaussian distribution with mean 𝜇★ and standard

deviation 𝜎★:

𝑝 ¤𝑋 (𝑡 ) [𝜈 | 𝑋 (𝑡) = 𝑢] = N(𝜇★(𝑡), 𝜎★(𝑡)) [𝜈], (2.10)

𝜇★(𝑡) = 𝐾•(𝑡, 𝑡)
𝐾 (𝑡, 𝑡) 𝑢 = 𝜌•(𝑡, 𝑡)𝜎•(𝑡)

𝜎(𝑡) 𝑢, (2.11)

𝜎★(𝑡) = 𝜎•
√︃

1 − 𝜌2• (𝑡, 𝑡),

where 𝜎(𝑡) =
√︁
𝐾 (𝑡, 𝑡) is the standard deviation of the GP and N[𝜈] is a Gaussian pdf evaluated at

𝜈. The above expressions use a dot notation for derivatives along a single or both axes:

𝐾•(𝑥, 𝑦) = 𝜕𝐾 (𝑥, 𝑦)
𝜕𝑦

, 𝐾••(𝑥, 𝑦) = 𝜕2𝐾 (𝑥, 𝑦)
𝜕𝑥𝜕𝑦

. (2.12)

Consequently, the effective derivatives of the standard deviation and correlation are:

𝜎•(𝑡) =
√︁
𝐾••(𝑡, 𝑡), 𝜌•(𝑥, 𝑦) = 𝐾•(𝑥, 𝑦)

𝜎(𝑥)𝜎•(𝑦) . (2.13)

The expression for the density 𝜈+𝑋 (𝑢, 𝑡) of the average number of upcrossings at the level 𝑢 by
the non-stationary GP with a covariance kernel 𝐾 and zero mean was derived by Lutes et al. [11,
Example 7.2] by integrating explicitly eq. (2.9) with the conditional Gaussian distribution 𝑝 ¤𝑋
substituted from eq. (2.10) and is:

𝜈+𝑋 (𝑢, 𝑡) =
e

−𝑢2
2𝜎2 (𝑡 )

√
2𝜋𝜎(𝑡)

(
𝜇★(𝑡)Φ

[
𝜇★(𝑡)
𝜎★(𝑡)

]
+ 𝜎★(𝑡)√

2𝜋
e
− 𝜇2

★ (𝑡 )
2𝜎2

★ (𝑡 )

)
, (2.14)

where Φ is the cumulative density function (CDF) of the standard normal distribution.
The analytic results above are valid for a continuous differentiable GP kernel. To evaluate these

expressions numerically it proved useful to apply 2D spline interpolation to our covariance matrices
before computing the derivatives. In this way we managed to reduce the uncertainty introduced by
the coarse grid without sacrificing performance much, because spline interpolation provides exact
spline derivatives straightaway. We then used Simpson quadrature to integrate the computed density
over the mass range.

2.2 Effect of coarse binning on upcrossings

The Gross and Vitells upper bound is based on the average number of upcrossings of some level 𝑢 by
the significance curve 𝑍 (𝑀). When computing this number numerically, from MC toys, some finite
resolution grid is used to approximate the curve. It turns out that the resolution of the grid affects
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the resulting number of upcrossings. In this section we investigate this effect, which is relevant for
any Gross and Vitells procedure, whether it is based on brute force toys or on the suggested GP toys.

We illustrate the effect on an example of an analytically defined Gaussian process with a squared
exponential kernel:

𝐾 (𝑥, 𝑦) = e−
(𝑥−𝑦)2

𝛼2 , 𝛼2 = 10. (2.15)

We generated 106 samples from this GP and counted the average number of upcrossings above the level
𝑍 = 0.2 on a set of grids with different resolutions. In figure 2 we show how the accuracy decreases
with the resolution, starting when the bin size exceeds about one third of the correlation length.
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Theo.
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Figure 2. The average number of upcrossings as a function of bin size. The analytical estimation for the
average number of upcrossings (red dashed line) was calculated following section 2.1 for a squared exponential
kernel (eq. (2.15)). The average number of upcrossings for various bin sizes was estimated from 106 GP toys
(black dots connected by a gray line). The statistical errors are smaller than the size of the dots.

The underestimation of the number of upcrossings affects the upper bound for the global
significance, i.e. the numerator of the trials factor, subsequently the trials factor itself will be
underestimated. The local significance, however, which is the denominator, is also affected by the
finite grid resolution. The tip of the peak at high significance most probably will appear between
grid points, therefore the local significance will also be underestimated.

We investigated the dependency of the effective peak width on its height. We sampled 106 toys
from the GP (eq. (2.15)). For each sample we detected the highest point (𝑥max, 𝑦max), chose a window
of 40 around it to select one peak and fitted it with a squared exponential shape 𝑦 = 𝐴2e(𝑥−𝐵)2/𝐶2 +𝐷.
For each sample we recorded a pair (𝑦max, 𝐶), where 𝐶 is the effective peak width. We then removed
the failed fit outliers by rejecting the 1% lowest and 1% highest heights. We observed that the
average width of the peak decreases with its height (figure 3), therefore, the finite grid effect on the
trials factor gains a slight compensation.

With the Asimov set of samples we are not trying to improve this particular aspect of the Gross
and Vitells approach, yet, GP toys are also affected by the choice of the grid so we wanted to shed
more light on this caveat. Although we are not very concerned by the choice of a grid for the signal
nuisance parameters, of course it makes good sense to choose a grid that allows peaks to be described
by at least a handful of points.
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Figure 3. The average effective width of the highest peak of GP samples for a squared exponential kernel
(eq. (2.15)) as a function of its height for 106 GP toys (black dots) fitted to a linear trend (red dashed line).

3 Examples

The models we use as examples are inspired by searches for new resonances. The invariant masses of
signal candidates are binned. Two of the search models have signals with specified widths whereas
the third includes the signal width as a free parameter (on a grid) in the likelihood maximization.

3.1 Background template model

Gross and Vitells used this model in their study [1]. It consists of a fixed background shape modeled
by the probability density function of the Rayleigh distribution with scale parameter 𝜎𝑏, and a
Gaussian signal with resolution 𝜎𝑠 (𝑀) that grows linearly with mass. Background counts 𝐷𝑖 are
sampled from the Poisson distribution with the rate 𝑏0 · 𝑏𝑖 in each bin 𝑖 of the data grid 𝑚𝑖 defined
as follows:3

𝑏𝑖 = 𝑁
𝑚𝑖

𝜎𝑏
e
− 𝑚2

𝑖

2𝜎2
𝑏 , (3.1)

𝐷𝑖 ∼ Poisson[𝑏0 · 𝑏𝑖],

where 𝑁 was chosen such that
∑
𝑏𝑖 = 1 and, therefore, 𝑏0 is the total number of events we expect to

observe.
To test the precision of our GP-based approximation of the trials factor we compute the baseline

via 106 brute force MC simulations of the experiment. We scan each background simulation by
testing signal hypotheses for 𝑀 in a range that is narrower, in this example, than the data grid 𝑚:

𝑠𝑖 (𝑀) = 1√
2𝜋𝜎𝑠 (𝑀)

e
− (𝑚𝑖−𝑀)2

2𝜎2
𝑠 (𝑀) , (3.2)

𝜎𝑠 (𝑀) = 𝐴
(
1 + 𝑀

𝐵

)
,

3𝜎𝑏 = 40 GeV, 𝑏0 = 2000, 𝐴 = 2.5 GeV, 𝐵 = 50 GeV, 𝑚𝑖 = 0.5−154.5 GeV with a step of 1 GeV, 𝑀𝑖 = 5−120 GeV
with a step of 0.25 GeV.
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and maximize the likelihood with Poisson statistics in the bins of data:

𝑁𝑖 = 𝜇𝑠𝑖 (𝑀) + 𝛽𝑏𝑖 , (3.3)

− logL(𝜇, 𝑀, 𝛽) = −
∑︁
𝑖

𝐷𝑖 log(𝑁𝑖) +
∑︁

𝑁𝑖 ,

where 𝜇 and 𝛽 correspond to the numbers of inferred signal and background events that we vary to
maximize the likelihood L with respect to data 𝐷𝑖, and 𝑀 is the nuisance parameter that defines
the location of the hypothetical signal peak (the constant term of logL, which plays no role in the
maximization, is not shown).

An example of a background simulation and the corresponding significance curve are shown
in figure 4. As a cross-check we compute the average number of upcrossings for the significance
threshold of

√
0.5, the same threshold Gross and Vitells used in their work. We get 4.3071 ± 0.0016

upcrossings, which is consistent with their result of 4.34 ± 0.11.
Next, we generate the set of Asimov background data sets. In this case there are 155 of them,

one for each bin of data. One of the Asimov data sets and the corresponding significance curve are
shown in figure 4 for comparison.
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Figure 4. A background sample, an Asimov toy and the corresponding significance curves from the
Background template model. In (a) we show an example of a brute force toy sampled from the background
template (orange dots) and one data set from the set of Asimov data sets (blue dots). The red arrow specifies
the bin that was distorted in this particular Asimov data set. In (b) we show the significance curves from the
signal plus background fits for the toy sample (orange line) and the Asimov data set (blue line).

For each Asimov data set we compute the partial covariance (see figure 5(a)), then we sum them
and normalize according to eq. (2.7) to produce the Asimov GP covariance, shown in figure 5(b).
As expected, the width of the ridge on the diagonal of the covariance matrix is seen to have the same
trend as the signal resolution that grows linearly with the mass hypothesis (eq. (3.2)).

Before using the covariance matrix to sample the significance curves, let us first evaluate how
well we approximate the covariance matrix estimated from the brute force toys. For this we subtract
the Asimov covariance, shown in figure 5(b), from the covariance matrix constructed from 106 brute
force toys, shown in figure 6(a), and plot the difference between the two covariances in figure 6(b).
The differences between Asimov and brute force covariance are 100 times smaller than the values
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Figure 5. Partial contributions to the covariance Σ̂(𝑀𝑖 , 𝑀 𝑗 ) (a) from 15.5, 65.5 and 100.5 GeV Asimov data
sets and the full Asimov GP covariance (b) for the Background template model.
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Figure 6. The difference (b) between the brute force (a) and Asimov (figure 5(b)) covariance matrices
calculated for the Background template model.

in the covariance itself. We obtain similar patterns of differences for statistically independent
simulations, so we conclude the pattern is systematic.

In our experience, the trials factor appears to be the most sensitive metric to evaluate approx-
imations of the global significance. We estimate the trials factor from 360 · 106 significance curves
sampled from the Asimov GP. In figure 7 we compare the Asimov GP trials factor, as a function
of the local significance, to the brute force approach and approximations that include the Gross and
Vitells upper bound and the rule of thumb estimate. The latter was calculated as a ratio of the mass
range to the signal resolution, that we average, afterwards, over the mass range, since the resolution
changes with the energy scale. We explore the sensitivity of the TF to the Asimov GP deviations by
amplifying the difference between Asimov GP covariance and the brute force covariance by factors
of 10 upwards and downwards. From this simple sensitivity analysis we see that visible deviations
only appear in the very high significance region (here ∼ 6𝜎), in which also the Asimov GP approach
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is affected by coarse binning effects, and in which the Gross and Vitells upper bound serves as a
good approximation to the true TF value. In the same figure we also show that the analytic method
described in section 2.1 is in excellent agreement with the Gross and Vitells extrapolated upper bound.

We observe a significant deviation of the Asimov GP from the brute force trials factor estimate
at high local significance levels. Qualitatively, we attribute this to the non-gaussianity of the errors
introduced by Poissonian statistics that we approximated with a Gaussian distribution. Since the
Poisson density is not symmetric around the mean, and is more pronounced for large upward
fluctuations, the approximating Gaussian distribution gains upward bias. This effect is smaller at low
local significances because the Poisson distribution can be well approximated by a quadratic shape
around the mean. We confirmed this by studying the trials factors for larger integrated background
rates and observing that the differences at high significance were reduced.

GV u  er bound
GP Asimov am l.
Δm/σm
Direct Asimov u  er bound
GV reference  oint
GP Asimov
Brute force

0 1 2 3 4 5 6 7
Z local
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Figure 7. Trials Factor TF as a function of local significance 𝑍local for the Background template model. We
estimated TF from 106 brute force toys (green dots) and compare it to the Asimov GP results (orange line).
We color in gray the area enclosed between the two amplified lines from the TF sensitivity study for the
Asimov covariance (section 3.1). The solid blue line shows the Gross and Vitells upper bound [1, eq. (3)]
extrapolated from the reference significance threshold

√
0.5 (marked by the black cross on the plot). For

comparison we show the semi-analytical estimate (section 2.1) of the Gross and Vitells upper bound (red
dashed line) and the rule of thumb (black line).

3.2 𝑯 → 𝜸𝜸 inspired model
This model is inspired by the ATLAS and CMS searches for the Higgs boson decaying to 2
photons [4, 5]. In this case the background is modeled as an exponential distribution with Gaussian
errors 𝜎𝑏 in each bin of data. In order to challenge our method with a more realistic background
scenario, in addition to the normalization 𝑏0, the rate parameter 𝛼𝑏 is also unconstrained in the
maximum likelihood fits:4

𝑏𝑖 (𝛼𝑏) = e−(𝑚𝑖−100)𝛼𝑏 , (3.4)
𝐷𝑖 ∼ N(𝑏0 · 𝑏𝑖 , 𝜎𝑏).

We also simplify the signal model by setting its resolution 𝜎𝑠 to a constant:

𝑠𝑖 (𝑀) = 1√
2𝜋𝜎𝑠

e
− (𝑚𝑖−𝑀)2

2𝜎2
𝑠 . (3.5)

4𝛼𝑏 = 0.033 GeV−1, 𝑏0 = 10, 𝜎𝑏 = 0.3, 𝜎𝑠 = 5 GeV, 𝑚𝑖 = 𝑀𝑖 = 100 − 160 GeV with a step of 1 GeV.
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We unify the grids and use the same bins for both sampling of the MC toys (𝑚𝑖) and signal location
scan (𝑀𝑖). The structure of the likelihood function in this case is:

𝑁𝑖 = 𝜇𝑠𝑖 (𝑀) + 𝛽𝑏𝑖 (𝛼𝑏), (3.6)

− logL(𝜇, 𝑀, 𝛽, 𝛼𝑏) =
∑︁
𝑖

(𝑁𝑖 − 𝐷𝑖)2.

Following the same algorithm as for the Gross and Vitells model, we first show an example
of the brute force and Asimov background samples (figure 8(a)) together with the corresponding
significance curves (figure 8(b)).
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Figure 8. A background sample, an Asimov toy (a) and the corresponding significance curves (b) from the
𝐻 → 𝛾𝛾 inspired model. See the detailed explanation of the two plots in figure 4.

Already from the background fit to the Asimov sample (figure 8(b)), we can see that the
increased flexibility of the background model introduces more sophisticated long-range correlations.
Notice the asymmetry between the left and right sides of the peak. When the signal hypothesis is
near the Asimov fluctuation at 120 GeV, the signal part of the model accommodates it, but well
below and above this the rate parameter of the background model tries to compensate for the local
excess, which distorts the background model and leads to weak but clear regions of long-range
anti-correlation and correlation. We confirm this observation from the plots of the GP covariance
that we estimate from the Asimov samples (figure 9(b)).

We then compare the Asimov covariance to the one calculated with brute force (figure 10). It
shows the same degree of accuracy as we have observed for the Background template model: the
differences between the Asimov and brute force covariances are 100 times smaller than the values of
the covariance itself.

The various computations of the trials factor for the 𝐻 → 𝛾𝛾 inspired model are shown in
figure 11. Since the likelihood and the generation of Monte Carlo data sets both use a Gaussian pdf
for the data in each bin, there is no significant difference between the brute force and GP results at
high significance, in contrast to the results for the Background template model.

3.3 𝑯 → 𝜸𝜸 model with 2-dimensional search region
We keep the background model unchanged from the 1-D example (eq. (3.4)), however, we want
to study a signal model with more than one nuisance parameter. In this case a 1-dimensional
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Figure 9. The partial contribution to the covariance Σ̂(𝑀𝑖 , 𝑀 𝑗 ) (a) from the 145.5 GeV Asimov data set and
the full Asimov GP covariance (b) for the 𝐻 → 𝛾𝛾 inspired model.
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Figure 10. The difference (b) between the brute force (a) and Asimov (figure 9(b)) covariance matrices
calculated for the 𝐻 → 𝛾𝛾 inspired model.
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Figure 11. Trials Factor TF as a function of local significance 𝑍local for the 𝐻 → 𝛾𝛾 inspired model. See the
detailed explanation of the plot in figure 7.
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significance curve becomes a multidimensional surface. However, each point on this surface still
behaves like a standard normal random variable. As defined in section 2, 𝑀 denotes the set of points
that constitute the search region.

For example, in the 2-D case, when in addition to mass 𝑚𝑠 we also add width 𝜎𝑠 as a
second nuisance parameter, 𝑀 gains a second axis, consequently, the significance surface becomes
2-dimensional. The signal model for this example is5

𝑠𝑖 (𝑀) = 𝑠𝑖 (𝑚𝑠, 𝜎𝑠) = 1√
2𝜋𝜎𝑠

e
− (𝑚𝑖−𝑚𝑠 )2

2𝜎2
𝑠 . (3.7)

The likelihood function is the same as for the 1-D case (see eq. (3.6)).
For the covariance calculation the situation does not change if we think in terms of 𝑀 , i.e., the

expressions in eq. (2.4) still hold. For visualization, on the contrary, it is convenient to distinguish
between mass and width dimensions. The transition between 𝑀𝑚𝑛, that preserves mass and width
correspondingly, and 𝑀𝑖 can be constructed as follows:

{𝑀1,𝑀2, . . .} (3.8)
⇓

{𝑀11, . . . , 𝑀1𝑘 ,𝑀21, . . . , 𝑀2𝑘 , 𝑀31, . . .}.

In figure 12 we visualize the Asimov covariance matrix in the 2-dimensional case, which we
unwrapped according to eq. (3.8). We also show different projections of this covariance and compare
the Asimov covariance to the brute force covariance computed with 3 · 106 toys in figure 13. We
again observe that the differences between covariances (figure 13(e)) are 100 times smaller than the
values in the covariance matrix in figure 12.
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Figure 12. 4D covariance matrix 𝑀𝑖 𝑗 unwrapped into 2D following eq. (3.8) (a) and its transposed version (b),
for the 𝐻 → 𝛾𝛾 inspired model with a 2D search region. For the purpose of illustration, the less frequently
changing dimension on each plot has a reduced number of points, consequently, the plots have a reduced
number of “squares”. The notation 𝑀𝑖 𝑗 emphasises that the grid was artificially downsampled.

5𝛼𝑏 = 0.033 GeV, 𝑏0 = 10, 𝜎𝑏 = 0.3 GeV, 𝑀𝑖 𝑗 = (𝑎𝑖 , 𝑏 𝑗 ), 𝑚𝑖 = 100 − 160 GeV with a step of 1 GeV; 𝑎𝑖 =
100 − 160 GeV and 𝑏𝑖 = 1 − 10 GeV with 61 points on the grid each.
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Figure 13. Covariance for the 2D 𝐻 → 𝛾𝛾 model (in the 2D case a covariance between two significance
surfaces). The covariance between the point on the first surface and 1 chosen point of mass and width
(𝑚𝑠 = 140 GeV, 𝜎𝑠 = 2.5 GeV) from the second surface is shown in (a). The covariance between the slices of
surfaces, where 𝜎𝑠 was fixed for both surfaces, is shown in (b) for 𝜎𝑠 = 3.25 GeV and in (d) for 𝜎𝑠 = 7 GeV.
Similarly, (c) shows the pattern for the slices where 𝑚𝑠 is set to 130 GeV for both surfaces. The histogram
in (e) shows the distribution of the values in the cells of the matrix of differences between the brute force and
Asimov covariances, where 𝑁 denotes the absolute bin counts.

The trials factors we obtained for this model are shown in figure 14. In this case the Vitells and
Gross upper bound [2] is based on the Euler characteristic of the 2-dimensional significance surface.
The upper bound calculation requires the Euler characteristic to be known at two significance levels
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Figure 14. Trials Factor TF as a function of local significance 𝑍local for the 𝐻 → 𝛾𝛾 inspired model with
2D search region. The green dots, orange line, and gray area are explained in figure 7. The solid blue line
shows the Vitells and Gross upper bound [2] extrapolated from the two reference significance thresholds
(
√

0.5 and 1) (black crosses).

(black crosses) before extrapolation. From the qualitative comparison of figure 14 to figure 7 and
figure 11 it seems that for a higher dimensional search region, the Vitells and Gross upper bound
becomes even more conservative.

4 Performance analysis

Several times in our work we mentioned that GP toys are more efficient in comparison to brute force
toys. In this section we will quantify this statement.

We chose the𝐻𝛾𝛾 inspired model as a benchmark. There were two reasons that guided our choice:

• The 𝐻𝛾𝛾 inspired model is more complex than the background template model,

• Adding more dimensions, according to section 3.3, only increases the number of fits per MC
sample, but does not change the relative fitting performance.

Fitting on a regular laptop with 4 cores and one Python process, it took us 9 m 30 sec to produce 103

significance curves, which is 62 000 fits for the 61-bin grid, or about 2 significance curves per second.
To estimate the covariance matrix with our proposed set of Asimov samples requires (61 + 1) ×

61 = 3782 fits to obtain 61 significance curves, which took 23 seconds, or also about 2 significance
curves per second. Having the covariance, we then managed to produce 10 · 106 GP toys in 27 sec,
or roughly 4 × 105 GP toys per brute force toy.

In summary, for little additional effort and CPU time, we can create much larger samples to
estimate global p-values or average up-crossings.

5 Conclusion

A precise estimation of the look-elsewhere effect in searches for new resonances in high energy physics
is challenging. Existing methods are overly conservative unless the observed local significance
is high enough. In this paper we proposed and evaluated a new approach based on Gaussian
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processes. The new approach doesn’t eliminate the production of Monte Carlo “toys”, however, the
computational process becomes much more efficient. We tested the approach on several models,
including models with more than 1 nuisance parameter, that intentionally were constructed to have
different statistical features. The trials factors calculated with our new approach and with large
samples of brute force Monte Carlo simulations showed excellent agreement. As a cross-check,
we reproduced the result of the Gross and Vitells paper [1] that introduced the high-significance
approximation based on upcrossings. An actual realization of the method and implementation of the
test models was published and is available for use out of the box [7].
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1 Introduction

In high energy physics searches for new particles that appear in the data as resonances [1, 2],
one usually scans a mass region and hopes to find a peak of high significance at some mass.
The significance at each mass of the scan is generally found by applying Wilks’ theorem [3] to the
likelihood-ratio test statistic (LRT) [4] for each point, and results in a field of significances measured
across the search region.

While the resonance may appear anywhere in the search region, the analysis usually targets
the highest (local) significance, which leads to the recurring challenge of estimating the global
significance of this observation. The necessity of calculating the probability for a background
fluctuation to give such a peak of significance anywhere in the search region, and not simply where
the significance is maximal, is commonly referred to as the look-elsewhere effect (LEE).

There have been a number of studies investigating the LEE, and in our work we pay particular
attention to those describing the significance field with a Gaussian process. While some studies [5–7]
set the upper bound on the trials factor, which converts a local p-value into a global one, and only
use a Gaussian process implicitly to link the low and high significance regions, other studies [8]
require explicit values for the Gaussian process parameters.

In this paper we establish a chain of lightweight steps from a non-linear parametric statistical
model to the trials factor by estimating the covariance matrix of the significance field. To construct
the estimate involving only one background only fit to the data, we apply linear expansion to the
non-linear background shape. The way to calculate the covariance matrix starting from a linear
model was briefly discussed by Demortier ([9], pg. 23–33). As part of our work, we give a strict
mathematical formulation of the method and demonstrate a practical application of it to non-linear
background shapes, with the estimated covariance matrix serving as a proxy for the straightforward
trials factor estimate.

A common input for the methods that quantify the LEE is a set of maximum likelihood fits to
some number of Monte Carlo generated data realizations. They may be used to estimate the trials
factor in the lower significance region, or the covariance matrix of the Gaussian process itself (the
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significance autocovariance). The challenge, then, is to fit enough datasets to estimate the trials
factor with a satisfactory precision, while keeping the number of fits as small as possible.

In high-energy physics searches for a new particle or a resonance, typically, the likelihood-ratio
test statistic is used to construct the p-value for each point on a search grid. In the asymptotic
regime, the test statistic follows a 𝜒2 distribution.

For analyses that use a Gaussian process to model the significance, the number of degrees of
freedom of the test statistic distribution is, typically, 1. For this case, in section 2, we suggest a
method to estimate the significance covariance matrix that makes use of a single background-only
fit to the data.

We replace the set of fits that were required in our previous work, with derivatives of the
best-fit-to-the-data background model. Fortunately, the derivatives can often be extracted from the
fit software.

Core assumptions. In section 3 we show that three quite generic requirements:

1. the background model should be well approximated by its linear expansion around the best
fit parameters,

2. the assumption that the data can be binned and fluctuations in different bins of the dataset are
independent,

3. the fluctuations in each bin follow a Gaussian distribution,

together, are consistent with the assumptions made in the empirical study by Ananiev & Read [8],
which relied on the additivity (superposition) principle for the fluctuations to empirically estimate
the covariance matrix of the significances. We argue, therefore, that this work serves as a theoretical
basis for the method of the set of Asimov background samples introduced in the study, and at the
same time may rely on its validations.

1.1 Statistical model

The basic structure of a statistical model commonly used in high-energy physics experiments that
search for a new particle or a resonance was described in detail in the empirical study [8]. For the
present study, we chose the 𝐻 → 𝛾𝛾 inspired model as a benchmark, because it satisfies without
approximation the second and third requirements above.

The search is conducted with the likelihood ratio test statistic evaluated for each point 𝑀 of the
search grid M.

In this binned model, the expected background 𝑏𝑖 (𝜽) has an exponential shape and is used
as the null-hypothesis 𝐻0. The shape of the expected signal 𝜇𝑠𝑖 (𝜽) is Gaussian and together with
background 𝑏𝑖 forms the alternative 𝐻1, expected signal + background estimate:

𝑛𝑖 (𝜇, 𝜽 , 𝑀) = 𝜇𝑠𝑖 (𝜽 , 𝑀) + 𝑏𝑖 (𝜽), (1.1)

where 𝑖 enumerates bins, 𝜽 denotes the vector of nuisance parameters and 𝜇 is the signal strength
parameter.
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Generally, in the asymptotic regime (e.g. large sample), and neglecting constant terms, log-
likelihoods for 𝐻0 and 𝐻1 may be approximated as follows:1

−2 lnL0(𝜇 = 0, 𝜽) =
∑︁
𝑖

(
𝑑𝑖 − 𝑏𝑖 (𝜽)

𝜎𝑖

)2
, (1.2)

−2 lnL1(𝜇, 𝜽 , 𝑀) =
∑︁
𝑖

(
𝑑𝑖 − 𝑏𝑖 (𝜽) − 𝜇𝑠𝑖 (𝑀, 𝜽)

𝜎𝑖

)2
,

where 𝑖 enumerates bins, 𝑀 ∈ M denotes the point in the search region M of parameters which
are not present under the background-only hypothesis, 𝜽 are the nuisance parameters, and 𝑑𝑖
corresponds to the binned data with errors 𝜎𝑖 .2

Our goal is to estimate the covariance matrix Σ𝑀𝑁 of the statistical significances 𝑍𝑀 and 𝑍𝑁

evaluated at two different points of the search region M:

Σ𝑀𝑁 = ⟨𝑍𝑀𝑍𝑁 ⟩𝑑 , 𝑀, 𝑁 ∈ M, (1.3)

𝑍𝑀 = sign( 𝜇̂)
√︃
𝑡𝜇 (𝑀) ∼ N [0, 1], (1.4)

𝑡𝜇 (𝑀) = −2 ln
L0(𝜇 = 0, 𝜽0)

L1( 𝜇̂, 𝜽0 + 𝜽1, 𝑀) ∼ 𝜒2
d.o.f=1, (1.5)

where 𝑡𝜇 (𝑀) is the likelihood-ratio test statistic (LRT), 𝑍𝑀 is the so-called signed-root LRT, 𝜽0
are the nuisance parameters that maximize the background-only likelihood L0, 𝜽0 + 𝜽1 together
with the signal strength 𝜇̂ maximize the signal+background likelihood L1, and N[0, 1] denotes the
standard normal distribution.

To give a feeling of the𝐻𝛾𝛾 inspired model, in figure 1 we plotted the shape of the background-
only hypothesis 𝑏𝑖 , one sample of data sampled from it, and a corresponding significance curve
(eq. (1.4)). Notice how clearly visible bumps in the data are reflected in peaks of the signifi-
cance curve.

We would like to remark that for the signal+background model we are fitting 𝜽 as a deviation
from 𝜽0. This is essential for the proper separation of variables in the subsequent calculations.

We assume that the best fit of the background model 𝑏𝑖 to the data 𝑑𝑖 is available for the study
as 𝑏𝑖 (𝜽) = 𝑏̂𝑖 . In order to simplify the notation, we make use of the freedom to choose the reference
point for the model parameters 𝜽 and define the best fit parameters to be 𝜽 = 0.

2 Method

To simplify the notation, we redefine 𝑑𝑖 , 𝑠𝑖 and 𝑏𝑖 to include 𝜎𝑖:

𝑑𝑖
𝜎𝑖

↦→ 𝑑𝑖 ,
𝑠𝑖
𝜎𝑖

↦→ 𝑠𝑖 ,
𝑏𝑖
𝜎𝑖

↦→ 𝑏𝑖 . (2.1)

1The 𝐻𝛾𝛾 inspired model assumes Gaussian errors in its definition [8]. The expressions for log-likelihoods (eq. (1.2))
in case of this model are, therefore, exact.

2We have assumed that the errors 𝜎𝑖 are independent of the nuisance parameters 𝜽 . With a linear correction to 𝜎𝑖 it
is still possible to get a closed form expression for the test statistic and significance. The calculation of the covariance
would require sampling toys to average out the fluctuations. No additional fits would be required, however, so this may
be a potential option for more sophisticated analyses.
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Figure 1. One brute force toy (orange) sampled from a background-only hypothesis (blue) of the 𝐻 → 𝛾𝛾

inspired model. The signal significance curve is plotted below (green), where each point of the curve
corresponds to a different choice of the signal hypothesis.

The log-likelihoods then become:

−2 lnL0 =
∑︁
𝑖

(𝑑𝑖 − 𝑏𝑖 (𝜽))2, (2.2)

−2 lnL1 =
∑︁
𝑖

(𝑑𝑖 − 𝑏𝑖 (𝜽) − 𝜇𝑠𝑖 (𝜽))2.

For every realization of the data, we expect the deviations of the fit parameters 𝜇 and 𝜽 from 0
to be small (in the absence of a signal), and therefore the first-order expansion of 𝑏𝑖 (𝜽) and 𝑠𝑖 (𝜽)
around 0 to be accurate enough.

The log-likelihoods then are:

−2 lnL0 =
∑︁
𝑖

(
𝑑𝑖 − 𝑏̂𝑖 − Δ𝑖𝛽𝜃

𝛽
)2
, (2.3)

−2 lnL1 =
∑︁
𝑖

(
𝑑𝑖 − 𝑏̂𝑖 − Δ𝑖𝛽𝜃

𝛽 − 𝜇𝑠𝑖 (0)
)2
,

where Δ𝑖𝛼 = 𝜕𝑏𝑖 (𝜽 )
𝜕𝜃𝛼

��
𝜽=0 is the Jacobian of the best-fit background model and the Einstein summation

rule applies to the indices 𝛽. Since the signal model 𝑠𝑖 contributes to the log-likelihoods eq. (2.3)
only at lowest order, thus is constant, we simplify 𝑠𝑖 (0) to 𝑠𝑖 from now on.

The equations that define optimal values of 𝜽0, 𝜽1, and 𝜇 then are:

𝜕L0
𝜕𝜃𝛼

|𝜽0 ∝
∑︁
𝑖

(𝑑𝑖 − 𝑏̂𝑖 − Δ𝑖𝛽𝜃0
𝛽) · Δ𝑖𝛼 = 0, (2.4)

𝜕L1
𝜕𝜃𝛼

|𝜽1, 𝜇̂ ∝
∑︁
𝑖

(𝑑𝑖 − 𝑏̂𝑖 − Δ𝑖𝛽 (𝜃0
𝛽 + 𝜃1

𝛽) − 𝜇̂𝑠𝑖) · Δ𝑖𝛼 = 0, (2.5)

𝜕L1
𝜕𝜇

|𝜽1, 𝜇̂ ∝
∑︁
𝑖

(𝑑𝑖 − 𝑏̂𝑖 − Δ𝑖𝛽 (𝜃0
𝛽 + 𝜃1

𝛽) − 𝜇̂𝑠𝑖) · 𝑠𝑖 = 0. (2.6)
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To reduce the number of indices, we rewrite the expressions above with bra-ket notation:
〈
𝑑 − 𝑏̂

��Δ = ⟨𝜃0 | Δ⊺Δ, (2.7)
0 = ⟨𝜃1 | Δ⊺Δ + 𝜇̂ ⟨𝑠 | Δ, (2.8)〈

𝑑 − 𝑏̂
��𝑠〉 = ⟨𝜃0 + 𝜃1 | Δ⊺ |𝑠⟩ + 𝜇̂ ⟨𝑠 |𝑠⟩ , (2.9)

where in eq. (2.8) we used eq. (2.7) to cancel the 𝜽0 contribution. We can solve eq. (2.7) and
eq. (2.8) for 𝜽0 and 𝜽1 correspondingly:

⟨𝜃0 | =
〈
𝑑 − 𝑏̂

��Δ(Δ⊺Δ)−1, (2.10)
⟨𝜃1 | = −𝜇̂ ⟨𝑠 | Δ(Δ⊺Δ)−1. (2.11)

It is important to mention that, although Δ itself is generally singular, the product Δ⊺Δ appears
to be a Hessian of −2 lnL1 with respect to 𝜽1. For the background model best-fit point 𝜽 = 0 to be
a minimum, it is required that the Hessian be positive definite, thus Δ⊺Δ is invertible.

We substitute eq. (2.10) and eq. (2.11) into eq. (2.9) and solve for 𝜇̂:

𝜇̂(𝑀) =
〈
𝑑 − 𝑏̂

�� 𝑃 |𝑠𝑀⟩
⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩ , (2.12)

𝑃 = 1 − Δ(Δ⊺Δ)−1Δ⊺ .

An interesting and important fact is that 𝑃 is a projector and it is symmetric:

𝑃2 = 𝑃, 𝑃 = 𝑃⊺ . (2.13)

A projector is always positive semi-definite, which means that the product below is non-negative
for any non-zero s:

⟨𝑠 | 𝑃 |𝑠⟩ = ⟨𝑠 | 𝑃2 |𝑠⟩ = (𝑃 |𝑠⟩)2 ≥ 0, ∀s ≠ 0. (2.14)

Let us estimate the test statistic 𝑡𝑀 :

𝑡𝑀 = (−2 lnL0) − (−2 lnL1)
= 2

〈
𝑑 − 𝑏̂ − Δ𝜽0

��Δ𝜽1 + 𝜇̂𝑠
〉 + ⟨Δ𝜽1 + 𝜇̂𝑠 |Δ𝜽1 + 𝜇̂𝑠⟩ . (2.15)

We again use eq. (2.7) to cancel the 𝜽0 contribution and eq. (2.11) to substitute the solution
for 𝜽1:

𝑡𝑀 = 𝜇̂
〈
𝑑 − 𝑏̂

�� 𝑃 |𝑠𝑀⟩ = 𝜇̂2 ⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩ . (2.16)

The significance 𝑍𝑀 , as defined in eq. (1.4), is:

𝑍𝑀 = 𝜇̂
√︁
⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩ =

〈
𝑑 − 𝑏̂

�� 𝑃 |𝑠𝑀⟩√︁
⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩

. (2.17)

The square root in eq. (2.17) is always defined, as the product under the square root is always
positive (eq. (2.14)).
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For the covariance matrix estimation, we would need to average over data. We are looking for
a solution with uncorrelated fluctuations in each bin (section 1), and we recall that we normalized
the errors to 1 in eq. (2.1), therefore, the following is true:

𝐸𝑑

{��𝑑 − 𝑏̂〉 〈
𝑑 − 𝑏̂

��} = 1, (2.18)

where 𝐸𝑑 denotes the expectation value calculated across samples of the dataset.
The covariance matrix, then, is:3

Σ𝑀𝑁 = 𝐸𝑑 {𝑍𝑀𝑍𝑁 }

= 𝐸𝑑

{
⟨𝑠𝑀 | 𝑃

��𝑑 − 𝑏̂〉√︁
⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩

〈
𝑑 − 𝑏̂

�� 𝑃 |𝑠𝑁 ⟩√︁
⟨𝑠𝑁 | 𝑃 |𝑠𝑁 ⟩

}

=
⟨𝑠𝑀 | 𝑃√︁

⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩
𝐸𝑑

{��𝑑 − 𝑏̂〉 〈
𝑑 − 𝑏̂

��} 𝑃 |𝑠𝑁 ⟩√︁
⟨𝑠𝑁 | 𝑃 |𝑠𝑁 ⟩

=
⟨𝑠𝑀 |√︁

⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩
𝑃

|𝑠𝑁 ⟩√︁
⟨𝑠𝑁 | 𝑃 |𝑠𝑁 ⟩

, (2.19)

where we used the symmetry and projector properties of 𝑃.
It should be noted that from the data fluctuations d − b̂ contributing to the covariance matrix

in the form

Fluct. ∝ 𝐸𝑑

{��𝑑 − 𝑏̂〉 〈
𝑑 − 𝑏̂

��} , (2.20)

a superposition principle, relied on in ref. [8], can be derived:

Σ𝑀𝑁 =
∑︁
𝑓

Σ 𝑓
𝑀𝑁 , (2.21)

where 𝑓 enumerates independent fluctuations in different bins.
In summary, we can estimate the autocovariance matrix of the significance field from the signal

model and derivatives of the background model:

Σ𝑀𝑁 =
⟨𝑠𝑀 |√︁

⟨𝑠𝑀 | 𝑃 |𝑠𝑀⟩
𝑃

|𝑠𝑁 ⟩√︁
⟨𝑠𝑁 | 𝑃 |𝑠𝑁 ⟩

, 𝑀, 𝑁 ∈ M

𝑃 = 1 − Δ(Δ⊺Δ)−1Δ⊺, (2.22)

Δ𝑖𝛼 =
𝜕𝑏𝑖 (𝜽)
𝜕𝜃𝛼

|𝜽=0.

3To see the parallel with Demortier [9], one needs to think of the background model as a linear combination of vectors
in Δ. Then eq. (2.8) defines a vector |𝑣𝑀 ⟩ = 𝑃 |𝑠𝑀 ⟩√

⟨𝑠𝑀 |𝑃 |𝑠𝑀 ⟩ , which was introduced by Demortier and is orthogonal to each

of the vectors constituting the background shape. The test statistic, then, can be rewritten as 𝑡𝑀 =
(〈
𝑑 − 𝑏̂

��𝑣𝑀 〉)2
, and

the covariance can be expressed as Σ𝑀𝑁 = ⟨𝑣𝑀 |𝑣𝑁 ⟩.
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3 Justification of the set of Asimov background samples

In this section we would like to compare the derived expression eq. (2.22) for the linear ap-
proximation of the significance covariance matrix to the empirical study [8] and the 𝐻 → 𝛾𝛾

inspired model introduced there. To carry out the calculations we used the SigCorr package that
we developed specifically for trials factor studies, which now includes functionality for the linear
approximation [10].

We estimate the linear approximation using eq. (2.22) with the true parameters of the model,
which were predefined in the paper. The resulting matrix shown in figure 2 is visually indistin-
guishable from the one presented in the empirical study.

100 110 120 130 140 150 160
mi, GeV

100

110

120

130

140
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160

m
j, 

Ge
V

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 2. A linear approximation of the significance covariance matrix which was computed on the true
parameters of the 𝐻 → 𝛾𝛾 inspired model.

We also show, in figure 3, the difference between the linear approximation computed on the
model’s true parameters (figure 2) and the empirical estimate. We confirm that the empirical
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−0.0020
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0.0015

0.0020

Figure 3. The difference between the linear approximation of the significance covariance matrix computed
with the true parameters of the 𝐻 → 𝛾𝛾 inspired model (figure 2) and the covariance matrix estimated with
the set of Asimov background samples [8].
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covariance matrix is compatible with the linear approximation suggested in this paper within the
accuracy of the empirical estimate.

On the one hand, the compatibility of the linear approximation and the empirical study allows
us to refer to the validations conducted in the empirical study, including those regarding trials factor
estimation, and to re-apply them to the method suggested in this paper. The direct calculation of
the up-crossings from the covariance matrix, described in [8], becomes particularly appealing now,
since it requires only a single fit of the statistical model to the data.

The linear approximation, on the other hand, serves as the theoretical basis for the empirical set
of Asimov background samples used to estimate the covariance matrix in the aforementioned work.

4 Conclusion

In this work we proposed a novel method for the estimation of the covariance matrix of statistical
significance in new particle searches using a linear expansion of the statistical model around its
background-only best fit to the data. In addition to the closed form expression for the linear
approximation of the significance covariance matrix, we also presented elegant expressions for the
best fitted signal strength and statistical significance in this approximation.

We proved that the suggested covariance matrix satisfies the superposition principle with regard
to the fluctuations of the data, which makes it a good proxy to the covariance matrix constructed
with the set of Asimov background samples [8].

Finally, we compared these two approaches with the example of a 𝐻 → 𝛾𝛾 inspired model and
showed that the deviations are compatible with the error of the set of Asimov background samples.

We, therefore, claim that all the validations conducted in the empirical study, including those
regarding trials factor estimation, hold for the linear approximation suggested in this paper, and
the linear approximation serves as a theoretical basis for the empirical set of Asimov background
samples construction.
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Summary
The Trials factor (TF) is a generalization of the Bonferroni correction for the significance of
repeated experiments. In a likelihood ratio scan that searches for the most significant peak of
signal amplitude as a function of some parameter, e.g. the mass of a hypothetical particle,
repeated experiments emerge effectively due to the localized nature of the hypothetical signal.
The trials factor in such a search is the ratio between the probability of observing such an
excess anywhere in the scanned search region to the probability of observing the excess at the
point of maximum observed significance. For a more detailed introduction of the TF, we refer
the reader to the work of Gross and Vitells (Gross & Vitells, 2010).

There are several ways to estimate the trials factor or an upper bound for it. Most of the
approaches require a number of samples from the background distribution (Monte Carlo (MC)
toys) to be generated and fitted with a statistical model. This procedure is separated in the
upper block of Figure 1, mainly because it is the most time-consuming part of the analysis.

The lower block in Figure 1 shows various ways to estimate the trials factor from the fitted
MC toys. When expressed as a pipeline, each way can be assembled from some simple building
blocks, the implementation of which is at the core of SigCorr.

The communication between the upper (fitting) and the lower (analysis) components is
conducted via HDF5 files with a well defined structure, which can be referred to in the
documentation of SigCorr (Ananiev & Read, 2023a). Such a weak coupling allows to easily
replace parts of the pipeline with more efficient tools if needed.
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Figure 1: Various ways to estimate the trials factor.

SigCorr is a framework that implements a wide range of tools and was developed to simplify
the process of construction of the pipelines shown above, and, therefore, to make studies of
the global significance or a trials factor a straightforward exercise. It is worth mentioning,
though, that the figure above is not exhaustive. We believe there are more ways to approach
the trials factor, and some of them may also be possible to implement with the tools provided
by SigCorr!

The project has a hybrid structure:

• From the perspective of fitting the Monte Carlo toys, it is a framework. Users will
have to implement their own statistical models following the guides and examples in the
documentation.

• From the perspective of analysis of the fitted toys, however, SigCorr is a Swiss Army
knife that assembles into one tool the knowledge from the frequently cited HEP papers
that studied statistical hypothesis testing and the trials factor (Cowan et al., 2011; Gross
& Vitells, 2010; Vitells & Gross, 2011).

Statement of need
In high-energy physics it is a recurring challenge to efficiently and precisely (enough) calculate
the global significance of, e.g., a potential new resonance. The Gross and Vitells trials factor
approximation (Gross & Vitells, 2010) and (Vitells & Gross, 2011) is based on the average
“up-crossings” of the significance in the search region, or generally on the average Euler
characteristic of the set of significance measurements that exceed the threshold of the local
significance. It has revolutionized the trials factor estimation for significances above 3 standard
deviations, but the challenges of actually calculating the average up-crossings and the validity
of the approximation for smaller significances remain.

In Ananiev & Read (2023b) a new method was proposed. It models the significance in
the search region as a Gaussian process (GP). The method was developed to overcome the
limitations of the Gross and Vitells approach via replacing expensive MC fits with lightweight
GP toys.

Up-crossings, Euler characteristic and Gaussian processes are commonly relied on in this field
of research. When studied together, they have many useful properties for the estimation of
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trials factors. SigCorr is the first project that assembles all of them into one Python package,
that also includes the tools for parallel analysis of the MC toys and GP toys in a unified fashion.
Together with the fitting framework it allows the path from the statistical model definition to
a TF estimate to be travelled.

SigCorr is a framework developed with a goal to cover a wide range of use cases for TF
estimates. There are, however, popular and well-maintained packages which cover some
aspects of this process. For example, RooFit (Verkerke & Kirkby, 2006) and PyHF (Heinrich et
al., n.d.), which are widely used in particle physics, may significantly replace or augment the
part of SigCorr that is responsible for optimizing the likelihoods of the statistical models. The
pyBumpHunter package (Vaslin & Donini, 2023) may help with brute force estimates of the TF.

Although SigCorr covers just simplified versions of all the above, it also implements validated
approximations and asymptotics for fast computations of the TF and its upper bound based on
classical papers in the field. The possibility of doing this in a modular but consistent fashion
makes SigCorr unique in the field, and will allow users to try different methods (Figure 1),
cross-validate and choose or construct the most suitable approach to their analysis.

Examples of use
Average Euler characteristic propagation

For the Gaussian process field, for any chosen threshold on the field values, one can define
a set of points above this threshold. The Euler characteristic of this set gives an estimation
of the number of peaks above the threshold, which is a very important characteristic of the
Gaussian process for the Trials factor studies.

A Gaussian process has a property that the average Euler characteristic at any threshold is
a simple function of a few reference Euler characteristic values and the threshold (Vitells &
Gross, 2011). The number of reference values required depends on the dimensionality of the
Gaussian field.

Here is how to estimate the average Euler characteristic for arbitrary thresholds with SigCorr,
knowing 2 reference values for a 2-dimensional Gaussian field:

import numpy as np

from sigcorr.tools.stats.gp.euler_number import GPEulerNumberPropagator

# 2D Gaussian process requires 2 reference values

ref_thresholds = np.array([1, 2.])

ref_euler_nums = np.array([3.2, 1.2])

target_thresholds = np.array([0.5, 1.5, 2.5])

euler_number_propagator = GPEulerNumberPropagator(ref_thresholds,

ref_euler_nums)

target_euler_numbers = euler_number_propagator.calc(target_thresholds)

# array([3.10791656, 2.29280228, 0.46934814])

Batched statistics

When the number of samples is known in advance but not all samples are available at the
moment (e.g. they don’t fit into RAM), it is still possible to estimate mean, variance, covariance
and statistical errors by processing the samples in batches.

import numpy as np

from sigcorr.tools.stats.batch_stats import BatchStats2

n_samples = 3

one_sample_shape = 2

samples = np.array([[1, 2], [2, 3], [3., 4.]])
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bs = BatchStats2(n_samples, one_sample_shape)

bs.push(samples[:1]) # push first batch

bs.push(samples[1:]) # push second batch

# sample mean

mean = bs.get_mean()

# array([2., 3.])

# sample variance

variance = bs.get_var()

# array([0.66666667, 0.66666667])

# covariance matrix between observables

covariance = bs.get_cov()

# array([[0.66666667, 0.66666667],

# [0.66666667, 0.66666667]])

# variance of the covariance matrix between observables,

# can be used to estimate statistical errors

# on the sample covariance estimate

covariance_variance = bs.get_cov_var()

# array([[0.22222222, 0.22222222],

# [0.22222222, 0.22222222]])

Statistical analysis of GP samples (parallel)

A set of standard normal random variables when squared follow a chi-squared distribution
with 1 degree of freedom. One can see the analogy with a test statistic curve emerging from
a likelihood scan. If we ask the question, what is the fraction of curves that exceed some
threshold, this would resemble the procedure used to estimate the trials factor via brute force.
Below we estimate the fraction of test statistic curves that exceed the threshold 1.2.

import numpy as np

from sigcorr.mapreduce.gp import gp_batch_mapreduce

from sigcorr.tools.utils import get_last_from_iter

from sigcorr.mapreduce.map_reducers import ChainCalc

from sigcorr.mapreduce.map_reducers import MathCalc

from sigcorr.mapreduce.map_reducers import OverflowsCalc

from sigcorr.mapreduce.map_reducers import BatchStats1Reduce

cov = np.eye(3) + 0.1

result_iterator = gp_batch_mapreduce(

cov, # covariance matrix of the GP

100, # number of GP samples

10, # batch size

(3, ), # sample shape

ChainCalc([MathCalc(np.square), OverflowsCalc(1.2)]), # apply to every batch

BatchStats1Reduce()) # aggregate

resulting_bs, num_processed = get_last_from_iter(result_iterator)

resulting_bs.get_mean()

Here, ChainCalc, MathCalc, OverflowsCalc are building blocks of the pipeline used to square
the GP sample and then to set the value 0 or 1 per curve in the batch depending on whether
the curve exceeds the threshold 1.2. There are other building blocks that, for example, help
to estimate the significance from the maximum likelihood values (SigsCalc), or to compute
the Euler characteristic of the batch of samples (EulerNumberCalc), etc.
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Abstract. In this paper we consider the probability density function (pdf) of the non-central χ2 dis-

tribution with arbitrary number of degrees of freedom and non-centrality. For this function we find

the approximate location of the maximum and discuss related edge cases of 1 and 2 degrees of free-

dom. We also use this expression to demonstrate the improved performance of the C++ Boost’s

implementation of the non-central χ2 and extend the domain of its applicability.

1. Introduction

Properties of the non-central χ2 distribution were described before in literature [6–8]. However, the

topic of the mode of the non-central χ2 was significantly underrepresented. We would like to focus

on the mode specifically in this paper.

Let X1, X2, ..., Xn be normally distributed random variables with unit variance and means

µ1, µ2, ..., µn. The sum X21 + X22 + ... + X2n follows the non-central χ2 distribution with k = n

degrees of freedom and non-centrality λ = µ21+µ22+ ...+µ2n. The probability density function of this

distribution has a closed form expression:

fk,λ(x) =
1

2
exp−

x+λ
2

( x
λ

) k−2
4
I k−2
2

(
√
λx) , (1.1)

where Iν(x) is a modified Bessel function of the first kind.

We are interested in the value of xmode that maximizes fk,λ(x). Typical shapes of the pdf of the

non-central χ2 distribution are shown in Fig. 1.
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Figure 1. Non-central χ2 distributions and behavior of the mode.

When the number of degrees of freedom k is fixed, we can plot the dependency of the maximum

of the pdf as a function of the non-centrality parameter λ, see Fig. 2.
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Figure 2. Mode of the non-central χ2 as a function of the non-centrality parameter

λ.

We observe that the bigger λ is the better the mode appears to be approximated with a straight line.

The derivation of the line parameters together with the analysis of the edge cases of small number of

degrees of freedom, where the mode does not exist, constitute the main results of the paper.

2. Derivation

2.1. Master equation. In this section we obtain the transcendental equation (Eq. 2.2) that deter-

mines the mode of the non-central χ2 distribution. We reduce it to the ordinary differential equation

(Eq. 2.5), where the non-centrality parameter λ is the argument, and the number of degrees of free-

dom k is a parameter. Finally, we solve the ODE approximately with a Taylor expansion (Eq. 2.10)

and investigate edge cases of 1 and 2 degrees of freedom (Sec. 2.3).
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We start by setting the derivative of the density of the non-central χ2 (Eq. 2.1) to zero. This leads

us to the transcendental equation (Eq. 2.2) that determines the mode of the distribution:

d

dx
χ2k,λ(x) =

1

2
χ2d,λ(x) ·


−1 +

k − 2

2x
+

√
λ

x

I ′k−2
2

(
√
λx)

I k−2
2

(
√
λx)


 , (2.1)

d

dx
χ2k,λ(x) = 0⇒

√
λxI ′k−2

2

(
√
λx) = (x − k − 2

2
)I k−2

2
(
√
λx) . (2.2)

We can eliminate the derivative in Eq. 2.2 by using the differential equation for the modified Bessel

function [1, Eq. 10.25.1]:

t2
d2

dt2
Iν(t) + t

d

dt
Iν(t)− (t2 + ν2)Id,λ(t) = 0 . (2.3)

To make use of Eq. 2.3, we need the expression for I ′′k−2
2

, therefore, we differentiate Eq. 2.2 by λ.

Since the mode depends on the non-centrality λ, we should remember that x = x(λ), thus dx
dλ = x ′.

The resulting expression for I ′′k−2
2

is as follows:

√
λxI ′′k−2

2

(
√
λx) = (x − k

2
)I ′k−2

2

(
√
λx) +

2
√
λxx ′

x + λx ′
I k−2
2

(
√
λx) . (2.4)

We substitute I ′k−2
2

(Eq. 2.2) and I ′′k−2
2

(Eq. 2.4) into the differential equation for the modified Bessel

function (Eq. 2.3). We then use the property [1, Eq. 10.29.4] to decrease the order of the derivatives

of the modified Bessel functions. Assuming that the Bessel function itself is non-zero at the mode, we

arrive to the following differential equation for the mode as a function of the non-centrality parameter

λ:

λx ′(x − k − λ+ 4) + x(x − k − λ+ 2) = 0 . (2.5)

2.2. Approximate solution. We observed that the linear approximation works better with growing

λ, thus we introduce the asymptotic parameter t = k
λ << 1 to build the expansion. We expect the

solution to be linear in λ, however the asymptotic expansion of x(t) = C0 + C1t + ... won’t provide

us with a solution linear in λ. Therefore, we reparametrize x(t) with a new function y(t) = tx(t):

t =
k

λ
, (2.6)

y(t) = tx(t) . (2.7)

We obtain the following equation after the reparametrization:

− (y ′t − y)(y − kt − k + 4t) + y(y − kt − k + 2t) = 0 . (2.8)

To solve Eq. 2.8, we expand y(t) into the Taylor series by the scale parameter t = k
λ . We would like

to find the linear solution and one extra term that estimates the error. Thus, we cut the series at
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the third power of t in order to account for the derivative. After solving algebraic equations for the

coefficients near each power of t, we arrive to the resulting approximate expression for the mode:

y(t) = C0 + C1t + C2t
2 + C3t

3 +O(t4) , (2.9)

C0 = k, C1 = k − 3, C2 =
k − 3

2k
, (2.10)

xmode = λ+ k − 3 +
k − 3

2λ
+O

(
k2

λ2

)
. (2.11)

We plot the linear approximation Eq. 2.11 together with the precise numerical solution Fig. 2 in order

to verify the approximation is correct, see Fig. 3.

0 2 4 6 8 10
non-centrality, λ

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
od

e

k + λ - 3
ncχ2, k=10
ncχ2, k=5
ncχ2, k=3

Figure 3. Linear approximation to the mode of the non-central χ2 compared to the

more precise numerical solution as a function of the non-centrality parameter λ.

2.3. Small number of degrees of freedom.

2.3.1. Case k < 2. The asymptotic behavior of the modified Bessel function at x → 0 [1, Eq. 10.30.1]

shows that the pdf of the non-central χ2 diverges, thus it doesn’t have a mode:

χ2k,λ(x)→ 1

2Γ(k2 )

1

(2λ)
k−2
2

e−
λ
2

(√
λx
)k−2

, x → 0 . (2.12)

2.3.2. Case k = 2. In this case, the pdf at x = 0 is finite. If the derivative at x = 0 is positive, then

the maximum is not there. The expression for the derivative (Eq. 2.13) and its asymptotic behavior

at x → 0 (Eq. 2.14) are shown below:

d

dx
χ2k,λ(x) =

1

2
χ2d,λ(x) ·

[
−1 +

√
λ

x

I−1(
√
λx)

I0(
√
λx)

]
, (2.13)

d

dx
χ2k,λ(x)→ 1

2
χ2d,λ(x) ·

[
−1 +

λ

2

]
, x → 0 . (2.14)

We observe that when λ > 2, the pdf of the non-central χ2 doesn’t have its maximum at x = 0. In

the region λ < 2, the asymptotic scale t = k
λ > 1, hence our approximation is inapplicable in this

region and we refrain from analysing it.
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3. Application

There exist a number of numerical procedures for finding the mode of a distribution [2, Ch. 10].

Some of them require the search region to be specified.

For example, the widely used C++ library Boost [3] identifies the search region based on an initial

guess for the mode x0. Boost iteratively checks regions of the form [x0/2, 2x0], [x0/22, 22x0], etc.

When the value of the pdf at both ends of the region becomes smaller than the value at the initial

guess point x0, the algorithm initiates the search for the maximum inside of the region.

At the time of writing, Boost used x0 = k + 1 as the initial guess. We already know, based on the

approximate solution (Eq. 2.11), that the chosen guess will undershoot at large non-centrality values

λ. Let’s estimate λ above which the method will require the second iteration for the region to cover

the mode. For this we compare the linear estimate for the location of the mode (Eq. 2.11) to the

initial guess x0 used by Boost:

k + λ− 3 > 2 · (k + 1) , (3.1)

λ > k + 5 . (3.2)

With Eq. 3.2, for any number of d.o.f. k we are able to specify the threshold α, defined by λ = αk ,

at which the original initial guess starts undershooting:

α >
5

k
+ 1 . (3.3)

We see that large k corresponds to small thresholds α. The most conservative estimate for the

threshold would be at the smallest k possible: k = 2. Thus, α = 3.5 is the threshold that approximately

works for k = 2 and is the overestimated threshold for bigger values of k .

The threshold α (Eq. 3.3) is closely related to the asymptotic scale t (Eq. 2.6) that we used for

finding the approximate solution, specifically: t = k
λ = 1

α . For example, the conservative threshold

α ≈ 3.5 corresponds to the asymptotic scale t ≈ 0.25 < 1. It means that the region where the

original guess of Boost undershoots, is, at the same time, the region where our approximate solution

for the mode becomes applicable and can be used as a corrected initial guess. However, the fact that

we use the conservative threshold may lead to the situation where the original method has already

started undershooting but λ is not yet big enough to turn on the corrected regime.

3.1. Dependency on λ. We fix the threshold to the conservative value k
λ = 0.25. We then plot

the dependency of the run time on the non-centrality λ for a set of d.o.f. k : 2, 15, 50, see Fig. 4.

For benchmarking we use the Google benchmark library [4]. The benchmarking script itself became a

part of the Boost.Math [5]. Using this script we measure the run time 100 times and use the mean

as a central value. The error bar is computed as a standard deviation. We add noise with standard

deviation σ = 10−6 to parameters k and λ to avoid caching effects. The vertical line on the plots

shows the threshold where the original initial guess for smaller λ is switched to the corrected value at
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bigger λ. Therefore, we expect that both lines coincide below the threshold and the improved solution

would lie lower above the threshold. One can notice missing values on the curve representing the

original initial guess. The reason for this is the numerical instability of the algorithm in Boost, that

has been resolved after we corrected the initial guess.
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Figure 4. Run time as a function of the non-centrality λ for d.o.f. k = 2 (4a), k =

15 (4b), k = 50 (4c). Vertical line shows the threshold at which the corrected

expression replaces the original initial guess.

3.2. Dependency on d.o.f. (k). In the set of plots in Fig. 5, we fix the asymptotic scale to values
k
λ = 0.25, 0.15, 0.05 and investigate the dependency of the run time on the number of d.o.f. Since

the threshold is fixed, the difference in the run time is caused by the actual position where the original

initial guess starts to undershoot, the non-conservative threshold. The farther the fixed threshold

is from the non-conservative threshold, the more significant the effect of undershooting at the test

point will be. Therefore, we expect the difference in the run time to grow with number of d.o.f, as

follows from Eq. 3.3. For each value of the asymptotic scale, in addition to the full plot, we also

show a zoomed version that shows the region where both original and improved methods were able to

converge (Fig. 5).

4. Conclusion

In this paper we present an approximate expression for the mode of the non-central χ2 distribution:

xmode ≈ k+λ−3, where k is the number of degrees of freedom and λ is the non-centrality parameter.

The approximation is based on an asymptotic expansion and is valid in the region where the scale

parameter k
λ << 1 and where the mode exists k > 2. The approximate formula can be used as

the initial guess for iterative procedures searching for a precise solution. Run time performance and

the domain of applicability of the Boost implementation of the mode search was improved using the

presented approximate expression. The improvement became a part of the Boost.Math library [5].
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Figure 5. Run time as a function of the number of d.o.f. (k) for the asymptotic scale

values k
λ = 0.25 (5a), k

λ = 0.15 (5b), k
λ = 0.05 (5c). The upper plot in each pair

shows the zoomed version, focused on the region where both original and improved

methods were able to converge.
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A. Likelihood-ratio test statistic for
quadratic log-likelihood with 1
signal d.o.f.

The derivation starts by defining the log-likelihood for both signal, H0, and
background, H1, hypotheses.

− 2 log L0 = g + ⟨j|θ⟩ + ⟨θ| ĥ |θ⟩ , (A.1)
− 2 log L1 = g + ⟨j, s′|θ, µ⟩ + ⟨θ, µ| Ĥ |θ, µ⟩ ,

where g is a scalar, |j⟩ is the first derivative and ĥ is a hessian of the background
only log-likelihood −2L0 with respect to θ. They are considered constant
parameters of the model but may depend on the data.

Vector |θ, µ⟩ is the concatenation of the vector θ and the one-dimensional vector
containing µ. The same holds for |j, s′⟩.

Additionally, s′ and Ĥ are parameters of the signal+background log-likelihood
−2L1, with s′ representing its gardient with respect to the nuisance parameter µ
only present under H1. The structure of Ĥ, however, should be described in more
detail:

Ĥ =
[
ĥ q
q s′′

]
, (A.2)

where ĥ is the same background-only hessian, the second order mixed derivative of
the −2L1 with respect to |θ⟩ and µ is a vector of q = |q⟩, and the second derivative
with respect to µ is s′′.

Log-likelihoods can be rewritten, taking the detailed structure of Ĥ into
account:

− 2 log L0 = g + ⟨j|θ⟩ + ⟨θ| ĥ |θ⟩ , (A.3)
− 2 log L1 = g + ⟨j|θ⟩ + ⟨θ| ĥ |θ⟩ + µs′ + 2µ ⟨q|θ⟩ + µ2s′′.

It is assumed that L0 is in its maximum when θ = θ0, and the maximum of
L1 is in θ = θ0 + θ1 constructed as a deviation from θ0. The following equations
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Appendix A. Likelihood-ratio test statistic for quadratic log-likelihood with 1 signal d.o.f.

on the derivatives of the log-likelihoods then take place:

− 2∂L0

∂θ0
= |j⟩ + 2ĥ |θ0⟩ = 0,

− 2∂L1

∂θ1
= |j⟩ + 2ĥ |θ0 + θ1⟩ + 2µ |q⟩ = 0,

− 2∂L1

∂µ
= 2 ⟨q|θ0 + θ1⟩ + s′ + 2s′′µ = 0.

(A.4)

Firstly, Equation A.4 is solved for θ0 and θ1 using the first two equations in
the system:

|θ0⟩ = −1
2 ĥ−1 |j⟩ , (A.5)

|θ1⟩ = −1
2µĥ−1 |q⟩ .

Then this solution (Equation A.5) is substituted into the third equation in A.4
and is solved for µ:

µ = 1
2

⟨q| ĥ−1 |j⟩ − s′

s′′ − ⟨q| ĥ−1 |q⟩
. (A.6)

Finally, the solutions A.5 and A.6 are used to compute the test statistic t:

t = (−2 log L0) − (−2 log L1) = µ2(s′′ − ⟨q| ĥ−1 |q⟩) (A.7)

= 1
4

(
⟨q| ĥ−1 |j⟩ − s′

)2

s′′ − ⟨q| ĥ−1 |q⟩
.

The signal model brings only 1 extra degree of freedom (µ), which means the
test statistic t, in the asymptotic regime, follows the χ2 distribution with 1 degree
of freedom. The significance, therefore, can be derived from t:

Z =
√

t = 1
2

⟨q| ĥ−1 |j⟩ − s′√
s′′ − ⟨q| ĥ−1 |q⟩

. (A.8)
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B. Open source contributions

In the course of my research and academic journey, I was actively contributing to
open source software, leveraging my expertise to make meaningful contributions
to various statistical methods in physics. While some projects were developed
internally, others resulted from collaborations with various institutions. Below I
only list significant open source contributions to statistical software.

Custom form factors in Sherpa. Sherpa is a Monte Carlo event generator for
the simulation of high-energy reactions of particles [28]. It is multipurpose, which
means it can be applied to different models of physics including those beyond the
Standard Model of particle physics. Simulation in Sherpa starts from the definition
of a model, which includes listing particles, their properties and properties of
interactions between these particles.

Sherpa developed a language to define these parameters, but also can ingest
Universal FeynRules Output (UFO) [41], model definitions compatible with other
software packages like MadGraph [42]. Since support for external definitions is an
additional feature, these capabilities may be incomplete.

In the beginning of my journey as a PhD student, we investigated an
opportunity to measure the CP properties of the Higgs boson by analysing the
electron-positron pairs created when both of the photons from the H → γγ decay
are converted by interactions with the silicon layers of the ATLAS inner detector
(or the future ITk all-silicon tracker). Such events are expected to have little
background, with the additional advantage of the spin-0 silicon nucleus allowing
the spin properties of the converted pairs to be analysed undisturbed. The rate of
production of the electron-positron pairs can be described with the Bethe-Heitler
process [43], with possible CP-sensitive observables discussed by Bishara et al [44].

The interaction of a converting photon with a silicon nucleus can be
summarized with a form factor, which is not constant, but depends non-trivially
on the momentum of the silicon atom [44]:

Gel
2 (q2) = M2a4q4

(1 − a2q2)2 , (B.1)

where q is the 4-momentum transfer between the nucleus with mass M and the
converting photon, and a is an effective scale.

With my contribution [39] I made Sherpa custom form factors for MadGraph
models even more flexible, which also allowed me to explore the possibility of
measuring the CP of the Higgs boson with converted photons in H → γγ decays.

75



Appendix B. Open source contributions

k1

k2

x̂

φ1+

φ1−

θ1+

θ1−

p1+

p1−

x̂

p2+ φ2+

p2−
φ2−

θ2+

θ2−

Figure B.1: Conversion of a photon pair into two electron-positron pairs in matter.
(Taken from Ref. [44].)

Omnibus tests for survival analysis. Statsmodels [45] is a Python package for
statistical computations that provides a complement to the well known SciPy [46],
and includes tools for descriptive statistics, estimation, and inference for statistical
models. To emphasize the importance of the Statsmodels package, it is worth
mentioning that it has > 9K stars on GitHub, which is comparable to ≈ 12K
stars1 that SciPy has.

Many solutions in Statsmodels are based on existing packages in the R
ecosystem. The functionality of one such R package, the SurvDiff module of
the Survival package [47], is used for survival analysis generally applied to clinical
trials data.

At the statistics course I was attending during my PhD curriculum, there was
a homework assignment involving this R package, which I chose to do in Python
until I discovered that the functionality of SurvDiff in Python was limited. The
test provided by Statsmodels at that time supported only 2 different groups in a
trial. During the work on my assignment, I enabled support for omnibus tests [40]
allowing any number of groups in the data for the SurvDiff implementation in
Statsmodels.

Mode of the non-central chi-squared distribution. Independently from the
Gaussian process study, we encountered a beautiful asymptotic behavior of the
non-central chi-squared distribution. This distribution also appears in statistical
tests in physics, when data is sampled from a distribution that is incompatible
with the null-hypothesis [23].

The non-central χ2 distribution follows the sum X2
1 + X2

2 + · · · + X2
k of

normally distributed random variables X1, X2, . . . , Xk with unit variance and
means µ1, µ2, . . . , µk. The distribution is said to have k degrees of freedom and

1On GitHub, “stars” are a way to bookmark and express appreciation for interesting
repositories. Starring a repository helps users track and revisit projects, while also contributing
to the repository’s recognition.
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non-centrality λ = µ2
1 + µ2

2 + · · · + µ2
k. The probability density function of this

distribution has a closed form expression:

fk,λ(x) = 1
2 exp− x+λ

2

(
x

λ

) k−2
4

I k−2
2

(
√

λx) , (B.2)

where Iν(x) is a modified Bessel function of the first kind.
The way the number of degrees of freedom and the non-centrality parameter

affect the shape of the distribution is illustrated in Figure B.2.
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Figure B.2: Non-central χ2 distributions for various values of non-centrality λ and degrees
of freedom k. (Taken from Paper IV.)

The result of Paper IV is an estimate of the mode of the non-central χ2

distribution with number of degrees of freedom k and non-centrality λ:

xmode = λ + k − 3 + k − 3
2λ

+ O

(
k2

λ2

)
. (B.3)

In Figure B.3 the more precisely numerically estimated mode is compared to
the estimate of Equation B.3. The more precise calculation was conducted with
the iterative optimization routine implemented in Boost [29], which is a suit of
free peer-reviewed portable C++ source libraries.

I used this result to speed up the calculation and even widen the domain
of applicability of the algorithm used in Boost. The Boost.Math module of the
library implements a solution for the estimation of the mode of the non-central χ2

distribution, and my contribution became a part of it [38].

Cicliminds with CICERO. One of the big challenges in the field of climate
research is to get a good qualitative overview of climate models, and also be able
to dig deeper when needed. The Expert Team on Climate Change Detection and
Indices (ETCCDI) introduced a set of summary statistics of climate data, so-called
ETCCDI indices, which were extensively studied by Sillmann et al. [48] to provide
a quantitative summary of climate change as well as extreme events in the climate
data.
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Figure B.3: Linear approximation to the mode of the non-central χ2 compared to the
more precise numerical solution as a function of the non-centrality parameter λ. We plot
the simplified approximation, linear in λ and k, because specifically this form was used
in Boost C++ [38]. (Taken from Paper IV.)

Many climate models have been developed and used to simulate the change
of the climate, both for historical time ranges and extrapolating to the future.
Extrapolations are made based on sets of assumptions called scenarios, and can be
simulated several times with different random seeds, which results in an ensemble
of simulations. When combined together with the number of observable indices
of interest, the number of datasets may reach thousands, which requires a proper
way to navigate all of them.

In collaboration with the Center for International Climate Research (CICERO)
I developed Cicliminds [30], a tool for quick and comprehensive insight into the
ETCCDI climate index datasets.

The graphical interface of the tool consists of two main control panels used for
filtering the data (Figure B.4a) and for configuring the visualization (Figure B.4b).
The joint dataset is then used to build various visualizations predefined in the tool,
some examples of which we demonstrate in Figure B.5.

The example visualizations are based on one of the indices taken as a
benchmark, and were presented in the package documentation [30]. In Figure B.5a
the histograms of measurements of this index were averaged across the globe. Each
curve represents a summary across the models and the range of years, with the
aggregation parameters selected in the interface shown in Figure B.4b.

A comparison of the future scenarios is shown in Figure B.5b. The baseline
value, estimated from the reference window, was, optionally, subtracted from each
of the time series.

Figure B.5c demonstrates the distribution of the index values across the globe,
aggregated across the rest of the dimensions.

This is only a subset of the functionality, and there is a large potential in
expanding the tool with more visualization types and features, which Cicliminds
is well designed for.
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(a)

(b)

Figure B.4: Graphical user interface of Cicliminds: dataset filters (a) and visualization
control (b). (Taken from the documentation for the Cicliminds package available on
GitHub [30].)
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(a)

(b)

(c)

Figure B.5: Examples of the visualizations provided by Cicliminds. The plotted
index (tnxETCCDI ) defines the annual maximum of the daily minumum temperature
aggregated across the models selected in Figure B.4. In (a), an example of histogram
evolution is shown. The functionality of the time series comparison is demonstrated
in (b), which also visualizes the variability of each series. In (c) we show a heatmap of
the measurements of the index, aggregated across the rest of dimensions. (Taken from
the documentation for the Cicliminds package available on GitHub [30].)
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MGVI.jl with Max-Planck Institute for Physics. Metric Gaussian Variational
Inference (MGVI) is an iterative method developed by Knollmüller et al [49]
that performs a series of Gaussian approximations to the posterior distribution.
In collaboration with the Max-Planck Institute for Physics I developed the first
version of the Julia [50] implementation of MGVI, called MGVI.jl [31].

The new package is fresh but powerful. It combines the efficient MGVI
procedure for estimating posterior distributions with the benefits of Julia’s highly
performant ecosystem of scientific software.

To demonstrate the functionality of the package in Figure B.6, which was
also provided in the documentation for the package [31], the coal mining disaster
dataset [51] was chosen. The histogram of the disaster counts is assumed to
be Poisson-distributed, with the Poisson rates across bins being modeled as a
continuous curve. The curve is derived from a realization of a Gaussian process
with zero mean and a finite width covariance kernel, selected with the help of
the MGVI optimization procedure. In addition to the parameters selecting the
particular realization of the Gaussian process, the parameters of the GP kernel
itself are also considered free.

The model described in the previous paragraph was inspired by the recurrent
problem of smoothing sparse data distributions in High Energy Physics. This class
of problems is particularly important for modelling background distributions, and
we believe the MGVI method is worth further exploration in this regard.
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Figure B.6: Result of the posterior fit (orange) of a Poisson distribution to the data
(blue), with its rate density modeled with a Gaussian process. The colored regions are
spreads of the samples from the fitted model, selected from 1σ (green), 2σ (yellow) and
3σ (red) credibility intervals. (Taken from the documentation for the MGVI.jl package
available on GitHub [31].)
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