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I had always considered my thoughts as something abstract, but they weren’t;
they were as material as the heart beating in my chest. The same was true of the
mind, the soul, the personality; all of it was fixed in the cells and originated as a
result of the various ways in which these cells reacted with one another. All of our
systems, too — communism, capitalism, religion, science — they also originated
in electrochemical currents flowing through this three-pound lump of flesh encased
in the skull.

- Karl Ove Knausgård, The Terrible Beauty of Brain Surgery
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Abstract

The study of electric brain signals with biophysical simulations was
born with the seminal work by Hodgkin & Huxley (1952). They
characterized mathematically how ionic currents across the neuronal
membrane give rise to action potentials - the electrochemical signals
fundamental to most communication in the brain. In the decades
following their discoveries, meticulous experimental and theoretical
work has given us a fairly good understanding of how single cells
work. However, it is the cooperative effort of neurons in networks
that gives rise to thoughts, memories, emotions, and advanced
behaviors of humans and animals. Additionally, the extracellular and
extracortical signals we measure in experiments reflect the activity of
large populations of neurons, sometimes spanning entire brain regions.
Compared to our knowledge of single neurons, our insight into how
large numbers of neurons interact and produce electric signals remains
underdeveloped.

In recent years, both the amount and quality of experimental
data as well as access to computational resources have increased
prodigiously, enough to enable large-scale biophysically detailed
modeling of brain networks. By simulating the activity of large
networks composed of detailed neuron models, we can emulate
the signals we observe in experiments stemming from populations,
structures, or brain regions.

In this thesis, we have developed, validated, and studied a large-
scale biophysically detailed model of mouse primary visual cortex (V1).
In our first project, we extended an existing V1 model to quantitatively
reproduce experimental brain activity across scales: from the spikes of
individual cells to the local field potentials (LFPs) of the structure
as a whole. We demonstrated that constraints on model architecture
and parameters are enhanced by requiring a model to reproduce both
signals simultaneously, and that spikes and LFP therefore represent
complementary aspects of neural activity.

In the subsequent projects, we used data simulated with the V1
model to validate two algorithms for estimating LFPs from presynaptic
firing rates. In both methods, presynaptic firing rates are convolved
with kernels. The purpose is to approximate the process by which
postsynaptic LFP is generated by presynaptic spikes. The first method,
named Laminar Population Analysis (LPA), estimated the salient
features in the LFP generated by external inputs to V1 and from



the recurrent activity in V1 as a whole. This indicates that the LPA
method can potentially be used to disentangle LFP contributions from
different presynaptic structures in experimental data.

In the second method, more detailed kernels are constructed by
utilizing information about membrane potentials, synaptic parameters,
and connection patterns in the model. We validated this framework
on layer 2/3 (L2/3) in the V1 model, and found that we could
precisely estimate the LFP contributions from external structures as
well as different internal populations of L2/3. The detailed information
required to construct these kernels is typically not experimentally
available together with LFP recordings, which may limit its application
to experimental data at present. However, the precision with which it
could estimate LFP suggests that it can in some cases be used as a
substitute for computationally expensive full-scale simulations.

The overarching ambition of these projects was to contribute to
the foundation of a bridge between our knowledge of single neurons
and our knowledge of populations of neurons and the electric signals
they produce. We hope that this bridge, composed of computational
building blocks, may both motivate future experiments and provide
greater insight into the neural mechanisms behind already collected
data. We look forward to both extensions and applications of this
work in the coming years.
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Sammendrag

Studiet av elektriske hjernesignaler med biofysiske simuleringer begynte
med det banebrytende arbeidet til Hodgkin & Huxley (1952).
De karakteriserte matematisk hvordan ionestrømmer på tvers av
nervemembranen gir opphav til aksjonspotensialer - de elektrokjemiske
signalene som er grunnleggende for mesteparten av kommunikasjon
i hjernen. I tiårene etter oppdagelsene deres har omhyggelig
eksperimentelt og teoretisk arbeid gitt oss en god forståelse for hvordan
enkeltnevroner fungerer. Det er imidlertid samarbeidet mellom mange
nevroner i store og små nettverk som gir opphav til tanker, minner,
følelser og avansert atferd hos mennesker og dyr. Videre reflekterer de
ekstracellulære og ekstrakortikale signalene vi måler i eksperimenter
aktiviteten i store populasjoner av nevroner som noen ganger strekker
seg over hele hjerneregioner. Vår forståelse av hvordan et stort
antall nevroner samhandler og produserer elektriske signaler er fortsatt
underutviklet sammenlignet med vår forståelse av enkeltnevroner.

De siste årene har både mengden og kvaliteten på eksperimentelle
data samt tilgang til beregningsressurser økt betraktelig, nok til å
muliggjøre storskala, biofysisk detaljert modellering av hjernenettverk.
Ved å simulere aktiviteten til store nettverk sammensatt av detaljerte
nevronmodeller, kan vi etterligne signalene vi observerer i eksperi-
menter som stammer fra populasjoner, strukturer eller hjerneregioner.

I denne avhandlingen har vi utviklet, validert og studert en
storskala, biofysisk detaljert modell av primær visuell cortex (V1) hos
mus. I vårt første prosjekt utvidet vi en eksisterende V1-modell til
den reproduserte eksperimentell hjerneaktivitet på tvers av skalaer:
både aksjonspotensial fra enkeltceller og lokale feltpotensial (LFP)
fra strukturen som helhet. Vi demonstrerte at modellarkitektur og
parametere blir bedre begrenset ved å kreve at en modell reproduserer
begge signalene samtidig, og at aksjonspotensialer og LFP derfor
representerer komplementære aspekter ved nevral aktivitet.

I de påfølgende prosjektene brukte vi data simulert med V1-
modellen til å validere to algoritmer for estimering av LFP fra
presynaptiske fyringsrater. I begge metodene blir presynaptiske
fyringsrater konvolvert med kjerner. Hensikten er å tilnærme prosessen
hvor postsynaptisk LFP genereres av presynaptiske aksjonspotensial.
Den første metoden, kalt Laminar Population Analysis (LPA),
estimerte de fremtredende kjennetegnene i LFP generert fra eksternt
input til V1 og fra den tilbakevendende aktiviteten i hele V1. Dette
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indikerer at LPA-metoden kan potensielt brukes til å skille LFP-bidrag
fra forskjellige presynaptiske strukturer i eksperimentelle data.

I den andre metoden konstrueres mer detaljerte kjerner ved å
bruke informasjon om membranpotensial, synaptiske parametere og
koblingsmønstre fra modellen. Vi validerte dette rammeverket på lag
2/3 (L2/3) i V1-modellen, og fant at vi kunne estimere LFP-bidragene
fra eksterne strukturer så vel som forskjellige intrakortikale popu-
lasjoner av L2/3 med høy nøyaktighet. Den detaljerte informasjonen
som kreves for å konstruere disse kjernene er vanligvis ikke eksperi-
mentelt tilgjengelig sammen med LFP-opptak, noe som foreløpig kan
begrense dens anvendelse på eksperimentelle data. På den andre siden,
presisjonen i LFP-estimatene med denne metoden tyder på at den kan
brukes som substitutt for å kjøre fullskalasimuleringer, og dermed re-
dusere store mengder kjøretimer.

Den overordnede målet med disse prosjektene var å bidra til å bygge
en bro mellom vår kunnskap om enkeltnevroner og vår kunnskap om
populasjoner av nerveceller og de elektriske signalene de produserer. Vi
håper at denne broen, bestående av komputasjonelle byggematerialer,
kan både motivere fremtidige eksperimenter og gi større innsikt i
nevrale mekanismer bak de eksperimentelle dataene vi allerede har.
Vi ser frem til både anvendelser og utvidelser av dette arbeidet i de
kommende årene.
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Chapter 1

Background and motivation

The quote from Norwegian author Karl Ove Knausgård prefacing this thesis
beautifully expresses the idea that it is not only the world around us that arises
from material, physical processes, so does the world within us. There is, however,
another idea beyond the one that meets the reader first captured in this quote:
The idea that there is a scaling process in nature where the events at the small
scale dictate what happens at a bigger scale, which in turn dictate what happens
on the largest scale. There is a thread weaved by the laws of nature connecting
the world of atoms and elementary particles to the world of animals, humans and
their minds, and finally the planets, stars, and galaxies.

To make problems more tractable, scientific studies are often limited to a
single scale. For many research questions, the information at a single scale
is indeed sufficient to discover the relevant explanatory mechanisms; but there
are also problems for which an understanding of the microscopic is needed to
comprehend the mesoscopic or macroscopic. To build the modern phone, we
first had to understand how electrons move in electrical circuits, and then how
electrical circuits can be constructed to transmit signals that are coded, received,
and deciphered into human comprehensible sound or text. To predict the behavior
of weather systems, we first had to understand the phase transitions of water, and
then how these interact with wind currents and atmospheric pressure to produce
clouds and precipitation.

Likewise, to achieve a full understanding of the workings of the brain and the
signals we measure in experimental neuroscience, we need to understand how the
mechanisms and signals on the larger scale of structures and brain regions, or the
whole brain, arise from interactions on the smaller scale of single neurons, and
ultimately from ions gushing in and out of neurons and the extracellular space
[20].

Neural activity can be measured from whole brain regions in a multitude of
ways, from the hemodynamic responses in functional magnetic resonance imaging
(fMRI), to the electrical or magnetic fluctuations in electroencephalograms (EEG)
and magnetic encephalograms (MEG) [10], to name a few. This thesis is about
the electric signals of the brain, so the measurement modality most relevant to
exemplify the application of the signals studied here is the EEG. EEG measures
the electric potential arising from electric currents in the brain tissue near the scalp
via electrode contacts placed on the surface of the head [34]. Some advantages
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Chapter 1. Background and motivation

afforded by EEG are that it can provide information about neural activity with
high temporal resolution and that it records this activity non-invasively, which
makes it suitable for recording brain activity in humans. However, due to the
large number of neurons contributing to the potential at each electrode contact
and the spatial averaging that happens as the electrical potential passes through
the scull, the spatial resolution of the signal and the information about neural
mechanisms that can be inferred from it is limited [34].

Instead of recording the electric potential with electrodes on the outside
of the brain, we can insert a probe with electrodes into the brain tissue and
measure the extracellular potential inside the brain [11, 46]. This produces a
signal with higher spatial resolution that can both be more informative and may
enable us to gain more insight into the neural and electric origins of EEG. As
this is an invasive recording, it is typically done in animals, but it can also
be performed in humans [74]. The high- and low-frequency components of the
recorded extracellular potential are considered to reflect complementary aspects of
neural activity (illustrated in Fig. 1.1). The high-frequency (above a few hundred
Hz) component is thought to primarily contain information about the spiking
activity of neurons, and is referred to as the multi-unit activity (MUA). The low-
frequency (below a few hundred Hz) component is thought to mainly stem from
transmembrane currents caused by synaptic input to the neurons and is referred to
as the local field potential (LFP) [12, 19]. Thus, since the extracellular potential
carries information both about the spiking activity of single cells and the ionic
currents entering and leaving whole populations of cells, and it also underlies the
EEG recorded across whole brain areas1, it is a signal well suited for studying
brain activity across multiple scales.

In single-neuron recordings, the spikes have a single source: a neuron that
generates discrete action potentials over time [75]. Assuming an ideal recording
with no pollution from other nearby neurons and no mistakes in the spike sorting
procedure, spiking activity in the MUA can also be tied to single neurons [97].
(In reality, however, the sorted spikes will often contain spikes or at least have
been influenced by activity recorded from other neurons in the vicinity of the
electrode contact.) The LFP recorded in vivo, on the other hand, will reflect
transmembrane currents from many neurons and a multitude of cell types and
biophysical processes. In other words, it does not have a single source, it has
many. Therefore, interpreting the LFP and uncovering the different origins of the
signal can often be complicated [12, 19, 75]. The interpretation was made easier by
the introduction of current source density (CSD) analysis of LFP [19]. The CSD
is derived from the LFP, but affords a more localized measure of activity that is
more readily interpreted in terms of the underlying neurophysiology [67, 72, 78].
A CSD plot provides a map of the different transmembrane currents that underlie
the LFP, as it shows where ions enter or leave the extracellular medium.

Another approach to study the LFP that can facilitate its interpretation, is to
construct mechanistic models of neurons and networks of neurons that simulate
neural activity and the extracellular potential it generates [19, 40]. Mechanistic
models are distinguished from statistical or descriptive models in that they are

1LFP is in fact also known as the intracranial EEG [12].
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Figure 1.1: Recording extracellular potential to obtain MUA and LFP. Left:
Illustration of the recording of extracellular potential arising from neural activity with
multielectrode probes. Right: The recorded extracellular potential can be high-pass
filtered to obtain the high-frequency part of the signal referred to as the multi-unit
activity (MUA) or low-pass filtered to obtain the low-frequency part referred to as the
local field potential (LFP). The signals in these example plots have been obtained from
a simulation of the response to a full-field flash stimulus in a large-scale, biophysically
detailed mouse V1 model.

built bottom-up from first principles, and mechanisms are modeled explicitly
rather than given some abstract representation. The aim is to identify how a
phenomenon is explained by physical processes [35]. In the context of modeling
extracellular potentials, this means that the purpose is to explain the extracellular
potentials by the ionic currents in the brain tissue and the measurement physics.
This is achieved with biophysically detailed models of neurons - either simulated
individually or in a population or network of neurons. This approach enables
neuroscientists to establish a connection between the measured signal and the
neural activity, biophysical processes, and circuit mechanisms underlying them.

Mechanistic modeling began with the pioneering work by Alan Hodgkin and
Andrew Huxley (1952) [44], where they developed a mathematical model of how
action potentials are instigated and propagated in neurons through the movement
of ionic currents across the membrane. Rall (1959) [79] then initiated the
quantitative framework for characterizing current flow in dendritic trees using
cable theory. His work formed the foundation for volume conductor theory,
the forward-modeling scheme for calculating extracellular potentials from neuron
models with detailed morphologies [40]. Since then, we have achieved a fairly good
understanding of how single neurons work [49] and how their activity generates
extracellular potentials [45, 55, 77]. However, despite the significant progress on
the single cell level, our understanding of how large populations of neurons behave
in networks and how their activity produces the electric signals we record in vivo
remains limited [19].
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Chapter 1. Background and motivation

Utilizing the approach of simulating extracellular potentials from neural
activity in mechanistic network models, the aim of this thesis is to increase our
insight into how the extracellular electric potentials reflect neural activity. First by
reproducing the circuit mechanisms generating extracellular potentials observed in
in vivo experimental recordings with a large-scale, biophysically detailed model.
Then by using data simulated with the validated model to test and develop a
tool that allows for automatic discovery of the different presynaptic populations
generating the recorded extracellular potentials. Lastly, by validating a method
that can significantly reduce the computational resources required to simulate the
LFP by using presynaptic firing rates and network properties to estimate the LFP.

1.1 The local field potential and the current source
density

The LFP has been used to investigate sensory processing [6, 7, 47, 65, 66, 69, 73, 81,
90], motor planning [86, 88] navigation [22, 23, 59, 102, 106], and higher cognitive
processing [51, 54, 57, 76, 107]. Furthermore, its relative stability in chronic
recordings makes it a promising candidate signal for steering neuroprosthetic
devices [1, 60, 64, 84, 94]. However, despite its broad application, the biophysical
origins of LFPs are still not fully understood. In the following, we provide a brief
overview of current knowledge of the LFP and related signals.

All transmembrane currents contribute to the generation of extracellular
potentials [12]. How much transmembrane currents from different biophysical
origins contribute depends on what part of the extracellular potential is studied and
the specific conditions during which the membrane potential is recorded. At higher
frequencies (above a few hundred Hz), the extracellular potential is predominantly
made up of the transmembrane currents stemming from action potentials. At the
lower frequencies of the LFP, the following biophysical processes are the primary
sources of transmembrane currents underlying the potential [12, 36]:

• Synaptic currents and their associated return currents.

• Calcium spikes. Voltage-gated calcium channels are opened during
membrane depolarization, leading to an influx of Ca2+ ions.

• Intrinsic currents and resonances can affect the membrane potential, and in
certain conditions where it occurs synchronously in many nearby neurons, it
can have a significant effect on the LFP.

• Membrane currents in glial cells.

• Diffusion potentials. If there are concentration differences of ions in the
extracellular space, that will lead to extracellular diffusion currents, which
contribute to the potential.

• Action potential currents. Even though the currents through active sodium
and potassium channels during an action potential are thought to primarily
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be visible in the high-frequency part of the extracellular potential, they can
also shape the LFP [82, 85].

Though the other sources can contribute to the shape and magnitude of the
LFP, the currents caused by synaptic input are still thought to exert the greatest
influence on the LFP in most physiological conditions [19, 36].

The relationship between the electric potential and the ionic currents that
generate it is governed by Maxwell’s equations of electromagnetism, and the
relationship can be expressed as:

∇ · (σ∇ϕ) = −C (1.1)
where ϕ is the electric potential, σ is the extracellular conductivity tensor, and
C is the current source density (CSD) [78]. σ reflects how easily ions can move
through the extracellular medium, and if the extracellular medium is sufficiently
isotropic and homogeneous, σ can be treated as a constant. In these conditions,
the solution for the potential generated by a single point source becomes:

ϕ(r) = Ie

4πσr
(1.2)

where Ie is the current from the point source and r is the radial distance from
the point source to the point at which the potential is measured. Currents from
multiple sources sum linearly to form the total electrical potential at the point r.

It is often easier to make inferences about the biophysical processes producing
the transmembrane currents underlying the LFP if one examines the CSD instead
of the LFP. Expanding eq. 1.1, we have that:

σ(∂2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2 ) = −C(x, y, z) (1.3)

In most scenarios where the CSD is calculated, the CSD is assumed to be constant
laterally to the probe, which means that only the variation in the depth direction
(here denoted by z) contributes to the CSD. Eq. 1.3 then simplifies to:

σ
∂2ϕ

∂z2 = −C(z) (1.4)

This is the traditional and simplest way of estimating the CSD, and it has often
been referred to as the "standard" method. However, in many cases, the planar
region of constant CSD is in fact too small for the errors from assuming the CSD
to be laterally constant in an infinite plane to be negligible. Thus, calculating the
CSD this way can lead to substantial deviations in magnitude from the true CSD
as well as spurious sinks and sources near the top and bottom electrodes [78].

Attempting to resolve these issues, Pettersen et al. (2006) [78] developed a
method for calculating the CSD from the LFP, referred to as the iCSD method,
where the "i" stands for "inverse". The method is based on explicit inversion of the
electrostatic forward solution characterizing how the extracellular potential arises
from currents. Contrary to the standard method, the CSD is only assumed to be
constant within cylindrical discs of radius R. In the limit where R → ∞, the CSD
estimated with the iCSD method and the standard method are equal.
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Chapter 1. Background and motivation

The iCSD method comes in three variants. The δ-source iCSD method, which
assumes that infinitely thin current source discs at the electrode contacts are the
origin of the CSD. The step iCSD method, which assumes that the CSD is step-
wise constant between electrode contacts. The spline iCSD method, which assumes
that the CSD is smoothly varying from electrode to electrode. In this thesis, the δ-
method was utilized, but the step and spline iCSD methods are known to produce
similar estimates [78].

The relationship between LFP and CSD is illustrated in Fig. 1.2A. In the top
panel, the evoked LFP response recorded in the primary visual cortex (V1) of a
mouse from the Visual Coding dataset released by the Allen Institute is displayed
[92]. In the panel below, the CSD calculated from this recorded LFP is plotted
with the LFP traces in each channel superimposed on top. The blue blobs in this
plot represent current sinks, which show where either positive ions enter or where
negative ions leave the cells in this region. The red blobs represent current sources,
which show where either negative ions enter or positive ions leave the cells.

Since CSD plots show where positive ions enter and leave cells, they can provide
information about the position of synaptic input. In Fig. 1.2B-C, the CSD
calculated from the LFP of a population of L4 excitatory cells in a mouse V1 model
[8] is displayed in two scenarios. In Fig. 1.2B, all excitatory synapses impinging
upon this population have been placed only on the basal dendrites, while in Fig.
1.2C, all excitatory synapses have been placed only on the apical dendrites. When
all excitatory synapses are placed on the basal dendrites, a current sink appears at
the bottom of this population with a current source above it. The current sink at
the bottom reflects the input from excitatory synapses, which consists of positive
ions rushing into the basal dendrites of this population. According to Kirchhoff’s
current law, the total amount of current entering or leaving neurons has to sum
to zero, so if there is a stream of positive ions entering the cells, there has to be
a return current of positive ions leaving the cells at the same time. This return
current is the origin of the current source observed above the current sink in this
simulation. When the excitatory synapses are placed on the apical dendrites, we
get a current source at the bottom where the basal dendrites and somata are
instead (as well as at the apical tufts at the very top of the apical dendrites),
with the current sink appearing in the middle at the apical dendrites, where the
excitatory synapses are predominantly placed.

Even though the CSD is easier to interpret in terms of neural activity than
the LFP, it is still not straightforward. A current source can stem from return
currents associated with excitatory input, as described above, but it can also
arise from inhibitory input currents [12, 42]. The effect of inhibitory currents is
opposite to the effects of excitatory currents, so an inhibitory current will generate
a current source, not a sink (see Fig. 1.3). In a model, we can use knowledge
about the synaptic placement and activity to determine the biophysical origin of
a current source (or sink). This information is, however, typically not available in
experiments, and acquiring it, or other information that allows for disambiguation,
is not easy [10, 12]. Because of this, biophysical modeling of LFPs and CSDs has
been utilized to facilitate the interpretation of these signals and help uncover their
biophysical origins.
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Figure 1.2: CSD illustrations. (A) Top: LFP recorded in V1 of a mouse from the
Visual Coding dataset [92] during presentation of a full-field white screen flash, averaged
over 75 trials. Bottom: CSD calculated from the recorded LFP using the δ-source iCSD
method with CSD assumed to be constant within a radius of 800 µm - roughly equivalent
to the size of V1. (B-C) Left: CSD calculated from LFP of layer 4 (L4) excitatory cells
from simulations of full-field flash stimuli presented to a modified version of the mouse
V1 model developed by the Allen Institute [85] (radius of constant CSD assumed to be
400 µm, equal to the spatial extent of the cylinder of biophysically detailed neurons in the
model), averaged over 10 trials. Right: illustrations of placement of excitatory synapses
onto the L4 excitatory cells and with synaptic input currents shown as blue arrows and
return currents as orange arrows. (B) All excitatory synapses placed on basal dendrites.
(C) All excitatory synapses placed on apical dendrites. Figure adapted from [85].

9
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100 µm

20 ms

0.65 µV

A B C

Excitatory synapse Inhibitory synapse

Figure 1.3: LFP from excitatory and inhibitory synapses at different positions
on the Hay model of a L5 neuron[41]. (A) Excitatory synapse (blue dot) placed
on apical dendrites of the neuron. The positive ions from an excitatory synapse will
generate a current sink, which here is visible as a negative deflection in the LFP in the
vicinity of the synapse. (B) Inhibitory synapse placed on apical dendrites of the neuron.
Inhibitory currents generate a current source, which is visible as a positive deflection in
the LFP near the synapse. (C) Excitatory synapse placed at the soma of the neuron.
In this case, the negative deflection is observed near the soma. Adapted from figure
made by Torbjørn V. Ness & Espen Hagen (2023) in chapter 8: Local Field Potentials
in Electric Brain Signals [36].
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1.2 Biophysical modeling

Neural modeling can roughly be divided into two major approaches [40]. One
typically employs more abstract representations of neurons and seeks to identify
the general principles and fundamental mechanisms that characterize information
processing in the brain. The models in this regime usually put less emphasis
on biological and physical realism, prioritizing rather to make models that are
more amenable to analytical treatment. Neuron models of this type are often
referred to as point-neurons because of their lack of spatial extent; i.e. each neuron
only occupies a point in space, and the effects of neural processes in the spatially
extended domains of the neurons are modeled implicitly rather than explicitly.

The other approach incorporates more biological detail, and these neuron
models are therefore referred to as biophysically detailed models. They are,
contrary to point-neurons, spatially extended and thus come with explicit
(though simplified to different extents) representations of the neuron morphology,
specifically the soma, dendrites, and axons. An important feature of these model
types is that they can be used to simulate the extracellular potentials using volume
conductor theory (see Chapter 2: Methods). Extracellular potentials arise when
there is a spatial separation of currents, and since all currents are gathered in
a single point for point-neurons, they cannot generate potentials. Point-neuron
models can be used to approximate potentials, but only under certain assumptions
[31, 63]. The higher level of detail in biophysical models does result in more degrees
of freedom, so biophysically detailed models have to be constrained by the physical
features of the neural system as well as the measurement physics of the signals they
simulate.

This delineation is only approximate, and modeling studies can include
techniques and features of both approaches, but it is a practical classification
that can serve to clarify the focus and scope of a modeling study. Both have their
advantages and limitations, and which approach to use ultimately depends on the
research question [2, 8].

Biophysically detailed modeling has had a wide range of applications. Rall
(1962) [80] used his theoretical foundation for how the movement of currents across
and within neurons underlie electric signals to show that the dendritic tree of a
neuron in many cases can be approximated by an equivalent cylinder. Then,
later, Rall and Shepherd (1968) [81] analyzed the LFP recorded in the olfactory
bulb of rabbits to uncover the circuit properties of the bulb. Holt & Koch (1999)
[45] used volume conductor theory to show that ephaptic effects are minor except
in special conditions. Up until the early 2000s, most biophysical models were
small-scale models of a single or a few neurons. This was partly due to a lack
of data and partly due to the computational requirements of larger models with
this level of detail. Larger-scale models were made, but they typically consisted of
the simplified point-neurons, which can be orders of magnitude cheaper and faster
to run [8]. An early attempt at larger-scale modeling with biophysically detailed
neurons was the thalamocortical loop model developed by Traub et al. (2005)
[103]. It consists of 3560 neurons, which belong to four different major classes:
the superficial layer (2/3), layer 4, or deep layer (5/6) in the cortex, and the
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thalamus. The model exhibited oscillations in network states typically observed
experimentally, such as persistent gamma oscillations and sleep spindles, and made
predictions about the physiological mechanisms underpinning them. Reimann et
al. (2013) [82] made a model of a neocortical column consisting of more than 12000
layer 4 (L4) and layer 5 (L5) neurons, and used it to investigate which types of
transmembrane currents contribute the most to the LFP. They found that active
currents crucially alter the pattern and magnitude of LFPs, and thus demonstrated
that the assumption of dominance by passive synaptic currents in the LFP may
not always be valid.

A general limitation of models of brain nuclei is that they have limited
information on important network components like cell types, cell anatomy
and physiology, and connectivity [98]. The Blue Brain project tried to resolve
some of these limitations, which stemmed from limited experimental data, by
developing an algorithm that estimates the missing information about parameters
from sparse data [61, 83]. They used this approach to make a comprehensive
model of rat somatosensory cortex, which consists of about 31,000 neurons
of different morphological, electrical, and synaptic classes [61]. The Allen
Institute, meanwhile, began systematically collecting large data sets on cell types,
connectivity, and cell physiology, and used that data to fill some of the gaps in our
knowledge of parameter values. They then constructed a large-scale, biophysically
detailed model of mouse primary visual cortex which integrated much of this data
with information from a literature review [8]. This model consists of more than
50,000 neurons positioned in five layers: layers 1, 2/3, 4, 5, and 6 (L1, L2/3, L4, L5,
L6), where layers 2 and 3 are merged into a single layer. Each layer except L1 has
a single class of excitatory neurons and three classes of inhibitory neurons (Pvalb,
Sst, and Htr3a). L1 only has one inhibitory population (Htr3a) and no excitatory
cells. The model reproduced experimentally observed levels of orientation and
direction selectivity, and also serves as a database for the experimental data that
were employed in the making of the neuron models and their network connectivity.

Though these models each reproduced important and interesting features
observed in experimental data, none of them had quantitatively reproduced
features of both spiking activity and LFP typically recorded in vivo. We therefore
used the mouse V1 model presented in [8] as a starting point with the aim of
developing a large-scale, biophysically detailed model that could reproduce both
these signals simultaneously. The obtained model was then used to develop and
validate a tool that automatically decomposes LFP/CSD to uncover LFP/CSD
contributions generated by spiking in different presynaptic populations. Lastly,
we also used the model as a testbed for a method that estimates the postsynaptic
LFP from presynaptic firing rates and network properties, which could be used to
reduce the large computational resources required to simulate LFP in a large-scale
model with numerous parameters.
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Chapter 2

Methods

This chapter provides more detail on the theoretical framework that enables
mathematical modeling of neural activity and electrical signals. If the reader is
already familiar with these topics, they may skip to the next chapter.

2.1 Modeling at different levels of detail

Neuronal networks can be modeled at different levels of detail depending on their
purpose. At the coarsest level, individual neurons are not distinguished; their
activity is merged with the activity of other neurons belonging to the same class
or population. The spiking activity in these population models is only represented
as population firing rates, and the timing of action potentials of individual neurons
is not considered. These models are therefore referred to as rate models [37]. The
second level is the so-called point-neuron models, which were briefly described in
the introduction above. In these models, individual neurons are distinguished, but
biological details such as cell morphology and distributions of various ionic currents
are not modeled explicitly [37, 99]. The mathematical functions used to model
point-neurons only characterize the behavior of the neuron as a whole rather than
aiming for biological realism on the level of ion channels [99]. The level with the
most comprehensive inclusion of biological knowledge is referred to as biophysically
detailed models (they are also called multicompartment models, this designation
will be explained later). Here, the neuronal geometries, ion channel distribution,
and other spatial details of real neurons are modeled explicitly, though the degree
of detail may vary considerably [19, 99].

One advantage of the less detailed neuron models - the population firing rate
and the point-neuron models - is that they are computationally less demanding
[99]. This broadens their potential user base as they are less likely to require
access to high-performance computing centers. The lower computational demands
also make them more amenable to large-scale network modeling. Population firing
rate models can be used to simulate whole brain activity [37], and point-neuron
networks have been simulated on networks consisting of up to 109 neurons and
1013 synapses, roughly on the scale of the cat brain [31]. Another advantage of
less detailed models is that they may be easier to understand. The more complex
models usually come with more parameters, which can make the model unwieldy
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and obscure the relationship between the model’s components and its behavior.
The many parameters may also be challenging to constrain properly if the data
necessary to determine the parameters is not yet available [99].

An advantage of the more detailed models, however, is that they can be used
to simulate the extracellular signals observed in experimental recordings [35]. This
enables investigation into the relationship between the observed signals and the
neural activity underpinning them, which can augment the insight into neural
mechanisms that can be gained from experimental data [40, 41, 45, 82, 85, 93].
These models can also be used to develop tools to analyze experimental data, as
the tools can be tested and validated on the signals simulated with the model where
the ground truth is known [18, 25, 26, 59, 77]. Additionally, biophysically detailed
modeling may allow for greater utilization of the data collected in experimental
recordings; we are not limited to only or primarily studying the spikes or firing
rates that can be modeled with point-neurons or population firing rate models.
Finally, as outlined in the introduction, they can be used to bridge the scales
of our understanding between events on the microscopic level of ion channels to
signals and events on the macroscopic level of whole brain regions [20].

Population firing rate models have not been studied in this thesis (though
population firing rates have been calculated or estimated). Therefore, they will
not be described in more detail here. The focus will be on the framework for
biophysically detailed modeling, but some of the essential features of point-neurons
will also be characterized.

2.1.1 Biophysically detailed modeling

Modeling a membrane patch as an RC circuit

The biophysically detailed modeling of neuronal activity begins not with a whole
neuron, but with a patch of the neuronal membrane. A membrane patch with ion
channels and a stimulating electrode can be modeled with an equivalent resistor-
capacitor (RC) circuit (illustrated in Fig. 2.4) [100]. The membrane forms an
insulating layer between ions settled on its extracellular and intracellular surface
and can therefore be modeled as a capacitor. A stimulating electrode that provides
current to the circuit is modeled as the current source. The ions in the extra-
and intracellular media can cross the membrane through ion channels, which are
modeled as resistors in parallel with the current source and the capacitor. For
now, the ion channels are all passive in this model.

This circuit can be used to develop a mathematical formulation of the current
flow through the membrane patch. Kirchhoff’s current law states that the total
amount of current flowing in and out of a circuit has to sum to 0. For the passive
membrane patch, this can be written as:

Ie/a − Ic − Ii = 0, (2.1)

where a is the area of the membrane, Ie is the injected current, Ic is the capacitive
current, and Ii is the ionic current through the ion channels.

The ionic current through the resistor follows Ohm’s law, i.e., it is given by the
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Figure 2.4: Membrane patch as RC circuit. A patch of membrane (in blue) with ion
channels (in green), and an electrode (in red) inserting ionic current can be represented
with an equivalent RC circuit. The ion channels are modeled as resistors, while the
membrane is modeled as a capacitor, and the electrode is modeled as a current source.

potential divided by the resistance. The resistance here refers to the membrane
resistance - the resistance against ions crossing the membrane - and is denoted
Rm. The potential is the difference between the potential over the membrane V
and the equilibrium potential for the membrane Em. Thus, the ionic current can
be expressed as:

Ii = V − Em

Rm

(2.2)

The capacitive current is found by starting with the fundamental equation for
the relationship between the capacitance C set up by the charge q on a capacitor
and the potential V over the capacitor:

C = q

V
(2.3)

By rearranging eq. 2.3 and taking the time-derivative on both sides we get:

dq

dt
= C

dV

dt
(2.4)

Since dq
dt

is the definition of current and the capacitance here is the membrane
capacitance Cm, eq. 2.4 can be written as:

Ic = Cm
dV

dt
(2.5)

By inserting eqs. 2.2 and 2.5 into eq. 2.1, we get the following differential
equation characterizing the membrane potential over the patch over time following
a current injection:

Cm
dV

dt
= Em − V

Rm

+ Ie/a (2.6)

We can find an analytical solution for the membrane potential over time by
integrating eq. 2.6:

V (t) = Em + RmIe

a
(1 − e

−t
RmCm ) (2.7)
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Figure 2.5: Multicompartment neurite as RC circuits in series. (A) A neurite
divided up into cylindrical compartments of diameter d and length L connected by axial
resistors with resistivity Ra. (B) Each compartment is isopotential and can be modeled
as an RC circuit. The neurite is then modeled as RC circuits connected in series via
axial resistors.

The cable equation and multicompartment modeling

The RC circuit modeling of the membrane patch assumes that membrane potential
is isopotential - that is, that the potential is effectively constant over the whole
membrane. That assumption can be valid for a small area of a cell but is usually not
true over the whole membrane of a neuron. Fortunately, to model a whole neuron,
we can simply divide it up into parts, or compartments, that each can be assumed
to be effectively isopotential [100]. As illustrated in Fig. 2.5A, the compartments
are modeled as cylinders and connected to the neighboring compartments through
an axial resistor, here denoted by its resistivity Ra. The axial resistor represents the
resistance to ionic movement in the cytoplasm of the neurite. Each compartment
is then a membrane patch that can be modeled as an RC circuit, and the set of
compartments that make up a neurite is a series of connected RC circuits (Fig.
2.5B).

This approach is the reason why biophysically detailed models are also referred
to as multicompartment models. The number of compartments depends on how
much detail is needed for the research question and on the size of the area for
which the membrane can be assumed to be isopotential. Rall (1962) [80] showed
that the dendrites of a whole motoneuron can, in fact, be modeled as a single
equivalent cylinder. But there are also many situations where greater partitioning
is necessary [50].

To formulate a mathematical description of a multicompartment model, we can
begin with the result from the single patch of membrane (eq. 2.6), and add the
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terms for the current flow between compartments. If we take the perspective of the
middle compartment in Fig. 2.5A, labeling it j, then the current can both flow to
or from the rightward compartment j+1 and to or from the leftward compartment
j-1. The terms to be added, then, are the current to or from the left compartment
j-1 and the current to or from the right compartment j+1. These currents are
here denoted Ij−1,j and Ij,j+1, respectively. They follow Ohm’s law, so they are
given by the potential difference between the compartments divided by the axial
resistivity Ra, that is, Ij−1,j = Vj−Vj−1

Ra
and Ij,j+1 = Vj+1−Vj

Ra
, assuming that the

axial resistivity is constant. The resistivity is given in Ωm, so to get the axial
resistance, the resistivity must be multiplied by the length of the compartment
per area, which for a cylinder of diameter d and length L is given by 4L

πd2 . Adding
these terms to eq. 2.6 (with the area of the cylinder a = πdL placed on the
left-hand side at first) we get:

πdLCm
dV

dt
= Em − V

Rm/πdL
+ Ie + Vj+1 − Vj

4RaL/πd2 + Vj − Vj−1

4RaL/πd2 (2.8)

Which can be rearranged to:

Cm
dV

dt
= Em − V

Rm

+ Ie

πdL
+ d

4Ra

(Vj+1 − Vj

L2 + Vj − Vj−1

L2 ) (2.9)

This is the fundamental equation for simulating neural activity in the
multicompartment modeling scheme, and it can be used to calculate the membrane
potential over the whole neuron for neurons of arbitrary geometry.

If the aim is to study the electrical properties of neurons analytically, we can
start with eq. 2.9 and let the length of each compartment become infinitesimally
short, i.e. let L → δx → 0 [100]. In this case, eq. 2.9 becomes:

Cm
∂V (x, t)

∂t
= Em − V (x, t)

Rm

+ Ie(x, t)
πd

+ d

4Ra

[ 1
δx

V (x + δx, t) − V (x, t)
δx

− V (x, t) − V (x − δx, t)
δx

]
(2.10)

Which can then be written as a partial differential equation:

Cm
∂V (x, t)

∂t
= Em − V (x, t)

Rm

+ Ie(x, t)
πd

+ d

4Ra

∂2V (x, t)
∂x2 (2.11)

This expression is referred to as the cable equation. By moving the membrane
resistance Rm to the left-hand side, we get the following formulation:

τm
∂V

∂t
= Em − V + IeRm

πd
+ dRm

4Ra

∂2V

∂x2 (2.12)

The fraction in front of the double spatial derivative of the potential defines the
electrotonic length constant λ:

λ =
√

dRm

4Ra

(2.13)
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Since the electrotonic length constant depends on the relationship between the
specific membrane resistance (the transverse resistance of the membrane) and the
axial resistivity (the longitudinal resistivity of the membrane), it describes the
shape of the voltage decay over the length of the neuron. When the membrane
resistance is large relative to the axial resistivity, λ will be large, which indicates
that the potential will spread further along the length direction of the membrane.

Active channels

Thus far, we have described membranes with only passive channels. Real neurons,
however, have active channels too. Active channels, contrary to passive channels,
are not always open; they change their state from closed to open through a transfer
of energy via either chemical reactions, mechanical work, or voltage changes [101].
An action potential is driven by the opening and closing of active channels, so to
have a full description of the development of the membrane potential over time, a
mathematical characterization of ionic currents through the active channels must
also be included in the framework outlined above.

This mathematical characterization was developed by Hodgkin and Huxley
(1952) in their pioneering work with the squid giant axon on how action potentials
arise from ionic currents [44]. The total ionic current Ii can be broken down into
the individual currents that make it up: the sodium, potassium, and what Hodgkin
and Huxley called the leak current, which primarily consists of chloride ions [101]:

Ii = INa + IK + IL (2.14)

The current from an ion type X will be the product of the membrane
conductance gX for that ion type and the difference V − EX between membrane
potential and the equilibrium potential. Thus, for the three currents in eq. 2.14
we get:

INa = gNa(V − ENa) (2.15)

IK = gK(V − EK) (2.16)

IL = ḡL(V − EL) (2.17)

The bar above the membrane conductance for the leak current ḡL indicates
that it is constant. The conductances gNa and gK are not constant since the Na+

and K+ channels are active, and their behavior over time is described by equations
incorporating so-called gating particles which determine the state of the channel.
The details of the equations governing the ion channels and the gating particles
will not be described here, but can be found in the original articles by Hodgkin and
Huxley or any textbook describing the computational aspects of neurophysiology.
The leak conductance gL is determined with experimental measurements. (Note
that even though the role of the leak conductance gL and the membrane resistance
Rm in the all passive channels circuit (eq. 2.6) is similar, they are not simply
the inverse of each other. In the Hodgkin-Huxley model, the resting membrane
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resistance is determined by the sodium, potassium, and leak resting conductances
in combination [96, 101].)

Volume conductor theory

In the preceding sections, we focused on the membrane potential, i.e. the potential
across the membrane arising from a difference in ion concentrations between
the interior and the exterior of a cell. This can be recorded by inserting one
sharp electrode into the cell and measuring the potential difference to a reference
electrode placed outside the cell [97]. However, the electrical activity of neurons is
also often measured with recording electrodes positioned only in the extracellular
space. Since there is some distance from the neurons to the electrode, the
propagation of electric potentials through the extracellular medium needs to be
included in the mathematical characterization of the recorded potential generated
by neural activity. This is done with volume conductor theory [19, 38, 97].

For simplicity, we will first consider a neuron with only two transmembrane
currents (this can also be seen as a multicompartment neuron with only two
compartments): a current sink (-Im) from positive ions entering the cells and
a current source (+Im) from a return current of ions leaving the cell. This scenario
is illustrated in Fig. 2.6. A recording electrode (we will only consider a single
electrode here rather than the multiple electrodes of a multisite probe, again for
simplicity) is positioned at #»r el. The sink and the source are positioned at #»r sink

and #»r source, respectively. When the conductivity σ is constant1, the potential
recorded at #»r el from the two transmembrane currents is given by the following
equation [19, 97]:

ϕ( #»r el, t) = +Im(t)
4πσ| #»r el − #»r source|

+ −Im(t)
4πσ| #»r el − #»r sink|

(2.18)

To extend this to multicompartment neurons with transmembrane currents in
more than two compartments, one simply sums the current Im,i going through
each compartment i up to all N compartments:

ϕ( #»r el, t) = 1
4πσ

N∑
i=1

Im,i(t)
| #»r el − #»r i|

(2.19)

This equation enables calculation of the extracellular potential resulting from
the transmembrane currents of a neuron at any position in the extracellular
space. Furthermore, the total extracellular potential from multiple neurons is
the superposition of the potential from each neuron, so eq. 2.19 will also give the
potential from a population of neurons, as one would record in vivo.

1This framework can be extended to the scenario where the conductivity is anisotropic,
inhomogeneous, or frequency-dependent [33, 38]. In most situations, however, σ can reasonably
be treated as constant, and it was treated as constant in all studies presented in this thesis.
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Figure 2.6: Potential measured by extracellular electrode arising from
transmembrane currents can be calculated with volume conductor theory.
The current sink (blue arrow) and the current source (orange arrow) from ions crossing
the membrane of the neuron each contribute to the potential that propagates through the
extracellular medium with conductivity σ. The magnitude of the potential recorded at
the electrode position depends on the distances rsink and rsource from the transmembrane
currents to the electrode position.

2.1.2 Point-neurons

Integrate-and-fire neurons

The multicompartment modeling approach can be simplified by using fewer
compartments. In some cases, it may even suffice with only two compartments
[87]. However, if the dynamics arising from ion channel distribution or neuron
geometry are not of interest or relevant to the problem to be investigated, the
multicompartment modeling approach can be dropped altogether in favor of so-
called integrate-and-fire neuron models. With integrate-and-fire models, the time
course of action potentials is not simulated. When the membrane potential of the
neuron model reaches the threshold for spiking, the potential is simply reset to the
resting potential automatically, and a spike is added to the total tally of spikes
[24, 99]. The focus of this type of modeling is to reproduce the behavior of the
neuron as a whole rather than aiming for similarity to the physics and biology on
the level of channel dynamics.

The RC circuit used to model a membrane patch is also utilized in the modeling
of integrate-and-fire neurons, but the circuit here models the behavior of the
whole neuron, not just a patch of it. Thus, the resistance and capacitance here
represent the resistance of all channels on the neuron and the capacitance of the
whole membrane. Furthermore, a reset mechanism is included in the circuit to
model spike occurrences. This reset mechanism is a switch that short-circuits the
membrane resistance, which allows the membrane potential to return to rest and
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makes the circuit ready to charge until a new spike is produced [24, 99].
To describe the behavior of an integrate-and-fire neuron mathematically, we

start with an equation similar to eq. 2.6:

Cm
dV

dt
= Em − V

Rm

+ I (2.20)

The difference between eqs. 2.6 and 2.20 is that here I is the total current into the
cell from either a stimulating electrode or a synapse and that Rm and Cm represent
the resistance and capacitance of the whole neuron. This equation characterizes
the membrane potential when it is below threshold. Moving Rm on the left-hand
side, it can be written as:

τm
dV

dt
= Em − V + RmI (2.21)

where τm = RmCm is the time constant of the membrane potential. By integrating
eq. 2.21, we get the following analytical expression for the membrane potential V
over time:

V (t) = Em + RmI
(
1 − e− t

τm

)
(2.22)

It is when the membrane potential described by this equation reaches a threshold,
often denoted with θ, that the neuron fires and the potential is reset to the resting
membrane potential [99].

2.2 Software

Though it is possible to study neural processes analytically, as outlined above, the
biological complexity often necessitates numerical analysis. Numerous simulators
and wrappers for those simulators have been developed to simplify and reduce the
labor required of the modeler. A short overview of the software utilized in the
projects in this thesis will be given here.

NEURON, developed by Hines and Carnevale (1997) [43], is one of the
most widely used environments for running simulations of biophysically detailed
neurons. It allows for specification of cell models - their morphological architecture,
ion channel distribution, synaptic placement, and more - as well as network
connectivity via the HOC scripting language. All biophysical simulations in this
thesis were carried out using the NEURON environment.

NEST (the Neural Simulation Tool) [17] is a simulator for spiking neural
networks. NEST provides a framework for developing models focusing on
the dynamics and structure of neural systems, rather than the morphology of
individual cells. NEST is therefore ideal for point-neuron simulations.

BMTK (Brain Modeling Toolkit) is a Python-based software package that
is not in itself a simulator but rather serves as an interface for the NEURON
and NEST simulators [14]. It provides capabilities for building and simulating
neural models both across scales - from single cells to large-scale networks - and
across levels of resolution - from filter-based and population firing rate-models to
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biophysically detailed neurons. BMTK is designed to facilitate easy incorporation
of experimental data in models such that both cell models and networks can be
constructed in a data-driven manner.
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Results and Discussion
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Chapter 3

Summary of papers

3.1 Paper I: Uncovering circuit mechanisms of cur-
rent sinks and sources with biophysical simula-
tions of primary visual cortex

Biophysical modeling has reproduced and shed light on the mechanistic origins of
several important phenomena in systems neuroscience: from gamma oscillations
in network activity [103], the contribution of active conductances to current sinks
and sources [82], to the network architecture underlying orientation and direction
selectivity in the visual cortex [8]. However, to our knowledge, no study has
quantitatively reproduced in vivo-recorded spiking and LFPs at the same time.
Past studies have either focused on one of these signals and/or only compared
qualitatively to experimental data. This was largely because the data available
was insufficient to do proper quantitative validation across scales.

In recent years, there has been an impressive increase in the data collected and
made publicly available in neuroscience [9, 13, 92, 104, 105]. This has enabled data-
driven modeling and quantitative comparison to experimental data on both single-
cell and population levels on a scale not previously possible. Scientists at the Allen
Institute leveraged extensive data on cell types to make a comprehensive library
of biophysically detailed cell models [28], and then utilized this library together
with both literature reviews and locally gathered data on network connectivity to
construct a large-scale, biophysically detailed model of mouse primary visual cortex
(V1) [8]. This model reproduced population firing rates and levels of orientation
and direction selectivity observed experimentally during presentations of drifting
grating stimuli. It was, however, not investigated whether the LFP simulated with
the model matched the experimentally observed LFP.

In our first study, we used this published V1 model as a starting point for
developing a model that could reproduce experimentally observed CSD (derived
from LFP) and spiking activity in response to a full-field flash stimulus. To
validate the model against experimental data, we used the Visual Coding data
set containing in vivo recordings of extracellular potentials from 58 mice [92]. We
discovered that there were substantial discrepancies between the original model
CSD and the experimental CSD, and set out to investigate the cause of this
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discrepancy and to find out what could be amended in the model to make it
reproduce spikes and LFP from experiments simultaneously.

It was not only the simulated CSD that deviated from the experimental data,
the spiking response of the model also deviated for some populations in response
to full-field flashes. By adjusting the recurrent synaptic weights, however, we were
able to get the spiking activity of the model within experimental variability. Still,
even though the model now reproduced the spiking response, the discrepancy
between the model CSD and the experimental CSD remained. The model
CSD was also largely unaltered by the modification of the recurrent synaptic
weights, even though the spiking response changed significantly. This aligns with
findings in previous studies that have suggested that spiking and LFP represent
complementary aspects of neural activity [53, 89].

The original version of the model received external input from LGN and
background input representing input from the rest of the brain. It did not include
feedback input from higher visual areas. In our attempts to reproduce the response
to full-field flashes, we focused on the first 100 ms after stimulus onset. This choice
was made partly because we surmised that the response in this time period would
be dominated by the feedforward input and the activity generated by recurrent
connectivity within V1, which were included in the original model. Our original
intention was to introduce feedback from higher visual areas to V1 to the model
in a separate, later project and present the results in a second paper.

However, we observed that the prominent, sustained current sinks and sources
inside the 100 ms time window that were missing in the simulated CSD coincided
in time with elevated activity in higher visual areas in the experiments. Therefore,
we hypothesized that these sinks and sources were generated by feedback from
these areas, and that it would be necessary to add feedback from a higher visual
area to the model to reproduce the experimental response in the first 100 ms. We
thus incorporated the feedback input already in this project. We did this in a
data-driven manner, feeding spikes recorded experimentally in the lateromedial
area (LM) of higher visual cortex to the model. This produced an immediate
improvement in the correspondence between the simulated and experimental CSD.
The sustained sinks and sources in upper layers that had been missing in the
model were now present in the simulations too. Importantly, we were able to get
the model to match the experimental CSD at the same time as it matched the
experimental firing rates.

We also introduced the application of the Wasserstein distance (WD) as a
metric to quantitatively compare CSD patterns. The WD has traditionally been
used to compare probability distributions. Here, we used the WD to quantify
the similarity between the distributions of current sinks and sources of two CSD
plots. We first calculated the WD between individual CSD plots from animals
and what we dubbed the canonical CSD pattern, which was the first principal
component calculated from the CSD of all animals together. The distribution
of WDs from individual animals to the canonical CSD pattern established the
experimental variability. Then we calculated the WD between the simulated CSD
and this canonical CSD pattern and compared it to the experimental variability
to assess model performance. When the model was within the experimental
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variability, we could claim that the model was indistinguishable from an individual
animal in the experimental data set. We applied the same methodology with
already established metrics for spike statistics to evaluate model performance and
experimental variability for spiking.

3.2 Paper II: Uncovering population contributions to
the extracellular potential in the mouse visual
system using Laminar Population Analysis

Developing a large-scale biophysically detailed model, as we did in paper I, is one
way to uncover the circuit mechanisms underpinning LFPs. However, constructing
models to simulate extracellular potentials can be a resource-intensive endeavor,
both with respect to human and computational resources. Thus, it would be
advantageous to have tools that could disentangle LFP contributions from different
biophysical processes without requiring the construction of a model.

Statistical tools such as independent component analysis (ICA) [21, 22, 52, 58,
59] and principal component analysis (PCA) [3–5, 16] have been used to decompose
LFP with the aim of uncovering contributions from different pathways to the
recorded LFP. The idea was that the different statistical features in the obtained
components would correspond to the contributions from different populations or
pathways, thereby separating and identifying these contributions. This approach
may work if the assumptions of statistical independence, in the case of ICA,
or orthogonality, in the case of PCA, are valid for the structure in question
and experimental conditions in which the data was collected. However, these
assumptions are unlikely to be generally valid [26, 29].

Seeking to avoid the issues with the validity of statistical assumptions, Einevoll
et al. (2007) developed a method called laminar population analysis (LPA) [18, 25],
which decomposes LFP based on physiological rather than statistical assumptions
about how different populations generate LFP. LPA utilizes the multi-unit activity
(MUA) and the LFP jointly in a spatiotemporal decomposition of the LFP. It
first identifies the positions of layers in a laminar structure and temporal profiles
of the firing rates of these layers from the MUA. Then, in the next step, the
temporal profiles of the firing rates of these laminar populations are convolved with
kernels to estimate the temporal profile of the postsynaptic LFP they generate.
The firing rates and contributions of external populations can be included in the
decomposition simply by appending them to the temporal profiles of the laminar
populations. The convolution with kernels approximates the process by which
action potentials in each presynaptic population produce postsynaptic LFP. The
obtained postsynaptic temporal profiles of the population LFP are then used in the
decomposition of the recorded or simulated LFP. The end result is the population
contribution to the total LFP from each presynaptic population.

In this paper, we sought to validate LPA on data simulated with the mouse V1
model version we developed in paper I. We first found that LPA applied to MUA
estimated both the positions of layers in the V1 model and the temporal profile
of their population firing rates reasonably well. We next applied LPA to the CSD
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derived from the simulated LFP, and found that we needed to add a regularization
term to the cost function that penalized deviations from zero in the CSD summed
across channels to improve the population estimates. After introducing this
regularization term, LPA could estimate the salient current sinks and sources
produced by feedforward inputs from LGN, feedback inputs from LM, as well as
those stemming from recurrent activity within V1. LPA also partly recapitulated
the contributions from some laminar populations. However, on the whole, the
estimation of laminar contributions to the CSD was not satisfactory. It is likely
that the poorer estimation of contributions from layers within V1 was caused by
excessive synchrony in the population firing rates across layers. This synchrony
could be diminished and the estimation of laminar contributions improved by the
use of other stimulus protocols in the simulations and the experiments.

There were still spurious sinks and sources in the CSD estimates not observed
in the ground truth CSD contribution from each population. There were also
deviations in the magnitude for the sinks and sources that did have the correct
position and timing. Nonetheless, LPA produced more accurate renderings
of the CSD contributions from each structure than the alternative statistical
decomposition tools, PCA and ICA, and had a clearer interpretation in terms
of the underlying circuit mechanisms.

Lastly, we demonstrated the use of LPA on experimentally recorded
extracellular potentials. We observed that some of the sinks and sources ascribed
to the feedforward input from LGN, the recurrent activity within V1, and the
feedback from higher visual areas corresponded to the CSD contributions expected
from these structures based on anatomical data and our modeling results in paper
I.

3.3 Paper III: Estimating simulated local field poten-
tials from presynaptic firing rates and network
properties

One bottleneck in studying extracellular potentials with large-scale, biophysically
detailed models is the computational power required to simulate them. The
biophysical mouse V1 model can only be simulated with the resources of a high-
performance computing center, which makes it unfeasible to work with for those
without access to such centers1. The kernel methodology for estimating LFP from
presynaptic firing rates, of which the LPA method in paper II is an example,
can help substantially reduce the computational resources required to simulate
extracellular potentials. The kernel approach can enable approximations of the
LFP generated by models, obviating the need to run full-scale simulations. This
would provide all labs with the opportunity to study the LFP of large-scale,
biophysically detailed models.

In our third project, we employed a previously established framework [30] to
construct kernels from detailed information about membrane potentials, synaptic

1There is, however, a point-neuron version of the V1 model, which can be run on laptops.
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parameters, and connectivity patterns in the model, and we used these kernels
to estimate the LFP generated in L2/3 of the mouse primary visual cortex
model version from paper I. We convolved the kernels with the firing rates of
all presynaptic external inputs (LGN, LM, and the background) and the internal
populations in L2/3 to estimate the LFP contribution from each population.
We found that this approach produced estimates of LFP contributions that
recapitulated the simulated LFP contributions with a high degree of accuracy.
The kernel method estimated both the LFP patterns and magnitude generated
by firing in each presynaptic population, and could be used to assess the relative
strength of each contribution. The external inputs contributed the most to the LFP
overall, while the parvalbumin-positive (PV) inhibitory population constituted the
largest contributor among the internal sources.

The accuracy in the estimates with this approach - R2 > 0.9 for all channels
except those at the center point of the somatic distribution - is high enough
that, at least for some research questions, this method could be utilized as
a substitute for full simulations. The information required to construct the
kernels is not concurrently available with LFP recordings in electrophysiological
recordings, which may limit its application to current experimental data, but
further investigation is required to conclusively determine this. We plan to extend
the analysis done for L2/3 to all layers in the V1 model.
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Chapter 4

Discussion

The thalamocortical loop model developed by Traub et al. (2005) [103], consisting
of more than 3500 biophysically detailed cells, was an early effort to construct a
large-scale, biophysically detailed network model. The article in which the model
was presented was introduced with the following observation:

"The greatest scientific challenge, perhaps, in all of brain research is how to
understand the cooperative behavior of large numbers of neurons. Such cooperative
behavior is necessary for sensory processing and motor control, planning, and in
the case of humans, at least, for thought and language. Yet it is a truism to observe
that single neurons are complicated little machines, as well as to observe that not
all neurons are alike — far from it; and finally to observe that the connectional
anatomy and synaptology of complex networks, in the cortex for example, have
been studied long and hard, and yet are far from worked out. Any model, even
of a small bit of cortex, is subject to difficulties and hazards: limited data, large
numbers of parameters, criticisms that models with complexity comparable to the
modeled system cannot be scientifically useful, the expense and slowness of the
necessary computations, and serious uncertainties as to how a complex model can
be compared with experiment and shown to be predictive. The above difficulties
and hazards are too real to be dismissed readily. In our opinion, the only way to
proceed is through a state of denial that any of the difficulties need be fatal. The
reader must then judge whether the results, preliminary as they must be, help our
understanding."

Though the amount and detail of data available today has increased
prodigiously since this paragraph was written, these difficulties are still too real to
be readily dismissed. They will presumably and hopefully abate as our methods for
data collection become more precise and efficient, and more high-quality data are
made available to the neuroscientific community. Until that time arrives, however,
we remain firmly in a regime of modeling without knowing all the numbers.

The projects in this thesis all strive to address and improve the current state
of computational neuroscience with respect to some of the challenges listed by
Traub and colleagues. The first paper deals with how we can enhance constraints
on model parameters and architectures by utilizing all the data we have available
across multiple scales, and how a complex model can be compared to experiments
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and shown to be predictive. The second paper deals with how to infer circuit
mechanisms from recorded extracellular potentials, without having to construct
a model, by taking advantage of physiological knowledge of how extracellular
potentials are generated. The third paper aims to validate a method that
circumvents the time- and computationally consuming simulations of extracellular
fields by rather estimating them from presynaptic firing rates and known network
parameters. As Traub et al. pointed out, the readers must be the judges as to
whether the results are useful and augment our insight into neural mechanisms
and experimental signals. In the following, the results from these projects and
their limitations will be discussed, and potential paths forward will be outlined.

4.1 Validating large-scale models and making testable
predictions

Models in computational neuroscience, like any theoretical endeavor in science,
should produce testable predictions. To be able to test predictions, however, we
must first determine how to compare model predictions with the experimental
data.

Previous large-scale biophysical modeling efforts have often limited their
comparison to signals on a single scale or compared simulated and experimental
data qualitatively. In our first paper, we sought to establish a systematic
framework to quantify experimental variability and assess model performance both
with respect to spike data and CSD derived from LFP. We used the Kolmogorov-
Smirnov similarity between distributions of firing rates across cells in different time
periods as well as the moments of distributions of peak firing rates to quantify
population spiking magnitudes. To evaluate temporal profiles of population
spiking, we calculated the correlation between population firing rates and the
moments of distributions of time to the initial peak. Lastly, to compare CSD
patterns, we calculated the Wasserstein distance between distributions of sinks
and sources, which tells us how much the sinks and sources of one pattern have to
be moved around to match another pattern. The more sinks and sources have to
be moved, the bigger the Wasserstein distance.

For all these metrics, we first established the experimental variability. One
way we did this was to calculate the relevant similarity or distance metric between
each individual animal and the target - that is, the average population firing
rate or the first principal component of trial-averaged CSD from all animals.
Alternatively, we calculated the similarity or distance pairwise between animals.
When we then computed the same metrics between the model and the experimental
data, we could compare the obtained values to the experimental variability. If the
model was within the experimental variability, we could argue that the model was
indistinguishable from an individual mouse in the experimental data set, and thus
that the experimental feature in question had been reproduced by the model.

The final model was within the experimental variability for all but a few
measures. However, this does not preclude that other metrics would have
revealed greater discrepancies between the model and the experiments. Different
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metrics have different advantages and drawbacks, or different trade-offs, in other
words. That is not to say that some metrics are not more appropriate than
others: some metrics can be more informative or have fewer serious limitations.
Thus, a systematic investigation into what could be the optimal metrics for
comparing large-scale, biophysically detailed models to data would be a valuable
and important avenue for future research. Additionally, an exhaustive evaluation
of a model that includes biological detail on the subcellular level should ideally
also be compared to in vivo experimental data on this scale as well. This was not
feasible with the data currently available. Nonetheless, the metrics and approach
applied in this study laid the groundwork for cross-scale quantitative comparison
of simulated to recorded signals that can be used by other studies in the future.

The original V1 model received feedforward input from a structure representing
LGN and background input from a Poisson source representing the influence of the
rest of the brain. With this model configuration, there were major discrepancies
between the simulated and experimental CSD. We explored whether the model
with only these inputs and recurrent connections within V1 could be modified to
match the experimental CSD, but did not succeed. Past studies on the effect of
feedback input on LFP have suggested that it primarily exerts its influence only a
few hundred ms after stimulus onsets [65, 66], indicating that the feedback should
not be involved in the generation of major sinks and sources in the first 100 ms
after stimulus onset that we focused on. However, a recent study on the effects of
cortico-cortical feedback on LFP in the V1 area of monkeys suggested that feedback
can crucially alter LFP already 80 ms after stimulus presentation [39]. In order to
test the idea that feedback from higher visual areas is involved in the generation
of the sinks and sources missing in the original model simulations, we decided
to introduce feedback to the model in a data-driven manner. We added another
input to the model consisting of spikes recorded experimentally in the lateromedial
area (LM) of higher visual cortex, and it engendered an immediate improvement
in the correspondence between the simulated and experimental CSD. The salient
sinks and sources that had been observed in experiments but were missing in the
original simulations were now present.

The idea that cortical feedback sculpts the LFP and CSD already in the first
100 ms of evoked responses, and the specific ways it does so, constitutes a testable
hypothesis formulated by our model simulations. We suggested an experimental
protocol that could falsify the hypothesis, where the influence of feedback is
removed by, e.g., optogenetic silencing of the relevant higher cortical areas 60 ms
after stimulus onset (the time at which the effect feedback seemed to arise). We
simulated this experimental protocol by removing the feedback at this time point in
the model, and with the framework of metrics described above, the resulting CSD
(and spiking activity) can be compared to the experimental results for verification
or falsification.

Another question we briefly attempted to address with our simulations, was the
role of active channels in LFP generation. LFP has been considered to primarily
originate from currents caused by synaptic input, and the contribution from active
channels in shaping the LFP has been seen as less important in most physiological
conditions [19, 56, 67]. This stemmed in part from the observation that the action
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potentials during which most active channels are open are short in duration -
lasting only a few milliseconds, which would probably be too short for them to
summate constructively except in highly synchronous conditions [12, 30]. Synaptic
currents, on the other hand, are slower, which allows for greater overlap in time
and therefore a greater potential for constructive summation [30]. Reimann et al.
(2013) [82], however, constructed a model of L4 and L5 in rat somatosensory cortex
(S1) consisting of about 12000 neurons, and found that in their simulations, the
active currents actually contributed a substantial portion of the transmembrane
currents underpinning the LFP, and they posited that it is in fact the active
currents that dominate LFP generation, not synaptic currents.

In our simulations with the mouse V1 model, we also observed that the CSD
magnitude and patterns could be significantly altered by the inclusion or exclusion
of active channels, thus aligning with the findings of Reimann and colleagues.
However, our simulations also demonstrated the crucial importance of synaptic
inputs in shaping the CSD, and therefore the LFP. The model did not reproduce
the experimental CSD until synaptic input from LM was added. Furthermore,
we investigated the origins of the major sinks and sources in the canonical CSD
pattern in the validated model by selectively removing certain inputs, connections,
or ion channel types to eliminate their effects, and we found that several of the
prominent sinks and sources stemmed from either external or recurrent synaptic
input. Thus, even though our results did support the importance of active channels
in generating the observed LFP patterns, they also highlight the critical role of
currents through passive channels caused by synaptic input.

Both our V1 model and the rat S1 model were constructed with simplifications
that may affect the conclusions that can be made regarding the role of active
channels with either model. Neurons in our V1 model only have active channels at
the soma, and none in the dendrites. Dendritic calcium spikes, for example, may
constitute a significant share of the LFP due to their relatively large amplitude
and longer duration [12], and this effect would not be captured by our model. In
the rat S1 model, L1, L2/3, and L6 were not modeled, though anatomical studies
of S1 have shown that there is substantial synaptic innervation in these layers [68].
Furthermore, both our simulations and anatomical and physiological data suggest
that L1 and L2/3 are major target areas for cortico-cortical input in V1 [27, 39, 48,
62, 91]. The findings for V1 may not generalize to S1, but are at least an indication
that the absence of these layers may have significant effects on the estimate of
synaptic contributions to the LFP. In summary, neither model is yet sufficient to
give a precise and final answer to the question of whether active currents or currents
associated with synaptic input have the largest influence on LFP, but both models
have made contributions that can motivate future experimental investigations
and modeling studies where the effects of the abovementioned limitations are
eliminated. Indeed, some such experimental studies have been conducted. Haider
et al. (2016) [32] found a strong coupling between LFP and synaptic currents
in individual cells, suggesting that at least for subthreshold activity, the LFP is
better explained by synaptic than active currents.

Lastly, the findings in our study also demonstrated that by using the LFP in
addition to spikes in the optimization of the V1 model, we obtain more constraints
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to put on model parameters and architecture. The firing rates of the model
reproduced experimental firing rates even before the feedback from higher visual
areas was included in the model, which means that it was not apparent from the
spikes alone that the effects of feedback were absent in the model. That only
became apparent by studying the LFP/CSD. Furthermore, we found that the
CSD pattern could be significantly altered by changing synaptic positions with
minor effects on population firing rates, while the population firing rates could
be significantly altered with minor effects on CSD by modifying synaptic weights.
Together, these observations support the notion that LFP and spiking represent
complementary aspects of neural activity, and that by using LFP in addition to
spikes in the configuration and optimization of the model we reduce the degrees of
freedom, and may get a model that is one step closer to real, biological networks.

4.2 Inferring population contributions and the valid-
ity of assuming linear LFP generation

Whether we can rigorously compare models to experimental data and show them
to be predictive when there are more parameters than we can properly constrain
is one challenge, another is whether we can infer neural activity from recorded
signals when we have many degrees of freedom.

This too is a question of constraints: How to add constraints and to what extent
they are sufficient to ensure accurate estimates. When decomposition tools such
as ICA [21, 22, 52, 58, 59] and PCA [3–5, 16] have been applied to separate and
identify contributions from different populations or pathways to recorded LFP,
the intention was to take advantage of statistical constraints. The statistical
constraints in ICA and PCA are that the sources to be uncovered generate LFP
in a way that is, respectively, statistically independent or orthogonal. In certain
structures and experimental conditions, this may indeed map onto the way that
different pathways generate LFP [58].

However, these assumptions are unlikely to always be valid [26, 29]. Different
populations may generate LFP in ways that are highly interdependent. In mouse
V1, for example, the contributions arising from recurrent activity within V1 depend
on prior input from LGN, so the contributions from LGN and V1 are not generated
independently. Likewise, the contribution from higher visual areas depends on
prior input from V1, and as such, is not independent from the V1 contribution.
Thus, for a structure like V1, the assumption of statistical independence should
be invalid.

A different approach to constraining the decomposition is to take advantage of
physiological knowledge. When the process by which the LFP in a postsynaptic
population is produced by presynaptic spikes can be assumed sufficiently linear,
the LFP generation can be approximated by the convolution of firing rates with an
appropriate kernel [18, 30]. This is the assumption underlying the methods in both
the second and the third paper of this thesis. Both estimate LFP contributions
from presynaptic populations by convolving their firing rate with kernels, but
they differ in their construction of those kernels and, partially, in their purpose.
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Laminar Population Analysis (LPA), the method expanded upon in the second
paper, convolves the firing rates with exponential1 functions that represent effects
such as synaptic delays and filtering when presynaptic spikes generate postsynaptic
LFP. The linearized framework in the third paper leverages information about
membrane potentials, synaptic parameters, and connectivity patterns from the
model to construct more detailed kernels for convolution with firing rates.

Since the linearized framework requires more detailed information about
network properties and membrane potentials than is typically available in
today’s electrophysiological recordings, its application for the estimation of LFP
contributions from presynaptic populations in experiments may be limited with
current data. If the inter-animal variability in network properties is small enough,
it may be possible to apply the linearized framework to experimental data too by
utilizing the same kernel parameters, estimated from anatomical and physiological
literature, for all animals and let the recorded presynaptic spike rates dictate
differences in LFP estimates across animals. Adjudication of whether this approach
is feasible awaits future investigation. LPA, on the other hand, can already be
used on experimental data, and at least some of the idiosyncrasies of network
properties of different animals can, in principle, be captured by the parameters of
the exponential function kernels.

The greater detail in the kernels constructed in the linearized framework,
however, appears to result in significantly higher precision in the estimated
population LFP for the model - potentially high enough that it can reduce, and
in some cases eliminate, the need for running simulations of the full biophysically
detailed model. This would not only save substantial computational resources,
it would also make the ability to predict extracellular potentials with large-scale
models available to the whole neuroscientific community, not only those with access
to high-performance computing centers.

Can LFP generation from presynaptic input in fact be assumed to be
sufficiently linear? Many aspects of neuronal processing are not linear [49]. For
example, synaptic currents have a non-linear dependence on synaptic conductance
since it is influenced by membrane potential changes, and active channels in the
dendrites can make the integration of input from multiple synapses non-linear [30].
However, if the influence of the non-linear processes is small enough or they can be
well explained by linear approximations around typical values of e.g. membrane
potentials or firing rates, the assumption of linearity can be acceptable [30].

As described in the preceding section, the extent to which currents through
active channels shape the LFP generation is not fully settled. The mouse V1
model used in the validation of the kernel methods does not have active channels
in the dendrites, so the validation on the V1 model is not affected by this particular
aspect. The question is, however, still relevant when the LPA method is applied
to experimental data, where neurons do have active channels in the dendrites.
Furthermore, the neurons in the V1 model do have active channels at the soma,
and our own simulations did demonstrate a role for active channels in shaping the
LFP.

1Other mathematical functions, such as the alpha function, can also be utilized, but
exponential functions have produced the best results.

36



This suggests that either the kernel methods must be restricted to estimating
contributions from synaptic currents and their associated return currents through
passive channels, or it must be possible to approximate currents through active
channels with linear processes. Some studies have indeed shown that the
subthreshold dynamics of active channels can be approximated with linear models
[70, 71], indicating that at least the subthreshold contribution of active channels
can reasonably be treated linearly. Additionally, the study that used experimental
data to demonstrate a strong coupling of synaptic currents and LFP through a
linear regression indicates that the relationship can be approximated by linear
processes also in experiments [32]. In the application of the linearized framework
to L2/3 LFP in paper III, we found that the LFP was well estimated (R2 > 0.9)
for all channels except those nearest the center point of the somatic region. The
poorer fit near the center point of the somatic distribution is most likely due to
the fact that it coincides with the inversion point of the LFP. This means that the
LFP amplitude is very small in this region and that noise makes up a significant
part of the signal. Additionally, however, the contribution from active channels
is probably the largest in this region, which means that the validity of the linear
assumption may be limited here. However, the fact that the linearized framework
produced precise estimates of LFP for most channels across different stimuli and
for several different biophysically detailed models - both the network utilized in
[30] and the layer 2/3 network of the Allen V1 model - supports to the contention
that the assumption of largely linear LFP generation is often valid. Nevertheless, a
systematic investigation into precisely when the assumption of a linear relationship
between spikes and LFP generation is valid is an important line for future studies.

Motivated by the observation that current sinks and sources calculated from
LFP are typically balanced across depth, we added a regularization term to the cost
function in LPA that penalized deviations from zero in the CSD summed across
channels. In other words, we amended the original LPA formulation to include
another constraint based on physiology. After making this modification, we saw
an improvement in the LPA-estimates of salient sinks and sources generated by
external input from LGN and LM as well as those generated by recurrent activity
within V1.

However, the decomposition with LPA was still not perfect. The estimates
contained sinks and sources that were not present in the ground truth CSD, and the
sinks and sources that did have the correct position and timing sometimes deviated
in magnitude from the true CSD. The LPA-estimates may be ameliorated by other
stimulus protocols [15], but the inaccuracies may also stem from simplifications or
from restricted validity of linearity assumptions, as discussed above.

One such simplification is that when the temporal profiles of firing rates are
estimated from the MUA, the firing rates of excitatory and inhibitory cells are
merged into the firing rates of one population (except if they happen to be spatially
non-overlapping). Excitatory currents generate a current sink while inhibitory
currents generate a current source, i.e., they generate currents with opposite signs
[12, 36]. But a population firing rate containing spikes from both excitatory
and inhibitory currents will still only generate currents with one sign at a time,
so it cannot estimate both effects simultaneously even though spikes from both
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excitatory and inhibitory neurons are represented in the firing rate. In the V1
model, the excitatory neurons make up the majority of the neurons in the model
(∼85 %), and we found that the excitatory populations explained 88.5 % of the
MUA variance. This suggests that the error from this simplification will be small
for the V1 model. However, this may not be the case for other models or for
experimental data.

Still, the CSD contributions from different structures were rendered more
accurately than they were with the alternative statistical approaches, ICA and
PCA. As such, it is a step forward, that can be improved upon, and it can already
provide a first estimate of circuit architectures. The linearized framework may
be another step forward in terms of accurate estimation of LFPs with the kernel
methodology, at least for model data, and potentially also for experimental data
in the future. The findings in these projects demonstrate the utility of exploiting
physiological knowledge when developing analysis tools and attempting to infer
neural activity from recorded signals. This shows that not only our models, but
also our tools will improve as our physiological understanding improves and we
have more constraints on our approximations and inferences of neural activity in
the brain.

4.3 Outlook

In the introduction of this thesis, we highlighted EEG, which can be recorded non-
invasively in humans, as a signal that could be better understood and interpreted
by the study and modeling of LFP. None of the projects here investigates or
attempts to model EEG, but an interesting and valuable continuation of this work
would be to extend the model to generate simultaneous EEGs from the simulations,
in addition to LFPs and spiking data. EEG data would add a macroscopic level to
the existing microscopic level of single-cell activity and mesoscopic level of LFP.
This would enlarge the pool of data that can be used in model development and
open up the potential for further top-down constraints on model parameters and
architecture.

This extension could be combined with simultaneous experimental recordings
of LFP and EEG, such that the link between the experimental LFP and EEG can
be investigated with simulations. The simulations could then further motivate
adjustments to the experimental setup to answer questions that may arise,
bolstering our understanding of the relationship between neural activity and the
observed LFP and EEG signals. Adding another scale to an already complex
model will come with its own set of challenges. To model the EEG, the effect
of the propagation of electrical signals through the cerebrospinal fluid, the skull,
and the scalp would have to be incorporated. Additionally, the signals recorded
with EEG electrodes are expected to reflect a larger area than the 1 mm scale of
the current V1 model [34], so the influence of neighboring areas would have to
be approximated. Nonetheless, it would be an intriguing step toward linking all
scales of neural activity and measurement signals.

The construction of the large-scale, biophysically detailed mouse V1 model was
made possible by data collected in recent years. In our validation of the model
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against experimental data, we used the Visual Coding data set obtained with
Neuropixels 1.0 probes, which records from 384 channels over a shank 1 cm in
length [46]. Since the Visual Coding data set was released, both Neuropixels 2.0
[95] and Neuropixels Ultra [108] probes have been developed. These probes have
greater channel density (1333/mm for Neuropixels Ultra, 133/mm for Neuropixels
2.0, vs. 100/mm for Neuropixels 1.0) and come with software for automatic motion
correction to increase stability in chronic recordings, resulting in both greater yield
and quality of cell recordings. The continued evolution of recording devices will
help to alleviate some of the difficulties listed in Traub et al. (2005). While these
devices are being developed and put to use, the models and tools we develop in
parallel can hopefully expand our insight into the neural circuits and both inspire
and inform future studies that bridge our understanding of the microscopic and
the macroscopic parts of the brain.
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Abstract Local field potential (LFP) recordings reflect the dynamics of the current source density 
(CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources 
are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels 
recordings and a detailed circuit model based on simulating the Hodgkin–Huxley dynamics 
of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD 
responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on 
the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates 
by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and 
recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical 
feedback crucially alters them in later stages. These results establish quantitative links between 
macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of 
neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond 
those from considering spikes.

Editor's evaluation
The study demonstrates that utilizing the LFP and/or the CSD in modeling can facilitate model 
configuration and implementation by revealing discrepancies between models and experiments. The 
analysis of the biophysical origin of the canonical CSD using the model is an interesting and worthy 
line of investigation. The dissection of CSD components is detailed and exhaustive. A key novelty of 
this article is the addition of CSD patterns as another constraint to more accurately infer the model 
parameters beyond its prior state.

Introduction
The local field potential (LFP) is the low-frequency component (below a few hundred Hertz) of the 
extracellular potential recorded in brain tissue that originates from transmembrane currents in the 
vicinity of the recording electrode (Lindén et al., 2011; Buzsáki et al., 2012; Einevoll et al., 2013; 
Pesaran et  al., 2018; Sinha and Narayanan, 2022). While the high-frequency component of the 
extracellular potential, the single- or multi-unit activity (MUA), primarily reflects action potentials of 
one or more nearby neurons, the LFP predominantly stems from currents caused by synaptic inputs 

RESEARCH ARTICLE

*For correspondence: 
atleeri@ifi.uio.no (AER); 
antona@alleninstitute.org (AA)
†Lead contact

Competing interest: See page 
24

Funding: See page 24

Preprinted: 25 February 2022
Received: 23 February 2023
Accepted: 10 July 2023
Published: 24 July 2023

Reviewing Editor: Tirin Moore, 
Howard Hughes Medical 
Institute, Stanford University, 
United States

‍ ‍ Copyright Rimehaug et al. 
This article is distributed under 
the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

43



 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Rimehaug et al. eLife 2023;12:e87169. DOI: https://doi.org/10.7554/eLife.87169 � 2 of 31

(Mitzdorf, 1985; Einevoll et al., 2007) and their associated return currents through the membranes. 
Thus, cortical LFPs represent aspects of neural activity that are complementary to those reflected in 
spikes, and as such, they can provide additional information about the underlying circuit dynamics 
from extracellular recordings.

Applications of LFP are diverse and include investigations of sensory processing (Rall and Shep-
herd, 1968; Di et al., 1990; Victor et al., 1994; Kandel and Buzsáki, 1997; Mehta et al., 2000a; 
Mehta et  al., 2000b; Henrie and Shapley, 2005; Einevoll et  al., 2007; Belitski et  al., 2008; 
Montemurro et  al., 2008; Niell and Stryker, 2008; Nauhaus et  al., 2009; Bastos et  al., 2015; 
Senzai et al., 2019), motor planning (Scherberger et al., 2005; Roux et al., 2006), navigation (Tort 
et al., 2008; Makarova et al., 2011; Fernández-Ruiz et al., 2012; Watrous et al., 2013; Fernández-
Ruiz et al., 2017), and higher cognitive processes (Pesaran et al., 2002; Womelsdorf et al., 2006; 
Liu and Newsome, 2006; Kreiman et al., 2006; Liebe et al., 2012). The LFP is also a promising signal 
for steering neuroprosthetic devices (Mehring et al., 2003; Andersen et al., 2004; Rickert et al., 
2005; Markowitz et al., 2011; Stavisky et al., 2015) and for monitoring neural activity in human 
recordings (Mukamel and Fried, 2012) because the LFP is more easily and stably recorded in chronic 
settings than spikes. Due to the vast number of neurons and multiple neural processes contributing 
to the LFP, however, it can be challenging to interpret (Buzsáki et al., 2012; Einevoll et al., 2013; 
Hagen et al., 2016). While we have extensive phenomenological understanding of the LFP, less is 
known about how different cell and synapse types and connection patterns contribute to the LFP or 
how these contributions are sculpted by different information processing streams (e.g., feedforward 
vs. feedback) and brain states.

One way to improve its interpretability is to calculate the current source density (CSD) from the 
LFP, which is a more localized measure of activity, and easier to read in terms of the underlying neural 
processes. The current sinks and sources indicate where positive ions flow into and out of cells, respec-
tively, and are constrained by Kirchoff’s current law (i.e., currents sum to zero over the total membrane 
area of a neuron). However, the interpretation of current sinks and sources is inherently ambiguous as 
several processes can be the origin of a current sink or source (Buzsáki, 2006; Pettersen et al., 2006; 
Einevoll et al., 2007). For example, a current source may reflect an inhibitory synaptic current or an 
outflowing return current resulting from excitatory synaptic input elsewhere on the neuron. There is no 
simple way of knowing which it is from an extracellular recording alone (Buzsáki, 2006).

Another approach to uncovering the biophysical origins of current sinks and sources, and by exten-
sion the LFP, is to simulate them computationally (Pettersen et  al., 2008; Einevoll et  al., 2013). 
Following the classic work by Rall in the 1960s (Rall, 1962), a forward-modeling scheme in which 
extracellular potentials are calculated from neuron models with detailed morphologies using volume 
conduction theory under the line source approximation has been established (Holt and Koch, 1999). 
With this framework, we have achieved a good understanding of the biophysical origins of extra-
cellular action potentials (Koch, 1998; Holt and Koch, 1999; Pettersen and Einevoll, 2008; Hay 
et al., 2011; Lindén et al., 2010). Expanding on this understanding, models composed of popula-
tions of unconnected neurons (e.g., Pettersen et al., 2008; Lindén et al., 2011; Schomburg et al., 
2012; Łęski et al., 2013; Sinha and Narayanan, 2015; Hagen et al., 2017; Ness et al., 2018) and 
recurrent network models (e.g., Traub et al., 2005; Vierling-Claassen et al., 2010; Reimann et al., 
2013; Głąbska et al., 2014; Tomsett et al., 2015; Hagen et al., 2016; Hagen et al., 2018; Chatzi-
kalymniou and Skinner, 2018) have been used to study the neural processes underlying LFP.

While interesting insights about CSD and LFP were obtained from these computational approaches, 
establishing a direct relationship between the biological details of the circuit structure and the electrical 
signal like LFP remains a major unresolved challenge. One reason is that the amount and quality of 
data available for modeling the circuit architecture in detail have been limited. This situation improved 
substantially in recent years, and a broad range of data on the composition, connectivity, and phys-
iology of cortical circuits have been integrated systematically (Billeh et al., 2020) in a biophysically 
detailed model of mouse primary visual cortex (area V1). In addition, significant improvements were 
achieved in experimental recordings of the LFP and the simultaneous spiking responses. In particular, 
the Neuropixels probes (Jun et al., 2017) record LFP and hundreds of units across the cortical depth 
in multiple areas, with 20 μm spacing between recording channels allowing for an unprecedented level 
of spatial detail. These developments provide unique opportunities to improve our understanding of 
circuit mechanisms that determine LFP patterns.
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Here, we analyze spikes and LFP from the publicly available Allen Institute’s Visual Coding survey 
recorded using Neuropixels probes (https://www.brain-map.org; Siegle et al., 2021) and reproduce 
these using the mouse V1 model developed by Billeh et al., 2020. The model is comprised of >50,000 
biophysically detailed neuron models surrounded by an annulus of almost 180,000 generalized leaky-
integrate-and-fire units. The neuron models belong to 17 different cell type classes: one inhibitory 
class (Htr3a) in layer 1, and four classes in each of the other layers (2/3, 4, 5, and 6) where one is 
excitatory and three are inhibitory (Pvalb, Sst, Htr3a) in each layer. The visual coding dataset consists 
of simultaneous recordings from six Neuropixels 1.0 probes across a range of cortical and subcortical 
structures in 58 mice while they are exposed to a range of visual stimuli (about 100,000 units and 
2 billion spikes over 2 hr of recording).

In our analysis of this dataset, we identified a canonical CSD pattern that captures the evoked 
response in mouse V1 to a full-field flash. We then modified the biophysically detailed model of mouse 
V1 to reproduce both the canonical CSD pattern and laminar population firing rates in V1 simultane-
ously. We reproduce, in a quantitative manner, the shape and timing of the pattern of current sources 
and sinks that have been described in considerable detail by experimentalists (e.g., Mitzdorf, 1987; 
Swadlow et al., 2002; Senzai et al., 2019). This shows that adjustments to synaptic parameters such 
as weights and placement in addition to a circuit architecture that included feedback are sufficient 
to reproduce experimental findings on both single-cell measures such as spikes and population-level 
measures such as CSD. We use this model to explain, in a highly mechanistic manner, the biophysical 
origins of the various ionic current sinks and sources and their location across the various layers of 
visual cortex.

In the process of obtaining a model that could reproduce both spikes and CSD, we discovered that 
the model can be modified by adjusting the synaptic weights to reproduce the experimental firing 
rates with only minor effects on the simulated CSD, and, conversely, that the simulated CSD can be 
altered with only minor effects on the firing rates by adjusting synaptic placement. Furthermore, we 
found that comparing the simulated CSD to the experimental CSD revealed discrepancies between 
model and data that were not apparent from only comparing the firing rates. Additionally, it was not 
until feedback from higher cortical visual areas (HVAs) was added to the model that simulations repro-
duced both the experimentally recorded CSD and firing rates, as opposed to only the firing rates. This 
bio-realistic modeling approach sheds light on specific components of the V1 circuit that contribute 
to the generation of the major sinks and sources of the CSD in response to abrupt visual stimulation. 
Our findings demonstrate that utilizing the LFP and/or the CSD in modeling can aid model configu-
ration and implementation by revealing discrepancies between models and experiments and provide 
additional constraints on model parameters beyond those offered by the spiking activity. The new 
model obtained here is freely accessible (https://doi.org/10.5061/dryad.k3j9kd5b8) to the community 
to facilitate further applications of biologically detailed modeling.

Results
Spikes and LFP were recorded across multiple brain areas, with a focus on six cortical (V1, LM, AL, RL, 
AM, PM) and two thalamic (LGN, LP) visual areas, using Neuropixels probes in 58 mice (Siegle et al., 
2021).

A schematic of the six probes used to perform the recordings in individual mice is shown in 
Figure 1A, and the spikes and LFP recorded in V1 of an exemplar mouse during presentation of 
a full-field bright flash stimulus are displayed in Figure 1B, C. The CSD can be estimated from the 
LFP (averaged over 75 trials) using the delta iCSD method to obtain a more localized measure of 
inflowing (sinks) and outflowing currents (sources) (Pettersen et  al., 2006; Einevoll et  al., 2013). 
The biophysically detailed model of mouse V1 used to simulate the neural activity and the recorded 
potential in response to the full-field flash stimulus is illustrated in Figure 1E. The model contains 
230,924 neurons, of which 51,978 are biophysically detailed multicompartment neurons with somatic 
Hodgkin–Huxley conductances and passive dendrites, and 178,946 are leaky-integrate-and-fire (LIF) 
neurons. These neuron models are arranged in a cylinder with a radius 845 μm and a height 860 μm. 
The multicompartment neurons are placed in the ‘core’ with a radius of 400 μm, while the LIF neurons 
form an annulus surrounding this core. Cellular models belong to 17 different classes: one excitatory 
class and three inhibitory (Pvalb, Sst, Htr3a) in each of layers 2/3, 4, 5 and 6, and a single Htr3a inhibi-
tory class in layer 1. The extracellular electric field in the model was recorded on an array of simulated 
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point electrodes (Dai et al., 2020) arranged in a straight line (Figure 1D) and separated by 20 μm, 
consistent with Neuropixels probes, shown in Figure 1E to scale with the model.

Uncovering a canonical visually evoked CSD response
We first established a ‘typical’ experimentally recorded CSD pattern to be reproduced with the model. 
Though there is substantial inter-trial and inter-animal variability in the evoked CSD response, we find 
that most trials and animals have several salient features in common. In Figure 2A, the trial-averaged 
evoked CSDs from five individual mice are displayed. In the first four animals (#1–4), we observe an 
early transient sink arising in layer 4 (L4) ~40 ms after flash onset, followed by a sustained source 
starting ~60 ms, which covers L4 and parts of layers 2/3 (L2/3) and layer 5 (L5). We also observe a 
sustained sink covering layers 5 and 6 (L6) emerging around 50 ms, as well as a sustained sink covering 
layers 1 and 2/3 around 60 ms. An animal that does not fully exhibit what we term the ‘canonical’ 
pattern is shown in the rightmost plot (#5 in Figure 2A); it has an early L4 sink arising at 40 ms, but 
this sink is not followed by the sustained sinks and sources from 50 to 60 ms and onward observed in 
the other animals. The timing and location of sinks and sources are, overall, similar to those described 
earlier by Givre et al., 1994; Schroeder et al., 1998, Niell and Stryker, 2008, and Senzai et al., 
2019.

Figure 1. Illustration of experimental data and the biophysical model for mouse primary visual cortex (V1). (A) 
Schematic of the experimental setup, with six Neuropixels probes inserted into six cortical (V1, latero-medial 
[LM], rostro-lateral [RL], antero-lateral [AL], postero-medial [PM], AM) and two thalamic areas (LGN, LP). (B) Top: 
spikes from many simultaneously recorded neurons in V1 during a single trial. Bottom: spikes from a single neuron 
recorded across multiple trials. In both cases, the stimulus was a full-field bright flash (onset at time 0, offset at 
250 ms). (C) Top: local field potential (LFP) across all layers of V1 in response to the full-field bright flash, averaged 
over 75 trials in a single animal. Bottom: current source density (CSD) computed from the LFP with the delta iCSD 
method. (D) Histology displaying trace of the Neuropixels probe across layers in V1, subiculum (SUB) and dentate 
gyrus (DG). (E) Visualization of the V1 model with the Neuropixels probe in situ. (Image made using VND.)
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To identify the robust features across animals in this dataset, we performed principal component 
analysis (PCA) on the trial-averaged evoked CSD from all animals. Out of the 58 animals in the dataset, 
5 did not have readable recordings of LFP in V1 during the presentation of the full-field flash stimuli, 
and the exact probe locations in V1 could not be recovered for 9 other animals due to fading of 
fluorescent dye or artifacts in the optical projection tomography (OPT) volume (see ‘Materials and 
methods’). The remaining 44 (out of the 58) animals in the dataset were retained for the CSD analysis. 
The trial-averaged CSD plots of all these 44 animals are displayed in Figure 2—figure supplement 1. 
The first principal component (PC 1) (Figure 2B) constitutes a sum of weighted contributions of the 

Figure 2. Variability in experimentally recorded current source density (CSD). (A) Evoked CSD response to a full-
field flash averaged over 75 trials, from five animals in the dataset. (B) The first principal component (PC) computed 
from the CSD of all n = 44 animals, explaining 50.4% of the variance. (C) Illustration of movement of sinks and 
sources in the calculation of the Wasserstein distance (WD) between the CSD of two animals in the dataset. 
The gray lines in the rightmost panels display how the sinks or sources of one animal are moved to match the 
distribution of sinks or sources of the other animal. (D) Left: WDs from each animal to the PC 1 CSD. Right: pairwise 
WDs between all 44 animals sorted by their distance to the first PC. (E) CSD from five individual trials in example 
animal 1. (F) Distribution of pairwise distances between single-trial CSD (red) and pairwise distances between trial-
averaged CSD of individual animals (blue). Both are normalized to the maximum pairwise distance between the 
trial-averaged CSD of individual animals. (G) Pairwise WDs between trials in each of 44 animals (white boxplots), 
normalized to maximal pairwise WDs between trial-averaged CSD of animals. Gray-colored boxplot shows the 
distribution of pairwise WDs between trial-averaged CSD of individual animals, and the red stars indicate the n = 5 
animals for which the inter-trial variability was greater than the inter-animal variability (assessed with Kolmogorov–
Smirnov [KS] tests, p < 0.001 in all cases, see Figure 2—figure supplement 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Trial-averaged current source density (CSD) during presentation of full-field flashes for all 44 
animals in this study.

Figure supplement 2. Principal component analysis (PCA) on histology-aligned current source density (CSD).

Figure supplement 3. Comparing inter-trial and inter-animal pairwise Wasserstein distances (WDs).
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CSD patterns from all 44 animals and explains half (50.4%) of the variance. The salient features typi-
cally observed in individual animals are also prominent in the PC 1 CSD pattern (Figure 2B), that is, the 
canonical pattern. In Figure 2—figure supplement 2, the first 10 principal components cumulatively 
explaining 90% of the variance are plotted.

Quantifying CSD pattern similarity
We use the Wasserstein, or Earth Mover’s, distance (WD) to quantify the differences in CSD patterns 
(see ‘Materials and methods’), which can then be used to assess how well the simulated CSD matches 
the CSD typically observed in experiments. The WD reflects the cost of transforming one distribution 
into another by moving its ‘distribution mass’ around (Rubner et al., 1998; Arjovsky et al., 2017). 
An often-used analogy refers to the two distributions as two piles of dirt, where the WD tells us the 
minimal amount of work that must be done to move the mass of one pile around until its distribution 
matches the other pile (Rubner et al., 1998). In the context of CSD patterns, the WD reflects the 
cost of transforming the distribution of sinks and sources in one CSD pattern into the distribution of 
sinks and sources in another pattern, with larger WD indicating greater dissimilarity between CSD 
patterns. The WDs are computed between the sinks of two CSD patterns and between the sources 
of two CSD patterns independently, and then summed to form a total WD between the CSD patterns 
(Figure 2C). The sum of all sinks and the sum of all sources in each CSD pattern are normalized to –1 
and +1, respectively, so the WD only reflects differences in patterns, and not differences in the overall 
amplitude. The WD scales linearly with shifts in space and time.

When computing the WDs between the evoked CSD patterns of individual animals and the canon-
ical pattern, we find that the animals with CSD patterns that, by visual inspection, resemble the canon-
ical pattern (Figure 2A, animals 1–4), are indeed among animals with smaller WD, while the animal 
with the more distinct CSD pattern (Figure 2A, animal 5) is an outlier (Figure 2D).

The onset of the evoked response is less conspicuous in the single-trial CSD due to pronounced, 
ongoing sinks and sources, but there is still a visible increase in magnitude from 40 to 50 ms onward 
(Figure 2E), compatible with the latency of spiking responses to full-field flashes in V1 (Siegle et al., 
2021). An oscillation of sinks and sources with a periodicity of ~20 ms, that is, in the gamma range is 
apparent in the region stretching from L2/3 to the top of L5, which appears to be either partially inter-
rupted or drowned out by more sustained sinks and sources emerging at about 60 ms. At least some 
of this gamma-range activity derives from the visual flash that covers the entire visual field and that 
drives retinal neurons and postsynaptic targets in the lateral geniculate nucleus (LGN) in an oscillatory 
manner (see the pronounced gamma-range oscillation in the LGN firing rate in Figure 3D).

The inter-trial variability is roughly comparable to the inter-animal variability of the trial-averaged 
responses. By computing the pairwise Wasserstein distances between single trial CSDs within each 
animal and comparing it to the pairwise WD between the trial-averaged CSD of each animal, we find 
that inter-trial variability in CSD is significantly lower than the inter-animal variability in trial-averaged 
CSD (Kolmogorov–Smirnov distance = 0.33; p<0.001) (Figure 2F).

The majority of animals (39 out of 44) have a WD to the first principal component, PC 1, of the 
CSD that is less than half of the greatest WD between the CSD of individual animals and the PC 1 
CSD (Figure 2D); the pairwise WDs between animals are also less than half of the maximum pairwise 
WD for most animals (921 out of the total 946 pairwise WDs; Figure 2E). This supports the view that 
most animals exhibit the canonical CSD pattern captured by the PC 1 CSD (Figure 2B). The total inter-
trial variability is smaller than the inter-animal variability, both estimated by pairwise WDs (Figure 2F 
and G), though there are n = 5 animals for which the inter-trial WDs are larger than the inter-animal 
WDs (Figure 2G, marked by red stars; determined with KS tests on the distribution of pairwise WDs 
between animals and pairwise WDs between trials in each animal; see Figure 2—figure supplement 
3).

Quantifying firing rate variability
For the spike analysis, we distinguish between fast-spiking (FS; putative Pvalb inhibitory) neurons and 
regular-spiking (RS; putative excitatory and non-Pvalb inhibitory) neurons (see ‘Materials and methods’ 
and Figure 3—figure supplement 1). All FS-neurons are grouped together into one population across 
all layers, while the RS-neurons are divided into separate populations for each layer (Figure 3A). The 
FS-neurons are merged across layers because we set a criterion of at least 10 recorded neurons in any 
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one layer when comparing the population firing rate in individual animals to the average population 
firing rate in all animals, and only one animal had 10 FS-neurons or more in any layer (Figure 3—figure 
supplement 2). This criterion was set to have a more reliable estimate of the population firing rates 
in individual animals.

We use the KS similarity (defined as one minus the KS distance, see ‘Materials and methods’) and 
correlation to quantify the variability in firing rates. We use the experimental variability as a refer-
ence to assess whether the model reproduces firing rates typically observed in experiments. The KS 
similarity gives the similarity between the distributions of average firing rates across neurons in two 
populations in selected time windows, with KS similarity = 1 implying identity. As such, KS similarity 
provides a metric to compare the magnitudes of firing rates in certain time periods. We defined the 
‘baseline’ window as the period over 250 ms before the flash onset, the ‘initial peak’ window as 35–60 
ms after flash onset, and the ‘sustained’ window as 60–100 ms after flash onset. The KS similarity score 
during baseline is denoted ‘KSSb,’ during the ‘initial peak’ ‘KSSp,’ and ‘sustained’ ‘KSSs.’ The correla-
tion, on the other hand, is computed between two population firing rates throughout the 100 ms 
window. The correlation thus gives us a measure of the similarity in the temporal profile of firing rates 
in this interval, independent of magnitudes. We establish the experimental variability in KS similarities 

Figure 3. Variability in experimentally recorded spikes. (A) Trial-averaged laminar population firing rates of regular-spiking (RS) cells, differentiated 
by layer, and fast-spiking (FS) cells across all layers in response to full-field flash. Black line: average across all animals. Gray shaded area: ±1 standard 
deviation. (B) Kolmogorov–Smirnov (KS) similarities (see ‘Materials and methods’) between the trial-averaged firing rates of each individual animal and 
the average firing rate over cells from all animals (black line in A) at baseline (the interval of 250 ms before flash onset), peak evoked response (from 35 
to 60 ms after flash onset), and during the sustained period (from 60 to 100 ms). (C) Correlations between trial-averaged firing rates of individual mice 
and all mice (0–100 ms after flash onset). (D) Baseline-subtracted evoked firing rates for excitatory cells in seven visual areas (average over trials, neurons, 
and mice). Note the strong, stimulus-triggered gamma-range oscillations in the firing of lateral geniculate nucleus (LGN) neurons (blue). (E) Mean (μ) ± 
standard deviation (σ) of population firing rates during baseline, peak evoked response, and the sustained period. Averaged across trials, neurons and 
time windows defined above.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Classifying cell types in experimental data.

Figure supplement 2. Number of cells in each population in experimental data.
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and correlation by computing these metrics between the population firing rates of each individual 
animal and the average population firing rates of all other animals (averaged over trials for both the 
individual animals and the average over all other animals) (Figure 3B and C).

The population firing rates for FS neurons are more than twice as high as RS cells during baseline, 
peak, and sustained. Among the RS populations, the firing rate in L5 is the highest in all periods, 
followed by L4 and L6, while L2/3 has the lowest firing rates (Figure 3E).

Figure 4. Local field potential (LFP), current source density (CSD), and spikes from simulations with the original 
model. (A) Top: raster plot of all ~50,000 cells in the model’s 400 μm radius ‘core’ region spanning all layers, in a 
simulation of a single trial with the flash stimulus. Bottom: raster plot and histogram of spikes from 10 trials for an 
example cell. (B) Top: simulated LFP averaged over 10 trials of flash stimulus. Bottom: CSD calculated from the LFP 
via the delta iCSD method. (C) Firing rate of experimentally recorded lateral geniculate nucleus (LGN) spike trains 
used as input to the model. (D) Wasserstein distance between CSD from the original model (blue diamond) and 
PC 1 CSD from experiments together with the Wasserstein distances from experimental CSD in every animal to PC 
1 CSD (boxplot), normalized to maximal distance for animals. (E) Experimentally recorded firing rates (black) and 
simulated firing rates (blue). (F) Kolmogorov–Smirnov (KS) similarity between firing rates in original model (blue 
diamond) or individual animals (boxplots) and firing rates in experiments at baseline, peak evoked response, and 
during the sustained period (defined in Figure 3). (G) Correlation between firing rates of model (blue diamond) 
or individual animals in experiments (boxplots) and average population firing rates in experiments (0–100 ms). (H) 
Mean (μ) ± standard deviation (σ) of model firing rates during baseline, peak evoked response, and the sustained 
period. Averaged across trials, neurons and time windows defined above.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of reducing recurrent inhibition.
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Discrepancy between the original model and experimental 
observations
We simulated the response to a full-field flash stimulus with the biophysical network model of mouse 
primary visual cortex as presented in Billeh et al., 2020. As input to the model, we used experimen-
tally recorded LGN spike trains (Figure 4C; see ‘Materials and methods’). A Poisson source, firing 
at a constant rate of 1 kHz, provides additional synaptic input to all cells, representing the influence 
from the rest of the brain (‘background’ input). The thalamocortical input consists of spike trains from 
17,400 LGN units (Arkhipov et al., 2018; Billeh et al., 2020). The public Neuropixels data contain 
recordings from 1263 regular-spiking LGN neurons across 32 mice during 75 trials of full-field bright 
flash presentations, resulting in 94,725 spike trains. To construct the input for each of our 10 simula-
tion trials, we randomly sampled 10 unique subsets of spike trains from this pool until all 17,400 units 
had been assigned a spike train in each trial.

Figure 4A, B displays the resulting spiking pattern across all layers with its associated LFP. The 
inferred CSD exhibits a strong sink in the L5 and L6 region, matched by a strong source below it, both 
starting at ~50 ms after flash onset (Figure 4B, bottom). However, the early L4 sink, the later sustained 
L4 source, and the sustained L2/3 sink typically observed in the experimental CSD (Figure 2A, B) are 
either absent or too weak compared to the sink and source in L5 and L6. The WD from the simulated 
CSD to the experimental PC 1 CSD is greater than the WD between the CSD of the farthest outlier 
animal and the PC 1 CSD (WD = 1.84, normalized to the largest WD between CSD of individual 
animals and PC 1 CSD). Thus, using experimental variability as a reference, the CSD from this simula-
tion is an outlier (Figure 4C).

The population firing rates of the model, the KS similarities and correlation between the model 
and the data, are plotted together with the data in Figure 4D–F. The magnitudes of the model firing 
rates are higher than the experimental firing rates in all populations and time windows (Figure 4H). 
However, the KS similarities between the model firing rates and the experimental firing rates are still 
within the minimum to maximum range of the boxplots for the RS L2/3, RS L4, and RS L5 cells in all 
time windows (Figure 4F), and during baseline for the FS cells. For RS L6 neurons, the KS similari-
ties were among the outliers of the experiments in all time windows, while for FS neurons they were 
among the outliers during the peak and sustained windows (RS L2/3: KSSb = 0.62, KSSp = 0.63, and 
KSSs = 0.54; RS L4: KSSb = 0.77, KSSp = 0.60, and KSSs = 0.63; RS L5 KSSb = 0.77, KSSp = 0.77, and 
KSSs = 0.78; RS L6: KSSb = 0.54, KSSp = 0.45, and KSSs = 0.47; FS: KSSb = 0.54, KSSp = 0.53, and KSSs 
= 0.49). The temporal profile of the model firing rates is above the minimum of the boxplots for all 
populations (RS L2/3: r = 0.38***, RS L4: r = 0.62***, RS L5: r = 0.75***, RS L6: r = 0.90***, FS: r = 
0.80***; ***p<0.001). For RS L4 and RS L6, the model is in fact outside the experimental distribution, 
but it is an outlier in a positive sense; the model firing rates for these populations are more similar to 
the experimental average than the corresponding population firing rates in individual animals.

The original model studied in Figure 4 produced firing rates and orientation and direction tuning 
consistent with recordings in vivo (Billeh et al., 2020) with some shortcomings, such as relatively slow 
responses of V1 to the onset of visual stimuli (Arkhipov et al., 2018; Billeh et al., 2020). Here, we see 
even more inconsistencies reflected clearly in the CSD pattern. This demonstrates the importance of 
multi-modal characterization of such biologically detailed models. To investigate the properties of the 
cortical circuit that sculpt the CSD, we manipulated the model and observed how both the CSD and 
firing rate responses were improved to match the experimental data.

Adjusting the model to fit experimental firing rates
Due to the discrepancy between the magnitudes of the model firing rates and the experimental firing 
rates, especially with respect to the outliers of the modeled RS L6 and FS neurons, we selectively 
adjusted the recurrent synaptic weights. We left the synaptic weights between LGN and the V1 model 
unchanged since they were well constrained by data (Billeh et al., 2020).

We first reduced the synaptic weights from all excitatory populations to the FS PV-neurons by 
30% to bring their firing rates closer to the average firing rate in this population in the experiments. 
This resulted in increased firing rates in all other (RS) populations due to the reduced activity of the 
inhibitory Pvalb-neurons (Figure 4—figure supplement 1). Therefore, we further applied reductions 
in the synaptic weights from all excitatory neurons to RS neurons and increases in the synaptic weights 
from inhibitory neurons to the RS neurons to bring their firing rates closer to the experimental average 

51



 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Rimehaug et al. eLife 2023;12:e87169. DOI: https://doi.org/10.7554/eLife.87169 � 10 of 31

firing rates. We multiplied the recurrent synaptic weights with factors in the [0.2, 2.5] range until we 
arrived at a set of weights where none of the model firing rates were among the experimental outliers 
in any time window (KSSb = 0.73, KSSp = 0.77, and KSSs = 0.70; average across RS populations and the 
FS population) and temporal profiles (RS L2/3: r = 0.49***, RS L4: r = 0.63***, RS L5: r = 0.71***, RS 
L6: r = 0.87***, FS: r = 0.86***; *** p<0.001) (Figure 5A–C).

The resulting pattern (but not the magnitude) of the CSD, however, was largely unchanged 
(Figure 5D) compared to the original CSD (Figure 4B). The overall magnitude was reduced, and there 
were some traces of a sink arising at 40 ms after flash onset, and a L2/3 (and L1) sink after 60 ms, but 
they were substantially weaker relative to the L5/L6 dipole than they were in the experiments. Further-
more, the large and sustained L4 source after 60 ms was still either absent or too weak to be visible. 
The WD between the CSD from this version of the model and the experimental PC 1 CSD remained 
among the outliers of the animals (Figure 5E) (normalized WD = 1.26).

Two-way dissociation between spikes and CSD
Simulations demonstrate that the LFP, and the associated CSD, can be significantly altered by changes 
to synaptic placement (Einevoll et al., 2007; Pettersen and Einevoll, 2008; Lindén et al., 2010; 
Lindén et  al., 2011; Łęski et  al., 2013; Hagen et  al., 2017; Ness et  al., 2018). As observed in 
Figure 5A–E and Figure 5—figure supplement 1, adjustments to synaptic weights can modify the 
population firing rates substantially, yet without substantially changing the pattern of the CSD, that 
is, the placement and timing of sinks and sources. The inverse can also occur; that is, the CSD pattern 
can be altered extensively with only minor effects on firing rates (Figure 5F and G, Figure 5—figure 
supplements 2–4).

In the model’s original network configuration, L4 excitatory neurons received geniculate input 
from synapses placed within 150 μm from the soma on both basal and apical dendrites, and excit-
atory, recurrent input from other V1 neurons within 200 μm from the soma on both basal and apical 
dendrites. We tested the effects of synaptic location by placing all synapses from both LGN and 
excitatory neurons onto the basal dendrites of L4 excitatory neurons (within the same ranges as in the 
original configuration). This increased the contribution from the L4 excitatory neurons to the total CSD 
(Figure 5F, middle row, leftmost plot) by a factor of ~2 and led to a dipole pattern with a single sink 
at the bottom and a single source at the top, as opposed to having two pairs of sinks and sources like 
in the case of the original synaptic placement (Figure 5F, top row; leftmost plot). The firing rate of 
the L4 excitatory cells, however, remained essentially unchanged by this modification (Figure 5G). On 
the other hand, placing all synapses from LGN and excitatory neurons onto the apical dendrites of L4 
excitatory neurons resulted in even greater CSD magnitude from this population (Figure 5F, bottom 
row; leftmost plot), while the magnitude of its firing rates were reduced (Figure 5G). In this case, the 
pattern displayed a sink in the middle with a source above and below it. We also find that the somatic 
Hodgkin–Huxley channels significantly shapes the CSD pattern (Figure 5H), generating a source in the 
L4 region where the somata are localized.

We quantified the changes in CSD of the full model resulting from changes in recurrent synaptic 
weights in Figure 5—figure supplement 1 and the changes in firing rates resulting from the changes 
in synaptic placement onto L4 excitatory cells in Figure 5—figure supplement 2. Our analyses corrob-
orate that the changes in CSD after changing only synaptic weights is minor, and that the changes in 
firing rate after changing only synaptic placement is minor. More examples of the disparate effects 
on CSD and spikes from adjusting placement of excitatory synapses on excitatory cells in L2/3 and L5 
are displayed in Figure 5—figure supplement 3 and Figure 5—figure supplement 4, respectively.

These results indicate a two-way dissociation that can occur between CSD and firing rates of excit-
atory neurons. The firing rates can be changed without substantially changing the CSD by modifying 
the strength of synapses, while the CSD can be changed without substantially changing the firing rates 
by modifying synaptic location. This suggests that utilizing the CSD in the optimization of the model 
can provide constraints on the circuit architecture that could not be obtained from spikes alone.

Effects of feedback from higher visual areas to the model
Hartmann et al., 2019 found that feedback from higher visual areas (HVAs) can exert a powerful influ-
ence on the magnitude of the evoked LFP response recorded in V1 of macaque monkeys, particularly 
in the period 80–100 ms after stimulus onset. The sustained L2/3 sink and L4 source we observe in the 
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Figure 5. Adjusting the model to fit spikes or current source density (CSD). (A) Average experimentally (black) 
and simulated firing rates of experiments in the model with adjusted recurrent synaptic weights (green) and 
original model (blue). Synaptic adjustments included scaling the weights from all excitatory populations to the 
PV cells down by 30% to reduce the firing rates in these fast-spiking populations, reducing the synaptic weights 
from excitatory populations to all others and increasing synaptic weights from all PV cells to all other populations 
to compensate for the reduced inhibition. (B) Kolmogorov–Smirnov (KS) similarity between firing rates of model 
versions (markers) or individual animals in experiments (boxplots) and firing rates of experiments at baseline, peak 
evoked response, and during the sustained (defined in Figure 3). (C) Correlation between simulated firing rates 
or individual animals (boxplots) and measured firing rates (0–100 ms). (D) Left: PC 1 current source density (CSD) 
from experiments (see Figure 2). Right: CSD resulting from simulation on model with adjusted recurrent synaptic 
weights. (E) Wasserstein distance between CSD from model versions and PC 1 CSD from experiments together 
with Wasserstein distances from CSD in animals to PC 1 CSD (boxplot). (F) Effect of different patterns of placing 
excitatory synapses onto layer 4 excitatory cells on this population’s contribution to the simulated CSD (left) and to 
the total simulated CSD (right). These synaptic placement schemes with accompanying inflowing (blue arrows) and 
outflowing (orange arrows) currents are illustrated in the middle. (G) Effect of synaptic placement on the simulated 
population firing rate. (H) Contribution of L4 excitatory cells to the simulated CSD in the model where all recurrent 
connections have been cut (left) and when all active channels have been removed from all cells in the model (right).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Quantifying change in simulated current source density (CSD) with adjustments to synaptic 
weights.

Figure 5 continued on next page
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experimental CSD emerge at 60 ms (Figure 2A and B), which roughly coincides with the peak firing 
rates in the latero-medial (LM), rostro-lateral (RL), antero-lateral (AL), and postero-medial (PM) cortical 
areas (Figure 3C). Furthermore, anatomical data indicate that synapses from HVAs terminate on L1 
and L2/3 apical dendrites of pyramidal cells (whose cell bodies reside in L2/3 or L5) (Glickfeld and 
Olsen, 2017; Marques et al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020). 
Together, these observations suggest that the sustained L2/3 sink and L4 source might, in part, be 
induced by feedback from HVAs, where the sink is generated from the input to the apical tufts in L1 
and L2/3, and the source may be the return currents of this input.

Of these HVAs, the feedback from LM to V1 is best characterized (Marques et al., 2018; Keller 
et al., 2020; Shen et al., 2020) and has the highest connection density to V1 (Harris et al., 2019). 
Based on these considerations, we decided to test the hypothesis that the large sinks and sources in 
the upper layers were caused, at least in part, by feedback from LM. In addition to the earlier feed-
forward LGN input and the background input representing the influence of the rest of the brain, we 
introduced a feedback input constructed from experimentally recorded spike trains in LM. In total, the 
public Neuropixels dataset has 2075 neurons recorded in LM (simultaneously with the recordings in 
LGN, V1, and other visual areas) from 42 animals during presentations of the full-field flash stimulus. 
1823 of the 2075 neurons were classified as RS, and spike trains from these were used to generate the 
feedback input to the model (Figure 6A).

The synapses from this LM source were placed on the apical dendrites of L2/3 excitatory neurons 
(within 150 μm from the soma), on the apical tufts (>300 μm from the soma) and the basal dendrites 
(within 150 μm from the soma) of L5 excitatory neurons, and on the somata and basal dendrites of 
L2/3, and L5 inhibitory (Pvalb and Sst) neurons (at any distance from the soma). The input onto L2/3 
excitatory neurons did generate a sink in L1 and L2/3 and a source below in L4 (Figure 6B–E).

The synaptic weights from LM to the populations targeted by the feedback were initialized at 
high values (see ‘Materials and methods’), and then adjusted (decreased) by multiplying them with 
factors in the range [0.05, 0.5] (see ‘Materials and methods’). The weights from the background to the 
feedback-targeted populations were also multiplied by factors in the range [0.2, 0.5], and the weights 
of connections from Pvalb neurons to L2/3 excitatory and L5 excitatory neurons were multiplied by 
factors in the range [0.8, 1.2]. This weight scaling was done until the population firing rates were within 
the experimental variability. Additionally, the synapses from excitatory populations onto L6 excit-
atory cells were restricted to be within 150 μm from the soma to reduce the magnitude of the L5/L6 
dipole (Figure 6—figure supplement 1; see ‘Materials and methods’). Greater separation between 
a sink and a source in a dipole moment increases its magnitude, so restricting the range within which 
synapses can be placed should diminish the L5/L6 dipole’s dominance.

When the model received this feedback input together with the LGN input, the resulting CSD 
pattern reproduced the main features observed in the experiments (Figure 6C). The WD between the 
model CSD and the experimental PC 1 CSD was also no longer an outlier (Normalized WD = 0.41; 
Figure 6D), and the population firing rates remained within the minimum and maximum value of the 
experimental boxplots for the firing rates in all windows and all populations, both with respect to 
magnitudes (KSSb = 0.77, KSSp = 0.70, and KSSs = 0.68; average across all populations) and temporal 
profiles (RS L2/3: r = 0.36***, RS L4: r = 0.64***, RS L5: r = 0.69***, RS L6: r = 0.87***, FS: r = 0.77***, 
***p<0.001) (Figure 6F and G). Thus, when average responses to the full-field flash are considered, 
this final adjusted model exhibits both the CSD and firing rate patterns that are consistent with the 
experimental observations and are well within animal variability (Figure 6F–H).

Furthermore, we investigated whether the model could reproduce the stereotypical features of the 
single-unit firing response observed in experiments. To this end, we computed the moments of the 
distribution of peak firing rates as well as the distribution of latencies to the peak across cells both for 
individual animals and for the model versions (Figure 6—figure supplements 2 and 3). The original 

Figure supplement 2. Quantifying change in spiking of L4 excitatory cells after adjusting synaptic placement.

Figure supplement 3. Effects of manipulating synaptic placement onto L2/3 excitatory cells on population current 
source density (CSD) and spiking.

Figure supplement 4. Effects of manipulating synaptic placement onto L5 excitatory cells on population current 
source density (CSD) and spiking.

Figure 5 continued
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Figure 6. Introducing feedback from latero-medial (LM) to V1 in the model. (A) Firing rate of the experimentally 
recorded lateral geniculate nucleus (LGN) and LM units used as input to the model. (B) Total current source density 
(CSD) resulting from simulation with input only from the LM. (C) Left: PC 1 CSD from experiments (see Figure 2). 
Right: total CSD from simulation with both LGN input and LM input. (D) Wasserstein distance between CSD from 
model versions and PC 1 CSD from experiments together with Wasserstein distances from CSD in animals to PC 1 
CSD (boxplot). (E) Population contributions from populations that receive input from LM. (F) Average population 
firing rates of experiments (black line) and model versions. (G) Kolmogorov–Smirnov (KS) similarity between 
simulated firing rates or individual animals (boxplots) and recorded firing rates at baseline, peak evoked response, 
and the sustained period (defined in Figure 3). (H) Correlation between simulated and experimentally recorded 
firing rates (0–100 ms).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effect of adjusting synaptic placement onto L6 excitatory cells.

Figure supplement 2. Moments of distributions of peak firing rate in model versions and experiments for different 
populations.

Figure supplement 3. Moments of distributions of latency to peak of firing rates in model versions and 
experiments in different populations.

Figure supplement 4. Relative change in peak firing rates between neighboring populations.

Figure supplement 5. Moments of distributions of greatest curvature in firing rate across cells.

Figure supplement 6. Orientation and direction selectivity in final model.

Figure supplement 7. Current source density (CSD) analysis after aligning experimental CSD plots to landmarks 
rather than histology.

Figure supplement 8. Priincipal component analysis (PCA) on landmark aligned current source density (CSD).

Figure supplement 9. Effect of using plain average of trial-averaged current source density (CSD) from all animals 
instead of first principal component as target.
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model was an outlier for the first moment of the peak firing rate distributions of RS L2/3, L4, L6, and FS 
populations, while the intermediate model was within the experimental variability for all populations, 
and the final model was within the experimental variability for all populations except RS L2/3, where 
it was just outside the maximum value of the experimental boxplot (Figure 6—figure supplement 
2A). All three model versions were outside the experimental variability of the third moment (skew-
ness) of the peak firing rate distributions for the RS L2/3 population, and the original model was just 
outside for the RS L5 and FS populations as well (Figure 6—figure supplement 2C). Otherwise, all 
model versions were within the experimental variability for all moments that we considered and for 
all populations.

With respect to the distribution of latencies to the peak firing rates, all model versions were within 
the experimental variability for all populations and all moments except the fourth moment (kurtosis) 
of the FS population, where all model versions were outside the experimental variability. We also 
computed the relative change in firing rates between neighboring populations (Figure  6—figure 
supplement 4) and the distributions of greatest curvature of the firing rate across cells (Figure 6—
figure supplement 5), and found that all model versions were within the experimental variability on 
both of these metrics too. Thus, as with the analysis of population firing rates, the original model is an 
outlier when compared to the experiments on the features of unit firing, while the intermediate and 
final model versions reproduce most features observed in the experiments.

To check if the model continued to exhibit appropriate orientation and direction tuning after 
the adjustments made, we ran a simulation with the final model configuration and the same drifting 
grating stimulus that was utilized in Billeh et al., 2020. We found that the model still displayed firing 
rates at preferred directions and direction and orientation selectivity indices comparable to those 
observed experimentally (Figure 6—figure supplement 6).

Identifying the biophysical origins of the canonical CSD
With the canonical CSD (Figure 2B) reproduced, we can use the model to probe the biophysical 
origins of its sinks and sources. We began by removing all recurrent connections and only feeding the 
LGN input to the model to find the contribution from the thalamocortical synapses onto excitatory 
and inhibitory neurons (Figure  7A). The main thalamic contribution to the CSD is from synapses 
onto excitatory neurons, in line with the expectation that neurons with a spatial separation between 
synaptic input currents and the return currents dominate the cortical LFP generation (Einevoll et al., 
2013). (Neurons without apical dendrites will have largely overlapping synaptic input currents and 
return currents, resulting in a cancellation of current sinks and sources.).

We further observed that the early L4 and the sustained L5/L6 sinks are present in the CSD contribu-
tions of excitatory neurons, though the magnitude of the L5/L6 sink is substantially reduced compared 
to its magnitude when the model is configured with recurrent synapses intact (Figures 4B–6D). The 
sustained L2/3 sink and L4 source, on the other hand, were not visible. This suggests that the early 
L4 sink and the L5/L6 sink are at least partly generated by thalamocortical synapses. However, the 
substantially diminished magnitude of the L5/L6 sink indicates that recurrent synapses also contribute 
significantly to the generation of this sink.

We then removed the LGN input and added the feedback (while keeping the recurrent connec-
tions cut), which resulted in a prominent upper layer dipole, with the sink residing in L1 and L2/3, and 
the source residing in L4 (Figure 7B). Together with their absence when input came from LGN only 
(Figure 7A), this suggests that the sustained L2/3 sink and the L4 source in the canonical pattern orig-
inate at least in part from the feedback synapses onto the apical dendrites of L2/3 and L5 pyramidal 
cells and the activity this input generates.

To assess the extent to which active channels at the somata contributed to the CSD pattern, we 
compared the CSD resulting from a simulation with both LGN and feedback input (where the recurrent 
connections were still cut) when we included or excluded the active channels (NaT, NaP, NaV, h, Kd, 
Kv2like, Kv3_1, K_T, Im_v2, SK, Ca_HVA, Ca_LVA; only at the soma [see supplementary information in 
Gouwens et al., 2018 for definitions]) on all neurons in the model. The most prominent discrepancy 
between the CSD with and without active channels is the magnitude of the L4 source and the L2/3 
sink (Figure 7C). In this all-passive setting, the L4 source is significantly attenuated, and the L2/3 sink 
is either absent or dominated by a source in the same region.
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Figure 7. Biophysical origin of canonical current source density (CSD). (A) Sinks and sources generated from 
thalamocortical and (B) feedback synapses. The schematics illustrate which synapses cause the observed sinks and 
sources. Blue arrows indicate inflowing current (sinks), while orange arrows indicate outflowing current (sources). 
(C) Total CSD from thalamocortical and feedback synapses (without recurrent connections) with (left) and without 
(right) active channels in the V1 neurons. (D) Total CSD of model with both thalamocortical and feedback input 
when inhibitory synapses are removed (cross indicates removed connection). (E) Population contributions to the 
total CSD in final model with both lateral geniculate nucleus (LGN) and feedback input and recurrent connections. 
(F) Summary of biophysical origins of the main contributions to the sinks and sources in the canonical CSD in 
different periods of the first 100 ms after flash onset. More arrows mean more current. Left: before onset of evoked 
response (0–35 ms). The average inflowing and outflowing current in V1 neurons is zero in this time window. 
Middle: initial evoked response (35–50 ms). The L4 sink is primarily generated by inflowing current thalamocortical 
synapses onto L4 excitatory cells. Right: sustained evoked response (50–100 ms). The L5/L6 sink is primarily due to 
inflowing currents from thalamocortical synapses and recurrent excitatory synapses. Inflowing current at synapses 
from higher visual areas (HVAs) onto apical tufts of L2/3 and L5 excitatory cells generates, in part, the L2/3 sink, and 
the resulting return current generates, in part, the L4 source in this time window.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Effects of removing recurrent inhibition on population current source density (CSD) and 
firing rates.

Figure supplement 2. Effect of cell orientation on current source density (CSD) contributions of L4 inhibitory cells.

Figure supplement 3. Silencing feedback from latero-medial (LM) in model during evoked response.
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We explored whether the contributions from currents in recurrent connections come primarily 
from excitatory or inhibitory synapses by removing all connections from inhibitory (Pvalb, Sst, Htr3a) 
neurons to all other neurons, so that all postsynaptic currents stem from excitatory thalamocortical 
synapses, excitatory synapses from HVAs, or recurrent excitatory synapses in V1 (Figure  7D and 
Figure 7—figure supplement 1). Note that inhibitory synaptic currents give rise to sources, while 
excitatory synaptic currents give rise to a sink. Of course, without inhibition, the network is unbal-
anced, which limits the conclusions that can be drawn from this simulation. However, the fact that the 
major sinks and sources are still present is an indication that the currents from excitatory input account 
for the majority of the sinks and sources observed in the experimental CSD.

The contributions from each population to the total CSD in the final model (Figure 6D) with both 
LGN and feedback input and intact recurrent connections are displayed in Figure 7D. From this, it 
is apparent that the L5/L6 dipole is mainly generated by L6 excitatory cells, the L2/3 sink stems from 
sinks at the apical tufts of the L2/3 and L5 excitatory cells, the L4 sink from both the L4 excitatory and 
inhibitory cells, while the L4 source is a mix of sources from mainly L2/3, L4, and L5 excitatory cells, as 
well as the L4 inhibitory cells. (The magnitude of the CSD contribution from L4 inhibitory cells is greater 
than anticipated. Given their lack of apical dendrites, we would expect their postsynaptic current sinks 
and sources to largely cancel [Einevoll et al., 2013]. Their contribution can be reduced by scrambling 
the 3-D orientation of these cells [Figure 7—figure supplement 2]. However, we cannot rule out that 
L4 inhibitory cells can have a contribution comparable in magnitude to the excitatory cells with the 
data we have available. We therefore let the L4 inhibitory cells keep their original orientation here.)

We investigated what would happen if we turned the feedback off again at 60 ms for the final 
model version (Figure 7—figure supplement 3). Most notably, we found that the sustained L4 source 
was replaced by a sink, and that the sustained L2/3 sink turned more transient as it was significantly 
reduced in magnitude after about 70 ms. This CSD pattern serves as a prediction that can be tested 
experimentally, for example, by optogenetic silencing of the HVAs in the sustained periods of the 
evoked response (e.g., see Keller et al., 2020).

We summarize the main contributions to the canonical CSD in Figure 7F. Before the onset of the 
evoked response (0–35 ms) there is, on average, no significant net inflow or outflow of current to 
any neurons. Around 40 ms, an inflow of current from excitatory thalamocortical synapses onto all 
excitatory neurons and all Pvalb inhibitory neurons appears, with the largest current coming from the 
synapses targeting basal and apical dendrites of L4 excitatory cells. This is the primary origin of the L4 
sink. Following this initial L4 sink, there is a sustained sink in L5/L6 arising at ~50 ms, which originates 
partly from thalamocortical synapses onto L6 excitatory cells and partly from recurrent synapses from 
excitatory populations in V1 onto L6 excitatory cells. At ~60 ms, a sustained sink emerges in L1 and 
L2/3, which partly originates in synapses from HVAs targeting apical tufts of L2/3 and L5 excitatory 
cells. This feedback results in a stronger return current at the soma and basal dendrites of L2/3 excit-
atory cells and L5 excitatory cells.

Discussion
In the present study, we analyzed experimentally recorded spikes and LFP during presentation of full-
field flashes from a large-scale visual coding dataset derived from mouse visual cortex (Siegle et al., 
2021) and simulated the same experimental protocol using a biophysically detailed model of mouse 
V1 (Billeh et al., 2020). Our analysis of the experimental data focused on the responses in LGN and 
cortical visual areas V1 and HVAs. We found that the evoked CSD in V1, computed from the LFP, 
is captured by a canonical pattern of sinks and sources during the first 100 ms after stimulus onset 
(Figure 2B). This canonical CSD, in response to a flashed, bright field pattern, explains half (50.4 %) of 
the variance in the trial-averaged CSD responses across animals.

Both the early L4 sink with concurrent sources above and below and the L5/L6 sink with a source 
below were observed with a similar timing by Senzai et al., 2019. The L4 source and L2/3 sink were 
also observed in that study but emerge somewhat later than in our data – just after 100ms as opposed 
to ~60 ms in our canonical pattern. This discrepancy in onset might simply be due to differences in 
stimuli. In Senzai et al., 2019, the animals were exposed to 100 ms light pulses, while the animals 
in our data were presented with 250 ms whole-field flashes of a white screen. Nonetheless, the 
canonical CSD pattern exhibits good overall agreement with the pattern seen in Senzai et al., 2019. 
Studies in non-human primates where the animals were exposed to flashes also demonstrate good 
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spatio-temporal agreement with the CSD observed here, with sinks and sources occurring not only in 
the same layers and in the same order, but also at the same time after stimulus presentation (Givre 
et al., 1994; Schroeder et al., 1998).

We introduced the WD as a method to evaluate the difference between two CSD patterns and 
used it to quantify the variability in trial-averaged CSD between animals (Figure 2D), the trial-to-trial 
variability in CSD within animals (Figure 2F and G), and the difference between the model CSD, the 
trial-averaged CSD of individual animals, and the canonical CSD pattern. This application of the WD to 
compare CSD patterns comes with certain considerations that are important to note. First, although 
we compute WD for sinks and sources separately, sinks and sources do not arise independently. 
Current leaving the extracellular space in one place leads to current entering the extracellular space 
in another place, so current sinks and sources are inter-dependent. Second, the cost of shifting a sink 
or a source in space relative to shifting it in time is determined by the relative resolution in space vs. 
time. This relative cost does not necessarily correspond to the actual cost of changing the underlying 
physiology such that two distributions of sinks or sources match spatially vs. temporally. Determining 
the most appropriate relative cost of moving sinks and sources in space vs. time would require more 
detailed data than currently available and is beyond the scope of this study.

For the firing rate analysis, we utilized KS similarity and correlation to quantify experimental vari-
ability and model performance with regard to magnitude and temporal profile, respectively. We also 
investigated the statistics of unit spike firing by computing the moments of the distributions across 
cells in each population of peak firing and latencies to peak firing for both individual animals and 
model versions (Figure  6—figure supplements 2 and 3). Systematic use of quantitative metrics 
for biophysical modeling at this scale is still relatively uncommon, and our work establishes a set of 
measures for testing the model on LFP and spiking simultaneously, which can be useful for future 
studies in the field. Of course, there may well be other metrics that are equally or more suitable, and 
a systematic investigation into what would be the optimal metrics to apply is an important avenue for 
future work.

Our aim was to simultaneously reproduce experimentally recorded spikes and the CSD in our simu-
lations. The original model captured spiking responses to gratings well (reproducing, e.g., direction 
selectivity distributions for different neuronal populations) with variable success when applied to other 
visual stimuli (Billeh et al., 2020). It was not originally tested on LFP/CSD. We found that, for the full-
field flash stimulus, this model did not reproduce the CSD pattern in the upper layers of V1, and the 
spiking responses for this stimulus also exhibited a number of discrepancies.

After making selective adjustments to the recurrent synaptic weights, the model could reproduce 
the experimental firing rates (Figure 5A–C), though the discrepancy between the model CSD and the 
canonical CSD remained (Figure 5D and E), with only minor differences relative to the CSD of the 
original model (Figure 4B). The fact that the model can capture the experimental firing rates without 
capturing the experimental CSD and that adjustments to the synaptic weights yielded significant 
alterations in firing rates with only small changes in the CSD supports the point that LFP/CSD reflects 
aspects of circuit dynamics that are complementary to those reflected in locally recorded spikes.

Previous simulation studies demonstrated the importance of synaptic placement in shaping the LFP 
and CSD signature (Einevoll et al., 2007; Pettersen et al., 2008; Lindén et al., 2010; Lindén et al., 
2011; Łęski et al., 2013; Hagen et al., 2017; Ness et al., 2018). To uncover the model adjustments 
that capture firing rates and CSD simultaneously, we explored the effects of changes in the synaptic 
positioning. In one case, we placed all excitatory synapses onto only basal or apical dendrites of L4 
excitatory cells, as opposed to their original placement on both apical and basal dendrites. Moving 
all excitatory synapses onto basal dendrites resulted in substantial changes in both the pattern and 
magnitude of the CSD contribution from these L4 excitatory cells, with only minor changes to their 
firing rates (Figure 5F and G and Figure 5—figure supplement 1). Placing all excitatory synapses 
on apical dendrites led to somewhat larger changes in firing rates, though still similar to the firing 
rate of the original model, and to even bigger changes in the CSD magnitude. Performing the same 
manipulations of synaptic placement on L2/3 or L5 excitatory cells resulted in a similar decoupling of 
CSD and firing rates (Figure 5—figure supplements 3 and 4). It should, however, be noted that the 
decoupling is neither perfect nor universal.

This demonstrates a two-way dissociation of the firing rates and the pattern of sinks and sources in 
the CSD: The firing rates can be substantially altered with small effects on the CSD by adjusting the 
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synaptic weights, and the CSD can be substantially altered with only small effects on the firing rates 
by adjusting synaptic placement. These results align with findings in, for example, Schroeder et al., 
1998 and Leszczyński et al., 2020, where a lack of correlation between MUA and CSD in the upper 
layers of V1 during flash exposure to non-human primates suggested that these signals can sometimes 
be decoupled. Our findings imply that the LFP can reveal deficiencies in the model architecture that 
would not be evident from the firing rates alone, and that, to a certain extent, models can be opti-
mized for firing rates and CSD independently.

Past studies have suggested that LFP can be modulated by attention through feedback during 
evoked responses (Mehta et al., 2000a; Mehta et al., 2000b). However, their findings indicated that 
V1 was not significantly affected by this modulation until the period 250 ms or later after stimulus 
onset. A recent study showed that feedback from higher visual areas can in fact exert a strong influ-
ence on the magnitude of LFP already at around 80 ms after stimulus onset (Hartmann et al., 2019). 
To investigate whether such cortico-cortical influence can contribute to the sinks and sources in the 
later stages (>50 ms) of the canonical CSD pattern, we added feedback consisting of experimentally 
recorded spikes from the higher cortical visual area LM (Siegle et al., 2021) impinging on synapses 
placed onto V1 neurons in our model, using anatomical data (Glickfeld and Olsen, 2017; Marques 
et al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020).

We found that the feedback can play a significant role in shaping the sustained sinks and sources 
(Figure 6B–E). The resulting model CSD reproduced the major sinks and sources identified in the 
canonical CSD pattern and was no longer among the outliers compared to the experimental variability 
(Figure 6D). Interestingly, absence of the feedback was not apparent from analysis of the firing rates 
alone, as the firing rates were already within the experimental variability before adding the feedback, 
further underscoring the utility of the LFP in illuminating structure–function relations in the circuit. 
Contributions from other visual cortical areas were not included, even though they too impinge upon 
neurons in V1 (Harris et al., 2019; Siegle et al., 2021), due to the lack of data characterizing such 
connections. This awaits future work. Finally, turning off the feedback from LM at 60ms disrupted the 
CSD pattern in layers 2/3 and 4 during the sustained period (Figure 7—figure supplement 3), which 
serves as a prediction for what will be observed if HVAs, and particularly LM, are silenced in this period 
of an evoked flash response. Our findings accord with the view that basal dendrites are the main 
targets for feedforward input, while the tufts of apical dendrites are the main targets for feedback 
input, even though basal dendrites can also receive input from long-range feedback connections and 
apical dendrites receive input from feedforward connections (Aru et al., 2020).

In our analyses, we aligned the CSD plots to depths obtained from histology and provided in Allen 
Common Coordinate Framework (CCF) coordinates. An alternative approach is to align the CSD to 
landmarks in the data (Senzai et al., 2019). In Figure 6—figure supplement 7, we explored whether 
utilizing landmarks rather than histology for alignment would affect our results. We found that this 
approach did not change our conclusion as the final model CSD was still within the experimental vari-
ability while the original and intermediate model CSD were outliers both when using the first principal 
component and when using the plain average as the target (Figure 6—figure supplements 7B and C 
and 8). Lastly, using the plain average rather than the first principal component as the target did not 
significantly affect our results when we aligned to histology (Figure 6—figure supplement 9).

With the major sinks and sources of the canonical CSD pattern reproduced, we explored their 
biophysical origins. We found that the initial L4 sink originates in the thalamocortical input to L4 
excitatory cells, which aligns with suggestions made in Mitzdorf, 1987, Swadlow et al., 2002, and 
Senzai et al., 2019. The sustained L5/L6 sink comes from postsynaptic currents in L6 excitatory cells 
triggered by a combination of thalamocortical and recurrent excitatory inputs. The sustained L2/3 sink 
stems, in part, from input from LM onto the apical tufts of L2/3 and L5 excitatory cells. The sustained 
L4 source has its origins in a mixture of return currents from L2/3 and L5 excitatory cells resulting from 
the abovementioned feedback onto the apical dendrites of these cells, as well as contributions from 
L4 excitatory and inhibitory cells (Figure 7A, B, D and E).

In line with observations made by Reimann et  al., 2013, we found that the somatic voltage-
dependent membrane currents significantly shape the CSD signature (Figures 5H and 7C). Even so, 
our findings still emphasize the importance of synaptic inputs in sculpting the CSD, as the addition of 
synaptic input (Figure 6A–E) and changes to synaptic placement (Figure 5F) substantially altered the 
CSD pattern.
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Recent investigations into the unitary LFP (the LFP generated by a single neuron) from inhibitory 
and excitatory synapses have suggested that inhibitory inputs exert a greater influence on LFP than 
excitatory input (Bazelot et al., 2010; Teleńczuk et al., 2017; Telenczuk et al., 2020). While this may 
be true of unitary effects, the total effect of excitatory input can still be greater if there are significantly 
more excitatory than inhibitory cells, and, correspondingly, significantly more excitatory synapses. In 
this V1 model, inhibitory cells make up about 15% and excitatory cells about 85% of the total number 
of cells, reflecting the cellular composition in mouse V1. Whether the pronounced dominance of excit-
atory cells is enough to make up for the reduced unitary influence of excitatory cells is an interesting 
area for further research.

This investigation into the biophysical origins of sinks and sources is limited by the fact that the 
contributions from recurrent connections are difficult to estimate precisely due to the nonlinear effects 
of these connections. That is, their contribution cannot simply be found by subtracting the CSD from 
thalamocortical and feedback synapses with all recurrent connections removed (Figure 7A and B) 
from the total CSD with the same input and recurrent connections intact (Figure 6C, right). Still, this 
analysis provides an initial estimate into the biophysical origins of the sinks and sources observed 
experimentally and demonstrates the insights that can be obtained from modeling of extracellular 
signals.

There is ample evidence that firing rates and LFP are modulated by the behavioral state of the 
animal, including measures like the pupil size (considered to be a proxy for arousal level) or running 
speed (Niell and Stryker, 2010; McGinley et al., 2015; Vinck et al., 2015; Saleem et al., 2017). In 
this study, the responses averaged over all trials have been the target for the modeling, without regard 
to any state-dependence of the responses. Our understanding of the state-dependent responses 
could benefit from the potential to probe the biophysical origins of extracellular signals. Therefore, 
reproducing these state-dependent responses is an important avenue for future research.

Note that the set of synaptic weights and other parameters that can reproduce the experimental 
firing rates and CSD is unlikely to be unique. This is a consequence of the degeneracy inherent to 
biological neural networks, known from both simulation and experimental studies, as many different 
parameterizations of neuronal networks can perform the same functions (Prinz et al., 2004; Marder 
and Goaillard, 2006; Drion et al., 2015; O’Leary, 2018). Thus, our network should only be consid-
ered an example of a circuit model that can produce firing rates and CSD that match the experimental 
observations. Obtaining multiple solutions and characterizing their diversity using automatic searches 
of the parameter space will be an interesting direction for future work. We did not utilize such an 
approach here because the number of simulations required (typically, many thousands or more for 
automatic optimization approaches) would currently be prohibitively expensive on a model of this 
scale and level of complexity: running a 1 s simulation with this model takes ~90 min on 384 CPU-
cores (Billeh et al., 2020); a single trial in this study simulates 0.75 s of activity.

The original model used as a starting point here produced firing rates and direction and orientation 
tuning consistent with recordings during presentations of drifting gratings (Arkhipov et al., 2018; 
Billeh et al., 2020). In this study, we focused on the analysis and modeling of the response to full-field 
flashes, but when the final model was tested with the drifting gratings stimulus utilized in Billeh et al., 
2020, we found that the present, revised model continued to exhibit orientation and direction tuning 
even though the adjustments were made with the aim to reproduce the observed CSD and popula-
tion firing rates during full-field flashes (Figure 6—figure supplement 6). Ideally, the model should 
reproduce both firing rates and LFP simultaneously not only for flashes or drifting gratings, but for any 
visual stimulus (out-class generalization). This is a long-term goal and can be called ‘the holy grail’ of 
visual system modeling.

In this study, we developed a systematic framework to quantify experimental variability in both 
LFP/CSD and spikes and to evaluate model performance. We identified a canonical CSD pattern 
observed during presentations of full-field flash stimuli and obtained a bio-realistic model that repro-
duced both the canonical CSD pattern and spikes simultaneously. This model thus reproduces, in a 
quantitative manner, the shape and timing of current sinks and sources observed experimentally. We 
utilized this validated model to explain, mechanistically, the biophysical origins of the various current 
sinks and sources and their location across the layers of visual cortex. Our models are freely shared 
and should be useful for future studies disentangling the mechanisms underlying spiking dynamics 
and electrogenesis in the cortex.
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Materials and methods
Experiments
Quality control
Of the 58 mice in the visual coding dataset, 9 were excluded because the exact probe location could 
not be recovered due to fading of fluorescent dye or artifacts in the OPT volume (Siegle et al., 2021). 
Another five animals were excluded because they were missing LFP recordings from V1 during presen-
tation of the flash stimulus. Thus, data for 44 animals were retained for the CSD analysis.

For the spike analysis, the same nine animals for which the exact probe location could not be recov-
ered were excluded, and two additional animals were excluded because they did not have any cells 
recorded in V1, leaving a total of 47 animals for this part of the data analysis.

Neuronal classification
We distinguished between RS and FS cells by the time from trough to peak of the spike waveforms 
(Barthó et al., 2004). For cortical cells, the spike duration was bimodally distributed with a dip at ~0.4 
ms, while for thalamic cells, it was bimodally distributed with a dip at ~0.3 ms (Figure 3—figure 
supplement 1). Thus, the cutoff in the classification of cells as RS or FS was set at 0.4 ms for LM and 
V1, and at 0.3 ms for cells in LGN. Note that several studies have demonstrated that some pyramidal 
neurons may have spike waveforms short enough to be classified as FS cells (Vigneswaran et al., 
2011; Lemon et al., 2021). Thus, some caution is warranted when interpreting the population firing 
rates.

When comparing the model firing rates to the experimental firing rates, the excitatory and non-
Pvalb populations were grouped together in each layer of the model to make up the RS cells in L2/3, 
L4, L5, and L6, while the Pvalb cells across all layers were grouped together to make up the FS cells of 
V1. The layer boundaries were taken from the Allen CCF (Oh et al., 2014), allowing for the assignment 
of each neuron’s position to a specific cortical layer (Siegle et al., 2021).

Model
The model consists of both biophysically detailed multicompartment neurons and leaky-integrate-and-
fire (LIF) point-neurons. In total, there are 51,978 multicompartment neurons with Hodgkin–Huxley 
conductances at the soma and only passive conductances at the dendrites. These are arranged in a 
cylinder of radius of 400 μm and height 860 μm (corresponding to the average cortical thickness of V1 
taken from the Allen CCF; Billeh et al., 2020; Oh et al., 2014). This cylinder makes up the ‘core’ of 
the model and is surrounded by an annulus of 178,946 are LIF neurons which has the same height and 
a thickness of 445 μm. This makes the total number of neurons in the model 230,924 and the radius 
of the whole cylinder with both biophysically detailed and LIF neurons 845 μm. There are 17 different 
classes of neuron models. In each layer from 2/3 to 6, there are one excitatory and three inhibitory 
classes (Pvalb, Sst, Htr3a), while in layer 1 there is a single Htr3a class. The LGN module providing 
thalamocortical input to the model consists of 17,400 units selectively connected to the excitatory 
neurons and Pvalb neurons in L2/3 to L6, as well as the non-Pvalb neurons in L1. The background input 
to all neurons in the model comes from a single Poisson source firing at 1 kHz and represents influence 
from the rest of the brain. The feedback input to L2/3 and L5 excitatory, Pvalb, and Sst neurons comes 
from a node representing LM.

Simulation configuration
Instructions on how to run simulations of the model are provided in Billeh et al., 2020. The files and 
code necessary to run the model versions presented in Figures 4–6 are provided in the directories 
old_model_fig4 intermediate_model_fig5, and final_model_fig6, respectively, on Dryad (see ‘Data 
availability’).

Data processing
LFP and CSD
The LFP in simulations was obtained from the extracellular potential by first downsampling to every 
other electrode along the probe (resulting in a spatial separation of 40 μm between each recording 
electrode, equal to the spacing in the public Neuropixels data) and using a low-pass fifth-order 
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Butterworth filter with a cutoff frequency of 500 Hz (utilizing functions ​scipy.​signal.​butter and ​scipy.​
signal.​filtfilt). The same filtering was applied to get the experimental LFP. The CSD was calculated 
from the experimental and model LFP using the delta iCSD method (Pettersen et al., 2006), where 
the radius of laterally (orthogonal to the probe axis) constant CSD was assumed to be 400 μm – the 
radius of the V1 model’s ‘core’ region consisting of biophysically detailed multicompartment neurons. 
For the experimental CSD, this radius was set to 800 μm, roughly corresponding to the size of mouse 
V1.

Visual stimulus
The stimulus used to compare the model and the experiments was full-field flashes. In the experi-
ments, the mice were presented with gray screens for 1 s, followed by 250 ms of white screen, and 
then 750 ms of gray screen over 75 trials. In the simulations, both the stimulus presentation and the 
pre- and the poststimulus gray screen periods lasted 250 ms, and the number of trials was 10.

Input from LGN)
Originally, the LGN spike trains used as input to the model were generated with the FilterNet module 
provided with the model, using 17,400 ‘LGN units’ (Billeh et al., 2020). However, when this input was 
used for simulations, the onset of the evoked response in V1 was 20–30 ms delayed in comparison 
with experiments. Therefore, we used experimentally recorded LGN spike trains as input to the model 
instead. We assigned a recorded spike train to each of the 17,400 LGN units in all trials. In total, 
the public Neuropixels data contain recordings from 1263 regular-spiking LGN neurons across 32 
animals during 75 trials of full-field flash presentations. We divided the total pool of spike trains into 
10 subsets, and then randomly sampled spike trains from one subset in each trial until all 17,400 LGN 
units had been assigned a spike train in all trials.

Input from LM
The experimentally recorded spike trains in the LM were used to construct the feedback input to V1. 
In total, the public Neuropixels data contain recordings from 1823 RS LM neurons across 42 animals 
during presentations of the full-field flash stimulus. Spikes were randomly sampled from the pool of all 
spike trains to construct a spike train that was used as input to all the cells that were targeted by the 
feedback in the model. All neurons received the same spike train.

Background input
The input from the Poisson source firing at 1 kHz was not stimulus dependent. It is a coarse represen-
tation of the continuous influence of the rest of the brain on V1.

Dendritic targeting
The rules for placement of synapses were set in Billeh et al., 2020 and were based on reviews of 
literature on anatomy.

LGN to V1
In the original model, the synapses from LGN onto excitatory V1 neurons were placed on apical and 
basal dendrites within 150 μm from the soma, while synapses onto inhibitory V1 neurons were placed 
on their soma and on their basal dendrites without distance limitations (Billeh et al., 2020). This place-
ment was left unchanged in this study.

V1-V1
The synapses for recurrent connections were placed according to the following rules in the original 
model (Billeh et al., 2020):

Excitatory-to-excitatory connections
All synapses from excitatory V1 neurons onto other excitatory V1 neurons were placed along the 
dendrites and avoided the soma. In layers 2/3 and 4, the placement of synapses was restricted to be 
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within 200 μm from the somata, while in layers 5 and 6, they could be placed anywhere along the 
dendrites.

Excitatory-to-inhibitory connections
All synapses from excitatory V1 neurons onto inhibitory V1 neurons were placed on their somata or 
dendrites without any distance limitations.

Inhibitory-to-excitatory connections
Synapses from Pvalb neurons onto excitatory V1 neurons were placed on the soma and on the 
dendrites within 50 μm from the soma. Synapses from Sst neurons were placed only on dendrites 
and only more than 50 μm from the soma. Synapses from Htr3a neurons were placed on dendrites 
between 50 and 300 μm from the soma.

Inhibitory-to-inhibitory connections
Synapses from inhibitory neurons to other inhibitory neurons were placed according to the same rules 
as the inhibitory-to-excitatory connections described above.

These placement rules were kept in this study, except for the synapses from excitatory neurons to 
excitatory L6 neurons. Here, they were restricted to be within 150 μm of the soma. The purpose of 
this restriction was to reduce the spatial separation between the current sink and source, and thereby 
decrease the magnitude of the L6 sink-source dipole.

LM-V1
The synapses from the node representing LM to V1 were placed on the apical dendrites of L2/3 
neurons (within 150 μm from the soma), on the apical tufts (>300 μm from the soma) and the basal 
dendrites (within 150 μm from the soma) of L5 excitatory cells, and on the somata and basal dendrites 
of L2/3 and L5 inhibitory cells (at any distance from the soma).

Adjusting synaptic weights
In the original model, the synaptic weights of thalamocortical connections were based on exper-
imental recordings of synaptic current, while the synaptic weights for recurrent connections were 
initially set to estimates from literature, then optimized to a drifting gratings stimulus until the model 
reproduced experimental values of orientation and direction selectivity. In this study, the synaptic 
weights for thalamocortical connections were left unchanged from the original model. Before the 
addition of feedback from higher visual areas to the model, the synaptic weights for recurrent connec-
tions in V1 were multiplied by factors in the range [0.2, 2.5].

In the original model, the input from the background node represented the influence of the rest 
of the brain on V1, which included the influence from higher visual areas such as LM. This means that 
some of the feedback influence from LM on V1 should be present (though coarsely represented) in 
the input from the background node. When the influence of input from LM to feedback-targeted cells 
is modeled on its own, the influence of the background node must be updated accordingly. Thus, 
after the addition of feedback, the synaptic weights from the background node to the populations 
targeted by feedback (the L2/3 and L5 excitatory, Pvalb, and Sst cells) were multiplied by factors in 
the range [0.2, 0.5]. The synaptic weights from the node representing LM were initially set equal to 
the original weights between the background node and the populations targeted by the feedback, 
but this led to too high firing rates compared to the experimental firing rates in these populations, so 
they were multiplied by factors in the range [0.2, 0.5]. Finally, the connections from Pvalb neurons in 
V1 to L2/3 excitatory neurons and L5 excitatory cells were re-scaled in the range [0.8, 1.2] times the 
weights set prior to the addition of feedback. The ranges reported here were set after experimenting 
with different ranges to find what would allow the model to reproduce the experimental observations. 
Only a single value within each range was used in the final model.

Quantification and statistical analysis
Firing rates
The time-resolved population firing rates (bin size 1 ms, filtered using scipy.ndimage.gaussian_filter 
with sigma = 2) were computed by averaging the spike count over all cells in a population and over all 
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trials (10 trials in the simulations and 75 trials in the experiments). The distribution of firing rates across 
cells used in the calculation of the KS similarities was computed by averaging over the time windows 
baseline, initial peak, and sustained activity (defined in Figure 3) and over all trials.

Kolmogorov–Smirnov similarity
The KS similarity scores (Billeh et  al., 2020) were computed by first calculating the KS distance 
(using the function ​scipy.​stats.​ks_​2samp) between two distributions of firing rates across cells, and 
subtracting this number from 1, such that a KS similarity score of 1 implies identity and a score of 0 
implies no overlap between the two distributions. In the comparison of the model to the experimental 
data, the KS similarity was computed between the distribution of firing rates across cells in each RS 
and the FS population of the model and the distribution of firing rates across cells from all animals 
in the corresponding populations. To assess the variability in the experiments, the KS similarity was 
calculated between the distribution of firing rates across cells in the same RS and FS populations 
in individual animals, provided there were more than 10 cells recorded in a given population in this 
animal, and the distribution of firing rates across cells from all other animals.

Correlation
We computed the similarity in the profile of time-resolved population firing rates with the Pearson 
correlation coefficient (using the function ​scipy.​stats.​pearsonr). The correlation between the model 
and the experimental firing rates was calculated between model population firing rates and the popu-
lation firing rates averaged across cells from all animals. The level of experimental variability was 
assessed by calculating the correlation between population firing rates in each animal and the popu-
lation firing rates averaged across cells from all other animals.

CSD analysis
Since the number of recording electrodes in V1 are not the same in all animals, we interpolated the 
CSD of each animal and the CSD from simulations onto dimensions of the same lengths (‍M = 30‍ points 
along the depth and ‍K = 100‍ points along the time axis for 100 ms time windows) before we quanti-
tatively analyzed the CSD.

PCA
The trial-averaged CSD of each animal was flattened into a vector of length ‍M × K = 3000‍, and 
the vectors of all ‍N = 44‍ animals were stacked together into a matrix of size 44 × 3000. Then, we 
performed PCA (using sklearn.decomposition.PCA) on this matrix to obtain the principal components 
that would constitute sums of weighted contributions of the trial-averaged CSD patterns.

Wasserstein distance (WD)
The first Wasserstein distance ‍W

(
P1, P2

)
‍ between two distributions ‍P1‍ and ‍P2‍ is defined as

	﻿‍
W

(
P1, P2

)
= inf

γ∈Γ
(

P1,P2
)

ˆ

c
(
x, y

)
γ
(
x, y

)
dxdy

‍�

where ‍c
(
x, y

)
‍ is the cost of moving a unit ‘mass’ from position ‍x‍ to ‍y‍ following the optimal transport 

plan ‍γ
(
x, y

)
‍ in all transport plans ‍Γ

(
P1, P2

)
‍ (Rubner et al., 1998; Arjovsky et al., 2017).

In the utilization of WD to quantify the similarity between two CSD patterns, the distance between 
the distribution of sinks in the two patterns ‍W

(
Psinks, 1, Psinks,2

)
‍ and the distance between distribution 

of sources of the two patterns ‍W
(
Psources, 1, Psources,2

)
‍ are calculated separately and summed to form 

a total WD between the two CSD patterns:

	﻿‍ WCSD
(
P1, P2

)
= W

(
Psinks,1, Psinks,2

)
+ W

(
Psources,1, Psources,2

)
‍�

where P1 and P2 refer to the two CSD patterns. The Python Optimal transport library (https://pythonot.​
github.io/index.html) was used to implement this calculation.
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Appendix 1

Appendix 1—figure 1. Effect of adding feedback connections from latero-medial (LM) to L1 inhibitory cells. 
(A) Left: current source density (CSD) from simulation of final model version without connections from LM to L1 
inhibitory cells. Right: CSD from simulation of final model version with connections from LM to L1 inhibitory cells 
included. (B) Population firing rates of experiments (black line), final model without connections between LM and 
L1 inhibitory cells (orange line), final model with connections between LM and L1 inhibitory cells included (purple 
colored line).
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Figure 2—figure supplement 1. Trial-averaged current source density (CSD) during presentation of full-field 
flashes for all 44 animals in this study.
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Figure 2—figure supplement 2. Principal component analysis (PCA) on histology-aligned current source density (CSD). (A) Left: cumulative variance 
explained by principal components. Right: variance explained by first 10 components. (B) CSD plots of the first 10 principal components explaining in 
total >90% of the variance in trial-averaged CSD across animals.
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Figure 2—figure supplement 3. Comparing inter-trial 
and inter-animal pairwise Wasserstein distances (WDs). 
Cumulative distributions of pairwise WDs between 
trial-averaged current source density (CSD) of individual 
animals (blue line) and pairwise WDs between single 
trial CSD in each animal (red lines). The black line 
denotes the point of maximal distance between the 
two distributions.
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Figure 3—figure supplement 1. Classifying cell types in experimental data. Distributions of waveform duration 
in cells from lateral geniculate nucleus (LGN), V1, and latero-medial (LM) and the threshold (red line) between 
classifying as regular-spiking (RS) or fast-spiking (FS).
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Figure 3—figure supplement 2. Number of cells in 
each population in experimental data. Left: number of 
regular-spiking (RS) and fast-spiking (FS) in each layer in 
individual animals. Right: number of FS cells across all 
layers in V1 in individual animals.
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Figure 4—figure supplement 1. Effect of reducing recurrent inhibition. Laminar population firing rates in the 
original model (blue line), in the model after reduction of recurrent excitatory synaptic weights to all Pvalb cells by 
30% (brown line), and in experiments (black line).
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Figure 5—figure supplement 1. Quantifying change in simulated current source density (CSD) with adjustments 
to synaptic weights. (A) CSD of original model. (B) CSD of intermediate model where synaptic weights between 
populations in V1 have been adjusted. (C) CSD of final model. (D) Pairwise Wasserstein distance between CSD 
different model versions normalized to the largest pairwise Wasserstein distance between trial-averaged CSD of 
individual animals. Green star: Wasserstein distance (WD) between CSD of original model (A) and intermediate 
model (B). Blue star: WD between CSD of original model (A) and final model (C). Orange star: WD between CSD of 
intermediate model (B) and final model (C).
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Figure 5—figure supplement 2. Quantifying change in spiking of L4 excitatory cells after adjusting synaptic 
placement. (A) Blue line: original model where excitatory synapses onto L4 excitatory cells were placed on both 
basal and apical dendrites. Green line: all excitatory synapses onto L4 excitatory cells were placed only onto 
apical dendrites. Pink line: all excitatory synapses onto L4 excitatory cells were placed only onto basal dendrites. 
(B) Kolmogorov–Smirnov (KS) similarity between the model variants in (A) for average firing rates across cells in 
different time periods (defined in Figure 3). Boxplots represent distribution of pairwise KS similarities between 
animals. (C) Correlation between firing rates of model variants in (A). (D) Difference in moments of distributions 
of peak firing rates across cells between model variants in (A). Boxplots represent pairwise differences between 
animals. (E) Difference in moments of distributions of latencies to peak firing rate across cells between model 
variants in (A) and pairwise differences between animals (boxplots).
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Figure 5—figure supplement 3. Effects of manipulating synaptic placement onto L2/3 excitatory cells on 
population current source density (CSD) and spiking. (A) CSD generated by L2/3 excitatory cells in (left) the 
original configuration with synapses on both apical and basal dendrites, (middle) all excitatory synapses placed 
on apical dendrites, and (right) all excitatory synapses placed on basal dendrites. (B) Population firing rates 
of L2/3 excitatory cells with different synaptic placement. Blue line: original model. Green line: all excitatory 
synapses onto L2/3 excitatory cells were placed only onto apical dendrites. Pink line: all excitatory synapses onto 
L2/3 excitatory cells were placed only onto basal dendrites. (C) Kolmogorov–Smirnov (KS) similarity between 
the model variants in (B) for average firing rates across cells in different time periods (defined in Figure 3). 
Boxplots represent distribution of pairwise KS similarities between animals. (D) Correlation between firing rates 
of model variants in (B). (E) Difference in moments of distributions of peak firing rates across cells between model 
variants in (B). Boxplots represent pairwise differences in moments between animals. (F) Difference in moments 
of distributions of latencies to peak firing rate across cells between model variants in (B) and between animals 
(boxplots).
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Figure 5—figure supplement 4. Effects of manipulating synaptic placement onto L5 excitatory cells on 
population current source density (CSD) and spiking. (A) CSD generated by L5 excitatory cells in (left) the original 
configuration with synapses on both apical and basal dendrites, (middle) all excitatory synapses placed on apical 
dendrites, and (right) all excitatory synapses on basal dendrites. In all cases, the synapses were placed within 
200 μm from the soma to have the same ranges as was used for L4 and L2/3 cells in Figure 5 and Figure 5—
figure supplement 3, respectively. (B) Population firing rates of L5 excitatory cells with different synaptic 
placement. Blue line: original model configuration with synapses on both apical and basal dendrites, Green line: 
all excitatory synapses onto L5 excitatory cells were placed only onto apical dendrites. Pink line: all excitatory 
synapses onto L5 excitatory cells were placed only onto basal dendrites. (C) Kolmogorov–Smirnov (KS) similarity 
in average firing rates across cells in different time periods (defined in Figure 3) between the model variants in 
(B). Boxplots represent distribution of pairwise KS-similarities in animals. (D) Correlation between firing rates of 
model variants in (A). (E) Difference in moments of distributions of peak firing rates across cells between model 
variants in (B). Boxplots represent pairwise differences in moments between animals. (F) Difference in moments 
of distributions of latencies to peak firing rate across cells between model variants in (B) and between animals 
(boxplots).
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Figure 6—figure supplement 1. Effect of adjusting 
synaptic placement onto L6 excitatory cells. 
Contributions to the total current source density (CSD) 
from L6 excitatory cells with the original placement 
of recurrent excitatory synapses uniformly along the 
whole length of their dendrites (left) and after moving 
all recurrent excitatory synapses within 150 μm from the 
soma.

85



 ﻿Research article﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Rimehaug et al. eLife 2023;12:e87169. DOI: https://doi.org/10.7554/eLife.87169 � 19 of 31

Figure 6—figure supplement 2. Moments of distributions of peak firing rate in model versions and experiments 
for different populations. Boxplots represent data for different animals, diamonds represent model versions. (A) 
First moment (mean). (B) Second moment (standard deviation). (C) Third moment (skewness). (D) Fourth moment 
(kurtosis).
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Figure 6—figure supplement 3. Moments of distributions of latency to peak of firing rates in model versions and 
experiments in different populations. Boxplots represent data for different animals, diamonds represent model 
versions. (A) First moment (mean). (B) Second moment (standard deviation). (C) Third moment (skewness). (D) 
Fourth moment (kurtosis).
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Figure 6—figure supplement 4. Relative change in peak firing rates between neighboring populations. (A) 
From regular-spiking (RS) cells in L2/3 to RS cells in L4. (B) From RS cells in L4 to RS cells in L5. (C) From RS cells 
in L5 to RS cells in L6. (D) From all RS cells in V1 to all FS cells in V1. Boxplots represent data for different animals, 
diamonds represent model versions.
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Figure 6—figure supplement 5. Moments of distributions of greatest curvature in firing rate across cells. 
Diamonds represent model versions and boxplots represent moments calculated for different animals. (A) First 
moment (mean). (B) Second moment (standard deviation). (C) Third moment (skew). (D) Fourth moment (kurtosis).
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Figure 6—figure supplement 6. Orientation and direction selectivity in final model. Rate at preferred direction 
(A), direction selectivity index (B), and orientation selectivity index (C) in layer populations of model (blue) and in 
experiments (gray).
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Figure 6—figure supplement 7. Current source density (CSD) analysis after aligning experimental CSD plots to 
landmarks rather than histology. (A) Example CSD plot with landmarks used for alignment marked (white stars). 
(B) Top: PC 1 CSD after application of principal component analysis (PCA) on trial-averaged CSD from all animals. 
Bottom: Wasserstein distances to PC 1 CSD after aligning CSD to landmarks for all animals. Diamonds denote 
WD from CSD of model versions and boxplots denote distances from individual animals. (C) Top: CSD average 
across all animals after aligning to landmarks. Bottom: Wasserstein distances to average CSD after alignment to 
landmarks for both model versions and animals.
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Figure 6—figure supplement 8. Priincipal component analysis (PCA) on landmark aligned current source density (CSD). (A) Left: cumulative variance 
explained by components. Right: variance explained by first 10 components. (B) CSD plots of the first 10 principal components explaining in total >90% 
of the variance in trial-averaged CSD across animals.
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Figure 6—figure supplement 9. Effect of using plain 
average of trial-averaged current source density (CSD) 
from all animals instead of first principal component 
as target. Wasserstein distance from model versions 
and individual animal CSD to plain average of trial-
averaged CSD from all animals. (A) CSD averaged over 
trial-averaged CSD from all animals. CSD aligned to 
histology. (B) Wasserstein distance from CSD of model 
versions (diamonds) and individual animals (boxplot) to 
CSD averaged over all animals (normalized to largest 
distance from the CSD of an individual animal to the 
average CSD).
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Figure 7—figure supplement 1. Effects of removing recurrent inhibition on population current source density 
(CSD) and firing rates. (A) Population contributions to the total CSD and (B) laminar population firing rates in a 
simulation where all inhibitory synapses have been removed.
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Figure 7—figure supplement 2. Effect of cell 
orientation on current source density (CSD) 
contributions of L4 inhibitory cells. CSD contribution 
of L4 inhibitory cells with original orientation (left) and 
scrambled orientation (right).
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Figure 7—figure supplement 3. Silencing feedback from latero-medial (LM) in model during evoked response. 
Current source density (CSD) of (A) PC 1 computed from experiments, (B) final model, and (C) final model with 
feedback turned off at 60ms. (D) Trial-averaged population firing rates in experiments (black line), final model 
(orange line), and final model with feedback turned off at 60ms (brown line).
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