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Abstract
A new variant of Newton’s method - named Backtracking New Q-Newton’s method
(BNQN) - which has strong theoretical guarantee, is easy to implement, and has good
experimental performance, was recently introduced by the third author. Experiments
performed previously showed some remarkable properties of the basins of attractions
for finding roots of polynomials and meromorphic functions, with BNQN. In general,
they look more smooth than that of Newton’s method. In this paper, we continue to
experimentally explore in depth this remarkable phenomenon, and connect BNQN to
Newton’s flow and Voronoi’s diagram. This link poses a couple of challenging puzzles
to be explained. Experiments also indicate that BNQN is more robust against random
perturbations than Newton’s method and Random Relaxed Newton’s method.

1 Introduction

This paper mainly concerns the problem of finding roots of a polynomial or meromor-
phic function in 1 complex variable f (z) = 0.
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Newton’s method is a well known method to solve equations and optimization
problems. In the case of a function f (z) concerns here, the method amounts to the
update rule:

zn+1 = zn − f (zn)

f ′(zn)
.

One can also apply the higher dimensional version of Newton’s method for systems
of equations, to the system G(x, y) = (Re( f (x + iy)), Im( f (x + iy))) = 0 of real
and imaginary parts of f , where x, y ∈ R, i.e. to consider the iterative method

zn+1 = zn − JG(zn)
−1.G(zn),

where JG is the Jacobianmatrix ofG. However, in the case where f is a meromorphic
function, this iterativemethod is the same as that of the usual Newton’s method, thanks
to Cauchy-Riemann’s equations.

A new variant of Newton’smethod - namedBacktrackingNewQ-Newton’smethod
(BNQN) - which has strong theoretical guarantee, is easy to implement, and has
good experimental performance, was recently introduced by the third author [17]. It
is a variant of Newton’s method for optimization. For details about the method, also
comparisons between it and somewell known variants of Newton’s method (including
Newton’s method itself), the readers can see [17, 18]. In Sect. 2 we will recall essential
information on BNQN, enough for the purpose of this paper.

Experiments performed previously in [17], indicate a remarkable phenomenon: The
basins of attraction, when BNQN is applied to find roots of meromorphic functions,
seem to bemore smooth than that of Newton’s method. In particular, these basins seem
not to be fractal, as is often the case for Newton’smethod [22].Moreover, when finding
roots of a polynomial of degree 2 in 1 complex variable, the picture one obtains for
basins of attraction of BNQN looks exactly the same as that in the classical Schröder’s
theorem for Newton’s method [1, 15].

Which leads to a natural and interesting question: Can we explain this phenomenon
rigorously, or is it just a lucky occurrence of numerical calculations?

After presentations of BNQN in ICIAM 2023 (Waseda University) and a satellite
conference, a couple of candidates, which have a lot of connections in mathematics
and physics, for explaining the pictures obtained in [17] have emerged:

– These seem relevant to Newton’s flow.
– These seem relevant to Voronoi’s diagrams.

More details about Newton’s flow and Voronoi’s diagrams will be recalled in Sect. 2.
Note that Voronoi’s diagram for a pair of distinct points in the plane is the same as
what produced in Schröder’s theorem for Newton’s method. Also, Newton’s flow for
a polynomial of degree 2 produces exactly the same picture.

In a previous paper [8], we proved that indeed BNQN applied to finding roots of a
polynomial f (z) of degree 2 will produce the same picture as in Schröder’s theorem
for Newton’s method. Even so, BNQN is indeed more smooth than Newton’s method
in this case: On the boundary line, the dynamics of Newton’s method is chaotic, while
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the dynamics of BNQN has a global attraction. Newton’s method for optimization, on
the other hand, produces a picture with many black blobs of initial points z0 for which
the constructed sequence {zn} does not converge to the roots of f (z) but instead to the
critical point of f , and the basins of attraction even seem to be fractal!

In this paper, we will explore in depth the possible links mentioned above between
BNQN, Newton’s flow and Voronoi’s diagrams, when finding roots of meromorphic
functions. We verify with many different geometric configurations of the roots, that
indeed the link is very apparent and well above a random coincidence. We work with
three different versions of Newton’s flow, with two versions of Newton’s method, as
well as Random Relaxed Newton’s method. For the readers’s convenience, we will
recall in enough detail on Newton’s method and RandomRelaxed Newton’s method in
the next Section. It seems that the picture one obtains from BNQN is a better version
of what one obtains with Newton’s method v2, and while BNQN is not a flow method
it somehow attains many good features of flow methods. From these experiments,
another interesting new phenomenon seems to occur when one applies Newton’s flow
to f / f ′, even if one only wants to find roots of f and even if f has only roots of
multiplicity 1.

An interesting possible application of the study in this paper is as follows. In
the literature, there is no unique construction of Voronoi’s diagrams when two or
more points meet together (limits of Voronoi’s diagrams) [10]. In such a case, we
expect that a curved version of a ”canonical" Voronoi’s diagram can be obtained by
using Newton’s flow or BNQN. For example, working with the polynomial P(z) =
(z − a)2(z − b)(z − c) can provide one some insights into how Voronoi’s diagram for
three points a (with multiplicity 2), b (with multiplicity 1) and c (with multiplicity 1)
should approximately look like. In the experiments, we have several such examples.

Given that when using computers one cannot avoid dealing with random
errors/perturbations, and that solving equations with random perturbations is interest-
ing itself, we also present some experiments concerning this issue. The experiments
indicate that BNQN is more robust compared to Newton’s method and Random
Relaxed Newton’s method.

Plan of the Paper In Sect. 2 we recall relevant information concerning the methods,
as well as Newton’s flow and Voronoi’s diagrams, as well as stochastic root finding. In
Sect. 3, we introduce the setting of our experiments and then present the experimental
results. In the final section, we draw some conclusions and some challenging puzzles
and directions for future’s research.

2 Preliminaries

In this section,we briefly review someprevious results and algorithms,with the empha-
sis on properties which will be used later.
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2.1 Newton’s Method

Besides the main version in the introduction, here we recall Newton’s method in the
optimization setting (Newton’s method for optimization) also, to easily compare later
to BNQN. Assume that one wants to find (local) minima of an objective function
F : Rm → R. Let ∇F be the gradient of F , and ∇2F be the Hessian of F . Then
Newton’s method for the function F is the following iterative algorithm: Choose
z0 ∈ Rm an initial point, and define:

zn+1 = zn − (∇2F(zn))
−1.∇F(zn).

In this paper, Newton’s method for optimization will be applied to the function
F(x, y) = | f (x + iy)|2/2, for a meromorphic function f in 1 complex variable
z = x + iy.

Both versions of Newton’s method are invariant under a linear change of coordi-
nates. However, their behaviour can be very different, see the experimental results for
detail.

Concerning finding roots of polynomials, we note that Newton’s method gives rise
to an algebraic dynamical system on the Riemann sphere. As such, [11] shows that
Newton’s method does not guarantee to always find roots of polynomials of degree
at least 4, see the cited paper for the precise statement. For Newton’s method for
optimization, it has the tendency to converge to the nearest (non-degenerate) critical
point of F , and hence also has no guarantee for finding roots. See the experimental
results for detail.

2.2 Random Relaxed Newton’s Method

Adirect variant of Newton’s method is Relaxed Newton’s method. It works as follows.
We choose a nonzero complex number α, and consider the iterative procedure:

zn+1 = zn − α
f (zn)

f ′(zn)
.

Again, this gives rise to an algebraic dynamical system on the Riemann sphere, and
hence by [11] does not have guarantee to finding roots of polynomials. However, see
the discussion in the subsection on Newton’s flow about how the basins of attraction
for Relaxed Newton’s method behave when α goes to 0. A surprising fact is that if
one adds randomness into the design, then the method can find roots of polynomials.
The iterative procedure, named Random Relaxed Newton’s method, in this case is the
following:

zn+1 = zn − αn
f (zn)

f ′(zn)
,

where αn is randomly chosen in an appropriate manner.
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We recall here the relevant result in [16] on convergence of Random Relaxed New-
ton’s method when applied to finding roots of polynomials.

Theorem 2.1 Let 0.5 < ρ < 1 be a constant. Let P(z) be a polynomial in 1 complex
variable z of degree two or more. We consider random orbits of the form zn+1 = zn −
αn P(z)/P ′(z), where αn will be independently chosen from the uniform distribution
on the set {α ∈ C : |αn − 1| ≤ ρ}.

Then for every initial point z0 except a finite number of exceptions, for almost every
choice of random sequence α = (α1, α2, . . . ), the random orbit above converges to a
root z∗ of P(z).

Note that the set of exceptional sequences depends on z0, and the limits z∗ depend
on the choices of α even if they have the same initial point z0.

2.3 Backtracking NewQ-Newton’s Method

In this section, we recall enough details on both theoretical and practical aspects of
BNQN.

2.3.1 Heuristics and Some Delicate Issues

A tendency of Newton’s method for optimization, applied to find minima of a function
F : Rm → R, is that if the initial point z0 is close to a (non-degenerate) critical point
z∗ of F(z), then the sequence constructed by Newton’s method will converge to z∗.
Hence, if z∗ is a saddle point or local maximum, thenNewton’s method is not desirable
for finding (local) minima. In the special case where F(z) is a quadratic function
whose Hessian is invertible, then for every initial point z0, the point z1 constructed by
Newton’s method will be the unique critical point z∗ = 0.

To overcome this undesirable behaviour of Newton’s method, a new variant called
New Q-Newton’s method (NQN) was recently proposed in [18]. This consists of the
following two main ideas:

– Add a perturbation δ||∇F(z)||τ I d to the Hessian ∇2F(z), where τ > 0 is a con-
stant, and δ is appropriately chosen within a previously chosen set {δ0, . . . , δm} ⊂
R. Thus, we consider a matrix A(z) = ∇2F(z) + δ||∇F(z)||τ I d, instead of
∇2F(z) as in the vanilla Newton’s method. This has two benefits. First, it avoids
the (minor) difficulty one encounters in Newton’s method if ∇2F(z) is a singular
matrix. Second, more importantly, it turns out that if the δ0, . . . , δm are randomly
chosen, then NQN can avoid saddle points. Since the perturbation δ||∇F(z)||τ I d
is negligble near non-degenerate local minima, the rate of convergence of NQN is
the same as that of Newton’s method there.

– If one mimics Newton’s method, in defining zn+1 = zn − A(zn)−1.∇F(z), then
the constructed sequence still has the same tendency of convergence to the nearest
critical point of F(z). This is remedied in NQN by the following idea: We let B(z)
be the matrix with the same eigenvectors as A(z), but whose eigenvalues are all
absolute values of the corresponding eigenvalues of A(z). The update rule of NQN
is zn+1 = zn − B(zn)−1.∇F(zn).
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The precise definition of the algorithm NQN is given in the next subsection. If F(z)
is a C3 function, then NQN applied to F(z) can avoid saddle points, and has the same
rate of convergence near non-degenerate local minima.

However, NQN has no global convergence guarantee. In [17], a variation of NQN,
that is BNQN, was introduced and shown to keep the same good theoretical guarantees
as NQN, with the additional bonus that global convergence can be proven for BNQN
for very general classes of functions F(z): functions which have at most countably
many critical points, or functions which satisfy a Lojasiewicz gradient inequality type.
The main idea is to incorporate Armijo’s Backtracking line search [2] into NQN. For
the readers’ convenience, we recall here the idea of Armijo’s Backtracking line search.
Let F : Rm → R be a C1 function. Let z, w ∈ Rm such that< ∇F(z), w > is strictly
positive. Then, there exists a positive real number γ for which F(x − γw) − F(x) ≤
− < ∇F(x), γw > /3. If we choose γ by a backtracking manner (that is, start γ

from a positive number, and then reduce it exponentially until the above mentioned
inequality is satisfied), then the procedure is called Armijo’s Backtracking line search.

We notice that there are some delicate issueswhen doing this incorporation between
NQN and Armijo’s Backtracking line search, which rely crucially on the fact that we
are using a perturbation of theHessianmatrix here. First, inBNQN, the choice of δ from
among {δ0, . . . , δm} is more complicated than NQN. Second, the analog Backtracking
line search for Gradient descent is not yet known to be able to avoid saddle points, even
though there is a slight variant which can avoid saddle points, and experiments support
that the method should be able to avoid saddle point. Third, a priori the learning rate
one finds by Armijo’s Backtracking line search can be smaller than 1, and hence the
rate of convergence can a priori slower than being quadratic.

The precise definition of BNQN is given in the next subsection.

2.3.2 Algorithms: NQN and BNQN

Here we present the basic versions of NQN and BNQN. Many more variations can be
found in [17].

Let A : R
m → R

m be an invertible symmetric square matrix. In particular, it
is diagonalisable. Let V+ be the vector space generated by eigenvectors of positive
eigenvalues of A, and V− the vector space generated by eigenvectors of negative
eigenvalues of A. Then prA,+ is the orthogonal projection fromR

m to V+, and prA,−
is the orthogonal projection from R

m to V−. As usual, I d means the m × m identity
matrix.

First, we introduce NQN [18].
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Algorithm 1: New Q-Newton’s method
Result: Find a minimum of F : Rm → R

Given: {δ0, δ1, . . . , δm} ⊂ R and α > 0;
Initialization: z0 ∈ R

m ;
for k = 0, 1, 2 . . . do

j = 0
if ‖∇ f (zk)‖ 
= 0 then

while det(∇2 f (zk) + δ j‖∇ f (zk)‖1+α I d) = 0 do
j = j + 1

end
end
Ak := ∇2 f (zk) + δ j‖∇ f (zk)‖1+α I d
vk := A−1

k ∇ f (zk) = prAk ,+(vk) + prAk ,−(vk)

wk := prAk ,+(vk) − prAk ,−(vk)

xk+1 := xk − wk
end

BNQN includes a more sophisticated choice of δ in NQN, together with a combi-
nation of Armijo’s Backtracking line search. For a symmetric, square real matrix A,
we define:

sp(A) = the maximum among |λ|’s, where λ runs in the set of eigenvalues of A,
this is usually called the spectral radius in the Linear Algebra literature;

and
minsp(A) = the minimum among |λ|’s, where λ runs in the set of eigenvalues of

A, this number is non-zero precisely when A is invertible.
One can easily check the followingmore familiar formulas: sp(A) = max‖e‖=1 ‖Ae‖

and minsp(A) = min‖e‖=1 ‖Ae‖, using for example the fact that A is diagonalisable.
We recall that a function F has compact sublevels if for allC ∈ R the set {z : F(z) ≤

C} is compact.
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Algorithm 2: Backtracking New Q-Newton’s method

Result: Find a minimum of F : Rm → R

Given: {δ0, δ1, . . . , δm} ⊂ R 0 < τ and 0 < γ0 ≤ 1;
Initialization: z0 ∈ R

m ;
κ := 1

2 mini 
= j |δi − δ j |;
for k = 0, 1, 2 . . . do

j = 0
if ‖∇F(zk)‖ 
= 0 then

while minsp(∇2F(zk) + δ j‖∇F(zk)‖τ I d) < κ‖∇F(zk)‖τ do
j = j + 1

end
end
Ak := ∇2 f (zk) + δ j‖∇ f (zk)‖τ I d
vk := A−1

k ∇ f (zk) = prAk ,+(vk) + prAk ,−(vk)

wk := prAk ,+(vk) − prAk ,−(vk)

ŵk := wk/max{1, ‖wk‖}
(If F has compact sublevels, then one can choose ŵk = wk).
γ := γ0
if ‖∇ f (zk)‖ 
= 0 then

while f (zk − γ ŵk) − f (zk) > −γ 〈ŵk,∇ f (zk)〉/3 do
γ = γ /3

end
end
zk+1 := zk − γ ŵk

end

Algorithm 2 has two different versions depending whether the objective function
F has compact sublevels or not. In [8], we introduced a new variant, named BNQN
New Variant, with a new parameter, which includes both these versions as special
cases. Indeed, θ = 0 in BNQN New Variant is the version of BNQN for functions
with compact sublevels, and θ = 1 in BNQN New Variant is the version of BNQN
for general functions.
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Algorithm 3: Backtracking New Q-Newton’s method New Variant

Result: Find a minimum of F : Rm → R

Given: {δ0, δ1, . . . , δm} ⊂ R θ ≥ 0, 0 < τ and 0 < γ0 ≤ 1;
Initialization: z0 ∈ R

m ;
κ := 1

2 mini 
= j |δi − δ j |;
for k = 0, 1, 2 . . . do

j = 0
if ‖∇F(zk)‖ 
= 0 then

while minsp(∇2F(zk) + δ j‖∇F(zk)‖τ I d) < κ‖∇F(zk)‖τ do
j = j + 1

end
end
Ak := ∇2 f (zk) + δ j‖∇ f (zk)‖τ I d
vk := A−1

k ∇ f (zk) = prAk ,+(vk) + prAk ,−(vk)

wk := prAk ,+(vk) − prAk ,−(vk)

ŵk := wk/max{1, θ‖wk‖}
γ := γ0
if ‖∇ f (zk)‖ 
= 0 then

while f (zk − γ ŵk) − f (zk) > −γ 〈ŵk,∇ f (zk)〉/3 do
γ = γ /3

end
end
zk+1 := zk − γ ŵk

end

2.3.3 A Main Theoretical Result for Finding Roots of Meromorphic Functions by
BNQN

Asmentioned previously,BNQNhas strong theoretical guarantees for somebig classes
of functions in any dimension. However, to keep the presentation concise, here we
present only one main result relevant to the question pursued in this paper, that of
finding roots ofmeromorphic functions in 1 complexvariable. Formoregeneral results,
the readers can consult [17, 18].

Theorem 2.2 Let g(z) : C → P1 be a non-constant meromorphic function. Define a
function F : R2 → [0,+∞] by the formula F(x, y) = |g(x + iy)|2/2.

Given an initial point z0 ∈ C, which is not a pole of g, we let {zn} be the sequence
constructed by BNQN New Variant applied to the function F with initial point z0.
If the objective function has compact sublevels (i.e. for all C ∈ R the set {(x, y) ∈
R2 : F(x, y) ≤ C} is compact), we choose θ ≥ 0, while in general we choose θ > 0.

1. Any critical point of F is a root of g(z)g′(z) = 0.
2. If z∗ is a cluster point of {zn} (that is, if it is the limit of a subsequence of {zn}),

then z∗ is a critical point of F.
3. If F has compact sublevels, then {zn} converges.
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4. Assume that the parameters δ0, δ1, δ2 in BNQNNew Variant are randomly chosen.
Assume also that g(z) is generic, in the sense that {z ∈ C : g(z)g"(z) = g′(z) =
0} = ∅. There exists an exceptional set E ⊂ C of zero Lebesgue measure so that
if z0 ∈ C\E , then {zn} must satisfy one of the following two options:
Option 1: {zn} converges to a root z∗ of g(z), and if γ0 = 1 in the algorithm then
the rate of convergence is quadratic.
Option 2: limn→∞ |zn| = +∞.

For BNQN, Theorem 2.2 is proven in [18]. The stated version for BNQN New
Variant is from [8]. An example for which part 3 of Theorem 2.2 can apply is when g
is a polynomial or g = P/Q where P, Q are polynomials and P has bigger degree
than Q (a special case is when Q = P ′, in which case the zeros of g are exactly that
of P , with the advantage that they all have multiplicity 1).

2.3.4 Implementation Details

An implementation in Python of BNQN accompanies the paper [17]. The implemen-
tation is flexible in that one does not need precise values of the gradient and Hessian
of the function F , but approximate values are good enough. Experiments also show
that the performance of BNQN is very stable, with respect to its parameters and to the
values of the objective function and its gradient andHessianmatrix. Some experiments
later in this paper will illustrate this.

2.4 Newton’s Flow

A general strategy when studying an iterative method is that one also studies its
flow counterpart. Usually, the flow counterpart is a smooth version of the (discrete)
iterative method. In this subsection, we briefly review several variants of Newton’s
flow. Newton’s flow means solutions of certain ordinary differential equations which
we will define later.

The authors observed that the basins of attractions for BNQNmethod look smoother
than that for Newton’s method or Backtracking line search for Gradient Descent.
This observation inspired us to compare the basin structure for BNQN with that for
Newton’s flow. In the following,we consider three types of continuous-time dynamical
systems.

2.4.1 Newton’s Flow for f

The first Newton-type flow is the ordinary differential equation of complex-valued
function z(t) = x(t) + iy(t) of one real variable t :

dz

dt
= − f (z)

f ′(z)
(1)

with initial value z(0) = z0. Here, f (z) is a holomorphic function. Note that the
right-hand side of (1) has singularity at { f ′ = 0} \ { f = 0}.
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If a global solution z(t) for the ODE above exists, then it satisfies

d

dt
f (z(t)) = f ′(z(t))dz

dt
= − f (z).

Thus, f (z(t)) = f (z0)e−t and f (z(t)) → 0 as t → ∞. By this calculation, we expect
that the solution of the ODE (1) approximates a zero of the target function f .

Neuberger et al. showed that we can interpret the ODE (1) as the Sobolev gradient
of F(z) = ‖ f (z)‖2/2 relative to the natural Riemannian metric. See Appendix A of
[14].

From our point of view, it is worth noting that the Euler discretization of the ODE
(1) gives the Relaxed Newton’s method. Let α > 0 be a constant time step. The Euler
discretization gives us

z(t + α) − z(t)

α
= − f (z(t))

f ′(z(t))
.

with initial condition z(0) = z0. Thus, we have the recursive formula z(t + α) =
z(t) − α f (z(t))/ f ′(z(t)), which is the relaxed Newton’s method. In particular, if
the time step α is 1, then the Euler discretization is precisely the same as the usual
Newton’s method.

It is shown in [9, 12] that if f is a rational function, then the union of basins of
attraction for Newton’s flow of all the roots of f has full measure. It is also shown
that in case f is a polynomial, there is a small value of α for which Relaxed Newton’s
method has convergence guarantee to find all roots of f . Note that the choice of α

heavily depends on the polynomial f . See [4] for a good review on some results on
this direction, as well as dynamics of meromorphic functions in general.

Compared to the original Newton’s method, the local convergence rate of Newton’s
flow is slower. Namely, if z = a is a simple zero of f , thenwe have |z(t)−a| = O(e−t )

as t → ∞. Thus, Newton’s flow converges to a simple root with order 1. On the other
hand, the original Newton’s method converges to a simple root with order 2 as is
well-known.

From now on, this method will be called Newton’s flow.

2.4.2 Newton’s Flow for f/f ′

The second Newton-type flow is the ordinary differential equation of complex-valued
function z(t) of one real variable t :

dz

dt
= − g(z)

g′(z)
(2)

with initial value z(0) = z0. Here, g(z) = f (z)/ f ′(z) is a meromorphic function and
f (z) is a holomorphic function. The roots of g are exactly the roots of f , with the
advantage that their multiplicities are all 1. The ODE (2) is obtained by substituting
g = f / f ′ for f in the ODE (1).
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By a similar calculation, we can show that g(z(t)) = g(z0)e−t → 0 as t → ∞ if a
global solution z(t) exists. Since the zeros of g is same as the zeros of f , we expect
the flow z(t) will converge to a root of f .

The conceptual difference between two ODEs (1) and (2) is the singular sets. The
singular set for (1) is { f ′ = 0} \ { f = 0}, while the singular set for (2) is contained
in {( f ′)2 − f f ′′ = 0}.

From now on, this version will be named Newton’s flow vFraction.

2.4.3 Newton’s Flow for the Optimization Version

The last Newton’s flow is applicable to Newton’s method v2, the optimization version
of Newton’s method. This Newton-type flow is the ordinary differential equations
related to the function z(t) = x(t) + iy(t) of one real variable t :

d

dt

(

x
y

)

= −
(

∇2F(z)
)−1 ∇F(z) (3)

with initial value z(0) = z0. Here, F(z) = ‖ f (z)‖2/2 and f (z) is a holomorphic
function. Also, by identifying z = x + iy, we denote by

∇2F =
(

Fxx Fxy
Fxy Fyy

)

and ∇F =
(

Fx
Fy

)

where Fx = ∂F
∂x , Fy = ∂F

∂ y and so on. The right-hand side of (3) is defined outside

the singular set {det∇2F = 0}.
If this ODE has a global solution z(t), then we have

d

dt
∇F(z(t)) = ∇2F(z)

dz

dt
= −∇F(z(t)).

Therefore, the global solution satisfies ∇F(z(t)) = e−t∇F(z0), and hence we have
∇F(z(t)) → 0 as t → ∞. This shows that we can expect to obtain an approximation
of points where ∇F vanishes by solving the ODE.

We are now interested in the local behavior near simple zeros of f . Suppose f (a) =
0. We can assume that a = 0 by changing the coordinate. Since f is holomorphic, we
canwrite f (z) = cz+g(z)where c 
= 0 is a complex number and g(z) is a holomorphic
function defined near z = 0 which satisfies g(0) = g′(0) = 0 and g′′(0) 
= 0. Let
us denote f (z) = u(z) + iv(z) using real functions. Then u(0) = 0, v(0) = 0, and
ux (0)+ivx (0) = c since f ′(z) = ux (z)+ivx (z).Moreover, (uxx (0), vxx (0)) 
= (0, 0)
since f ′′(z) = uxx (z) + ivxx (z). Since F(z) = ‖ f (z)‖2/2 = (u2 + v2)/2, we have

∇F =
(

uux + vvx
uuy + vvy

)

, and hence ∇2F(0) =
( |c|2 0

0 |c|2
)

.
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Therefore, the ODE (3) near z = 0 is reduced to be

d

dt

(

x
y

)

= −
(

x
y

)

+ o

(
√

x2 + y2
)

.

Thus, the flow that starts near a simple root has a time-global solution andwill converge
to the simple root.

From now on, this Newton’s flow is named Newton’s flow vOptimization.

2.4.4 Implementation Details

In this subsubsection, we present our implementation of three Newton-type flows.
There are various known methods for solving differential equations numerically, but
in this paper, we use the Explicit Runge–Kutta method of order 5(4). This method is
the default method used in scipy.integrate.solve_ivp function.

The Explicit Runge–Kutta method of order 5(4) is discussed in [7]. This embedded
method automatically adjusts the time step size to enable fast and accurate numerical
computation, but for simplicity, we review the classical Runge–Kutta method here.

We want to numerically solve the autonomous ODE

ẏ = g(y), y(0) = y0

with a given initial condition. Here, y and g are Rn-valued, or they are C-valued
functions. Fix a small time step h > 0, and define Y (0) = y0. If we already define the
value Y (t), then define

Y (t + h) = Y (t) + h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = g(Y (t)),

k2 = g

(

Y (t) + h

2
k1

)

,

k3 = g

(

Y (t) + h

2
k2

)

,

k4 = g(Y (t) + hk3).

It is known that the truncation error is proportional to h5 for every time step (if the
solution y(t) is sufficiently smooth). Thus, if we calculate until t = T , then the error
|y(T ) − Y (T )| is proportional to h5 · T /h = Th4. See Section 5.4 and following of
[5] for more details.

We are interested in the global structure of basins for Newton’s flow. Therefore, we
performed the following experiment for every threeODEsabove. For several initial val-
ues,wenumerically integrated the trajectories usingscipy.integrate.solve_ivp.
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Fig. 1 Basins of attraction for the ODEs (1), (2), and (3) from left to right, applied to a polynomial of degree
3 (the function f1 listed in Sect. 3)

Fig. 2 Streamline plots for the ODE (3), from Fig. 1. The figure on the right is an enlarged image of
the figure on the left, whose range is 0 ≤ Rez, Imz ≤ 5. We can see a stable equilibrium point near
z = 1.966755 + 1.516588i which does not correspond to the roots of f1, but a critical point of f1

The time step was h = 0.01 and the endpoint of integration was T = 100. The same
color was applied to the initial values whose trajectory reached within a certain dis-
tance from the same root of f . If the trajectories are away from all the roots, then we
colored their initial values black. An illustration is shown in Fig. 1. (Fig. 2)

2.5 Voronoi’s Diagrams

Voronoi’s diagrams are a classical object [20, 21], with an ever increasing domain of
applications: geophysics, surface metrology, hydrology, archaeology, dialectometry,
political sciences, biology, ecology, ethology, computational chemistry, astrophysics,
computational fluid dynamics, computational physics, medical diagnosis, epidemiol-
ogy, polymer physics, materials science, aviation, architecture, urban planing, mining,
robotics, wireless network, computer graphics, machine learning, and a lot more. For
example, the skin pattern of a giraffe has Voronoi-type diagrams. A good place to start
with Voronoi’s diagrams and applications is [23] and its references.
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There are many versions of Voronoi’s diagrams. In this paper, we consider the
most basis version, that of a finite set of points z1, . . . , zm in R2, with the Euclidean
distance dE (., .). If z ∈ R2 is such that there is a unique i ∈ {1, . . . ,m} for which
dE (z, zi ) > max j 
=i dE (z, z j ), then we say that z belongs to the Voronoi’s cell of
the point zi . The boundary consists of lines where the maximum of max j dE (z, z j ) is
attained at two or more points zi ’s.

2.6 Stochastic Root Finding

Because of various reasons, it is necessary and interesting to consider root finding
problem for not only the determnistic case f (z) = 0, but also the stochastic version
g(z, ξ), where ξ is a random variable.

We assume that the expectation of g, with respect to the variable ξ , is f , that is
E(g(z, .)) = f (z).

In stochastic root finding, we aim to test the robustness of a root findingmethod I M
in a stochastic environment. When given a function h in the variable z, the root finding
method I M will construct a sequence defined by the formula zn+1 = I M(h(z), zn).
More precisely, we will follow the following procedure:

– Generate a sequence {ξn} from the distribution for the random variable ξ .
– Choose an initial point z0 and construct a sequence:

zn+1 = I M(g(z, ξn), zn).

We hope that {zn} will converge to a root of f (z). To ensure the stability, we need the
variation of g is small: Var(g(z, .)) is small.

3 Experimental Results

Here we discuss the settings for our experiments, and then present the experiments.

3.1 Settings

We present the settings of our experiments.
(1) The functions: We consider many functions the geometric configurations of

whose roots vary (for example, some functions have roots which are vertices of convex
polygons, while some functions have some roots inside the convex hull of other roots,
some functions have three roots on the same line, and some functions have simple
roots while other have non-simple roots). The list of the functions is as follows:

f1(z) = z(z − i)(z − 3 − 2i),

f2(z) = z(z − i)(z − 3i),

f3(z) = z(z − i)2,

f4(z) = z(z − i)(z − 3 − 2i)(z − 1 − 4i),

f5(z) = z(z − i)(z − 3 − 2i)(z − 2 − 4i),
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f6(z) = z(z − i)3,

f7(z) = z(z − i)(z − 1 − i)(z − 3 − 2i),

f8(z) = z(z − i)(z − 2i)(z − 3 − 2i),

f9(z) = z2(z − i)2,

f10(z) = z2(z − i)(z − 1 − i),

f11(z) = z2(z − i)(z − 2i),

f12(z) = z(z − i)(z − 5i)(z − 3 − 2i),

f13(z) = z2(z − i)(z − 5i),

f14(z) = z(z − 2i)(z − 3 + 3i))(z − 3 − 6i)(z − 5 − 2i),

f15(z) = z(z − 2i)(z − 3 − 6i)(z − 5 − 2i)(z − 7 + i),

f16(z) = z(z − 3 − 6i)(z − 5 − 2i)(z − 7 + i)(z − 4 − 3.4i),

f17(z) = z(z − 2i)(z − 5 − 2i)(z − 3 + 3i)(z − 2 − i),

f18(z) = z(z − 3 − 6i)(z − 5 − 2i)(z − 7 + i)(z − 2 − i),

f19(z) = z2(z − 5 − 2i)(z − 3 + 3i)(z − 7 + i),

f20(z) = z2(z − 2 − i)(z − 5 − 2i)(z − 3 + 3i),

f21(z) = z2(z − 2 − i)(z − 5 − 2i)(z − 3 − 6i),

f22(z) = z(z − 2 − i)2(z − 3 + 3i)(z − 3 − 6i),

f23(z) = z2 + cos(z) + 2sin(z) − 1 − 0.5i,

f24(z) = f7(z)e
z,

f25(z) = f17(z)e
z .

The function f23(z) has infinitely many roots. In the region −10 ≤ x, y ≤ 10, it
has 8 (approximate) roots: 0.01453348+0.24577632i ,−1.79690338−0.16311646i ,
2.65293461−2.52795741i , 2.70778504+2.4386467i , −7.27782023−4.1230358i ,
−7.26685729 + 4.13462414i , 9.62682067 − 4.62305718i , and 9.63392763 +
4.61683271i .

In some experiments, we also consider functions of the form g = f / f ′, where f
is one of the above functions.

In stochastic root finding experiments, we consider functions of the form g(z, ξ) =
f (z)+εξ(z3+2z−5). Here f (z) is one of the above functions, ξ is a random variable
with normal distribution (E(ξ) = 0, Var(ξ) = 1), ε > 0 is a small number. We can
check that E(g(z, .)) = f (z). However, in experiments involving Newton’s method
vOptimization and BNQN we need to work with the functions F(z) = | f (z)|2/2
and G(z, ξ) = |g(z, ξ)|2/2. One can check that E(G(z, .)) is not F(z), but rather
E(G(z, .)) = F(z) + ε2|z3 + 2z − 5|2. Therefore, we should choose ε small so that
E(G(z, .)) is close enough to F(z).

(2) The experiments:
We will compute basins of attraction when using different methods (iterative or

flow) to certain complex-valued functions in 1 complex variable (listed in the previ-
ously). We also draw pictures of (reduced) Voronoi’s diagrams, where the multiplicity
of a point is disregarded.
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(3) Colours and interpretations of the results: If the factorisation of a function f is
written as (note that the order z1, z2, . . . is important) f (z) = (z− z1)n1(z− z2)n2 . . .,
then we will colour the basins of attraction as follows: that for the first root has the
green colour, that for the second root has the yellow colour, that for the third root has
the blue colour, that for the fourth root has the red colour, that for the fifth root has
the pink colour, that for the sixth root has the cyan colour, that for the seventh root
has the orange colour, that for the eighth root has the purple colour. Other points (e.g.
points whose corresponding sequence goes to infinity or does not converge) will have
the black colour.

For example, for the function f10(z) = z2(z − i)(z − 1 − i), by our convenience,
the first root is 0, the second root is i and the third root is 1 + i . Therefore, the basin
of attraction for 0 will have the green colour, the basin of attraction for i will have the
yellow colour, and the basin of attraction for 1 + i has the blue colour.

(4) In the numerical experiments of random relaxed Newton’s method, for each
function f1 to f22, we generate a random sequence {αn} in the domain {α ∈ C, |α −
1| < 0.99} and draw the pictures of basins for the nonautonomous dynamics zn+1 =
zn − αn

f (zn)
f ′(zn) . Note that, for different sequence of αn, the pictures can be drastically

different.
In Voronoi’s diagrams, we also follow the same convenience.
(5) Implementation of the codes:
Implementation of BNQN and Newton’s flows are as discussed in Sect. 2.

Implementation of Newton’s method and Random Relaxed Newton’s method is
straightforward from their descriptions.

For BNQN, most of the case we will run BNQN New Variant with θ = 0, and this
will be reported in the experimental results as BNQN. In some cases, we also run with
BNQN New Variant with θ = 1, and report it as BNQN v2.

To avoid overflow errors, we use the mpmath library [19].
(6) Experimental procedures:
Wewill choose a grid of 240×240 points in [−10, 10]×[−10, 10], whose center is

randomly chosen in a small neighbourhood of (0, 0). Each of the points z0 in the grid
will be the initial point to run the concerned iterative method. We will run a maximum
of 10000 iterations, and can stop earlier if either the function value is smaller than a
threshold ε or the gradient of the objective cost function is smaller than the threshold
(for BNQN and Newton’s method vOptimization). If zn is the last constructed point,
we declare that zn belongs to the basin of attraction for a root z∗ if the Euclidean
distance d(zn, z∗) is smaller than a threshold. We choose the threshold to be 10−6 or
smaller.

This manner of determining the basins of attraction is reasonable. First, we know
that if zn is close enough to a root z∗, then the considered iterative methods will con-
verge to the root z∗. Second, in the stochastic root finding setting, as explained in
Sect. 3, E(G(z, .)) is not the same as F(z), and hence we do not expect that zn con-
verges precisely to a root of f (z) (or more generally, a minimum of F(z)). However, if
E(G(z, .)) − F(z) is small, then we expect that the minizers of E(G(z, .)) are within
a small neighbourhood of that of F(z). Since we expect that zn will converge to mini-
mizers of E(G(z, .)), it follows that zn will converge to within a small neighbourhood
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Fig. 3 Basins of attraction for finding roots of the function f1 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f1

of a minimizer of F(z). Explicitly, in g(z, ξ) = f (z) + εξ(z3 + 2z − 5), we choose ε

to be 10−4. In this case, we reduce the threshold to declare that the point zn belongs
to the basin of attraction of a root z∗ to be 10ε, which is 10−3.

3.2 Results

3.2.1 Polynomials

See Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24.
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Fig. 4 Basins of attraction for finding roots of the function f2 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f2
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Fig. 5 Basins of attraction for finding roots of the function f3 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f3
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Fig. 6 Basins of attraction for finding roots of the function f4 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f4
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Fig. 7 Basins of attraction for finding roots of the function f5 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f5
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Fig. 8 Basins of attraction for finding roots of the function f6 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points for
Newton’s flow vOptimization are those in the basin of attraction of critical points of f6 which are not roots,
while the black points for Newton’s method for Optimization seem to due to the fact that the cost function
is highly degenerate
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Fig. 9 Basins of attraction for finding roots of the function f7 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f7
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Fig. 10 Basins of attraction for finding roots of the function f8 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f8
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Fig. 11 Basins of attraction for finding roots of the function f9 by different methods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f9
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Fig. 12 Basins of attraction for finding roots of the function f10 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f10
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Fig. 13 Basins of attraction for finding roots of the function f11 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f11
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Fig. 14 Basins of attraction for finding roots of the function f12 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f12
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Fig. 15 Basins of attraction for finding roots of the function f13 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f13
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Fig. 16 Basins of attraction for finding roots of the function f14 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f14
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Fig. 17 Basins of attraction for finding roots of the function f15 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f15
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Fig. 18 Basins of attraction for finding roots of the function f16 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f16
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Fig. 19 Basins of attraction for finding roots of the function f17 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f17
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Fig. 20 Basins of attraction for finding roots of the function f18 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f18
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Fig. 21 Basins of attraction for finding roots of the function f19 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f19
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Fig. 22 Basins of attraction for finding roots of the function f20 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f20

3.2.2 Transcendental Functions

See Figs. 25, 26, 27.

3.2.3 Quotient of a Function and its Derivative

See Figs. 28, 29, 30, 31, 32, 33, 34, 35.

3.2.4 Stochastic Root Finding

See Figs. 36, 37, 38, 39.
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Fig. 23 Basins of attraction for finding roots of the function f21 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f21
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Fig. 24 Basins of attraction for finding roots of the function f22 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: left picture is Voronoi’s diagram, central picture is for
Newton’smethod, right picture is for RandomRelaxedNewton’smethod. Row2: left picture is for Newton’s
method vOptimization, right picture is for BNQN. Row 3: left picture is for Newton’s flow, central picture
is for Newton’s flow vFraction, right picture is for Newton’s flow vOptimization. The black points in some
of these pictures are those in the basin of attraction of critical points of f22



  112 Page 40 of 50 J. E. Fornæss et al.

Fig. 25 Basins of attraction for finding roots of the function f23 by differentmethods. Pictures are referenced
to from top to bottom, from left to right. Row 1: Voronoi’s diagram (using only 8 roots inside the domain
(−10, 10) × (−10, 10)). Row 2: left picture is for Newton’s method, right picture is for Random Relaxed
Newton’s method. Row 3: left picture is for BNQN, right picture is for BNQN v2. Row 4: left picture is for
Newton’s flow, right picture is for Newton’s flow vFraction. The method Newton’s method vOptimization
encounters errors, while Newton’s flow vOptimization takes too long time to finish
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Fig. 26 Basins of attraction for finding roots of the function f7e
z by different methods. Pictures are

referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s method, right picture
is for Random Relaxed Newton’s method. Row 2: left picture is for BNQN, right picture is for BNQN v2.
Row 3: left picture is for Newton’s flow, right picture is for BNQN v2. Row 4: Voronoi’s diagram. The
method Newton’s method vOptimization encounters errors, while Newton’s flow vOptimization takes too
long time to finish
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Fig. 27 Basins of attraction for finding roots of the function f17e
z by different methods. Pictures are

referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s method, right picture
is for Random Relaxed Newton’s method. Row 2: left picture is for BNQN, right picture is for BNQN
v2. Row 3: left picture is for Newton’s flow, right picture is for BNQN v2. The method Newton’s method
vOptimization encounters errors, while Newton’s flow vOptimization takes too long time to finish
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Fig. 28 Basins of attraction for finding roots of the function f17/ f
′
17 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN

Fig. 29 Basins of attraction for finding roots of the function f18/ f
′
18 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN

Fig. 30 Basins of attraction for finding roots of the function f19/ f
′
19 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN

Fig. 31 Basins of attraction for finding roots of the function f20/ f
′
20 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN
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Fig. 32 Basins of attraction for finding roots of the function f21/ f
′
21 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN

Fig. 33 Basins of attraction for finding roots of the function f22/ f
′
22 by different methods. Left picture is

for Newton’s method, central picture is for Random Relaxed Newton’s method, right picture is for BNQN

Fig. 34 Basins of attraction for finding roots of the function f23/ f
′
23, f24/ f

′
24 and f25/ f

′
25 by BNQN. For

this case, Newton’s method and Random Relaxed Newton’s method either encounter errors or take very
long time to finish
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Fig. 35 Basins of attraction for finding roots of the function f24/ f
′
24 and f25/ f

′
25 by BNQN v2, which are

more smooth than that by BNQN in Fig. 34

Fig. 36 Basins of attraction for finding roots of the stochastic function f1 + εξ(z3 + 2z − 5) by different
methods. Pictures are referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s
method, right picture is for Random Relaxed Newton’s method. Row 2: left picture is for Newton’s method
vOptimization, central picture is for BNQN, right picture is for BNQN v2
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Fig. 37 Basins of attraction for finding roots of the stochastic function f5 + εξ(z3 + 2z − 5) by different
methods. Pictures are referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s
method, right picture is for Random Relaxed Newton’s method. Row 2: left picture is for Newton’s method
vOptimization, central picture is for BNQN, right picture is for BNQN v2
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Fig. 38 Basins of attraction for finding roots of the stochastic function f14 + εξ(z3 + 2z − 5) by different
methods. Pictures are referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s
method, right picture is for Random Relaxed Newton’s method. Row 2: left picture is for Newton’s method
vOptimization, central picture is for BNQN, right picture is for BNQN v2

4 Conclusions and Further Directions

From experiments, we draw the following conclusions, when finding the roots of f :

– Newton’s method does not reflect well the geometric configuration of the roots
of f (i.e. Voronoi’s diagrams). Newton’s flow method, while more smooth than
Newton’s method, also does not reflect well the geometric configuration of the
roots. The basins of attraction for RandomRelaxed Newton’s method are distorted
versions of Newton’s method.
Both Newton’s method and Random Relaxed Newton’s method seem not work
well (take too long time to run) with functions of the form f / f ′, where f is
transcendental. A reason could be that in these cases, it can take many iterates for
these methods to converge, or they are more likely to diverge, in both cases it takes
more time to verify the STOP conditions.

– Newton’s method for Optimization performs poorly.
Newton’s flow for Optimization, except for some small open sets which are basins
of attraction of the critical points of f , produces pictures which match well with
Voronoi’s diagrams. This is in big contrast to its discrete version. However, the
method is quite heavy, and takes too long time for the transcendental examples.

– Newton’s flow for f / f ′, on the other hand, reflects well Voronoi’s diagrams, in
contrast to Newton’s flow for f . The reason could be as follows: The RHS in
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Fig. 39 Basins of attraction for finding roots of the stochastic function f21 + εξ(z3 + 2z − 5) by different
methods. Pictures are referenced to from top to bottom, from left to right. Row 1: left picture is for Newton’s
method, right picture is for Random Relaxed Newton’s method. Row 2: left picture is for Newton’s method
vOptimization, central picture is for BNQN, right picture is for BNQN v2

Newton’s flow for f / f ′ is

( f / f ′)′ = f f ′

( f ′)2 − f f "
,

which involves the second derivative and hence reflects better the curvature of the
function landscape.

– BNQN reflects well Voronoi’s diagram. In particular, BNQN v2 (where we choose
θ = 1) is more similar to Newton’s flow for f / f ′.

– If some of the roots are contained inside the convex hull of other roots, then the
similarity between these iterative methods and Voronoi’s diagrams becomes less
apparent. A reason could be that indeed one needs to use a more appropriate metric
than the usual Euclidean metric when constructing Voronoi’s diagrams.

– BNQN is more robust against stochastic root finding than Newton’s method, Ran-
dom Relaxed Newton’s method and Newton’s method for Optimization.
The above conclusions suggest a couple of natural follow ups, which are beyond
the current paper and are left for future explorations:

– While Newton’s flow for f / f ′ and BNQN both involve the second derivatives
of f , how they depend on the second derivatives is different. In BNQN, we need
to change the signs of negative eigenvalues, and we also need to run an Armijo’s
Backtracking line search. What is the reason that they produce similar pictures?
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– Is it true that in BNQN New Variant, if we choose bigger values for the parameter
θ , then we will obtain more smooth pictures?

– What should be the metric to be chosen in constructing Voronoi’s diagrams, so
that we will obtain more similar pictures to basins of attraction?

– For the case of functions with multiple roots, are there corresponding Voronoi’s
diagrams to the basins of attraction?
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