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Abstract

Whether soils will act as a net sink or a net source of atmospheric
carbon in the future is a major uncertainty in current climate
projections. Soil processes have traditionally been underrepresented
in Earth System Models, and to increase our understanding of soil
responses to climate change, we need soil models that explicitly
represent microbial groups like bacteria and fungi, which can respond
non-linearly to changes in their environment. This work presents
a soil biogeochemistry model, MIMICS+, which is developed with
a particular focus on boreal areas. The model is built on the
existing model MIMICS, which represents the decomposition of plant
litter and soil organic matter by two functionally different microbial
pools. With MIMICS+, we extend this framework by introducing
two additional microbial pools, representing ectomycorrhizal and
arbuscular mycorrhizal fungi. In addition, a nitrogen (N) cycle, and
vertical layers are introduced in MIMICS+. We show that the model
performs better, or on par with a traditional soil model when we
compare to forested sites in Norway, both in terms of carbon (C)
content and soil C:N ratio. We also show that the model broadly
captures climatic and litter quality controls on decomposition rates.
Through a sensitivity study of ectomycorrhizal turnover times, we show
how the presence of mycorrhiza affects soil dynamics through nutrient
competition with microbial decomposers. In the future, MIMICS+ will
represent an improved soil sub-model in the Norwegian Earth System
Model, thus contributing to a deeper understanding of how soil and its
microorganisms can affect climate projections.
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Sammendrag

Hvorvidt jordsmonn vil være et netto tap eller en netto kilde til atmos-
færisk karbon i fremtiden er en stor usikkerhet i klimaprognoser. Jord-
prosesser har tradisjonelt vært underrepresentert i jordsystemmodeller.
For å øke vår forståelse av hvordan jordsmonn responderer på klimaen-
dringer, trenger vi jordmodeller som eksplisitt representerer mikro-
bielle grupper som bakterier og sopp, som kan reagere ikke-lineært
på endringer i omgivelsene. Denne avhandlingen presenterer en jord-
biogeokjemimodell, MIMICS+, som er utviklet med et spesielt fokus
på boreale områder. Modellen er bygget på den eksisterende modellen
MIMICS, som representerer dekomponering av dødt plantemateriale
og organisk materiale gjennom to funksjonelt forskjellige mikrobielle
grupper. Med MIMICS+ har vi utvidet dette rammeverket ved å in-
trodusere ytterligere to mikrobielle grupper, som representerer ekto-
mykorrhiza og arbuskulær mykorrhiza sopp. Vi har også lagt til en
nitrogensyklus og gjort modellen vertikaloppløst. Vi viser at mod-
ellen presterer bedre, eller på nivå med en tradisjonell jordkarbon-
modell når vi sammenligner med observasjoner fra norske skoger, både
når det gjelder karboninnhold og jordens C:N-forhold. Vi viser også
at modellen i store trekk fanger opp hvordan klima og kvaliteten av
plantemateriale påvirker dekomponeringshastigheter. Gjennom en sen-
sitivitetsstudie av levetider for ektomykorrhiza viser vi hvordan myko-
rrhiza kan påvirke karbon- og nitrogenkretsløpet gjennom konkurranse
med mikrobielle nedbrytere. I fremtiden vil MIMICS+ representere en
forbedret jordmodell i den norske klimamodellen "the Norwegian Earth
System Model", og dermed bidra til en dypere forståelse av hvordan
jorden og dens mikroorganismer kan påvirke klimaprojeksjoner.
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Chapter 1

Introduction

1.1 Motivation

In addition to being a component of the greenhouse gas CO2, carbon atoms
are essential building blocks for all living things, from the largest trees to the
smallest bacteria. Carbon is stored in, and cycled between different reservoirs
on Earth; soils, living biomass, ocean, sediments, fossil reservoirs, rocks, and the
atmosphere. We assume that the carbon cycle was more or less at steady-state in
pre-industrial times, but anthropogenic emissions of greenhouse gases have shifted
this stable state. The responses of soil organic carbon to increasing atmospheric
CO2 concentrations and climate change are not well constrained by observations
and represent a key uncertainty in climate projections (Jia et al., 2019). Given that
soils store more than twice as much carbon than what is present in the atmosphere,
whether they will act as a net source or a net sink of atmospheric carbon in the
future is an important but unanswered question (Shi et al., 2024).

So-called feedback mechanisms can either amplify (positive feedback) or
dampen (negative feedback) the effect of a forced change on the climate system.
How the carbon cycle responds to increased atmospheric CO2 and climate change
can be characterized in two different feedbacks. The carbon-concentration feedback
quantifies responses to changes in atmospheric CO2 concentrations, while the
carbon-climate feedback quantifies responses to changes in the physical climate
(Arora et al., 2020). Model intercomparison studies have shown that the carbon-
concentration feedback is generally negative (from the atmosphere perspective),
as increased atmospheric concentration leads to greater uptake of carbon by the
ocean and over land through photosynthesis and thereby a reduced accumulation
of carbon in the atmosphere (Arora et al., 2013; Friedlingstein et al., 2006).
The carbon-climate feedback effect was found to be positive from the atmosphere
perspective in the model intercomparisons, as increased temperature reduces the
carbon holding capacity of the land and the ocean. The results from Arora et al.
(2020), where they look at CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et
al., 2016) models1, showed a striking difference in the uncertainty of the feedback

1The Coupled Model Intercomparison Project (CMIP) is a collaborative framework for
comparing state-of-the-art Earth System Model simulations of the past, current, and future
climate.
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Chapter 1. Introduction

strength between land models and ocean models, with estimates over land being
one order of magnitude more uncertain than estimates over the ocean. The
terrestrial responses to increased CO2 and climate change are largely governed by
biological processes that are much less understood, which in turn limits the models
ability to capture these responses. The differences in uncertainty between land and
ocean components of Earth System Models (ESMs) were also addressed by Bonan
and Doney (2018), who showed that the majority of uncertainty in land models
comes from model structure and parameters, reflecting a lack of representation of
essential biogeochemical processes.

The historical development of ESMs originating from purely physical general
circulation models (Fisher and Koven, 2020), together with the limited amount
of observed data about soil processes and biodiversity (Guerra et al., 2020),
has led to an under-representation of soil processes in general, and the role of
microbial activity specifically. With new technologies for observing soil processes,
it has become evident that microbial activity, nutrient availability, and plant- and
mineral interactions cannot be ignored when modeling future climate projections,
as these processes are sensitive to changes in climate and CO2 concentrations.
Proper representation of interactions between biogeochemical cycles, like how the
carbon cycle is affected by the cycling of nutrients like nitrogen or phosphorus,
is also lacking from most ESMs (Jia et al., 2019). To better understand the role
of soils as a source and/or a sink of atmospheric carbon, we need to reduce the
uncertainties related to the carbon feedbacks of terrestrial systems.

Although the spread among ESM projections of warming-induced soil carbon
loss is large, most of the models represent soil decomposition in a structurally
similar manner, using the microbially implicit CENTURY approach (Parton et
al., 1988). As argued by Bradford et al. (2016), the large spread among model
projections is, therefore, largely a consequence of parameter uncertainty. If we
want to increase confidence in the direction and magnitude of the carbon feedbacks,
we need a better understanding also of the structural uncertainty. This can be
achieved by using soil sub-models that represent structurally different hypotheses
about carbon exchange and stabilization in the ESMs.

The new generation of soil models represent microbial activity explicitly, and
challenges the traditional view of Soil Organic Matter (SOM) as inherently stable
humic substances, with the emergent view of SOM as a continuum of progressively
decomposing organic compounds (Lehmann and Kleber, 2015; Chandel et al.,
2023). These models can give more realistic and diverse representations of the
terrestrial carbon cycle in ESMs, as the explicit representation of microorganisms
allows for modeling nonlinear responses to changes in climate and/or CO2
concentration. By incorporating such models into ESMs, it is possible to assess
the structural uncertainties associated with the carbon feedbacks and increase
confidence in the projected responses to climate change.

Previous CMIP phases have mainly used concentration-driven emission
scenarios to project future climate. This approach does not capture the carbon
cycle uncertainty in the scenario outcomes, thus missing an important piece of
information. A proposed method to overcome this issue is to use emission-driven
scenarios in the model simulations (Sanderson et al., 2023). This approach requires

4



1.1. Motivation

ESMs to represent complete cycles of green house gases, which further motivates
the incorporation of more realistic cycling of carbon and nitrogen in ESMs.

A major challenge in soil models is to translate complex biogeochemical
processes and mechanisms into equations and parameters (Chandel et al., 2023).
Historically, ecological observations have often been performed without considering
the usefulness for process model development, and empirical observations have
been used carelessly to inform models (Kyker-Snowman et al., 2022). With more
careful consideration of how models and field experiments can complement each
other, the development of these microbially explicit models can be a valuable
tool in bridging the gap between empirical observations and model development
(Kyker-Snowman et al., 2022; Halbritter et al., 2020).

A complicating factor when modeling terrestrial ecosystems is the vast
difference in the behavior of different biomes across Earth. Rapid turnover of
carbon and nutrients in the tropics leads to relatively small amounts of carbon
stored in the soils compared to vegetation. In contrast, boreal ecosystems, with
slower turnover and less nutrients store a disproportionately large amount of the
total terrestrial carbon in the soils (Crowther et al., 2019). Many soil models and
ESMs are developed from a global perspective and do not necessarily consider
mechanisms that are particularly important in colder climates, like nutrient
competition and mycorrhizal associations2. Therefore, there is an urgent need for
more knowledge about how high-latitude ecosystems respond to climate change,
and a need to ensure that these processes are also represented in global simulations
with ESMs. The focus of this thesis is to further our understanding of high-
latitude soil process responses to a changing climate through the development of a
soil biogeochemistry model with a particular focus on these ecosystems. To make
full use of the soil model to quantify the carbon-climate and carbon-concentration
feedbacks, the model is intended to be incorporated first into the Community Land
Model (CLM; (Lawrence et al., 2019)) and then further into the fully coupled
Norwegian Earth System Model (NorESM; Seland et al., 2020).

2Mycorrhiza: symbiotic associations between plants and fungi
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Chapter 1. Introduction

1.2 Objectives

To address the challenges mentioned above, the main objective of this work
has been to establish a microbially explicit soil biogeochemical model,
which is capable of representing processes relevant to boreal ecosystems
but also simple and general enough to be incorporated into an ESM.
A large part of the project has been devoted to formulating a model fit for this
purpose, by combining existing work with new ideas and observations. The result is
the decomposition model MIMICS+ which has been used to address the following
sub-objectives:

1. Gain a better understanding of the processes that are important for boreal
soils, and investigate the soil dynamics related to them within the modeling
framework. In particular;

(a) How the availability of nutrients (nitrogen) affects microbial activity
and microbe-microbe interactions3 in nutrient poor environments.

(b) How temperature and moisture affect soil carbon storage and
decomposition.

(c) How the quality (chemical composition) of plant litter can impact
microbial decomposition.

2. Gain a better understanding of how microclimatic forcing can impact model
results.

3. Contribute to bridging the gap between model requirements and measure-
ments, by identifying key parameters and processes.

Paper I presents MIMICS+ as a useful tool to investigate soil processes
and their responses to anthropogenic climate change. The paper describes
how MIMICS+ is built on the existing microbially explicit model MIcrobial-
MIneral Carbon Stabilization (MIMICS; Wieder et al., 2015) and extended with
a nitrogen cycle, additional microbial groups, and vertical layers. In addition to
microbial decomposers, we added mycorrhizal fungi, which form important but less
understood symbiotic relationships with plants. In this paper, we also perform a
nitrogen enrichment experiment to investigate below-ground responses to increased
nutrient availability in Norwegian forest soils. In addition to the main objective,
paper I addresses sub-objectives 1a, 1b, 2, and 3.

A key control of the carbon exchange between soils and the atmosphere
is the microbial decomposition of plant litter. In paper II, MIMICS+ was
used to simulate two litterbag decomposition experiments, both performed at
high latitudes (Canada; Trofymow and CIDET Working Group (1998) and the
Vestland Climate Grid (VCG) in Southern Norway; Vandvik et al., 2022) but with
different durations and spatial scales, to examine how well the model reproduced
the impact of climatic factors and litter quality on decomposition rates. We

3In this work "microbe-microbe interactions" mainly refer to interactions between saprotrophs
and mycorrhizal fungi.
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1.3. Thesis outline

performed experiments using measurements of soil temperature and moisture
for the Norwegian sites, as well as improved model surface parameters in the
MIMICS+ simulations. In contrast to expectations, simulations using observed
microclimate and/or improved surface parameters did not improve the modeled
results, but rather highlighted several challenges connected to snow and freezing
conditions when modeling microbial decomposition at high latitudes. Paper II
addresses the main objective, and sub-objectives 1b, 1c, 2 and 3.

While paper II mainly investigated the role of saprotrophic decomposers, paper
III focuses on the ectomycorrhizal fungi, and interactions between the saprotrophic
and ectomycorrhizal pools. Observational evidence from boreal forests indicated
that the proportion of ectomycorrhizal fungi compared to saprotrophic fungi is
larger in reality than what is modeled with the MIMICS+ version presented
in paper I. In paper III, we performed sensitivity tests of mycorrhizal turnover
time to examine how model parameters can be modified to better represent
observations at high latitudes. We also tested sensitivity to ectomycorrhizal
necromass composition. We investigated the consequences for the rest of the
modeled soil system, in particular how microbe-microbe interactions affected soil
carbon storage. Paper III addresses sub-objective 1a and 3.

1.3 Thesis outline

Part I of this thesis is structured as follows: An overview of the scientific
background relevant to the work in this thesis is given in Chapter 2. Chapter
3 describes the model development process of MIMICS+, as well as a description
of how it uses CLM-produced forcing data. A summary of the scientific findings
of the papers is found in Chapter 4, while conclusions and outlook are presented
in Chapter 5. Part II contains the scientific papers.
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Chapter 2

Background

This chapter first presents an introduction to the terrestrial cycling of carbon and
nitrogen, and soil microbial processes (Section 2.1). Then, Land Surface Models
(LSMs) and relevant sub-models within them, as well as microbially explicit soil
models are presented (Section 2.2).

2.1 Terrestrial cycling of carbon and nitrogen

Plant nutrient 
acquisition through 

mycorrhiza (D)

Photosynthesis (A)

Plant respiration (B)

 Fixation
 Deposition

Nitrogen
Carbon

(E)

Denitri-
fication

Runoff &
leaching

(F)

Inorganic 
nitrogen

Plant 
litter

Heterotrophic 
respiration

Microbial 
decomposition 

(C)

Mycorrhizal
respiration

Soil Organic 
Matter 
(SOM)

(H)

Direct plant-
derived SOM

(G)

Figure 2.1: Simplified illustration of the terrestrial cycling of carbon (black) and nitrogen
(red). Carbon is exchanged with the atmosphere through photosynthesis (A) and
respiration by microbial decomposers, mycorrhizal fungi, and vegetation. Nitrogen
is exchanged through atmospheric deposition (E), leaching (F), fixation (G), and
denitrification (H). Within the soil, carbon and nitrogen is cycled between litter,
microbial, SOM, and inorganic nitrogen pools. Processes in full colors are represented
in MIMICS+, while processes in faded colors are not. Created with BioRender.com.
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Chapter 2. Background

The main processes of the terrestrial carbon and nitrogen cycles are illustrated
in Fig. 2.1. In the following text, letters in parenthesis correspond to letters in the
figure. Through photosynthesis, plants transform atmospheric CO2 into energy
i.e. carbohydrates (A). The fate of the carbon assimilated through photosynthesis
depends on how the plant allocates it to different processes. This is influenced
by plant species and resource availability. At the ecosystem scale, photosynthesis
can be approximated by Gross Primary Production (GPP) (Chapin et al., 2011).
About half of GPP is used for plant respiration and will return relatively quickly
to the atmosphere (Schlesinger and Bernhardt, 2013) (B). The remaining carbon
(GPP minus respiration) makes up the Net Primary Production (NPP). Most NPP
is allocated to plant biomass, which eventually will enter the soil as dead plant
material (plant litter). Decomposers break down this material (C), and in the
process release a fraction of the carbon back into the atmosphere as heterotrophic
respiration. Plants also allocate a fraction of NPP to nutrient acquisition, either
directly through roots or through symbiotic associations with mycorrhizal fungi
(D).

Nitrogen and phosphorus are the two most important macronutrients in
terrestrial ecosystems. Plants and soil organisms depend on these components
to function properly, and competition for nutrients can limit productivity even
if carbon is abundant (Chapin et al., 2011). Du et al. (2020) showed a strong
latitudinal shift in the nutrient limitation of primary production, with a transition
from phosphorus-limited in the tropics, to nitrogen-limited at higher latitudes.
Since nitrogen is the most limiting nutrient at high latitudes, this work focuses on
the role of nitrogen as a nutrient.

2.1.1 Plant litter

On top of the soils we find plant litter, which is dead plant material in various
forms: leaves, twigs, branches, and dead roots. Litter from different species
and parts of the plant vary widely in terms of nutrient content and chemical
recalcitrance. Litter that can provide easily accessible resources to the microbes,
either by consisting of easily degradable (metabolic) compounds or having a high
nitrogen content is of "high quality". Recalcitrant litter, on the other hand, has
a high amount of complex, organic compounds and/or low nitrogen content, and
is considered to be of "poor quality". We can use the lignin content of litter
to determine the chemical recalcitrance, while the carbon:nitrogen (C:N) ratio
(stoichiometry) is often used to determine the litter nutrient content (Bardgett,
2005).

2.1.2 Soil Organic Matter

Soils consist of mineral material (sand, clay, silt, and inorganic compounds),
plant roots, water, gases, and organic matter, and are thus complex, multiphased
systems. Soils are also home to a vast variety of organisms, from microbes like
bacteria and fungi, to macrofauna like earthworms and beetles (Bardgett, 2005).

10



2.1. Terrestrial cycling of carbon and nitrogen

The part of soils that holds the most carbon is SOM. Chapin et al. (2011)
defines SOM as "Dead organic matter in the soil that has decomposed to the point
that its original identity is uncertain". Advances in observational technologies have
led to findings that challenge the traditional view of SOM as consisting mostly of
stable, humic substances (Schmidt et al., 2011). The emergent understanding
of SOM is that it consists of a continuum of organic compounds at different
decomposition stages that can interact with other molecules in their environment
(Lehmann and Kleber, 2015). These interactions can stabilize the SOM through
mineral association and the formation of aggregates. Mineral-associated organic
matter forms chemical bonds with mineral soil particles, which physicochemically
protect the SOM from being decomposed by microbes. Aggregation formation
between organic and mineral compounds makes the SOM less accessible to
microbes, leading to a physical protection of the SOM molecules from microbial
decomposition (Angst et al., 2021). The more "traditional" form of chemical
protection based on recalcitrance of lignin-rich substances, also contributes to the
protection of SOM from microbial decomposition.

2.1.3 Soil microbes

The global biomass of soil fungi and bacteria is estimated to be 12 GtC and
7 GtC, respectively, while soil animals only account for approximately 2 GtC,
globally (Bar-On et al., 2018). These organisms greatly affect soil formation,
composition, and dynamics. Since the vast majority of soil organisms are
microscopic, MIMICS+ and many other soil models (Chandel et al., 2023) focus
on microbial activity, but acknowledge that larger organisms also contribute to
soil dynamics (Grandy et al., 2016).

Soil microbial biomass has a narrower and lower stoichiometrical constraint
than the resources it consumes. Global averages suggest that microbial biomass
has a carbon:nitrogen ratio of around 7:1, while plant litter and SOM have ratios
of 71:1 and 17:1, respectively (Mooshammer et al., 2014). To keep a relatively
constant C:N ratio, microbes can only invest a fraction of the carbon they take up
in biomass production. The ratio of carbon invested in growth versus total carbon
uptake is called Carbon Use Efficiency (CUE). Generally, different microbial groups
have different stoichiometrical constraints and optimal CUEs, as described below.

Saprotrophic bacteria and fungi

The word saprotroph comes from Greek, and translates to "feeding on decaying
matter". Saprotrophic bacteria and fungi acquire energy from dead organic
material, and together they account for about 95 % of total decomposer biomass
and respiration (Chapin et al., 2011). Although a myriad of different species exist
within each of the groups, there are some general differences in the functioning
of fungal versus bacterial decomposition, which is useful for simplifying microbial
decomposition dynamics in a model.

Fungi produce networks of hyphae that can span vast areas, allowing the
fungi to acquire carbon and nutrients at different locations. Fungal decomposers
are often specialized in decomposing more recalcitrant substrates than bacterial

11



Chapter 2. Background

decomposers. This means that they often have slower decomposition rates, but
higher CUE than bacterial decomposers (Chapin et al., 2011).

Bacteria can not spread out through hyphae in the same way, making
them more dependent on carbon and nutrients in their immediate surroundings.
Therefore, they are often more dominant in nutrient-rich environments, and
nutrient hot-spots like the rhizosphere (close to plant roots). In general, they
have a more opportunistic behavior than fungi, with higher decomposition rates
but lower CUE (Chapin et al., 2011).

To break down complex organic matter into simpler molecules that the
decomposers can assimilate and use, they produce extracellular enzymes that
depolymerize the complex substrates. This process results in soluble products
that can be used in the microbial metabolism (Chapin et al., 2011). The speed
at which decomposers break down the substrates depends on climatic factors,
like temperature and moisture. Generally, microbial decomposition rates increase
with temperature. However, decomposition responses to changes in temperature
are unclear, as there is evidence that microbial communities adapt to their
environment, and therefore might respond differently than expected to changes
in local temperature (German et al., 2012). When it comes to moisture, both
too much and too little limits decomposition. The microbes are dependent
on the diffusion of substrates towards them (or their enzymes). This diffusion
is dependent on the presence of moisture films on the soil surfaces, which is
reduced or removed under dry or freezing conditions. In the case of water-logged
soils, microbes lose access to the oxygen needed for the metabolic process, and
decomposition is inhibited.

Mycorrhizal fungi

The word mycorrhiza is also of Greek origin, and translates to "fungus-root".
Mycorrhizal fungi forms symbiotic relationships with plants. The fungi receive
carbon from the plant, and provide nutrients, like nitrogen and phosphorus, in
return. In contrast to saprotrophs, the energy source for mycorrhizal fungi is fresh
carbon from the plant, not dead plant material. Globally, it is estimated that 3.58
GtC is allocated from terrestrial plants to mycorrhizal fungi every year (Hawkins
et al., 2023), and that plants allocate 4–20 % of NPP to mycorrhizal associations
(Chapin et al., 2011).

The two main types of mycorrhiza are Arbuscular Mycorrhiza (AM) and
ectomycorrhiza (EcM). 70 % of land plant species associate with AM, covering
57 % of global vegetation, while about 2 % associate with EcM, covering 25 % of
global vegetation (Hawkins et al., 2023). Many boreal tree species, like spruces and
pines associate with EcM, explaining the high land coverage compared to species
association. While AM mostly scavenge for nutrients in inorganic forms, EcM have
been found to depolymerize organic matter to access nutrients. Thus, EcM can
indirectly contribute to decomposition by "mining" SOM for nitrogen (Lindahl and
Tunlid, 2015).
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2.1. Terrestrial cycling of carbon and nitrogen

Microbial interactions

Although the saprotrophic microbes and mycorrhizal fungi get their carbon from
different sources, they compete for the same nitrogen. Competition between EcM
fungi and saprotrophic fungi can introduce the so called Gadgil effect (Gadgil
and Gadgil, 1971; Gadgil and Gadgil, 1975), where saprotrophic decomposition
is suppressed because nitrogen are removed from SOM by EcM. The reduced
decomposition leads to more carbon stored in the soils.

The presence of mycorrhiza can also promote saprotrophic decomposition
through so-called priming effects, where provision of high quality substrates
increase the saprotrophic decomposition rates. These substrates can be
mycorrhizal necromass which have a relatively low C:N ratio (Phillips et al., 2012),
or the release of easily decomposable enzymes (Kaiser et al., 2015). Both the
Gadgil effect and priming effects are assumed to be context dependent, affcted by
resource availability and climatic factors (Fernandez and Kennedy, 2016).

2.1.4 Climate change in high latitude ecosystems

It is well known that Arctic amplification causes Northern high latitudes to warm
faster than the rest of the globe (Rantanen et al., 2022). According to Crowther
et al. (2019) the highest abundances of both soil carbon and soil microbial biomass
are found at these latitudes. Thus, the accelerated warming has the potential to
cause large responses in biogeochemical cycles and the carbon-climate feedback.
Thawing permafrost and related processes are also a considerable consequence
of the increased warming, and much research has focused on this topic (e.g.
Schädel et al., 2018; Miner et al., 2022; Smith et al., 2022). However, the
general representation of soils in LSMs and ESMs should reflect an "average"
soil, and not the special case of permafrost. Therefore, the focus in this thesis
is on "regular soil" processes, that is, soils that experience seasonal or intermittent
freezing. The presented model structure could also be well suited for modeling
permafrost conditions, but that will need careful examination and likely changes
to parameter values. In this section I will briefly introduce some mechanisms that
are particularly relevant for these high-latitude soils.

Snow effects on soil temperature

In addition to being a source of soil water when melting, snow cover has an
insulating effect on soil temperature, making snow a regulator of temperature
and moisture dependent decomposition rates. When the soils freeze, the soil
water will become unavailable to the microbes, which leads to reduced or halted
decomposition.

Vegetation composition

Increased temperatures lead to longer growing seasons which again can cause
vegetation shifts like shrubbification and tree line migration (Vowles and Björk,
2019; Hansson et al., 2021). These shifts also affect below-ground processes
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Chapter 2. Background

by modifying the input rates of organic matter from plants. Since mycorrhizal
associations are species-dependent, vegetation shifts might also cause shifts in
dominant mycorrhizal association, however, the rates and consequences of this are
still highly uncertain.

Nutrient availability

In boreal forests, the internal turnover of nitrogen, i.e., litterfall, plant uptake,
and microbial mineralization and immobilization, is much larger than the external
input and output (nitrogen fixation1, deposition2, leaching, and denitrification3,
(E), (F), (G), and (H) in Fig. 2.1). This means that the nitrogen cycle is relatively
closed, and that the interactions between the living components of the ecosystems
largely control the nitrogen dynamics (Högberg et al., 2017). Microbes and plants
compete for the nitrogen resources in the soil, which is available in organic (SOM)
and inorganic (NH4 and NO3) forms (Daly et al., 2021). Due to the limited
amount of available nitrogen, these systems will likely respond with increased plant
growth if nitrogen is added, either through increased atmospheric deposition, or
for fertilization purposes (Högberg et al., 2017).

2.2 Land Surface Models (LSMs)

Figure 2.2: A schematic depiction of the evolution of land surface model process
representation through time, representing the approximate timing of emergence of
different model components as commonly employed features of Earth system models.
Note that all modeling groups follow a different pathway and that this diagram is
primarily intended to act as an illustration of increasing complexity through time.
Adopted from Fisher and Koven (2020).

1conversion of N2 gas to ammonium
2atmospheric input of nitrogen to the ecosystem
3conversion of NO3 to gaseous forms
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2.2. Land Surface Models (LSMs)

In an ESM, the Earth is divided into gridcells, in which mathematical equations
are used to represent physical processes, timestep by timestep. The ESM combines
sub-models that represent different parts of the Earth system, typically a land
model, an ocean model, an atmosphere model, and ice models (at sea and on
land). In a fully coupled ESM, LSM actively exchanges momentum, water,
energy, carbon, and other compounds with the atmospheric ESM component.
LSMs can also be used in "offline" mode, in which the atmospheric input comes
from prescribed datasets containing surface temperature, precipitation, wind, solar
radiation, and humidity. LSMs (and ESMs) can be run globally, regionally or as
single-cell simulations.

Due to the complexity and heterogeneity of the processes presented in Section
2.1, representing them in a mechanistic modeling framework is a major challenge.
Carbon cycle processes have only been a part of LSMs since the early 2000s, while
nutrients (mainly in the form of nitrogen) are an even more recent addition (Fig
2.2, Fisher and Koven (2020)).

When LSMs are expanded with new features or processes, it is often done
by developing and testing smaller, stand-alone process models which then can
be incorporated into the larger modeling framework. This is the approach we,
and several other research groups, are using to incorporate microbial activity into
LSMs, and later into to fully coupled ESMs.

2.2.1 The Community Land Surface Model (CLM)

CLM constitutes the LSM of the Earth system models NorESM (Seland et
al., 2020) and CESM (Danabasoglu et al., 2020). The primary processes and
functionality of the current version of CLM (version 5, CLM5) are illustrated in
Fig. 2.3. In CLM, the soil is represented as a column of discrete layers. The
thickness of the layers increase exponentially with depth. The default model setup
has 20 hydrologically and biogeochemically active layers, reaching a soil depth of
8.6 m (custom configurations allow shallower soils, see Section 3.1.6). This means
that soil water, heat, carbon, and nitrogen can be transported up and down the
soil column. Note that the discrete soil layers in CLM are not based on real-world
soil horizons that are a consequence of soil formation processes. The soil column is
connected to a vegetated land unit, where the vegetation is represented by one or
more of 14 natural Plant Functional Types (PFTs, Fig. 2.4). The PFTs are broad
representations of plant species that share functional features, e.g. "broadleaf
deciduous boral tree" and "C3 nonarctic grass".

The processes illustrated in Fig. 2.3 are represented by many sub-models within
CLM. Sections 2.2.2 and 2.2.3 give an overview of two of the sub-models used in
CLM5: the microbially implicit CENTURY model and the FUN model. The
CENTURY model traditionally has been used to represent soil decomposition in
CLM and many other LSMs (Parton et al., 1988). The FUN model includes the
current representation of mycorrhizal association in CLM5.
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Chapter 2. Background

Figure 2.3: Schematic representation of primary processes and functionality in CLM5.
SCF = snow cover fraction; BVOC = biogenic volatile organic compounds; C/N =
carbon and nitrogen. For biogeochemical cycles, black arrow denotes carbon flux, and
purple arrow denotes nitrogen flux. Note that not all soil levels are shown. Not all
processes are depicted. Adopted from Lawrence et al. (2019).

.

2.2.2 The CENTURY decomposition model

The CENTURY model was developed by Parton et al. (1988), and has been used
for representing decomposition in CLM4.5 and CLM5 (Lawrence et al., 2019).
Here, fresh litter decomposes to more and more recalcitrant forms through a
cascade of transformations from litter and coarse wood, to SOM pools (Fig.
2.5). During a transformation step, carbon is moved from a donor pool to a
receiver pool determined by constant decomposition rates, and where constant
fractions are lost to respiration. The decomposition rates can be modified by simple
environmental modifiers, as well as nutrient limitations. These modifications are
simple and general, and cannot capture shifts or changes in microbial communities
as a response to climate change. Since there are no explicit microbial pools, the
model assumes that microbial abundance will never limit decomposition rates. It
also assumes that there is no competition or other interactions between different
microbial groups that can affect the decomposition rates (Chandel et al., 2023).
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2.2. Land Surface Models (LSMs)

Figure 2.4: Configuration of the CLM subgrid hierarchy. Box in upper right shows
hypothetical subgrid distribution for a single grid cell. Note that the Crop land unit
is only used when the model is run with the crop model active. Abbreviations: TBD
= Tall Building District; HD = High Density; MD = Medium Density, G = Glacier, L
= Lake, U = Urban, C = Crop, V = Vegetated, PFT = Plant Functional Type, Irr =
Irrigated, UIrr = Unirrigated. Red arrows indicate allowed land unit transitions. Purple
arrows indicate allowed patch-level transitions. Adopted from Lawrence et al. (2019).

2.2.3 The FUN model

FUN stands for Fixation and Uptake of Nitrogen and calculates the carbon cost
for plants to acquire nitrogen through different pathways. These pathways include
passive uptake through fixating bacteria or retranslocation, and active uptake
through EcM, AM, or directly through roots (Fisher et al., 2010; Brzostek et al.,
2014; Shi et al., 2016). FUN moves nitrogen from the inorganic pools in the soil (i.e.
not including EcM mining for organic nitrogen) into the plant pools. The carbon
cost for this transfer is calculated as a function of plant root biomass and inorganic
nitrogen availability. Since there are no explicit mycorrhizal pools represented in
CLM, the carbon cost is assumed to immediately respire from the plant into the
atmosphere, omitting an important mechanism for transferring organic carbon
from plants into the soil. In Section 3.1.5 I explain how MIMICS+ brings this
carbon into the soil through its mycorrhizal pools, thereby opening up for exploring
processes related to mycorrhizal mining and turnover.

2.2.4 Microbially explicit soil models

To replace traditional, CENTURY-based soil models in ESMs, new microbially
explicit models need to be formulated and tested before incorporation into a fully
coupled system. A recent review by Chandel et al. (2023) showed that of 71
microbial models published since 1975, 58 of them were published between 2007
and 2022. This recent surge of interest in microbial models illustrates the increased
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(a) (b)

Figure 2.5: Illustrations of the CENTURY-based decomposition model used in CLM5.
(a) Decomposition of coarse wood and litter leads to heterotrophic respiration and
formation of SOM. Each decomposing carbon and nitrogen pool is defined at each soil
vertical level, with vertical mixing within each pool. (b) Pool structure, transitions,
respired fractions (numbers at end of arrows), and turnover times (numbers in boxes, in
years) for the CENTURY soil carbon pool structure. Adopted from Koven et al. (2013).

awareness of the critical role of soil dynamics in terrestrial responses to climate
change. There is a consensus among the models that microbes degrade complex
substrates by producing extracellular enzymes that break down the substrate
into compounds that can be used for microbial growth or respiration (Chandel
et al., 2023). However, which processes are rate-determining, which pools are
represented, and which parameters depend on biotic/abiotic factors, vary among
the models. Some key differences in process representation are illustrated by
Sulman et al. (2018) in Fig. 2.6. Choices about the kinetics that determine
decomposition rates (yellow circles), abiotic controls of microbial turnover (blue
squares), and explicit representation of enzymatic pools (brown triangles) can all
fundamentally affect responses to climate change. The microbial models represent
different hypotheses about the governing (nonlinear) processes which can lead to
divergent model projections of for example total soil carbon (Wieder et al., 2017).
When these soil sub-models are incorporated into ESMs, they will likely increase
the spread among model projections even more. However, this is a necessary first
step towards a better understanding of the structural uncertainty linked to the
carbon-climate feedback (Bradford et al., 2016).
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Figure 2.6: Microbially explicit models with different process representations. The
models are arranged in a tree based on major differences in explicit process
representation. Specific processes are indicated with symbols. Adopted from Sulman
et al. (2018)
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Chapter 3

Methods

The main tool in this thesis is the soil biogeochemistry model MIMICS+1, which is
described and applied in paper I, and applied in papers II and III. The model is an
extension of the MIMICS model (Wieder et al., 2015), designed to be incorporated
into CLM, but is used in an offline version in this thesis. This section will first
describe the development process of MIMICS+, before giving an overview of the
CLM simulations performed for this thesis. The CLM simulations have been used
to produce input data for MIMICS+, as well as to provide soil carbon and nitrogen
stocks for comparison in paper I.

3.1 Model development

As MIMICS+ is thoroughly described in paper I, the focus here is the development
process and reasoning for choices made along the way. Tables with detailed
information about equations and parameters are found in Appendix A of paper I.

3.1.1 From MIMICS to MIMICS+

Our point of departure for development of MIMICS+ was the carbon-only, single-
layer version of the MIMICS model, developed by Wieder et al. (2015) (Fig.
3.7). To avoid confusion, this version will be referred to as MIMICS-Wieder
hereafter. The model is microbially explicit, and puts particular emphasis on
mineral-stabilization of SOM which incorporates the emergent view of SOM as
a continuum of progressively decomposing organic compounds (Lehmann and
Kleber, 2015). As discussed in Section 2.2.4, a range of microbially explicit
models with different features and process representations exist. The structure
of MIMICS-Wieder allowed for modifications suitable for our purposes, and was
particularly attractive since the goal was incorporation of the framework into
CLM, which is the land model used in NorESM. I will first describe the pools
and processes that are shared between the two model formulations, before giving
an overview of the expansions and modifications that were done to the modeling
framework to get to MIMICS+.

1Github repository for the model code, written in Fortran90: https://github.com/ecaas/
MIMICSplus
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Figure 3.7: Soil C pools and fluxes represented in MIMICS. Litter inputs (I) are
partitioned into metabolic and structural litter pools (LITm and LITs) based on litter
quality (fmet). Decomposition of litter and available SOM pools (SOMa) are governed by
temperature sensitive Michaelis–Menten kinetics (Vmax and Km), red lines. Microbial
growth efficiency (MGE) determines the partitioning of C fluxes entering microbial
biomass pools vs. heterotrophic respiration. Turnover of the microbial biomass (τ ,
blue) depends on microbial functional type (MICr and MICK), and is partitioned into
available, physically protected, and chemically recalcitrant SOM pools (SOMa, SOMp,
SOMc, respectively). Bracket numbers correspond to the equations for fluxes described
in Appendix A1 in (Wieder et al., 2015). The definition and values of parameters are
included in Table B1 in (Wieder et al., 2015). Adopted from Wieder et al. (2015).

Both models include two litter pools, two decomposing microbial pools and
three SOM pools, of which only one is available for microbial decomposition (Fig.
3.7, Fig. 3.8). Incoming litter is partitioned between a structural and a metabolic
pool based on the calculated metabolic fraction, fmet, which is a function of the
lignin:N ratio of the litter (see Table A5 in paper I). Lignin-rich litter is recalcitrant
(structural) and takes longer to decompose, which is reflected in the lower base
decomposition rates of the structural litter pool (LITs) than the metabolic litter
pool (LITm). A fraction of the incoming litter is transferred directly to the
protected SOM pools to represent mechanisms that convert litter to SOM without
going through the microbial pathway (direct plant-derived SOM).

In MIMICS-Wieder the two microbial pools are named MICr and MICk, and
represent two functional trait groups; opportunistic, fast-growing r-strategists, and
slower-growing k-strategists (Wieder et al., 2014). This divides the microbes into
ecologically meaningful groups, however, these groups are difficult to measure, and
direct comparisons between modeled and observed quantities are therefore difficult.
An alternative way of dividing the microbial groups into two observable categories
is to use the two major decomposer groups; bacteria and fungi (Strickland and
Rousk, 2010). In MIMICS+ we therefore chose to separate the decomposing
microbes into saprotrophic bacteria (SAPb) and saprotrophic fungi (SAPf). As
mentioned in Section 2.1.3, bacteria are generally more opportunistic than fungi,
hence our SAPb and SAPf pools are in many ways comparable to MICr and MICk
in MIMICS-Wieder, respectively.

The MIMICS framework uses either forward (Wieder et al., 2015) or
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Figure 3.8: Schematic of the MIMICS+ structure, showing C and N flows within each
layer of the model. Black arrows indicate carbon fluxes (gCm−3h−1) while red arrows
indicate nitrogen fluxes (gNm−3h−1). The dashed black arrows symbolize C leaving the
system as heterotrophic respiration. LITm, LITs: metabolic and structural litter. SAPb,
SAPf: saprotrophic bacteria and fungi. EcM, AM: ecto- and arbuscular mycorrhizal
fungi. SOMc, SOMa, SOMp: chemically protected, available and physically protected
soil organic matter. NO3, NH4sol, NH4sorp: Inorganic N in the form of NO3, NH4 in
solution and NH4 sorbed to particles, respectively. Adopted from Aas et al. (2024).

23



Chapter 3. Methods

reverse (Wieder et al., 2017) Michaelis Menten Kinetics (MMK) to determine
decomposition rates. Both approaches are nonlinear, as they are dependent on
the amount of both substrates and microbial exoenzymes. While forward MMK
depends linearly on the concentration of enzymes and nonlinearly on the substrate,
reverse MMK assumes that soil carbon decomposition depends nonlinearly on
enzyme concentration and linearly on substrate concentration (Wang et al.,
2016). The reverse and forward MMK kinetics are derived based on exoenzyme
concentration, not microbial biomass concentration. In the MIMICS-based models,
there are no explicit enzyme pools and they therefore rely on the assumption
that exoenzyme production linearly depends on microbial biomass (Chandel et
al., 2023). It has been shown that forward MMK may be more prone to oscillatory
model behavior (Wang et al., 2016). The MIMICS-Wieder version that is currently
being implemented into CLM uses reverse MMK, and we therefore decided to
use the same in MIMICS+. The general form of the decomposition rates, F
(gC · m−2 · h−1), using reverse MMK, and described in terms of MIMICS+ pools
can be written as

FSUB,SAP = CUE · Vmax(T, Θ) · SAP · SUB

Km(T ) + SAP
(3.1)

where SUB is substrate (LITm, LITs or SOMa in Fig. 3.8), SAP is saprotrophic
group (SAPb or SAPf in Fig. 3.8), CUE is the carbon use efficiency, Vmax
is the temperature (T) and moisture (Θ) dependent MMK maximum reaction
velocity, and Km is a temperature dependent MMK half-saturation constant. The
MMK parameters are exponential functions of temperature based on German et
al. (2012), while the moisture dependence of Vmax is represented by a unimodal
function of soil water, also used by Wieder et al. (2017) and Sulman et al. (2014)
(see Table A5 in paper I for parameters and functions).

During the decomposition process a fraction of carbon, determined by the CUE,
goes into the microbial pools (biomass growth), while the rest is respired out of
the system (heterotrophic respiration). In MIMICS+ the CUE varies with nutrient
availability, further described in Section 3.1.4 here, and in Section 2.1.2 of paper
I.

In both model versions, dead microbial biomass is distributed among all three
SOM pools. SOM moves from the physically and chemically protected pools to
the available pool through desorption and depolymerization, respectively.

Based on insights gained during the model development process and from other
studies, some key parameter values were changed to better represent the boreal
ecosystems that are the focus in this thesis. These are described in Sections 3.1.2
and 3.1.3.

3.1.2 The direct plant-derived fraction

In Wieder et al. (2015), 5 % of the structural and metabolic litter input was
directly transferred to SOMc and SOMp, respectively. In a version of the model
including a nitrogen cycle (MIMICS-CN), Kyker-Snowman et al. (2020) increased
the fraction of structural litter going to SOMc to 30 % to produce reasonable values
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of total SOM C:N ratio. When plant litter is converted to SOM by going through
the microbial decomposition process, the C:N ratio of the resulting SOM is much
lower than the C:N ratio of the original plant litter due to the strict stoichiometrical
constraint on the saprotrophs. However, if plant litter is converted to SOM directly
(direct-sorption pathway; Sokol et al. (2019)) the C:N ratio of the resulting SOM
will still be high. How much of SOM is going through the direct plant-derived
pathway versus the microbial pathway is uncertain, but recent evidence indicate
that forest soils and podzols have a high fraction of direct plant-derived SOM
(Angst et al., 2021; Whalen et al., 2022). These soils are common in boreal areas,
and total SOM C:N ratio can be high compared to global values, as illustrated
by the soil profile data from Strand et al. (2016) which was used in Paper I.
We therefore decided to increase the direct plant-derived fraction to 50 % for both
structural and metabolic litter, which allows for higher values, and a broader range
of total soil C:N in the model (Paper I).

3.1.3 Desorption parameter

In the MIMICS framework, SOM moves from the protected pools to the available
pool but not the other way around. The rates at which SOM is made available for
microbial decomposition (and thereby removal of carbon by respiration) therefore
largely controls the soil carbon storage capacity. In MIMICS, the desorption rate,
which moves carbon and nitrogen from SOMp to SOMa, is a function of clay
content. Compared to MIMICS-CN (Kyker-Snowman et al., 2020) we doubled the
desorption coefficient, but this is still one order of magnitude lower than the value
that was used in the carbon-only version of MIMICS (Wieder et al., 2015). In the
above-mentioned studies and in this work, this parameter has been adjusted to
match observed data.

3.1.4 Addition of a nitrogen cycle

As described in Section 2.1.4, boreal soils are often nutrient-poor, and competition
for nutrients among microbes, and between plants and microbes is expected to
impact soil dynamics. To capture interactions among the different microbial
groups, we decided to expand the model with a nitrogen cycle. This was done by
adding parallel nitrogen pools to the existing carbon pools, as well as adding three
inorganic nitrogen pools; NO3 (dissolved), NH4 (dissolved) and NH4 (sorbed).
The C:N ratio of the litter and SOM pools are determined by their input and
are therefore variable, while the microbial pools have constant stoichiometrical
demands causing them to reduce their CUE if there is a shortage of nitrogen in
the system. Adding nitrogen pools parallel to carbon pools is common also in other
models, like CLM and the MIMICS-CN model established by Kyker-Snowman et
al. (2020).

A novelty in MIMICS+ is the representation of the inorganic N pools. NH+
4

ions can be adsorbed or absorbed by soil particles (often clay particles), which
can make them less available for uptake (by microbes or plant roots) than NH4
or NO3 available in the soil solution (Nieder et al., 2011). While in this "sorbed"
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state, the nitrogen is also protected from leaching and runoff processes, and can
thus work as a long term supply that slowly releases nutrients into a soluble, more
accessible form.

For the conversion of ammonium between sorbed and dissolved pools we
developed an algorithm based on work by Sieczka and Koda (2016) which uses
a Langmuir isotherm to determine the equilibrium fraction between the NH4sol
and NH4sorp. The equilibrium fraction is calculated at every timestep, and NH4 is
moved to or from the "sorbed" pool depending on the equilibrium status. Detailed
equations for this mechanism is found in Section 2.1.3 of paper I. Sieczka and
Koda (2016) studied agricultural soils, and the parameter values derived from there
might not be the best fit for natural soils. However, the current implementation
of the process in MIMICS+ serves as a starting point that can be further refined
in the future.

Nitrification of NH4sol to NO3 is modeled based on the same algorithm that is
used in CLM which again is based on work by Parton et al. (1996), Parton et al.
(2001), and Del Grosso et al. (2000).

The input of nitrogen to the model comes from plant litter (added to the litter
pools) and nitrogen deposition (added to NH4sol), while it is lost through leaching
of NO3 and through the mycorrhizal exchange.

3.1.5 Addition of mycorrhizal fungi

As the objective was to incorporate processes that are important in boreal
ecosystems, including mycorrhizal fungi was a natural choice. As described in
Section 2.1.3, the main types are AM and EcM, which are also most commonly
represented in models. Another type, that associates with many shrub-, and dwarf
shrub species is ericoid mycorrhiza. In early model formulations of MIMICS+
we also included an ericoid mycorrhizal pool, as it is relevant for vegetation
changes in boreal regions (Vowles and Björk, 2019). However, as there are limited
observations to inform model parameterizations, and the complexity of the model
already was quite high, we decided to leave it out for the MIMICS+ version
presented in this thesis. As more observations become available, the code allows
for extending the model with an ericoid pool in the future.

Each PFT from CLM associates with EcM, AM or a combination. The
plant cost function for uptake of nitrogen through the mycorrhizal pathway
in FUN (Section 2.2.3) is specific to each association. Within the CORPSE
model framework, Sulman et al. (2019) have developed a method for calculating
plant allocation of carbon to symbiotic associations dynamically via a Return Of
Investment function (ROI). To be able to capture shifts in plant carbon allocation
if above- and/or belowground species shift, MIMICS+ uses the ROI method from
Sulman et al. (2019) to determine how much of the allocated carbon from CLM
(see Section 3.2) is transferred to EcM versus AM, independent of the type of PFT
(see Eq. (8) and (9) in paper I). When MIMICS+ is coupled to vegetation this
structure allows for experiments on vegetation shifts promoted by belowground
conditions and vice versa.
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Although Sulman et al. (2019) represent EcM mining within their modeling
framework, it is not particularly designed for boreal systems. Therefore, we
turned to Baskaran et al. (2017) for determination of mining rates. Based on the
"mycorrhizal decomposition theory" that EcM contributes to the decomposition
process when mining for organic nitrogen (Lindahl and Tunlid, 2015), they
presented a model where EcM "decomposition" was modeled as a multiplicative
function of EcM biomass and SOM. For MIMICS+ we adapted this theory by
using the multiplicative function to represent carbon fluxes from the protected
SOM pools to SOMa. Based on the C:N ratio in the protected pools, the associated
nitrogen from this calculation is transferred to the EcM pool. To represent the
enzymatic cost of the mining process, a fraction of the carbon allocated to EcM
from plants is directly transferred to the SOMa pool. In addition to the mining,
EcM can also get nitrogen from the available inorganic nitrogen pools, NO3 and
NH4sol. The AM pool is only acquiring nitrogen from the inorganic nitrogen pools,
giving EcM a competitive advantage over AM in the model when the soils are
nutrient poor. Both mycorrhizal pools are assumed to have a constant C:N ratio
of 20, and the surplus of acquired nitrogen is transferred to the plant (out of the
system in this uncoupled model setup). Mortality is modeled as a first order loss
from the mycorrhizal pools, and the dead mycorrhizal biomass is divided between
the three SOM pools.

3.1.6 Addition of vertical layers

To facilitate future incorporation into CLM, MIMICS+ soil layers follow the same
structure, with increasing layer thickness with depth. In a default CLM setup
there are 20 biochemically active layers. However, it is possible to specify depth-
to-bedrock, either with the default dataset (Pelletier et al., 2016), or user-specified
custom values. In this thesis, we specified the depth-to-bedrock to the Pelletier
et al. (2016) dataset (except for the VCG simulations in paper II, in which we set
depth-to-bedrock as shallow as possible, which is 40 cm). Therefore, the number
of MIMICS+ layers are determined by the number of active layers in the CLM
simulations. In MIMICS+, the fluxes between the pools in the same layer are
calculated first, then the vertical transport is determined using a diffusion equation
from Soetaert and Herman (2009). The diffusion transports carbon and nitrogen
towards layers with lower concentrations within a pool. This means that the model
structure does not capture fungal growth towards nutrient-rich areas, or horizontal
growth.

3.1.7 Parameter choices and calibration

MIMICS+ is an expanded version of MIMICS-Wieder, but a formal re-calibration
has not been done. With a few exceptions, most parameter values were kept the
same as they were in their original versions (Wieder et al., 2015; Kyker-Snowman et
al., 2020; Baskaran et al., 2017; Sulman et al., 2019; Sieczka and Koda, 2016). The
exceptions include the direct plant-derived fraction (Section 3.1.2), the desorption
parameter value (Section 3.1.3), an increase of the mycorrhizal mining rate value
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(KMO in Table A5, paper I) compared to Baskaran et al., 2017, and an increase in
Vmax for saprotrophic fungi decomposing structural litter (compared to the value
for k-strategist decomposition of structural litter in MIMICS, Wieder et al., 2015).
The model setup and parameter choices produced carbon stocks and C:N ratio
values comparable to measured values from soil profiles from Norwegian forests
(Strand et al., 2016), as well as reasonable values for microbial percentage (1–3 %
Frey, 2019), see paper I. Based on this, we deemed the model suitable to represent
boreal conditions. However, we cannot rule out that some model prediction error
is caused by poorly fitted parameter values within the new model framework.

3.1.8 Limitations

Like all models, MIMICS+ has limitations and shortcomings. By extending the
MIMICS-Wieder framework with additional processes, we also introduced many
new parameters, some of which are poorly constrained by observations. The
increased complexity can make it challenging to interpret model results, and
whether we get the right answer for the right reason. The lack of a plant pool
has limited our opportunity to investigate plant-microbe interactions. However,
additional pools would further increase the model complexity. As the intention of
MIMICS+ is to be coupled to CLM (which includes vegetation), we decided to
focus on the soil dynamics and microbe-microbe interactions in this work. Further
limitations of the model are discussed in Chapter 5.

3.2 Input data from CLM

As the MIMICS+ version is offline, i.e. not coupled to an LSM, it needs input of
litter, carbon allocated to mycorrhiza, and nitrogen deposition. Since some of the
fluxes are dependent on temperature, moisture, and clay content, the model also
needs this environmental information as input data. During the work with this
thesis I have used CLM5 in single-site mode to produce the required input data
for MIMICS+. A full list of all the CLM variables used as input is found in Table
A6 in the Appendix of paper I. I have also used the soil carbon content from CLM
simulations (which are calculated using the CENTURY approach) for comparisons
in paper I. I will here briefly explain the setup and the atmospheric forcing used
in the CLM simulations.

For the single-site simulations in this work, we have set the land unit to be
100 % vegetated. Except for the simulations of the VCG sites in paper II, the
composition of PFTs is determined by the default present-day dataset used in
CLM. For the VCG sites, we also ran simulations where the vegetation cover was
set to 100 % C3 grass (see Table D3 in paper II).

The above-ground composition of PFTs share the same soil column (see Fig.
2.4). Each of the 14 natural PFTs in CLM has a prescribed association to either
EcM or AM2 (Shi et al., 2016). The plant root profile is determined by the

2except for the PFT "broadleaf deciduous temperate tree", which associates 50/50 with the
two mycorrhizal types

28



3.2. Input data from CLM

PFTs, so the PFT distribution therefore determines the carbon cost of nitrogen
acquisition through FUN (which is a function of root biomass). A bug related
to the calculation of this cost was discovered during the work with paper III,
this is described in Section 3.2.2. The total cost of active uptake of nitrogen by
plants calculated by FUN (which in CLM is lost to respiration) is transferred to
the mycorrhizal pools in MIMICS+. The partitioning between EcM and AM is
determined by the ROI function in MIMICS+, so the division between the two
pools in MIMICS+ is independent of the prescribed associations in CLM (although
the CLM associations affect the amount of carbon that is directed to mycorrhizal
uptake).

3.2.1 CLM atmospheric forcing

When CLM is run as a stand-alone model, it needs prescribed atmospheric forcing
(air temperature, precipitation, wind, humidity, surface pressure, and downwelling
short- and longwave radiation). For papers I and III we used the default
atmospheric forcing dataset for CLM, the Global Soil Wetness Project 3 version 1
(GSWP3v1, https://hydro.iis.u-tokyo.ac.jp/GSWP3), which has a spatial resolution
of 0.5◦ x 0.5◦ and a temporal resolution of three hours. The coarse resolution
of this dataset inevitably contributes to discrepancies between observations and
model results. The GSWP3v1 dataset only runs through the year 2014. As the
VCG experiments in paper II were performed in 2016/2017 we used the alternative
forcing data from COSMO-REA6 which has a spatial resolution of 6 km (Bollmeyer
et al., 2015). The higher spatial resolution should make this dataset more suitable
for modeling site simulations. However, it has been shown that CLM forced with
either GSWP3v1 or COSMO-REA6 forcing can give inaccurate representations of
snow depth at high latitudes (Lambert, 2022).

3.2.2 Mycorrhizal carbon allocation issue

During the work with paper III, I discovered an issue related to the cost functions
that determine the amount of carbon the plant uses for uptake of nitrogen through
mycorrhiza in CLM (determined by the FUN model). Due to a mix-up of names
in the parameter file of CLM, too much carbon was allocated to the pathway
"direct root uptake" compared to mycorrhizal uptake. I addressed this issue on
the CLM Github page3, which is used to maintain the model. The collaborative
efforts that followed proved to be a great example of how the community approach
can benefit model development. The issue turned out to have a relatively small
impact on CLM results, as all of this carbon is directly respired to the atmosphere
in CLM. However, for MIMICS+ this had large consequences as the modeled
mycorrhizal biomass became very low due to the low input rates of carbon. CLM
test simulations with the corrected setup indicated a slight increase in total cost
of active nitrogen uptake, and that the majority of the cost was allocated to
mycorrhizal uptake. For all three papers it was decided to run the MIMICS+
simulations again using the total amount of carbon allocated to active uptake (i.e.

3https://github.com/ESCOMP/CTSM/issues/2120
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mycorrhizal uptake and direct root-uptake) from the original CLM simulations as
input to the mycorrhizal pool. This assumes that the allocation to direct root-
uptake is a small fraction of the total carbon allocated to active uptake in CLM.
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Chapter 4

Presentation of findings

4.1 Paper I: Modeling boreal forest soil dynamics
with the microbially explicit soil model MIMICS+
(v1.0)

Objectives

• Present and evaluate MIMICS+, a microbially explicit soil biogeochemical
model which is capable of representing processes relevant to boreal
ecosystems but is also general enough to be incorporated into an ESM.

• Evaluate model performance and model structure by comparing simulated
vertical soil carbon content along a climatic gradient with observations and
simulated soil carbon from the microbially implicit model CLM5.

• Investigate below-ground responses to nutrient changes by performing a
nitrogen enrichment experiment using MIMICS+.

Summary

This model description paper introduces MIMICS+ and describes how the
MIMICS-Wieder framework (Wieder et al., 2015) have been expanded with
mycorrhizal pools, a nitrogen cycle, and vertical layers. It provides detailed
descriptions of the structure and parameter choices of the model. To evaluate
MIMICS+, soil carbon and nitrogen content are compared to observed soil profiles
from Norwegian forests (Strand et al., 2016) and carbon and nitrogen content
from CLM simulations. The paper also presents a deeper analysis of the results
from MIMICS+, including how carbon is distributed between the different pools,
and correlations between various variables. An idealized nitrogen enrichment
experiment is also presented.
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Main findings

• MIMICS+ performed better or on par with the state-of-the art land surface
model CLM5 when compared to 50 podzolic forested sites in Norway.

• Site-to-site correlation with the observations gave poor results for both
models, which illustrates the challenge of modeling processes that happen
on a subgrid scale, and are thus not captured by the model. Inaccuracies
in the coarse-resolution atmospheric forcing are likely also a contributing
factor.

• SOM C:N ratios modeled with MIMICS+ matched observations significantly
better than CLM5. This is largely explained by a high fraction of direct
plant-derived input to SOM.

• The percentage of microbes in the soil modeled by MIMICS+ agreed with
literature values. Saprotrophic fungi (SAPf) was the largest microbial pool
in the model, giving a high fungal:bacterial ratio.

• Both models gave higher values of total soil carbon for the warmer half
of the sites compared to the colder half of the sites, in line with the
observations. Both models predicted more carbon at sites with lower mean
annual precipitation than sites with higher mean annual precipitation, while
the observations indicate the opposite.

• The results indicated that plant productivity drives total soil carbon in these
Norwegian forest soils, as there was a strong positive correlation between
litter input and total soil carbon.

• The nitrogen enrichment experiment showed relatively large responses in
belowground dynamics, but a small effect on overall carbon storage and
respiration.

Main conclusion

MIMICS+, with a framework specifically designed to represent high-latitudes, was
presented to be a useful contribution to the existing family of microbially explicit
models. The analysis indicated that the direct plant-derived fraction of SOM is an
important parameter to reproduce observed C:N ratios at the sites. MIMICS+ can
be used to further investigate microbe-microbe relationships and, when coupled to
a vegetation model, also plant-microbe interactions.

Author contribution

I was responsible for the MIMICS+ model development with help from co-authors
and other colleagues. I wrote the MIMICS+ model code and ran the CLM
simulations used in the study. I performed the analyses and interpreted the results
in collaboration with the co-authors. I also wrote the original paper draft and
finalized the manuscript with contributions from the co-authors.
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decomposition at high latitudes

4.2 Paper II: Implications of climate and litter quality
for simulations of litterbag decomposition at
high latitudes

Objectives

In this paper we investigated three research questions formulated as hypotheses
related to microbial decomposition:

• Is the model able to distinguish observed effects of climate and litter quality
on mass loss from litterbags? (Hypothesis 1: The model adequately captures
observed patterns in mass loss in terms of climate and litter quality.)

• Does MIMICS+ reproduce observed dominating controls on decomposition
on short timescales, where litter quality is expected to dominate, and
longer timescales, where climate is expected to dominate? (Hypothesis
2: MIMICS+ includes processes thought to be governing on short (12
months) and longer (6 years) timescales, and should capture the evolution
of dominating controls on decomposition.)

• Will using improved input data for microclimate improve mass loss
predictions with MIMICS+ compared to using default CLM-produced
microclimate? (Hypothesis 3: An improved microclimate from observations
or site-specific land model configurations improves model predictions of
litterbag mass loss.)

Summary

Litterbag decomposition studies are often used to inform or validate decomposition
models. The spatial and temporal scales of these experiments do not match the
spatial and temporal scales of the models they are used in, and we therefore
wanted to investigate consequences using MIMICS+. This was done by replicating
litterbag experiments performed in Canada (CIDET; Trofymow and CIDET
Working Group, 1998) and Southern Norway (VCG; Vandvik et al., 2022). Figure
A1 in paper II shows a map of the sites. The CIDET experiments investigate
decomposition of a range of different plant litter types at sites spread across
Canada on a relatively long temporal scale (for this paper we used data from
three and six years after litterbag burial). The VCG experiment was a one-year
study where native litter was buried at sites in Southern Norway with differences
in mean annual temperature and precipitation. By testing hypotheses 1 and 2
above we explored if the model could reproduce observed controls on litterbag
mass loss. For the VCG sites, CLM simulations with a different configuration,
as well as site-specific surface data and measurements of soil microclimate were
available. This data provided an opportunity to explore how differently derived
input data affected model results (hypothesis 3).
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Main findings

• MIMICS+ reproduced mass loss within the observed variation for 12 of the
18 observational points, and broadly captured mass loss ranking among litter
types at the CIDET sites.

• Considering the influence of litter quality on mass loss: The metabolic
fraction of the litter (i.e. how recalcitrant it is) had a larger and more
immediate effect on modeled mass loss than the C:N ratio. Comparison
with the observational data indicates that the calculation of the metabolic
fraction used in the model might put too much emphasis on the nitrogen
content compared to the lignin content of the litter.

• The model performs better on longer timescales (> 1 year) where climatic
controls are assumed to dominate mass loss rates, and showed weaker than
expected (based on literature) control of litter quality on short time scales
(< 1 year). This might be related to inadequate representation of leaching
from litter in the model.

• The model gave more variable results for the VCG sites than for the CIDET
sites. Using measured and site-specific model-derived microclimatic input
data did not improve modeled predictions of mass loss at the VCG sites.
Challenges related to local features at the sites and the effect of snow on
soil temperature and moisture conditions are believed to contribute to the
discrepancy.

Main conclusion

Broad-scale controls of mass loss were captured for the simulations of the CIDET
sites, in line with hypothesis 1. Hypothesis 2 was partly proven, as the climatic
control on mass loss was identified on a longer time scale, but the control of
litter quality on short time scales was smaller than expected. Using observed
or site-specific input data did not improve model predictions compared to the
default CLM microclimate, and hypothesis 3 was thus not proven but opened
for investigations into possible causes. More information about the microbial
community, like biomass amount and stoichiometry would provide insights into
whether the modeled microbial community is actually representative of the real
decomposers. A measure of how much of the mass loss can be attributed to
leaching can help interpreting the observations. As frozen soil conditions had a
large impact on modeled mass loss, the representation of snow in LSMs will impact
the decomposition process belowground.

Author contribution

I designed the study, performed the MIMICS+ simulations and ran all CLM
simulations except the "SP" data which was ran by Hui Tang. I wrote the
manuscript with contributions from the co-authors.
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model study

4.3 Paper III: Ectomycorrhizal turnover times affect
soil dynamics in boreal ecosystems; A model
study

Objectives

The objective of the study was to test model sensitivity to EcM turnover time
and necromass composition, and examine the effects on the rest of the soil system,
specifically microbial interactions and carbon storage.

Summary

The results from paper I showed that saprotrophic fungi were the largest
contributor to the modeled microbial biomass. Observational studies from Swedish
forests suggest that the amount of EcM could be comparable to, or even higher
than saprotrophic fungi in these systems. The amount of EcM biomass is partly
determined by the turnover time (the lifetime of living biomass in the EcM pool),
which is a poorly constrained parameter in the model. We defined a set of
plausible turnover times based on a combination of estimates from field data and
CLM simulations. These turned out to be longer than the values often used
in mechanistic models, giving higher values of EcM biomass. The calculated
turnover rates were used to run a series of simulations with MIMICS+ at the
same Norwegian podzolic sites as in paper I (Strand et al., 2016), to investigate
the consequences of the increased EcM biomass for the rest of the soil dynamics.
As recent observational evidence has shown that the chemical recalcitrance of
EcM necromass can affect soil carbon sequestration more than previously thought,
we also examined the consequences of adding EcM necromass to protected or
unprotected SOM pools.

Main findings

• The ratio between EcM and saprotrophic fungi was more in line with
observations in the simulations with longer turnover times. However, the
total soil carbon decreased, moving model estimates further away from the
observed values of total soil carbon at the Norwegian sites.

• We found a linear relationship between modeled living EcM biomass and
turnover time, where a one-year increase in turnover time led to a 27 gC/m2
(mean) increase in EcM biomass.

• Higher EcM biomass resulted in more competitive interactions with the
saprotrophic pools, by removing more nitrogen from the soil system through
the EcM-to-plant pathway. This led to reduced saprotrophic CUE, causing
more respiration and significantly lower total soil carbon.
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• Adding mycorrhizal necromass to the SOM pool available for saprotrophic
decomposition (SOMa) decreased the carbon content in the SOMa pool,
as well as the total carbon storage. The relatively low C:N ratio of the
mycorrhizal necromass led to a priming effect, where the saporotrophs could
build more biomass due to higher CUE, thereby decomposing more substrate.

• Adding mycorrhizal necromass to protected pools increased the carbon
content in these pools, leading to a small increase in total carbon storage.

Main conclusion

The lower total soil carbon due to increased fungal competition contrasts
the Gadgil-effect theory, which assumes increased soil carbon when there is
competition between saprotrophic fungi and EcM, due to decreased saprotrophic
decomposition rates. The decrease in total soil carbon brings modeled values
away from the mean of the observations from Strand et al. (2016). When EcM
necromass was made easily available to the saprotrophic decomposers, total soil
carbon also decreased, but now due to increased decomposition rates. This led to
our suggestion that the model underestimation of total soil carbon at the sites is
partly caused by a too rapid cycling of recalcitrant mycorrhizal biomass and/or a
too effective release of labile carbon during the mining process.

Author contribution

I designed the study, performed the analysis and wrote the manuscript with
contributions from the co-authors.
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Chapter 5

Discussion, outlook and concluding
remarks

The main objective of this work was to establish a microbially explicit soil
biogeochemistry model which is capable of representing processes relevant to
boreal ecosystems but still is simple and general enough to be used in an ESM.
The resulting model is MIMICS+, which adds mycorrhizal pools, a nitrogen
cycle, and vertical layers to the MIMICS-Wieder framework. Through the model
development process and application of the model, the work presented in this thesis
has contributed to a deeper understanding about the role of microbial activity for
soil carbon dynamics and how microbes potentially can influence carbon-climate
feedbacks. The work has also highlighted several challenges related to representing
real-world, complex soil dynamics in a modeling framework.

5.1 Discussion

5.1.1 MIMICS+ as a biogeochemistry model

Objective: Establish a microbially explicit soil biogeochemical model, which is ca-
pable of representing processes relevant to boreal ecosystems but also simple and
general enough to be incorporated into an ESM.

The comparisons between MIMICS+, CLM, and observations in paper I
showed that MIMICS+ performs better than, or on par with a traditional soil
decomposition model at the Norwegian forested sites. The percentage of carbon in
microbes compared to total soil carbon estimated by the model is comparable to
literature values (1–3 %), and the experiments in paper II showed that the model
captures broad scale controls and rates of litter mass loss during decomposition
at high latitudes. Together, these results show that MIMICS+ is a microbially
explicit soil model that can be trusted to produce reasonable results also when it
is coupled to a larger model.

However, the model does not capture all the small-scale features and variations
that comes with the highly heterogeneous nature of real soils. This is evident
from the poor one-to-one match of total soil carbon between the modeled and
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observed soil profiles in paper I (Fig. 2d–f), and the variable results of the litterbag
decomposition experiments for the VCG sites in paper II (Fig. 4). The one-to-one
match for the CLM results in paper I was as poor, or worse than the MIMICS+
results, illustrating that this is an issue that also affects the LSMs (Blyth et al.,
2021). When developing process models that are intended to represent larger areas,
they cannot be expected to capture sub-grid variations that inevitably affect real-
world soils. Yet, applying some kind of parameter optimization, like the Monte
Carlo method used by Pierson et al. (2022) would likely improve the correlation
between MIMICS+ and the soil profiles in paper I. However, such methods can be
demanding in terms of time and computational cost and the optimized parameters
will be fitted to a certain set of observations. If MIMICS+ is used offline to model
a smaller region/specific site, optimizing the parameters using high resolution data
from the location can be beneficial. As the main intention for MIMICS+ is to be
coupled to CLM, it will be useful to include the MIMICS+ parameters in future
parameter sensitivity simulations and Perturbed Parameter Ensembles (PPE)
with CLM (Dagon et al., 2020). With these analyses it is possible to quantify
parameter uncertainties and how much it contributes to overall uncertainty in
LSM projections.

We wanted a model that represents processes that are particularly important
at high latitudes. Based on what is known about these systems, we chose to
include mycorrhizal pools and a representation of the nitrogen cycle. Although
the model is tested against observations from high-latitude systems and provided
reasonable results, testing it against observations from other ecosystems with
different nutrient conditions and mycorrhizal patterns would improve confidence
that the model is general enough to be used in global LSM simulations. Given
the close relationship between mycorrhizal fungi and their host plants, it is also
essential to test MIMICS+ in a system that is coupled to vegetation.

Going from a simple process representation to a more complex representation
of the same process inevitably means that more parameters and equations are
introduced. Although going from the six soil carbon pools (three SOM pools and
three litter pools) in the current CENTURY-based CLM representation, to nine
pools in MIMICS+ (four microbial pools, three SOM pools, and two litter pools)
is an increase in complexity, the effect on computational time and cost will not be
substantial.

Many of the parameterizations and pools in MIMICS+ are inherited from
the MIMICS-Wieder setup. Various versions of the MIMICS model have been
developed and applied by other research groups, providing a basis of literature
exploring different aspects of the core modeling framework (e.g. alternative
nitrogen cycle; Kyker-Snowman et al., 2020, vertical resolution; Wang et al., 2021,
parameter optimization; Pierson et al., 2022, model testbed; Wieder et al., 2017).
This facilitates model development, as future work can build on insights from
previous work, like our choice of increasing the direct plant-derived fraction based
on Kyker-Snowman et al. (2022) (Section 3.1.2). However, a pitfall of a rapid
expansion in the use of a model is to carry on using initial parameterizations
out of convenience (or lack of better options) without careful consideration of the
consequences. As an example, we chose to represent the microbial decomposition
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using reverse MMK kinetics based on previous MIMICS work (Wieder et al., 2017),
and a numerical argument of model stability (Wang et al., 2016). This choice
implicates an assumption of plenty available substrate, making the amount of
microbial biomass the rate limiting factor (Chandel et al., 2023). Forward MMK
assumes the opposite. In the real-world both cases can occur, and it might have
been a better choice to use the Equilibrium Chemistry Approximation (ECA)
proposed by Tang and Riley (2013), which can account for limitations in both
directions. Despite limited evidence that favors forward MMK over reverse or
ECA, Chandel et al. (2023) found that 31 out of the 71 microbial models they
examined used the forward MMK formulation. Only 14 and 7 models used reverse
MMK or ECA, respectively. To broaden the range of soil model formulations in
ESMs, the community should make sure all three formulations are represented in
the next CMIP model generation.

5.1.2 Microbe-microbe interactions and nutrient competition

Objective: Gain a better understanding of how the availability of nutrients (nitro-
gen) affects microbial activity and microbe-microbe interactions in nutrient poor
environments (Objective 1a).

The amount of nitrogen added in the enrichment experiment in paper I
corresponds to the amount that is typically added to Scandinavian forests for
fertilization purposes (Högberg et al., 2017). The largest response was seen for
saprotrophic bacteria which was expected, since they are modeled to have the
strictest stoichiometric constraint, and therefore would benefit the most from more
available nitrogen (Fig. 7 in paper I). The response also reflects the general trend of
saprotrophic bacteria being more opportunistic in nature than saprotrophic fungi
(Chapin et al., 2011). The model results also indicated a negative relationship
between inorganic nitrogen and fungal:bacterial ratio, suggesting that we can get
a shift towards microbial communities with a higher fraction of bacteria with
elevated nitrogen deposition.

Although the microbial pools showed large responses to the nitrogen
enrichment, the response in total soil carbon was modest. If MIMICS+ was
coupled to a vegetation model, the nitrogen enrichment experiment would increase
plant productivity. Findings from the decomposition of different litter types in
paper II indicate that the chemical recalcitrance of the litter input is an important
control on decomposition rates. How much, and in which direction the microbial
pools would respond in a coupled model setup would therefore partly depend on
the quality of the litter from the increased productivity.

Another mechanism that is not captured in the offline nitrogen enrichment
experiment are shifts in plant allocation to nutrient acquisition through
mycorrhiza. Observational evidence suggest that plants allocate less carbon to
mycorrhiza when the amount of more readily available nitrogen increases (Högberg
et al., 2010). A decrease in EcM due to a decrease in carbon allocation would lead
to more saprotrophic biomass according to the findings from paper III.

Paper III illustrates how mycorrhizal presence has the potential to both increase
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and decrease saprotrophic biomass, thereby affecting soil carbon storage and
exchange through heterotrophic respiration. In the simulations where mycorrhizal
biomass was high (due to longer turnover time) more nitrogen was lost from the
soils through the mycorrhizal pathway, putting a stronger nitrogen limitation on
the saprotrophic decomposers and reducing their efficiency to utilize the available
carbon (lower CUE). In the simulations where the mycorrhizal necromass (with
a relatively low C:N ratio) was put directly into the SOM pool that is available
for saprotrophic decomposition, the higher quality of the substrate led to more
efficient saprotrophs and more saprotrophic biomass (higher CUE).

Interestingly, the total soil carbon decreased both in the case of lower and
higher saprotrophic biomass. In the first case because the saprotrophs respired
a larger fraction of the decomposed substrate. In the latter case because the
increase in saprotophic biomass led to higher decomposition rates (Eq. 3.1 in
Section 3.1.1), and although the respired fraction was smaller, the total amount of
respired carbon was still high because of the larger absolute amount of decomposed
carbon. The balance between the absolute amount of decomposed carbon and the
fraction which enters the atmosphere as respired CO2 is important to understand
in order to quantify the magnitude and direction of soil responses to anthropogenic
changes in climate, nutrient availability and CO2 concentration.

5.1.3 Controls on decomposition and soil carbon storage

Objectives: Gain a better understanding of how temperature and moisture affect
soil carbon storage and decomposition (Objective 1b). Gain a better understanding
of how the quality (chemical composition) of plant litter can impact microbial
decomposition (Objective 1c).

Climatic controls

Paper I showed that the total soil carbon content was higher for the warmer half
of the sites than for the cooler half, for both models and the observations, while
paper II showed that litter mass loss was faster at warmer sites than at colder
sites (CIDET sites, Fig. 2 in paper II). This apparent contradiction can in part
be explained by how substrates are protected from microbial decomposition by
physicochemical or chemical mechanisms (see Section 2.1.2). For the sites studied
in paper I, there is a positive correlation between mean annual temperature and
litter production. As 50 % of the incoming litter to MIMICS+ omits the microbial
pathway and is transferred directly to the protected pools (Section 3.1.2), more
carbon ends up in the relatively stable protected pools at warmer sites. In contrast
to the analysis in paper I, the decomposition experiments in paper II only look
at the mass loss from the litter pools, isolating the effect of temperature on
decomposition, which showed the expected increase in decomposition rates with
temperature.

Within MIMICS+, the direct plant-derived fraction of litter input to SOM,
and how fast substrate is moved from the protected pools (SOMp and SOMc)
to the pool available for decomposition (SOMa) will largely determine if higher
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temperatures will lead to more or less carbon storage. The size of the direct plant-
derived SOM fraction is debated (Sokol et al., 2019; Angst et al., 2021; Whalen et
al., 2022), and the equations determining the rates at which SOM substrate is made
available for microbial decomposition are uncertain (Pierson et al., 2022; Wieder
et al., 2015). To gain a better understanding of these mechanisms, observational
studies that can inform these rates will be valuable. For example, the turnover of
mineral associated organic matter (MAOM, analogous to SOMp) can be measured
using radiocarbon measurements, as suggested by Pierson et al. (2022).

The model results and observations from Strand et al. (2016) indicate that the
higher plant production and long-term storage of carbon in protected SOM pools
more than offsets the effect of increased decomposition rates at warmer sites. If
we make the assumption that this pattern also is representative for anthropogenic
warming, this indicates that the carbon-climate feedback is negative for these
terrestrial systems. However, this is a speculation based on the limited evidence
presented in this thesis. A proper quantification of the direction and magnitude of
the feedback requires scenario simulations performed within NorESM. Then, the
results should be critically evaluated against other models in a CMIP. For global
applications of such a study, it is important to separate contributions from different
biomes, as increased carbon uptake in one biome can compensate for decreased
uptake in another (Shi et al., 2024).

High-latitude soils regularly experience freezing conditions, which impose a
strong limitation on microbial decomposition. The simulations for the VCG
sites in paper II clearly demonstrated the challenges of representing freezing
limitations. In the model, freezing is a special case of moisture limitation, where
the soil is perceived as dry by the microbes. For the 50 sites from Strand et al.
(2016), MIMICS+ and CLM projected higher soil carbon content for the soils
experiencing lower mean annual precipitation, while the observations showed the
opposite. This again demonstrates the challenges of modeling moisture effects
on decomposition rates. The interactions between soil temperature and moisture
further complicate the matter. The complexity of soil moisture effect on microbial
processes is reflected in the wide range of functions that is used to represent
moisture limitations in various microbial models (Chandel et al., 2023; Sierra et
al., 2015).

Litter quality control

Within MIMICS+, the recalcitrance of incoming litter (i.e. the partitioning of
litter between the metabolic and the structural pool) has an immediate effect on
decomposition rates, while the C:N ratio of incoming litter can gradually affect
the amount and composition of microbial biomass by adjusting the CUE. When
fresh litter is added to soil, a significant fraction of the most labile carbon is
assumed to quickly leach away (especially in wet conditions). This partly explains
why observational studies of litter decomposition often report that litter quality is
the dominating control on mass loss initially, while climatic factors become more
important over time (Trofymow et al., 2002). A lesson learned during the work
with paper II was that both the model setup and the observational setup would
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have benefited from quantifying the amount of carbon lost during initial leaching
of labile compounds.

5.1.4 How forcing affect model results

Objective: Gain a better understanding of how microclimatic forcing can impact
model results (Objective 2).

Model results are not only determined by model structure and parameter
choices, but also by input data. For the litterbag experiments at the VCG sites
(paper II) we therefore experimented with different sources for representing the
microclimate; soil moisture and temperature. In addition, we modified surface
parameters like slope and organic content in the CLM simulations that produced
the input fluxes of carbon and nitrogen. Contrary to our expectations, using soil
temperature and moisture observed on site did not improve the model results. Sub-
grid local features like slopes, the presence of boulders, and stony, shallow soils
make the observations of soil temperature and moisture vulnerable to uncertainties.
This shows that we also need to consider how representative the input data is
when interpreting the model results. The sub-grid heterogeneity is an obvious
reason why models struggle to represent local effects on soil processes. Efforts to
improve sub-grid representation through tiling and more refined vegetation models
in LSMs (Fisher and Koven, 2020; Blyth et al., 2021) will hopefully improve the
representation of modeled surface conditions, which holds important controls of
modeled bigeochemical cycles in the soil.

The effect of coarse resolution forcing is also evident on a larger scale, illustrated
by the climate categorization in paper I. When dividing the sites into two categories
based on either mean annual temperature or moisture, some sites ended up
in different categories when we divided based on model forcing than when we
divided based on observations from meteorological stations. In offline CLM
simulations, the modeled soil temperature and moisture are driven by coarse
resolution atmospheric forcing data. When using non-linear representations of
soil decomposition as in the MIMICS+ model, such inaccuracies in model forcing
could potentially lead to fundamentally different responses to climatic changes,
which is important to be aware of when interpreting the model results.

5.1.5 Bridging the gap

Objective: Contribute to bridging the gap between model requirements and mea-
surements by identifying key parameters and processes. (Objective 3).

An essential step towards incorporating new processes into ESMs is to
investigate the processes using a simpler modeling framework, like MIMICS+.
Besides informing modelers about process behavior and uncertainties, this step
also provides valuable insights into the theories that made the process relevant
for model incorporation in the first place (Kyker-Snowman et al., 2022). By
formalizing ecological processes into a mathematical framework, we enable the
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detection of interactions, knowledge gaps, and new hypotheses about process
functioning. The development and applications of MIMICS+ presented in this
work have contributed to several insights in that regard. Some examples are given
here.

First, the fraction of litter that was transferred directly to SOM was shown
to be an important control on the SOM C:N ratio (paper I). The C:N ratio is
a quantity that is easily accessible, both as model output and through chemical
analysis of soil samples. Model sensitivity experiments where the direct plant-
derived fraction is varied, combined with observed C:N ratios could benefit the
ongoing work of quantifying the plant-derived versus microbially-derived fractions
of SOM (Whalen et al., 2022).

Second, a valuable insight from paper II was that we can extract more
information from litterbag experiments by including an estimate of how much
of the mass loss is due to microbial decomposition, and how much is explained by
other processes, such as leaching.

Third, paper III presents the somewhat unconventional idea that total soil
carbon storage decreases with increased microbial nutrient competition, due to
inefficient saprotrophs. There is little empirical evidence for such behavior,
however, evidence for increased carbon storage is also inconsistent (Fernandez
and Kennedy, 2016). Thus, empirical data that can increase our understanding
of how microbial competition affects CUE will be valuable, from both a modeling
and an ecological perspective.

Lastly, MIMICS+ (and other microbially explicit models) would greatly benefit
from more quantitative data about microbial biomass amounts, composition, and
stoichiometry. Ongoing work in the research project FUNDER1 aims to provide
such information for the Vestland Climate Grid presented in paper II. These data
can shine new light on the results presented in the paper, which can enhance our
understanding of the ecological processes, and inform future model development.

5.2 Outlook and future research

The obvious next step to continue the work from this thesis, is to couple MIMICS+
to CLM. This will provide a direct coupling between the soil pools and the
vegetation above, enabling further investigations into microbe-plant interactions.
The long-term plans for the CLM version that is used in NorESM is to use the
Functionally Assembled Terrestrial Ecosystem Simulator (FATES) as the default
vegetation model. FATES is a more refined vegetation model than what is
currently used in CLM, that can track disturbance history and successional stage
of cohorts of PFTs (Koven et al., 2020). Coupled to MIMICS+, this approach
can give valuable new insights, especially into the role of mycorrhizal associations
during treeline migration.

Combining complex process models is not an easy task. Since MIMICS+ has
been developed as a stand-alone module, the parameter values have not been tested
in a coupled system which might introduce instabilities if the parameters are used

1https://betweenthefjords.w.uib.no/funder/
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"as-is". Especially parameters related to the mycorrhizal associations and direct
nitrogen uptake by plants will need careful consideration and testing in a coupled
system before realistic results can be achieved. Although this is cumbersome
work, the process might expose connections between above- and below-ground
processes in the model that may or may not be representative of the real world.
Interdisciplinary collaboration between ecologists and modelers will therefore be
valuable throughout the coupling process.

After MIMICS+ has been coupled and tested within the CLM framework, the
CLM configuration can be used in fully coupled NorESM runs and participate in
future model intercomparisons. If the participating ESMs include a more diverse
representation of soil sub-models, the confidence in carbon feedback projections
can be increased, although it is likely that the spread among modeled projections
will increase due to larger structural differences (Bradford et al., 2016).

5.3 Concluding remarks

A better understanding of how below-ground processes influence carbon-climate
feedbacks is necessary for projections of the future climate. The development
and application of soil biogeochemistry models that explicitly represent microbial
activity is an essential step toward this goal. This thesis has presented MIMICS+
as a valuable tool, both as a future soil sub-model for NorESM, and as a stand-
alone model that provides insight into the interplay between microbes and their
environment. The thesis further highlights the importance of knowledge exchange
between modeling communities and empiricists. As process models always will
be a simplified representation of reality, understanding the consequences of these
simplifications is necessary for interpreting the model results.
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Abstract. Understanding carbon exchange processes be-
tween land reservoirs and the atmosphere is essential for
predicting carbon–climate feedbacks. Still, considerable un-
certainty remains in the representation of the terrestrial car-
bon cycle in Earth system models. An emerging strategy to
constrain these uncertainties is to include the role of dif-
ferent microbial groups explicitly. Following this approach,
we extend the framework of the MIcrobial-MIneral Carbon
Stabilization (MIMICS) model with additional mycorrhizal
groups and a nitrogen cycle that includes a novel represen-
tation of inorganic nitrogen sorption to particles via a Lang-
muir isotherm. MIMICS+ v1.0 is designed to capture and
quantify relationships between soil microorganisms and their
environment, with a particular emphasis on boreal ecosys-
tems. We evaluated MIMICS+ against podzolic soil profiles
in Norwegian forests as well as the conventional Community
Land Model (CLM). MIMICS+ matched observed carbon
stocks better than CLM and gave a broader range of C : N ra-
tios, more in line with observations. This is mainly explained
by a higher directly plant-derived fraction into the soil or-
ganic matter (SOM) pools. The model produces microbial
biomass estimates in line with numbers reported in the liter-
ature. MIMICS+ also showed better representation of climate
gradients than CLM, especially in terms of temperature. To
investigate responses to changes in nutrient availability, we
performed an N enrichment experiment and found that nitro-
gen sorbed to particles through the sorption algorithm served
as a long-term storage of nutrients for the microbes. Further-
more, although the microbial groups responded considerably
to the nitrogen enrichment, we only saw minor responses for
carbon storage and respiration. Together, our results present

MIMICS+ as an attractive tool for further investigations of
interactions between microbial functioning and their (chang-
ing) environment.

1 Introduction

Among the carbon (C) stores in the terrestrial biosphere,
soils are the largest, containing ca. 1700 Gt C, while vegeta-
tion accounts for ca. 450 Gt C globally (Friedlingstein et al.,
2022). The active exchange of C between terrestrial pools
and the atmosphere is affected by elevated CO2 concentra-
tions and changes in N deposition, but quantifying the re-
sponses has proven to be a central challenge in climate sci-
ence. Arora et al. (2020) highlight the uncertainty in ter-
restrial carbon–concentration and carbon–climate feedbacks
from the last model intercomparison project, CMIP6. The un-
certainty in carbon–cycle feedbacks is up to 1 order of mag-
nitude larger for land than for ocean, illustrating the need to
improve model representation of terrestrial processes. To do
this, we need to represent complex C and nutrient cycle pro-
cesses in a modeling framework, a task that requires careful
consideration of how to translate real-world processes into
an appropriate model form. Fisher and Koven (2020) sug-
gest an approach based on modular complexity. Dividing
a full-complexity land model into smaller modules allows
for investigation of alternatives for structure and parameter
choices, which helps in making good modeling choices and
thereby constrain sources of uncertainty.

Large variations in responses between different biomes in-
troduce an extra challenge to C cycle modeling. The impact
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of environmental changes on boreal systems is of particular
interest for several reasons. For example, studies show that
the kinetics of soil microbes accustomed to cooler climates
are more temperature sensitive than microbes in warmer cli-
mates (German et al., 2012). Koven et al. (2017) also showed
that soil carbon turnover times in cold areas are more sensi-
tive to climatological temperature than in warm areas. Many
boreal areas also experience treeline migration caused by an
expansion of the temperature-limited area where tree species
can grow (Hansson et al., 2021). Often this leads to a shift in
mycorrhizal associations, for example from arbuscular myc-
orrhiza (AM) to ectomycorrhiza (EcM), which again can lead
to changes in soil carbon dynamics and belowground carbon
storage (Taylor et al., 2016; Tonjer et al., 2021). EcM has
been found to alter decomposition, either negatively through
increased nutrient competition with saprotrophs (Gadgil and
Gadgil, 1971, 1975) or positively through priming effects
(Brzostek et al., 2015; Phillips et al., 2012) based on en-
vironmental context (Fernandez and Kennedy, 2016). Re-
cent findings also suggest that differences in decomposability
of necromass from different mycorrhizal groups can impact
soil C storage more than previously thought (Huang et al.,
2022a, b). In Norwegian forests, vegetation is typically dom-
inated by evergreen, coniferous trees, mainly associated with
EcM. The dominating soil type in these forests is podzol
(Strand et al., 2016). Podzols are typically nutrient poor, and
competition for nutrients is expected to be important for the
carbon dynamics in these systems. Despite the importance
of boreal systems, many soil model structure and parame-
ter choices are based on temperate or tropical observations.
This bias may skew model results and make the modeled re-
sponses to climate change in boreal environments more un-
certain.

Nitrogen (N) is one of the most important nutrients in an
ecosystem, and the cycling of nitrogen between aboveground
and belowground reservoirs can greatly affect carbon dynam-
ics. In addition to regulating forest productivity, N availabil-
ity regulates microbial carbon use efficiency (CUE), as mi-
crobes respire excess C to meet their stoichiometrical de-
mand (Mooshammer et al., 2014b). This direct relationship
between soil N and the C exchange between the atmosphere
and soils emphasizes the importance of including microbial
C–N relationships in C cycle models. One factor determining
nitrogen availability in an ecosystem is inorganic N deposi-
tion from the atmosphere and agricultural fertilization. This
inorganic N is subject to physical and chemical processes
that affect how readily available the N is to microbes and
plants. One such process is cation exchange, which controls
storage and release of ammonium (NH4

+) from negatively
charged clay particles and organic molecules (Bonan, 2015)
and therefore impacts inorganic N availability for microbes
and plants. This is a process that might be extra important
in nutrient-poor boreal forest systems. There are studies that
have examined this effect in agricultural soils (Sieczka and
Koda, 2016), but few have looked at natural soils.

Traditionally, decomposition processes in models have
been represented by first-order kinetics for litter, as well as
active, slow, and passive pools of soil organic matter (SOM)
(Parton et al., 1988). This approach limits the ability to ex-
amine the mechanisms and possible responses of the soil sys-
tem during climate change (Todd-Brown et al., 2012). Newer
work has introduced models that in different ways represent
microbial activity explicitly (e.g., Wieder et al., 2015; Sul-
man et al., 2019; Fatichi et al., 2019; Yu et al., 2020; Huang
et al., 2018; Wang et al., 2013). These models increase the
possibility to capture carbon climate feedbacks of the future
(Tang and Riley, 2014; Hararuk et al., 2015). Wieder et al.
(2015) illustrated that by representing the functional traits of
microbes in the MIMICS model, one can raise important hy-
potheses about how microbes can determine responses to, for
example, N enrichment. Kyker-Snowman et al. (2020) fur-
ther showed that adding an N cycle to the MIMICS model
(MIMICS-CN) produced results in line with measurements
from North American sites and comparable models. Wang
et al. (2021) presented a vertically resolved C-only version
of MIMICS and showed that microbial activity and root car-
bon inputs were more important than the soil carbon diffu-
sion when simulating soil carbon concentration profiles.

Baskaran et al. (2017) introduced a model that empha-
sized the influence of EcM on decomposition, however with-
out the ability to capture nutrient competition with sapro-
trophic microbes. We included EcM with parameterizations
from Baskaran et al. (2017) in a modeling framework based
on the MIMICS model (Wieder et al., 2015) that also in-
cludes explicit saprotrophic pools. To capture possible shifts
in mycorrhizal associations, we also included an arbuscular
mycorrhizal (AM) pool using methods presented by Sulman
et al. (2019). In contrast to the always-available inorganic N
pools in Sulman et al. (2019), we introduced an algorithm for
representing sorption of ammonium to soil particles based
on the Langmuir isotherm (Sieczka and Koda, 2016), which
may be an important but underrepresented process determin-
ing the availability of inorganic N to soil microbes in boreal
forests. We assume that by including processes and parame-
ters thought to be particularly relevant for climate responses
in colder areas, we can obtain a better understanding of the
C dynamics and thereby reduce uncertainty connected to soil
processes. A future goal is to couple the soil model to a land
model with interactive vegetation, and although our present
emphasis is on boreal systems, the incorporated processes are
general and representative on a larger scale.

We introduce a vertically resolved, microbially explicit
soil decomposition model, MIMICS+, which represents C
and N flows between litter, microbial, and SOM pools. In
this study the model is offline and forced with data produced
by the Community Land Model v5.1 (CLM; Lawrence et al.,
2019). C and N stock estimates from the CLM simulations
represent a microbially implicit approach based on the tra-
ditional CENTURY model (Parton et al., 1988). Therefore,
we compare the CLM and MIMICS+ results to investigate
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the implications of including the processes and mechanisms
mentioned above. To evaluate the model, we use a collec-
tion of soil profile data from forested, podzolic sites in Nor-
way, covering a range of conditions representative of boreal
systems (Strand et al., 2016). Our experimental setup is as
follows: for a selection of 50 sites in Norway, we ran simula-
tions with the CLM model to produce (a) input data needed
to run MIMICS+ and (b) estimates of C and N stocks. We
then ran MIMICS+ with the produced forcing data. The aims
of the study are (1) to formulate a standalone, microbially ex-
plicit model capable of representing soil processes in boreal
systems; (2) to evaluate model performance and model struc-
ture by comparing simulated vertical soil C content along a
climatic gradient with observations and simulated soil car-
bon from the microbially implicit model CLM; and (3) to
apply the model to perform an N enrichment experiment to
investigate belowground responses to nutrient changes.

2 Model and methods

2.1 Model description

MIMICS+ is based on the MIMICS framework where mi-
crobial groups, litter, and soil organic matter are represented
as separate pools (Wieder et al., 2015). In its current state,
MIMICS+ is not coupled to a comprehensive land model and
therefore needs prescribed C and N input and soil tempera-
ture and moisture, which it is set up to read from CLM his-
tory files. Mass balance equations, dP/dt = sources− sinks,
determine the change at each time step for each pool, P .
The model structure with pools and fluxes is illustrated in
Fig. 1, and a detailed overview of mass balance and rate
equations are provided in the Appendix; Tables A1 and A2
contain mass balance equations for C and N pools, respec-
tively, while Tables A3 and A4 list C and N rate equations.
Throughout the model description, fluxes referred to as CX
or NX, where X is a number, can be found in the abovemen-
tioned tables and are illustrated as arrows in Figs. 1 and A1.
A list of parameters is given in Table A5. By representing
the same hydrologically and biogeochemically active layers
as in CLM, MIMICS+ can represent the depth discretization
of temperature- and moisture-dependent processes. For each
layer the fluxes between the pools within the layer are cal-
culated first, before the vertical transport is calculated. Un-
less otherwise stated, the equations below describe trans-
port within one layer. The vertical transport is described in
Sect. 2.1.4.

2.1.1 Litter and SOM pools

Organic C and N enter the litter and SOM pools as dead
plant material. As in MIMICS (Wieder et al., 2015) and
ORCHIDEE-SOM (Camino-Serrano et al., 2018), we sepa-
rate between metabolic (labile) litter mainly originating from
leaves and fine roots and structural litter, in which we also in-

clude coarse woody debris (CWD). For SOM we again fol-
low the MIMICS approach with two protected SOM pools
and one pool that is available for saprotrophic decomposi-
tion. Depolymerization and desorption move organic matter
from chemically and physically protected pools, respectively,
to the available pool (C11, C12, N11, N12). The depolymer-
ization process represents the enzymatic breakdown of re-
calcitrant SOM and is thus modeled with an rMMK mecha-
nism, while the desorption is a function of clay content, as
this rate represents the physical desorption from mineral sur-
faces (Wieder et al., 2015). A total of 50 % of the incoming
metabolic and structural litter go to physically and chemi-
cally protected SOM, respectively, as directly plant-derived
SOM (C3, C4, N3, N4). The direct litter fluxes, together with
microbial necromass (C13–C24, N13–N24) and a flux repre-
senting EcM enzyme production (C27), are the sources of
input to the SOM pools. The microbial pools determine the
rates of decomposition and thereby the transfer rates between
the main storage pools – SOM and litter.

2.1.2 Microbial processes

MIMICS+ represents two different types of microbes: sapro-
trophs and mycorrhizal fungi. Within these two main groups
we separate between two functional traits, giving four differ-
ent microbial pools in total. We divide between saprotrophic
fungi (SAPf; analogous to MIMICS k strategists) and bacte-
ria (SAPb; analogous to MIMICS r strategists). Temperature-
sensitive reverse Michaelis–Menten kinetics, together with a
moisture modifier (Wieder et al., 2017), determine the rates
at which saprotrophs decompose substrate from the two lit-
ter pools and the available SOM (C5–C10, N5–N10). The N
fluxes are determined by the stoichiometry of the substrate
pools. During decomposition, a fraction of the incoming C is
lost from the soil as heterotrophic respiration (HR), while the
rest contributes to saprotrophic biomass. The respired frac-
tion is determined by the carbon use efficiencies CUEb and
CUEf, which have maximum values of 0.4 and 0.7 for bacte-
ria and fungi, respectively, but is reduced under low-nutrient
conditions. This is based on the theory that microbes adjust
their efficiencies to maintain a relatively constant, low C : N
ratio despite the higher C : N ratio of substrates (Moosham-
mer et al., 2014b). The C : N ratio of the model saprotrophs
is assumed to be constant (CNb = 5 and CNf = 8, Table A5).
To ensure that this ratio is fulfilled in each layer and time step
(in addition to potentially reducing CUE), N is exchanged
between the saprotrophs and the inorganic pools (N36 and
N37). The exchange rates can be positive or negative, lead-
ing to either immobilization or mineralization of inorganic
N. We first calculate the uptake and demand of N to deter-
mine if there is enough to meet the requirement for optimal
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Figure 1. Schematic showing C and N flows within each layer of the model. The black arrows indicate carbon fluxes (gCm−3 h−1), while
the red arrows indicate nitrogen fluxes (gN m−3 h−1). The dashed black arrows symbolize C leaving the system as heterotrophic respiration.
Metabolic and structural litter: LITm, LITs. Saprotrophic bacteria and fungi: SAPb, SAPf. Ecto- and arbuscular mycorrhizal fungi: EcM,
AM. Chemically protected, available, and physically protected soil organic matter: SOMc, SOMa, SOMp. Inorganic N in the form of NO3,
NH4 in solution, and NH4 sorbed to particles: NO3, NH4sol, and NH4sorb, respectively.

saprotrophic functioning.

Ndemand,x =

CUEx · (FCLITm,SAPx+FCLITs,SAPx+FCSOMa,SAPx)

CNx
, (1)

Nuptake,x =

NUE · (FNLITm,SAPx+FNLITs,SAPx+FNSOMa,SAPx) (2)

Here, x represents either b (bacteria) or f (fungi), and NUE is
nitrogen use efficiency, further described below. This results
in one of four possibilities:

1. TheN demand is greater than the uptake for both bacte-
ria and fungi, meaning both groups will immobilize in-
organic N. In this case we check if there is enough avail-
able inorganic N to fulfill the demand from both groups.
If not, CUE is reduced (according to Eqs. 3 and 4) so
that the saprotrophs utilize all N that is available to
them, before the demand is recalculated. Here, Nfor_sap
refers to the sum of the available N pools, NNH4,sol and
NNO3 :

CUEb =

(fb ·Nfor_sap+Nuptake,b · dt) ·CNb

(FCLITm,SAPb+FCLITs,SAPb+FCSOMa,SAPb) ·1t
, (3)

CUEf =

((1− fb) ·Nfor_sap+Nuptake,f · dt) ·CNf

(FCLITm,SAPf+FCLITs,SAPf+FCSOMa,SAPf) ·1t
, (4)

where fb determines the division of the available inor-
ganic N between bacteria and fungi and is calculated as

fb =

(Ndemand,b−Nuptake,b)

((Ndemand,b−Nuptake,b)+ (Ndemand,f−Nuptake,f))
. (5)

Equations (3) and (4) reduce CUE (and increase the
respired fraction) enough to maintain the C : N ratios
under the prevailing conditions, and the resulting ex-
change rates are

FNIN,SAPb = fb ·Nfor_sap, (6)
FNIN,SAPf = (1− fb) ·Nfor_sap. (7)

2. N uptake is larger than demand for both saprotrophic
groups, meaning both will mineralize inorganic N. The
mineralized N will enter the NNH4sol pool.

3. Fungi will mineralize N (uptake > demand), while bac-
teria immobilize N (uptake< demand). In this case bac-
teria can access the N mineralized by fungi in addition
to the inorganic N if needed.

4. Bacteria will mineralize N (uptake > demand), while
fungi immobilize N (uptake < demand). In this case
fungi can access the N mineralized by bacteria in ad-
dition to the inorganic N if needed.
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Saprotrophic necromass is transferred to the SOM pools
and is partitioned between the three pools based on clay con-
tent of the soil and the metabolic fraction of incoming litter
(C13–C18 and N13–N18). Only a fraction of the N released
during decomposition is directly available to saprotrophs,
determined by the NUE (constant NUE= 0.8, Moosham-
mer et al., 2014a). The remaining fraction is transferred to
NNH4,sol.

The model represents two different types of mycorrhizal
fungi: EcM and AM. The mycorrhizal pools receive a C sup-
ply from plants and in return provides N to its associated
plants. How the incoming carbon (Iveg,Myc, cf. C28 and C29)
is partitioned between EcM and AM is determined dynami-
cally through a return on investment (ROI) function based on
the method from Sulman et al. (2019). The partition between
EcM and AM is determined as a fraction,

falloc,i =
ROIi
6iROIi

, (8)

where ROIi is the nitrogen return of the carbon investment
from the mycorrhizal association i (EcM or AM):

ROIi =
Nacquired,i · τmyc,som ·CUEi

Ci
. (9)

EcM acquires N from the protected SOM and inorganic N
pools (Nacquired,EcM = N25+N26+N27), while AM only ac-
quires inorganic N (Nacquired,AM = N28). τmyc,som is the my-
corrhizal turnover time, while CUEi is the growth efficiency
for mycorrhizal association i. N25 and N26 represent ecto-
mycorrhizal mining for N (Lindahl and Tunlid, 2015). By
releasing enzymes (C27), EcM accesses N from protected
SOM, and at the same time releases C to the available SOM
pool (C25 and C26). The enzyme production is modeled as a
fraction of the incoming carbon (C28) that is directed into the
SOMa pool instead of the EcM pool (C27). The mining al-
gorithm is based on Baskaran et al. (2017), with mycorrhizal
“decomposition” modeled as a multiplicative function of my-
corrhizal biomass, SOM, and a decay rate (Kmo, Table A5).
We use this expression together with the C : N ratio of the
substrate pool to determine the amount of nitrogen acquired
through ectomycorrhizal mining (N25 and N26).

As the mycorrhizal pools are assumed to have constant
C : N ratios, a part of the acquired N is used to fulfill the
stoichiometric constraint. Any additional acquired N leaves
the soil system as N supply to the plant. The prescribed C
supply from CLM is zero during the winter months, so to
ensure that the mycorrhizal fungi do not provide “free” N to
the plant during this time, we introduce the following scaling
factor:

rmyc =
Iveg,myc(t)

max(Iveg,myc)
. (10)

Here, Iveg,myc(t) (g Cm−2 h−1) is the time-varying C supply
from vegetation (prescribed from CLM), and max(Iveg,myc)

is the maximum value of Iveg,myc in the current year. This
scaling factor means that the mycorrhizal fungi are most ef-
fective when they receive the most energy in the form of C.
Since Iveg,myc(t) is prescribed in the current model version,
the input flux will not respond to changes in soil N availabil-
ity. Constant mortality rates determine the transfer from my-
corrhizal fungi to the SOM pools (C19–C24 and N19–N24).

2.1.3 Inorganic N processes

Inorganic N is divided between nitrate and ammonium dis-
solved in soil water (NNO3 and NNH4,sol) and ammonium
sorbed to soil particles (NNH4,sorb). Reactive nitrogen from
atmospheric deposition enters NNH4,sol (N32) where it can
undergo nitrification toNNO3 (N34) or become sorbed to par-
ticles (N35). NNO3 is exposed to leaching and runoff based
on CLM algorithms (N31). Both dissolved pools, NNH4,sol
and NNO3 , can be taken up by mycorrhizal fungi (N27, N28)
or directly by plants (N33). Since the model is not coupled
to aboveground vegetation, direct plant uptake is a constant
loss rate of the available inorganic N (kplant). We assume that
processes in boreal forests are relatively slow and that the res-
idence times of the pools are much longer than the 1 h time
step. We therefore apply a sequential approach to model the
mass balance of the inorganic N pools. Within a time step
(1 h) the different processes affecting inorganic N are cal-
culated in a sequence: (1) deposition, leaching, and runoff;
(2) nitrification; (3) N from decomposition; (4) direct up-
take by vegetation; (5) uptake by mycorrhiza; (6) exchange
with saprotrophs; and (7) the Langmuir sorption algorithm.
The Langmuir sorption algorithm is based on Sieczka and
Koda (2016) and described below. The basis for this process
is cation exchange, where positively charged ammonium is
adsorbed to negatively charged clay particles. Before step (7)
the total concentration of ammonium is

NNH4,tot =NNH4,sorp+NNH4,sol. (11)

Using Eq. (11) together with the Langmuir isotherm equa-
tion, we find the equilibrium partition between NNH4,sol and
NNH4,sorp given the total concentration NNH4,tot. The Lang-
muir isotherm equation is given by

NNH4,sorp,eq =
NH4sorp,max ·K

′
L ·NNH4,sol,eq

1+K ′L ·NNH4,sol,eq
, (12)

where K ′L is a Langmuir constant related to adsorption en-
ergy and a function of soil water content. NH4sorp,max is the
maximum adsorption capacity. We assume that the system
moves towards the equilibrium value during the time step, via
the following mechanism, derived from the pseudo-second-
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order kinetic model in Sieczka and Koda (2016):

NNH4,sorp =

NNH4,sorp,eq−
1

1
NNH4,sorp,eq−NH4sorp,prev.

+ k ·1t

NNH4,sorp,eq >NNH4,sorp,prev,

NNH4,sorp,eq+
1

1
NNH4,sorp,prev−NNH4,sorp,eq

+ k ·1t

NNH4,sorp,eq <NNH4,sorp,prev,

NNH4,sorp,prev

NNH4,sorp,eq =NNH4,sorp,prev.

(13)

Here k is a rate constant, and 1t is the time step. The
top option corresponds to absorption, the middle option to
desorption, and the third option to no N exchange between
sorbed NNH4 and NNH4 in solution (i.e., equilibrium has al-
ready been reached). All parameter values are from Sieczka
and Koda (2016), converted to appropriate model units (see
Table A5).

2.1.4 Vertical structure

The discrete vertical layers of the model follow the same
structure as CLM with increasing layer thickness with depth
(Lawrence et al., 2019). This allows incoming litter and N
deposition to be distributed following the same vertical pro-
file as in CLM. We use vertically resolved soil temperature
and soil moisture from CLM as inputs to MIMICS+. We
also use drainage and runoff rates from CLM to determine N
leaching. Within each time step the fluxes between the pools
are calculated and applied first, then vertical transport is cal-
culated and applied. This transport is calculated as a sim-
ple diffusion equation between adjacent layers (Soetaert and
Herman, 2009), using a constant diffusion coefficient from
Koven et al. (2013). As the vertically resolved soil temper-
ature and soil moisture from CLM are used in MIMICS+,
the saprotrophic decomposition rates that are functions of
these variables have a depth dependency in the model. The
mycorrhizal N uptake is a function of the amount of mycor-
rhizal biomass and inorganic N (and SOM for EcM) in the
soil layer; hence uptake can vary with depth.

2.1.5 Parameter sensitivity analysis

To test the soil C sensitivity to different model parameters,
we performed a sensitivity analysis on 16 key parameters.
For one parameter at a time, we either increased or decreased
the value by 25 % compared to the default, giving a total of
32 experiments which were performed for each of the 50 sites
simulated in this study (see Sect. 2.2).

2.2 Soil profile database

For comparison, a forest soil database collected in connec-
tion with the International Co-operative Programme on As-

sessment and Monitoring of Air Pollution Effects on Forests
(ICP Forests) monitoring program level 1 sites was used
(Lorenz, 1995). These data have been further analyzed by
Strand et al. (2016) and provide a unique source of informa-
tion about boreal soil conditions. A total of 1040 soil pro-
files were described, sampled, and analyzed between 1988
and 1992 (Esser and Nyborg, 1992). Soil profile descriptions
were done according to standardized procedures (Sveistrup,
1984) and classified according to the Canadian System of
Soil Classification (CSSC). Relevant information from the
database includes C and N stocks, mean annual temperature
(MAT), and mean annual precipitation (MAP). Specifically,
the database contains C content down to 30, 50, and 100 cm,
making it possible to compare vertically modeled C stocks to
observations in these depth intervals. The dataset also con-
tains separate measurements of C and N in the organic litter,
fermented, and humic (LFH) layer and mineral soil. The or-
ganic layer consists of more or less decomposed litter, and
although not directly comparable to modeled litter and SOM
pools, the C : N ratio in organic vs. mineral soil is still a use-
ful quantity for model evaluation purposes. A more detailed
description of the database is given in Strand et al. (2016).
Because podzols are the most common soil category in Nor-
wegian forests, we chose to focus on the podzolic sites in
the dataset, giving a total of 578 sites. Due to computational
resource limitations, we chose a subset of 50 representative
sites (out of the 578) for the site simulations with CLM and
MIMICS+. The remaining 528 sites were used for further
comparison with the modeled carbon stocks. The 50 sites
cover an area from 5 to 70° N latitude and from 5 to 29° W
longitude. The MAT varies from −1.3 to 7 °C, while MAP
ranges from 356 to 2510 mmyr−1.

2.3 Simulation setup

For the subset of 50 sites, we performed single-site simula-
tions using CLM5.1 in biogeochemistry (BGC) mode. Data
from these simulations were used both to force MIMICS+
and to compare the C and N stocks as calculated by the stan-
dard decomposition model in CLM. The CLM variables that
are used to force MIMICS+ are listed in Table A6. For the
simulations we assume that all C allocated to active N up-
take by plants in CLM is directed to mycorrhiza (in default
CLM this C is assumed to directly respire).

The observations were performed during the years 1988–
1992, so we ran the models up to and including 1992 and
averaged model values over the 5 years. Unless otherwise
stated, these averages are what is used for the comparisons.
The three datasets each containing data from 50 sites are re-
ferred to as observations from the database (OBS), CLM sim-
ulations (CLM), and MIMICS+ simulations with CLM forc-
ing (MIMICS+). An overview of the yearly mean input of
carbon and nitrogen is shown in Fig. C1.

For the CLM simulations, a single-site configuration with
100 % natural vegetation was used together with atmospheric
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forcing from the Global Soil Wetness Project forcing dataset
(GSWP3; https://hydro.iis.u-tokyo.ac.jp/GSWP3/, last ac-
cess: 1 September 2023). This is the default atmospheric
forcing for CLM and provides 3 h data with 0.5° resolu-
tion. Following CLM spin-up protocol (Lawrence et al.,
2019), all sites were spun up for 500 years in “accelerated-
decomposition” mode followed by 700 years of “regular
spin-up” by recycling atmospheric forcing for 1901–1930.
For the 1850–1900 period, the atmospheric forcing cycles the
years 1901–1920, then historical forcing was used until the
end of the simulation.

As with the CLM simulations, MIMICS+ needs to be spun
up to equilibrium before running a historical period. The
spin-up was performed from arbitrary initial concentrations
by recycling monthly averages of soil temperature and mois-
ture, N deposition, litter, and C input from the CLM his-
tory files for the years 1850–1869 (during which atmospheric
forcing was used from 1901–1920) for 1000 years.

2.3.1 Comparison of climate gradient profiles

To examine how well the models capture variation with tem-
perature, the three datasets (OBS, MIMICS+, CLM) were
sorted by increasing MAT. The first half (N = 25) was la-
beled “cooler”, while the second half (N = 25) was labeled
“warmer”. To capture variation in moisture, the sites were
sorted by MAP in the same manner, with the first half la-
beled “drier” and the second half labeled “wetter”. Because
the MAP and MAT data from the observations and the model
forcing differ, some sites ended up in different categories de-
pending on whether they were sorted by the observed or forc-
ing climate data (12 sites for MAT and 8 sites for MAP). We
split the dataset in the following way – OBS by observed cli-
mate and MIMICS+ and CLM by model forcing climate –
because we investigated sensitivities to temperature and pre-
cipitation. (Figure S1 in the Supplement shows results of this
analysis with all points classified according to their OBS cli-
mate.) The MAT and MAP intervals for each category are
given in Table 1. For some sites the measured soil depth was
shallower than 50 or 100 cm. These sites, where the depth
to bedrock was less than 50 or 100 cm, were removed from
both the model and the observation datasets before making
distribution boxplots for these depth intervals.

2.3.2 N enrichment experiment

To investigate the response modeled by MIMICS+ to N en-
richment, we performed an idealized N addition experiment.
Starting from spun-up conditions, we ran two parallel sim-
ulations for all 50 sites for 30 years: one “control”, us-
ing N deposition from the CLM runs, and one “treatment”,
with an extra amount of 15 gN m−2 yr−1 deposited. This is a
common amount used in forest fertilization (Högberg et al.,
2017). The additional nitrogen was added equally in each
time step throughout the second simulation year to give a

total of 15 gN m−2. We used these simulations to investi-
gate the temporal response ratios (RRs: treatment : control)
for different C and N pools, as well as for HR.

3 Results

3.1 Comparison of modeled and empirical C and N
stocks

Observed and modeled soil carbon stocks are shown in
Fig. 2. Both models capture the general trend of decreasing
C concentration with increasing depth. The modeled mean C
stocks of MIMICS+ across the 50 sites are closer to observa-
tions in the 0–30 cm depth interval, while the CLM simula-
tions clearly underestimate C stocks (both models are signif-
icantly different from the subset of observations, p < 0.05).
The models both underestimate carbon at the 30–50 cm in-
terval, while there is no significant difference between the
modeled and observed C content in the deepest layer. Due
to the heterogeneous nature of real soils and the impact of
differences in litter production between the sites, a larger
variability in the observations compared to the simulations is
not unexpected. However, site-to-site comparisons with ob-
servations are poor for both models but marginally better for
MIMICS+ (Fig. 2d–f). This is likely explained by subgrid
variability in the observations that are not captured by the
models and their forcing. As the model is intended to work
on larger spatial scales within an ESM model, a good one-
to-one match with specific sites is of less importance than
being able to capture larger patterns in temperature and mois-
ture. By looking at the collection of sites together, we remove
some of the uncertainty related to the variability between the
sites and focus on larger patterns in our analyses. There is
no significant difference between the two observational sub-
sets, meaning that the 50 sites chosen for the direct model
comparison are representative of the broader region.

Looking at C : N ratios, the overall picture with a higher
ratio in the forest floor (observations) and litter pools (mod-
els) than in the total soil is captured by both models, with
MIMICS+ again being closer to the observed values (Fig. 3a
and b). Both models have significantly lower C : N ratios in
the total as well as in the mineral soil, but MIMICS+ has sig-
nificantly higher values than CLM (p < 0.05). For the litter
pools, the pattern is the opposite, and the models have sig-
nificantly higher C : N litter ratios than those observed in the
LFH layer. The modeled litter pools are not directly com-
parable to the LFH layer, but we get an indication of how
the modeled C : N ratio compares to the partly decomposed
matter. Both models have higher mean values and greater
variability than the observations (Fig. 3c). This is expected
as the observed LFH layer is partly decomposed and would
therefore have lost some C compared to the simulated litter
pools which have not yet been affected by the decomposition
processes. In addition, the modeled litter pools contain some
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Table 1. MAT and MAP intervals for dividing the sites into climate categories.

Data source Cooler [°C] Warmer [°C] Drier [mmyr−1] Wetter [mmyr−1]

Observed (−1.3)–2.5 2.6–7.1 355–975 1009–2510
Model forcing (−1.8)–3.8 3.9–8.1 494–1243 1244–3606

Figure 2. Modeled and observed C stocks. (a–c) Boxplots of C stocks in (a) 0–30, (b) 30–50, and (c) 50–100 cm soil depths for all observed
podzols except the 50 modeled ones (left) and the 50 modeled sites (center left) from Strand et al. (2016), simulated with MIMICS+ (center
right) and with CLM (right). The line in each box is the median, while the diamonds mark the mean values. The box’s upper and lower edges
are the 75th and 25th percentiles, respectively. The whiskers extend from the box by 1.5 times the interquartile range. Note the different scales
on the y axes. As not all observed soil profiles reach a depth of 30–50 or 50–100 cm, these sites are omitted in all boxplots for these depths;
hence N = 43 for (b) and N = 33 for (c). (d–f) Scatterplots of observed (x axis) and modeled (y axis) C stocks in (d) 0–30, (e) 30–50, and
(f) 50–100 cm soil depths. The legend shows the slope, intercept, and R2 for the linear regression line fitted to the scatter points. The 1 : 1
line is added in grey for reference.

low-quality (high C : N ratio) CWD, which is not included in
the LFH samples.

The observed total C : N ratio ranges from 12–45 with a
mean value of 28, while MIMICS+ and CLM have mean
values of 23 and 11, respectively. The range of C : N values
from the models is narrower than that of the observations,
with MIMICS+ values ranging from 12–38 and CLM only
between 11–12. The large variability among the observations
indicates the influence of local conditions on a subgrid scale.
The fact that MIMICS+ has a larger variability than CLM
indicates that differences in soil quality are captured better
with the improved modeling framework. Microbial compe-
tition for N and a higher fraction of directly plant-derived

SOM are factors contributing to this difference between the
modeled C : N ratios. Figure 3d shows the C : N ratios sim-
ulated with MIMICS+ at three different depth layers. As ex-
pected, the top layer with more litter has the highest ratio,
while in the middle and lowest layers the ratios are signifi-
cantly lower. For the CLM simulations the C : N ratio is con-
stant around 11 for all three depth intervals. Since we do not
have access to observed vertical N stocks, it was not possible
to produce this plot for the observed sites.
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Figure 3. Boxplots of C : N ratios for observed values from Strand et al. (2016), MIMICS+, and CLM simulations of (a) the total soil,
(b) mineral soil (observations) sum of SOM pools (models), (c) observed forest floor compared to the C : N ratio of simulated litter pools,
and (d) total soil at different depths as simulated by MIMICS+. Inorganic N is not considered in any of the plots. The line in each box is
the median, while the diamonds mark the mean values. The box’s upper and lower edges are the 75th and 25th percentiles, respectively. The
whiskers extend from the box by 1.5 times the interquartile range. N = 50 sites.

3.2 Modeled C pools in MIMICS+

In this section we look more in detail into model proper-
ties of MIMICS+. The sensitivity analysis showed that total
soil C change using perturbed parameters was mostly within
±10 % of the default values (Fig. B1). Modeled soil C was
the most sensitive to the fraction of structural litter going di-
rectly to protected SOM, as well as mycorrhiza-related pa-
rameters (maximum CUE and mining decay rate KMO). The
sensitivity of total C to parameter values related to inorganic
N was small.

With the current model parameterization, the SOM pools
contain about 78 % of the total soil C (all nine pools, ref.
Fig. 1), and 62 % of that are in the protected pools (SOMc
and SOMp in Fig. 1). The litter pools contain most of the re-
maining C, while 1.2 % are microbial biomass (Fig. 4). The
modeled percentage of microbes ranges from 0.3 %–2 % and
is in agreement with the 1 %–3 % microbial biomass C typ-
ically reported for soils (Frey, 2019). The microbial respi-
ration (HR) shows a clear seasonal pattern, with a stronger
summer peak and winter limitation with MIMICS+ than with
CLM (Fig. B4). Figure 4b shows the relative magnitude of
each pool within a pool category. Mainly due to the relatively
high CWD contribution to the input, the structural pool is the
largest litter C pool (18 % of total C, 85 % of total litter C),
while metabolic litter consisting of leaf and fine-root litter ac-
counts for ca. 3 % of the total C and 15 % of total litter. The
saprotrophic microbial biomass C dominates over the mycor-
rhizal fungi biomass C, and the saprotrophic fungi dominate
over saprotrophic bacteria (mean saprotrophic F : B biomass
ratio of 2 and above 1 for all sites). This is largely a conse-
quence of the parameter choices in the model and are further
discussed in Sect. 4.

For the focus region of this study (boreal sites in Nor-
way), total C (TOTC) is strongly correlated with both MAT
and C input (+0.49 and +0.65, respectively), indicating that
higher plant productivity at warmer sites is an important con-

trol on total soil C in the MIMICS+ simulations (Fig. 5).
The CUE presented in Fig. 5 is calculated as the ratio of
the total microbial C uptake in biomass over the total C
uptake (including respiration). CUE is positively correlated
with available N, pointing to higher microbial efficiencies at
sites with higher nutrient content. This is also illustrated by
the positive relationship between the percentage of microbial
biomass (pct_microbes) and available inorganic N (+0.41 for
NNO3 and +0.62 for NNH4,sol). The negative correlation be-
tween CUE and MAT is likely explained by lower-quality
litter input at warmer sites, as there is a positive relationship
between the C : N ratio of the litter input and temperature
(+0.46p < 0.001, not shown). The lower litter quality causes
reduced CUE and hence a negative relationship between tem-
perature and CUE. The strong correlation between produc-
tion (C_input) and HR (+0.81) indicates that most sites are
close to equilibrium. Lower litter quality at high-production
(and high-respiration) sites can explain the negative relation-
ship between CUE and HR. There is a negative correlation
(−0.64) between CUE and total C.

The fungal : bacterial saprotrophic biomass ratio (FB ra-
tio) is negatively correlated to available inorganic N (−0.29
for NNO3 and −0.27 for NNH4,sol), reflecting the stricter stoi-
chiometrical constrain on bacteria. There is a strong negative
correlation between the percentage of microbes and the fun-
gal : bacterial ratio (−0.78), reflecting that sites with more
available N are more favorable for microbial growth in both
pools but most beneficial for bacteria.

All three inorganic N pools are negatively correlated with
MAP (−0.30 for NNO3 , −0.29 for NNH4,sol, and −0.38 for
NNH4,sorp) and NNH4,sorp also with soil water (−0.37). This
indicates that the modeled microbes also respond to mois-
ture conditions through the effects of moisture on inorganic
N processes (leaching, runoff, and sorption of NH4), which
contribute to making N unavailable, and not only through the
modifications of the reverse Michaelis–Menten kinetics.
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Figure 4. Annual mean pool fractions as simulated by MIMICS+. (a) The fractions of total C stored in the main pool categories, soil organic
matter (SOM), litter, and microbes. The box’s upper and lower edges are the 75th and 25th percentiles, respectively. The whiskers extend
from the box by 1.5 times the interquartile range, and N = 50 sites. (b) The fraction of C in each pool within each main pool category. MYC
covers both EcM and AM, as the AM contribution is so small that it would not be visible on its own.

Figure 5. Spearman’s correlation coefficients between different variables calculated from MIMICS+ simulations of the 50 sites. The stars
represent the significance level of the correlation. Numbers without stars are not significant (p > 0.05). The colors indicate whether the
correlation is positive (red) or negative (blue), and the shades indicate the strength of the correlation.

3.3 Comparison of climate gradient profiles

In Fig. 6 the 50 sites have been divided into two subsets of 25
sites based on the climate categories described in Sect. 2.3.1.
(Figure S1 shows the result of the division of sites based only
on the observed climate.) Figure 6a–c show lower carbon

stocks for colder sites than for warmer sites for both mod-
els and observations for all three depth intervals, indicating
that the models are broadly able to capture the temperature-
dependent processes that govern the C storage in soils. As
shown in Fig. 5, the modeled C input is positively correlated
with MAT and total soil C, indicating that the difference is
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Figure 6. Total carbon stocks for cooler and warmer (a–c) and dryer and wetter (d–f) parts of the dataset. Boxplots of carbon stocks in the
(a, d) top 30, (b, e) 30–50, and (c, f) 50–100 cm soil depths for observed profiles from Strand et al. (2016) (left), simulated with MIMICS+
(center) and with CLM (right). In (a–c) the leftmost quartiles represent the coldest 50 % of the dataset, while the rightmost represent the
warmest 50 % of the dataset. In (d–f) the leftmost boxes represent the drier 50 % of the total subset, while the rightmost represent the wetter
50 %. The line in each box is the median, while the diamonds mark the mean values. The diamond color represents the climate category:
yellow – drier, turquoise – wetter, blue – cooler, red – warmer. The box’s upper and lower edges are the 75th and 25th percentiles, respectively.
The whiskers extend from the box by 1.5 times the interquartile range.

mainly caused by differences in litter input. The MIMICS+
simulations show a significant difference between the cold
and warm mean C content (p < 0.05) for all depth intervals,
while the cold and warm means from the CLM simulations
are not significantly different (0.14< p < 0.29). This indi-
cates that MIMICS+ temperature dependencies have a larger
impact on soil C sequestration than the standard CLM formu-
lation since the C inputs and soil temperatures are the same
for the two models.

Figure 6d–f show that in the observations, the drier sites
have a lower mean C stock than the wetter sites (but not sig-
nificantly). This is the opposite of the modeled results; both
models show higher mean C content for the drier sites than
for the wetter sites. For MIMICS+ this discrepancy is only
evident in the top layer, whereas for the lower layers, there
are no significant differences between the drier and wetter
sites. For the CLM simulations, the pattern is consistent and
significant for all three depth intervals (p < 0.05). The influ-
ence of moisture on decomposition is represented differently

in the two models, which can explain some of the differ-
ence between the modeled values. This is further discussed
in Sect. 4.3.

3.4 N enrichment experiment

The responses to the N enrichment experiment are a result
of how the extra reactive N (15 gN m−2 distributed evenly
during 1 year) is distributed between the inorganic nitro-
gen pools after addition (Fig. 7a). All extra N is added to
the NNH4,sol pool, which had the largest response ratio of
the three inorganic N pools. Some of this N will gradually
move to NNO3 via nitrification or to NNH4,sorp through sorp-
tion. While N is lost from NNO3 relatively fast via plant and
microbial uptake and leaching, the extra sorbed N serves as
a long-term supply of inorganic N, slowly releasing N back
to the dissolved pool. This sustains the higher CUE of the
microbes and leads to increased saprotrophic biomass for the
duration of the 30-year simulation. AlthoughNNH4,sol has the
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Figure 7. Temporal mean (N = 50 sites) response ratios (treatment : control) to experimental N enrichment for (a) NNH4,sol, (b) NNH4,sorp,
(c)NNO3 , (d) mycorrhizal fungi pools, (e) saprotrophic pools, (f) heterotrophic respiration, (g) total soil C, (h) litter pools, and (i) soil organic
matter pools. The white area marks the year of N enrichment, and the shading indicates the standard deviation. In (g) the lighter shading
indicates the total spread of the values.

largest relative response to N addition, the change in mass of
N is the largest in the NNH4,sorp pool.

Looking at each C pool response separately, we see the
largest responses in the microbial pools (Fig. 7d and e). The
extra inorganic N gives a relatively higher return on invest-
ment (ROI; Eq. 9) for AM, resulting in more C allocated to
AM and less to EcM. The initial large response declines grad-
ually but remains positive throughout the simulation period.
Although there is a shift to more AM, the EcM carbon pool
is always larger than the AM pool.

Both saprotrophic C pools respond instantly and positively
to the N enrichment, with a maximum increase of about 25 %
for fungi and 30 % for bacteria at the end of the N addi-
tion year. The increase in saprotrophic biomass is a result
of higher CUE made possible by more available N. After the
N enrichment year, the response gradually decreases until it
stabilizes at around 1 % after ca. 5 years. The long-term re-
sponse is marginally higher for bacteria than for fungi.

The initial response in HR (Fig. 7f) is a result of a lower
respired fraction, (1−CUE), leading to increased sapro-
trophic biomass and thus gradually increased rates of litter
decomposition. After the initial negative response in HR in
the N enrichment year, there is a positive response due to
the higher decomposition rate. For bacterial HR, the response
ratio stabilizes at a low positive value, while for fungi it sta-
bilizes at a slightly negative value. Combined, the response
ratio is close to 0 for HR after approximately 4 years.

The positive microbial biomass responses result in initial
decreases in the substrate pools, LITm, LITs, and SOMa
(Fig. 7c). Most microbial necromass ends up in either the
physically protected pool (SOMp) or the available pool
(SOMa), leading to a positive response for SOMp, while the
increased decomposition of SOMa keeps the response ratio
below 1. The chemically protected pool experiences a small
negative response because increased microbial biomass in-
creases the rate of the depolymerization process that moves
chemically recalcitrant SOM to the available SOM pool
(C11). The responses in SOM and litter pools are weak, and
following 1 year of N enrichment the mean response of total
C is a marginal decrease compared to the control. It is worth
noting that some sites experience markedly larger responses
in total C than others (shading in Fig. 7b).

The overall response of the model illustrates that shifts
in N availability have consequences for microbial C and N
dynamics, although not necessarily for the total C storage
and respiration. It should be noted that in this experiment
we did not increase plant productivity and thus carbon input
to the soil, which is expected after N enrichment. This also
means that possible changes in plant–microbe competition
for N were not captured. The added value of this experiment
is that we isolate the in-soil processes and quantify the ef-
fects of added nutrients available to microbes and how this
affects the soil carbon pools.
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4 Discussion

This study aimed to introduce a microbially explicit soil de-
composition model, MIMICS+, designed to represent key
soil processes that control carbon and nitrogen processing
in boreal ecosystems but still be general enough to be used
within an ESM. The model was applied to investigate re-
sponses to an N enrichment experiment. The results show
that the mean C stocks modeled with MIMICS+ match ob-
servations reasonably well, and for Norwegian forested pod-
zolic sites the model performs on par with or better than
the state-of-the-art land model CLM using a traditional de-
composition formulation (Fig. 2a–c). However, both mod-
els showed poor one-to-one agreement with the observations
(Fig. 2d–f), possibly due to local heterogeneity that is not
captured by the models and inaccuracies in the model cli-
mate forcings. The C : N ratios from MIMICS+ are closer
to observations than CLM, and the predicted fraction of mi-
crobial biomass matches well with values reported in the
literature (Figs. 3 and 4). Several noteworthy correlations
between variables were found from the MIMICS+ simula-
tions (Fig. 5). Both models capture the climatic temperature
pattern from the observed soil profiles, although they both
struggle to represent the observed pattern in C concentra-
tions emerging from the MAP categories (Fig. 6). The N en-
richment experiment demonstrates the implications of adding
the Langmuir algorithm for inorganic N, as the sorbed NH4
works as a long-term supply of N for the microbes. The
overall effect of the idealized enrichment experiment on soil
C storage and respiration was minor, but it had interesting
effects on the relative distribution of the microbial groups
and shows the need for further investigation into the role of
sorption–desorption processes of inorganic N, especially in
N-limited areas like boreal forests (Fig. 7).

4.1 Comparison of modeled and empirical C and N
stocks

Looking at the total distribution for the 50 sites, MIM-
ICS+ is closer than CLM to the observations for the top
layer (0–30 cm), and models are similar in the middle layer
(30–50 cm), while none of the modeled means are signif-
icantly different from the observations in the bottom layer
(50–100 cm). The site-to-site comparisons with observations
were poor for both models, showing that there is a dis-
crepancy between observed and modeled stocks at local
scales. This challenge of local factors was illustrated by Pier-
son et al. (2022), who used the C-only version of MIM-
ICS with optimized parameters based on local observations
and showed reduced error in C stocks on smaller scales
(catchments< 50km2). Such methods would likely also re-
duce the errors in MIMICS+ at smaller scales. However, it
is important to keep in mind that the intention with MIM-
ICS+ is to develop a module that is simple and fast enough
to be used in an ESM to simulate the soil carbon dynamics

at a grid cell average scale. When forced with grid cell aver-
age input, it is not intended to and should not be expected to
accurately describe local variation in soil carbon stocks. Up-
scaling of point observations of soil C stocks to a landscape
level in our study area (Norwegian boreal forests) would be
useful for comparison of ESM simulations with empirically
based estimates of soil C stocks.

With the MIMICS-CN version, Kyker-Snowman et al.
(2020) obtained soil C : N ratios that, although within ob-
served ranges, had much lower maximums than the observed
ratios. They suggested increasing the fraction of litter going
directly to SOM, as forest soils (compared to agricultural and
grassland soils) have been shown to contain a high fraction
of C in plant residues (Grandy and Robertson, 2007). Our
focus area is forested ecosystems, so we increased the frac-
tion of litter going directly to protected SOM without go-
ing through microbial decomposition to 50 % for both struc-
tural and metabolic litter (these fractions also affect the to-
tal C; see Fig. B1). This leads to a longer lifetime of soil C
(stored in protected pools) before it becomes available for
microbial decomposition and respiration. The higher directly
plant-derived fraction in the SOM pools increases the soil
C : N ratio, although it is still lower than observed for to-
tal and mineral soil (Fig. 3). A recent study by Angst et al.
(2021) indicates that the fraction of directly plant-derived
SOM may be much higher than previously assumed, espe-
cially for forested sites and podzols. The high C : N ratios
in our observational dataset point in the same direction, sug-
gesting that the directly plant-derived fraction is an impor-
tant factor to consider when modeling boreal soils. Our re-
sults demonstrate that we get closer to observed C : N ratios
with MIMICS+ compared to the CLM formulation, a main
reason being the high directly plant-derived fraction. In the
CENTURY-based decomposition cascade in CLM, the C : N
ratios of the SOM pools are fixed, which gives limited op-
tions to account for high C : N ratios and the implications
that may have for soil C dynamics.

4.2 Modeled C pools in MIMICS+

The division of C between the different pools in MIMICS+
shows that most soil C is in the SOM pools (78 %), whereof
62 % are protected. This again reflects the relatively high
fraction of litter going directly to protected SOM but also the
lifetime of C in the protected pools before it is either depoly-
merized or desorbed into the available SOM pool. Compared
to MIMICS-CN we doubled the desorption coefficient (see
Table A5), but this is still 1 order of magnitude lower than
the value used in the C-only version of MIMICS (Wieder
et al., 2015). In the abovementioned studies and the present
study, this parameter has been adjusted to match the observed
data. In the model formulation, the desorption coefficient is a
function of soil clay content, and more observational studies
constraining this parameter as a function of clay content or
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other observable variables would benefit further model de-
velopment.

Saprotrophic fungi are the dominant microbial group in
our simulations. Fungi are assumed to have a higher maxi-
mum CUE than bacteria in the model (0.7 vs. 0.4, respec-
tively) and are more efficient at decomposing structural lit-
ter than the bacterial pool (higher Vmax for decomposition
of LITs by SAPf than SAPb). This is based on the assump-
tion that fungal decomposers are more specialized towards
recalcitrant substrates, while bacteria thrive on labile, easily
accessible metabolic litter (Wardle et al., 2004). The frac-
tion of CWD litter provided by CLM is relatively large at
these forested sites, giving more substrate that is preferable
for fungi. The Norwegian podzols we are looking at are nutri-
ent poor, and fungal dominance is expected under N-limited
conditions (Strickland and Rousk, 2010). Figure 5 indicates
a negative relationship between available inorganic N and
the F : B ratio, meaning a higher fraction of bacteria in more
nutrient-rich conditions, in line with observations. Further-
more, the N enrichment experiment showed that bacteria had
a larger positive response to the added N in the long term,
which indicates that the model can capture shifts in micro-
bial communities in response to N conditions.

The modeled saprotrophic fungal biomass C dominates
over the mycorrhizal fungal biomass C. This is in contrast
with an observational study on boreal forests that indicates
that EcM can account for as much as 47 %–84 % of fungal
biomass (Bååth et al., 2004). Moreover, Clemmensen et al.
(2013) challenged the traditional view that C sequestration
is mainly driven by the decomposition of aboveground lit-
ter by saprotrophs with their study that showed a dominance
of root-associated fungi in deeper parts of the LFH in bo-
real forests. Few studies exist to inform models about fun-
gal dominance in boreal systems, so parameters determining
mycorrhizal growth and turnover are poorly constrained and
not particularly adjusted for boreal conditions in this model
iteration. The sensitivity analysis showed that the EcM min-
ing rate (KMO) and maximum mycorrhizal CUE in particu-
lar impact total modeled C (Fig. B1), highlighting the need
for informing these parameters with representative observa-
tions. The C supply to mycorrhizal pools is prescribed di-
rectly from CLM output, and the growth of these pools is
therefore governed by this input rate. Coupling MIMICS+
to the aboveground vegetation will allow the plant C supply
to react to nutrient conditions in the soil and is a priority in
future model development.

Regarding the correlations presented in this study (Fig. 5),
one should always keep in mind that correlation does not im-
ply causation, especially in a coupled non-linear system like
this model. The analysis should be regarded as a broad inves-
tigation into possible relationships within the soil dynamics.
Recently, Tao et al. (2023) presented CUE as a strong pre-
dictor of SOC globally and argued for a positive correlation
between CUE and soil carbon storage (SOC) based on a com-
bination of global-scale datasets, a microbial-process explicit

model, data assimilation, deep learning, and meta-analysis.
In contrast, our analysis showed a negative correlation be-
tween microbial CUE and soil carbon storage, in addition to
a strong correlation between total carbon and plant litter in-
put. A relatively large fraction of the litter input in MIMICS+
(50 %) initially omits the microbial pathway (affected by
CUE) as directly plant-derived organic matter into protected
SOM pools, which weakens the relationship between micro-
bial CUE and TOTC. A high fraction of microbial necromass
ends up in SOMa (Eqs. C13–C18 in Table A3 and parame-
ters in Table A5). This leads to a relatively rapid recycling
of the C that initially goes through the microbial pathway,
which can also contribute to a weaker relationship between
CUE and C storage than if larger fractions of the necromass
ended up in the protected SOM pools. However, more mi-
crobially derived mass in the protected SOM pools will de-
crease the C : N ratio, taking modeled values further away
from the observed C : N ratios in Strand et al. (2016). Tao
et al. (2023) used a process-guided deep learning and data-
driven modeling (PRODA) approach to optimize parameters
in a microbially explicit model (Allison et al., 2010) using
observations. Default model parameters prior to optimization
gave a negative relationship between CUE and SOC, illus-
trating how model estimates rely on parameter choices. Us-
ing a similar approach to inform MIMICS+ can lead to more
robust parameter values in future model iterations.

In MIMICS+ the availability of inorganic N is highly de-
pendent on soil water processes because both N leaching
from NNO3 and the Langmuir isotherm algorithm are depen-
dent on soil moisture. This is evident from Fig. 5, where we
see a negative correlation between inorganic N pools and
moisture-related variables (MAP and SOILWATER). The
available inorganic N pools are again positively correlated
with the percentage of microbes, giving an indirect depen-
dence of microbes on soil moisture. The total C is negatively
correlated with the percentage of microbes and has a high
correlation with the incoming C. With higher temperatures,
the model gives a higher turnover rate and thereby more re-
lease of soil C to the atmosphere. However, increased tem-
peratures also stimulate plant production, especially in boreal
and arctic regions, which can exceed or offset the effect of
higher decomposition rates (Hobbie et al., 2002). The corre-
lation patterns from our simulation indicate that the effect of
temperature on plant production dominates the effect of tem-
perature on decomposition rates in the model. Pierson et al.
(2022) found that increased temperature sensitivity of the de-
composition kinetics compared to the original MIMICS pa-
rameter values reduced error compared to their observational
data, indicating that the temperature sensitivity in MIMICS
and MIMICS+ may be too weak. However, the agreement
between models and observations in Fig. 6a–c indicates that
more plant production is the dominating effect of higher tem-
peratures in Norwegian forests.
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4.3 Comparison of climate gradient profiles

Although simple, dividing sites into different climatic cate-
gories serves as an idealized “space-for-time” investigation
of climate change responses. Assuming that the climate in
boreal forests in general and Norwegian forests specifically
will get warmer and wetter in the future (Hanssen-Bauer
et al., 2017), the observations indicate higher soil C content at
sites with higher MAP and MAT. The models indicate higher
C content for warmer sites but lower C content for the wet-
ter sites, especially in the 0–30 cm layer. There is a positive
correlation between MAT and MAP, particularly for the ob-
served climate forcing (Fig. B3). When dividing the observed
sites into the climate categories, a large fraction ends up as
either cold and dry or warm and wet. We therefore did a sim-
ple “temperature-dependence removal” on the total podzol
dataset (N = 578) by dividing the sites into narrow tempera-
ture intervals of 0.5 °C (Fig. S2). This did not reveal a clear
pattern between the wetter and drier sites, and it is there-
fore difficult to disentangle the effects of moisture from the
effects of temperature in the observed data. Since the mod-
els use soil moisture and not MAP to define parameters, we
also analyzed the results using a soil moisture variable from
the CLM simulations (SOILWATER_10CM) instead of MAP
to discriminate between drier and wetter sites to investigate
any effects on the climatic pattern (Fig. S3). This showed the
same pattern as in Fig. 6d–f (more C in drier soils for the
models and less C in drier soils for observations) for all three
distributions, except for the deepest layer, where the trend
shifted for the observations, but not significantly. The CLM
simulations show a negative correlation between MAP and
total C (−0.63, p < 0.001, Fig. B2), while this is not evi-
dent for MIMICS+, indicating that it is different factors that
determine the pattern from the two models. In MIMICS+,
the moisture modifier on decomposition works on the fluxes
from substrate to the microbial pools. The modeled microbes
are the most abundant in the top 0–30 cm, which can explain
why we observe a difference between drier and wetter sites
only in this layer. In CLM, the moisture modification on de-
composition rates works on every step in the decomposition
cascade from litter to SOM pools. Since the SOM pools have
more C in deeper layers, it can explain why we see the pat-
tern in all three depth intervals for the CLM simulations. The
moisture modifier used in MIMICS+ (see rmoist, Table A5,
and Wieder et al., 2017; Sulman et al., 2014) is a bell-shaped
function of soil moisture, limiting decomposition in the case
of both very wet and very dry soil conditions. If the opti-
mal soil moisture conditions according to this function do not
represent the optimal soil moisture value of the real soils, this
could explain why MIMICS+ predicts the opposite pattern
between the drier and wetter soils. Moreover, soil moisture
can vary with subgrid features like slope and aspect, varia-
tions not expected to be captured by CLM. Therefore, dis-
crepancy between actual and modeled soil moisture can also
be a contributing factor.

4.4 N enrichment experiment

Meta-analyses of observational N enrichment studies show
that microbial biomass tends to decrease after enrichment,
while the response in total soil C is relatively modest
(Treseder, 2008; Janssens et al., 2010). The small modeled
response of total soil C to N enrichment (Fig. 7b) is in line
with these observations, but the modeled microbial biomass
showed a marginal long-term increase after an initial high
response (Fig. 7d and e). Treseder (2008) proposed several
mechanisms for N effects on microbial growth (Fig. 1 in
Treseder, 2008), some leading to an increase and others lead-
ing to a decrease in microbial biomass. The sites studied
in our model simulations are mainly N limited (N immobi-
lization via mechanism 1 in Sect. 2.1.2 dominates), and we
see an accumulation of microbial biomass as a direct conse-
quence of the increased N availability, which is one of the
mechanisms suggested by Treseder (2008) for an increase
in microbial biomass. Mechanisms proposed to reduce mi-
crobial biomass in response to N enrichment are a decrease
in soil pH, a decrease in ligninase activity, an increase in
melanoidins, and a decrease in belowground NPP. In this
offline iteration of MIMICS+ we are unable to capture po-
tential decreases in belowground NPP allocation. Coupling
to a vegetation model will enable this possibility and might
affect the modeled response of N enrichment. When divid-
ing results into separate biomes, Treseder’s (2008) analy-
ses indicate that for boreal forests the response for bacte-
ria is positive (RR= 1.061), while for fungi it is negative
(RR= 0.717) but with a confidence interval covering both
positive and negative responses (0.0402–1.434). This points
to uncertainties in observations of responses of N enrichment
as well. To cover more of the possible mechanisms for micro-
bial biomass decline in the model, one or more of the other
mechanisms mentioned above could be included.

The strong N limitation in the model is partly a conse-
quence of using low, constant C : N requirements for the
saprotrophic pools (CNb = 5 and CNf = 8, ref. Table A5).
A less strict C : N requirement, or a dynamic C : N ap-
proach, as presented in the ORCHIMIC model (Huang et al.,
2018, 2021), could lead to a weaker modeled N limitation
and more microbial N mineralization, which can affect the
response to N enrichment. This could also improve the mod-
eled underestimation of the soil C : N ratio, as N in inorganic
forms is subject to loss through direct plant uptake and leach-
ing.

In the simulations, the largest loss of soil N is through the
ectomycorrhizal pathway (N29). The parameter sensitivity
analysis also shows a stronger sensitivity of total C to my-
corrhizal parameters than to the plant uptake (Fig. B1). The
high microbial immobilization of N, together with the sim-
plified representations of direct plant uptake (constant loss
rate of available inorganic N), might cause an overestimation
of the loss of organic N through mycorrhiza at the expense of
direct plant uptake of inorganic N (N33). To model a more re-
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alistic scenario, with increased plant production and changes
in plant N acquisition strategies as a response to the extra
N, it is therefore necessary to couple MIMICS+ to a vegeta-
tion model. In such an experiment, both the increase in litter
production and the shifts in plant C allocation will affect the
soil dynamics. The enrichment experiment presented in this
study showed that the model is able to capture microbial re-
sponses, and in a coupled system it can be used to further
study plant–microbe competition for nutrients.

4.5 Limitations and future improvements of the
MIMICS+ framework

By expanding the MIMICS framework with extra micro-
bial groups and an N cycle, we increase the possibilities to
capture microbe–microbe interactions and, after coupling,
plant–microbe interactions as well. However, we also intro-
duce additional parameters and a more complex model struc-
ture that makes the model more prone to overfitting and equi-
finality issues. While acknowledging this possible drawback,
we believe valuable insights can be gathered through a more
detailed process representation, especially as new technolo-
gies allow for measurements that are suitable for constrain-
ing model parameters. Although the model produces results
comparable to the observations from Strand et al. (2016),
there are still poorly constrained parameters in the model,
especially related to mycorrhizal C and N transfer. Recent
insights into the mycorrhizal role in soil C dynamics are
valuable contributions to future model development (Huang
et al., 2022a, b). A more robust parameter optimization pro-
cedure like the PRODA approach (Tao et al., 2023) or a
Monte Carlo approach (Pierson et al., 2022) will contribute
to constraining model parameters. The model should also be
evaluated against observations from other ecosystems, which
will increase confidence in the model structure and parameter
choices. This offline version of MIMICS+ does not capture
plant–microbe interactions and feedbacks, which is essential
for capturing terrestrial responses to climate change. There-
fore, coupling with a vegetation model is a priority in future
model development.

5 Conclusions

The soil model MIMICS+ provides a tool for investigating
soil C processes and interactions with the N cycle, particu-
larly relevant for boreal areas. Furthermore, the model frame-
work will serve as a valuable soil module in ESMs as it is
general enough to work on larger scales. The model pro-
duces soil C and N stocks comparable to observed values
in Norwegian forest podzols. The explicit representation of
microbial groups enhances performance compared to the tra-
ditional CLM and enables detection of soil dynamics not pos-
sible with a conventional model. In particular, the novel rep-
resentation of sorbed inorganic N can be further developed

to examine climate responses in N-limited systems like bo-
real forests but also possible impacts on other ecosystems not
limited by N. In this study the MIMICS+ model is decoupled
from vegetation, so we cannot directly detect feedbacks be-
tween nutrient availability and plant productivity. Coupling
MIMICS+ to a dynamical vegetation model like FATES will
further enable investigation of the interplay between soil mi-
crobes and changing aboveground vegetation.
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Appendix A: Model description details

Figure A1. Illustration of all carbon (a) and nitrogen (b) pools and fluxes in the system. The expressions for each flux can be found with
their corresponding numbers in Tables A3 and A4.
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Table A1. Mass balance equations for the carbon pools in the model, calculated for each vertical layer (subscript dropped for readability).
FCdonor,receiver: gCm−3 h−1. Details about the fluxes can be found in Table A3.

Eq. Stores Growth rates Fluxes

(a) Metabolic litter dCLITm/dt = FCVeg,LITm−FCLITm,SAPb−FCLITm,SAPf
(b) Structural litter dCLITs/dt = FCVeg,LITs−FCLITs,SAPb−FCLITs,SAPf
(c) Saprotrophic bacteria dCSAPb/dt = CUEb ·FCuptake,SAPb∗−FCSAPb,SOMp−FCSAPb,SOMa−FCSAPb,SOMc
(d) Saprotrophic fungi dCSAPf/dt = CUEf ·FCuptake,SAPf∗−FCSAPf,SOMp−FCSAPf,SOMa−FCSAPf,SOMc
(e) Ectomycorrhiza dCEcM/dt = CUEEcM ·FCVeg,EcM−FCEcM,SOMp−FCEcM,SOMa

−FCEcM,SOMc−FCenzEcM,SOMa
(f) Arbuscular mycorrhiza dCAM/dt = CUEAM ·FCVeg,AM−FCAM,SOMp−FCAM,SOMa−FCAM,SOMc
(g) Phys. protected SOM dCSOMp/dt = FCVeg,SOMp+FCSAPb,SOMp+FCSAPf,SOMp

+FCEcM,SOMp+FCAM,SOMp−FCSOMp,SOMa−FCEcMdecompSOMp
(h) Chem. protected SOM dCSOMc/dt = FCVeg,SOMc+FCSAPb,SOMc+FCSAPf,SOMc

+FCEcM,SOMc+FCAM,SOMc−FCSOMc,SOMa−FCEcMdecompSOMc
(i) SOM available dCSOMa/dt = FCSAPb,SOMa+FCSAPf,SOMa+FCEcM,SOMa+FCAM,SOMa

+FCSOMp,SOMa+FCSOMc,SOMa+FCenzEcM,SOMa
+FCEcMdecompSOMc+FCEcMdecompSOMp−FCSOMa,SAPb−FCSOMa,SAPf

Net carbon change dC/dt = FCVeg,LITm+FCVeg,LITs+FCVeg,SOMp+FCVeg,SOMc
+CUEEcM ·FCVeg,EcM+CUEAM ·FCVeg,AM− (1−CUEb) ·FCuptake,SAPb
−(1−CUEf) ·FCuptake,SAPf∗

∗ FCuptake,s = FCLITm,s +FCLITs,s +FCSOMa,s.

Table A2. Mass balance equations for the nitrogen pools in the model, calculated for each vertical layer (subscript dropped for readability).
FNdonor,receiver: gN m−3 h−1. Details about the fluxes can be found in Table A4.

Eq. Stores Growth rates Fluxes

(j) Metabolic litter dNLITm/dt = FNVeg,LITm−FNLITm,SAPb−FNLITm,SAPf
(k) Structural litter dNLITs/dt = FNVeg,LITs−FNLITs,SAPb−FNLITs,SAPf
(l) Saprotrophic bacteria dNSAPb/dt = NUE ·FNuptake,SAPb

a
−FNSAPb,SOMp−FNSAPb,SOMa−FNSAPb,SOMc+FNIN,SAPb

b,c

(m) Saprotrophic fungi dNSAPf/dt = NUE ·FNuptake,SAPf
a
−FNSAPf,SOMp−FNSAPf,SOMa−FNSAPf,SOMc+FNIN,SAPf

b,c

(n) Ectomycorrhiza dNEcM/dt = FNIN,EcM
b
+FNSOMp,EcM+FNSOMc,EcM

−FNEcM,SOMp−FNEcM,SOMa−FNEcM,SOMc−FNEcM,Veg
(o) Arbuscular mycorrhiza dNAM/dt = FNIN,AM

b
−FNAM,SOMp−FNAM,SOMa−FNAM,SOMc−FNAM,Veg

(p) Phys. protected SOM dNSOMp/dt = FNSAPb,SOMp+FNSAPf,SOMp+FNEcM,SOMp+FNAM,SOMp+FNVeg,SOMp
−FNSOMp,SOMa−FNSOMp,EcM

(q) Chem. protected SOM dNSOMc/dt = FNSAPb,SOMc+FNSAPf,SOMc+FNEcM,SOMc+FNAM,SOMc
+FNVeg,SOMp−FNSOMc,SOMa−FNSOMc,EcM

(r) SOM available dNSOMa/dt = FNSAPb,SOMa+FNSAPf,SOMa+FNSOMp,SOMa+FNSOMc,SOMa
+FNEcM,SOMa+FNAM,SOMa−FNSOMa,SAPb−FNSOMa,SAPf

(s) Ammonium, solved dNNH4,sol/dt = FNDEP+ (1−NUE)(FNuptake,SAPb+FNuptake,SAPfa)−
fNH4(FNIN,EcM+FNIN,AM+FNIN,Veg)− fNH4(FNIN,SAPb+FNIN,SAPf)
−FNNH4,NO3 +FNsol,sorp

(t) Ammonium, sorbed dNNH4,sorp/dt = −FNsol,sorp
(u) Nitrate dNNO3/dt = FNNH4,NO3 −FNrun+leach−

(1− fNH4)(FNIN,EcM+FNIN,AM+FNIN,Veg)− (1− fNH4)(FNIN,SAPb+FNIN,SAPf)

Net nitrogen change dN/dt = FNDEP+FNVeg,LITm+FNVeg,LITs+FNVeg,SOMc+FNVeg,SOMp−FNrun+leach
−FNIN,Veg−FNEcM,Veg−FNAM,Veg

a FNuptake,s = FNLITm,s +FNLITs,s +FNSOMa,s. b FNIN,receiver = FNNO3+NH4sol,receiver. c Can be either positive or negative.
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Table A3. Details about C fluxes in the model. The equation numbers correspond to the arrows in Fig. A1a. The letters in the fifth column
match those given in Table A1. All FCdonor,receiver values are in gCm−3 h−1. Parameters are described in Table A5.

Eq Flux name Rate functions Used in equations Notes

C1 FCVeg,LITm = fmet · IC · (1− fmet,SOM) (a) IC includes litterfall and mortality rates
C2 FCVeg,LITs = ((1− fmet) · IC +CWDC) · (1− fstruct,SOM) (b)
C3 FCVeg,SOMp = fmet · IC · fmet,SOM (g)
C4 FCVeg,SOMc = ((1− fmet) · IC +CWDC) · fstruct,SOM (h)
C5 FCLITm,SAPb = CSAPb ·Vmax1

CLITm
Km1+CSAPb

(a)(c) Reverse MMK

C6 FCLITs,SAPb = CSAPb ·Vmax2
CLITs

Km2+CSAPb
(b)(c) Reverse MMK

C7 FCSOMa,SAPb = CSAPb ·Vmax3
CSOMa

Km3+CSAPb
(i)(c) Reverse MMK

C8 FCLITm,SAPf = CSAPf ·Vmax4
CLITm

Km4+CSAPf
(a)(d) Reverse MMK

C9 FCLITs,SAPf = CSAPf ·Vmax5
CLITs

Km5+CSAPf
(b)(d) Reverse MMK

C10 FCSOMa,SAPf = CSAPf ·Vmax6
CSOMa

Km6+CSAPf
(i)(d) Reverse MMK

C11 FCSOMc,SOMa =
CSAPf·Vmax2·CSOMc

KO·Km2+CSAPb
+
CSAPb·Vmax5·CSOMc

KO·Km5+CSAPf
(h)(i) As in MIMICS

C12 FCSOMp,SOMa = CSOMp · kdesorp (g)(i) As in MIMICS
C13 FCSAPb,SOMp = CSAPb · kSAPb,som · fSAPb,SOMp (c)(g)
C14 FCSAPb,SOMc = CSAPb · kSAPb,som · fSAPb,SOMc (c)(h)
C15 FCSAPb,SOMa = CSAPb · kSAPb,som · fSAPb,SOMa (c)(i)
C16 FCSAPf,SOMp = CSAPf · kSAPf,som · fSAPf,SOMp (d)(g)
C17 FCSAPf,SOMc = CSAPf · kSAPf,som · fSAPf,SOMc (d)(h)
C18 FCSAPf,SOMa = CSAPf · kSAPf,som · fSAPf,SOMa (d)(i)
C19 FCEcM,SOMp = CEcM · kmyc,som · fEcM,SOMp (e)(g)
C20 FCEcM,SOMc = CEcM · kmyc,som · fEcM,SOMc (e)(h)
C21 FCEcM,SOMa = CEcM · kmyc,som · fEcM,SOMa (e)(i)
C22 FCAM,SOMp = CAM · kmyc,som · fAM,SOMp (f)(g)
C23 FCAM,SOMc = CAM · kmyc,som · fAM,SOMc (f)(h)
C24 FCAM,SOMa = CAM · kmyc,som · fAM,SOMa (f)(i)
C25 FCEcMdecSOMp = KMO · dz ·CEcM ·CSOMp · rmyc (g)(i) (Baskaran et al., 2017) and mod. term
C26 FCEcMdecSOMc = KMO · dz ·CEcM ·CSOMc · rmyc (h)(i) (Baskaran et al., 2017) and mod. term
C27 FCenzEcM,SOMa = fenz ·CUEEcM ·FCVeg,EcM (e)(i)
C28 FCVeg,EcM = falloc,EcM · Iveg,Myc (e)
C29 FCVeg,AM = falloc,AM · Iveg,Myc (f)

https://doi.org/10.5194/gmd-17-2929-2024 Geosci. Model Dev., 17, 2929–2959, 2024
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Table A4. Details about N fluxes in the model. The equation numbers correspond to the arrows in Fig. A1b. The letters in the fifth column
match those given in Table A2. Parameters are described in Table A5.

Eq. Flux name Rate functions Used in equations Notes

N1 FNVeg,LITm = fmet · IN · (1− fmet,SOM) (j) IN includes litterfall and mortality rates
N2 FNVeg,LITs = ((1− fmet) · IN +CWDN ) · (1− fstruct,SOM) (k)
N3 FNVeg,SOMp = fmet · IC · fmet,SOM (p)
N4 FNVeg,SOMc = ((1− fmet) · IN +CWDN ) · fstruct,SOM (q)

N5 FNLITm,SAPb = FCLITm,SAPb ·
(
NLITm
CLITm

)
(j)(l) as in MIMICS

N6 FNLITs,SAPb = FCLITs,SAPb ·
(
NLITs
CLITs

)
(k)(l) as in MIMICS

N7 FNSOMa,SAPb = FCSOMa,SAPb ·
(
NSOMa
CSOMa

)
(r)(l) as in MIMICS

N8 FNLITm,SAPf = FCLITm,SAPf ·
(
NLITm
CLITm

)
(j)(m) as in MIMICS

N9 FNLITs,SAPf = FCLITs,SAPf ·
(
NLITs
CLITs

)
(k)(m) as in MIMICS

N10 FNSOMa,SAPf = FCSOMa,SAPf ·
(
NSOMa
CSOMa

)
(r)(m) as in MIMICS

N11 FNSOMc,SOMa = FCSOMc,SOMa ·
(
NSOMc
CSOMc

)
(q)(r)

N12 FNSOMp,SOMa = FCSOMp,SOMa ·
(
NSOMp
CSOMp

)
(p)(r)

N13 FNSAPb,SOMp = FCSAPb,SOMp ·
(
NSAPb
CSAPb

)
(l)(p)

N14 FNSAPb,SOMc = FCSAPb,SOMc ·
(
NSAPb
CSAPb

)
(l)(q)

N15 FNSAPb,SOMa = FCSAPb,SOMa ·
(
NSAPb
CSAPb

)
(l)(r)

N16 FNSAPf,SOMp = FCSAPf,SOMp ·
(
NSAPf
CSAPf

)
(m)(p)

N17 FNSAPf,SOMc = FCSAPf,SOMc ·
(
NSAPf
CSAPf

)
(m)(q)

N18 FNSAPf,SOMa = FCSAPf,SOMa ·
(
NSAPf
CSAPf

)
(m)(r)

N19 FNEcM,SOMp = FCEcM,SOMp ·
(
NEcM
CEcM

)
(n)(p)

N20 FNEcM,SOMc = FCEcM,SOMc ·
(
NEcM
CEcM

)
(n)(q)

N21 FNEcM,SOMa = FCEcM,SOMa ·
(
NEcM
CEcM

)
(n)(r)

N22 FNAM,SOMp = FCAM,SOMp ·
(
NAM
CAM

)
(o)(p)

N23 FNAM,SOMc = FCAM,SOMc ·
(
NAM
CAM

)
(o)(q)

N24 FNAM,SOMa = FCAM,SOMa ·
(
NAM
CAM

)
(o)(r)

N25 FNSOMp,EcM = FCEcMdecompSOMp ·
(
NSOMp
CSOMp

)
(g)(e)

N26 FNSOMc,EcM = FCEcMdecompSOMc ·
(
NSOMc
CSOMc

)
(h)(e)

N27 FNIN,EcM = Vmax,myc ·NIN ·
(

CEcM
(CEcM+Km,myc/dz)

)
· rmyc (s)(u)(n) Baskaran et al. (2017) and mod. term,

IN=NNO3 +NNH4,sol

N28 FNIN,AM = Vmax,myc ·NIN ·
(

CAM
(CAM+Km,myc/dz)

)
· rmyc (s)(u)(o) Baskaran et al. (2017) and mod. term,

N29 FNEcM,Veg = (FNIN,EcM+FNSOMc,EcM+FNSOMp,EcM) (n) IN=NNO3 +NNH4,sol
−CUEEcM ·FCVeg,EcM · (1− fenz)/CNEcM
or lower, if N limited (reduced CUE)

N30 FNAM,Veg = FNIN,AM−CUEAM ·FCVeg,AM/CNAM (o) IN=NNO3 +NNH4,sol
or lower, if N limited (reduced CUE)

N31 FNrun+leach = NNO3 ·

(
QDRAI
H2Otot

+
QRUNOFF
H2Otop5cm

)
(u) see CTSM doc. 2.22.6

N32 FNDEP = NDEP_TO_SMINN ·NDEP_PROF (s)
N33 FNIN,Veg = NIN · kuptake (s)(u) IN=NNO3 +NNH4,sol
N34 FNNH4,NO3 = NH4 · knitr or zero if temp. is below freezing (s)(u) based on CTSM doc. chapter 2.22.5
N35 FNsol,sorp =
N36 FNIN,SAPb = (1−NUE) ·UNb−CUEb ·UCb/CNb (l)(s)(u) IN=NNO3 +NNH4,sol

or = fb ·Nfor_sap if N limited
N37 FNIN,SAPf = (1−NUE) ·UNf−CUEf ·UCf/CNf (m)(s)(u)

or = (1− fb) ·Nfor_sap if N limited

Geosci. Model Dev., 17, 2929–2959, 2024 https://doi.org/10.5194/gmd-17-2929-2024
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Table A6. CLM variables used in MIMICS+.

CLM-BGC variable Units Long name Notes

LEAFC_TO_LITTER gC m−2 s−1 leaf C litterfall
FROOTC_TO_LITTER gCm−2 s−1 fine-root C litterfall
CWDC_TO_LITR2C_vr gCm−3 s−1 decomposition of coarse woody

debris C to litter 2 C
CWDC_TO_LITR3C_vr gCm−3 s−1 decomposition of coarse woody

debris C to litter 3 C
M_LEAFC_TO_LITTER gCm−2 s−1 leaf C mortality
M_FROOTC_TO_LITTER gCm−2 s−1 fine-root C mortality
M_LEAFC_STORAGE_TO_LITTER gCm−2 s−1 leaf C storage mortality input to met. lit. (LITm)
M_LEAFC_XFER_TO_LITTER gCm−2 s−1 leaf C transfer mortality input to met. lit. (LITm)
M_GRESP_STORAGE_TO_LITTER gCm−2 s−1 growth respiration storage mortality input to met. lit. (LITm)
M_GRESP_XFER_TO_LITTER gCm−2 s−1 growth respiration transfer mortality input to met. lit. (LITm)
M_FROOTC_STORAGE_TO_LITTER gCm−2 s−1 fine-root C storage mortality input to met. lit. (LITm)
M_FROOTC_XFER_TO_LITTER gCm−2 s−1 fine-root C transfer mortality input to met. lit. (LITm)
M_LIVECROOTC_XFER_TO_LITTER gCm−2 s−1 live coarse-root C transfer mortality input to met. lit. (LITm)
M_DEADCROOTC_XFER_TO_LITTER gCm−2 s−1 dead coarse-root C transfer mortality input to met. lit. (LITm)
M_LIVECROOTC_STORAGE_TO_LITTER gCm−2 s−1 live coarse-root C fire mortality to litter input to met. lit. (LITm)
M_LIVESTEMC_STORAGE_TO_LITTER gCm−2 s−1 live stem C storage mortality input to met. lit. (LITm)
M_LIVESTEMC_XFER_TO_LITTER gCm−2 s−1 live stem C transfer mortality input to met. lit. (LITm)
M_DEADSTEMC_STORAGE_TO_LITTER gCm−2 s−1 dead stem C storage mortality input to met. lit. (LITm)
M_DEADSTEMC_XFER_TO_LITTER gCm−2 s−1 dead stem C transfer mortality input to met. lit. (LITm)
LEAFN_TO_LITTER gNm−2 s−1 leaf N litterfall partitioned based on fMET
FROOTN_TO_LITTER gNm−2 s−1 fine-root N litterfall partitioned based on fMET
CWDN_TO_LITR2N_vr gN m−3 s−1 decomposition of coarse woody input to structural litter (LITs)

debris N to litter 2 C
CWDN_TO_LITR3N_vr gN m−3 s−1 decomposition of coarse woody input to structural litter (LITs)

debris C to litter 3 C
M_LEAFN_TO_LITTER gNm−2 s−1 leaf N mortality partitioned based on fMET.
M_FROOTN_TO_LITTER gNm−2 s−1 fine-root N mortality partitioned based on fMET.
M_LEAFN_STORAGE_TO_LITTER gNm−2 s−1 leaf C storage mortality input to met. lit. (LITm)
M_LEAFN_XFER_TO_LITTER g Nm−2 s−1 input to met. lit. (LITm)
M_FROOTN_STORAGE_TO_LITTER g Nm−2 s−1 input to met. lit. (LITm)
M_FROOTN_XFER_TO_LITTER g Nm−2 s−1 input to met. lit. (LITm)
M_LIVECROOTN_XFER_TO_LITTER gNm−2 s−1 input to met. lit. (LITm)
M_DEADCROOTN_XFER_TO_LITTER gNm−2 s−1 input to met. lit. (LITm)
M_LIVECROOTN_STORAGE_TO_LITTER gNm−2 s−1 input to met. lit. (LITm)
M_LIVESTEMN_STORAGE_TO_LITTER gN m−2 s−1 input to met. lit. (LITm)
M_LIVESTEMN_XFER_TO_LITTER gN m−2 s−1 input to met. lit. (LITm)
M_DEADSTEMN_STORAGE_TO_LITTER g Nm−2 s−1 input to met. lit. (LITm)
M_DEADSTEMN_XFER_TO_LITTER gN m−2 s−1 input to met. lit. (LITm)
M_RETRANSN_TO_LITTER gNm−2 s−1 input to met. lit. (LITm)
NPP_NACTIVE g Cm−2 s−1 partitioned between EcM

and AM based on falloc,i
NDEP_TO_SMINN g Nm−2 s−1 atmospheric N deposition N deposition to NH4 pool

to soil mineral N
LEAF_PROF m−1 profile for litter C and N inputs from Multiplied with

leaves LEAF_TO_LITTER to get rates
for each layer

FROOT_PROF m−1 profile for litter C and Multiplied with
N inputs from fine roots FROOT_TO_LITTER to get rates

for each layer
CROOT_PROF m−1 profile for litter C and N used for input from mortality

inputs from coarse roots
STEM_PROF m−1 profile for litter C and used for input from mortality

N inputs from stems
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Table A6. Continued.

CLM-BGC variable Units Long name Notes

NDEP_PROF m−1 profile for atmospheric N deposition Multiplied with
NDEP_TO_SMINN to get
deposition for each layer

Environmental variables

TSOI K soil temperature converted to °C
WATSAT mm3 mm−3 saturated soil water content (porosity) used for calculating rmoist
SOILLIQ kgm−2 soil liquid water used for calculating rmoist
SOILICE kgm−2 soil ice water used for calculating rmoist
W_SCALAR – moisture (dryness) inhibition of decomposition used in nitrification algorithm
T_SCALAR – temperature inhibition of decomposition used in nitrification algorithm
QDRAI mms−1 sub-surface drainage used for calculating leaching
QOVER mms−1 surface runoff used for calculating runoff
nbedrock – index of shallowest bedrock layer to determine how many layers to

use in the simulations

Read from surface data file

PCT_CLAY – percent CLAY
PCT_NAT_PFT – percent plant functional type on the natural vegetation land unit
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Appendix B: Additional figures

Figure B1. (a) Boxplots of total C for the 50 sites modeled with MIMICS+. The top box is the default simulations, while the rest are
simulations with one parameter perturbed with either a 25 % increase or a 25 % decrease compared to the default value. (b) Boxplots of the
percentage change from the default of the same simulations as in (a). The line in each box is the median; the box’s upper and lower edges
are the 75th and 25th percentiles, respectively. The whiskers extend from the box by 1.5 times the interquartile range.
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Figure B2. Spearman’s correlation coefficients between different variables calculated from the CLM simulations of the 50 sites. The stars
represent the significance level of the correlation. Numbers without stars are not significant (p > 0.05). The colors indicate whether the
correlation is positive (red) or negative (blue), and the shades indicate the strength of the correlation.

Figure B3. Spearman’s correlation coefficients between different observed variables at 50 sites (Strand et al., 2016). The stars represent
the significance level of the correlation. Numbers without stars are not significant (p > 0.05). The colors indicate whether the correlation is
positive (red) or negative (blue), and the shades indicate the strength of the correlation.
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Figure B4. Modeled mean seasonal heterotrophic respiration over the years 1988–1992 and the 50 modeled sites. The shading indicates the
standard deviation among the 50 sites.

Appendix C: Input plot

Figure C1. Yearly mean input of carbon and nitrogen to MIMICS+ from CLM for each of the 50 site simulations (averaged over 1988–1992).
The blue dots show litter input only, while the orange dots also include the C allocated to mycorrhizal pools and N deposition.
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Code and data availability. MIMICS+ (v1.0) is written in Fortran
90. The figures and analyses were produced with Python and
Jupyter Notebook. The model code and Jupyter Notebook are avail-
able online at https://doi.org/10.5281/zenodo.10610814 (Aas and
Woerner, 2024). CLM5.1 is publicly available through the Commu-
nity Terrestrial System Model (CTSM) GitHub repository (https://
github.com/ESCOMP/ctsm, last access: 8 April 2024). The version
used for simulations in this paper is archived at https://doi.org/10.
5281/zenodo.10946157 (CTSM Development Team, 2024). Input
data for CLM and MIMICS+ and output files from MIMICS+ are
archived at https://doi.org/10.5281/zenodo.10946217 (Aas, 2024).
Access to the soil profile database can be granted upon request to
the Norwegian Institute of Bioeconomy Research (NIBIO).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2929-2024-supplement.

Author contributions. ERA and TKB developed the model. ERA
ran simulations and wrote the paper. All authors contributed to the
analyses and editing of the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We are grateful to Line Tau Strand for pro-
viding access to and information about the soil profile database
and to Alexander Eiler, Helge Hellevang, Håvard Kauserud, and
Rosie Fisher for valuable feedback during the model development
process. We are also grateful to Will Wieder and the other scientists
at the NCAR lab for their help and discussions regarding MIMICS
and CLM.

Financial support. This work has been funded by the University
of Oslo and the Research Council of Norway (RCN) through the
EMERALD (project no. 294948), FUNDER (project no. 315249),
and Green Blue (project no. 287490) research projects. The simu-
lations were performed on resources provided by Sigma2 – the na-
tional infrastructure for high-performance computing and data stor-
age in Norway, grant no. NN2806k/NS2806k. Heleen de Wit was
supported by the Research Council of Norway (contract no. 160016;
Global Change at Northern Latitudes) and the CatchCaN project
(the fate and future of carbon in forests), funded by the Technology
Agency of the Czech Republic (TACR; project no. TO 01000220).

Review statement. This paper was edited by Sam Rabin and re-
viewed by two anonymous referees.

References

Aas, E. R.: Model inputs and outputs for “Modeling
boreal forest soil dynamics with the microbially ex-
plicit soil model MIMICS+ (v1.0)”, Zenodo [data set],
https://doi.org/10.5281/zenodo.10946217, 2024.

Aas, E. R. and Woerner, E.: ecaas/MIMICSplus:
MIMICSplus v1.0.1 with DOI, Zenodo [code],
https://doi.org/10.5281/zenodo.10610814, 2024.

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat.
Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010.

Angst, G., Mueller, K. E., Nierop, K. G., and Simpson, M. J.: Plant-
or microbial-derived? A review on the molecular composition of
stabilized soil organic matter, Soil Biol. Biochem., 156, 108189,
https://doi.org/10.1016/J.SOILBIO.2021.108189, 2021.

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin,
V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cad-
ule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher,
R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven,
C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton,
A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri,
K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–
concentration and carbon–climate feedbacks in CMIP6 models
and their comparison to CMIP5 models, Biogeosciences, 17,
4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.

Bååth, E., Nilsson, L. O., Göransson, H., and Wallander, H.:
Can the extent of degradation of soil fungal mycelium
during soil incubation be used to estimate ectomycorrhizal
biomass in soil?, Soil Biol. Biochem., 36, 2105–2109,
https://doi.org/10.1016/j.soilbio.2004.06.004, 2004.

Baskaran, P., Hyvönen, R., Berglund, S. L., Clemmensen, K. E.,
Ågren, G. I., Lindahl, B. D., and Manzoni, S.: Modelling the in-
fluence of ectomycorrhizal decomposition on plant nutrition and
soil carbon sequestration in boreal forest ecosystems, New Phy-
tol., 213, 1452–1465, https://doi.org/10.1111/nph.14213, 2017.

Bonan, G.: Ecological climatology: concepts
and applications, Cambridge University Press,
https://doi.org/10.1017/cbo9781107339200.022, 2015.

Brzostek, E. R., Dragoni, D., Brown, Z. A., and Phillips, R. P.: My-
corrhizal type determines the magnitude and direction of root-
induced changes in decomposition in a temperate forest, New
Phytol., 206, 1274–1282, https://doi.org/10.1111/nph.13303,
2015.

Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bas-
trikov, V., De Vos, B., Gielen, B., Gleixner, G., Jornet-Puig,
A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J.,
Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and
Janssens, I. A.: ORCHIDEE-SOM: modeling soil organic carbon
(SOC) and dissolved organic carbon (DOC) dynamics along ver-
tical soil profiles in Europe, Geosci. Model Dev., 11, 937–957,
https://doi.org/10.5194/gmd-11-937-2018, 2018.

Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ek-
blad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A.,
and Lindahl, B. D.: Roots and associated fungi drive long-term

Geosci. Model Dev., 17, 2929–2959, 2024 https://doi.org/10.5194/gmd-17-2929-2024
84



E. R. Aas et al.: Modeling boreal forest soil dynamics 2957

carbon sequestration in boreal forest, Science, 340, 1615–1618,
https://doi.org/10.1126/science.1231923, 2013.

CTSM Development Team: ecaas/CTSM_Norway_sites:
Version1 (Norway_site_runs), Zenodo [code],
https://doi.org/10.5281/zenodo.10946157, 2024.

Esser, J. M. and Nyborg, Å.: Jordsmonn i barskog : en oversikt for
Norge, Norwegian Institute of Land Inventory, ISBN 82-7464-
034-9, 1992.

Fatichi, S., Manzoni, S., Or, D., and Paschalis, A.: A Mechanis-
tic Model of Microbially Mediated Soil Biogeochemical Pro-
cesses: A Reality Check, Global Biogeochem. Cy., 33, 620–648,
https://doi.org/10.1029/2018GB006077, 2019.

Fernandez, C. W. and Kennedy, P. G.: Revisiting the “Gadgil
effect”: do interguild fungal interactions control carbon
cycling in forest soils?, New Phytol., 209, 1382–1394,
https://doi.org/10.1111/nph.13648, 2016.

Fisher, R. A. and Koven, C. D.: Perspectives on the Future
of Land Surface Models and the Challenges of Represent-
ing Complex Terrestrial Systems, J. Adv. Model. Earth Sy.,
12, e2018MS001453, https://doi.org/10.1029/2018MS001453,
2020.

Frey, S. D.: Mycorrhizal Fungi as Mediators of Soil Organic
Matter Dynamics, Annu. Rev. Ecol. Evol. S., 50, 237–259,
https://doi.org/10.1146/annurev-ecolsys-110617-062331, 2019.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters,
W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson,
R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bel-
louin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P.,
Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M.,
Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfil-
lan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses,
Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina,
T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D.,
Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger,
A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S.,
Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro,
D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T.,
Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson,
E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl,
C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans,
P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R.,
Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis,
D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and
Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14,
1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022.

Gadgil, P. D. and Gadgil, R. L.: Suppression of litter decomposition
by mycorrhizal roots of Pinus radiata, J. Genet., 5, 35–41, 1975.

Gadgil, R. L. and Gadgil, P.: Mycorrhiza and litter decomposition,
Nature, 233, 133–133, 1971.

German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.:
The Michaelis-Menten kinetics of soil extracellular enzymes
in response to temperature: A cross-latitudinal study, Global
Change Biol., 18, 1468–1479, https://doi.org/10.1111/j.1365-
2486.2011.02615.x, 2012.

Grandy, A. S. and Robertson, G. P.: Land-use intensity ef-
fects on soil organic carbon accumulation rates and mecha-
nisms, Ecosystems, 10, 58–73, https://doi.org/10.1007/s10021-
006-9010-y, 2007.

Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H.,
Mayer, S., Nesje, A., Nilsen, J., Sandven, S., Sandø,
A., Sorteberg, A., and Ådlandsvik, B.: Climate in Nor-
way 2100 – a knowledge base for climate adaptation,
Tech. Rep. April, The Norwegian Environment Agency,
https://www.researchgate.net/profile/Ingjerd-Haddeland/
publication/316922280_Climate_in_Norway_2100/links/
59194fab4585152e19a24c98/Climate-in-Norway-2100.pdf (last
access: 7 April 2024), 2017.

Hansson, A., Dargusch, P., and Shulmeister, J.: A review of
modern treeline migration, the factors controlling it and the
implications for carbon storage, J. Mt. Sci., 18, 291–306,
https://doi.org/10.1007/S11629-020-6221-1, 2021.

Hararuk, O., Smith, M. J., and Luo, Y.: Microbial models
with data-driven parameters predict stronger soil carbon re-
sponses to climate change, Global Change Biol., 21, 2439–2453,
https://doi.org/10.1111/GCB.12827, 2015.

Hobbie, S. E., Nadelhoffer, K. J., and Högberg, P.: A syn-
thesis: The role of nutrients as constraints on carbon bal-
ances in boreal and arctic regions, Plant Soil, 242, 163–170,
https://doi.org/10.1023/A:1019670731128, 2002.

Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.: Tamm
Review: On the nature of the nitrogen limitation to plant growth
in Fennoscandian boreal forests, Forest Ecol. Manag., 403, 161–
185, https://doi.org/10.1016/j.foreco.2017.04.045, 2017.

Huang, W., Van Bodegom, P. M., Declerck, S., Heinonsalo, J.,
Cosme, M., Viskari, T., Liski, J., and Soudzilovskaia, N. A.:
Mycelium chemistry differs markedly between ectomycorrhizal
and arbuscular mycorrhizal fungi, Communications Biology, 5,
398, https://doi.org/10.1038/s42003-022-03341-9, 2022a.

Huang, W., van Bodegom, P. M., Viskari, T., Liski, J., and
Soudzilovskaia, N. A.: Implementation of mycorrhizal mecha-
nisms into soil carbon model improves the prediction of long-
term processes of plant litter decomposition, Biogeosciences, 19,
1469–1490, https://doi.org/10.5194/bg-19-1469-2022, 2022b.

Huang, Y., Guenet, B., Ciais, P., Janssens, I. A., Soong, J. L.,
Wang, Y., Goll, D., Blagodatskaya, E., and Huang, Y.: OR-
CHIMIC (v1.0), a microbe-mediated model for soil organic
matter decomposition, Geosci. Model Dev., 11, 2111–2138,
https://doi.org/10.5194/gmd-11-2111-2018, 2018.

Huang, Y., Guenet, B., Wang, Y. L., and Ciais, P.: Global Simulation
and Evaluation of Soil Organic Matter and Microbial Carbon and
Nitrogen Stocks Using the Microbial Decomposition Model OR-
CHIMIC v2.0, Global Biogeochem. Cy., 35, e2020GB006836,
https://doi.org/10.1029/2020GB006836, 2021.

Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Re-
ichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace,
J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D.,
Tang, J., and Law, B. E.: Reduction of forest soil respiration
in response to nitrogen deposition, Nat. Geosci., 3, 315–322,
https://doi.org/10.1038/NGEO844, 2010.

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S.,
Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson,
S. C.: The effect of vertically resolved soil biogeochemistry
and alternate soil C and N models on C dynamics of CLM4,
Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-
7109-2013, 2013.

Koven, C. D., Hugelius, G., Lawrence, D. M., and Wieder, W. R.:
Higher climatological temperature sensitivity of soil carbon

https://doi.org/10.5194/gmd-17-2929-2024 Geosci. Model Dev., 17, 2929–2959, 2024
85



2958 E. R. Aas et al.: Modeling boreal forest soil dynamics

in cold than warm climates, Nat. Clim. Change, 7, 817–822,
https://doi.org/10.1038/nclimate3421, 2017.

Kyker-Snowman, E., Wieder, W. R., Frey, S. D., and Grandy,
A. S.: Stoichiometrically coupled carbon and nitrogen cycling
in the MIcrobial-MIneral Carbon Stabilization model version
1.0 (MIMICS-CN v1.0), Geosci. Model Dev., 13, 4413–4434,
https://doi.org/10.5194/gmd-13-4413-2020, 2020.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W.,
Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kam-
penhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F.,
Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M.,
Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger,
A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns,
S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak,
B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoff-
man, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J.,
Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier,
J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson,
B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Mar-
tin, M. V., and Zeng, X.: The Community Land Model Version
5: Description of New Features, Benchmarking, and Impact of
Forcing Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287,
https://doi.org/10.1029/2018MS001583, 2019.

Lindahl, B. D. and Tunlid, A.: Ectomycorrhizal fungi – potential
organic matter decomposers, yet not saprotrophs, New Phytol.,
205, 1443–1447, https://doi.org/10.1111/nph.13201 2015.

Lorenz, M.: International co-operative programme on assessment
and monitoring of air pollution effects on forests -ICP forests-,
Water Air Soil Poll., 85, 1221–1226, 1995.

Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L.,
Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka,
M., Wild, B., Keiblinger, K. M., Zechmeister-Boltenstern, S., and
Richter, A.: Adjustment of microbial nitrogen use efficiency to
carbon : nitrogen imbalances regulates soil nitrogen cycling, Nat.
Commun., 5, 1–7, https://doi.org/10.1038/ncomms4694, 2014a.

Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., and
Richter, A.: Stoichiometric imbalances between terrestrial de-
composer communities and their resources: Mechanisms and
implications of microbial adaptations to their resources, Front.
Microbiol., 5, 22, https://doi.org/10.3389/fmicb.2014.00022,
2014b.

Mouginot, C., Kawamura, R., Matulich, K. L., Berlemont, R.,
Allison, S. D., Amend, A. S., and Martiny, A. C.: El-
emental stoichiometry of Fungi and Bacteria strains from
grassland leaf litter, Soil Biol. Biochem., 76, 278–285,
https://doi.org/10.1016/j.soilbio.2014.05.011, 2014.

Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C,
N, P and S in grassland soils: a model, Biogeochemistry, 5, 109–
131, https://doi.org/10.1007/BF02180320, 1988.

Phillips, R. P., Meier, I. C., Bernhardt, E. S., Grandy, A. S.,
Wickings, K., and Finzi, A. C.: Roots and fungi accelerate
carbon and nitrogen cycling in forests exposed to elevated
CO2, Ecol. Lett., 15, 1042–1049, https://doi.org/10.1111/j.1461-
0248.2012.01827.x, 2012.

Pierson, D., Lohse, K. A., Wieder, W. R., Patton, N. R., Facer, J.,
de Graaff, M.-A., Georgiou, K., Seyfried, M. S., Flerchinger, G.,
and Will, R.: Optimizing process-based models to predict cur-
rent and future soil organic carbon stocks at high-resolution,

Sci. Rep.-UK, 12, 10824, https://doi.org/10.1038/S41598-022-
14224-8, 2022.

Sieczka, A. and Koda, E.: Kinetic and equilibrium studies of
sorption of ammonium in the soil-water environment in agri-
cultural areas of central poland, Appl. Sci.-Basel, 6, 269,
https://doi.org/10.3390/APP6100269, 2016.

Soetaert, K. and Herman, P. M.: A practical guide to ecolog-
ical modelling: using R as a simulation platform, Springer,
https://doi.org/10.1007/978-1-4020-8624-3, 2009.

Strand, L. T., Callesen, I., Dalsgaard, L., and de Wit, H. A.: Car-
bon and nitrogen stocks in Norwegian forest soils – the im-
portance of soil formation, climate, and vegetation type for or-
ganic matter accumulation, Can. J. Forest Res., 46, 1459–1473,
https://doi.org/10.1139/cjfr-2015-0467, 2016.

Strickland, M. S. and Rousk, J.: Considering fungal : bacterial
dominance in soils – Methods, controls, and ecosys-
tem implications, Soil Biol. Biochem., 42, 1385–1395,
https://doi.org/10.1016/j.soilbio.2010.05.007, 2010.

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and
Pacala, S. W.: Microbe-driven turnover offsets mineral-mediated
storage of soil carbon under elevated CO2, Nat. Clim. Change, 4,
1099–1102, https://doi.org/10.1038/nclimate2436, 2014.

Sulman, B. N., Shevliakova, E., Brzostek, E. R., Kivlin,
S. N., Malyshev, S., Menge, D. N., and Zhang, X.: Di-
verse Mycorrhizal Associations Enhance Terrestrial C Storage
in a Global Model, Global Biogeochem. Cy., 33, 501–523,
https://doi.org/10.1029/2018GB005973, 2019.

Sveistrup, T. E.: Retningslinjer for beskrivelse av jordprofil,
Jord og Myr, http://hdl.handle.net/11250/2489357 (last access:
5 July 2023), 1984.

Tang, J. and Riley, W. J.: Weaker soil carbon–climate feedbacks
resulting from microbial and abiotic interactions, Nat. Clim.
Change, 5, 56–60, https://doi.org/10.1038/nclimate2438, 2014.

Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D.,
Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang,
L., Lehmann, J., Wang, Y.-P., Houlton, B. Z., Ahrens, B., Viatkin,
K., Vargas, R., Yigini, Y., Omuto, C., Malik, A. A., Peralta, G.,
Cuevas-Corona, R., Di Paolo, L. E., Luotto, I., Liao, C., Liang,
Y.-S., Saynes, V. S., Huang, X., and Luo, Y.: Microbial carbon
use efficiency promotes global soil carbon storage, Nature, 618,
981–985, https://doi.org/10.1038/s41586-023-06042-3, 2023.

Taylor, M. K., Lankau, R. A., and Wurzburger, N.: Mycor-
rhizal associations of trees have different indirect effects
on organic matter decomposition, J. Ecol., 104, 1576–1584,
https://doi.org/10.1111/1365-2745.12629, 2016.

Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M.,
and Allison, S. D.: A framework for representing microbial de-
composition in coupled climate models, Biogeochemistry, 109,
19–33, https://doi.org/10.1007/s10533-011-9635-6, 2012.

Tonjer, L. R., Thoen, E., Morgado, L., Botnen, S., Mundra, S.,
Nybakken, L., Bryn, A., and Kauserud, H.: Fungal community
dynamics across a forest–alpine ecotone, Mol. Ecol., 30, 4926–
4938, https://doi.org/10.1111/mec.16095, 2021.

Treseder, K. K.: Nitrogen additions and microbial biomass: a
meta-analysis of ecosystem studies, Ecol. Lett., 11, 1111–1120,
https://doi.org/10.1111/J.1461-0248.2008.01230.X, 2008.

Wallander, H., Nilsson, L. O., Hagerberg, D., and Rosengren, U.:
Direct estimates of C : N ratios of ectomycorrhizal mycelia col-
lected from Norway spruce forest soils, Soil Biol. Biochem.,

Geosci. Model Dev., 17, 2929–2959, 2024 https://doi.org/10.5194/gmd-17-2929-2024
86



E. R. Aas et al.: Modeling boreal forest soil dynamics 2959

35, 997–999, https://doi.org/10.1016/S0038-0717(03)00121-4,
2003.

Wang, G., Post, W. M., and Mayes, M. A.: Development of
microbial-enzyme-mediated decomposition model parameters
through steady-state and dynamic analyses, Ecol. Appl., 23, 255–
272, https://doi.org/10.1890/12-0681.1, 2013.

Wang, Y.-P., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood,
J. D., Ollinger, S. V., Tang, X., and Prescher, A.-K.: Mi-
crobial Activity and Root Carbon Inputs Are More Impor-
tant than Soil Carbon Diffusion in Simulating Soil Car-
bon Profiles, J. Geophys. Res.-Biogeo., 126, e2020JG006205,
https://doi.org/10.1029/2020JG006205, 2021.

Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van
Der Putten, W. H., and Wall, D. H.: Ecological linkages between
aboveground and belowground biota, Science, 304, 1629–1633,
https://doi.org/10.1126/science.1094875, 2004.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and
Bonan, G. B.: Representing life in the Earth system with soil mi-
crobial functional traits in the MIMICS model, Geosci. Model
Dev., 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015,
2015.

Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y.-
P., Koven, C. D., and Bonan, G. B.: Carbon cycle confi-
dence and uncertainty: Exploring variation among soil bio-
geochemical models, Global Change Biol., 24, 1563–1579,
https://doi.org/10.1111/gcb.13979, 2017.

Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., and Zaehle,
S.: Jena Soil Model (JSM v1.0; revision 1934): a micro-
bial soil organic carbon model integrated with nitrogen and
phosphorus processes, Geosci. Model Dev., 13, 783–803,
https://doi.org/10.5194/gmd-13-783-2020, 2020.

https://doi.org/10.5194/gmd-17-2929-2024 Geosci. Model Dev., 17, 2929–2959, 2024
87



88



Supplement of Geosci. Model Dev., 17, 2929–2959, 2024
https://doi.org/10.5194/gmd-17-2929-2024-supplement
© Author(s) 2024. CC BY 4.0 License.

Supplement of

Modeling boreal forest soil dynamics with the microbially explicit
soil model MIMICS+ (v1.0)
Elin Ristorp Aas et al.

Correspondence to: Elin Ristorp Aas (ecaas@uio.no) and Terje K. Berntsen (t.k.berntsen@geo.uio.no)

The copyright of individual parts of the supplement might differ from the article licence.

89



S1: Total carbon stocks for cooler/warmer (a--c) and dryer/wetter (d--f) parts of the dataset. All three 
datasets (OBS, MIMICS+, CLM) are sorted after the climatic gradient of the observations. Box plots of 
carbon stocks in the (a), (d) top 30 cm, (b), (e) 30--50 cm, (c), (f) 50--100 cm soil depths for observed 
profiles  from Strand et al. 2016 (left), simulated with MIMICS+ (center) and with CLM (right). In (a--c) the 
leftmost quartiles represent the coldest 50  % of the dataset, while the rightmost represent the warmest 50  %
of the dataset.  In (d--f) the leftmost boxes represent the drier 50  % of the total subset, while the rightmost 
represent the wetter 50 %. 
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S2: Each panel contains boxplots of carbon stocks in the depth interval 
indicated in the top right corner, at sites from the total podzol dataset 
(N=578), that falls into the MAT interval indicated in the top left corner. The 
sites in each plot is divided into MAP categories described in main text, Table 
1. The line in each box is the median, while the diamonds mark the mean 
values. The box upper and lower edges are the 75th and 25th percentiles, 
respectively. The whiskers extend from the box by 1.5 times the inter-quartile 
range.
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S3: Carbon concentrations for dryer/wetter parts of the datasets divided by the CLM variable 
SOILWATER_10CM. Box plots of carbon concentrations in the (a) 0--30 cm, (b) 30--50 cm, (c) 50--100 cm 
soil depths for observed profiles  from Strand et al. 2016 (left), simulated with MIMICS+ (center) and with 
CLM (right). The line in each box is the median, while the diamonds mark the mean values. The diamond 
color correspond to the climate category; yellow: drier, turquoise: wetter. The box upper and lower edges 
are the 75th and 25th percentiles, respectively. The whiskers extend from the box by 1.5 times the inter-
quartile range.
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