
NORM ATTAINING VECTORS AND HILBERT POINTS

KONSTANTINOS BAMPOURAS AND OLE FREDRIK BREVIG

Abstract. Let H be a Hilbert space that can be embedded as a dense subspace
of a Banach space X such that the norm of the embedding is equal to 1. We
consider the following statements for a nonzero vector φ in H:
(A) ∥φ∥X = ∥φ∥H .
(H) ∥φ + f∥X ≥ ∥φ∥X for every f in H such that ⟨f, φ⟩ = 0.

We use duality arguments to establish that (A) =⇒ (H), before turning our
attention to the special case when the Hilbert space in question is the Hardy
space H2(Td) and the Banach space is either the Hardy space H1(Td) or the
weak product space H2(Td) ⊙ H2(Td). If d = 1, then the two Banach spaces
are equal and it is known that (H) =⇒ (A). If d ≥ 2, then the Banach spaces
do not coincide and a case study of the polynomials φα(z) = z2

1 + αz1z2 + z2
2

for α ≥ 0 illustrates that the statements (A) and (H) for the two Banach spaces
describe four distinct sets of functions.

1. Introduction

The purpose of this paper is to introduce and study an abstract framework
containing as special cases the recently investigated concepts of minimal norm
Hankel operators [4] and Hilbert points [3, 5] in addition to inner functions in Hardy
spaces on polydiscs [10]. Our starting point reads as follows.

Definition. An admissible pair (H,X) is a Hilbert space H that can be embedded
as a dense subspace of a Banach space X such that the norm of the embedding is 1.
A nonzero vector φ in H is called norm attaining in X if ∥φ∥X = ∥φ∥H .

Suppose that (H,X) is an admissible pair and let X∗ denote the dual space of
X. Since H is a subspace of X and ∥f∥X ≤ ∥f∥H holds for every f in H, it is plain
that every Ψ in X∗ defines a bounded linear functional on H and ∥Ψ∥H∗ ≤ ∥Ψ∥X∗ .
It follows from the Riesz representation theorem that there is ψ in H such that

Ψ(f) = ⟨f, ψ⟩

for every f in H. This embeds X∗ as a subspace of H and we say that a vector ψ
in H is in X∗ when we mean that ψ belongs to this subspace.

Theorem 1. Let (H,X) be an admissible pair and let φ be a nonzero vector in H.
The following are equivalent:

(a) φ is norm attaining in X.
(b) φ is in X∗ and ∥φ∥X∗ = ∥φ∥H .

The conditions of Theorem 1 capture two (equivalent) ways that the Hilbert
space properties of the vector in question are preserved under the embedding in X.
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Definition. Let (H,X) be an admissible pair. A nonzero vector φ in H is called a
Hilbert point in X if

∥φ+ f∥X ≥ ∥φ∥X

holds whenever f is in H and ⟨f, φ⟩ = 0.

The reasoning behind the name is that if f and φ are in H and ⟨f, φ⟩ = 0, then

∥φ+ f∥H =
√

∥φ∥2
H + ∥f∥2

H ≥ ∥φ∥H ,

by orthogonality. This definition attempts to capture that the geometry of X is
locally like the geometry of H near the point φ.

Theorem 2. Let (H,X) be an admissible pair and let φ be a nonzero vector in H.
The following are equivalent:

(c) φ is a Hilbert point in X.
(d) φ is in X∗ and ∥φ∥X∥φ∥X∗ = ∥φ∥2

H .

Since ∥ψ∥2
H ≤ ∥ψ∥X∥ψ∥X∗ plainly holds for every ψ in X∗, the condition in

Theorem 2 (d) reformulates the geometric property of a Hilbert point to a statement
about a general estimate that is attained. As a consequence, we have the following.

Corollary 3. Let (H,X) be an admissible pair. If a nonzero vector φ in H is norm
attaining in X, then φ is a Hilbert point in X.

The proofs of Theorem 1 and Theorem 2 are fairly direct consequences of the
Hahn–Banach theorem and the Hilbert space structure of H.

We are particularly interested in two classes of admissible pairs. To set the stage
for the first class, let T denote the unit circle in the complex plane. The d-fold
cartesian product Td = T × T × · · · × T becomes a compact abelian group under
coordinate-wise multiplication and its Haar measure coincides with the product
measure generated by the normalized Lebesgue arc length measure on T. For
1 ≤ p < ∞, we define the Hardy space Hp(Td) as the closure in Lp(Td) of the set of
polynomials in d complex variables.

The first admissible pair of interest is (H,X) with H = H2(Td) and X = H1(Td).
Since a nontrivial function in H1(Td) can only vanish on a set of measure 0 on Td
(see e.g. [10, Theorem 3.3.5]), it follows from the Cauchy–Schwarz inequality that
φ is norm attaining in H1(Td) if and only if |φ| is constant and nonzero almost
everywhere on Td. This is equivalent to the assertion that φ = CI for a constant
C ̸= 0 and an inner function I.

For this admissible pair our definition of Hilbert point is in agreement with the
definition of Hilbert points in Hardy spaces from [3]. Hence Corollary 3 above
supplies a simpler proof of the case p = 1 of [3, Corollary 2.5], which asserts that
constant multiplies of inner functions are Hilbert points in H1(Td). The results
in [3] also demonstrate that the converse statement, i.e. that all Hilbert points in
H1(Td) are constant multiples of inner functions, is true if and only if d = 1.

In our second admissible pair of interest, H is a functional Hilbert space [7, §36]
on a nonempty set Ω. We will additionally assume that the constant functions (on
Ω) are elements of H and that the multiplier algebra M(H) is dense in H. Moreover,
we will normalize the norm of H such ∥1∥H = 1.
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The Banach space X for this admissible pair will be the weak product space H⊙H
which equals the collection of all functions f on Ω that enjoy a weak factorization

(1) f =
∞∑
j=1

gjhj ,

for sequences (gj)j≥1 and (hj)j≥1 in H such that

(2)
∞∑
j=1

∥gj∥H∥hj∥H < ∞.

The norm of H ⊙H is the infimum of (2) over all possible weak factorizations (1).
We refer to [1, Theorem 2.1] for a proof that H ⊙H is a Banach space.

We will say that a given weak factorization (1) is optimal should it attain this
infimum. The additional assumptions on H ensure that ∥f∥H⊙H ≤ ∥f∥H for every
f in H and that M(H) (and hence H) is dense in H ⊙ H, so (H,H ⊙ H) is an
admissible pair. It is plain that a function φ is norm attaining in H ⊙H if and only
if an optimal weak factorization of φ is φ = φ · 1.

The assumptions on H also allow us to invoke [1, Theorem 2.5], which asserts
that there is an antilinear isometric isomorphism from the dual space of H ⊙H to
the space of all bounded Hankel operators on H. It follows from this and Theorem 1
that if H = H2(Td), then the requirement that an optimal weak factorization of φ
is φ = φ · 1 coincides with the definition of minimal norm Hankel operators from [4].

This point of view was utilized by Ortega-Cerdà and Seip in their counter-example
to an infinite-dimensional analogue of Nehari’s theorem [9]. Their work implies,
and is qualitatively equivalent to, the fact that an optimal weak factorization of
φ(z) = z1 + z2 in the weak product space H2(T2) ⊙H2(T2) is φ = φ · 1.

It is a direct consequence of the well-known inner-outer factorization that
H1(T) = H2(T) ⊙ H2(T) as sets and with equality of norms. The inner-outer
factorization is also the key ingredient in the proof of [4, Theorem 1], which asserts
that ∥φ∥(H2(T)⊙H2(T))∗ = ∥φ∥H2(T) if and only if φ is a constant multiple of an inner
function. In the present context, this can be more easily seen from Theorem 1.

For d ≥ 2, it is an important open problem in harmonic analysis (see [8]) whether
there is an absolute constant Cd > 0 such that ∥f∥H1(Td) ≥ Cd∥f∥W (Td) for every
f in W (Td) = H2(Td) ⊙H2(Td).

The work of Ortega-Cerdà and Seip discussed above shows that C2 ≤ 2
√

2/π < 1.
A minor improvement can be found in [4, Theorem 5]. Since plainly
(3) ∥f∥H1(Td) ≤ ∥f∥W (Td) ≤ ∥f∥H2(Td),

the open problem is to ascertain whether H1(Td) and W (Td) are equal as sets. Note
that (3) also shows that if φ is norm attaining in H1(Td), then φ is norm attaining
in W (Td). This inspires us to compare the admissible pairs (H2(T2), H1(T2)) and
(H2(T2),W (T2)) in detail. Our case study is concerned with the polynomials

φα(z) = z2
1 + αz1z2 + z2

2

for α ≥ 0. In order to state our result, we let α0 = 1.62420 . . . denote the unique
(see Lemma 6) solution of the equation√

4 − α2 = 2
α

arcsin α2
on the interval (0, 2).
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Figure 1. Norms of φα(z) = z2
1 + αz1z2 + z2

2 for 0 ≤ α ≤ 2.5.
From top to bottom: H2(T2), H2(T2) ⊙H2(T2), and H1(T2).

Theorem 4. Suppose that φα(z) = z2
1 + αz1z2 + z2

2 for α ≥ 0. Then
(i) φα is never norm attaining in H1(T2);
(ii) φα is a Hilbert point in H1(T2) if and only if α = 0 or if α = α0;
(iii) φα is norm attaining in W (T2) if and only if 0 ≤ α ≤ 1/2;
(iv) φα is a Hilbert point in W (T2) if and only if 0 ≤ α ≤ 1/2 or if α = 2.

The main novelty of Theorem 4 is the assertions (ii) and (iv). The assertion (i)
is trivial, since φα does not have constant modulus on T2. Taking into account
Theorem 1, we note that Theorem 4 (iii) is equivalent to [4, Theorem 10 (a)].

As in the proof of Theorem 1 and Theorem 2, the main idea in our approach
to Theorem 4 is duality. In the case that X = H1(T2) we will rely on the Riesz
representation theorem for L1(T2) and in the case that X = W (T2) our arguments
will involve Hankel operators on H2(T2).

Our efforts towards the proof of Theorem 4 have two remarkable byproducts.
First, we can determine for which α ≥ 0 either of the general equalities in (3) are
attained. See Figure 1. Second, we are able to find optimal weak factorizations of
φα for every α ≥ 0. We defer the precise statements to Section 3 below.

Theorem 4 illustrates in a striking way how norm attaining vectors and Hilbert
points for the two Banach spaces H1(T2) and W (T2) describe four distinct classes of
functions. This stands in stark contrast to the case d = 1 where the four classes all
coincide (with constant multiples of inner functions). It is clear that the inner-outer
factorization has a strong impact on the situation in the latter case.

If the functional Hilbert space H is a normalized complete Pick space, then H
and H ⊙H enjoy an analogue of the inner-outer factorization (see Theorem 1.4 and
Theorem 1.12 in [2]). It would be interesting to know what can be said of the norm
attaining vectors and Hilbert points in this context.

Organization. The present paper is organized into two further sections. The next
section contains the proof of Theorem 1 and Theorem 2. Section 3 is devoted to the
case study of φα and culminates with the proof of Theorem 4.
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2. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. We begin with the easiest implication (b) =⇒ (a). Suppose
that φ is in X∗ and that ∥φ∥X∗ = ∥φ∥H . Then

∥φ∥H = ∥φ∥X∗ ≥ |⟨φ,φ⟩|
∥φ∥X

= ∥φ∥2
H

∥φ∥X
,

so ∥φ∥X ≥ ∥φ∥H and, consequently, ∥φ∥X = ∥φ∥H .
For the implication (a) =⇒ (b), suppose that φ is in H and that ∥φ∥X = ∥φ∥H .

By the Hahn–Banach theorem, there is some ψ in X∗ such that ∥ψ∥X∗ = 1 and
such that ⟨φ,ψ⟩ = ∥φ∥X . If g is in kerψ (i.e. if g is in X and ⟨g, ψ⟩ = 0), then the
properties of ψ ensure that ∥φ+ g∥X ≥ |⟨φ+ g, ψ⟩| = ∥φ∥X . This means that if g
is in H ∩ kerψ, then

∥φ+ αg∥H ≥ ∥φ+ αg∥X ≥ ∥φ∥X = ∥φ∥H

for every complex number α. This is equivalent to 2 Re (α⟨g, φ⟩) + |α|2∥g∥2
H ≥ 0,

which holds for all complex numbers α if and only if ⟨g, φ⟩ = 0. Every function f in
H may be decomposed as

f =
(
f − ⟨f, ψ⟩

∥φ∥X
φ

)
+ ⟨f, ψ⟩

∥φ∥X
φ

by the assumption that φ is in H. The first term is in H∩kerψ since ⟨φ,ψ⟩ = ∥φ∥X ,
and so it is orthogonal to φ by the above. This means that

|⟨f, φ⟩| = |⟨f, ψ⟩|
∥φ∥X

∥φ∥2
H ≤ ∥f∥X∥φ∥H ,

where we in the final estimate used that ∥ψ∥X∗ = 1 and that ∥φ∥X = ∥φ∥H . Since
H is dense in X, we infer from this that φ is in X∗ and that ∥φ∥X∗ ≤ ∥φ∥H . □

Proof of Theorem 2. We begin with the proof that (d) =⇒ (c). Suppose that φ is
in X∗ and that ∥φ∥X∥φ∥X∗ = ∥φ∥2

H . If f is in H and ⟨f, φ⟩ = 0, then

∥φ+ f∥X ≥ |⟨φ+ f, φ⟩|
∥φ∥X∗

= ∥φ∥2
H

∥φ∥X∗
= ∥φ∥X .

For the proof that (c) =⇒ (d), we suppose that φ is a Hilbert point in X. Since
φ is in H by assumption, we can decompose any f in H as

f =
(
f − ⟨f, φ⟩

∥φ∥2
H

φ

)
+ ⟨f, φ⟩

∥φ∥2
H

φ.

The first term is orthogonal to φ by construction, so the assumption that φ is a
Hilbert point in X ensures that

∥f∥X ≥ |⟨f, φ⟩|
∥φ∥2

H

∥φ∥X .

Since H is dense in X, it follows from this that ∥φ∥2
H ≥ ∥φ∥X∥φ∥X∗ . □
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3. A case study

A small amount of preparation is required before we can approach the proof of
Theorem 4. We begin by recalling that a function f in L1(Td) is uniquely determined
by the Fourier coefficients

(4) f̂(κ) =
∫

[0,2π]d

f(eiθ1 , eiθ2 , . . . , eiθd) e−i(κ1θ1+κ2θ2+···+κdθd) dθ1

2π
dθ2

2π · · · dθd2π ,

where the multi-index κ = (κ1, κ2, . . . , κd) runs over the index set Zd. In particular,
a function f in L1(Td) is in the Hardy space H1(Td) if and only if f̂(κ) = 0 whenever
κj < 0 for at least one 1 ≤ j ≤ d. The set {zκ}κ∈Zd forms an orthonormal basis for
the Hilbert space L2(Td) and we will call it the standard basis. Let also P stand
for the orthogonal projection from L2(Td) to H2(Td).

The following result is contained in [3, Theorem 2.2 (a)], but we include a complete
account of the proof to illustrate its interaction with Theorem 2. In its statement,
we will write sgn z = z

|z| if z is a nonzero complex number and sgn z = 0 if z = 0.

Lemma 5. A nontrivial function φ in H2(Td) is a Hilbert point in H1(Td) if and
only if

(5) P (sgnφ) =
∥φ∥H1(Td)

∥φ∥2
H2(Td)

φ.

Proof. Suppose that (5) holds. If f is in H2(Td) and ⟨f, φ⟩ = 0, then ⟨f, sgnφ⟩ = 0.
Consequently,

∥φ∥H1(Td) = ⟨φ, sgnφ⟩ = ⟨φ+ f, sgnφ⟩ ≤ ∥φ+ f∥H1(Td),

which demonstrates that φ is a Hilbert point in H1(Td).
Suppose that φ is a Hilbert point in H1(Td). By Theorem 2, we know that φ is

in the dual space of H1(Td). If we consider H1(Td) as a subspace of L1(Td), then
it follows from the Hahn–Banach theorem and the Riesz representation theorem
for L1(Td) that there is a function ψ in L∞(Td) such that Pψ = φ and such that
∥ψ∥L∞(Td) = ∥φ∥(H1(Td))∗ . When combined with Theorem 2, this shows that

(6) ∥ψ∥L∞(Td) = ∥φ∥(H1(Td))∗ = ⟨φ,φ⟩
∥φ∥H1(Td)

= ⟨φ,ψ⟩
∥φ∥H1(Td)

.

Since φ is a nontrivial function in H1(Td) by assumption, it can only vanish on a
set of measure 0 on Td (see e.g. [10, Theorem 3.3.5]). Hence it follows from (6) that
φψ = |φ| > 0 almost everywhere on Td, and so there is a positive constant C such
that ψ = C sgnφ almost everywhere on Td. The constant is determined by (6). □

Lemma 6. If 0 ≤ α ≤ 2 and
α

2
√

4 − α2 = arcsin α2 ,

then α = 0 or α = 1.62420 . . ..

Proof. It is plain that the equation holds for α = 0. If α > 0, then we rewrite the
equation as √

4 − α2 = 2
α

arcsin α2 .
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The left-hand side decreases from 2 to 0, while the right-hand side increases (because
x 7→ x/ sin x is increasing on [0, π/2]) from 1 to π/2. It follows that there is a unique
solution 0 < α < 2, which can easily be estimated. □

Let m be an integer. A function f in L1(Td) is called m-homogeneous if the
identity

f(eiϑz1, e
iϑz2, . . . , e

iϑzd) = eimϑf(z1, z2, . . . , zd)
holds for almost every z on Td. It follows from (4) that f is m-homogeneous if
and only if f̂(κ) = 0 whenever κ1 + κ2 + · · · + κd ̸= m. Consequently, the Hardy
space H1(Td) only contains nontrivial m-homogeneous functions with m ≥ 0 and
they are all polynomials. The following result corresponds to the statement (ii) in
Theorem 4.

Theorem 7. If φα(z) = z2
1 + αz1z2 + z2

2 for α ≥ 0, then φα is a Hilbert point in
H1(T2) if and only if α = 0 or α = 1.62420 . . ..

Proof. We will use Lemma 5. Since φα is 2-homogeneous, it is plain that sgnφα is
also 2-homogeneous. Consequently, it follows that

P (sgnφα) = az2
1 + bz1z2 + cz2

2 .

Since φα(z2, z1) = φα(z1, z2), we must have a = c. Hence Lemma 5 implies that φα
is a Hilbert point in H1(T2) if and only if

(7) α ŝgnφα(0, 2) = ŝgnφα(1, 1).

We begin with the latter Fourier coefficient, which is slightly simpler to compute.
Here we have(

sgnφα(eiθ1 , eiθ2)
)
e−i(θ1+θ2) = sgn (α+ 2 cos(θ1 − θ2)),

which means that

ŝgnφα(1, 1) =
∫ 2π

0
sgn (α+ 2 cosϑ) dϑ2π =

{
2
π arcsin α

2 , if 0 ≤ α ≤ 2;
1, if α > 2.

For the former Fourier coefficient, we have(
sgnφα(eiθ1 , eiθ2)

)
e−2iθ2 = ei(θ1−θ2) sgn (α+ 2 cos(θ1 − θ2))

which yields

ŝgnφα(0, 2) =
∫ 2π

0
eiϑ sgn (α+ 2 cosϑ) dϑ2π =

{
1

2π
√

4 − α2, if 0 ≤ α ≤ 2;
0, if α > 2.

We insert these formulas into the equation (7). There are plainly no solutions if
α > 2. If 0 ≤ α ≤ 2, then we get precisely the equation considered in Lemma 6. □

Before we proceed to second part of our case study, let us compute

∥φα∥H1(T2) =
∫ 2π

0
|α+ 2 cosϑ| dϑ2π =

{
2
π

(
α arcsin α

2 +
√

4 − α2
)
, if 0 ≤ α ≤ 2;

α, if α > 2.

This computation and Theorem 11 below forms the basis for Figure 1.
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Let m be an integer and let Pm denote the orthogonal projection from L2(Td)
to its subspace of m-homogeneous functions. By orthogonality, every f in H2(Td)
satisfies the equation

(8) ∥f∥2
H2(Td) =

∞∑
m=0

∥Pmf∥2
H2(Td).

It is clear that Pm is densely defined on the weak product space W (Td). We next
show that it extends to a norm 1 operator on W (Td) and, consequently, on its dual
space. This result (in a slightly different context) can be found in [6, Theorem 5].
In order to make the present paper self-contained, we repeat the proof.

Lemma 8. If m is nonnegative integer, then Pm extends to a norm 1 operator on
W (Td) and on (W (Td))∗.

Proof. The first assertion implies the other by duality since Pm is self-adjoint in the
pairing of H2(Td). The function f(z) = zm1 shows that ∥Pm∥W (Td)→W (Td) ≥ 1. Let
f be a function in W (Td) and let f =

∑
j≥1 gjhj be a weak factorization of f . Then

Pmf =
∞∑
j=1

m∑
n=0

PngjPm−nhj ,

and, consequently,

∥Pmf∥W (Td) ≤
∞∑
j=1

m∑
n=0

∥Pngj∥H2(Td)∥Pm−nhj∥H2(Td) ≤
∞∑
j=1

∥gj∥H2(Td)∥hj∥H2(Td)

where we used the Cauchy–Schwarz inequality in the inner sum and (8) twice. □

Lemma 9. Let m be a nonnegative integer. If φ is a nontrivial m-homogeneous
polynomial, then there is a m-homogeneous polynomial ψ such that

(9) ∥φ∥W (Td) = ⟨ψ,φ⟩
∥ψ∥(W (Td))∗

.

Proof. Since φ is nontrivial, it follows from the Hahn–Banach theorem and the fact
that (W (Td))∗ is embedded in H2(Td) that there is ψ in H2(Td) such that (9) holds.
Since Pm is self-adjoint in the pairing of H2(Td) and since Pmφ = φ, it follows from
Lemma 8 that (9) also holds if ψ is replaced by Pmψ. □

Let H2(Td) be the closed subspace of L2(Td) consisting of the complex conjugates
of functions in H2(Td) and let P denote the orthogonal projection from L2(Td) to
H2(Td). Suppose that ψ be a function H2(Td). The formula

Hψf = P (ψf)

densely defines a Hankel operator Hψ from H2(Td) to H2(Td). In the present
context, [1, Theorem 2.5] asserts that Hψ extends to a bounded linear operator if
and only if ψ is in (W (Td))∗ and that in this case ∥Hψ∥ = ∥ψ∥(W (Td))∗ . If ψ is in
(W (Td))∗ and f, g are in H2(Td), then

⟨Hψf, g⟩ = ⟨fg, ψ⟩.

This formula makes it easy to compute the matrix of Hψ with respect to the standard
basis that H2(Td) and H2(Td) inherit from L2(Td).
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Lemma 10. If φα(z) = z2
1 + αz1z2 + z2

2 for α ≥ 0, then

∥φα∥(W (T2))∗ = max
(√

2 + α2, 1 + α
)
.

Proof. The matrix of the Hankel operator Hφα with respect to the standard basis
of H2(T2) and H2(T2), with rows and columns containing all zeros omitted, is

0 0 0 1 α 1
0 1 α 0 0 0
0 α 1 0 0 0
1 0 0 0 0 0
α 0 0 0 0 0
1 0 0 0 0 0

 .

Let (ej)6
j=1 be the standard basis of C6. Due to orthogonality and the block structure

of the matrix, it is sufficient to let it act on the subspaces span{e1}, span{e2, e3},
and span{e4, e5, e6}. The norms are, respectively,

√
2 + α2, 1+α, and

√
2 + α2. □

We mention in passing that the block structure of the matrix appearing in the
proof of Lemma 10 is a special case of a general phenomenon that occurs for Hankel
operators on H2(Td) with m-homogeneous symbols (see [4, Theorem 4]).

Lemma 10 allows us to compute one of the two nontrivial quantities in the
condition of Theorem 2 (d) for the polynomials φα. It is also the crucial ingredient
in the following result.

Theorem 11. Suppose that φα(z) = z2
1 + αz1z2 + z2

2 . Then

∥φα∥W (T2) =


√

2 + α2, if 0 ≤ α ≤ 1/2;
4+α

3 , if 1/2 < α ≤ 2;
α, if α > 2.

Proof. By Lemma 9 there is a 2-homogeneous polynomial ψ(z) = az2
1 + bz1z2 + cz2

2
such that

∥φα∥W (T2) = ⟨ψ,φα⟩
∥ψ∥(W (T2))∗

.

It follows from triangle inequality (for (W (T2))∗) that if this formula holds for ψ1
and ψ2, then it also holds for ψ1 +ψ2. Since the coefficients of φα are real, it follows
that a, b, and c are real. Moreover, since φα(z2, z1) = φα(z1, z2) we must have a = c.
We consider first the case that a = c ̸= 0, where we normalize ψ with a = c = 1 and
b = β ≥ 0. Using Lemma 10 we get that

∥φα∥W (T2) = sup
β≥0

Fα(β) for Fα(β) =


2+αβ√

2+β2
, if 0 ≤ β ≤ 1/2;

2+αβ
1+β , if β > 1/2.

There are three cases to consider:
(i) If 0 ≤ α ≤ 1/2, then Fα is increasing to β = α and then decreasing.
(ii) If 1/2 < α ≤ 2, then Fα is increasing to β = 1/2 and then decreasing.
(iii) If α > 2, then Fα is increasing.

Note that to attain (iii) we have to let β → ∞. This is equivalent to the case
a = c = 0 that we excluded above. The proof is completed by computing

Fα(α) =
√

2 + α2, Fα(1/2) = 4 + α

3 , and that Fα(β) → α
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as β → ∞. □

The knowledge of ∥φα∥W from Theorem 11 makes it possible to guess an optimal
weak factorization (1) of φα in the three cases.

(i) If 0 ≤ α ≤ 1/2, then an optimal weak factorization is φα = φα · 1.
(ii) If 1/2 < α < 2, then an optimal weak factorization is

φα(z) = 2
3(α− 1/2)(z1 + z2)(z1 + z2) + 2

3(2 − α)
(
z2

1 + z1z2

2 + z2
2

)
· 1.

(iii) If α > 2, then an optimal weak factorization is

φα(z) =
(
z1 + α+

√
α2 − 4
2 z2

)(
z1 + α−

√
α2 − 4
2 z2

)
.

We conclude the paper by wrapping up the proof of Theorem 4.

Proof of Theorem 4. The statement (i) is trivial since φα has constant modulus on
T2 for no α and—as noted above—the statement (ii) is the same as Theorem 7. It
is plain that ∥φα∥H2(T2) =

√
2 + α2. To settle (iii) and (iv) we use, respectively,

Theorem 1 and Theorem 2 that require us to solve the equations

∥φα∥(W (T2))∗ =
√

2 + α2 and ∥φα∥W (T2)∥φα∥(W (T2))∗ = 2 + α2.

We use Lemma 10 to see that the first equation holds if and only if 0 ≤ α ≤ 1/2.
We then use both Lemma 10 and Theorem 11 to see that the second equation holds
if and only if 0 ≤ α ≤ 1/2 or α = 2. □
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9. Joaquim Ortega-Cerdà and Kristian Seip, A lower bound in Nehari’s theorem on the polydisc,
J. Anal. Math. 118 (2012), no. 1, 339–342. MR 2993031

10. Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam,
1969. MR 0255841

Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology (NTNU), 7491 Trondheim, Norway

Email address: konstantinos.bampouras@ntnu.no

Department of Mathematics, University of Oslo, 0851 Oslo, Norway
Email address: obrevig@math.uio.no


	1. Introduction
	Organization

	2. Proof of Theorem 1 and Theorem 2
	3. A case study
	References

