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Abstract

To support sustainable practices in the battery industry, the feasability of using a data-driven
approach for efficient estimation of the state of health (SoH) of lithium-ion battery modules
is explored. A combination of machine learning, particularly convolutional neural networks,
with data from electrochemical impedance spectroscopy is used to perform these estima-
tions. By focusing on the entire module instead of just single cells, this study works to-
wards a method that is practically deployable at a larger scale than current methods. This
work provides an in-depth examination of battery behavior, degradation, and the nuances
of impedance spectroscopy, like the impact of confounding variables on battery impedance.
Furthermore, it also delves into the fine-tuning of machine learning models for this specific
application. In the study, a neural network is trained on cell-level data to perform state of
health estimations on module-level data with an accuracy of approximately 5%. While this
is not adequate for industrial application, the results successfully demonstrate module-level
state of health estimation based on electrochemical impedance spectroscopy.

Sammendrag

For å oppnå bærekraftig bruk av ressursene som ligger i elektriske kjøretøy, er det essen-
sielt å finne en metode for rask estimering av batterienes helsetilstand. I denne masteropp-
gaven forsøkes det å bevise at det er mulig å bruke data-drevne metoder for å oppnå dette
målet. Dette gjøres ved hjelp av elektrokjemisk impedansspektroskopi og maskinlæringsme-
toder. Studien tar for seg målinger gjort på modulnivå, i motsetning til tidligere forskning
som har fokusert på enkeltceller. Med denne oppskaleringen er målet å oppnå en metode
som kan anvendes praktisk på en større skala, eller i en operasjonell kontekst. Oppgaven
dykker ned i batteriers grunnleggende oppførsel og nedbrytningsprosesser, samt hvordan
impedansspektroskopi kan identifisere disse prosessene. Den tar også for seg prinsippene
bak maskinlæring og hvordan en modell kan justeres for å oppnå optimal ytelse til formålet.
Et nevralt nettverk trenes på data fra enkeltceller, for deretter å utføre estimater på et sett
med impedansspektra på modulnivå. Nøyaktigheten i estimatene ender på 5%. Selv om
dette ikke er godt nok til industriell bruk, viser resultatene at trening av en modell på denne
skalaen er mulig.
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Chapter 1

Introduction

Figure 1.1: Open chassis of a Nissan Leaf showing its exposed battery modules. Each of the aliminium cannisters
represents amodule. Themodules contain 2 lithium-ion battery cells in series and 2 in parallel, and they use cathodes
made of a combination of LiMn2O4 and LiNiO2 [1]. The image is captured at the 2009 Tokyo Motor Show by天然ガ
ス [2].

The beginning of the 21st century has seen a significant shift in the global automotive industry. Electric
vehicles (EVs) are presented as one of many solutions in the fight against climate change and global warm-
ing. and demand for them is growing exponentially [3]. This shift is driven by the urgent need to reduce
reliance on fossil fuels and mitigate the transport sector’s impact on carbon emissions. As highlighted by
Kastanaki & Giannis [4], “many EU countries have set mandatory targets to eventually end all sales of
internal combustion engine vehicles by 2030 or 2040”. However, this rapid growth is accompanied by an
environmental challenge: the disposal and recycling of batteries.

Batteries are composed of rare and expensive materials. The extraction of e.g. cobalt often involves uneth-
ical mining practices [5], while nickel production is a highly energy-intensive process that generates large
amounts of sulfur dioxide during refinement [6]. This highlights a clear contradiction in the green narra-
tive of electric mobility. Moreover, the chemical and structural complexity of a lithium-ion battery makes
them difficult to recycle [7], presenting a significant barrier in the switch to a sustainable future. Given the
strict safety regulations and the requirement for optimal performance in electric vehicles, batteries are usu-

1



CHAPTER 1. INTRODUCTION

ally considered unfit for automotive application when their capacity reaches 70% to 80% of their original
rating [8]. This leads to a considerable volume of battery waste, projected to reach between 880million and
8 billion end of life (EOL) cells generated in the year 2040 from EVs alone [9], much of which possesses an
untapped potential for second-life applications. However, the realization of this potential depends on a
comprehensive understanding of a battery’s state of health (SoH) throughout its lifecycle — a metric that
is notoriously difficult to measure accurately without causing additional damage to the battery.

Traditional approaches to assessing the SoH of batteries are time and resource-demanding and may accel-
erate battery degradation, thus conflicting with the aim of conserving resources. In this context, electro-
chemical impedance spectroscopy (EIS) has emerged as a non-invasive method for evaluating batteries,
offering crucial insights into their electrochemical characteristics and, consequently, the health of battery
cells [10]. Despite its promise, EIS remains largely a laboratory tool due to its reliance on costly equipment
[11].

The increased availability of computing power and data storage capabilities in recent years has paved the
way for a surge in data-driven methodologies and machine learning as solutions to complex problems.
Some notable achievements include achieving superhuman performance in the game of go [12], devel-
oping sophisticated language models capable of understanding and generating human-like text [13], and
significant strides in performing quantummany-body simulations [14]. In this vein, deep learning— lever-
aging vast datasets to iteratively improve performance—offers a fresh and automated approach to tackling
intricate challenges. This shift towards harnessing computational power and big data is introducing new
solutions to longstanding problems.

Indeed, data-driven methods have become an increasingly popular way of performing SoH estimation
based on EIS1 [11]. Techniques like gaussian process regresion and neural networks have reached an im-
pressive level of accuracy, many at around 1% mean absolute error [11]. Despite this, the application of
EIS has been mostly focused on individual cells. This is not only because data collection requires expen-
sive high voltage equipments (see Appendix C.1), but also because the examination of data obtained at the
scale of a battery module remains constrained by the complexities of having multiple battery cells — with
different SoH— connected in series and/or parallel [11].

This thesis presents the potential of advancedmachine learningmethods for interpreting EIS data at amod-
ule level, aiming to demonstrate the feasibility of developing a data-driven model for estimating battery
SoH, even on a larger scale. Specifically, the aim is to achieve this primarily based on existing cell-level
data, due to the current lack of openly available module-level datasets. Coupled with the continuous de-
velopment of EIS measurement techniques, such a model would make the implementation of second-life
battery applications more efficient and resource-conserving. This research aims to close the gap between
the theoretical potential of module-based EIS and its actual application, and in that contribute to the sus-
tainable battery management practices that create a circular economy and contribute to the global effort to
combat climate change.

1This is further evidenced by a search on the Google Scholar platform for "eis battery soh data driven", which
returns 6700 results.
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Chapter 2

Theory

2.1 Introduction to lithium-ion batteries

Figure 2.1: Diagram of a typical lithium-ion battery while discharging. The figure is reproduced fromWikimedia
Commons by user Sdk16420 [15].

The fundamental operation of lithium-ion batteries (LIBs) is based on the transfer of electrons and lithium
ions between an anode (negative electrode) and a cathode (positive electrode). When the battery is charg-
ing, ions move from the cathode to the anode within the battery cell, while electrons flow through an
external circuit. At the anode, the ions are stored in the lattice of the anode material. During discharge, the
ions and electrons then travel back to the cathode, releasing energy to power a load. This reversible flow of
electrons and ions is what enables the battery to be recharged multiple times. A simplified schematic of a
LIB is depicted in the diagram shown in figure 2.1, and the continuous chemical reactions at the electrodes
can be summarized as follows:

Cathode: Li𝒞𝑎𝑡 ↔ Li+ + 𝑒− + 𝒞𝑎𝑡,

Anode: Li+ + 𝑒− + 𝒜𝑛 ↔ Li𝒜𝑛.
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CHAPTER 2. THEORY

Here, 𝒞𝑎𝑡 is the host cathode material, which can be made from a variety of lithium oxides. The anode 𝒜𝑛
typically consists of graphite. While cathode materials can be found in many different chemical structures,
layered structures are the most commercially evolved [16], and choice of material drastically influences the
properties of a battery [17]. So much, in fact, that batteries are often categorized based on the materials
used for the cathode. A few examples include:

• LiCoO2 or lithium cobalt oxide (LCO): A commonly used cathode material in LIBs, but it is chal-
lenged by the high cost of cobalt and general stability issues, particularly when overcharged [17].

• LiNixMnyCo1-x-yO2 or lithium nickel manganese cobalt oxide (NMC): Offers a blend of high ca-
pacity, improved stability, and cost-effectiveness. Initially, LiNiO2 was introduced because of its
lower cost and higher energy density compared to LCO. However, since it is less stable, manganese
and cobalt were incorporated into the material to increase the stability [17].

• LiFePO4 or lithium iron phosphate (LFP): Has an energy-density of 72% compared to typical NMC
batteries [16], but is less costly and has a longer lifetime. Highly valued because it removes the need
for cobalt altogether and because it has a flat discharge profile with stable two-phase operation [17].

Each chemistry presents a trade-off between energy density, life cycle, safety, and cost, influencing their
suitability for different applications. Given its prevalence in the automotive field, this studywill specifically
focus on NMC cathode materials.

2.1.1 Lithium-ion batteries in electric vehicles
By far the most prevalent batteries used in EVs are LIBs. This is because of the high energy density and
long cycle life, as explained above. At the fundamental level, an EV battery is comprised of individual
electrochemical cells. These cells are the basic building blocks where energy is stored in the form of chem-
ical potential. To increase the overall energy storage capacity and manageability, cells are grouped into
modules. A module is a collection of cells connected in series and/or parallel, and it may include a cell
management system (CMS) to monitor and balance the voltages and temperatures of each cell, in order
to optimize the efficiency and longevity of the module. Then, at the highest level, multiple modules are
aggregated into battery packs, usually located within the chassis of an electric vehicle. The pack includes
a battery management system (BMS) responsible for overseeing the health and performance of the entire
pack.

2.1.2 Degradation phenomena
With usage and aging, LIB cells experience many different degradation phenomena, leading to a decline
in performance over time. Understanding these phenomena is crucial for deploying LIBs into second-life
use, especially when it comes to batteries from EVs, as they are often used in unstable environments and
pushed to the limits. A general categorization can be performed, grouping internal and external factors
into three main degradation mechanisms: Loss of lithium-ion inventory (LLI), loss of active material (LAM)
and conductivity loss (CL) [18]. While this study will not delve deep into the electrochemical aspects of
these mechanisms, a few notable examples of degradation phenomena include:

• Solid electrolyte interface (SEI) growth: The SEI layer is an accumulation of lithium-ions in the
interface between the electrolyte and electrode. It is usually desireable, since it gives access to free
lithium-ions and forms a passivation layer that protects the electrode, but with further growth the
available lithium ions are consumed and a thicker layer can cause blockage of the anode pores,
degrading the battery by e.g. increasing internal resistance. During fast charging, especially at low
temperatures, lithium can plate on the anode’s surface, irreversibly formingmetallic lithium instead
of reacting with the anode. This plating can even evolve into dendritic structures that penetrate the
separator, potentially causing short circuits [19].
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CHAPTER 2. THEORY

• Loss of cathode material: At the cathode side, the aging is mostly manifested in loss of active mate-
rial. This commonly occurs due to stress when releasing and accepting lithium, which causes phase
changes that can alter the crystal structure or even make it collapse. These effects often arise over
time and with increasing number of cycles [19].

In general, battery aging is influenced by both the environment and usage patterns. Factors such as time,
temperature, voltage levels, charging speed, and physical stress often interact, compounding degradation
through a variety of complex phenomena [19]. Figure 2.2 provides a detailed illustration of this complexity,
illustrating how interconnected the factors are.

Figure 2.2: Diagram showing the external and internal factors to lithium-ion battery degradation, as well as the
modes and the direct effect of the degradation phenomena. Figure from Liu, Liu, et al. [19].

2.1.3 State of health (SoH)
To measure the overall degradation of a LIB over time, a metric like SoH is often used. SoH is defined as
the comparison of the battery’s current state 𝑥current to its state at the time of manufacture (or at least the
state described in its specification) 𝑥initial. In some cases, the ratio may be adjusted by the state at its EOL
𝑥EOL. The physical quantity given by 𝑥 is not agreed upon in the industry, but it typically refers to one of or
a combination of the internal resistance and capacity [20]. The SoH is then given by the following equation.

SoH = 𝑥current − 𝑥EOL
𝑥initial − 𝑥EOL

(2.1)

While percentages are commonly used to represent the SoH of batteries, this study uses a scale from 0 to
1 to simplify the integration with machine learning algorithms. 1 represents when the battery is brand
new and decreases as the battery gets older [21]. This drop in SoH is due to the chemical and physical
changes as described above, which gradually impair the battery’s capacity to store and release energy.
Depending on the requirements of the measure, one may set 𝑥EOL such that a battery still possesses some
functional capacity at an SoHof 0 [21]. In this study, however, 𝑥EOL is set to 0, as the goal is to reach a holistic
assessment of a battery’s applicability for second-life use. An SoH of 0 thus means there is no remaining
useful capacity in the battery.

Traditionally, the assessment of SoH has been conducted through direct measurements of cell capacity
and/or internal resistance [22]. This is done through cycling experiments— fully charging and discharging
a battery. In this context, the concept of C-rate is often used to indicate the speed at which the battery is
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CHAPTER 2. THEORY

charged or discharged, relative to its total capacity. For example, a C-rate of 1 means the battery charges
or discharges in one hour, while a rate of 0.5 C extends this to two hours. As shown by Latifatu et al.
[23], the selection of C-rate affects the battery’s apparent capacity during discharge tests, with higher C-
rates typically resulting in reduced capacity due to greater internal losses. Although straightforward to
conduct, cycling has practical limitations in some use-cases — especially in second-life repurposing: The
process of fully charging and discharging a battery to measure its capacity can be time-consuming and
energy-intensive (see Appendix C.1). Furthermore, it subjects the battery to additional cycles of wear.

Alternatively, post-mortem analysis is also a commonly used family of techniques for understanding bat-
tery degradation mechanisms. By extracting the battery cells and dissecting them after their life cycle, re-
searchers can use x-ray based techniques, electron and scanning probe microscopy or spectroscopic techniques
to identify failure modes and degradation patterns [22]. However, these methods require destructing the
battery, and are thus not applicable in second-life characterization or operational scenarios.

2.2 Electrochemical impedance spectroscopy (EIS)
EIS is the process ofmeasuring the complex impedance of a battery at different frequencies, which provides
information about the internal resistance, capacitance, and other properties of the battery. This information
can be used to diagnose various types of battery degradation, such as capacity fade, electrode corrosion,
and electrolyte depletion [10].

An EISmeasurement involves applying a small amplitude alternating current (AC) signal to the battery and
analyzing the resulting voltage response. Depending on the approach, this signal can be either a controlled
voltage or a controlled current, typically sinusoidal, and is applied across a range of frequencies. In a
voltage-controlled (potentiostatic) approach, a known voltage signal is applied to perturb the system, with
the current response being recorded. Conversely, during a current-controlled (galvanostatic) experiment,
a specified current signal is applied, and the resulting voltage is measured. The impedance 𝑍 of the battery
is then determined by measuring the ratio of the voltage 𝑈 to the current 𝐼, as seen in equation 2.2.

𝑍 = 𝑈
𝐼 = 𝑈0𝑒𝑖(𝜔𝑡+𝜙𝑈)

𝐼0𝑒𝑖(𝜔𝑡+𝜙𝐼) = 𝑈0
𝐼0

𝑒𝑖𝜃, where 𝜃 = 𝜙𝑈 − 𝜙𝐼 . (2.2)

Here, 𝜔 is the signal frequency, 𝜙𝑈 and 𝜙𝐼 are the voltage and current phases, respectively, and 𝜃 is the
phase shift between the voltage and the current. Note that, given the relaxation processes in the system
being measured 𝜃 is dependent on the frequency 𝜔.

EIS as a characterization technique stands out as advantageous for several reasons: Firstly, it is a low-
amplitude technique, meaning it does not impose the same level of stress on the battery as methods re-
quiring full charge-discharge cycles or high resistance loads. The frequencies in a typical spectrum are
also high when compared to e.g. cycling methods. As a result, EIS can be performed relatively quickly
and without significantly affecting the battery’s existing SoH. EIS also relies on simple measurements of
voltage and current, allowing for easy integration into existing battery management systems by just requir-
ing an AC source. This simplicity, along with its non-invasive nature, makes EIS an attractive option for
characterization uses in operational batteries and those being evaluated for second-life uses.

2.2.1 Identifying degradation patterns with impedance spectra
The results of an EIS measurement are often presented in Nyquist and Bode plots. Nyquist plots repre-
sent the real and imaginary parts of impedance in a complex-plane graph, allowing for the visualization
of different electrochemical processes. Bode plots display the impedance magnitude and phase angle as
functions of frequency, aiding in the identification of key frequency-dependent features. Interpretation of
impedance spectra involves analyzing the shapes and trends in the Nyquist and Bode plots, and can be
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CHAPTER 2. THEORY

done manually by a human, through physical models and parameter fitting, or — as is the case for this
study — by using data-driven machine learning methods.

Figure 2.3: Nyquist plot representing the impedance characteristics of a lithium-ion battery [24]. 𝑍′ is the real
impedance (resistance) and 𝑍″ is the negative imaginary impedance (negative reactance). The numbered regions are
explained below. Reproduced with permission from The Electrochemical Society.

Degradation patterns within LIBs are clearly identifiable in their impedance spectra, as summarized in the
scientific review by McCarthy et al. [24]. Figure 2.3 shows a mocked up Nyquist plot, where the following
spectrum regions are marked in order of decreasing frequency:

1. The high frequency range (kHz) reveals the inductance attributed to the battery’s metallic parts,
indicative of e.g. the porosity of the electrodes [24].

2. The composite resistance of electrodes, electrolyte, and separator — encountered at the spectra’s in-
tersectionwith the real axis— typically varieswith reduced ionmobility due to electrolyte depletion
[24].

3. SEI growth can be observed as alterations in the high-frequency semi-circle, characterized by re-
duced cell capacity and increased resistance. As a result, the semi-circle is often flattened and
stretched with increasing degradation [24].

4. Additionally, themid-frequency semi-circle gives insight about double-layer capacitance and charge-
transfer resistance [24].

5. At the spectrum’s lower end, the rate of diffusion can be seen. This is usually identified by a region
of constant phase, seen as a straight line in the Nyquist plot [24].

In figure 2.4, we can see a clear demonstration of impedance as a degradation indicator.

Equivalent circuit modelling (ECM) is traditionally used to interpret these patterns, by identifying a cir-
cuit that mimics the battery’s behavior, fitting the circuit parameters to the observations and thereafter
simulating the battery’s behavior based on the circuit [24]. However, applying ECM to battery modules is
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Figure 2.4: Nyquist plots of NMC 18650 cells at varying degradation levels. The data shown is from the cell-level
dataset described in section 3.2.

challenging due to the added complexity, stemming from the combined impedance of different cells, the
connection points between them and the module circuitry. This makes it hard to represent the systemwith
a reasonable number of circuit elements. Despite this complexity, one or more faulty cells in a multi-cell
setup has been shown by Ank et al. [25] to signifciantly influence the overall impedance of the whole sys-
tem, making EIS a viable option still. By deploying data-driven approaches to estimate the SoH directly
from raw impedance data, the ECMmethod can be circumvented, offering a more flexible and automated
method to predict battery degradation.

2.2.2 Free variables in battery impedance

Figure 2.5: Nyquist plot showing the impedance spectra of a lithiumnickel cobalt aluminiumoxide (NCA) cell. The
measurements are done at 60% State of charge (SoC) and varying temperatures [26]. Reproduced with permission
from Elsevier.

Temperature has a clear impact on the relaxation time of a dielectric. The thermodynamics of electrode
reactions, charge-transfer, and the overall performance of the electrolyte are all affected [27]. As a result,
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the impedance of a LIB can be substantially changed at different temperatures, as shown in figure 2.5.
Additionally, as indicated by Raijmakers et al. [26], temperature-induced changes in impedance are not
confined to specific frequency bands. We can clearly see in figure 2.6a that it rather influences the entire
relevant spectrum, affecting both low and high frequencies. In contrast, we see from figure 2.6b that the
effect of state of charge (SoC) on impedance may be less impactful than temperature. It is not as broad-
reaching and mostly affects the lower region of the spectrum.

While the findings of Raijmakers et al. [26] are frommeasurements done onNCA cells, studies byGopalakr-
ishnan et al. [28] confirm the same phenomena in NMC cells as well.

(a) Bode plot of the spectra. The measurements are
done at 60% state of charge and different temperatures.

(b) Bode plot of the spectra. The measurements are
done at -10 °C and different state of charge.

Figure 2.6: Impedance spectra of a NCA cell at varying SoC and temperature [26]. Both plots are reproduced with
permission from Elsevier.

2.3 Machine learning
Machine learning, at its essence, represents the application of statistical methods to teach machines how
to learn from data. This allows the creation of algorithms which are capable of identifying both linear
and non-linear patterns in data. With advancements in computing technology, these techniques have be-
come applicable on amuch larger scale, opening up new possibilities for predictive analysis and intelligent
decision-making across various fields.

In supervised machine learning, we train a model ̂𝑓 to learn the relationship between inputs X and outputs
y. The data is usually divided into two distinct subsets:

• Training set: Initially, the model is trained by adjusting its internal parameters to fit the training set.
• Testing set: After training, the testing set serves as the benchmark of the model’s performance, show-

ing how well it generalizes to unseen data.

Additionally, a third division — the validation set — can be introduced to tune the model’s external pa-
rameters (parameters which are not adjusted by the training session,) as explained in section 2.3.3. The
validation set acts as a mediator, ensuring that the adjustments made to the model or training process not
only improve its performance on the training data but also enhance its ability to generalize well to new
data, avoiding overfitting.

This section will describe two different machine learning approaches to analysing EIS spectra: Gaussian
process regression (GPR) and neural networks.

9
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2.3.1 Gaussian process regression (GPR)
GPR is a flexible, Bayesian-based regression method that has been effectively used for estimating battery
capacity through EIS data [29]. In GPR, predictions are generated under the assumption that there is a
Gaussian distribution across the space of possible functions. This approach enables the inclusion of pre-
diction uncertainties, making GPR highly suitable for EIS data, which in many cases is fairly noisy [30]. An
existing implementation of GPR from the Python package scikit-learn [31] will be used in this study
and only as a comparison point. Thus, the reader is directed to other sources for more details about GPR,
e.g. the introduction by MacKay [32].

2.3.2 Neural networks
Neural networks are among the more foundational components of machine learning1, designed to recog-
nize patterns and solve complex problems. These networks mimic the human brain’s structure and func-
tion, learning from vast amounts of data to make decisions and predictions. They can be as complex as
desired and consist of multiple nested networks of different types.

During the training process, a network is tuned to optimize a so-called loss function as evaluated on the train-
ing set. The network learns during this process by feeding data from the training set through the network
to make a prediction. Based on the loss of this prediction, backpropagation is utilized, which involves calcu-
lating the gradient of the loss function with respect to the network’s parameters by using the chain rule.
The parameters are then adjusted in the direction that reduces the loss, and the next datapoint is consid-
ered. This iterative process continues until the network achieves satisfactory performance or the process
is halted. The training process may also include a step called dropout, which involves randomly nullifying
some of the tensor values by some probability (called the dropout rate.) This is done to avoid overfitting
and too much reliance on certain features of the input data.

2.3.2.1 Artificial neural networks

Artificial neural networks, also known as fully-connected or dense networks, are the simplest formof neural
networks, where each neuron in one layer is connected to each neuron in the next layer. The primary
operation in these networks is a linear transformation of the input data, followed by a non-linear activation
function. This activation function is what enables the network to identify non-linear patterns in the data.
Each layer 𝑛 can be described as in equation 2.3.

y𝑛 = 𝑓 𝑛 (W𝑛x𝑛−1 + b𝑛) . (2.3)

Here, x𝑛−1 is the input to the layer and y𝑛 the output. W𝑛 contains what are called the weights of the layer
and b𝑛 holds the bias of the layer, while 𝑓 𝑛 represents the activation function. The weights and biases
are determined by identifying which values minimize the difference between the predicted values and the
actual values. Since the core of each layer in the network is a linear transformation, the layers in an artificial
neural network are often referred to as linear layers.

2.3.2.2 Convolutional neural networks

An impedance spectrum can be considered a complex-valued 1-dimensional signal in the frequency do-
main. As described in section 2.2.1, this signal exhibits characteristic shapes and patterns that are key to
extracting the state of health of the system. For such a task, 1-dimensional convolutional neural networks
(CNNs) have proven to be an especially effective tool, even with a limited dataset [33].

1Searching for the term "neural networks" on the Google Scholar platform gives 4 380 000 results.
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Mathematically, a 1-dimensional convolutional layer computes the running average of a signal over a win-
dow of a given size — called the kernel. For the layer 𝑛, the input consists of 𝐶 channels, which are the
innermost dimension of the tensor. For each datapoint 𝑖 and channel 𝑐, the convolution output 𝑦𝑐,𝑛

𝑖 is
obtained by convolving the input signal 𝑥𝑐,𝑛−1

𝑖 with the 𝐾 number of corresponding kernel weights k𝑐,𝑛.
This process is repeated for each position 𝑖 in the input signal, and the resulting output for each channel
is added element-wise and fed through the activation function 𝑓 𝑛 to produce the final output of the layer.
This process can be expressed as:

𝑦𝑐,𝑛
𝑖 = k𝑐,𝑛 ∗ 𝑥𝑐,𝑛−1

𝑖 =
𝐾

∑
𝑗=1

𝑘𝑐,𝑛
𝑗 𝑥𝑐,𝑛−1

𝑖+𝑗−1,

and 𝑦𝑛
𝑖 = 𝑓 𝑛 ⎛⎜

⎝

𝐶
∑
𝑐=1

𝑦𝑐,𝑛
𝑖

⎞⎟
⎠

.

2.3.2.3 Activation functions

Section 2.3.2.1 and section 2.3.2.2 shows artificial and convolutional networks, where the network’s output
is in essence a complex linear combination of its input. In addition, both apply a non-linear activation
function to this output (except, possibly, in the case of the last layer.) This is a crucial addition, which
allows the network to learn non-linear relationships between the inputs and outputs. As such, the choice
of activation function plays an important role in determining the network’s performance.

The Mish activation function is a non-linear activation function that has gained attention for its potential
to improve the performance of many deep neural networks. Introduced by Misra [34] as an alternative
approach to traditional activation functions like rectified linear unit (ReLU) and sigmoid, it is defined as
shown in equation 2.4.

Mish(𝑥) = 𝑥 ⋅ tanh(log(1 + exp(𝑥))) (2.4)

A comparison between Mish and the ReLU activation function is shown in figure 2.7a. Compared to ReLU
— and many other activation functions — Mish offers improved accuracy and a smoother loss landscape
[34]. It has been observed that it enhances the representation power of neural networks2, leading to superior
performance in tasks such as image classification and object detection [34], which is especially relevant for
this study. Hu et al. [36] additionally proves that using Mish in conjuction with 1-dimensional CNNs can
promote model performance slightly, compared to ReLU.

The value of SoH is expected to be constrained between 0 and 1. In such cases, applying the sigmoid func-
tion to the output layer is a common approach due to its asymptotic approach to these limits. However,
this function only asymptotically approaches 0 and 1, which might not be ideal for cases where a clear dis-
tinction at these boundaries is necessary. In many datasets, an SoH of 1 is prevalent and must be distinctly
recognized. A value of 0 is not as common, but may still be of significance, depending on the definition
of SoH. To address these challenges, the hard sigmoid function is introduced as a linear approximation of
the sigmoid, that is more performant, but which also ensures the output explicitly reaches 0 and 1 within
finite bounds. It is defined by PyTorch Contributors [37] as a piecewise linear function:

Hardsigmoid(𝑥) =

⎧{{{
⎨{{{⎩

0 if 𝑥 ≤ −3,
1 if 𝑥 ≥ 3,
𝑥
6 + 1

2 otherwise.

2In the case of recurrent neural networks, it can also help mitigate something called the vanishing gradient problem. This is not
relevant for this study, but for the curious, a great description of the problem is given by Hochreiter [35].
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A comparison between it and the regular sigmoid function is shown in figure 2.7b. As seen there, the
function effectively truncates the sigmoid curve and replaces it with a linear mapping from 0 to 1 in the
range [−3, 3].

(a) A plot showing the difference between Mish and
ReLu around the origin.

(b) A plot showing the difference between the hard sig-
moid and sigmoid function around the origin.

Figure 2.7: Comparison between different activation functions.

2.3.3 Hyperparameters

The performance of a machine learning model is significantly influenced by its hyperparameters. Unlike
parameters that are learned from the data, hyperparameters denote the set of predefined parameterswhich
cannot be estimated directly from the data. They are used to control the learning process and network
structure, and have a significant impact on the performance ofmachine learningmodels. Examples include
learning rate, the number of hidden layers and units in neural networks, or dropout rates. There are many
ways to find the best hyperparameters thatmake amodel perform better. Keymethods include grid search,
random selection, and genetic algorithms, which are explained below.

2.3.3.1 Grid search

Grid search is a traditional method for hyperparameter optimization that involves exhaustively searching
through amanually specified subset of the hyperparameter space. Agrid search algorithm searches exhaus-
tively through every combination of hyperparameters. As such, the method can be very time-consuming
and computationally expensive — especially as the number of hyperparameters grows [38]. For this rea-
son, it is useful in the cases where the hyperparameter space is small, since we are guaranteed to find the
best performing hyperparameter set. For bigger hyperparameter spaces, grid search is too computationally
expensive to be a viable method [39].

2.3.3.2 Random selection

As an alternative, random selection is a technique where hyperparameter values are randomly chosen
from a defined range. This method contrasts with the exhaustive nature of grid search by only sampling a
specified subset of the hyperparameter space. As such, it is oftenmore efficient than grid search, especially
when dealingwith a large number of hyperparameters, but it still lacks any directed search capabilities and
fails to guarantee hitting the best results [39].
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2.3.3.3 Genetic algorithm

As described above, grid search and random selection are regarded as naïve and generally inefficient ap-
proaches which leads to increased computational complexity and cost. In contrast, genetic algorithms
(GAs) offer a more efficient alternative, which provides quick convergence for many hyperparameter tun-
ing cases [38]. They work by simulating the process of natural selection to solve optimization and search
problems. The theoretical foundation ofGAs is grounded in the principles of genetics and natural selection,
making them robust and adaptable to a wide range of problems [40].

To perform hyperparameter tuning using GAs, a set of hyperparameters is generated randomly, consti-
tuting a population. Binary encodings of each of the hyperparameters are then created — aptly named
chromosomes [40]. These chromosomes undergo a fitness evaluation, which assesses their suitability as solu-
tions based on predefined criteria [40]. In the case of hyperparameters, that may be some statistical metric
on the validation set, or similar. For each generation, selection in the population is guided by the fitness
score, ensuring that more successful solutions have a greater likelihood of being propagated to the next
generation. The selected chromosomes are then combined via crossover and mutation to produce offspring
in order to complete the next generation [40]. Creating offspring from the most fit specimen means the
desired traits are kept, while mutation introduces random changes, which is an effective strategy to avoid
stagnating evolution [40]. In the language of statistics, this can be compared to avoiding local minima.

The GA iterates through these steps, generating new populations with each iteration. During this cycle,
the fittest solutions are retained along with the offspring in the next generation. The cycle is repeated until
a termination condition is met [40].

2.4 Statistical evaluation
To evaluate the performance of the proposed model, a set of statistical metrics are introduced. The set
chosen for this study are mean absolute error (MAE), mean squared error (MSE), and the coefficient of
determination (𝑅2). To describe them, consider the set of 𝑛 true values y and the corresponding predictions
ŷ predicted by our model ̂𝑓 .

MAE is a measure of the average magnitude of the errors between predicted and actual observations,
without considering their direction. It gives a straightforward indication of the average error magnitude.
It is mathematically defined as:

MAE = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|.

MSE, on the other hand, assesses the average of the squares of the errors. This metric penalizes larger
errors more than smaller ones, making it particularly sensitive to outliers in the data set, which can give
useful insights. It is expressed as:

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2.

Lastly, the coefficient of determination or 𝑅2 provides a measure of how well observed outcomes are repli-
cated by the model, based on the proportion of total variation of outcomes explained by the model. It can
intuitively be understood as howmuch better the model is, compared to the mean, with respect to theMSE
score. 𝑅2 can be computed as such:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦𝑖)2

,
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where ̄𝑦𝑖 is the mean of all the true values. It is important to note that 𝑅2 can yield negative values in
cases where the mean of the data provides a better fit to the outcomes than the model. This is usually an
indication that the model does not follow the trend of the data, thus explaining less variability than the
mean of the dataset itself. Incorporating these metrics into the evaluation framework of computational
models allows for a comprehensive assessment of their predictive performance. By analyzing the MAE
and MSE, the general error and impact of outliers can be assessed, while 𝑅2 can serve as a benchmark for
the model’s explanatory power.

2.4.1 𝐾-fold cross-validation
𝐾-fold cross-validation is a statistical method used to evaluate the performance of a model. The technique
involves partitioning the dataset into 𝐾 distinct segments, or “folds”. For instance, a 𝐾 = 5 configuration
means the dataset is divided into five unique folds. During the evaluation process, each fold sequentially
serves as the testing set, while a model is trained on the remaining 𝐾 − 1 folds. This is illustrated in
figure 2.8. The statistical metric in question is evaluated on the testing set, the score is stored, and the cycle
is repeated for each fold. The model parameters are not kept between each iteration. The average of the
statistical scores from each cycle is then considered the final score for the model evaluation.

...
Te

st

Tr
ai

n

K-​folds

Figure 2.8: Diagram showing the individual folds and selection done in 𝐾-fold cross-validation.

The primary strength of𝐾-fold cross-validation lies in its ability to utilize the available data for both training
and testing purposes. This is particularly beneficial in scenarios where the dataset is small, as all of the
available data can be used to validate the model’s performance, without mixing training and testing.

Mathematically, the cross-validation estimate of a statistical metric 𝐿 can be expressed as:

CV = 1
𝑛

𝑛
∑
𝑖=1

𝐿 (𝑦𝑖, ̂𝑓 −𝜅(𝑖)(X𝑖)) ,

where 𝜅 ∶ {1, …, 𝑁} → {1, …, 𝐾} is the function mapping a datapoint to its corresponding fold and ̂𝑓 −𝑘(𝑋)
is the model trained on everything but the 𝑘th fold.
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Method

3.1 Data representation
A set of impedance spectra, represented by a two-dimensional tensor X, is used as the model’s input. Each
spectrum is indexed by 𝑖 and the impedance measurements within it is indexed by 𝑗. The mathematical
representation is as follows in equation 3.1

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑍11 ⋯ 𝑍𝑖1 ⋯ 𝑍𝑚1
⋮ ⋱ ⋮ ⋰ ⋮

𝑍1𝑗 ⋯ 𝑍𝑖𝑗 ⋯ 𝑍𝑚𝑗
⋮ ⋰ ⋮ ⋱ ⋮

𝑍1𝑛 ⋯ 𝑍𝑖𝑛 ⋯ 𝑍𝑚𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦1
⋮
𝑦𝑖
⋮

𝑦𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.1)

Here, 𝑍𝑖𝑗 is the impedance measured at the 𝑗th frequency in the 𝑖th spectrum. 𝑦𝑖 refers to the SoH cor-
responding to spectrum 𝑖. Note also that 𝑛 represents the number of frequencies in the spectra, while
𝑚 is the size of the dataset or batch. An important consequence of this is that all spectra must be of the
same size, and since the input tensor does not include the frequencies themselves, the spectra must include
impedances corresponding to the same frequencies. See section 3.3.2 for further details.

3.2 Dataset
This study utilizes two datasets for developing and testing the model: one at the level of battery cells and
one at the level of battery modules.

The cell-level dataset dataset comes from an openly available source provided by Chan et al. [41], and
includes 13 life cycle test with accompanying EIS measurements, conducted on 34 individual 3 Ah NMC
18650 Lithium-ion cells by six different institutions. The dataset notably includes 5422 capacity measure-
ments and 5479 EIS spectra [41]. A life cycle test consists of the following steps:
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• The cells’ capacity is measured by fully discharging from 4.2 V to 2.9 V at 23 °C and 1.25 A [41].

• After capacity measurement, the cells’ SoC is adjusted to multiple predefined levels by discharging
at 1.25 A from 4.2 V, followed by a rest period of at least 30 minutes before further measurements
[41].

• EIS measurements are conducted with an excitation amplitude of 0.5 A at each SoC level [41].

• The cells are cycled from SoC 100% down to a SoC of 0%, giving a depth of discharge (DoD) of
100%, with the exception of three cells having a DoD of 70%, 50% and 30% respectively. A constant
current-constant voltage (CCCV) charging protocol and constant current (CC) discharging is used
[41].

Additionally, the dataset contains operational conditions, such as SoC and temperature. With a nominal
capacity given by the manufacturer as 3 Ah [41], the SoH is also calculated, as shown in equation 2.1.
All EIS spectra without a corresponding capacity measurement are discarded, as they provide no use for
the purposes of this study. Moreover, a notable inductive EIS distortion was observed by institution 5,
along with modified cycling behavior due to increased aging before the experiments at institution 6 [41].
This study aims to tackle noise in EIS spectra, and as such the measurements from institution 5 are kept.
However, data from institution 6 is excluded to avoid training errors into the model. To ground the model
in cell-level degradation patterns, this dataset will serve as the bulk of the training set.

Themodule-level dataset is based on original EISmeasurements conducted on two distinct types of electric
vehicle NMC battery modules. Both originate from the same EVmodel, but are from different generations
and produced by different manufacturers. The first module type, referred to in this thesis as 4s3p, consists
of 4 cells in series and 3 in parallel. The second module type, identified as 4s2p, consists of 4 cells in series
and 2 in parallel. According to the manufacturers, the nominal capacities are 118 Ah for 4s3p and 78 Ah
for 4s2p. All measurements were performed under an ambient temperature of 23 °C, akin to the cell-level
dataset. A total of 27 modules were measured once each, being 8 4s2p modules and 19 4s3p modules.

For each EIS spectrum, the battery modules were charged and discharged at a CC of 20 A, with a DoD of
100%. This current translates to a C-rate of approximately 0.16 for the 4s3pmodule and about 0.25C for the
4s2p module. The precise C-rate used by the module manufacturers to determine the nominal capacities
is unknown. This also goes for the exact discharge curves, which means it is difficult to find the difference
between the nominal capacity given in the specification and one found using the C-rates used in this study.
However, given the industry standard of using 1 C or 0.5 C for these types of ratings, an educated guess is
done: Experiments conducted by Latifatu et al. [23], Alqahtani &Williams [42] and Martha et al. [43] give
discharge curves for various NMC chemistries at different C-rates. Based on these discharge curves, the
difference in capacity when measured at 0.2 C and 1 C can be found to be as big as 20%. With the C-rates
used in this study’s experiments, a conservative uncertainty is therefore given for the nominal capacities
of 5% for the 4s2p modules and 10% for the 4s3p modules.

Due to confidentiality agreements with Evyon AS, further details about the battery modules, the lab equip-
ment and the EIS excitation amplitude is withheld. The raw EIS data is also not provided. Nevertheless,
a Nyquist plot is presented in figure 3.1 to illustrate the general impedance behavior observed in these
modules, without disclosing numerical details.
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Figure 3.1: Nyquist plot illustrating the general impedance behavior of an electric vehicle NMC battery module
with 4 cells in series and 3 in parallel. The specific impedance values are omitted due to confidentiality agreements
with Evyon AS.

3.3 Data selection and preprocessing
The selection of data formodel training and testing is a crucial step that ensures the robustness and accuracy
of the predictions. Certain considerations have to be done when choosing the data, especially in order to
minimize the impact of confounding variables.

3.3.1 Filtering based on confounding variables
To address the inherent temperature dependence explained in section 2.2.2, only EIS measurements per-
formed at the specific temperature of 23 °C are chosen. This choice aligns with real-world scenarios, as it is
the ambient conditions commonly encountered in labs and factories and mirrors the temperature at which
nominal battery capacities are measured.

In contrast, filtering based on a specific SoC would risk a significant loss of data. As such, the variability
imposed by the change in SoC is kept in the dataset and the SoC data is discarded. This choice aligns with
the objective of developing a robust model that is representative of a wide range of real-world operating
conditions. While this means accepting some level of SoC-induced variability, it ensures a comprehensive
analysis that does not overly narrow the utilization of the model. Actions are also taken to address the
effect of SoC variablility, as discussed in section 3.4.
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3.3.2 Spectrum resampling
In addition to controlling other variables, an essential step is to harmonize the spectral data from different
sources. The cell-level spectra size varies among institutions and measurements, with counts of 39, 48, 49,
57, 58 60 and 61 frequencies. The range of the spectra is from 0.01 Hz to 10 kHz. In contrast, the module-
level spectra features 26 frequencies, and has a spectrum range from 0.05 Hz to 1 kHz.

To ensure that each spectrum matches in size and has identical frequencies — a requirement for the input
tensor, which includes only impedance values and omits frequency information — a resampling of the
cell-level data is performed to fit the module-level spectrum. This approach was chosen to avoid the need
to extrapolate data, which would introduce hypothetical data points into the dataset. As a result, the cell-
level dataset is resized to feature the same 26 frequencies found in the module-level dataset, namely: {0.05
Hz, 0.1 Hz, 0.2 Hz, 0.3 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 3.5 Hz, 7 Hz, 10.5 Hz, 14 Hz, 25 Hz, 35 Hz, 75 Hz,
100 Hz, 150 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, 1000 Hz}.

3.3.3 Spectrum trimming
As shown in figure 2.6, external factors like temperature and SoC contributes to the impedance in varying
degree at different parts of the spectrum. As such, trimming targetted frequencies might be an effective
way tomitigate these contributions. To evaluate this, a number of frequencies— ranging from 0 to 24—are
systematically trimmed from the lower and higher ends of the module-level spectrum. For each spectrum
subset, a resampling is performed on the cell-level dataset and a GPR model is applied to predict the SoH.
The model’s performance is then assessed using MAE, MSE and 𝑅2. This analysis gives a set of metric
values corresponding to each number of frequencies removed, and it is repeated for the proposed neural
network to assess the generalizability of the conclusions.

To identify an optimal point 𝒫 based on this analysis, a composite metric is calculated as the product of
MAE and MSE divided by 𝑅2. The minimum of this metric with regards to the number of frequencies
trimmed 𝑛 is used as the optimal point. It is defined as

𝒫 = argmin𝑛∈ℕ
MAE(𝑛) ⋅ MSE(𝑛)

𝑅2(𝑛)

This metric attempts to reflect the point which minimizes error and maximizes correlation.

3.3.4 Scaling of module data
Lastly, to perform estimations on modules based on learning from cell-level data, a way to generalize be-
tween cell-level and module-level impedance spectra must be found. SoH is a relative measure, so it does
not depend on scale. However, the impedance does. It is essential to consider that modules consist of mul-
tiple cells arranged in series and parallel configurations, which means the impedance compounds. This
compounding effect adheres to Kirchoff’s circuit law, where serial impedances are summed, and parallel
impedances are combined through the addition of their reciprocals. If this ideal compoundingwas the sole
factor, estimating the average cell impedance based on the module impedance would be straightforward.
However, the impedance contributions from connections between cells and the module’s internal circuitry
complicate this estimation.

Instead of building a detailed phyics-based model to estimate the average impedance of cells in a battery
module, we use a simpler approach. This method assumes that multiplying each impedance value in the
module’s spectrum by a a scalar value can give us a close estimate of the average cell’s impedance. Essen-
tially, this approach ignores the detailed interactions within the module, suggesting that a straightforward
multiplication can account for the combined effects of the cells and their connections.
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3.4 Network architecture
The proposed neural network architecture is setup as a typical convolutional neural network and is kept as
simple as possible. A diagram of it is shown in figure 3.2.

Parallel convolutional layers

...

Linear layers in series

 

Complex 
convolutional 

layer

Complex 
convolutional 

layer

Input

Mish

Concatenate and batch normalize

Dropout

Complex linear layer

Mish

Complex linear layer

...

Dropout

Linear layer

Hard sigmoid

View as real

Output

Complex linear layer

Mish

Figure 3.2: A schematic of the neural network architecture. The network accepts complex-valued input tensors of
shape (26,), representing an impedance spectrum measured from a lithium-ion battery. It outputs a real valued
tensor of shape (1,)with a value between 0 and 1 which represents the SoH of that battery.

The input consists of a complex-valued tensor, as explained in section 3.1. This tensor is fed through the
network in batches of size batch_size. The tensors in each batch are first processed through multiple
1-dimensional convolutional layers arranged in parallel (meaning they are all given the same input data,)
each with varying kernel sizes. This approach is used to extract different shapes in the spectra, which may
be better identified by wider or more narrow kernels.
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Following the convolutional layers, the network concatenates their outputs and applies batch normalization
to ensure consistent learning. The tensor then passes through a series of artificial neural networks with
interspersed Mish activation functions to reduce the output to the shape (batch_size, 1). Since the
output is a real value, the complex tensor is viewed as real by splitting the complex numbers into real and
imaginary parts, resulting in a tensor of shape (batch_size, 2). This tensor is passed through the last
artificial layer, collapsing it to shape (batch_size, 1). Finally, the hard sigmoid activation function is
used to limit the network’s output to a range from 0 to 1.

The rationale for integrating dropout into the architecture is to address the variability in the battery’s
impedance spectrum imposed by the change in SoC. As shown in section 3.3.1, this mainly affects the lower
frequencies. However, these also encode information with regards to SoH — as described in section 2.2.1
— so removing them could potentially lead to loss of important data. This concern is mostly addressed
via the spectrum trimming analysis (see section 3.3.3), but the first dropout layer serves as a method of
letting the training process identify the ideal non-reliance on different parts of the spectrum automatically.
Following the convolutional blocks, the second dropout layer ensures that the refined features extracted
are not overfitted, allowing the network to develop a deeper understanding of the SoH indicators.

In addition, performing EIS measurements in real-world applications, for example in an operational EV
context, may result in noisy data and bad reproducibility [24]. Dropout can serve as an effective mitigation
strategy of this too, as it prevents the network from overfitting based on specific features. This approach
helps distribute the learning process more evenly across the frequency spectrum, which reduces confusion
based on noise and makes it more robust to unseen data.

3.5 Training and hyperparameter optimization
The model’s loss function is set to the MAE and it is trained via backpropagation using the Adam opti-
mizer, provided PyTorch. Introduced by Kingma and Ba [44], the Adam optimizer is an algorithm for
efficiently performing gradient based optimization. The algorithm accepts a learning rate, which adjusts
how aggressively the model parameters are adjusted. The initial learning rate is set to a known value,
and reduced during training according to the rules specified by the RLReduceOnPlateau learning rate
scheduler, also provided by PyTorch. This is done to initially ensure that the optimizer does not get stuck
in a local minima, while still managing to converge on the optimal point at the end of the training session.
The hyperparameters are:

1. Module scale: A scalar that each value in the impedance spectrum is multiplied by, as described in
section 3.3.4. This scalar is only used on the module-level data.

2. Batch size: The dataset is divided into batches of this size, and these batches are processed through
the network prior to the adjustment of themodel parameters. If the size of the dataset is not divisible
by the batch size, the last batch may be smaller.

3. Starting learning rate: The initial value for the learning rate.
4. Learning scheduler threshold: When the validation loss changes less than the minimum loss mul-

tiplied by this threshold, the learning rate is reduced.
5. Learning scheduler patience: The scheduler waits this many epochs before potentially reducing

the learning rate.
6. First dropout rate: The dropout rate of the first dropout in the neural network.
7. Kernel sizes of convolutional blocks: This list is configurable both in its length and its values.

The length specifies the number of convolutional block that are stacked in parallel, and the values
specify the kernel size of the CNN in each block.

8. Second dropout rate: The dropout rate of the second dropout in the neural network.
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9. Sizes of artificial hidden layers: This list is also configurable in its length and values. The length
specifies the number of linear layers that are stacked in a row, and the values specify the size of each
layer. The layers are sorted decreasingly by size before the network architecture is created.

The hyperparameter tuning is conducted using a GA, as outlined in section 2.3.3.3. The GA proceeds as
follows:

1. The process begins by creating an initial population of 𝑛 randomly generated hyperparameter can-
didates, each encoded as a chromosome. The chromosomes are represented as boolean arrays.

2. For each generation, the following process is performed:

i. The fitness of each individual in the population is found. This involves decoding the chro-
mosome into hyperparameters, instantiating a neural network, training it on the training set
through 100 epochs and evaluating the 𝑅2 score of the network on the validation set. This
score serves as the fitness of that individual.

ii. A set of parents from the current population is selected to create the next generation. This is
done by sorting the population by fitness and selecting the top 𝑚 individuals. 𝑚 < 𝑛 and is
determined by a selection rate 𝑝 as the product 𝑚 = ⌊𝑛𝑝⌋, where 𝑝 ∈ (0, 1).

iii. Pairs of individuals are randomly chosen from the pool of parents to undergo crossover,
producing offspring that inherit characteristics from both parents. Crossover is done by uni-
formly selecting genes from each of the parent’s chromosomes.

iv. To maintain genetic diversity within the population and to prevent converging on local op-
tima, mutation is applied. This step involves uniformly making small random changes in the
offspring’s chromosome. The mutation rate 𝑟 controls the probability of a mutation happen-
ing.

v. Offspring are generated until the number of parents and offspring total to 𝑛. This replaces the
population for the next generation.

3. The algorithm terminates after a set number of generations. The best solution (highest fitness) from
the final generation is decoded to retrieve the optimal set of hyperparameters.

𝑛 is set to 40, 𝑝 is set to 0.25 and 𝑟 is set to 0.04. The number of generations is set to 50. The GA is set to tune
the hyperparameters to maximize the 𝑅2 metric for the cell-level validation set.
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3.6 Frameworks and implementation
The model is implemented in Python using the PyTorch [45] library and its implementations of
1-dimensional convolutional networks, linear layers, the Mish activation function, the MAE loss
function and the Adam optimizer. The rest of the code used in this study — like the GA, 𝐾-fold
cross-validation and tensor handling functionality — is implemented specifically for this study, and
combined into a Python package named thesis, which is available in the Git repository hosted on
https://git.sr.ht/~kmaasrud/code. This package is then used in scripts to produce the results.

3.6.1 On PyTorch modules without support for complex tensors
In version 2.2 of PyTorch — which is used in this study — complex tensors and many operations on them
is supported [46]. However, not all relevant modules, like dropout, most activation functions and batch
normalization, are supported [47]–[49]. There are many reasons why this is not done yet: For example,
many of the functions provided by PyTorch are not well-defined in the complex plane, which means that
a concious choice has to be made on whether it should be applied to the real and imaginary components
separately, or to the magnitude and phase [49]. Because of this, the PyTorch modules that lack support for
complex tensors have been replaced by custom modules written specifically for this study. These all share
the concious choice of applying the operation on the real and imaginary parts, separately. The implemented
modules are:

• thesis.net.ComplexMish in place of pytorch.nn.Mish.
• thesis.net.ComplexDropout in place of pytorch.nn.Dropout.
• thesis.net.ComplexBatchNorm1d in place of pytorch.nn.BatchNorm1d.
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Chapter 4

Results and discussion

4.1 Trimming frequencies
As described in section 3.3.3, a model was trained and evaluated with different variants of the module
spectrum. To get a feel for how the trimming itself affected the accuracy of the predictions, this was done
with a model that is known to produce good results, namely GPR. Originally, the spectrum contained 26
frequencies, and a process was followed where up to 24 frequencies were eliminated from both the lower
and upper extremes. The performance of the model was assessed for each modified spectrum. These
assessments are visualized in figure 4.1. It was discovered that the removal of 3 frequencies from the lower
end of the spectrum gaveMAE = 0.013, MSE = 0.00035 and 𝑅2 = 0.99, yielding the optimal point as defined
in section 3.3.3. Conversely, the optimal point when frequencies were trimmed from the upper end of the
spectrumoccured at no frequencies removed, exhibiting similarmetricswithMAE = 0.013, MSE = 0.00036
and 𝑅2 = 0.99.

(a) Frequencies trimmed from the lower end of the
spectra

(b) Frequencies trimmed from the higher end of the
spectra

Figure 4.1: MAE, MSE and 𝑅2 of a GPR trained and evaluated with different number of frequencies trimmed
from the low or high end of the spectrum, shown in (a) and (b), respectively. The optimal point is calculated as
argmin𝑛∈ℕ

MAE(𝑛)×MSE(𝑛)
𝑅2(𝑛) .
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While the removal of 3 frequencies from the lower end provides a marginal performance boost, the results
are generally as expected: Data-driven methods perform better given more data. However, the model per-
formance is surprisingly stable with increasing number of trimmed frequencies. Case-in-point, the lower
end of the spectrum appears to be relatively dispensable up to a certain threshold, beyondwhich the loss of
information compromises model accuracy. The higher end shows a similar trend, perhaps with a slightly
smaller margin for removal. In practical terms, this has significant implications. Reducing the spectrum
size naturally decreases the model’s complexity and the computational resources needed for training and
evaluation. This again offers less computational cost and potentially faster iteration during the model
development phase. More importantly, the potential of removing lower-end frequencies without loss in
quality can lead to faster EIS measurements. Since lower frequencies require a longer measurement time,
removing them could substantially shorten the total measurement duration without compromising the
SoH estimation’s accuracy. This improvement in efficiency could prove crucial for large-scale deployment.

It is worth noting again that this analysis was only performed on the cell-level dataset. Extrapolating
the findings to module-level data thus remains speculative at best. Given the increased complexity of
module data, a broader dataset than the one available in this study would be required to perform a similar
analysis. This shows an important avenue for future research. Given this, the decision was made to retain
the complete spectrum of 26 frequencies for all subsequent experiments conducted in this study.

4.2 Hyperparameter tuning

Figure 4.2: Evolution of the fitness score of the genetic algorithm over 29 generations.

The GAs search for optimal hyperparameters began with a relatively substantial population size, to cover
a broad search space and increase the probability of finding a high-performing initial solution. This can be
seen by the fact that the first generation starts offwith a high fitness score. The score progression can be seen
in figure 4.2, and it is relatively noisy. However, it shows a steady increase, which is a good indication that
the GA mutation is effective in avoiding local minima. In summary, employing a GA for hyperparameter
tuning has proven to be successful.
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The final hyperparameters found by the genetic algorithm are shown in table 4.1. Throughout the gener-
ations, several hyperparameters were adjusted. Notably, the starting learning rate was fine-tuned to the
relatively low value of 0.0000397, which suggests that themodel benefits from a gradual and nuanced learn-
ing process, and that the loss landscape has a low occurence of local minima. The tuning of dropout rates
to relatively low levels, specifically to 0.00052 for the first rate and 0.0055 for the second, might suggest that
the model requires most of the data, challenging the rationale for using dropout as outlined in section 3.4.
However, it is worth noting that the GA had the option to adjust these rates to 0, but chose to maintain,
for instance, the second dropout rate at 5‰. This decision implies that there might be a benefit in using a
small dropout as a method of enhancing the network’s resilience to variations in parameters. Lastly, the
GA finds larger networks to perform better, favoring a bigger number of CNN’s and linear layers.

Table 4.1: The optimal hyperparameters found after performing the GA tuning.

Hyperparameter Tuned value

Module scale 0.1
Start learning rate 2.62 × 10−5

Scheduler threshold 0.00865
Scheduler patience 18
Batch size 17
First dropout rate 0.000996
Second dropout rate 0.0285
CNN kernel sizes {9, 9, 8, 7, 7, 5, 4, 3, 2}
Size of lineary layers {56, 43, 41, 24, 23, 17, 12, 9, 5}

4.3 Training session
During training of the proposed model on cell-level — data using the tuned hyperparameters listed in
section 4.2 — the performance metrics bettered (increased/decreased) and stabilized quickly, as seen in
figure 4.3. This rapid convergence, typically within the first 100 epochs, suggests an efficient adaptation to
the data.

The loss function, as shown in figure 4.3a, presents a pronounced decline within the initial epochs, which
indicates a rapid phase of learning. Following this steep learning curve, the model enters a phase of sta-
bilization. The loss function appears to plateau, suggesting that the model has reached a state of minimal
error improvement and is delivering consistent performance. Figure 4.3b further reinforces these findings,
and indicates that the model is able to generalize well to unseen data — even during training. Notably, the
convergence and stabilization of these values occur within the first 100 epochs, which indicates that the
model adapts to the training data relatively quickly.

This fast stabilization hints that the hyperparameter optimization performed by the GA resulted in a well-
tunedmodel, and that the training likely identifies theminimum for the network architecture. The absence
of significant improvement or further stabilization past the 100-epochmark alignswith this, suggesting that
the model efficiently captures the underlying patterns. Having a relatively simple network architecture —
with fewer parameters — usually makes this training efficiency simpler to achieve, and it is reassuring to
see this confirmed. A faster training session is particularly beneficial when scaling up to larger datasets,
and it implies a reduced computational cost of training and development.
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(a) Loss function over 200 epochs during the train-
ing phase of amodel using cell-level data. The trend
indicates a sharp decline in loss initially, followed
by a gradual stabilization, suggesting the model is
improving its performance in a desireable fashion.

(b) Mean absolute error, mean squared error and 𝑅2

of the validation set across 200 training epochs. The
mean absolute error andmean squared error both show
a sharp decrease initially and then plateau, which indi-
cates initial learning followed by convergence to a min-
imum error. The 𝑅2 value increases and stabilizes at
roughly the same rate. This convergence of loss metrics
and stability of 𝑅2 suggest that the model achieves con-
sistent performance on the validation set after a certain
number of epochs.

Figure 4.3: Progression of statistical metrics for training and validation metrics during training of the proposed
model. Subfigure (a) shows the loss function behavior during model training, while subfigure (b) depicts the MAE,
MSE, and 𝑅2 values on the validation set, both across 200 epochs.
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4.4 Performance evaluation and comparison
Both the cell-level and module-level datasets were split into a training and testing set, and both the
scikit-learn GPR model and the proposed neural network were trained and evaluated on different
combinations of these sets. Since the testing set for the modules would be so small (a fifth of the complete
dataset would include only 5 spectra,) any metrics that are not evaluated on the whole module-level
dataset are found using 5-fold cross-validation. The results are seen in table 4.2 for the GPR and in table 4.3
for the proposed neural network. It is worth noting that the broader range of possible SoH values differs
between the cell-level dataset (ranging from 0.2 to 1) and the more limited range in the module dataset
(from 0.89 to 0.94.) Thus, a negative 𝑅2 score for the module-level data does not necessarily indicate poor
model performance, as the smaller range gives a low MSE for the mean.

The GPR model shows strong performance on the cell-level data, achieving high accuracy with minimal
error and a substantial 𝑅2 score. This outcome is as expected, given GPR’s frequent application and proven
efficacy in cell-level SoH estimation tasks. However, its ability to adapt when applied to module-level data
is notably weaker, as seen in the drastic increase in the error. This highlights that the model is struggling
to generalize from cell-level training to module-level evaluation effectively. This improves slightly when
the training set includes module-level data, but that is likely attributed to identifying whether a datapoint
is a module or not, and performing estimations accordingly.

Table 4.2: MAE, MSE, and 𝑅2 obtained by predictions performed with GPR across different splits of training and
testing sets. The evaluation includes both cell-level and module-level datasets, with the models being trained on one
dataset or a combination of them. When using themodule data as the testing set, 5-fold cross-validation is employed,
in order to utilize all of the data to find the statistical metric in question.

Trained on Evaluated on
Using 5-fold
cross-validation MAE MSE 𝑅2

Cell-level training set Cell-level testing
set

No 0.0132 0.000303 0.990

Cell-level training set Complete
module-level
dataset

No 0.240 0.0660 −392

Module-level training set Module-level
testing set

Yes 0.0108 0.000176 −0.470

Complete cell-level dataset and
module-level training set

Module-level
testing set

Yes 0.417 0.258 −3378

While the proposed neural network showed worse performance than the GPRmodel in pure cell-level pre-
dictions, it demonstrates a much better ability to generalize to the module data. Its predictive performance
is notably better in this regard, even when trained exclusively on cell-level datasets. This suggests that the
neural network has managed to uncover patterns within the data that the GPR model failed to identify.

Table 4.3: Statisticalmetrics, includingMAE,MSE, and𝑅2, for the proposed neural network as showed in figure 3.2.
The assessment is performed across cell-level and module-level datasets, training the models either separately on
each dataset or on a merged dataset. For module data testing, 5-fold cross-validation is once again applied to fully
leverage all available data in determining the specific statistical metric.

Trained on Evaluated on
Using 5-fold
cross-validation MAE MSE 𝑅2

Cell-level training set Cell-level testing No 0.0207 0.00102 0.970
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Trained on Evaluated on
Using 5-fold
cross-validation MAE MSE 𝑅2

Cell-level training set Complete
module-level
dataset

No 0.0505 0.00364 −20.7

Module-level training set Module-level
testing set

Yes 0.0757 0.00591 −40.9

Complete cell-level dataset and
module-level training set

Module-level
testing set

Yes 0.0935 0.0123 −160

Considering the uncertainties in nominal capacities of 5% for the 4s2p modules and 10% for the 4s3p mod-
ules, the performance of the predictive models may still be seen in a positive manner. Figure 4.4 shows
a plotted comparison between the true and predicted SoH values for both the cell-level and module-level
dataset, as given by the GPR and the proposed neural network. For the cells, the performance can be con-
sidered relatively similar, although the GPR has a much lower deviation and manages to predict most of
the cells’ SoH correctly. When viewing the module predictions, the neural network is notably more accu-
rate for the 4s2p modules, likely because of the smaller uncertainty in the nominal capacity. While the
predictions for the 4s3p modules are not as precise — often underestimating the SoH — they do intersect
with the identity line within the margins of uncertainty. This deviation suggests that the actual retained
capacities could be lower than measured, because the manufacturers likely have used a higher C-rate than
in the experiments performed at Evyon AS. Correcting this would give lower true SoH values, potentially
validating the network’s predictions as more accurate than initially thought. Though this theory remains
speculative, it offers a constructive avenue for future investigation. The GPR, in contrast, fails to provide
realistic predictions for themodule-level dataset, indicating all modules to have SoH values above 1, a clear
overestimation.

Compared to an ECM model by Q. Zhang et al. [50], which gave a MAE of 0.02701 for predictions on
NMC cells at a similar temperature range, the proposed neural network performs marginally better —
with a MAE of 0.0212. It also surpassed another GPR model trained by data from LCO cells by Y. Zhang
et al. [51], which had an 𝑅2 of 0.88, inferior to the one achieved by the proposed model, where 𝑅2 =
0.968. However, the model’s performance, in terms of MSE (0.00105), did not exceed that of the IPSO-
CNN-BiLSTM by Li et al. [52], which is an advanced recent design that combines physical modeling,
CNNs and a bidirectional long short-term memory (LSTM) network. It was trained on LCO cells and
demonstrated a lower MSE of 0.000428492. While the neural network presented in this study does not set
new benchmarks in cell-level state of health estimations, it delivers performance comparable to the current
state of the art. More importantly, it demonstrates the potential for a neural network configuration of this
nature to identify the SoH of battery modules. Although the current accuracy of 5% does not meet the
standard required for industrial deployment, the development of new techniques and a bigger dataset
may improve the performance to a point where it can be used in a real-world application.

1The errors in this paper are presented as averaged error in percentage points. This is done individually for an SoC of 100%,
80%, 50% and 30%, and a temperature of 10 °C, 20 °C, 30 °C, 40 °C and 50 °C. The given MSE is found by averaging the errors
for all SoC values and the temperatures 20 °C and 30 °C, and converting to decimal form by dividing by 100.

2The error is given in RMSE and is calculated for two different cells. To compare it to the model in this study, the average RMSE
for the two cells is found and then converted to MSE by squaring.
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(a) SoH values from the cell-level dataset predicted by
the proposed neural network.

(b) Cell-level SoH predictions by the GPR against ac-
tual values.

(c) SoH predictions by the neural network for the 4s2p
and 4s3p modules, compared to their true values.

(d) Plot showing the SoH as predicted for the 4s2p and
4s3p modules by means of GPR.

Figure 4.4: This set of plots collectively demonstrate the predictive capabilities of the neural network and GPR
models in assessing SoH at both the cell and module level. Both the GPR and the neural network are here trained
on the cell-level training set. Each graph provides a visual correlation between predicted SoH values and true mea-
surements, and an identity line is given in red as a guide. Errorbars are added to the true module-level SoH values,
as the C-rate used by the manufacturer when finding the nominal capacity is unknown. These bars thus reflect the
range that the true value could be in. A detailed description of this can be found in section 3.2.
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4.5 Future prospects
The results of this study pave the way for several avenues of future research that are essential for the ad-
vancement of EIS-based battery health assesment. A critical piece of that puzzle is to expand the data
that is available frommodules, to encompass a broader range of SoH values and capture the full spectrum
of degradation. However, collecting such a dataset poses significant challenges, as it demands substan-
tial time, resources, and power to systematically degrade batteries — more so given the larger capacity of
battery modules. This process also involves performing complex EIS measurements at the module level,
which is technically demanding. Given all these challenges and the value that can be produced with such
data, the battery industry is naturally still protective of any produced dataset.

Moreover, the influence of temperature on battery impedance warrants further investigation. Exploring
a wider temperature range could shed light on its effects on impedance and potentially improve model
accuracy. Incorporating temperature as an input parameter to the model might also give improved per-
formance and make it usable in more varying environments. While adding SoC as to the input might
also increase performance, SoC is difficult to measure, so maintaining a model independent of SoC — as
attempted in this study — is still preferable.

Extending the exploration to other cathode chemistries is another significant area of interest. It would be
valuable to assess whether a chemistry-agnostic model is feasible, given the specific degradation patterns
and impedance characteristics inherent to each chemistry type. The same goes for differing battery config-
urations. It is essential to examine how models adapt to varying numbers of cells in different series and
parallel combinations. The current study’s success in predicting module-level SoH, based on a single-cell
configuration, is encouraging. Yet, determining whether this success can be extrapolated to other configu-
rations requires further research.

Lastly, the exploration of alternative network architectures could lead to enhanced generalizability in
module-level SoH estimation. Investigating whether increased network complexity or alternative architec-
tures can contribute to this is an important research avenue. The end goal is to devise a machine learning
model that is both efficient and robust, capable of providing accurate SoH estimations across a myriad of
battery types and conditions.
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Chapter 5

Conclusion

This thesis shows that it is possible to perform SoH estimations on lithium-ion battery modules in EVs by
using EIS combined with machine learning, contributing to the field of battery health diagnostics.

It was demonstrated that the use of machine learning methods, especially CNNs, might be an efficient way
of interpreting complex EIS data. While the proposed neural network performs worse than existing data-
driven methods like GPR on cell-level data, the results are still promising: They show that a model can
indeed be trained to predict module-level SoH with reasonable accuracy, using only EIS data from cells.
However, the findings show that the model still fails to fully capture the correlation in the degradation
patterns. As such, the accuracy of the model is not adequate for usage in real-world scenarios.

Using genetic algorithms for hyperparameter optimization was shown to be an efficient way of exploring
the hyperparameter space, without getting trapped in local optima. With that, it helped in fine-tuning the
machine learning model to perform better on the task at hand. Additionally, a promising strategy for EIS
measurements was found through the process of frequency trimming. It is shown that by finding frequen-
cies that have minimal impact on predictive accuracy, the process of acquiring EIS measurements can be
made more efficient. This approach could enable faster data collection, which is crucial for generating the
large datasets required for improving models.

The model’s adaptability to module-level data indicates its potential usefulness in practical settings, mark-
ing a step forward in achieving quicker andmore precise battery diagnostics. This represents a critical com-
ponent in e.g. second-life battery utilization. The study provides many opportunities for future studies, es-
pecially in enhancing themodel’s precision and investigating its applicability to various battery chemistries
and configurations. Therefore, this thesis should not be viewed as a conclusion but as an opening for fur-
ther innovation and exploration in combining electrochemical science with computational intelligence,
towards a fully renewable future for everyone.
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Appendix A

Acronyms

AC Alternating current

BMS Battery management system

CC Constant current

CCCV Constant current-Constant voltage

CL Conductivity loss

CMS Cell management system

CNN Convolutional neural network

CV Constant voltage

DoD Depth of discharge

ECM Equivalent circuit modelling

EIS Electrochemical impedance spectroscopy

EOL End of life

EV Electric vehicle

EoL End of life

GA Genetic algorithm

GPR Gaussian process regression

LAM loss of active material

LCO Lithium cobalt oxide

LFP Lithium iron phosphate

LIB Lithium-ion battery

LLI Loss of lithium-ion inventory

LSTM Long short-term memory

MAE Mean absolute error

MSE Mean squared error

NCA Lithium nickel cobalt aluminium oxide

NMC Lithium nickel manganese cobalt oxide

PCA Principal component analysis

ReLU Rectified linear unit

SEI Solid electrolyte interface
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SoC State of charge

SoH State of health



Appendix B

External resources and licenses

The source code producing the results in this thesis are found on Sourcehut, through this link: https:
//git.sr.ht/~kmaasrud/code.

The source code for producing this PDF file is also availabel on Sourcehut. It can be found through this
link: https://git.sr.ht/~kmaasrud/thesis.

The full cell-level dataset and accompanying data release document can be found at Zenodo at this link:
https://zenodo.org/records/6418665. The data is transformed from a MATLAB table into a CSV and
processed into a binary Numpy file by using a custom script. The CSV can be found at this link: https://
git.sr.ht/~kmaasrud/code/tree/main/item/data/tensor-src/NMC. The processing script can be found
at this link: https://git.sr.ht/~kmaasrud/code/tree/main/item/data/tensor-src/process_nmc.py.

Figures 2.3, 2.5 and 2.6 are reproduced with permission. The license agreements detailing the rights of this
usage are listed in the directory hosted on this link: https://git.sr.ht/~kmaasrud/thesis/tree/main/ite
m/licenses.

35

https://git.sr.ht/~kmaasrud/code
https://git.sr.ht/~kmaasrud/code
https://git.sr.ht/~kmaasrud/thesis
https://zenodo.org/records/6418665
https://git.sr.ht/~kmaasrud/code/tree/main/item/data/tensor-src/NMC
https://git.sr.ht/~kmaasrud/code/tree/main/item/data/tensor-src/NMC
https://git.sr.ht/~kmaasrud/code/tree/main/item/data/tensor-src/process_nmc.py
https://git.sr.ht/~kmaasrud/thesis/tree/main/item/licenses
https://git.sr.ht/~kmaasrud/thesis/tree/main/item/licenses




Appendix C

Calculations

C.1 Time and energy requirements of measuring battery ca-
pacity directly

Whendirectlymeasuring battery capacity, a commonpractice involves using a C-rate of 0.5. That equates to
a charging rate such that the battery is expected to fully charge or discharge over two hours. Given this, the
total time required for a complete charge-discharge cycle, essential for measuring capacity, is four hours.
For comparison, to perform an EIS measurement where each frequency is ran sequentially for 10 periods,
the time spent would be just over 7 minutes using the spectrum in this study. This can be calculated as
shown in the Python snippet below.

>>> freqs = [0.05, 0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 3.5, 7, 10.5, 14, 25,
... 35, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
>>> sum((10 / f) / 60 for f in freqs)
7.202183201058201

For a battery cell —which typically has a capacity of 2–3Ah— it is a viable option to increase the C-rate to
get faster measurement speeds. However, battery modules have a much bigger capacity. Given a module
with a capacity of 100 Ah (some modules have an even higher capacity,) matching the measurement time
of EIS would involve charging with a current of 1

7
60 h

⋅ 100 Ah ≈ 857 A, which is unfeasible. Another
point is that the C-rate used when finding the nominal capacity would have to be the same one. Often, the
nominal capacity is measured according to some standard followed by the original manufacturer, and the
measurement can not always be replicated after the fact.

The energy spent while performing a direct capacitymeasurement is also considerable. Bymaking a rough
estimate that there is a loss of 𝜂 = 0.1while charging and no loss while discharging, we can find the energy
required for measuring a 100 Ah battery module at an average voltage of 50 V and a C-rate of 0.5 as:

𝐸charge = (1 + 𝜂)𝑃𝑇 = 𝜂𝑈𝐼𝑇 = 1.1 ⋅ 50 V ⋅ 50 A ⋅ 2 h = 5.5 kWh

𝐸discharge = 𝑃𝑇 = 𝑈𝐼𝑇 = 50 V ⋅ 50 A ⋅ 2 h = 5 kWh

This results in a total energy requirement of 500 Wh. For comparison, given an EIS excitation with an
amplitude of 5 Ameasured at the same rough voltage 𝑉 = 50 V and with the same loss of 𝜂 = 0.1, we find
the energy spent as:

𝐸EIS = 𝑃𝑇 = 𝑈𝑇 ∫
𝑇

0
𝜂(𝐼)𝐼(𝑡)𝑑𝑡.
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Here, 𝑇 = 7 minutes is the total time spent as calculated above, and 𝐼(𝑡) is the full sequential EIS excitation
curve. The integral can be calculated with the following Python script:

import numpy as np

def eta_scalar(eta, i):
return 1 + eta if i > 0 else 1

freqs = [0.05, 0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 3.5, 7, 10.5, 14, 25,
35, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

n_periods = 10
period = sum(n_periods / f for f in freqs)
n = 1000
v = 50
i = 5 * np.concatenate(

[
np.sin(

2
* np.pi
* f
* np.linspace(0, n_periods / f, int(n_periods / (f * period) * n))

)
for f in freqs

]
)
eta = np.array([eta_scalar(0.1, ii) for ii in i])

print(v * period * np.sum(eta * i * period / n) / 3600)

This yields an energy requirement of 396.5 Wh, which is approximately 80% the energy requirement of
normal cycling.
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