
Master’s thesis

Recent changes in
groundwater levels for different
regimes in Norway

Torkel Andreassen Bjørbæk

Hydrology and Glaciology
60 ECTS study points

Department of Geosciences
Faculty of Mathematics and Natural Sciences

Spring 2024





Torkel Andreassen Bjørbæk

Recent changes in groundwater
levels for different regimes in

Norway

Supervisors:
Lena M. Tallaksen

Sigrid J. Bakke
Anne K. Fleig

Raoul A. Collenteur





Abstract

High latitudes regions are experiencing a rapid warming, with pronounced impacts
on frost and snow cover. How this affects the seasonal variation in groundwater
dynamics is not well understood. The main aim of this study was to analyse recent
trends in observed groundwater levels (GWL) for different regimes in Norway.
We used a reference dataset of 25 near-natural GWL time series from unconfined
aquifers. The series are of varying temporal resolutions and cover different time
periods. All except one cover the period 1991-2022. Gaps of different lengths (a
few days to years) are present in all series. To analyse trends, the time series first
needed to be gap filled. For this, the Pastas software was used to simulate GWL
using a lumped-parameter model and impulse response functions. Gridded, daily
precipitation, potential evaporation, and temperature data from E-OBS and SeNorge
were used as input. Different models were tested and the best R2 performing model,
ranging from 0.47 to 0.94, was chosen for each well. Finally, the simulated values
were used to gap-fill the series using a weighted linear scaling method. The daily
gap-filled time series were then used to calculate trends in GWL. Nine wells depicted
significant trends in mean annual GWL between 1982-2022, of which seven were
positive and two negative. Five stations showed consistent significant positive or
negative trends in all months, whereas most stations with significant monthly trends
had positive trends in spring, autumn and winter, and negative trends in summer.
Stations within the same groundwater regime depicted similar monthly trends. In
summary, there is a general positive GWL trend in autumn, spring, and winter
(towards wetter conditions), and a negative trend in the summer (towards drier
conditions). Furthermore, we see a tendency to a shift in the peak groundwater
levels towards earlier in the year for snow dominated sites.
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Sammendrag

De nordlige regionene har undergått en økning i temperatur med en påvirkning
på frost og snødekke. Hvordan dette påvirker sesongvariasjonen i grunnvanns
dynamikken er ikke så godt kjent. Hoved målet for denne studien var å analysere
nylige trender i observerte grunnvanns nivå (GVN) for ulike regimer i Norge. Vi
brukte et referansedatasett av 25 nær naturlige GVN tidsserier fra ubegrensede
akviferer. Data seriene har varierende tids oppløsning og dekker forskjellige
perioder. Alle bortsett fra en, dekker perioden 1991-2022. Hull av forskjellig
lengde (noen dager til år) er til stede i alle tidsseriene. For å analysere trendene,
trengte vi først å fylle igjen hullene i tidsseriene. Vi brukte programmet «Pastas»
for å simulere GVN ved bruk av en klumpet-parameter-modell og en impuls respons
funksjon. Modellerte daglig nedbør, potensiell evapotranspirasjon og temperatur
data fra E-OBS og SeNorge var brukt som input. Forskjellige modeller ble testet
og modellen med best 𝑅2-score, fra 0.47 til 0.94, ble valgt for hver grunnvanns
brønn. Til slutt, ble de simulerte verdiene fylt inn i hullene ved å bruke en liner
skalerings metode. De resulterende gjenfylte tidsseriene med daglig oppløsning
ble brukt i å undersøke for trender i GVN. Ni brønner viste signifikante trender i
gjennomsnittlig årlig GVN mellom 1982-2022, hvor syv var positive og to negative.
Fem stasjoner viste gjennomgående signifikante positiv eller negative trender alle
måneder. Majoriteten av stasjonene med signifikante månedlige trender hadde
positive trender i vår, høst og vinter månedene, og negative trender i sommer
månedene. I tillegg viste stasjonene i samme grunnvannsregime lignende månedlige
trender. Som oppsummering var det en generell positive trend i GVN om våren,
høsten og vinteren (mot våtere forhold), og negativ trend om sommeren (mot tørrere
forhold). Videre ser vi en tendens til en tidligere topp i GVN for stasjoner som er
dominert av snø om vinteren.
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Chapter 1

Introduction

1.1 Background and motivation

Water is an absolute necessity to sustain all life on earth. With increasing population, water
is becoming an increasingly more valuable resource all over the world. In addition, increasing
water usage in industry, energy production and agriculture, is all competing with the human
consumption. Groundwater amount to approximately 99 % of the liquid freshwater on earth
[UNESCO World Water Assessment Programme, 2022], and amount to about 35 % of the total
global water use [Döll et al., 2012]. As opposed to surface water, groundwater is often slow
responding to precipitation and or snowmelt, and recharge could take several months or years.
Because of this, groundwater deficits, caused by drought and/or overconsumption could have
devastating long-term consequences. Therefore, it is important to manage good water surveil-
lance in order to avoid overconsumption, and to implement mitigation measures in event of a
drought.

In Hydrology, the term "drought" is used to describe "a sustained and regional extensive
occurrence of below normal natural water availability"[Tallaksen and van Lanen, 2023]. Here,
the "natural water availability" is referring to the known natural conditions. Like any other part
of the hydrological system, these natural conditions are connected to complicated phenomenons
involving many drivers that include global oceanic, atmospheric currents and meteorological
conditions [Bakke et al., 2020a]. This way, the natural conditions is subjugated to changes and
seasonal patterns in the drivers.

In Norway, stable and easily accessible surface water is abundant almost all over the country.
This water is usually of good quality and enough quantity. Thus, most people are not relying
on groundwater for consumption. Groundwater usage is more common in agriculture and as a
drinking water source at cabins located in rural areas. However, in 2018, warm weather com-
bined with low precipitation put a strain on the surface water reservoirs and led to water shortage.
This drought forced many farmers to buy and import sufficient water for their crops and animals,
putting an additional strain on the water resources. In the end, the consequence of this drought
was a bad harvest, rationing of water, wildfires and other ecological damages [NVE, 2019].

Changes in the climate have been projected to change the climate zones in the high latitudes,
from cold climate to warmer, temperate climate during this century [Nygren, 2022]. In addition,
[Dyrrdal et al., 2012] have analysed precipitation in Norway the past century and found that there
has been a general increase in annual and seasonal precipitation. Warmer climate and increas-
ing precipitation, are examples of change in conditions and drivers that propagates through the
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Chapter 1. Introduction

hydrological cycle. Therefore, the "normal" hydrological conditions we see today might be dif-
ferent from the ones we had in the past, or the ones we will have in the future. However, there
has been less studies on how this might impact the groundwater variations and its seasonality
patterns.

Groundwater recharge

We know that groundwater is connected to the meteorological conditions through recharge.
Water from the surface infiltrates through the soil and eventually percolates down as recharge to
the groundwater. According to the dominant features affecting this percolation, we divide the
subsurface into different zones as shown in figure 1.1.

Figure 1.1: Figure is modified from [Dingman, 2015], and shows a conceptual drawing of the different
subsurface layers.

At the bottom, above an impermeable layer, we find the groundwater aquifer. An aquifer is a
"formation that can store enough water and transmit it at a rate fast enough to be hydrologically
significant" [Dingman, 2015]. Here, water exists between cracks and open pore spaces between
the grains in the soils. If the cracks and pore space is fully filled with water, we say that the soil is
saturated. Groundwater table is defined as the level of which the water within the saturated soil
is of positive pressure (i.e., greater than atmospheric pressure) [Dingman, 2015]. Consequently,
we refer to the groundwater table or level as the upper boundary of the groundwater aquifer.

Above the groundwater level, we find the capillary fringe. Here the soil is nearly satur-
ated. Water enter this zone as recharge form above, or with capillary rise from the groundwater
table. This level moves down as a response to the water withdrawal from roots or evaporation,
or up as a response to groundwater recharge [Dingman, 2015]. The third zone is the interme-
diate zone. Here, water enter as percolation from above and leaves as drainage to the capillary
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1.1. Background and motivation

fringe [Dingman, 2015]. The upper part is the root zone. This is the layer where vegetation can
extract water during transpiration. Depending on the vegetation type, this zone can be from a
few cm deep to over a meter deep. The soil moisture will in precipitation or snowmelt events
approach saturation, but between the events it will be under the field capacity. When we look at
a groundwater storage as a resource, we usually refer to it as a aquifer. We distinguish between
unconfined and confined aquifers. Unconfined aquifers are aquifers where the upper boundary
of the ground water flow is at atmospheric pressure (ground water level). In this case the total
head is equal to the elevation over the selected datum 𝑧. In confined aquifers, the soil is fully
saturated within the aquifer, with a boundary both above and below that has a significantly lower
hydraulic conductivity. Here, the pressure is higher than the atmospheric pressure, and its major
recharge is occurring from infiltration in the areas upstream where the aquifer is not confined
[Dingman, 2015]. Here, the groundwater head might be higher than the elevation over the datum
𝑧.

When speaking of groundwater at a regional scale we refer to it as a "groundwater system". A
groundwater system includes one or several connected aquifers and its surrounding environment.
Depending on scale, this can take into account everything from soil moisture, water propagation,
vegetation and long term climate conditions [Nygren, 2022]. Because of the spatial and temporal
variability of the conditions affecting the groundwater recharge, predictions of how the climate
change effects the groundwater is highly uncertain.

Seasonality and regions

In cold regions, the hydrometeorological variations are highly seasonal. Typically, each sea-
son is hydrological different as shown in Figure 1.2. In the wintertime, the soil is continuously
frozen, and precipitation comes as snowfall covering the ground. In springtime, the ground thaws
and the snow melts. With low evapotranspiration and low vegetation grow rates, the groundwa-
ter recharge is therefore highly related to the snow melt. In the summer season, lower effective
precipitation due to the high evapotranspiration and vegetation interception. In addition, high
vegetation grow rates leads to water being extracted from the soil and reducing groundwater re-
charge from precipitation. In autumn, the temperature and evapotranspiration from vegetation
lowers and the groundwater recharge is mainly from precipitation. With a general shift from
cold to more temperate climate, evapotranspiration rates and reduced snowfall might change the
governing seasonal patterns.

Data coverage

Since Norway has mainly relied on the surface water, there has been little focus on groundwa-
ter. Because of this, there is a low coverage of high-quality monitoring wells, making a regional
study difficult. In addition, the existing data is filled with gaps and irregular observation fre-
quencies. Common ways to resolve this problem of frequent gaps and irregular timesteps in the
data, is to cut the time series to maximum length and minimum gaps, replace the observation
data altogether with simulated values, or fill the gaps with estimated values.

Cutting the time series to achieve maximum length, while achieving a minimal number of
gaps, is a viable method when dealing with time series that has large gaps. However, this could
lose important data, and is therefore not a good option when dealing with short time series.

In order to replace the observation series with simulated values, one need to have a model

3



Chapter 1. Introduction

Figure 1.2: Figure is modified from [Nygren, 2022]. Conceptual illustration of the recharge in each
season into the groundwater aquifer. a) Winter recharge of groundwater is limited as precipitation is
stored in the snow layer and the ground is frozen. b) Spring melt occurs, and recharge to the groundwater
is occurring unrelated to precipitation, evapotranspiration is limited. c) Summer, Evapotranspiration is
high due to growing season and high temperatures, precipitation and recharge is limited. c) Autumn,
evapotranspiration is limited and precipitation related recharge is high.

that is able to sufficiently recreate the hydrological variations, based on the available input. To do
this, physically based hydrological models of different complexity are often used. These models
are based on the physical laws depending on hydrological processes and use physically based
equations to solve for water movement and storage in the catchment [Yoosefdoost et al., 2022].
General equations used are water balance equations, energy-saving and motion and kinemat-
ics, Darcy equations, St. Venant equations, Richards equation and Boussinesq equation
[Yoosefdoost et al., 2022]. If the model is accurate enough, we can use the simulated values
instead of the observation values. The drawback of using such a physical based model, is that
it can become very complex and require a lot of input data of the study area to achieve good
accuracy.

The last method to resolve the problem is to fill the gaps in the observation data with estimated
values. This way, we keep the observation data and values into the periods with missing data.
The data we fill in could be estimated using a statistical model, interpolation or hydrological
model of different complexities. Using this method, we can maximize the use of the time series
by using all the data in the observation series. Depending on the length of the gaps, we can
use simpler hydrological models, which requires less input data, without having the inaccuracy
of the model affecting the analysis significantly. In this study we decided to fill the gaps of the
observation data. Using first lumped-parameter hydrological based model with impulse response
functions to simulate groundwater levels, we then use a linear gap-filling method to fill the gaps.
With the gap-filled complete datasets of daily resolution, we create our drought indices, which
we then calculate the trends for different periods.

Seasonality and regions

4



1.2. Aim of study

Changes in the climate in Norway between 1957 and 2010 has been analyzed by
[Dyrrdal et al., 2012]. They used regions based on similarities in precipitation, temperature and
altitude. They found that the average regional change (%) of precipitation intensity and frequency
has increased significantly in most parts of the country. Increasing precipitation and temperature
has led to more snow in cold areas and less snow in warm areas. In addition, number of days
with temperatures close to zero has also become more frequent in non-coastal areas. The seasonal
variation of groundwater has both been estimated by [Bakke et al., 2020a] and [Nygren, 2022].
[Bakke et al., 2020a] categorized different groundwater regimes which we use in this study to dif-
ferentiate between the stations [Kirkhusmo, 1988]. The categories are based on the stream flow
categories defined in [Gottschalk et al., 1979], but transformed to fit groundwater variations in-
stead.

1.2 Aim of study

The Aim of this study is to examine the groundwater variations in Norway. In particular, we want
to see if it is possible to identify trends in the groundwater levels. Further, if there is a trend, how
does this relate to possible changes in drivers, and could this change the groundwater seasonality.
Basing on the assumptions that the seasonality of groundwater levels in Norway are driven by
seasonality of groundwater recharge, as a result of effective precipitation and snowmelt. We use
the results of long-term climate trends, that where presented by [Dyrrdal et al., 2012], along with
trends in the potential evapotranspiration and rain and snowmelt data from E-OBS and SeNorge
database, to formulate three hypotheses.

Hypothesis 1
Stations where the seasonal variation is heavily influenced by snow accumulation and snowmelt:
Will experience increasing trends of groundwater levels in the winter months, and no significant
increase or a decrease in the summer months.

Hypothesis 2
Stations with a snowmelt related groundwater peak in the spring: Will have a change towards
earlier GWL peak timing.

Hypothesis 3
Stations where the seasonal variations are mainly driven by rain events:
Will experience a decreasing trend in groundwater levels in the summer months, and an increas-
ing trend in the early winter months.

However, there is a general problem in the field of groundwater hydrology with varying
time resolutions and gaps in the observation data. It is common that observation data may vary
between monthly, weekly and daily observation resolution, along with gaps spanning from days
to years. Especially in Norway, where the tradition of groundwater studies has not been strong,
the observation series are neither long nor complete at any station.
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Therefore, to be able to answer the hypotheses, we need complete time series of the
groundwater levels with regular spacing between each point. To obtain this, we first use a model
to simulate the groundwater levels, and then linearly shift the simulated values to fill the gaps.
From the complete time series, we estimate the following drought indices:

• Mean monthly groundwater level
• Yearly average groundwater level
• Lowest summer month value
• Highest summer month value
Here, Monthly trends is derived to help understand the overall trend in annual trend, focusing

on changes in the seasonal patterns. In addition, the lowest and highest groundwater level around
the typical minimum and maximum months are used to check for trends in the magnitude of the
driest and wettest month. Following this introduction, the thesis is organised as follows:

• Section 2 presents the description of the study area and data that is used in the thesis.
• Section 3 presents the time series quality check, model description, outline of gap-filling

method, groundwater regimes, groundwater indices and trend analysis.
• Section 4 present the results of the model testing, gap-filing, groundwater regimes and

groundwater trend tests.
• Section 5 is the discussion of the results presented in section 4.
• Section 6 is the conclusion of the discussion.
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Chapter 2

Data and study area

The study area is the country of Norway. We use data from observations wells that are located
mostly in the southern half of Norway, in addition to two stations in the northern part. The
stations are located across 9 different climate regions and different altitudes. There are 9 stations
in located close to the ocean and the rest is located inland. All stations are influenced by the
snowmelt in spring season, but some more than others. We use the seasonality of the typical
variation to categorize the stations into four regimes based on [Kirkhusmo, 1988]. The geology
is mostly moraine or river deposits, and each station has different degrees of vegetation cover
and vegetation types. The data used is gathered from three sources. The first source is the
groundwater observations gathered by Norwegian water and energy department (NVE). The
second source is the rain and snowmelt data from "SeNorge". The third source is the temperature
and evaporation data gathered from "EOBS" initiative. The evaporation values are based on
EOBS data, but is calculated for the grid cells covering Norway using a script made by Sigrid J.
Bakke.

2.1 Data

The Norwegian Water and Energy directorate (NVE) are collecting observation data from
different stations all over Norway. All stations with daily observation data have been considered
(63 stations) in this study. Only stations with best quality observations and daily observation
length longer than 10 years, are used [Fleig et al., 2013]. This amounted to 25 stations with the
longest data series being from 1950-2022. The data is quality checked by NVE and stored in the
HYDRA II database. and the following 5 points is taken from [Fleig et al., 2013], describing the
selection criteria:

1. Stable land-use conditions
Stable land-use conditions including absence of significant regulations, diversions or water
use, including both natural and agricultural sites. Areas which are characterized as land
unit 112-artificial surfaces or 412-wetlands, following the Coordination of information
on the environment (CORINE) program categorizations, are excluded since they are not
considered to reflect natural climate variability. Stations with limited human influence are
included.

2. Record length
Minimum 20 years in total and more than 10 years of daily groundwater measurements.

3. Active data collection
Currently active and is expected to continue operation.
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4. Good data quality
Data quality was checked by an explorative graphical analysis where the series where check
for:

• Inhomogeneity
• Peaks which looked unnatural
• Jumps in periods of changes in measurement frequency and method

5. Adequate metadata
NVEs database (Hydra II) contains metadata about the station operations such as
instrumentation, measurement location and control measurements.

The observation data were assessed using Hydrological API (HydAPI). This is connected to
NVEs database for all hydrological data and is continuously updated with new data. The database
has different versions for different periods of the observation time series. The different versions
are then usually merged into one continuous time series. However, this had not been done at
Øverbygd station (23) at the time of this thesis, and therefore we only had access to the daily
observations, even though there are observations going back to 1979 (as seen in Table 2.6, and
Figure 2.1).

The final list of stations in Table 2.6, in addition to information about each station. Here,
the date of when daily measurement was implemented is from [Fleig et al., 2013]. The altitude
of the station, average precipitation and average annual temperature, and the precipitation and
temperature is calculated over the normal period between 1961-1990 (Anne K. Fleig, personal
correspondence, January 18. 2023). The average annual potential evapotranspiration and days
with potential snow days is calculated using the E-OBS data in this study, where potential snow
days is days with average temperature under 0 𝑜𝐶 .

All stations had missing values in the observation series. The Gaps had a length ranging
from days to years. Most of the gaps were between 0 and 3 months. 33 gaps were longer than
3 months. This is mostly due to the varying observation frequency. At the start of almost all
stations the observation frequency was one observation per month. This changed from once a
month to twice a month, once a week or daily observations. In addition, the day of the observa-
tions in a given month is changing over time. For example, one period could have observations
taken at the 1st and 15th day each month, but then change to the 30th and 14th for another period.

Figure 2.1 shows the time series retrieved by using HydAPI. Here the different resolutions
are given a different color, with blue being daily, and green being less than daily resolution. The
red color depicts gaps in the data that exceed the resolution of that given period.

The different temporal resolutions make it difficult to have consistency in the data. When
counting the number of gaps in the data, we define a gap as a consecutive period of missing value
of more than daily resolution. This means that between the observation points in the monthly
resolution period, we count one gap, even though there is no "gap" if we consider the monthly
resolution. A summary of the number of gaps with a given length across all the stations is shown
in table 2.2.

2.2 Meteorological data

The temperature and potential evaporation (PET) is extracted from the E-OBS dataset (version
28.0e)[van der Schrier, 2023]. E-OBS is a land-only daily gridded regional reanalysis ensemble
dataset for precipitation, temperature, sea level pressure, global radiation, wind speed and relat-
ive humidity in Europe. The spatial resolution on the data we use from E-OBS is on a 0.1 deg
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Table 2.1: Here, we see the station number, ID and name, the start dates of the time series, start date of
daily observation frequency, altitude, average yearly precipitation, average yearly temperature and days
with potential snowfall.

Station nr. Hydra-Id Station Name Start Daily values Alt. Prec. Evap. Temp. Potential snow
from from [m] [mm/a] [mm/a] [𝑜𝐶] days

0 2.725.1 Abrahamsvoll 1969 1999 717 824 459 1.0 160
1 20.34.4 Birkenes rør 4 1979 2002 74 1387 558 7.1 55
2 2.718.2 Dombås rør 2 1981 2002 524 734 433 0.8 162
3 2.727.0 Kise 1991 2000 128 695 569 5.0 100.4
4 12.343.12 Modum rør 12 1979 2001 123 771.1 616 5.5 94
5 173.28.1 Skjomen 1983 2001 10 1201 309 0.0 176
6 19.144.6 Stigvassåi rør 6 1971 2002 146 1077 590 5.5 85.9
7 16.231.9 Eikamoen rør 9 1979 2012 150 996 611 4.9 106
8 21.80.1 Evje rør 1 1982 2011 176 1388 570 6.2 71
9 56.3.2 Fana rør 2 1978 2003 51 2740 470 6.8 41.6
10 2.722.1 Finnbølseter rør 1 1977 2010 887 573 463 0.8 167
11 84.25.3 Førde/Moskog rør 3 1979 2007 53 2891 468 4.8 82
12 16.232.1 Groset grunnvannsrør 1A 1949 2004 952 728 432 1.1 159
13 2.724.9 Haslemoen rør 9 1981 2005 174 736 596 4.2 112
14 2.713.3 Hauerseter 1967 2011 216 797 583 4.8 108
15 28.14.2 Jæren rør 2 1979 2011 8 1498 463 7.9 28
16 111.14.2 Kårvatn rør 2 1981 2011 211 2002 401 1.9 141
17 23.17.4 Lindesnes rør 4 1980 2010 3 1371 457 7.7 37
18 2.721.1 Lykjestøylane rør 1 1977 2010 1050 1064 388 -0.8 188.8
19 313.12.7 Magnor rør 7 1977 2008 137 785 618 5.5 92
20 89.3.1 Nordfjordeid rør 1 1979 2008 69 2716 426 4.6 85
21 2.723.4 Settalbekken rør 4 1975 2010 957 622 383 -0.7 184
22 2.716.6 Stenerseter rør 1969 2010 604 752 486 0.7 164
23 196.47.2 Øverbygd rør 2 1979 2004 86 790 413 1.6 149
24 2.719.2 Øyangen rør 2 1977 2010 1071 641 417 -0.1 180

Table 2.2: Number of gaps with a certain length.
Length of gap Number of gaps

Gap < 1 month 27628
1 < Gap < 4 months 176

4 < Gap < 12 months 40
Gap > 12 months 8
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Chapter 2. Data and study area

Figure 2.1: Periods with and without observation data for each groundwater station used in the study.
Here the green colour marks periods with observations with a time resolution coarser than one day, and
blue colour marks period with daily resolution. Red colour marks the periods with gaps in the data
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grid. This is equivalent to a spatial distance of approx. 11 km. The data is simulated from 1950
until 2023. We extracted the data from the grid cell "closest" to our observation station in the
time frame from the beginning of the observations until 2023.

Through all the calculations, we use the E-OBS estimated PET data as described in
[Bakke et al., 2020a]. The E-OBS dataset provides Pennmann-Montheith based estimates of
PET for the period 19981-2023. As we needed data of PET dating back to 1967, we
used data estimated by Hargreaves method. The Hargreaves equation (2.1), described in
[Allen et al., 1994], was applied to estimate the daily PET [𝑚𝑚 𝑑𝑎𝑦−1] based on the E-
OBS daily mean (𝑇𝑚𝑒𝑎𝑛), minimum (𝑇𝑚𝑖𝑛) and maximum (𝑇𝑚𝑎𝑥) air temperature [deg𝐶]
[Bakke et al., 2020a].

𝑃𝐸𝑇 = 0.0023 ∗ 0.408𝑅𝑎 ∗ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∗
√

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 (2.1)
Where, 𝑅𝑎 is extra-terrestrial radiation [𝑀𝐽𝑚−2𝑑−1], 0.408 is the constant for converting
[𝑀𝐽−2] into [𝑚𝑚] ([Moeletsi et al., 2013]), and 0.0023 is an empirical coefficient. 𝑅𝑎, (𝑇𝑚𝑎𝑥 −
𝑇𝑚𝑖𝑛) and PET values are set to zero if they were negative. 𝑅𝑎 is estimated using equation (2.2),
as described in [Allen et al., 1994].

𝑅𝑎 = 37.6 ∗ 𝑑𝑟 ∗ (𝜔𝑆 ∗ 𝑠𝑖𝑛(𝑙𝑎𝑡𝑟) ∗ 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝑙𝑎𝑡𝑟) ∗ 𝑐𝑜𝑠(𝛿) ∗ 𝑠𝑖𝑛(𝜔𝑆)) (2.2)
Where, 𝑑𝑟 is the relative distance between Earth and Sun [-], 𝜔𝑆 is sunset hour angle [rad], 𝑙𝑎𝑡𝑟
is latitude in radians [rad], and 𝛿 is the solar declination in radians [rad]. The 𝑑𝑟, 𝜔𝑆 , 𝑙𝑎𝑡𝑟 and 𝛿
are estimated using the day of year (𝐽 ) and the decimal degree latitude (𝑙𝑎𝑡), using Equation 2.3
- 2.6.

𝑑𝑟 = 1 + 0.033 ∗ 𝑐𝑜𝑠(0.0172 ∗ 𝐽 ) (2.3)

𝜔𝑆 = 𝑎𝑟𝑐𝑐𝑜𝑠(−𝑡𝑎𝑛(𝑙𝑎𝑡𝑟) ∗ 𝑡𝑎𝑛(𝛿)) (2.4)

𝑙𝑎𝑡𝑟 = 𝑙𝑎𝑡∕57.2957795 (2.5)

𝛿 = 0.409 ∗ 𝑠𝑖𝑛(0.0172 ∗ 𝐽 − 1.39) (2.6)
In addition, hydro-meteorological data is extracted from the Norwegian database SeNorge

(version 1.1). This data spans from 1957 to 2022 and covers Norway in a 1x1km grid. As with
the E-OBS dataset, the data used where extracted from the grid cell closes to each station. SeN-
orge database, collected modelled data of total runoff from rainfall and snowmelt. The data is
calculated using first temperature to differentiate between snow and rain. If it is under 0°C the
precipitation is defined as snow and added to the snowpack. If the temperature is over 0°C, the
precipitation is defined as rain, and added to the snowpack or considered runoff if there is no
snowpack. In addition, if there is a snowpack and the temperature is over 0 degrees, the estim-
ated snowmelt is added to the runoff [Engeset, 2016]. In addition, the model uses the energy
balance with wind, cloud cover, incoming radiation and relative humidity as input to estimate
the snowmelt [Engeset, 2016]. This model is sensitive to temperature errors around 0°C, since
small inaccuracies could make the precipitation count as rain or snow.
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2.3 Study area

2.3.1 Extent and topology

Norway is a topological and climatically varied country. It stretches from 57𝑜58 - 71𝑜08 North
and 4𝑜56 - 31𝑜03 East, with a coastline stretching all along the western side. A prominent feature
is a mountain chain, covering Norway from North to South. It divides the southern part of the
country into; a western part with high topological gradients, and a undulating landscape on the
eastern side. As shown in Figure 2.2, most of the stations are located in the southern half of
Norway.

2.3.2 Climate

Because Norway is topological varied, meteorological conditions is also highly varied. In
general, moist air from the prevailing westerly winds is forced up by the mountains. Here the
air cools off and orographic precipitation occurs. Because of this, it can be a large difference in
yearly precipitation between areas. This difference is highlighted in figure 2.3, where we see the
mean annual precipitation in the period 1991-2020. Maximum yearly precipitation ranges from
6130 mm around Ålfotbreen on the west coast, to 212 mm in a small area in Saltdal in Nordland
[Tveito, 2021].

In addition to mean annual precipitation, mean seasonal temperature differences have been
compared between the two normal periods of 1961-1990 and 1991-2020. In Figure 2.4, we see
the seasonal difference from the two periods. We see that the winter season show the larges
difference. In addition, the largest change has been in the south eastern part of Norway.

Using the climate regions proposed by [Dyrrdal et al., 2012] for Norway, we divide the
stations into 13 regions, with sub regions (Figure 2.5). The classifications are based on
the [Hanssen-Bauer and Førland, 1998] division of monthly precipitation, where regions 2,
5, 6, 7 and 8 is subdivided into high- and lowland based on the general elevation under
1000 m.a.s. In addition, region 10 is divided based on the temperature regions proposed in
[Hanssen-Bauer and Nordli, 1998].

The climate regions covering the stations is shown in table 4.4.
[Hanssen-Bauer and Førland, 1998] calculated trends in annual and seasonal precipitation,

between 1897 to 1997. The results of the significant decadal trends of each region found in the
study is shown in Table 2.4. The values are the % of the normal value per decade. Here the "s"
and "ss" is denoting the significant level of the trend, with "s" being 95% and "ss"being at 99%
confidence level.

In addition, [Dyrrdal et al., 2012] calculated the percentage change in each region for
different metrics of precipitation (Am and Pot), maximum snow depth, snow fall frequency and
days with near-0 temperatures (-1.5 to 1 𝑜C mean temperatures). Table 2.5 shows the significant
trends in the period 1958-2010, according to the regions of which the groundwater stations are
located in. The values depicts the percentage change in the period and the parameters that are
selected is:

• Pot10 : Frequency of events with total precipitation over 60 mm over 10 days.
• Max SD: The Maximum snow depth
• Near-0: Number of days with average daily temperature between -1.5 to +1.0 𝑜C.
All in all we see that the general tendencies is a increasing temperature, with seasonal

differences in magnitude (Figure 2.4, and more seasonal and annual precipitation, with regional
differences (tables 2.5 and 2.4).
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Figure 2.2: The locations of the 24 observation stations used in this study. For numbering of stations, see
Table 2.6.
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Figure 2.3: The mean annual precipitation over Norway calculated for the period 1991-2020
[Tveito, 2021].

Figure 2.4: Figure from [Tveito, 2021], show the seasonal mean temperature difference between the 1991-
2020 average and the 1961-1990 average.
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Figure 2.5: The climate regions of Norway as proposed by [Dyrrdal et al., 2012]. Here the precipitation
regions are from [Hanssen-Bauer and Førland, 1998] and is marked with (- - -), the temperature regions
as defined in [Hanssen-Bauer and Nordli, 1998] is marked with (___) and the sub-regions of high and low
regions marked with (...). The Figure is from [Dyrrdal et al., 2012].
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Table 2.3: Station number, ID and Name, with the corresponding climate region.

Station nr. Hydra-Id Station Name Climate Region
0 2.725.1 Abrahamsvoll 7.1
1 20.34.4 Birkenes rør 4 3
2 2.718.2 Dombås rør 2 7.2
3 2.727.0 Kise 2.1
4 12.343.12 Modum rør 12 2.1
5 173.28.1 Skjomen 11
6 19.144.6 Stigvassåi rør 6 3
7 16.231.9 Eikamoen rør 9 2/3
8 21.80.1 Evje rør 1 3
9 56.3.2 Fana rør 2 5.2
10 2.722.1 Finnbølseter rør 1 2.2
11 84.25.3 Førde/Moskog rør 3 6.2
12 16.232.1 Groset grunnvannsrør 1A 2.2
13 2.724.9 Haslemoen rør 9 2.1
14 2.713.3 Hauerseter 2.1
15 28.14.2 Jæren rør 2 4
16 111.14.2 Kårvatn rør 2 8.2
17 23.17.4 Lindesnes rør 4 4
18 2.721.1 Lykjestøylane rør 1 2.2
19 313.12.7 Magnor rør 7 2.1
20 89.3.1 Nordfjordeid rør 1 6.2/8.2
21 2.723.4 Settalbekken rør 4 7.2
22 2.716.6 Stenerseter rør 2.1
23 196.47.2 Øverbygd rør 2 11
24 2.719.2 Øyangen rør 2 2.1
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Table 2.4: Table is taken from [Hanssen-Bauer and Førland, 1998]. Here we see the decal annual and
seasonal trends in the precipitation for the different regions from [Hanssen-Bauer and Førland, 1998].
Here the trends is given in % of the normal value per decade. Here, "s" is trends with 95%, and "ss" is
trends with 99% confidence intervals.

Region Annual Winter Spring Summer Autumn
1 +2.3% s
2 +2.3% s
3 -2.1% s
4 +2.4% ss
5 +1.2% s +2.2% ss
6 +1.8% s
7 +1.4% ss +2.6% s +1.8% s
8
9 +1.3% s +2.3% s

10 +1.8% ss +3.0% ss +1.8% s
11 +1.7% ss +2.4% s +2.5% ss +2.0% ss

Table 2.5: Table is a part from [Dyrrdal et al., 2012]. Here we see the significant average regional changes
in percent for precipitation, maximum snow depth and days with near-0 temperatures in the period from
1958 to 2010. The precipitation is calculated for peak over threshold for 10 days with a threshold of 60mm.
Days with near-0 temperature is defined as having an average day temperature between -1.5 to +1.0 𝑜C.
The "–" notation is given when there is no significant change.

Region Precipitation (Pot10) Max SD Near-0
2.1 +12.6% -21.6% +27.9 %
2.2 +27.4% – +40.3%
3 – -47.4% –
4 +18.7% – –

5.2 – – –
6.2 +11.5% – –
7.1 – – +46.1%
7.2 +41.9% +15.9% +36.9%
8.2 +23.7% – –
11 +24.1% – +19.4%
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2.4 Groundwater variation

In this study we use observations from stations in unconfined aquifers. Because it is in unconfined
aquifers, we assume the observed groundwater level variation is connected to the variation in the
hydrometeorology of the region. In addition, our measurements are point-specific, meaning that
they are only representing a single geographical point of an aquifer in a groundwater system. This
groundwater system could have a big extent and the different aquifers within the system could
be varying differently within the same time frame. The recharge, as described in section 1, can
occur both vertically and horizontally from surface water bodies. Under natural circumstances,
groundwater is eventually drained into river, lakes or oceans, but it can also move upward toward
the unsaturated zone where it is subjected to evapotranspiration ([Dingman, 2015]). In general,
we can write the regional groundwater balance as Equation 2.7:

𝑃 + 𝐺𝑖𝑛 = 𝑄 + 𝐸𝑇 + 𝐺𝑜𝑢𝑡 (2.7)
where 𝑃 is precipitation, 𝑄 is stream outflow. 𝐸𝑇 is evapotranspiration, 𝐺𝑖𝑛 is the water entering
as groundwater and 𝐺𝑜𝑢𝑡 is water leaving as groundwater. Here all the values for each parameter
are a long-term time average, and have the dimensions [𝐿3𝑇 −1]. Relating this water balance to
an unconfined aquifer, looking only at the change in storage, which is only affected by natural
processes, we can write Equation 2.7 as 2.8:

Δ𝑆 = 𝑃 − 𝐸𝑇 −𝑄𝑛𝑒𝑡 (2.8)
where we lump together the 𝑄, 𝐺𝑜𝑢𝑡 and 𝐺𝑖𝑛 as the net groundwater discharge 𝑄𝑛𝑒𝑡 and Δ𝑆
is the change in storage. Since we want to look at the temporal variability and trends in the
groundwater levels, we assume that the ground water horizontal fluxes remains constant in order
to simplify the analysis. In addition, since all data is located in cold climate, we need to separate
the precipitation input into snowmelt and rain. Hence, the groundwater balance becomes:

Δ𝑆 = 𝑅 + 𝑆𝑀 − 𝐸𝑇 (2.9)
where 𝑅 is rain and 𝑆𝑀 is snowmelt. This equation shows that the factors that drives the change
in storage are the water input of rain (𝑅) and snowmelt (𝑆𝑀), and the output of evapotranspira-
tion (𝐸𝑇 ). In reality, there could also be input from nearby lakes and rivers, but no stations are
close enough to be influenced by the water level.

Water movement through the soil is an important aspect when investigating trends and
responsiveness of the groundwater. The ability of fluids to move through a porous media is
determined by the hydraulic conductivity 𝐾ℎ [𝐿

𝑇
]. In relation to groundwater, this is determined

primarily by the characteristics of the soil. This can be used with the Darcy formula to describe
vertical water movement (eq. 2.10).

𝑞𝑧′ = 𝐾ℎ(Θ) −𝐾ℎ(Θ) ∗
𝑑Ψ(Θ)
𝑑𝑧′

(2.10)
where 𝑧′ is the vertical downward direction, the 𝑞𝑧′ is the downward flow rate, 𝐾ℎ is the hydraulic
conductivity, Θ is the water content of the soil and Ψ(Θ) is the pressure head. Here we see that
the vertical flow rate depends on the soil property (hydraulic conductivity), water content of the
soil and the pressure gradient. Since both the hydraulic conductivity and the pressure gradients
changes with the water content of the soil, the speed in which the water percolates down to the
groundwater table is also changing [Dingman, 2015]. The minimum infiltration rate through the
surface soil is approximately the saturated hydraulic conductivity of the soil [Dingman, 2015].
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However, the speed at which the water percolate down to the groundwater table does not exceed
the saturated hydraulic conductivity of the soil. In such a case where the water input (from rain
or snowmelt) exceeds the infiltration rate, and the percolation rate, pooling occurs, and water
accumulates on the surface. This excess of water on the surface will then create ponds, or drain
to other areas if it is a surface gradient. This pooling and excess of water typically occurs in
intensive precipitation events or with snowmelt in the spring season. In such a case, the total
amount of water recharge to the groundwater is both determined by the water input, but also the
time span of the input. If the input is intensive and short, a big amount of the water could drain off
the surface. However, if the input is less intensive but long, the water has time to percolate down
to the groundwater and a bigger portion of the water input ends up as groundwater recharge.

2.5 Groundwater regimes

The groundwater regime categorisation is a way to distinguish between different typical seasonal
hydrological patterns [Kirkhusmo, 1988]. This is done by looking at the typical GWL maxima
and minima. The two main regimes in Norway are the Atlantic and Mountain regimes. The
Mountain regime has a clear GWL maxima in the spring/summer in relation to the snowmelt
and soil thaw, while the GWL minima is in the months before the GWL maxima. The Atlantic
regime has a minima in the late summer in relation to the high evapotranspiration and low
precipitation. In addition, the winter is late, and the spring peak is early. In this regime, there is
a relatively high amount of precipitation in winter. Combined with low soil frost cover, the
recharge to the groundwater is also high as compared with the mountain regime. The third
regime category is the transitional regime. This is a middle ground between the Mountain and
the Atlantic regimes. Here, the yearly variations have two maxima and two minima. The maxima
is related to precipitation and snowmelt. The minima is related to low winter recharge and high
evaptranspiration combined with low precipitation in the summer, and soil frost and snow in the
winter.

2.6 Hydrogeology

Vegetation acts as an "extractor" of water from the aquifer up to the surface and air. This is most
important in the upper layer since the maximum root depth of the vegetation rarely goes deeper
than a few meters. Therefore, this is an important factor for shallow aquifers. The geological
setting is important factor when considering the responsiveness of the groundwater. Dense soils
have low water capacity and hydraulic conductivity, and hence, the water percolation is slowed
down. In general, vegetation can increase the potential transpiration, but some types can also
preserve soil moisture and isolate the subsurface from the surface incoming radiation. Vegetation
types like trees has deep roots compared to grass and peat and can connect the root zone with the
groundwater level at deeper depths. From personal correspondence with Anne K. Fleig, January
18. 2023, the deposits, estimated soil type and dominant vegetation type within an estimated
fraction of a 1x1 𝑘𝑚2 cell on the station, is given. This is then shown in Table 2.6.
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Table 2.6: Station number, ID and name, with deposit type, soil type and dominant vegetation with fraction
coverage of cell.

Station nr. Hydra-Id Station Name Deposit Soil type Vegetation (fraction)
0 2.725.1 Abrahamsvoll Thick moraine Loamy sand Forest (0.53)
1 20.34.4 Birkenes rør 4 Glacial-fluvial deposit Sand (mSa) Forest (0.72)
2 2.718.2 Dombås rør 2 River (moraine) Sand (gSa) Forest (0.54)
3 2.727.0 Kise Thick Moraine/River Loamy sand Forest , Lake(0.8)
4 12.343.12 Modum rør 12 River Sand Forest (0.7)
5 173.28.1 Skjomen River Sand Forest (1.0)
6 19.144.6 Stigvassåi rør 6 River Sand Forest (0.79)
7 16.231.9 Eikamoen rør 9 Glacial-fluvial deposits Sand (mSa) Forest (0.34)
8 21.80.1 Evje rør 1 Glacial-fluvial Sand (mSa) Forest (0.84
9 56.3.2 Fana rør 2 Thin moraine Loamy sand Forest (0.74)
10 2.722.1 Finnbølseter rør 1 Thick moraine Loamy sand Forest (0.5)
11 84.25.3 Førde/Moskog rør 3 Glacier river Sand (mSa) Forest (0.43)
12 16.232.1 Groset grunnvannsrør 1A Thick moraine Loamy sand Forest (0.64)
13 2.724.9 Haslemoen rør 9 Glacier river Sand (mSa) Forest (0.8)
14 2.713.3 Hauerseter Glacier river Sand Forest (0.71)
15 28.14.2 Jæren rør 2 Marine sand Sand Forest (0.19)
16 111.14.2 Kårvatn rør 2 River Sand Forest (0.88)
17 23.17.4 Lindesnes rør 4 Glacial-fluvial Sand Forest (0.81)
18 2.721.1 Lykjestøylane rør 1 Glacial-fluvial Sand Peat (0.8)
19 313.12.7 Magnor rør 7 River Sand Forest (0.79)
20 89.3.1 Nordfjordeid rør 1 Glacial-fluvial Sand Forest (0.38)
21 2.723.4 Settalbekken rør 4 Thick moraine Loamy sand peat (0.19), mountain (0.77)
22 2.716.6 Stenerseter rør Thick moraine Loamy sand Forest (0.9
23 196.47.2 Øverbygd rør 2 Glacier River Sand Forest (0.99)
24 2.719.2 Øyangen rør 2 Thick moraine Loamy sand Peat (0.2), Mountain (0.8)
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Methods

The method used in this thesis is following analysing steps:
1. Gap-fill time series using Pastas model.
2. Derive groundwater indices.
3. Trend analysis.

In this chapter, the Pastas model section describes how we make the groundwater simulation
model (step 1). The "Gap-filling method" chapter describes the method used to fill the gaps in the
time series with the simulated data (step 2). The last several chapters describe the definitions and
description of the groundwater indices used, and the method for trend estimation. The workflow
is shown in the flowchart in figure 3.1,
sowing the input and output (black boxes), the tests and choices (blue boxes), with the models
and methods (yellow boxes), for each step of the workflow.

3.1 Observation data check and processing

In quality checking the data, some unrealistic observation values at some stations were discovered
at Kise (3), Lindesnes (17) and Øverbygd (23) stations. The unrealistic values for each station
were:

• Kise (3) station: A unrealistic high value on the 5th of May 2001. The value showed a
GWL of -0.045m, while the next day it was -1.59m. With significant autocorrleation of
276 days, this value was considered unrealistic.

• Lindesnes (17) station: A unrealistic low value on the 9th of September 2022. The value
showed a GWL of -386 m which is two magnitudes lower than the rest of the GWL, and
was therefore considered unrealistic.

• Øverbygd (23) station: A series of 28 consecutive values between the 9th of July to 5th
of August. The first of the values were -8.8 m, then it jumped to -3.69 m the next day.
For the following 5 days, the values were -3.69 m. For the rest of the values, they steadily
increased from -3.69 m to -2.17m, before jumping to -1.6 m on the 29th observation point.
This abnormal behaviour, in addition to that the lowest observation within the rest of the
time series was -2.24 m, led to the conclusion that the 28 first values was unrealistic. Figure
3.2 show Øverbygd time serie were we see the unrealistic value (red points) as compared
with the rest of the time series.
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Figure 3.1: Flowchart of the working method. Here the black boxes represent the input and output. The
yellow boxes are the operations that where conducted. Lastly the blue boxes are the tests and choices that
were conducted.
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Figure 3.2: The unrealistic values is shown in red color, while the values deemed realistic is shown in
black.

All the unrealistic values where deleted from the observation series. The rain and snowmelt
data gathered from the SeNorge dataset covers the period between 1957 to 2022. Because we
needed a warmup period of 10 year for the pastas model, only groundwater observations after
1967 were used. This only affected Groset (12) station, which has observation beginning in 1950.

3.2 Groundwater modelling using Pastas

To fill the gaps in the time series we want to simulate the groundwater level at each station.
As shown in figure 3.1, we do this by making a groundwater model that takes in precipitation,
evaporation, and temperature data as inputs, and fit a model to the observations. To do this we
use the open-source modelling tool called Pastas [Collenteur et al., 2019]. Pastas is a python
package, and is a tool specifically used to analyse the variations in the groundwater level
measurements in observation wells. It is assumed that the main driving factors of the groundwater
variations are the changes in the driving factors, referred to as stresses in the model, shown
mathematically in equation 3.1

ℎ(𝑡) =
𝑀
∑

𝑚=1
ℎ𝑚(𝑡) + 𝑑 + 𝑟(𝑡) (3.1)

where ℎ(𝑡) is the observed heads, ℎ𝑚(𝑡) is the contribution of stress 𝑚 to the head, 𝑑 is the base
elevation of the model, and 𝑟(𝑡) is the residuals. Each model can have an arbitrary number of
stresses (𝑀) that contribute to the head [Collenteur et al., 2019]. The contribution of each stress
ℎ𝑚 is calculated through equation 3.2:

ℎ𝑚(𝑡) = ∫

𝑡

−∞
𝑆𝑚(𝜏)𝜃𝑚(𝑡 − 𝜏)𝑑𝜏 (3.2)
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where 𝑆𝑚 is a time series of stress 𝑚, and 𝜙𝑚 is the impulse response function for stress 𝑚
[Collenteur et al., 2019]. Here, the impulse response function translates the response from a
instantaneous impulse from the input series [von Asmuth et al., 2002]. Different stresses have
different impulse functions based on how they relate to the groundwater recharge.

The single stress input in the model can also be a combination of multiple stresses. A simple
example of this can be the recharge 𝑅(𝑡) from precipitation (𝑃 (𝑡)) and reference evaporation 𝐸𝑟(𝑡)
as shown in equation 3.3

𝑅(𝑡) = 𝑃 (𝑡) − 𝑓 ∗ 𝐸𝑟(𝑡) (3.3)
where 𝑓 is a parameter scaling the reference evaporation [Collenteur et al., 2019].

This works well for simple shallow groundwater levels in temperate climates, but for deep
groundwater levels in arid climates one has to use a more complex recharge model. Therefore,
we need to test different models at each station to find out what model type is preforming the
best.

3.2.1 General workflow

In Python, we follow the Pastas seven-step workflow procedure from [Collenteur et al., 2019], to
make a model for each station:

1. Import Pastas package.
2. Read the time series from files and store them as Pandas Series or DataFrame objects.
3. Create a Model object and supply the observed head series.
4. Create StressModel objects by supplying the observed stress and specifying a response

function and add each StressModel object to the Model object.
5. Estimate the parameters of the Model and compute fit statistics.
6. Visualize output.
7. Analyse residuals and noise.

3.2.2 Input data

We start by importing temperature, precipitation and evaporation data over Norway, and use the
nearest grid cell to each station to extract the data spanning from 10 years prior to the start of
the observation until end of our analysis period (31.12.2022). Then we create a model using four
different recharge models (as shown in Figure 3.1, and discussed in section 3.2.4), using the 10
years of input data as the warmup period. After this, we test the residuals for a possible trend
using Mann-Kendall slope test. If there is a trend, we remove it by adding a linear trend in the
model corresponding to the trend in the residuals. After removing all trends in the residuals of
each model, we choose the model with the best 𝑅2 score. This model simulated values are then
used to fill the gaps in the observations with the fitting method (section 3.3).

In the preliminary study we tested two type of datasets to use as inputs in the models. The
first sets where the 0.1x0.1 deg E-OBS grided dataset for precipitation, potential evaporation and
temperature. The second dataset was to use the 0.1x0.1 deg E-OBS PET and temperature data-
set in combination with the 1x1km gridded rain and snowmelt dataset from SeNorge. The third
dataset that was tested was the 0.1x0.1 deg E-OPS PET dataset in combination with the rain and
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snowmelt and temperature data from SeNorge database.

To decide the optimum dataset combination that we would use in the study, we compared
performance of the best models 𝑅2. From this we chose the 0.1x0.1 deg E-OBS PET and
temperature data in combination with the 1x1km SeNorge rain and snowmelt data since it gave
the overall best model performance.

3.2.3 Pastas response function

The groundwater level in an observation well is the sum of the individual effects on that
groundwater level from the different stresses that act on the aquifer [Bakker and Schaars, 2019].
To estimate the response of the groundwater level to the changes in the stresses, the model fits a
response function. The selection of which response function to use is based on the performance
of the function to accurately simulate the groundwater variations in relation to the changes in
stresses. One of the response functions is the exponential function, as shown in equation 3.4.

𝜙𝑡(𝑡) = 𝐴𝑎 (3.4)
This function has one scaling factor 𝐴 and a shape parameter 𝑎. The most common response
function for groundwater recharge is the scaled Gamma function shown in equation 3.5
([Besbes and De Marsily, 1984, von Asmuth et al., 2002]).

𝜙𝑝(𝑡) = 𝐴 𝑡𝑛−1

𝛼𝑛Γ(𝑛)
𝑒

−𝑡
𝛼 𝑓𝑜𝑟 𝑡 ≥ 0 (3.5)

where 𝐴 is the scaling factor, 𝑎 and 𝑛 are the shape parameters, and Γ is the gamma function.
Block Response The block response is the response of the stress acting in one day. As an

example, we can see how the head changes with a one-day rainfall. The head will first increase,
and then go back to its initial level. The total time from the start of the rainfall and when the
head is back at its initial level, is called memory, 𝑡𝑚𝑒𝑚 [Bakker and Schaars, 2019]. This can be
interpreted as an estimation of the autocorrelation or accumulation period of the aquifer.

Step Response The step response is the response due to continuous rainfall. If it is raining
at a constant rate for a long period, we assume that the head eventually reaches a plateau. This
plateau is called the gain of the response function [Bakker and Schaars, 2019]. This plateau can
be interpreted as the maximum percolation rate into the aquifer. In addition, it estimates the time
it takes to reach this maximum percolation rate given a constant rate of precipitation.

3.2.4 Pastas recharge model

In Pastas, stresses can be combined with a specific recharge model. This model can vary, but it
relates sum of the stresses to the variation of the groundwater [Collenteur et al., 2019]. In this
thesis we test four different recharge models at each station and compare them to determine what
is the best model to use. The four recharge models we test are:

• Linear recharge model
The "linear recharge model" uses a linear relationship between the stress parameter and
response to estimate the groundwater level. This is best suited in situations where there is
a shallow groundwater table, homogeneous sediments and the response time is relatively
short. This recharge model is shown in equation 3.3. It simplifies the soil and unsaturated
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zone processes to achieve a simple model with two assumptions; (1) The head is linearly
responding to the precipitation and evaporation, independent of the state of the system.
(2) The evaporation is not water limited and occur at the rate of 𝑓 times the evaporation
[Collenteur et al., 2023]. This way, the recharge can be both positive and negative. This is
done by using the ps.rch.linear() function in the recharge model.

• Non-linear recharge models
The Non-linear recharge model is using a Non-linear relationship between the stress
parameters and the response of the groundwater. It uses a soil-water balance approach,
where precipitated water, exceeding the interception capacity, continues to the root zone
storage. Here the infiltrated water is temporarily stored and released as soil evaporation
and transpiration, or groundwater recharge [Collenteur et al., 2023]. The water balance of
the root zone over time is:

Δ𝑆𝑟
Δ𝑡

= 𝑃𝑒 − 𝐸𝑡,𝑠 − 𝑅 (3.6)
Where 𝑆𝑟[𝐿] is the amount of water within the root zone and 𝑅 is the recharge to the
groundwater , and the 𝐸𝑡,𝑠[𝐿𝑇 −1] parameter is the combined evaporation from the soil and
transpiration from the vegetation [Collenteur et al., 2021].The saturation at the beginning
is set to half of the maximum storage capacity, and the evaptranspiration is limited by the
water available in the root zone:

𝐸𝑡,𝑠 = (𝐸𝑚𝑎𝑥 − 𝐸𝑖)𝑚𝑖𝑛(1,
𝑆𝑟

𝑙𝑝 ∗ 𝑆𝑟,𝑚𝑎𝑥
(3.7)

Here, 𝑙𝑝 determine what fraction of 𝑆𝑟,𝑚𝑎𝑥 the evaporation flux is limited by the availability
of the soil water [Collenteur et al., 2021]. 𝐸𝑚𝑎𝑥 is the maximum potential evaporation and
is calculated as follows:

𝐸𝑚𝑎𝑥 = 𝑘𝑣𝐸𝑝 (3.8)
Where 𝐸𝑝 is the potential evaporation and 𝑘𝑣 is a parameter that needs to be calibrated.
With this the, the recharge to the groundwater can be calculated as:

𝑅 = 𝑘𝑠(
𝑆𝑟

𝑆𝑟,𝑚𝑎𝑥
)𝛾 (3.9)

where 𝑘𝑠[LT−1] is the saturated hydraulic conductivity, 𝑆𝑟 is the storage capacity of the
root zone, 𝑆𝑟,𝑚𝑎𝑥 is the maximum storage capacity of the root zone, and 𝛾 is a parameter
determining the non-linearity of the recharge flux with respect to the saturation of root
zone [Collenteur et al., 2023].

This is a more hydrological accurate model as compared with the linear model, and is better
suited in situations with deep groundwater tables, homogeneous to semi homogeneous
sediments and a long response time. However, it comes at a cost of six more parameters
where the maximum interception capacity is fixed at 2mm, and the saturation of the root
zone where actual evaporation is equal to the potential evaporation is fixed at 𝐿𝑝 =
0.25. The rest of the new parameters, 𝑘𝑠, 𝛾 , 𝑆𝑟,𝑚𝑎𝑥 and 𝑘𝑣 is calibrated by the model
[Collenteur et al., 2023]. This is done by using the ps.rch.FlexModel() in the pastas
toolbox.
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• Non-linear recharge model with snow

The Non-linear recharge model with snow is adding another step to the Non-linear recharge
model structure. It uses a temperature threshold to divide the precipitation into snow or
rain. If the temperature is under the threshold, precipitation is defined as snowfall and ad-
ded to a snow storage. If the temperature is over the threshold, the precipitation is defined
as rainfall, and (if a snowpack is present) snowmelt is calculated using the degree-day
method and added to the rainfall[Collenteur et al., 2023].

The model requires temperature data and two extra parameters that has to be calibrated.
The first parameter is the temperature threshold 𝑇𝑡, this is set to 0𝑜C. The second parameter
is 𝑘 in the degree-day factor shown in equation 3.10.

𝑀𝑒𝑙𝑡 =

{

0 𝑖𝑓 𝑇 ≤ 𝑇𝑡,
𝑘(𝑇 − 𝑇𝑡) 𝑖𝑓 𝑇 > 𝑇𝑡

(3.10)

Where the 𝑀𝑒𝑙𝑡 is the total snowmelt resulting from the snowpack. Because of the added
snow scheme, this model is more suited for locations with many snow days throughout
the year. This is done by using ps.rch.FlexModel(snow=True) in the Pastas modelling
toolbox.

• Threshold recharge models

The threshold recharge model is made by using the "threshold autoregressive self-exciting
open-loop (TARSO)" method [Knotters and De Gooijer, 1999]. It fits two exponential
response functions to simulate the recharge. The model uses the exponential function
depending on the simulated value is over or under the threshold. This gives a non-linearity
to the model [Knotters and De Gooijer, 1999]. The TARSO model needs to estimate seven
parameters in total; A0, a0, d0, A1, a1, d1 and f. Here the notation 0 and 1 refers to the
corresponding exponential functions and A, a and d are the parameters as shown in equation
3.4. The parameter f is the multiplication factor of the potential evaporation as shown in
equation 3.3. A physical interpretation of the TARSO model structure is that the saturation
of the subsurface changes the response. Such a model is well suited for situations where
there is an apparent threshold of the groundwater level. This is done by using the ps.
TarsoModel() in the pastas modelling toolbox.

3.2.5 Parameter estimation

Estimating the parameter of the response and recharge functions is crucial in getting a good fit.
Depending on the model, we need to calibrate 6 - 11 parameters. All parameters are shown
according to model type, boundaries and fixed value in Table 3.1.
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Table 3.1: Taken from [Collenteur et al., 2023], shows the parameters that are used in the different
models, with their corresponding fixed value or boundary. Her is 𝜇𝑟 the mean of the residuals
[Collenteur et al., 2023].

Model Parameter Units Bounds Fixed value
Base 𝑑 m - 𝜇𝑟

Recharge A - [1e-9, ∞]
response 𝛼 d [1e-2, 2e3]

𝑛 - [1e-2,1e2]
Linear Model 𝑓 - [-1.5, -0.5]

Non-Linear Model/ 𝑘𝑣 - [0.5, 1.5]
Non-Linear snow Model 𝑆𝑖,𝑚𝑎𝑥 mm - 2

𝑆𝑟,𝑚𝑎𝑥 mm [1e-5, 1e3]
𝑘𝑠 mm/d [0, 1e4]
𝑙𝑝 - - 0.25
𝛾 - [1e-5, 20]

Non-Linear snow Model 𝑇𝑡 𝑜C - 0
𝑘 mm/𝑜C/d [1, 20]

Threshold Model 𝐴0/𝐴1 - [1e9, ♾]
𝑎0∕𝑎1 d [1e2, 2e3]
𝑑0∕𝑑1 m - 𝜇𝑟

𝑓 - [-1.5, -0.5]
Noise 𝛼 d [1e9, 5e3]

It is important to have good initial condition if possible to arrive at the best parameter values.
For some of the parameters, good initial values can be specified. For example, the parameter 𝑑
in equation 3.1 is commonly estimated as the mean of the observed heads ℎ(𝑡), and the scaling
parameters of the response functions (𝐴 in equations 3.4 and 3.5), are computed as 1

𝜎𝑆
, where 𝜎𝑆

is the standard deviation from the stress time series [Collenteur et al., 2019].

Parameter boundaries are also limited to a range with physical meaning. For example, the
scaling parameter 𝐴 of the Gamma function (3.5) has a lower boundary of 0, so the head will
increase in response to a positive recharge. The evaporation factor 𝑓 is bound to the range 0 to
-2, so that the actual evaporation can vary from 0 to at most 2 times the reference evaporation
[Collenteur et al., 2019]. For the calibration, Pastas use a nonlinear least squares algorithm to
minimize the sum of weighted square of noise following [von Asmuth and Bierkens, 2005]. We
calibrate the parameters for each model using all observation data.

3.2.6 Metrics of goodness of fit

There are different methods to evaluate how well a model simulate the observed values. The dif-
ferent methods to quantify the error have different approaches, but we can divide them into two
general categories; The relative change metrics and absolute change error metric. Whereas the
relative change metrics are dimensionless, the absolute change metrics have the same dimensions
as the data [Jackson et al., 2019].

We want to use the model to fill in the gaps in the observation data. Since we use linear
scaling to interpolate values between the gaps (section 3.3), the simulation does not need to sim-
ulate accurately the groundwater level. However, it is important to simulate the variation of the
groundwater well. For this reason, we chose the 𝑅2 metric to determine which model to use for
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each station.

Coefficient of variation (𝑅2)

The Coefficient of variation 𝑅2 is a relative error metric of the variance percentage error. It is
0 ≤ 𝑅2 ≤ 1, has no unit and does not indicate bias. We calculate it by taking the ratio of the
explained variance to the observed variance. Therefore, it is a estimate of how much variance
the simulation captures as compared with the variance of the observations. The 𝑅2 is calculated
according to equation 3.11:

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦)2
(3.11)

Where 𝑦𝑖 is the observation point 𝑖, 𝑦𝑖 is the model estimated value at point 𝑖 and 𝑦 is the average
of all the observation values. Pastas has built in weighted 𝑅2 metric to account for the bias
created by the often-occurring temporal change in observation point density. The 𝑅2 equation is
therefore weighted according to the data density as shown in equation 3.12:

𝑅2
𝑤 = 1 −

∑𝑁
𝑖=1𝑤

′

𝑖(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1𝑤
′

𝑖(𝑦𝑖 − 𝑦)2
(3.12)

where 𝑤′

𝑖 is the weight assigned to point 𝑖 to account for the observation density bias. All
other symbols are as equation 3.11. We use this weighted 𝑅2 value to evaluate the models and
determine what is the best preforming model.

3.2.7 Sources of uncertainties

As explained in [Bakker and Schaars, 2019], challenges in using Pastas are how to assess the
goodness of fit of the model and how to improve the model performance. There are statistical
metrics we use to assess how good the model is. The main metrics used in the Pastas package
are root mean squared error (RMSE) and the percentage of variance explained (coefficient of
determination (𝑅2) or Nash-Sutcliffe coefficient). As stated in 3.2.6, we only use the inbuilt
weighted 𝑅2 metric (Equation 3.12) to determine the performance of the model.

The second challenge is to improve the model if is a poor fit. After checking for
any elementary errors in the inputs or model implementation, the main challenges are
[Bakker and Schaars, 2019]:

1. Inaccurate head measurements, for example poorly installed or leaky observation wells, or
problems with automatic pressure transducers.

2. Missing or incomplete stresses, for example undocumented and/or illegal pumping,
unknown surface water level variations, a regional decline in heads caused by an overall
increase in pumping, or stresses that are not measured before the change that is to be
evaluated.

3. Inaccurate stresses, for example poor potential evapotranspiration, temperature and rainfall
estimates from weather stations that is too far away or modelled data.

4. Overparametrization, for example not enough data and/or too complex a model to estimate
the parameters.
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5. Convergence to a local optimum, for example the parameter estimation algorithm finds a
local optimum but misses the global optimum.

6. Missing processes, for example recharge is simulated as a linear function of measured
rainfall and reference evaporation while the relationship is nonlinear, or drainage systems
prevent the head from rising above the level of the drains.

7. A change in the system behaviour, for example land-use change has changed the
relationship between rainfall, reference evaporation, and recharge. Or a stream is dredged
or deepened, as such removing or reducing the leaky stream bed, resulting in a different
response function.

The challenges related to points 1,2 and 7 are generally accounted for by using the quality
checked data (Section 2.1) by NVE. The other points are not directly handled for and need to be
taken into account.

Time frequency model bias
The changes in observation frequency are generally accounted for in the pastas modelling package
when using a noise model. However, the amount of data points used as a basis for generating
the model could give the model a bias. The difference between a 30-day and a 1-day observation
frequency makes the model to tend more to fit the parameters to the observation heavy part of the
time series. This could lead to a bias in the response and stress estimation. This could then make
it difficult to make a good model, and it could be difficult to identify a change in the response of
the groundwater.

3.3 Gap filling method

As discussed in section 1.2, we want to complete our observation series before conducting the
trend analysis. We want to achieve a daily temporal resolution through all our data. This means
that we need to fill the gaps exceeding one day in the observation data. We do this by using the
simulated data from the hydrological models created using Pastas. The advantage of this is that
the variations seen in the simulation is explained by changes in the meteorological drivers. Thus,
the infilled values would be consistent to the hydrological principles of groundwater recharge at
the complexity of the model we use.

Such models are rarely simulating the groundwater level perfect at all time steps. Therefore,
simulated values might be differing from the observation values, even though they have a high
𝑅2-score. Because of this, we develop a method to shift the simulated values to fit with the
observation data, while preserving the hydrological accurate variations from the model. The
method uses linear scaling of the simulated values. First, we calculate the difference between the
observation and simulation in the points just before and after the gap (𝑑𝑦0, 𝑑𝑦𝑛). Then we create
a line that goes through 𝑑𝑦0 at 𝑡0 and 𝑑𝑦𝑛 at 𝑡𝑛, where 𝑛 is the number of days in the gap. Lastly,
we use this line to shift the simulated values. Mathematically this can be defined as equation
3.14.

𝑓 (𝑖) = (𝑦0 − 𝑦0) +
(𝑦𝑛 − 𝑦𝑛) − (𝑦0 − 𝑦0)

𝑁 + 1
∗ 𝑖 (3.13)

𝑦𝑎𝑑𝑗(𝑖) = 𝑦𝑖 + 𝑓 (𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ ℕ[0, 𝑁 + 1] (3.14)
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where 𝑦 and 𝑦 is observation and simulation values respectively, the notation 0 and 𝑛 refer to the
points before and after the gap, 𝑛 is the number of days in the gap, and 𝑖 is the numbered days in
the gap.

This method is conceptually shown in figure 3.3. The figure shows how we use the last point
before the gap and last point after the gap (upper-right corner graph), to fit a "difference line".
We use this line to interpolate for each daily point in the gap (Green points Figure 3.3).

Figure 3.3: A conceptual sketch of the infilling method. Here the blue values are the simulated
groundwater level (GWL) values from the model, the black dots are the observations and the green dots
are the infilled. The red lines with notation 𝑑𝑦0...𝑑𝑦𝑛 is the value at each point from 0 to 𝑛 is shifted with.

Using this method, we could be in danger of shifting the simulated values over, or under,
what is a realistic value. This could be in the case where our model is simulating an increase
(or decrease) in GWL due to an extreme event, and because of our shifting, the resulting values
become too high (or low). To avoid this problem, we assume that the maximum and minimum
observed values are not exceeded in the gaps between the observations. In this chase, we set the
shifted value equal the maximum or minimum observed value.

3.4 Groundwater regimes

The groundwater regime categorisation is based on Kirkhusmo (1988), using the operational
definitions by [Bakke et al., 2020b]. It uses the groundwater fluctuation patterns to divide them
into idealised regions, with the possibility of a time shifted version [Bakke et al., 2020b]. These
categories are similar to the stream flow regimes presented in [Gottschalk et al., 1979], but with
a delay added due to the groundwater lag. The three main regimes are based on the groundwater
maxima and minima. The first region is the Atlantic regime, with maximum groundwater levels in
late winter or early spring, and the minimum in late summer. The second regime is the Transition
regime, and consist of two annual maxima and minima that typically occur in the months between
April to June. The third regime is the Mountain regime, with a minimum just before the snow
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Figure 3.4: The figure is modified from [Bakke et al., 2020a], and is based on the groundwater regimes
form [Kirkhusmo, 1988]. Here we see the idealized groundwater regimes witch we categorise our stations
from.

melt and maximum just after the snow melt [Bakke et al., 2020b]. The idealized schematic of
the different regimes is shown in Figure 3.4.

We use the whole time series at each station to calculate the typical regime. By calculating
the average GWL for each month, we record the first, second and third wettest and driest month.
Based on this we assign a regime to the distinct groups. The Atlantic regime is characterized by
the groundwater level maxima caused by precipitation and minima caused by the high evapotran-
spiration and low precipitation. Therefore, if the three months with highest groundwater level
occur in October-April or in January-May, and the three lowest levels are in the summer months
(June-December), we classify the station as Atlantic regime.

Mountain regime is characterized by the dominant snowmelt related high groundwater level,
and snow accumulation related low groundwater level. If the months with the highest ground-
water levels is in April-July, and all three months with lowest levels are in December-May, the
station where classified as Mountain regime.

If instead of during April-July, the three months with highest groundwater level occur in
May-November and the three months with lowest groundwater level still occur in December-
May, we assume a time-lag effect and the station was classified as Mountain regime delayed
[Bakke et al., 2020b].

The Transitional regime is characterized by transition to secondary or dominant rain event
related high groundwater level. Here if neither of the above and the groundwater level has two
minima and maxima, the groundwater is categorised as Transitional regime.

32



3.5. Autocorrelation

The Atlantic regime delayed is classified when the three months with the highest groundwater
level occurred in April-July and the three months with the lowest groundwater level occurred in
October-January.

3.5 Autocorrelation

Correlation is a measure of how similar or dependent two series are. This is used to determine if
the two series is somehow related to each other. Autocorrelation is the series dependencies to a
shifted version of itself. This is then often used to give an estimate on how much a given value
𝑥𝑘 is related to the previous values 𝑥𝑘−1, 𝑥𝑘−2...𝑥0.

In relation to groundwater, this is used to determine the temporal lag of the aquifer in re-
sponse to an impulse recharge event. In a physical sense, this lag says something about how long
a signal is an explaining factor of the groundwater level. In a statistical sense, the autocorrelation
reflects the temporal dependency of the data and consequently, the minimum time span we can
assume independence.

In this study, we calculate the autocorrelation at 95 % significance at each station. We use
this to determine the serial independence of the time series at each station. If the time series has
an autocorrelation over 1 year, we use the maximum significant autocorrelation to create subsets
of the data with a temporal spacing exceeding the significant autocorrelation. This way, each
point in the subset is serial independent from each other.

3.6 Groundwater indices

In order to analyse changes in different aspect of the groundwater variation, we computed the
following groundwater indices based on the complete (gap-filled) series:

• Monthly average GWL
• Yearly average GWL
• Period Maxima and Minima GWL
• Occurrence of period Maxima and Minima for Mountain regime stations

The average GWL for each year is calculated at each station. This is then used for calcu-
lating the yearly GWL trends. For the stations with autocorrelations over 12 months, the yearly
average for each year of the time series were calculated. Then, a sample of values were taken
with a temporal step of the significant autocorrelation plus one year. For example, if a station
had 18 months significant autocorrelation, then the sample would be the values of every two year.

The average groundwater level of each month is calculated and stored in separate series for
each station. This way, it is 1 year between each point in each series and we avoid any autocor-
relations for stations with a lag under 1 year. This is done so that we can examine each month
separately, and check for trends in each month. For the stations with autocorrelations over 12
months, the same procedure as with the yearly average would be performed with the monthly
values.
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The high and low head series are based on the daily GWL within a time period. This is
to check if we can identify any changes in the magnitude of the driest or wettest months. The
periods are decided by the typical wettest and driest month at each groundwater regime. The
period for each regime is shown in table 3.2.

Table 3.2: Periods used to extract the high and low GWL for each regime.
Groundwater Regime High period Low period
Atlantic regime September-April April-November
Transitional regime October-July July-May
Mountain regime March-August September-July
Mountain delayed regime March-October November-July

If a station had significant autocorrelation over 1 year, then a sample would be taken according
to the procedure described with the yearly average series.

In addition, we want to examine the timing of the snow melt recharge peak in GWL in stations
within the Mountain regime. To do this, we determine a period for each station based on the
typical groundwater variations through the year at the station. We then make a period from 3
months before, to 3 months after the typical GWL peak. We then save the groundwater level in
each day that is within the relevant months for each year. Then, each saved data point is given a
number (timing number) according to how many days it is between the data point and the start of
the period. After that, We select the data point with the highest (or lowest) groundwater level in
each period. We then conduct the trend test on the timing number for all the selected data points.
The outcome should then show if there is a trend in timing within the period. In Table 3.3 we
see the period for each station in which we select the dates from.

Table 3.3: Periods used to extract the high and low GWL at each region.
Station nr Station ID Maxima period Minima period
16 111.14.2 Feb-Jul Nov-Apr
12 16.232.1 Mar-Aug Dec-May
0 2.725.1 Mar-Aug Dec-May
10 2.722.1 Mar-Aug Dec-May
23 196.47.2 Mar-Aug Nov-Apr
5 173.28.1 Mar-Aug Nov-Apr
2 2.718.2 Mar-Aug Dec-May

3.7 Trend analysis

To estimate any changes in groundwater variation over time we use the ranked-based Mann-
Kendall (MK) trend test [Mann, 1945, Kendall, 1975]. This is a non-parametric method for trend
detection, and therefore, it can be applied regardless of the probability distribution of the data
[Önöz and Bayazit, 2012]. One important assumption of the Mann-Kenndall test is that the data
is serially independent (i.e. not autocorrelated). Therefore, we need to pre-process the data such
that we have only independent data. We do this by first checking the auto correlation of station,
and then choosing data points that are spaced longer than the auto correlation.
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3.7. Trend analysis

The direction and magnitude of the trend is then calculated with the Sen’s slope [Sen, 1968].
We use the python package "pymannkendall" to calculate the Sen’s slope and Mann-Kendall
test of our data. Sen’s slope and Mann-Kendall are based on the linear slope (𝑚𝑘) between each
possible pair of values in a series, as shown in equation 3.15.

𝑘 = 1, 2, ...,
𝑛(𝑛 − 1)

2

𝑚𝑘 =
𝑦𝑗 − 𝑦𝑖
𝑡𝑗 − 𝑡𝑖

, where 𝑖 = 1, 2, ..., 𝑛 − 1

𝑗 = 1, 2, ..., 𝑛

(3.15)

Here, n is the length of the time series, 𝑦𝑖 and 𝑦𝑗 is the variable values of the time step 𝑡𝑖 and
𝑡𝑗 respectively [Bakke et al., 2020a].

3.7.1 Mann-Kendall trend test

The significance of the slope is calculated by using a test statistic (𝑍𝑆) approximated from a
normal distribution, as given by equation 3.16 [Bakke et al., 2020a].

𝑍𝑆 =
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⎩
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0 𝑚𝑘 = 0

𝑎𝑛𝑑 𝜎𝑆 =
𝑛(𝑛 − 1)(2𝑛 + 5)

18

(3.16)

Positive values of 𝑍𝑆 indicate increasing trends, while negative 𝑍𝑆 values indicate negative
trends. Testing the trends is done for specific significance levels 𝛼. If the |𝑍𝑆 | > 𝑍1−𝛼∕2, the
null hypothesis of no trend is rejected, and a significant trend exist. The 𝑍1−𝛼∕2 value is found
in the normal distribution table.

3.7.2 Sen slope

Sen’s slope is defined as the median of all slopes from equation 3.15. The N values of 𝑚𝑘 are
first ranked from smallest to largest, and the median of the Sen’s slope estimator is computed as
equation 3.17.

𝑚𝑘𝑚𝑒𝑑 =

⎧

⎪

⎨

⎪

⎩

𝑚𝑘[(𝑁+1)∕2]
, 𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

𝑚𝑘[𝑁∕2]
+𝑚𝑘[(𝑁+2)∕2]

2 , 𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

(3.17)

were the sign of 𝑚𝑘𝑚𝑒𝑑 reflects the direction of the data trend, and its value reflects its steepness
[Sen, 1968].
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3.7.3 Choice of periods

In order to compare the trends between stations, trends were calculated for the periods 1982-
2022 and 1992-2022. The two overlapping periods were decided on by having as many stations
as possible while having the longest period as possible. In addition, for stations that had time
series data close to the start of the set periods, the trends were calculated and implemented in the
tables with a notation. This was done to get as much information as possible. With the trends
from the two periods, we can compare how the trends change by including the years between
1982 and 1992.

To investigate how the trends are changing over time, we apply "Multi temporal trend plots"
with a base level of 20 years. This is a method for visualisation of the shifting trends depend-
ing on different periods inspired by [Hannaford et al., 2013]. We start to calculate the trend of
a 20-year period from the beginning 𝑡0 of the time series, and adds one year at a time, updating
the trend slope. This first calculation is the first column in the 𝑛𝑋𝑚 matrix. The second column
starts at 𝑡1 = 𝑡0 + 1 year and the 20-year trend is then calculated with subsequent 20 + 𝑛 year
period trends afterwards. This continue until we reach the 𝑡𝑛 = 01/01/2003, which is the min-
imum start date, since the time series is ending at 01/01/2023.

In the trend plots, we show the 𝑝-values from the Mann-Kendall trend test (Equation 3.15).
This gives an estimate on the significance on the trend in different periods. The trend directions
of the Sen-Theil slope estimates are provided for the significant trends.
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Chapter 4

Results

4.1 Groundwater model performances

At each station, a Linear model, Threshold model, Non-linear model without snow scheme and a
Non-linear model with a snow scheme (section 3.2.4) was tested, and the best model was chosen.
Figure 4.1 shows a map over Norway and the resulting best preforming model type at each sta-
tion, along with its 𝑅2 score in color. The stations where the "Linear- and "Non-linear models"
are preforming the best, is located in the south east part of Norway. They are all in the Transition
or in the Mountain delayed regime, and they have all relatively deep groundwater table with high
auto correlation.

In Figure 4.2 we see an example of Fana station (9). Figures 4.2 a)-e) shows the summary plot
of the best preforming model (Threshold model). a) shows the model simulated values (blue) as
compared with the observations levels (black). The 𝑅2-score of this model is 0.85, and is there-
fore one of the best preforming models. However, we see that the minima and maxima of the
observation data tend to be missed by the model. b) shows the residuals between the simulated
values and the observation data. Here, we see that the magnitude of the residuals seems to be
higher in the period before the daily observation frequency start (ca. 2003). In c) we see the
optimized parameter values used in this model (section 3.2.5). In d) we see the response func-
tion that is based on the stresses rain and snowmelt as precipitation (precipitation) and potential
evapotranspiration (PET) (section 3.2.3. Here we see a periodic changes according to the sea-
sonal variability at the station. e) shows the step response of the model (section 3.2.3. Here the
model seems to start flatting out at 𝑡 = 100 days, and becoming more or less constant in 𝑡 = 200
days. f) shows the significant trend within of the residuals calculated with Mann-Kendall trend
test and Sen’s slope. In addition, in g) we see how the four different model types (section 3.2.4)
are simulating the groundwater between 2010-2011, compared with the observation values. The
Black dots are the groundwater observations, and each of the colored lines is the simulation of a
model type. Same type of comparison figure as in figure 4.2 for all stations is shown in appendix
A.

The summary in Table 4.1 shows the performance (𝑅2), of each type of model at each station.
In addition, we see the best recharge model and its 𝑅2 value in the Best Model and Best Model
Type respectively. Here we see that between the four different recharge models tested for each
station, the highest and lowest 𝑅2 score is varying between 0.04 and 0.29. The best preforming
models 𝑅2-score is between 0.479 and 0.935. In addition, it is noteworthy that between the Non-
linear model and the Non-linear model with a snow scheme, there is 13 stations where they have
more or less the same 𝑅2-score (± 0.01), and 12 stations where the 𝑅2-score differ more than
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Figure 4.1: The map shows the best preforming recharge model at each station along with its 𝑅2 score.
Here a circle means a Linear model was used, the diamond is Non-linear model, the triangle is Non-linear
with a snow scheme and the square is the Threshold model.
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4.1. Groundwater model performances

Figure 4.2: The Results of the pastas model fitted to the observations of Fana station (9). he following
results are shown: a) the model simulations compared with the observations, b) the residuals between the
simulation and observations, c) the parameter values of the model, d) the total recharge resulting from
the stresses calculated with the response function, e) the graph over the step response of the model, f) the
trend of the residuals that were added, g) the comparison of the different types of models. Each model is
based on a different type of recharge function, and their simulations are plotted to the observations.
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Table 4.1: Recharge model performance (𝑅2) at each station. In addition, we see the best model 𝑅2 and
the best preforming model type (bold type).

Linear Model Threshold Model Non-Linear Model Snow Model Best Model
stationId 𝑅2 𝑅2 𝑅2 𝑅2 𝑅2

Abrahamsvoll (0) 0.61 0.74 0.59 0.59 0.74
Birkenes (1) 0.86 0.86 0.89 0.90 0.90
Dombås (2) 0.48 0.48 0.44 0.65 0.65
Kise (3) 0.50 0.50 0.57 0.53 0.57
Modum (4) 0.40 0.32 0.53 0.40 0.53
Skjomen (5) 0.32 0.47 0.30 0.48 0.48
Stigvassåi (6) 0.57 0.55 0.60 0.64 0.64
Eikamoen (7) 0.69 0.70 0.75 0.75 0.75
Evje (8) 0.84 0.90 0.86 0.86 0.90
Fana (9) 0.73 0.85 0.71 0.82 0.85
Finnbølseter (10) 0.67 0.75 0.66 0.66 0.75
Førde/Moskog (11) 0.75 0.83 0.81 0.82 0.83
Groset (12) 0.68 0.82 0.73 0.66 0.82
Haslemoen (13) 0.75 0.60 0.86 0.86 0.86
Hauerseter (14) 0.90 0.78 0.71 0.83 0.90
Jæren (15) 0.79 0.81 0.78 0.78 0.81
Kårvatn (16) 0.49 0.50 0.42 0.46 0.50
Lindesnes (17) 0.76 0.81 0.78 0.78 0.81
Lykjestøylane (18) 0.74 0.85 0.74 0.74 0.85
Magnor (19) 0.71 0.60 0.67 0.77 0.77
Nordfjordeid (20) 0.90 0.90 0.93 0.94 0.94
Settalbekken (21) 0.60 0.68 0.62 0.58 0.68
Stenerseter (22) 0.54 0.60 0.55 0.56 0.60
Øverbygd (23) 0.66 0.59 0.66 0.77 0.77
Øyangen (24) 0.68 0.81 0.68 0.68 0.81

0.04.

In Table 4.2 shows how many stations each type of recharge model is preforming the best.
Here we see that the model type that is preforming the best at most stations is the Threshold
model. The second best is the Non-linear model with a snow scheme. Keep in mind, the precip-
itation input used in each model already has the combined effect of rain and snowmelt, so each
model has indirectly a snowmelt scheme.

4.2 Gap-filled groundwater time-series

Figure 4.3 shows an example of the infilling on Nordfjordeid station (20). The simulated values
from the model in blue and the observation values in black. Using the gap-filling method (sec-
tion 3.3 and Figure 3.3) on the simulated values, the gap is filled with daily values and we get the
green values. In this example we see that even though the simulated values (blue points) do not
exactly fit with the observation values (black), the gap-filled method fits the simulated values to
the observation values quite well.
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Table 4.2: Table over the number times each model type is the best preforming model at a station.
Model Type Nr of best

performances
Linear Model 1
Non-Linear Model 2
Non-linear Model with snow 9
Threshold Model 13

Figure 4.3: Figure showing a highlighted part of the infill process from Nordfjoreid station (20). Here we
see a gap in the observations (black) and the original simulation values (blue). After the infill method, we
see the resulting values that is filling the gap of the observation points (green).

We proceed to do this for all the gaps at each station, to end up with a complete time series
with uniform time step of one groundwater value per day. An example of such a complete time
series, with the infilled values and observation values highlighted, is shown in Figure 4.4. Here,
most infilled values is between the observations within the period of monthly observation resol-
ution. The infilled time series for all stations are shown in Appendix B. Noteworthy, the period
between 1989 and 1995 has seemingly a "lower boundary" of the groundwater level that is dif-
ferent from the rest of the time series. We see here, the infilled values in this period are shifted
lower than the apparent "lower boundary" of the groundwater level. However, the infilled values
are not as low as the lowest values in the rest of the time series.

Table 4.3 shows the summary table of the infilling. The columns show the longest gap per
station in number of days, the total number of gaps, and what percentage of the complete time
series consists of gap-filled values. In this table we see that most stations have about ±50% of
the time series infilled with simulated values. Exceptions to this is Øverbygd station (23), where
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Figure 4.4: Figure over the observed values in blue, and simulated infilled values in green, from
Lykjestøylane station (18).

the observation series is short (starting in 2004), and has daily observations from the start. In
addition, Lindesnes station (17) has a high percentage infill (92.5%) because it only has monthly
observation values throughout the time series. It’s also worth noting that 9 stations have at least
one gap lasting over 1 year, with the longest being 1441 days (almost 4 years) at Kårvatn station
(16).

4.3 Groundwater Regimes

In order to categorize each station, we use the mean value of each month. Based on this, we
calculate the difference of the monthly mean to the mean of the year. This is then divided by
the standard deviation of the months at that station. From this we see how the groundwater level
is typically varying through the year. From these values we select the three wettest and three
driest months to categorize the different stations as described in chapter 3.4. Through the thesis,
the winter months is December, January and February, the spring months is March, April and
May, the summer is June, July and August, and the autumn is September, October and November.

According to figures 4.5 - 4.8, there are 7 stations in the Atlantic regime, 8 in the Transition
regime, 7 in the mountain regime and 3 in the mountain delayed regime. All stations are shown
with its corresponding GWL regime in the map in figure 4.9. When we compare with the auto
correlations shown in table 4.5, we see that the Mountain delay region only has stations with a
high auto correlation (over 1 year). Magnor station (19) also has a high auto correlation, but it is
following a transitional GWL regime.
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Table 4.3: Table over the longest gap present at each station, the total number of gaps at the stations, and
how many percent the in-filled values are of the complete daily resolution time series.

Station ID Station name Longest gap Number of gaps Percentage infilled
[days]

0 2.725.1 Abrahamsvoll 114 1638 58.0 %
1 20.34.4 Birkenes 365 1194 48.4 %
2 2.718.2 Dombås 113 495 47.7 %
3 2.727.0 Kise 1252 342 43.8 %
4 12.343.12 Modum 42 845 46.3 %
5 173.28.1 Skjomen 251 401 42.3 %
6 19.144.6 Stigvassåi 84 802 56.6 %
7 16.231.9 Eikamoen 471 1025 68.6 %
8 21.80.1 Evje 227 514 68.1 %
9 56.3.2 Fana 365 1287 50.5 %
10 2.722.1 Finnbølseter 255 1608 65.1 %
11 84.25.3 Førde/Moskog 125 1420 54.2 %
12 16.232.1 Groset 108 2470 51.4 %
13 2.724.9 Haslemoen 192 566 56.4 %
14 2.713.3 Hauerseter 508 930 73.8 %
15 28.14.2 Jæren 381 1623 64.4 %
16 111.14.2 Kårvatn 1441 720 76.9 %
17 23.17.4 Lindesnes 410 1168 92.5 %
18 2.721.1 Lykjestøylane 167 1533 64.0 %
19 313.12.7 Magnor 47 1116 60.3 %
20 89.3.1 Nordfjordeid 46 1008 59.3 %
21 2.723.4 Settalbekken 671 1537 67.6 %
22 2.716.6 Stenerseter 163 2087 68.5 %
23 196.47.2 Øverbygd 46 8 1.2 %
24 2.719.2 Øyangen 222 1517 65.6 %
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Figure 4.5: The stations within the Atlantic regime plotted with the typical GWL variation (described in
section 3.4). The numbering follows Table 4.4, and the stations locations are shown in Figure 4.9.

Figure 4.6: The stations within the Transitional regime plotted with the typical GWL variation (described
in section 3.4). The numbering follows Table 4.4, and the stations locations are shown in Figure 4.9.

4.3.1 Region I : Atlantic

Figure 4.5 shows the stations that fit the Atlantic regime of groundwater variation. We see that
the typical GWL is high in the winter months, presumably because of warm winters with a high
degree of precipitation recharge combined with low PET and grow rates. The typical GWL min-
ima is around July to September due to high PET, low precipitation and high grow rates.

4.3.2 Region II : Transition

Figure 4.6 shows the stations falling in the Transitional regime of groundwater variation. Here
we see that the stations have 2-3 GWL peaks and lows. The pattern is highly varied between
the stations, but the timing of the GWL peaks is in spring or summer, and autumn. The timing
of the GWL lows is also in the late winter or spring, and late summer or autumn. Presumably,
the spring GWL peak is related to snow melt, and the late winter peak is related to precipitation.
While the GWL spring low, is related to low winter recharge and the GWL summer low is related
to low precipitation and high PET.
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4.3. Groundwater Regimes

Figure 4.7: The stations within the Mountain regime plotted with the typical GWL variation (described
in section 3.4). The numbering follows Table 4.4, and the stations locations are shown in Figure 4.9.

Figure 4.8: The stations within the Mountain delayed regime plotted with the typical GWL variation
(described in section 3.4). The numbering follows Table 4.4, and the stations locations are shown in
Figure 4.9.

4.3.3 Region III : Mountain

Figure 4.7 shows the stations falling in the Mountain regime of groundwater variation. This
shows a typical GWL peak in the spring, presumably related to the snow melt. We also see that
the GWL is relatively steady decreasing through the summer and winter and reaches a minima
just before the spring melt. Here, Kårvatn station (16) has a particularly early spring peak (April),
while also having a peak in June and a small increase in September. These peaks are however
relatively small compared with the spring peak, and the station is therefore not considered within
the transitional regime.

4.3.4 Region III : Mountain delayed

Figure 4.8 shows the stations falling in the delayed Mountain regime of groundwater variation.
Here, all stations have a typical GWL peak in July, and a steady decrease in GWL until the
minima in April or May. All three stations within this regime has a significant auto correlation
exceeding 1 year.
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Table 4.4: Table of station number, ID and name, with corresponding climate region and groundwater
regime.

Station nr. Hydra-Id Station Name Climate Region Groundwater region
1 20.34.4 Birkenes rør 4 3 I, Atlantic
8 21.80.1 Evje rør 1 3 I, Atlantic
9 56.3.2 Fana rør 2 5.2 I, Atlantic
11 84.25.3 Førde/Moskog rør 3 6.2 I, Atlantic
15 28.14.2 Jæren rør 2 4 I, Atlantic
17 23.17.4 Lindesnes rør 4 4 I, Atlantic
20 89.3.1 Nordfjordeid rør 1 6.2/8.2 I, Atlantic
3 2.727.0 Kise 2.1 II, Transition
6 19.144.6 Stigvassåi rør 6 3 II, Transition
7 16.231.9 Eikamoen rør 9 2.1/3 II, Transition
18 2.721.1 Lykjestøylane rør 1 2.2 II, Transition
19 313.12.7 Magnor rør 7 2.1 II, Transition
21 2.723.4 Settalbekken rør 4 7.2 II, Transition
22 2.716.6 Stenerseter rør 2.1 II, Transition
24 2.719.2 Øyangen rør 2 2.2 II, Transition
0 2.725.1 Abrahamsvoll 7.1 III, Mountain
2 2.718.2 Dombås rør 2 7.2 III, Mountain
5 173.28.1 Skjomen 11 III, Mountain
10 2.722.1 Finnbølseter rør 1 2.2 III, Mountain
12 16.232.1 Groset grunnvannsrør 1A 2.2 III, Mountain
16 111.14.2 Kårvatn rør 2 8.2 III, Mountain
23 196.47.2 Øverbygd rør 2 11 III, Mountain
4 12.343.12 Modum rør 12 2.1 III, Mountain delayed
13 2.724.9 Haslemoen rør 9 2.1 III, Mountain deleayed
14 2.713.3 Hauerseter 2.2 III, Mountain delayed

4.3.5 Groundwater regime summary

From Table 4.4 and the map in figure 4.9, we see that the station within the Atlantic regime is
distributed along the southern and western coast. The stations are primarily in the 3 and 4 climate
region (CR), with the exception of Fana (9), Førde/Moskog (11) and Nordfjordeid (20) stations
being in the 5.2 and 6.2 CR.

In the Transitional regime, the stations are distributed in the south-eastern part and eastern
part of Norway. The stations are primarily in the 2.1, 2.2 and 7.1 CR, with the exception of
Stigvassåi (6) and Eikamoen (7) stations being in in the CR 3.

In the Mountain regime, stations are distributed in the north-western, middle and Northern
part of Norway. The stations are within CR 2.2, 7.1, 7.2, 8.2 and 11. Her, all stations have a cold
climate (average temperature < 2𝑜C). They are located in high altitudes, except Skjomen (5) and
Øverbygd (23) stations, which is close by a fjord in the far northern part of Norway.

In the Mountain delayed regime, the stations are clustered in the south eastern part of Nor-
way. They are all within the 2.1 CR and have relatively high average yearly temperature > 4𝑜C.
In addition, all stations have autocorrelation over 365 days.
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4.3. Groundwater Regimes

Figure 4.9: Map over the different regimes at each station used in this analysis.
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Figure 4.10: Figure of the auto correlation of Finnbølseter station (10). Here the light blue color is the
significance level at 95% confidence. The station autocorelation is marked to be significant at 73 days.

4.4 Autocorrelation in the groundwater time series

The autocorrelation of the complete time series of Finnbølseter station (10), is shown in fig-
ure4.10. Here the significant autocorrelation at 95% is marked by the light blue background
color. When the autocorelation crosses the confidence interval we mark the value as the stations
autocorelation. Here it is marked at 78 days. Since there are seasonal variations of the time
series, the autocorrelation goes up and over the confidence interval when approaching the 365
mark. In addition, we see that between 120 and 270 days, the autocorrelation is significantly neg-
ative. This does not indicate however, that these values are dependent on the preceding values,
but that the seasonal variations are present in the data.

The latest significant autocorrelation for each station is then recorded in table 4.5. It shows
the significant autocorrelations in number of days, at 95% confident interval for each station.
Here we see that for most stations, the significant autocorrelation is between 52 to 103 days,
where Kise (3), Modum (4), Eikamoen (7), Haslemoen (13), Hauerseter (14) and Magnor (19)
stations has significant autocorelation between 193-1026 days.

4.5 Trends in annual and monthly groundwater levels

4.5.1 Month average groundwater level indices

In this section we use the average groundwater level of each month, calculated form the complete
time series. The multi temporal p-value (MKP) plot shows the significance of the trends over
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4.5. Trends in annual and monthly groundwater levels

Table 4.5: Table over each station’s autocorrelation in number of days over a 95% confidence interval.
Station Id Station Name AC lag (D)

2.725.1 Abrahamsvoll 69
20.34.4 Birkenes rør 4 99
2.718.2 Dombås rør 2 103
2.727.0 Kise 276

12.343.12 Modum rør 12 439
173.28.1 Skjomen rør 1 85
19.144.6 Stigvassåi rør 6 66
16.231.9 Eikamoen rør 9 193
21.80.1 Evje rør 1 100
56.3.2 Fana rør 2 78
2.722.1 Finnbølseter rør 1 78
84.25.3 Førde/Moskog rør 3 93
16.232.1 Groset grunnvannsrør 1A 64
2.724.9 Haslemoen rør 9 787
2.713.3 Hauerseter 1026
28.14.2 Jæren rør 2 97
111.14.2 Kårvatn rør 2 59
23.17.4 Lindesnes rør 4 84
2.721.1 Lykjestøylane rør 1 73
313.12.7 Magnor rør 7 503
89.3.1 Nordfjordeid rør 1 100
2.723.4 Settalbekken rør 4 80
2.716.6 Stenerseter rør 52
196.47.2 Øverbygd rør 2 83
2.719.2 Øyangen rør 2 74
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different periods for each month at a given station. MKP plots for all stations are shown in
Appendix C.

In figures 4.11-4.16 we see the MKP trend plots for two stations within the Atlantic, Trans-
itional and Mountain groundwater regime, highlighting different patterns. Here, the p-value of
the trends in each period are plotted. The colors show the trend direction of strong significant
trends, reflecting a 5% significance level (p<0.05), and weak significant trends, reflecting a 30%
significance level (0.05<p<0.3). The different significance with the trend direction is given a
distinct shading. A positive trend means higher GWL, indicating wetter conditions, and a neg-
ative trend means lower GWL, indicating drier conditions. The labeling is only shown at the
bottom of figures 4.16 and 4.13, but it follows through all MKP plots and trend tables.

Both figure 4.11 and 4.12 is within the Atlantic groundwater regime. Figure 4.11 show
Førde/Moskog station (11). Here we see that there are prominent negative trends in February,
April, June, July, October and November. We also see that March and August months has a not-
ably larger cluster of negative trends for the periods with a start between 1988-1992. In addition,
we see that the positive trends in September are also seen in October, November and December.

In figure 4.12 we see the MKP plot of Birkenes station (1). Here, we see that for the longest
periods (1981-2022), all months except May, June and July are positive. In addition, all months
(lesser extent in March, April, May and June) seem to have prominent positive trends for the
periods calculated with a start date between 1988-1996.

Figure 4.11 and 4.12 show two stations within the Transitional groundwater regime. In figure
4.13 we see the monthly MKP plot of Øyangen station (24). We see that there is a continuously
significant positive trend in all months. However, only April month has a strong significant pos-
itive trend for the early periods that begins before 1988 and ends in 2012. The GWL in other
months have either insignificant, weak significant- or strong significant-negative trends within
this period.

In figure 4.14 we see the MKP plot of Eikamoen station (7). Here May, June and July have
strong negative trends when calculating for the whole period (1980-2022). We also see that Au-
gust has negative trends for most of the periods that starts before 1984, and April has mostly
negative trends in periods starting after 1984. In the months between September-December we
see a shifting trend, from negative in the periods that start between 1980-1988 and ends before
2012, to positive for the periods that start after 1990.

Figure 4.15 and 4.16 show two stations within the Mountain groundwater regime. Figure 4.15
shows Groset station (2). Here we see that the April and May months has a prominent positive
trend, followed by June month with prominent negative trend. In addition, August, September,
December, January, February and March contain mostly periods with positive trends. July month
seems to have periods changing from positive trends for periods starting between 1972-1992, and
negative trends for the periods starting after 1992.

Figure 4.16 shows the MKP plot of Dombås station (2). Here all months have a strong sig-
nificant negative trend when we calculate for the whole time series (1984-2022). However, we
also see that for the periods that start later (1997-), only the June, July, October and November
months have negative trends. This indicate that the negative trends are more prominent in these
months as compared with the other months.
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4.5. Trends in annual and monthly groundwater levels

Figure 4.11: Mann-Kendall P-value plot of Førde/Moskog station (11). Here each color represent
a significance level. Strong blue is positive trend with 𝑝 < 0.05, light blue is positive trend with
0.05 < 𝑝 < 0.3, grey is 𝑝 > 0.3 indicating no significant trend, light red is negative trends with
0.05 < 𝑝 < 0.3 and strong red is negative trend with 𝑝 < 0.05.
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Figure 4.12: Same as figure 4.11 Mann-Kendall P-value plot, but for Birkenes station (1).
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4.5. Trends in annual and monthly groundwater levels

Figure 4.13: Same as figure 4.11 Mann-Kendall P-value plot, but for Øyangen station (24).
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Figure 4.14: Same as figure 4.11 Mann-Kendall P-value plot, but for Eikamoen station (7)
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Figure 4.15: Same as figure 4.11 Mann-Kendall P-value plot, but for Groset station (12).
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Figure 4.16: Same as figure 4.11 Mann-Kendall P-value plot, but for Dombås station (2).
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4.5.2 Average annual GWL

The multi temporal trends for the average annual GWL are plotted for the different groundwater
regimes in figures 4.17 -4.20. All stations within the regime are plotted relative to each other’s
time series. In Figure 4.17 we see the stations within the Atlantic regime. Here, the time series
of all stations start around 1982. We see that Birkenes (1), Fana (9) and Jæren (15) stations
have primarily positive trends, while Evje (8) and Lindesnes (17) stations have both positive and
negative trends depending on the periods calculated. Førde/Moskog (11) and Nordfjordeid (20)
stations have some negative trends, but mostly insignificant (grey).

In Figure 4.18 we see the stations within the transitional regime. Here, station Kise (3) has a
much shorter time series as compared with the other stations in the regime. We also see that the
Stigvassåi (6), Lykjestøylane (18), Magnor (19) and Øyangen (24) stations have several periods
with a significant positive trend. Kise (3), Eikamoen (7) and Settalbekken (21) stations are more
ambiguous with changing trends for different small clusters of periods, and with insignificant
trends for most periods. Stenerseter (22) station is noteworthy since it has a pronounced period
cluster with negative trend in the early to middle part of the time series (start periods before 1988),
and a big period cluster with positive trends at the end of the time series (start periods after 1988).

Figure 4.19 shows the yearly average GWL trends for the stations in the Mountain regime.
Here we see that Finnbølseter (10) and Kårvatn (16) stations have positive trends for almost all
periods. At the same time, Abrahamsvoll (0), Skjomen (5) and Groset (12) stations have posit-
ive trends for most of the possible periods, with short period clusters of ether negative trends or
insignificant trends. Dombås (2) station is an exception with general negative trends for almost
all possible periods starting before 1996.

In Figure 4.20 we see the yearly average GWL trend for stations in the Mountain delayed
regime. Here, we see that Haslemoen (13) and Hauerseter (14) stations have a primarily positive
trend for the majority of the periods, whereas Modum (4) station has a generally positive trend
for the periods that starts after 1990. We can see that for the periods that start between 1980-
1992 and end before 2016, there are either negative or insignificant trends present for all stations.

4.5.3 Summary Table of drivers and GWL

The summary tables shown in figures 4.21 and 4.22, is showing the 41- and 31-year trends for
yearly and monthly GWL for all stations covering the period. The trend is calculated for the last
31- and 41-years (e.i. 1992- and 1982- 2022), with most stations having the same start and end
date. For stations with large autocorrelation (over 1 year), we calculate 2- or 3-year trends to
ensure independence between the data points. This forces a different start date at some stations.
These stations are shown in the table with its start date in the parentheses by the station number.

There are some changes in the trends between the two set periods. The 31-year trend table
(Figure 4.21), we can see some general patterns within the groundwater regimes. Looking at
the Atlantic regime, we see that there is a general positive trend in the Autumn and early winter
months. At the same time, the trends in the summer are either insignificant or negative. The
yearly trends are significant positive for 3 stations, weak significant positive for one station, in-
significant for 2 stations and weak significant negative for one station.
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Figure 4.17: Here, the average yearly GWL is plotted for stations in the Atlantic regime. Here, the color
scheme is the same as figure 4.11 Mann-Kendall P-value plot.
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Figure 4.18: The same as in figure 4.17, but plotted for stations in the Transitional regime.
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Figure 4.19: The same as in figure 4.17, but plotted for stations in the Mountain regime.

Figure 4.20: The same as in figure 4.17, but plotted for stations in the Mountain delayed regime.
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4.5. Trends in annual and monthly groundwater levels

The stations in the Transitional regime, the general patterns are more ambiguous. Generally,
there are two patterns present. The first pattern is insignificant or significant negative trend in the
summer and autumn months. The second pattern is insignificant or significant positive trends in
the winter, early spring and late autumn. Here, Øyangen (24) station is an exception since it has
strong significant, or weak significant positive trends in all months. The yearly trends are strong
significant positive for 3 stations, weak significantly positive for one station, insignificant for 3
stations and weak significant negative for one station.

For the Mountain- and Mountain delayed- regime, there is a general wetting in the winter,
spring and autumn months. The months January, February, March, April, September, October,
November and December months have positive trends for all stations except Dombås (2) station.
The yearly trends are significant positive for 5 stations, weak significantly positive for 2 stations,
insignificant for one stations and weak significant negative for one station. Here we see that
Haslemoen (13) and Hauerseter (14) stations have a significant positive GWL trend in all months
and year average. While Haslemoen and Hauerseter station are located in the south-eastern Nor-
way with a long auto correlation, Øyangen (24) station is located in the high mountainous region
in the middle of southern Norway.
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Figure 4.21: Table over the trend calculated by the Mann-Kendall test at a 95% confidence interval for the stations with data starting from 1992. Station 13 has different
start date which is shown in parenthesis. Here the P value is shown in each cell with the blue color representing an increasing trend and red color representing decreasing
trend. The color strength is representing the significance with; dark red and blue being significant (p < 0.05), light red and blue being strong (0.05< p 0.3), and grey being
no significant (p > 0.3). The stations are sorted according to their assigned GWL region. Within each region, the stations are sorted in ascending order of the AC.
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If we look at the 41-year trend table in figure 4.22, we can see a divide between the regions
in addition to a clear difference between the stations with positive and negative trends.

In the Atlantic region, we see Fana (9), Jæren (15) and Birkenes (1) stations having the sig-
nificant positive yearly trend, along with several months with significantly or weakly significant
positive trends. We also see Nordfjordeid (20) station, that has yearly, along with all months
from May to December, weakly significant negative trend. Thirdly, we see at Lindesnes (17),
Førde/Moskog (11) and Evje (8) stations, where the months April, May, June and July have
mostly significantly or near significantly negative trends, while the yearly trend is insignificant.

In the Transitional regime, we see that only Eikamoen (7) station has a significant negative
yearly trend. It also has weak significant negative trend in April and September, while May, June
and July are significantly negative. In addition, Øyangen (24) station has a significant positive
yearly trend, with all the months also having significant positive trend. The other stations within
the transitional regime have months with weakly positive, weakly negative or insignificant trends.
Noteworthy, station 2.721.1 has a weakly significant positive yearly trend, but with some months
having weak negative and weak positive trends right after one another, despite having significant
auto correlation of 69 days.

In the mountain regime, there is a general pattern of significant positive trend in the winter
and spring months. The yearly trends are also all weak or significantly positive for 6 out of 9
stations. An exception to this is Dombås (2) station, where the yearly trend, and the trend in all
months, is significantly negative. Noteworthy, April month is consistently significantly positive
for all stations except Dombås (2) and Modum (4).
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Figure 4.22: Table over the trend calculated by the Mann-Kendall test at a 95% confidence interval for the stations with data starting from 1982. Stations 5, 8, 13, 14 and
19 has different start date which is shown in parenthesis. The colors and sorting of stations is the same as in figure 4.21.
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4.6 Trends in high and low groundwater levels

High and low GWL trends

In figures 4.23 - 4.28, we see the MKP plot for GWL highs and lows. The period at which the
values is gathered for each regime is described in section 3.6. The selection of stations shown in
here is to highlight two different types of patterns that are seen in the stations within the regimes.
The GWL period highs and lows in GWL for Fana station (9) and Førde/Moskog station (11),
both within the Atlantic regime. Here, the period where we gather the maximum head is between
September-April, and the minimum value is gathered from April-November (Table 3.2). Here
we see that Fana station (9) has prominent positive trends in the maximum GWL, while the min-
imum GWL has no prominent trends. Comparatively, Førde/Moskog station (11) has prominent
negative trends in the maximum GWL, and like Fana station (9), no prominent trends in the min-
imum GWL.

The trends for minimum and maximum GWL at Stenerseter station (22) and Øyangen station
(24), both within the Transitional regime. Here, the period where we gather the maximum head
is between October-July, and the minimum value is gathered from July-May (Table 3.2). We see
that Stenerseter station (22) has clusters of negative and positive trend periods in the maximum
GWL. At the same time, the minimum GWL has a more prominently negative trend, but with
two small clusters of positive trend periods. The positive trend clusters in the minimum GWL,
correspond with the positive trend and insignificant trend periods in the maximum GWL. Øy-
angen station (24) shows prominent positive trends for both the maximum and minimum GWL.
The maximum GWL has a negative trend cluster at the beginning of the earliest periods that
correspond with the insignificant trends in the minimum GWL.

The trends for minimum and maximum GWL at Abrahamsvoll station (0) and Finnbølseter
station (10), both within the Mountain regime. Here, the period where we gathered the max-
imum head is between March-October, and the minimum value is gathered from November-July
(Table 3.2). We see at Abrahamsvoll station (0)1, that there is a prominent negative trend in the
maximum GWL. At the same time, there is a prominent positive trend in the minimum GWL.
For Finnbølseter station (10), we see that there is negative trend clusters in the maximum GWL
along with generally insignificant trend periods. Comparatively, there is a prominent positive
trend within the minimum GWL, with no seemingly correspondence with the maximum GWL.

Trends in the timing of snowmelt related max and min

Trend in the timing of the spring melt related recharge maximum, as well as the GWL minimum
before the spring melt, was conducted on the stations within the Mountain regime (Section 4.6).
The trends were calculated according to the periods in Table 3.3. In Figure 4.29 we can see an
example of the test that was conducted for each station. Here, Groset station (12) has a significant
negative trend in the spring maxima, and a weak significant negative trend in the spring minima.
At each station, the whole time series were used to test for the trends and the process to test the
timing is explained in section 3.6.

The maximum GWL for all stations were plotted along with the trends in timing, in a com-
parative MKP plot. In Figure 4.30 we see the trends in maximum GWL and how it compares
with the timing (Figure 4.31) of the winter and spring maxima. Here we see that Abrahamsvoll
(0), Dombås (2), Groset (12) and Finnbølseter (10) stations all have significant trends towards
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Figure 4.23: Multi temporal trend plot of the highest (top panel) and lowest (bottom panel) period highs at
Fana station (9). Each color represents a significance level. Dark blue is positive trend with 𝑝 < 0.05, light
blue is positive trend with 0.05 < 𝑝 < 0.3, grey is 𝑝 > 0.3, light red is negative trends with 0.05 < 𝑝 < 0.3
and dark red is negative trend with 𝑝 < 0.05.
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Figure 4.24: Same as figure 4.23, but for Førde/Moskog station (11).
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Figure 4.25: Same as figure 4.23, but for Stenerseter station (22).
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Figure 4.26: Same as figure 4.23, but for Øyangen station (24).
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Figure 4.27: Same as figure 4.23, but for Abrahamsvoll station (0).
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Figure 4.28: Same as figure 4.23, but for Finnbølseter station (10).
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Figure 4.29: Trends in the timing of spring minima and maxima at Groset station (12). The upper graph
shows the timing of the spring maxima (blue points) along with the Sen slope of the trend. The lower
graph shows the spring timing of the minima (red points) along with its Sen slope of the trend. The x-axis
shows the date of the given minima or maxima, while the y-axis is the day number within the period at
which it occurred (period stated in section 3.6). The black dashed line (—) indicate the total length of the
period, and the title of each graph states the trend p-value.
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Figure 4.30: Multi temporal trends for the GWL maximum is shown for the stations within the Mountain
regime. Here the stations are plotted with the relative start date according to the length of the stations.
Dark blue is positive trend with 𝑝 < 0.05, light blue is positive trend with 0.05 < 𝑝 < 0.3, grey is 𝑝 > 0.3,
light red is negative trends with 0.05 < 𝑝 < 0.3 and dark red is negative trend with 𝑝 < 0.05.

drier conditions (negative), while Skjomen (5) and Kårvatn (16) stations have significant trends
toward wetter conditions (positive). Simultaneously, the trends of the maximum GWL timing
are negative, indicating moving towards earlier timing for Abrahamsvoll (0), Finnbølseter (10),
Groset (12) and Kårvatn (16) stations. Here only Kårvatn (16) station shows trends of increasing
maximum GWL and earlier timing. Overall, a trend towards an decrease in GWL corresponds
with an earlier timing of the GWL maxima.

In Figure 4.32 we see the minimum of the winter and spring months plotted with the trends
in timing (Figure 4.33). Here we see that there is a general positive trend of the minimum GWL.
Abrahamsvoll (0), Finnbølseter (19) and Kårvatn (16) stations show that there is stable strong
significant positive GWL trends, while Groset (12) and Skjomen (5) stations show weak signific-
ant positive GWL trends for a portion of the periods. Dombås (2) station is an exception to this,
since it exhibits significant negative GWL trend. Looking at the trends in timing, Abrahamsvoll
(0) and Finnbølseter (10) stations show general negative trends, indicating that the minima is
occurring earlier in the period. Dombås (2), Kårvatn (16) and Skjomen (5) stations however,
show general positive trends, indicating later timing. Groset (12) station is not so clear with no
prominent trend in timing. Overall, a trend towards an increase GWL minima, corresponds with
either an earlier or later timing.

Using all the data at each station in the Mountain regime, we calculate the trend of the timing
of the maximum and minimum GWL. Table 4.34 shows the p-value of the trend with the colours
indicating the trend direction of the trends. Here we see that the timing of the minimum GWL
value has a strong and weak significant negative trend for Kårvatn (16), Groset (12) and Finnbøl-
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Figure 4.31: The multi temporal trends for the timing of the maximum GWL in the winter and spring
months are shown for the stations within the Mountain regime. The coloring is as in Figure 4.30. The
positive trends reflect a later timing, while the negative trends reflect to earlier timing.

Figure 4.32: The same as in Figure 4.30, but with the GWL minimum.
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Figure 4.33: The same as in Figure 4.31, but with the GWL minimum.

seter (10) stations. This indicates that the timing of the GWL peak has a trend towards earlier
dates. At the same time, we see that the minimum GWL has strong and weak negative trends for
Abrahamsvoll (0), Finnbølseter (10), Groset (12) and Skjomen (5) stations. This indicates that
the timing of the minimum GWL is also moving towards earlier periods on these stations.

4.7 Trends in annual and monthly hydrometorological drivers

To calculate the trends of the main drivers we use the data from E-OBS and SeNorge. This is the
same data that were used as inputs in the Pastas models. A summary of the trends in rain + snow
melt (R+SM) and the potential evapotranspiration (PET) is shown in Table 4.36. The stations
are sorted according to the groundwater regimes shown in figure 4.5-4.8. Each station is shown
with the trend in average annual R+SM and PET, in addition to the trends in average R+SM
and PET for each month. The colors represent the same values as in Tables 4.22 and 4.21, with
the addition that the green color is assigned if the months Sen slope is exactly 0.00𝑚𝑚∕𝑦𝑟. This
situation is highlighted in Figure 4.35. Here we see the average R+SM for the March month each
year. It is apparent that the majority of the average R+SM value is exactly 0.00 𝑚𝑚∕𝑑𝑎𝑦, but
in the later years the R+SM is increasing. Here, the Mann-Kendall test is giving a significantly
value, while the Sen slope is exactly 0.00 𝑚𝑚∕𝑦𝑟.

Overall, we find a generally positive trends in yearly PET for stations across all regimes. In
addition, especially the March, April and September months have a significant positive trend in
PET, while February, June, October and November have weak significant positive PET trends,
seemingly across all regimes. Furthermore, there are 9 stations with weak significant or strong
significant trends in yearly R+SM, whereas two are negative and 7 positives. Both stations with
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Figure 4.34: Trends in timing of the minimum and maximum GWL during the late winter and spring
for the stations in the mountain regime. The trend p-value is stated for each station with the color
code indicating the trend direction. Here grey means insignificant trend (p-value > 0.3), red is weak
significant trend towards earlier timing. The strength of the color is indicated by the p-value with light
being 0.05 < 𝑝 < 0.3 and the dark color is 𝑝 < 0.05.

Figure 4.35: Here, we see the average monthly R+SM values for March month at station 2.722.1 plotted
with the Sen slope.
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negative trends are within the Mountain regime. For stations within the Transitional, Mountain
and Mountain delayed regimes, several stations have significant positive trends and Sen slope
of 0.00𝑚𝑚∕𝑦𝑟 in December, January, February and March months. In addition, the negative
R+SM trends seems to be primarily within the months between March to May, while there are
some stations that have weak significant negative trends in June, July, September and October.
The positive R+SM trends seems to be mainly in November, February, April, May, June and
July, seemingly across all regimes.
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Figure 4.36: Trends in the table are calculated in the same way as in Table 4.22, but for the Input. Here the colors are in set in relation to the impact on the groundwater
recharge, with blue indicating increasing GWL recharge and red indicating decrease GWL recharge. Therefore, a positive R+SM trend is given a blue color, and a positive
trend in PET is given a red color.
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Chapter 5

Discussion

5.1 Model performance

To determine which type of recharge model is the best, and if they are acceptable to use for the
infilling, we compare each model type 𝑅2-score. A high score would mean that the model is
simulating the variations of the groundwater accurately and thus, would be a good model to use
in the infilling.

In Table 4.2, we see that the "Threshold model" and the "Non-linear model with a snow
scheme" are performing the best across almost all stations. Since the precipitation input data we
use in the models is the sum of the rain and snowmelt, it alone should be able to account for
the rain and snowmelt water contribution to the groundwater recharge. We therefore expect a
similar performance between the Non-linear and Non-linear models with a snow scheme. From
Table 4.1, we see that the difference in 𝑅2-score between the two model types is less than 0.4
for 17 out of 25 stations. There are no apparent similarities between the 8 stations with a larger
difference, but 6 of the stations are within the Mountain or Mountain delayed regime, and one in
the Transitional regime where the snow is a considerable factor. Only Fana station (2) is in the
Atlantic regime, located by the coast with high average temperatures and where the number of
potential snow days is low.

An explanation for the difference between the Non-linear model and the Non-linear model
with snow scheme, could be in the difference between the method NVE is using to calculate the
rain and snowmelt data (section 2.2), and the inbuilt snow scheme in the model (section 3.2.4).
If this is the chase, there would be a miss match between what is considered rain and what is
considered snow. In addition, since the rain and snowmelt data are using an energy balance to
estimate the snowmelt, and the model is using the degree-day method, there would presumably
be a mismatch between when the snowpack is considered melted in the input data and the model
snow scheme. This could give rise to a scenario when the model has almost no snow in the winter
(because the input data estimate no effective precipitation), but during the early spring months,
the model estimate snowfall instead of precipitation, because of the mismatch in temperature.
Noteworthy, the earliest point the model can estimate positive groundwater recharge is when the
rain and snowmelt input data is positive (e.i. when NVEs model has estimated that the snowpack
is melted). Therefore, the difference in performance between the Non-linear model and the Non-
linear model with a snow scheme, is most likely due to the time lag of recharge, created by the
model snowmelt scheme.
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It is also noteworthy that the threshold model is preforming the best at most stations. As
described in section 3.2.4, this recharge model type is fitting two response functions to the re-
charge. Therefore, it is able to capture if there is a natural boundary or change in dynamics of
the recharge. Such natural threshold levels could be if the GWL reaches the surface or an im-
permeable lower boundary, or it could be the root-zone, where the dynamic of the surface to
subsurface changes.

In addition, Hauerseter station (14) was the only one where the linear recharge model pre-
formed the best. Noteworthy, this is the station with the deepest GWL and highest AC. An
explanation to why the linear recharge model preformed the best could be that the deposits, soil
type and structure, vegetation cover etc create a linear relationship between the surface water and
the recharge.

5.2 Gap-filling

The gap-filling is based on using the simulated values from the best model at each station. From
Table 2.2 we see that the majority of the gaps are under 31 days. There are 36 gaps with lengths
between 3 and 12 months, and 9 gaps over 12 months. The difference between the gap-filled
value and the actual GWL is minimal in the short gaps, while the potential difference increases
with the length of the gap. If we look at Figure 4.3, we see a zoom-in of the infilled values for
Nordfjordeid station (20). Her, we see a short gap in the observations, and the infilled values
is realistic. However, if the gap had been much longer (for example several months), then this
would not necessarily be the case.

Therefore, for gaps lasting several months or years, the model ability to estimate the ground-
water accurately plays an important role in how good the infilled values are. For the stations that
contains gaps in the observation data over 1 year, the best model 𝑅2 performance ranges between
0.50 to 0.90. However, only Kise (3), Kårvatn (16) and Settalbekken (21) stations have a𝑅2 score
lower than 0.75. This could lead us to be more sceptical to the infilled values within the long
gap in these stations, and an improvement of the model, through better parameter calibration or
input data, could give a meaningful improvement of the time series.

In addition, because we set the boundary of the gap-filled values according to the maximum
and minimum observations, new extreme observations could affect a new gap-filling by allowing
for higher or lower values. To minimize this effect, one could use natural upper- and lower-
boundaries. An example could be using depth to bedrock and surface level instead of the max-
imum and minimum observation. This would require more information about each station, and
using surface level, or maximum- with minimum-observation value as a boundary is a easy way
to confine the infilling values to a realistic value. One such example of this is shown in Figure
4.4. Here we see that the infilled values (green) is more or less fitting with the observations, with
few outliers. We can also see that there is one peak (ca. 1983), and one low (ca. 2004) which is
restricted to the boundary of maximum and minimum observations. Hence, new extreme obser-
vations in the future could enable us to fit higher or lower simulated values to the time series.
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5.3 Groundwater trends

The trends in groundwater level were preseuted in two ways; Multi Temporal p-value (MKP)
plot and set period table. The set period tables, figures 4.21 and 4.22, shows the 31-year and
41-year trends respectively. Only Øverbygd station (23) has too short time series to be calculated
trend for both periods, while Kise station (3) is only calculated for the 31-year period. Trends
are shown for each month and the year GWL average.

Whereas the set period tables could give us an understanding of how the long-term trends
(31- and 41-year) are, the MKP plot give us a understanding on how the trends change, and how
different "drying" or "wetting" periods are affecting the trends. Some stations have a significant
auto correlation between 52-1026 days, the significance of the trend in one month is expected to
transfer over to the next month. This way, positive or negative trends can be seen in months where
the meteorological drivers is not actual changing. Therefore, in order to interpret the significance
of the change in each month, we need not only look at the p-value of the Mann-Kendall test, but
also how the trend changes from one month to another in relation to the auto correlation. This
way, if the trend is highly significant in April but insignificant in May, there could be a shift
in yearly peak value from May to April, even though we don’t see a negative trend in the later
months.

5.3.1 31- and 41- year set periods

In the table shown in Figure 4.21 we see the 31-year trend over the period 1992-2022. The table
is sorted in according to the groundwater regime, and within the regimes, according to the auto
correlation. each regime shows different general patterns in trends. This is also done for with the
41-year period (1982-2023 in the table in Figure 4.22.

If we compare the 31- and 41-year trend tables, the trends present in the 31-year periods tend
to become more significant in the 41-year trends. For Evje (8), Førde/Moskog (11), Stenerseter
(21), Lykjestøylane (17), Settalbekken (21), Magnor (19), Finnbølseter (10) and Modum (4) sta-
tions, trends became less significant or even changed directions (stations Abrahamsvoll (0) and
Finnbølseter (10)). This could be because there is a general positive or negative trend present at
each station. If this is the case, it would be expected that adding the 10 years between 1982 and
1992 would make the trend more significant.

However, it could also be the case that the trends are affected by particular wet or dry periods
between 1982 and 1992. This could be the case for station Abrahamsvoll (0) and Finnbølseter
(10), where we see that the trends, in July and August respectively, change direction. If we ex-
amine the time series for these two periods (In appendix B) we see that Abrahamsvoll (0) station
has especially low values in 2016 and 2018. This could lead us to believe that the 31-year trend
is more effected by this than the 41 year trend. For Finnbølseter (10) station, the values in 1982
and 1983 is particularly low, while the value in 1993 is particularly high. This may indicate that
the change in direction of the trends in the different periods, is affected by these values.

The effect of having a few years changing the significance of the trend is proportional with
the number of observations. Since we are dealing with 31 and 41 data points when calculating the
trends, we expect that the significance of the trends might be influenced by years with particular
high or low values. However, the more data points we have, the less is this effect. This is also
the advantage of the MKP plot since we can see how prominent the trend is.
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5.3.2 Groundwater regimes

Analysing the set period tables we see a general pattern within the different regions. In the At-
lantic regime, all stations are located along the coast, with a relatively high yearly average tem-
perature. From the 31- and 41-year trends, we see that the regime has two general patterns. First,
we see positive trends in the winter, spring and autumn months while the summer months are
insignificant. Secondly, negative trends in the summer months along with insignificant or weak
significant positive trends in the other months. The typical drivers of the seasonal variations for
the Atlantic regime stations are peaks driven by precipitation events and lows driven by PET and
grow rates. Looking at the trends in drivers, it is apparent that there is a general positive trend in
PET in the spring an autumn. Positive PET trends in combination with negative R+SM trends
are seen in Fana (9), Lindesnes (17), Evje (8) and Birkenes (1) stations. Looking at the MKP
figures, station Evje (8) and Lindesnes (17), and in a small degree station Birkenes (1), seem to
show an effect of this. March, April and May months in Evje (8) and Lindesnes (17) stations
have prominent negative trends as expected. Likewise, the stations that have significant positive
yearly R+SM trend, show generally positive trends in their GWL (MKP figures in Appendix C
for Birkenes (1) and Jæren (15) stations). An exception is Fana (9) station, which show negative
R+SM trends in March, with no other positive trends in R+SM in the other months, but still has
generally positive GWL trends in almost all months (MKP figures in Appendix C fro Fana (9)).

There are no apparent geographical similarities between the stations following the different
patterns. However, the stations with negative trends in the summer are located on sandy glacial
fluvial deposits, with a forest cover between 38% to 84% around the station. In contrast, the sta-
tions with the positive trends are located on sandy moraine or marine sand deposits, with a forest
cover between 19% to 74% around the stations. The different deposit types combined with ve-
getation density could indicate a different surface-to-subsurface interaction which might explain
the different trend patterns within the regime.

For the stations within the mountain regimes, there is little to no recharge to the groundwater
in the winter because of the stable cold temperatures resulting in frost and snow cover. When
we see that there is a significant increase in groundwater level in the winter months at these sta-
tions, then we can assume that the frost and snow cover is discontinuous and enabling recharge.
The resulting recharge is small, but it is a significant change from past conditions. This small
change can be seen in the 41-year trends in drivers for these stations where we see that the trends
are significant according to Mann-Kendall, but the Sen slope is exactly 0.00𝑚𝑚∕𝑦𝑟. What this
could point towards, is that the small positive change in groundwater level we see at several of
the mountain regime stations is indicating the start of a shift towards earlier spring melt related
GWL increase.

Another scenario could also be that there is a general temperature increase leading to an in-
crease in winter GWL, but in combination with an increase in general precipitation, not necessar-
ily result in a shift timing in spring melt related GWL increase. However, as seen in the seasonal
variation patterns (Figure 4.7), the snow melt is a much larger contribution to the groundwater
recharge than the precipitation. This is because prolonged snowmelt creates fully soil saturated
conditions for long periods, and groundwater recharge is high.

Looking at the 41-year trends in drivers, we can see that for all the stations the yearly PET
has a significant positive trend. Since PET is a function of temperature, indicates this that the
temperature at the stations could also be increasing. This is again supported by the findings in
[Hanssen-Bauer et al., 2015] and is shown in map 2.4, were the temperature has shown to be
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increasing. It is also worth noting that, with higher temperatures comes potentially higher grow
rates and earlier start of the growing season for the vegetation in the area.

In addition to the trends in PET, we see that there is also trends in R+SM. Here, there is a
general positive trend in February and March, along with negative trends in April and May. For
the yearly trends, two stations have positive trends and two negative trends. The two stations that
have a significant (Groset station (12)) and weak significant (Kårvatn station (16)) negative trend,
there is overall less R+SM through the year mainly due to the negative trends in May. This is
typically the month of, or before, the spring GWL peak, and thus might indicate decreasing peak.

For Groset station (12), this is supported by the negative trends in spring maxima (Figure
4.30). In contrast, Kårvatn station (16) seems to have positive spring maximum trends (Figure
4.30), despite having a significant decrease in R+SM in the month before the peak. A lower
amount of R+SM, would lead us to believe it should result in negative trends in the groundwater
level in the typical spring melt related months. However, we see from the monthly MKP figures,
that the trends in these months are significant or weak significant positive (in addition to more
prominent positive trends in the month before the typical spring peak month, supporting the find-
ings in trends in timing, Figure 4.31).

An explanation to this could be that during the spring melt, the soil is fully saturated and
the groundwater recharge is restricted by the spatial distribution of the frost, and the hydraulic
conductivity of the soil. Here, excess water, that cannot infiltrate through the soil, will then drain
on the surface as overland flow. In such a scenario, the deciding factor of the amount of recharge
is the time duration of the spring melt. Because of this, there is not necessarily a direct correl-
ation of decreasing trends in the R+SM and the groundwater level, if the soil is fully saturated
over approximately the same time span. With temperatures in the early spring fluctuating around
0 𝑜C, the melt and freeze processes of the ground and snowpack can contribute to a prolonged
"spring melt infiltration period", and therefore contribute to increasing GWL recharge. As we
see in table 2.5 and 4.4, the stations within the Mountain regime, Mountain delayed regime and
the majority within the Transitional regime have had a increase in number of days with daily
average temperature between -1.5 to 1 𝑜C. However, if after a while, there is less snow accumu-
lated during winter, the time the it takes to melt the snow in spring, would also presumably be
shortened. Therefore, negative trends in spring and summer GWL would become apparent after
a sufficient change in snow accumulation has occurred.

The Transitional regime more ambiguous. The stations within this regime have two annual
peaks; one that is linked to the snowmelt and one to the rainfall. The stations located at high alti-
tudes (Settalbekken (21), Lykjestøylane (18) and Øyangen (24)) have similar seasonal variations
to the Mountain regime. In addition, examining the seasonal variations, Magnor (19) station
seems to get the biggest contribution from what could be the spring melt. However, this station
also has a deep groundwater table and a high autocorrelation.

All stations within the Transitional regime that resembles the mountain regime, have similar
positive trends for the winter and spring months. The monthly MKP plots for each station show
that the for some of the winter, spring and autumn months, several or majority, of the possible
periods have positive trends. Here Lykjestøylane (18) and Settalbekken (21) stations differ some-
what from the patterns with prominent negative trends for some of the spring and autumn months.
Both stations are differing from the other stations within the Mountain regime by having peat as
the dominant land cover, or peat in combination with mountain. Dominant peat and mountain
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could affect the surface to subsurface dynamic differently than other vegetation types and there-
fore explain difference. Looking at the yearly average MKP, most prominently Lykjestøylane
(18), Øyangen (24) and Magnor (19) stations, and station Settalbekken (21) in a lesser extent,
seem to have positive trends resembling the general patterns in the Mountain regime.

5.3.3 Groundwater minima and maxima

The GWL minima and maxima is calculated for two different periods (Table 3.2 and 3.3). The
MKP plot shows us how prominent the trends are and how they change depending on the periods.
The GWL minima and maxima plots of the stations within the Atlantic regime show that there is
a both negative and positive prominent trends. It seems like there is a similarity between stations
that is located in generally the same region. Førde/Moskog (11) and Nordfjordeid (20) stations,
which is located in the Northern part of the Western coast, has both negative trends in the maxima
and minima GWL. In contrast, station Førde (9) and Jæren (15) (located in the southern part
of the western coast) have prominent positive trends in the maxima (and minima in Jæren (15)
station). The rest of the stations in the Atlantic regime (Evje (8), Lindesned (17) and Birkenes (1)
stations) are located in the Eastern part of the southern coast. They have all prominent positive
trends in the GWL minima. For all stations, dominant driver of the groundwater seasonal pattern
is the precipitation. With the typical GWL minima occurring in the early autumn, the positive
trend in Birkenes (1), Lindesnes (17), Evje (8) and Jæren (15) stations, can be attributed to more
precipitation in the autumn. In addition, GWL maxima occurs in the winter, and only for stations
Jæren (15) and Fana (9) it has a positive trend. There is therefore, seemingly a geographical divide
between these stations indicating:

• Wetter winter and summer in the south-western part of Norway
• Wetter summer in the south-eastern part of Norway
• Drier winter and summer in the north-western part of Norway

When examining the maxima and minima trends for stations within the Transitional regime,
we see that there is no clear pattern between the stations. Only two stations (Lykjestøylane (18)
and Øyangen (24)) showed similarities in the trends, but this is most likely due to their close
proximity to each other. The wide range of different trends in minima and maxima could partly
be explained by the geographical extent of the station’s locations. In addition, the stations are
varying in how dominant the precipitation or snowmelt recharge contribution (or lack thereof)
is to the yearly GWL maxima and minima. Another factor one has to take into account is the
different geological conditions and vegetation cover. The different deposits and soil material in
combination to winter snow cover, could impact the frost propagation in winter. In addition, the
difference between the vegetation types (peat, mountain and forest) impacts the interception from
precipitation, root extraction and surface runoff. While this is true for all stations, the different
conditions might make it harder to determine any overarching patterns between the Transitional
regime stations.

From the MKP figures showing the trends in minimum and maximum occurrence and GWL
of the stations within the Mountain regime, we can infer three patterns:

1. Stations with an increasing minima on an earlier date combined with a decreasing maxima
on an earlier date (Abrahamsvoll (0), Groset (12) and Finnbølseter (10) stations).
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2. Stations with an increasing minima on a later date, combined with an increasing maxima
on the same or earlier date (Skjomen (5) and Kårvatn (16) station).

3. Stations with decreasing minima on a later date, combined with decreasing maxima on the
same date (Dombås (2) station).

Pattern 1; the groundwater minima is increasing in tandem with a decreasing trend in GWL max-
ima. This could come in relation to a lower amount of total snow accumulation during winter,
and or earlier snowmelt in the spring. The earlier snowmelt would lead to a higher GWL in the
months before the primary spring melt, and with less snow in the late spring, a lower spring
GWL maxima.

Patterns 2; the timing of the spring GWL minima and maxima is approaching each other
while both the minima and maxima are increasing. This could happen if there is a general in-
crease in winter groundwater recharge combined with an increase in spring melt. From the station
map (Figure 2.2), we see that both Skjomen (5) station and Kårvatn (16) station are located by
the coast. The coastal climate keeps the yearly temperature variation stable as compared with the
inland regions. Therefore, even though if the average temperature is low, the winter and spring
temperature could be fairly warm. Varying temperatures around 0 degrees could increase GWL
recharge through the winter and spring, thus increasing the overall GWL. In addition, with fairly
warm winter temperatures, the soil frost depth propagation could also be limited, making early
and more recharge possible.

Pattern 3; shows a later and decreasing spring minima combined with a decreasing spring
maxima. This indicates that the spring melt timing is later, prolonging the winter frost cover, and
thus, making the GWL minima just before the spring melt to decrease even further. The GWL
is then on a lower level when the spring melt occurs, making the spring maxima lower under
normal circumstances. Here, only Dombås (2) station fits this pattern.

5.4 Future studies

In order to improve the models, additional model calibration with the implementation of noise
models could be applied. It could better the parameter calibration and model performance, and
therefore, also the infilling of the time series. In addition, more observation data will be available
in the future, particularly daily data, could improve both the infilling and the models. With more
data, more stations could qualify for a trend study and give a better picture of the spatial extent
of, and changes to, the groundwater regimes.

We also see the need to analyze how different weather systems impact the groundwater. Pos-
sible changes in large scale meteorological systems could lead to more intensive and frequent
weather systems. In addition, through the spatiotemporal difference of weather systems impact-
ing Norway, we could maybe see regional changes of the areas with different groundwater re-
gimes.

This study used modeled meteorological gridded data with a spatial resolution of 1x1km
and 11x11km. Future studies should look at the possibility of using meteorological data with
a higher spatial resolution. Due to high topological gradients, especially in the south-western
part, modeled temperature data can be inaccurate. Furthermore, additional data of the geology
and terrain around the stations could give important information on hydraulically properties and
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natural thresholds levels for the infilling. In addition, there is a need for examining how different
types of vegetation covers impacts the seasonal recharge to the groundwater.

For future studies, it could be useful to implement a more robust method for estimating the
trend in timing of the spring melt. With the method used here, the estimation of the changing
timing is limited to very regular variation patterns with one regular occurring dominant GWL
minimum and maximum. This is why it was only the stations within the Mountain regime that
were tested. Utilizing circular statistics to determine the shift of the timing would in theory be a
more universal approach. This could possibly enable testing stations with irregular occurring or
multiple maximum and minimums, like stations within the Transitional regime.
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Conclusion

The Aim of this study is to examine the groundwater variations in Norway. In particular, we want
to see if it is possible to identify trends in the groundwater levels. Further, if there is a trend, how
does this relate to possible changes in drivers, and could this change the groundwater seasonality.
We formulated three hypotheses, and tested them by comparing trends in:

• Annual GWL
• Monthly GWL
• High and low GWL
• Timing of high and low GWL
• 41-year trends in drivers

From comparing the results, we answer the following hypothesis.

Hypothesis 1 Stations where the seasonal variation is heavily influenced by snow accumulation and
snowmelt, will experience increasing trends of groundwater levels in the winter months,
and no significant increase or a decrease in the summer months.

Stations where the seasonal groundwater variation is influenced by snowmelt is primarily
stations within the Mountain regime, in addition to some of the stations within the transitional
regime (Lykjestøylane (18), Magnor (19), Settalbekken (21) and Øyangen (24) stations). We see
from the tables 4.21 and 4.22, as well as for the MKP figures that for stations within the Mountain
regime, there are general positive trends in the winter and spring months preceding the spring
melt for 9 out of 10 stations. The exception being Dombås station (2), with significant negative
trends in all months. In addition, the stations within the transitional regime, which the seasonal
variation seem to be mostly influenced by spring snowmelt, also share these patterns. Based on
this, the hypothesis seems to be in agreement with the findings. In addition, the trends in the
drivers for these stations, particularly rain and snowmelt, show positive trends in the winter and
early spring months, in combination with negative trends in the April and May month. This also
seem to be in agreement of the hypothesis.

Hypothesis 2 Stations with a snowmelt related groundwater peak in the spring, will have a change
towards earlier GWL peak timing.
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Only the stations within the Mountain regime were conducted spring peak timing trend test
on. The result was that 3 out of 7 stations showed a significant or weak significant trend in tim-
ing. This meant that the GWL maxima related to snowmelt was moving towards earlier periods.
In addition, the same test was conducted on the GWL winter/spring minima. Here, 4 out of 7
stations showed a significant or weak significant negative trend in timing. This also meaning that
the GWL winter/spring minima was moving toward earlier timing. This meant that most stations
(5 out of 7 station) showed sign of a shifting timing of either winter/spring GWL minima or
maxima, supporting the hypothesis.

Hypothesis 3 Stations where the seasonal variations are mainly driven by rain events, will experience a
decreasing trend in groundwater levels in the summer months, and an increasing trend in
the early winter months.

The stations where rainfall evens are a dominant factor in the seasonal groundwater vari-
ation is mostly within the Atlantic groundwater regime, but also includes some stations in the
Transitional regime (Stenerseter (22), Kise (3), Stigvassåi (6), Eikamoen (7) stations). Here we
see a comparatively more negative trends in the summer months, than in the Mountain regime
stations. However, 3 out of 11 stations has positive trends in all months, or in the autumn, winter
and spring months. In addition, only two stations show signs of positive trends in the autumn
and winter months, in contrary of the hypothesis. Therefore, the findings is ambiguous and only
partly in agreement of hypothesis 3.

We recommend that similar studies should be conducted in the future when more data is
available. Trends found here suggest that there is a general GWL increase at 11 of 25 stations,
and 15 stations showing increasing trends in the winter months (December-February). With this
study showing change in PET and R+SM, and other studies showing a change temperatures, pre-
cipitation, and snowfall, we see clear impacts on the GWL. Stations in the Atlantic regime, and
where the snowmelt input is potentially low, shows generally more negative GWL trends than
the stations where snowmelt input is high.

In addition, several stations within the Mountain regime seem to exhibit a trend towards
earlier spring melt related GWL maxima, along with increasing trend in winter GWL minima.
This is in addition to a general increase in winter, spring and autumn GWL, as well as yearly
GWL. These positive GWL trends could be in relation to more resent changes in generally wetter
winters. With prolonged changes in higher temperatures and lower winter snowfall, there is a
possibility that the Mountain regime might shift towards Transitional or Atlantic regimes.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Abrahamsvoll station (0). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Birkenes station (1). Here, the Non-linear model with snow
scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Dombås station (2). Here, the Non-linear model with snow
scheme is the best preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Kise station (3). Here, the Non-linear model is the best
preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Modum station (4). Here, the Non-linear model is the best
preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Skjomen station (5). Here, the Non-linear model with snow
scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Stigvassåi station (6). Here, the Non-linear model with
snow scheme is the best preforming model, and the parameters shown here is for that model.

100



Figure show the same as in Figure 4.2, but for Eikamoen station (7). Here, the Non-linear model with
snow scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Evje station (8). Here, the Threshold model is the best
preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Fana station (9). Here, the Threshold model is the best
preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Finnbølseter station (10). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Førde/Moskog station (11). Here, the Threshold model is
the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Groset station (12). Here, the Threshold model is the best
preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Haslemoden station (13). Here, the Non-linear model with
snow scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Hauerseter station (14). Here, the Linear model is the best
preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Jæren station (15). Here, the Threshold model is the best
preforming model, and the parameters shown here is for that model.

109



Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Kårvatn station (16). Here, the Threshold model is the best
preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Lindesnes station (17). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Lykjestøylane station (18). Here, the Threshold model is
the best preforming model, and the parameters shown here is for that model.

112



Figure show the same as in Figure 4.2, but for Magnor station (19). Here, the Non-linear model with snow
scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Nordfjordeid station (20). Here, the Non-linear model with
snow scheme is the best preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Settalbekken station (21). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Stenerseter station (22). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Figure show the same as in Figure 4.2, but for Øverbygd station (23). Here, the Non-linear model with
snow scheme is the best preforming model, and the parameters shown here is for that model.
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Appendix A. Pastas model simulations and Parameters

Figure show the same as in Figure 4.2, but for Øyangen station (24). Here, the Threshold model is the
best preforming model, and the parameters shown here is for that model.
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Appendix B. Linear infilled time series

Gap-filled time series for Abrahamsvoll station (0).

Gap-filled time series for Birkenes station (1).
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Gap-filled time series for Dombås station (2).

Gap-filled time series for Kise station (3).
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Appendix B. Linear infilled time series

Gap-filled time series for Modum station (4).

Gap-filled time series for Skjomen station (5).
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Gap-filled time series for Stigvassåi station (6).

Gap-filled time series for Eikamoen station (7).
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Appendix B. Linear infilled time series

Gap-filled time series for Evje station (8).

Gap-filled time series for Fana station (9).
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Gap-filled time series for Finnbølseter station (10).

Gap-filled time series for Førde/Moskog station (11).

125



Appendix B. Linear infilled time series

Gap-filled time series for Groset station (12).

Gap-filled time series for Haslemoen station (13).
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Gap-filled time series for Hauerseter station (14).

Gap-filled time series for Jæren station (15).
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Appendix B. Linear infilled time series

Gap-filled time series for Kårvatn station (16).

Gap-filled time series for Lindesnes station (17).
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Gap-filled time series for Lykjestøylane station (18).

Gap-filled time series for Magnor station (19).
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Appendix B. Linear infilled time series

Gap-filled time series for Nordfjordeid station (20).

Gap-filled time series for Settalbekken station (21).
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Gap-filled time series for AStenerseter station (22).

Gap-filled time series for Øverbygd station (23).
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Appendix B. Linear infilled time series

Gap-filled time series for Øyangen station (24).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Abrahamsvoll station (0).
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Same as in figure 4.11, but for Birkenes station (1).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Dombås station (2).
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Same as in figure 4.11, but for Kise station (3).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Modum station (4).
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Same as in figure 4.11, but for Skjomen station (5).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Stigvassåi station (6).
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Same as in figure 4.11, but for Eikamoen station (7).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Evje station (8).
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Same as in figure 4.11, but for Fana station (9).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Finnbølseter station (10).
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Same as in figure 4.11, but for Førde/Moskog station (11).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Groset station (12).
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Same as in figure 4.11, but for Haslemoen station (13).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Hauerseter station (14).
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Same as in figure 4.11, but for Jæren station (15).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Kårvatn station (16).
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Same as in figure 4.11, but for Lindesnes station (17).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Lykjestøylane station (18).
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Same as in figure 4.11, but for Magnor station (19).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Nordfjordeid station (20).
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Same as in figure 4.11, but for Settalbekken station (21).
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Appendix C. Monthly multi temporal trend plots

Same as in figure 4.11, but for Stenerseter station (22).
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Same as in figure 4.11, but for Øyangen station (24).
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Appendix C. Monthly multi temporal trend plots

158



Appendix D

Yearly multi temporal trend plot

159



Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Abrahamsvoll station (0).
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Multi temporal trends for annual GWL at Birkenes station (1).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Dombås station (2).
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Multi temporal trends for annual GWL at Kise station (3).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Modum station (4).

164



Multi temporal trends for annual GWL at Skjomen station (5).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Stigvassåi station (6).
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Multi temporal trends for annual GWL at Eikamoen station (7).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Evje station (8).
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Multi temporal trends for annual GWL at Fana station (9).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Finnbølseter station (10).
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Multi temporal trends for annual GWL at Førde/Moskog station (11).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Groset station (12).
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Multi temporal trends for annual GWL at Haslemoen station (13).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Hauerseter station (14).
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Multi temporal trends for annual GWL at Jæren station (15).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Kårvatn station (16).
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Multi temporal trends for annual GWL at Lindesnes station (17).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Lykjestøylane station (18).
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Multi temporal trends for annual GWL at Magnor station (19).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at Nordfjordeid station (20).
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Multi temporal trends for annual GWL at Settalbekken station (21).
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Appendix D. Yearly multi temporal trend plot

Multi temporal trends for annual GWL at stenerseter station (22).
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Multi temporal trends for annual GWL at Øyangen station (24).
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trend plots
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Abrahamsvoll station (0).
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Same as figure 4.23, but for Birkenes station (1).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Dombås station (2).
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Same as figure 4.23, but for Kise station (3).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Modum station (4).
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Same as figure 4.23, but for Skjomen station (5).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Stigvassåi station (6).
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Same as figure 4.23, but for Eikamoen station (7).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Evje station (8).
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Same as figure 4.23, but for Fana station (9).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Finnbølseter station (10).
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Same as figure 4.23, but for Førde/Moskog station (11).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Groset station (12).
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Same as figure 4.23, but for Haslemoen station (13).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Hauerseter station (14).
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Same as figure 4.23, but for Jæren station (15).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Kårvatn station (16).
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Same as figure 4.23, but for Lindesnes station (17).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Lykjestøylane station (18).
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Same as figure 4.23, but for Magnor station (19).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Nordfjordeid station (20).
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Same as figure 4.23, but for Settalbekken station (21).
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Appendix E. Summer high and low multi temporal trend plots

Same as figure 4.23, but for Stenerseter station (22).
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Same as figure 4.23, but for Øyangen station (24).
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