
Vol.:(0123456789)

Diabetologia (2024) 67:1023–1028 
https://doi.org/10.1007/s00125-024-06125-4

SHORT COMMUNICATION

No association between long‑chain n‑3 fatty acid intake 
during pregnancy and risk of type 1 diabetes in offspring in two large 
Scandinavian pregnancy cohorts

Nicolai A. Lund‑Blix1   · Anne A. Bjerregaard2,3   · German Tapia1   · Ketil Størdal1,4,5   · Anne Lise Brantsæter1   · 
Marin Strøm2,6   · Thorhallur I. Halldorsson2,7   · Charlotta Granstrøm2 · Jannet Svensson8,9   · Geir Joner4,5 · 
Torild Skrivarhaug4,5   · Pål R. Njølstad10,11   · Sjurdur F. Olsen2,6,12,13   · Lars C. Stene1 

Received: 12 January 2024 / Accepted: 20 February 2024 / Published online: 19 March 2024 
© The Author(s) 2024

Abstract
Aims/hypothesis  The aim of this study was to investigate whether higher dietary intake of marine n-3 fatty acids during 
pregnancy is associated with a lower risk of type 1 diabetes in children.
Methods  The Danish National Birth Cohort (DNBC) and the Norwegian Mother, Father and Child Cohort Study (MoBa) 
together include 153,843 mother–child pairs with prospectively collected data on eicosapentaenoic acid (EPA) and doco-
sahexaenoic acid (DHA) intake during pregnancy from validated food frequency questionnaires. Type 1 diabetes diagnosis 
in children (n=634) was ascertained from national diabetes registries.
Results  There was no association between the sum of EPA and DHA intake during pregnancy and risk of type 1 diabetes 
in offspring (pooled HR per g/day of intake: 1.00, 95% CI 0.88, 1.14), with consistent results for both the MoBa and the 
DNBC. Robustness analyses gave very similar results.
Conclusions/interpretation  Initiation of a trial of EPA and DHA during pregnancy to prevent type 1 diabetes in offspring 
should not be prioritised.
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Abbreviations
DHA	� Docosahexaenoic acid
DNBC	� Danish National Birth Cohort
EPA	� Eicosapentaenoic acid
FFQ	� Food frequency questionnaire
MoBa	� Norwegian Mother, Father and Child Cohort 

Study

Introduction

Long-chain marine n-3 fatty acids (eicosapentaenoic acid 
[EPA] and docosahexaenoic acid [DHA]) have anti-inflam-
matory effects [1] and may influence the development of type 1 
diabetes [2]. Studies in experimental animals and retrospective 
case–control studies have reported associations between early 
life exposure to n-3 fatty acids and lower risk of type 1 diabe-
tes [3]. Furthermore, associations between childhood intake 
of dietary fatty acids and risk of islet autoimmunity or type 
1 diabetes have been reported for high-risk cohorts, although 
these results were only suggestive for EPA and DHA [2, 4, 5].

DPA, EPA and other fatty acids cross the placenta [6], and 
maternal dietary intake of these fatty acids during pregnancy 
may influence offspring physiology and health [7]. Notably, 
in a randomised trial of a fish oil supplement (containing EPA 
and DHA) taken from the second trimester of pregnancy, there 
was a reduction in the risk of asthma or wheezing in children 

at age 5 years compared with placebo [8], providing proof of 
concept that maternal DPA and DHA can influence offspring 
risk of an immune-mediated disease. Few prospective studies 
have investigated maternal intake of marine n-3 fatty acids in 
relation to risk of childhood-onset type 1 diabetes [9].

We aimed to investigate whether higher intakes of the 
long-chain marine n-3 fatty acids (EPA and DHA) in the 
maternal diet during pregnancy are associated with a lower 
risk of childhood-onset type 1 diabetes in two of the largest 
pregnancy cohorts in the world.

Methods

Participants and design  The Danish National Birth Cohort 
(DNBC) recruited pregnant women from 1996 to 2002 (last 
birth in 2003) and the Norwegian Mother, Father and Child 
Cohort Study (MoBa) recruited pregnant women from 1999 
to 2008 (last birth in 2009) throughout the respective coun-
tries, with 35% and 41% of eligible women participating in 
the two studies, respectively [10, 11] (see electronic supple-
mentary material [ESM] Methods for further details). Both 
cohorts are based on written consent and received ethical 
approval (see ESM Methods).

Dietary exposure data  Dietary intake was assessed dur-
ing pregnancy using validated harmonised food frequency 
questionnaires (FFQs). In the DNBC, women were recruited 
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during their first antenatal visit to a general practitioner (ges-
tational week ~6), whereas, in the MoBa, pregnant women 
received an invitation letter prior to their first ultrasound 
examination in gestational week ~18. Participants from the 
DNBC included in this study were women who answered 
an FFQ in mid-pregnancy and participated in two telephone 
interviews on behavioural factors and health in gestational 
weeks 12 and 30. The MoBa participants who were included 
in this study were women who answered a questionnaire 
on behavioural factors and health in gestational week ~15 
and an FFQ in week 22. The MoBa FFQ was introduced 
from 2002, so data from women recruited before this were 
excluded from the current analysis (see ESM Methods 
for further details of the FFQs). The two cohorts together 
included 153,843 mother–child pairs with data on maternal 
intake of EPA and DHA (Fig. 1).

Outcome: type 1 diabetes  We ascertained the date of type 
1 diabetes diagnosis for offspring from national childhood 
diabetes registries (excluding monogenic and type 2 diabe-
tes) (see ESM Methods for further details). Data on offspring 
were not stratified by sex.

Statistical analysis  We used time from birth to type 1 diabetes 
diagnosis in Cox regression analyses, using the sum of EPA 
and DHA intake from food and supplements during preg-
nancy as a continuous variable in the primary analyses (esti-
mating HRs per gram per day of intake). Based on the a priori 

statistical analysis plan the following covariates were included 
in adjusted models: maternal parity, maternal pre-pregnancy 
BMI, maternal smoking during pregnancy (never/sometimes/
daily), maternal type 1 diabetes, offspring sex, duration of 
breastfeeding, and maternal education level (see ESM Meth-
ods for details of covariates). We pooled the adjusted regres-
sion results from the two cohorts using a random-effects meta-
analysis (see ESM Methods for further details).

Results

Among 153,843 children, 634 (0.41%) developed type 1 diabe-
tes during follow-up. The median (IQR) total maternal intake 
of EPA and DHA together during pregnancy was 0.26 g/day 
(0.15–0.44) for the DNBC and 0.56 g/day (0.32–1.07) for the 
MoBa, with a higher intake of fish and a much larger propor-
tion of users of fish oil supplements in Norway (68%) than in 
Denmark (3.6%; ESM Table 1). Of the women, 46–48% were 
nulliparous, 9–14% smoked during pregnancy and 68–77% 
had a pre-pregnancy BMI <25 kg/m2 (ESM Table 2).

There was no association between the sum of EPA and 
DHA intake during pregnancy and offspring risk of type 
1 diabetes (HR 1.00, 95% CI 0.88, 1.14) after adjustment 
for maternal parity, maternal pre-pregnancy BMI, maternal 
smoking during pregnancy, maternal type 1 diabetes, off-
spring sex, duration of breastfeeding, and maternal educa-
tion level; Fig. 2).

MoBa

Live births 1999–2009 

(n=113,042)

Incomplete questionnaire 

at recruitment (n=11,657)

Included in analysis of EPA 

and DHA intake in pregnancy

(n=85,721)

Type 1 diabetes 

by 15 April 2018

(n=355)

n=101,385

Incomplete or unrealistic 

pregnancy FFQ 

(n=15,664)

DNBC

Live births 1996–2003 

(n=96,838)

Incomplete questionnaire 

at recruitment (n=5863) or 

no maternal diet 

information (n=20,792)

Total excluded n=26,655

Type 1 diabetes by 

31 December 2019

(n=279)

n=70,183

Unrealistic pregnancy 

food frequency data 

(n=406) or multiple 

pregnancy (n=1655)

Total excluded n=2061

Included in analysis of EPA 

and DHA intake in pregnancy

(n=68,122)

Fig. 1   Flow chart of generation of the analysis sample. Total number of mother–child pairs included in the analysis: 153,843 (n=634 of whom 
developed type 1 diabetes during follow-up)
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Robustness analyses, including adjustment for additional 
variables such as maternal vitamin D intake, also supported 
this conclusion (ESM Table 3). In addition, there was no devia-
tion from linearity or any sign of a threshold effect in categori-
cal analyses; adjusted HRs comparing the upper to the lower 
quintile of the sum of EPA and DHA intake were 1.19 (95% CI 
0.81, 1.74) for the DNBC and 0.84 (0.58, 1.23) for the MoBa 
(ESM Table 3). Furthermore, secondary analyses showed no 
association between intake of fish, or the common dietary 
18-carbon chain n-3 fatty acid alpha-linolenic acid, in preg-
nancy and risk of type 1 diabetes in offspring (ESM Table 3).

Discussion

This study found a complete lack of association between 
EPA and DHA intake during pregnancy and risk of type 1 
diabetes; these data were consistent between the DNBC and 
the MoBa, with relatively narrow 95% CIs.

Our results are consistent with data from a birth cohort 
with high genetic risk for type 1 diabetes from Finland 
[9]. Our results therefore confirm and extend this lack of 
association in larger, general population cohorts. Although 
not investigating fatty acids directly, another cohort study 
including children at high genetic risk for type 1 diabetes 
found no association between maternal fish intake and risk 
of type 1 diabetes in offspring [12].

The major strengths of our study include the very large, 
population-based cohorts from two different countries and pro-
spectively collected exposure data during pregnancy, and the 
complete follow-up of type 1 diabetes diagnosis using nation-
wide registries. Limitations include the lack of biomarkers of 
exposure and the low numbers of non-European participants. 
Below we discuss the strengths and limitations in more detail.

Our cohorts were population based and assessed dietary 
intake, including dietary supplements, during pregnancy. 

Biomarker data on EPA and DHA intake were not available 
in our study; however, the ability of the FFQ to quantify 
n-3 fatty acid intake has been validated against biomark-
ers in both cohorts [13, 14]. In addition, a nested case–con-
trol prospective study from Norway found no association 
between offspring type 1 diabetes and EPA and DHA levels 
in the phospholipid fraction of maternal serum collected in 
late pregnancy [15]. While biomarkers are not influenced 
by recall and self-report, they are not without problems. 
Storage and handling of samples may lead to oxidation. 
Furthermore, biomarkers may be influenced by fasting or 
recent meals, as well as genetic and other factors regulating 
metabolism of fatty acids, depending on the type of speci-
men and assay methods used [16]. Common variants in the 
fatty acid desaturase (FADS1/FADS2/FADS3) gene cluster 
are associated with a lower efficiency of conversion of the 
dietary precursor n-3 fatty acid alpha-linolenic acid to EPA 
and DHA and lower blood levels of EPA and DHA [1]. In 
the asthma prevention trial cited in the introduction, both 
lower baseline blood levels of EPA and DHA and a genetic 
variant associated with lower blood levels of these fatty acids 
were associated with a stronger relative effect of fish oil sup-
plementation on the prevention of asthma [8]. On the other 
hand, studies of other disease outcomes in adults have not 
found consistent interactions between intake of EPA or DHA 
and genetic variants in the FADS gene cluster with regard 
to cardiometabolic disease outcomes [1]. Future studies of 
maternal n-3 fatty acid intake in pregnancy in relation to 
childhood type 1 diabetes could consider including genetic 
variants in the FADS gene cluster influencing conversion of 
alpha-linolenic acid to EPA and DHA.

We cannot exclude the possibility that higher intakes of EPA 
and DHA than those observed in our studies may show an asso-
ciation with type 1 diabetes. However, analysis of quintiles of 
the sum of EPA and DHA intake did not suggest any thresh-
old effect. We adjusted for intake of vitamin D in pregnancy in 

DNBC

MoBa

Overall, DL (I
2

=0.0%, p=0.950)

Study

1.00 (0.88, 1.14)

1.00 (0.86, 1.15)

1.01 (0.77, 1.33)

Adjusted HR (95% CI)

0.5 2.01.0

Relative risk of type 1 diabetes (adjusted HR [95% CI])

Fig. 2   Maternal intake of EPA and DHA during pregnancy and risk 
of type 1 diabetes in children in the DNBC and MoBa pregnancy 
cohorts (n=153,843 mother–child pairs, of whom n=634 children 
developed type 1 diabetes). HRs per g/day of intake of the sum of 
EPA and DHA from foods and supplements were adjusted for mater-

nal parity, maternal pre-pregnancy BMI, maternal smoking during 
pregnancy, maternal type 1 diabetes, offspring sex, duration of breast-
feeding, and maternal education level. The p value in the plot is for 
Cochran’s Q test for heterogeneity of the HR between the MoBa and 
the DNBC. DL, DerSimonian and Laird random-effects meta-analysis
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robustness analyses, even though previous evidence suggests no 
association with type 1 diabetes [17]. Unmeasured confounding, 
for instance from toxicants in fatty fish, may have influenced our 
results; however, there is currently no strong evidence support-
ing an association between such toxicants and type 1 diabetes [2] 
and we do not believe that toxicants have confounded our results 
substantially. Given the largely Scandinavian origin of our par-
ticipants, we believe that our results are generalisable to other 
European-origin populations, but not necessarily to populations 
with large proportions of people of other ancestries. Finally, our 
results do not exclude a potential effect of EPA and DHA intake 
in children rather than in their pregnant mothers.

In conclusion, the hypothesis that a higher maternal n-3 
fatty acid intake during pregnancy reduces the risk of type 
1 diabetes in offspring was not supported by this study. In a 
setting where primary prevention trials are extremely expen-
sive and time-consuming [18], we believe that our results, 
together with the evidence discussed above, clearly indicate 
that a trial of EPA and DHA during pregnancy to prevent 
type 1 diabetes in offspring should not be prioritised.

Supplementary Information  The online version contains peer-reviewed 
but unedited supplementary material available at https://​doi.​org/​10.​
1007/​s00125-​024-​06125-4.
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