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Abstract
We study a family of birational maps of smooth affine quadric 3-folds, over the
complex numbers, of the form x1x4 − x2x3 = constant, which seems to have
some (among many others) interesting/unexpected characters: (a) they are
cohomologically hyperbolic, (b) their second dynamical degree is an algebraic
number but not an algebraic integer, and (c) the logarithmic growth of their
periodic points is strictly smaller than their algebraic entropy. These maps are
restrictions of a polynomial map on C4 preserving each of the quadrics. The
study in this paper is a mixture of rigorous and experimental ones, where for
the experimental study we rely on Bertini which is a reliable and fast software
for expensive numerical calculations in complex algebraic geometry.
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1. Introduction

A main theme in Complex Dynamics is that of equidistribution for periodic points. Roughly
speaking, it is expected that if a rational map (more generally, meromorphic map) f : X 99K
X of a complex projective manifold (more generally, compact Kähler manifold) satisfies a
certain type of hyperbolicity, then it has an equilibriummeasure with nomass on proper Zariski
subsets, and to which the average of Dirac measures on hyperbolic periodic points converges.
In general, one expects that the logarithmic growth of (hyperbolic) isolated periodic points of
a map is a lower bound for its topological entropy (a very fundamental dynamical invariant).
These are characteristics of the complexity of a map.

To make precise the above statement, we first recall the definition of dynamical degrees
of a map. Let X be a compact Kähler manifold of dimension m, and f : X 99K X a dominant
meromorphic map (i.e.: there is a proper Zariski subset I( f)⊂ X—called the indeterminacy
set of f—so that f is given as a holomorphic map f : X\I( f)→ X and the image of X\I( f) is
dense in X). Let ω be the cohomological class of a Kähler form on X. For a number 06 j6 m,
the following limit exists and is independent of the choice of the Kähler form (see [57] when
X= a projective space, [31, 32] for the general case)

lim
n→∞

||( f n)∗
(
ωj
)
||1/nH2j(X,C).

Here, f n = f ◦ f ◦ . . . ◦ f (n times) is the nth iterate of f, and ||.|| is any norm on the finite dimen-
sional vector spaceH2j(X,C). We call the above limit the jth dynamical degree of f, and denote
by λj( f). In the case X is a complex projective manifold, one can choose ω to be the class of
an ample divisor and replaceH2j(X,C) by NjR(X) the space of algebraic cycles of codimension
j (with real coefficients) modulo the numerical equivalence. One always has λ0( f) = 1 while
λm( f) is the topological degree of f (and hence is 1 when f is bimeromorphic). It is known
that λj( f)’s are bimeromorphic invariants ([31, 32]), that is if π : Y 99K X is a bimeromorphic
map, and fY is the lifting of f to Y (i.e. fY = π−1 ◦ f ◦π), then λj( fY) = λj( f) for all j. There
are also arithmetic analogs of these dynamical degrees, where the above mentioned results are
largely unknown, and there aremany challenging conjectures around (see [18, 50]). Dynamical
degrees can also be defined for maps on fields of positive characteristics [16, 62], and the
version for correspondence in [62] thus can be used to provide a generalization of Weil’s
Riemann hypothesis [47, 48, 63]. Dynamical degrees provide a useful way to compute topolo-
gical entropy of holomorphic selfmaps of compact Kähler manifolds [40, 66]. Inspired by this
fact, for a general meromorphic map, the logarithm of the maximum of its dynamical degrees
is named its algebraic entropy in [9], and this is widely practiced in the literature. Moreover,
they provide an upper bound for the topological entropy of dominant meromorphic maps of
compact Kähler manifolds [31, 32], and the same upper bound holds in the Berkovich space
setting [35, 36]. Besides being of interest in pure mathematics, birational maps appear natur-
ally in some physical models (in lattice statistical mechanics), and their dynamical degrees are
an indication of the complexity of these models, see e.g. [2, 3, 8–10, 61].

A dominant meromorphic map f : X 99K X is cohomologically hyperbolic if there is one
index j so that λj( f)>maxi̸=jλi( f). Cohomological hyperbolicity is a cohomological ver-
sion of the well known notion of hyperbolic dynamics in differentiable dynamical systems,
where many results around periodic points, equilibrium measures and topological entropy are
known, see a survey in [42]. The rough idea is that since algebraic dynamical systems are more
rigid than smooth dynamical systems, hyperbolicity of an algebraic dynamical system may be
detected by the easier invariants on cohomology groups.
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With this preparation, an explicit statement of a major folklore conjecture, which attracts a
lot of attention and work, is the following:

Conjecture 1.1 (folklore conjecture) Let X be a compact Kähler manifold of dimension m,
and f : X 99K X a dominant meromorphic map. Assume that f is cohomologically hyperbolic.
Then the following are true:

1) There is a probability measure µ on X with no mass on proper analytic subsets (hence, one
can push it forward by f ) which is invariant by f, i.e. f∗µ= µ.

2) Let HPn( f) be the set of hyperbolic periodic points of period n of f. Then:
a) The exponential growth of ]HPn( f) is λ( f), where λ( f) =maxjλj( f). This

means that

lim
n→∞

log]HPn ( f)
n

= logλ( f) .

b) The hyperbolic periodic points of f equidistribute to µ. That is,

lim
n→∞

1
]HPn ( f)

∑
x∈HPn( f)

δx = µ.

Here, δx is the Dirac measure at x.
c) The number of other isolated periodic points of f of order n is negligible compared to

that of ]HPn( f).

A stronger version (which also involves the topological entropy and Lyapunov exponents)
of this conjecture was stated in [41]. A few representatives from the large known results in the
literature resolving conjecture 1.1 in the affirmative are: dimension 1 (see [14, 38, 54]); Hénon
maps in dimension 2 (see [4, 5]); automorphisms of K3 surfaces (see [15]); birational maps of
surfaces satisfying a certain condition on Green currents (see [33], which relies on a precise
estimate for the number of isolated periodic points: the lower bound is obtained therein by
using laminar currents, and the upper bound is later provided by [24, 49]); a large class of maps
of surfaces satisfying an energy condition (see [21]); meromorphic maps of compact Kähler
manifolds for which λm > λm−1 (see [25]); and analogs of Hénon-maps in higher dimensions
(see [30]). For a comprehensive survey, see [29], where other topics of equidistribution—
besides that of periodic points—are also discussed. Despite all of these partial results and
many efforts, conjecture 1.1 is still largely open.

There are some indications in the literature that conjecture 1.1 may be too strong to be
true. For example, one related conjecture is that λ1( f) is an algebraic number [8]. However,
recent work [6, 7] shows the existence of maps (can be chosen to be birational maps of Pd
where d> 3) for which λ1( f) is a transcendental number, and hence the mentioned related
conjecture does not hold. On the other hand, it is not known if the mentioned maps in [6, 7]
provide counter-examples to conjecture 1.1, because these papers treat only the first dynamical
degrees and concern neither periodic points nor equilibrium measures.

It is noteworthy that for the various maps in the literature where dynamical degrees can be
actually computed (for a birational maps of surfaces a general procedure using point blowups
has been given in [22], but besides that one must in general treat case by case), the dynamical
degrees are either algebraic integers (i.e. roots of a polynomial p(t) whose coefficients are
integers and the leading coefficient is 1) or transcendental numbers (i.e. not a root of any
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polynomial with integer coefficients). For some special maps, there are even particular spec-
ulations about that the dynamical degrees are algebraic integers of special types. Therefore,
it is natural to ask what is the situation for the numbers in between these two types, that is
algebraic numbers which are not algebraic integers. For example, recall that a real number λ
is a weak Perron number if it is an algebraic integer and any of its Galois conjugate µ satisfies
|µ|6 λ. There is the following conjecture [12] (for the first dynamical degree) and [17] (for all
dynamical degrees), concerning the very actively studied polynomial maps of affine spaces:

Conjecture 1.2. If f : Cd → Cd is a polynomial map, then the dynamical degrees (of the exten-
sion of f to Pd) are all weak Perron numbers (in particular, algebraic integers).

For the first dynamical degree, the above conjecture holds in dimension 2 (see [34, 39])
and some automorphisms in C3 (see [55]), and some special automorphisms in higher dimen-
sions ([12, 13] and an unpublished result by Mattias Jonsson cited in these papers). For proper
polynomials of Cm so that λ2

1 > λ2, [17] shows that λ1( f) is an algebraic number of degree
at most m. For all dynamical degrees, one non-trivial case is that of a monomial map f (see
[37, 53]) where all of its dynamical degrees are known to be the product of absolute values of
some eigenvalues of the integer matrix defining f, and hence are all algebraic integers (recall
that algebraic integers form a ring).

The purpose of this paper is to present a family of birational maps of smooth quadric 3-folds
which are a candidate counter-example for conjecture 1.1. At the same time, these birational
maps come from polynomial maps on C4 whose second and third dynamical degrees seem to
be an algebraic number but not an algebraic integer (and hence, can also be a counter-example
for conjecture 1.2). As such, the mentioned methods in the last part of the previous paragraph
cannot be used to compute the conjectured second dynamical degree, and new ideas have to
be developed for this task.

A disadvantage of the statement of conjecture 1.1 is that some parts of it depend on an
unspecified birational map π : Y 99K X and an unspecified equilibrium measure µ. As will be
seen in section 3, the following conjecture is a consequence of conjecture 1.1, and concerns
only the exponential growth of the set of isolated periodic points (which in theory can be
explicitly found) and is independent of the birational model of a given map.

Conjecture 1.3. Let X be a smooth complex projective variety of dimension d, and let f : X 99K
X be a dominant rational map. Assume that f is cohomologically hyperbolic. Define λ( f) =
maxjλj( f) and IsoPern( f) the set of isolated periodic points of period n of f (multiplicities
accounted). Let Z⊂ X be any Zariski open dense set. Then

limsup
n→∞

log](IsoPern ( f)∩Z)
n

= logλ( f) .

Note that one part of the above conjecture is known [24] (valid in the Kähler setting, and
the proof therein uses the theory of tangent currents developed in [28]): we always have

limsup
n→∞

log](IsoPern ( f)∩Z)
n

6 logλ( f) .

(On the other hand, on differentiable dynamical systems, there are no such upper bounds on
the number of periodic points, see [51].)

Hence, to disprove conjecture 1.1 it suffices to display a counter-example to conjecture 1.3.
We next present our candidate counter-examples for conjectures 1.3 (and hence 1.1) and 1.2,
which are strikingly simple. We start with a polynomial F : C4 → C4 given by:

F(x1,x2,x3,x4) =
(
x2,−x4,x1 − x1x

2
2,−x3 + x1x2x4

)
.

4



Nonlinearity 37 (2024) 075006 C Bisi et al

This is a birational map, with inverse

F−1 (x1,x2,x3,x4) =

(
−x3

−1+ x21
,x1,

x1x2x3 + x4 − x21x4
−1+ x21

,−x2
)
.

Remark 1.4. The above map F is an element of a more general family:

G(x1,x2,x3,x4) = (x2,−x4,x1 − x2P(x1,x2,x3,x4) ,−x3 + x4P(x1,x2,x3,x4)) . (1)

Here P(x1,x2,x3,x4) is a polynomial (or more generally a rational function) of the form

P(x1,x2,x3,x4) = x1Q1 (x2,x4)+ x3Q3 (x2,x4)+R(x2,x4) .

Some special automorphisms of C4 in the family G have been studied in [11].

Let φ : C4 → C be the map φ(x1,x2,x3,x4) = x1x4 − x2x3. It can be checked that the fibres
of φ are invariant by f, that is φ = φ ◦F. In other words, via φ, F is semi-conjugate to the
identity map onC. For a generic c ∈ C, let Zc = φ−1(c) = {x1x4 − x2x3 = c} ⊂ C4 be the fibre
of φ over c. Let Xc = the closure in P4 of Zc (hence, in homogeneous coordinates [x1 : x2 : x3 :
x4 : z] of P4, Xc is given by x1x4 − x2x3 = cz2). Then both Xc and Zc are smooth, invariant by
F, and Zc is a Zariski open dense subset of Xc. The remaining of this paper is to study the
following conjecture for the map fc = F|Zc : Zc → Zc. Note that since fc is a birational map in
dimension 3, we have λ0( fc) = λ3( fc) = 1. Hence, the only non-trivial dynamical degrees of
fc are λ1( fc),λ2( fc).

Conjecture 1.5. Let fc be the above map, for a generic value c ∈ C, and f̂c its extension to Xc.
Then we have:

1) The first dynamical degree λ1(̂fc) is the largest root ζ1 of the polynomial t3 − t2 − t− 1, and
ζ1 is approximately 1.8393.

2) The second dynamical degree λ2(̂fc) is the largest root ζ2 of the polynomial 2t3 − 3(t2 −
1)− 4t. This polynomial is irreducible overQ, and hence λ2( fc) is an algebraic number but
not an algebraic integer. Here, ζ2 is approximately 2.1108.

3) Moreover,
Stronger estimate:

limsup
n→∞

log(]IsoFixn ( fc))
n

6 log2.108.

Weaker estimate:

limsup
n→∞

log(]IsoFix2n+1 ( fc))
2n+ 1

6 log2.108.

Part 1 of the above conjecture is solved in lemma 3.4. If fc indeed satisfies conjecture 1.5,
then it is a primitive map, see section 3 for detail. Conjecture 1.5, if holds, implies that con-
jectures 1.3 (and hence also conjecture 1.1) and 1.2 do not hold, see section 3. Indeed, the
experimental results in section 3 seem to indicate that the limit

lim
n→∞

log(]IsoFixn ( fc))
n

exists, and moreover is contained in the interval [log2.0890, log2.1071]. That the polynomial
2t3 − 3(t2 − 1)− 4t in part 2 of conjecture 1.5 is irreducible over Q can be easily checked by

5
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manymeans. (For example, if it were to be reducible overQ, then it would have at least one root
in Q, which then must be half of an integer. Using computer softwares such as Mathematica,
one finds that the given polynomial has 3 real roots lying between −2.5 and 2.5, and no half
integer in this interval is a root of the polynomial.)

2. Method

The method in this paper is a mixture of rigorously theoretical and experimental ones.
We use the current techniques in complex Dynamical Systems to prove the mentioned rela-

tions between the conjectures in the Introduction section. We also use rigorously theoretical
arguments to show that, provided the pattern observed in our experiments hold for all iterate,
then our maps (on the smooth affine quadric 3-folds) are primitive, and to reduce the compu-
tation of dynamical degrees on the quadric 3-folds to that on the affine 4-space.

On the other hand, the current techniques in complex Dynamical Systems are not enough
for to resolve conjecture 1.5, see the Discussion section and the Conclusion section for more
detail. Hence, we need to rely on computational methods. For systems of polynomial equations
over the field of complex numbers, there are symbolic methods such as Gröbner basis which
have strong theoretical guarantees but usually cannot find individual solutions to the system
(which is what we need here since we want to check whether a periodic point is hyperbolic
or not) and usually is too slow, in particular for the systems of equations related to computing
periodic points of our map. Hence, we need to utilise numerical methods, more specifically
here the software Bertini [1].

Here is a brief summary of the idea for using experimental results reported later in this paper
to give support to the validity of conjecture 1.5. To check part 2 of conjecture 1.5, we com-
pare the degree sequences of the iterates of F and some sequences related to the linear recur-
rence wn = 3/2 · (wn−1 −wn−3)+ 2wn−2, whose exponential growth is ζ2. For to check the
Weaker estimate in part 3 of conjecture 1.5, we test if the sequence (]IsoFix2n+1( fc))

1/(2n+1)

is decreasing, which is related to the log concavity phenomenon in proposition 2.1 (see
next), and to observe that for n= 4,5 the number (]IsoFix2n+1( fc))

1/(2n+1) is 6 2.108. For
to check the Stronger estimate in part 3 of conjecture 1.5, we compare the two sequences
(]IsoFix2n+1( fc))

1/(2n+1) and (]IsoFix2n( fc))
1/(2n) and use the Weaker estimate.

The next result provides a heuristic support for the mentioned decreasing phenomenon of
the sequence (]IsoFix2n+1( fc))

1/(2n+1). To see why, we recall that roughly speaking (under
the assumption that g has only isolated fixed points) the Lefschetz number L(g) is the sum of
fixed points (with multiplicities) of g. Hence, the observed decreasing phenomenon would be
a consequence of the next result, if it were the case that all fixed points of f̂c

n
were in Zc and

isolated.

Proposition 2.1. Let X⊂ P2m be a smooth quadric. Let g : X 99K X be a dominant rational
map. Then the Lefschetz numbers L(gn) (i.e. the intersection number between the graph of gn

and the diagonal of X) are all positive, and satisfy log concavity, i.e.

L
(
gn+n

′
)
6 L(gn)L

(
gn

′
)

for all n,n ′ > 0. In particular, the sequence {L(gn)1/n}n=1,2,... is decreasing.
Similarly, for every 06 j6 2m− 1, the degree sequence {||(gn)∗|H2j(X)||}n=1,2,... (where

||.|| is a given norm on H2j(X)) satisfies the log concavity.

6
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3. Results

In this section we present our results around the map f and conjecture 1.5. These results consist
of both rigorously theoretically proven ones and experimental ones. Based on these results, we
propose a road map toward resolving conjecture 1.5 in the affirmative.

Let F : C4 → C4, Xc, Zc and fc : Zc → Zc be defined as in the introductive section.
Throughout this section, we use the following notations:
F̂= the extension of F to the projective space P4;
f̂c = the extension of fc to Xc;
d(1)n = the first degree of Fn (the nth iterate of F): it is defined as the degree of the inverse

image by F̂n of a generic linear 3-dimensional subspace H in P4;
d(2)n = the second degree of Fn: it is defined as the degree of the inverse image by F̂n of a

generic linear 2-dimensional subspace H2 in P4;
d(3)n = the third degree of Fn: it is defined as the degree of the inverse image by F̂n of a

generic linear 1-dimensional subspace H3 in P4 (it is indeed the same as the first degree of the
inverse map F−n);
bn is the sequence satsifying the linear recurrence bn = 3/2 · (bn−1 − bn−3)+ 2bn−2, with

the initial terms b1 = 3, b2 = 7 and b3 = 17;
cn is the sequence satsifying the linear recurrence cn = 3/2 · (cn−1 − cn−3)+ 2cn−2, with

the initial terms c1 = 5, c2 = 9 and c3 = 25;
IsoFixn = the set of isolated fixed points of fnc ;
C⊂ Zc: the curve defined by the ideal < x2 − x21x2 − x3,x1 + x4,x1x4 − x2x3 − c>.
D1 ⊂ Zc: the curve with 2 components defined by the ideals < x2 − x21x2 − x3,x1 +

x4,x1x4 − x2x3 − c> and <−x2 + x21x2 − x3,x1 − x4,x1x4 − x2x3 − c>;
D2 ⊂ Zc: the curve with 2 components defined by the ideals< x2,x3,x1x4 − x2x3 − c> and

< x1,x4,x1x4 − x2x3 − c>.
Here are some useful comments concerning the above notations. First, by the definition of

dynamical degrees, we have

lim
n→∞

[
d(1)n

]1/n
= λ1

(
F̂
)
,

lim
n→∞

[
d(2)n

]1/n
= λ2

(
F̂
)
,

lim
n→∞

[
d(3)n

]1/n
= λ3

(
F̂
)
.

Since F̂ is birational, we have λ0(F̂) = λ4(F̂) = 1. Similarly, we have λ0( fc) = λ3( fc) = 1.
The relation between the dynamical degrees of F̂ and those of f̂c will be given in the next
Subsection.

From our experiments, to be presented later in this section, the fixed point set of fnc seems
to have the following structure:

The fixed point set of f4n+2
c is the union of the curve C and IsoFix4n+2( fc);

The fixed point set of f4nc is the union of the curve D (which is the union of D1 and D2—of
different multiplicities) and IsoFix4n( fc);

The fixed point set of f2n+1
c is IsoFix2n+1( fc);

All isolated periodic points of fc are hyperbolic, i.e. IsoFixn( fc) = HPn( fc).

3.1. Theoretical results

We first start with some relations between conjectures 1.1, 1.2, 1.3 and 1.5.

7
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Lemma 3.1. 1) If conjecture 1.1 holds, then conjecture 1.3 holds.
2) Assume that parts 1 and 2 of conjecture 1.5 hold.

a) If the Stronger estimate of part 3 of conjecture 1.5 holds, then conjecture 1.3 does not
hold.

b) If the Weaker estimate of part 3 of conjecture 1.5 holds, then conjecture 1.1 does not
hold.

3) If part 2 of conjecture 1.5 holds, then conjecture 1.2 does not hold.

Proof. 1) Assume that conjecture 1.1 holds. Let f : X 99K X be a dominant rational map which
is cohomologically hyperbolic. Let π : Y 99K X be the birational map given by conjecture 1.1.

Let Z⊂ X be a Zariski open dense set. Since π : Y 99K X is birational, there is a Zariski
open dense set U⊂ Z and a Zariski open dense set V⊂ Y so that π induces an isomorphism
between V and U.

By conjecture 1.1, HPn(Y) equidistributes to µ and where µ has no mass on proper analytic
subsets. Since Y\V is a proper analytic subset of Y, it follows that HPn( fY)∩V equidistributes
to µ as well, and the exponential growth of ][HPn( fY)∩V] is also λ( fY). Since π : V→ U is an
isomorphism, it follows that HPn( fY)∩V= HPn( f)∩U. Since λ( fY) = λ( f) by the birational
invariance of dynamical degrees, we obtain:

lim
n→∞

log] [HPn ( f)∩U]
n

= logλ( f) .

Since HPn( f)∩U⊂ IsoFixn( f)∩Z, we get:

liminf n→∞
log] [IsoFixn ( f)∩Z]

n
> logλ( f) .

On the other hand, by [24], we have

limsup
n→∞

log]IsoFixn ( f)
n

6 logλ( f) .

Combining the above two inequalities, we have finally

lim
n→∞

log] [IsoFixn ( f)∩Z]
n

= logλ( f) .

This means that conjecture 1.3 holds.
2) We prove for part a) only, the proof of part b) is similar. Assume that parts 1 and 2 of

conjecture 1.5 hold, and also that the Stronger estimate of part 3 of conjecture 1.5 holds. Since
Xc is of dimension 3, and the dynamical degrees of f̂c are: λ0(̂fc) = 1, λ1(̂fc) = ζ1 ∼ 1.8393,
λ2(̂fc) = ζ2 ∼ 2.1108, and λ3(̂fc) = 1, the map f̂c is cohomologically hyperbolic. We also have
that Zc is a Zariski open dense set of Xc, and f̂c|Zc = fc. Hence, IsoFixn(̂fc)∩Zc = IsoFixn( fc).
By conjecture 1.5 we have

limsup
n→∞

log]IsoFixn ( fc)
n

6 log2.108< logζ2 = logλ( fc) .

This contradicts conjecture 1.3.
3) Assume that part 2 of conjecture 1.5 holds. Then we have λ2(̂fc) = ζ2 is an algebraic

number, but not an algebraic integer. By lemma 3.3, we have λ3(F̂) = λ2(̂fc), hence λ3(F̂)
is not an algebraic integer. In this case, also λ2(F̂) = ζ2 is not an algebraic integer. Thus the
polynomial map F : C4 → C4 is a counter-example to conjecture 1.2.

8
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We recall that [67] a dominant rational map f : X 99K X is primitive, if there do not exist
a variety W of dimension 16 dim(W)6 dim(X)− 1, a dominant rational map π : X 99KW,
and a dominant rational map g :W 99KW so that π ◦ f = g ◦π. Primitive maps can be viewed
as building blocks from which all maps can be constructed. It is clear from the definition that
being primitive is a birational invariant. We have the following result.

Lemma 3.2. Assume that parts 1 and 2 of conjecture 1.5 hold. Then the map fc is primitive.

Proof. Let f̂−1
c be the inverse of f̂c. If conjecture 1.5 holds, then

λ1

(̂
f−1
c

)
= λ2

(̂
fc
)
> λ1

(̂
fc
)
= λ2

(̂
f−1
c

)
.

This inequality implies that f̂−1
c is primitive, [56]. Hence f−1

c (the inverse of fc) is also primitive.
From this, we will show that fc is primitive. Assume by contradiction that fc is not primitive.

Then there are π : X 99KW and g :W 99KW dominant rational maps (with 16 dim(W)6 2)
so that π ◦ fc = g ◦π. Since fc is a birational map, it is easy to see that g is also a birational map.
Then, it follows that π ◦ f−1

c = g−1 ◦π, which contradicts the fact that f−1
c is primitive.

We next relate dynamical degrees of F̂ and those of f̂c.

Lemma 3.3. We have

1) λ1(̂fc) = λ1(F̂), and λ2(̂fc) = λ3(F̂).
2) λ2(F̂) =max{λ1(F̂),λ3(F̂)}.

Proof. We know from the introductive section that F is semi-conjugated to the identity map
idC on the curveC, via themapφ : C4 → Cwithφ(x1,x2,x3,x4) = x1x4 − x2x3. The dynamical
degrees of (the extension to P1 of) idC are λ0(idC) = λ1(idC) = 1.

Let λj(F̂|φ) (j = 0,1,2,3) be the relative dynamical degrees w.r.t. φ of F̂ [26, 27]. Since F
preserves the fibres of φ, it follows that λj(F̂|φ) = λj(̂fc).

By [26, 27], we have

λ1

(
F̂
)
=max

{
λ0 (idC)λ1

(̂
fc
)
,λ1 (idC)λ0

(̂
fc
)}

= λ1

(̂
fc
)
,

λ3

(
F̂
)
=max

{
λ0 (idC)λ3

(̂
fc
)
,λ1 (idC)λ2

(̂
fc
)}

= λ2

(̂
fc
)
,

λ2

(
F̂
)
=max

{
λ0 (idC)λ2

(̂
fc
)
,λ1 (idC)λ1

(̂
fc
)}

=max
{
λ1

(̂
fc
)
,λ2

(̂
fc
)}

=max
{
λ1

(
F̂
)
,λ3

(
F̂
)}

.

Next, we compute λ1(f̂c).

Lemma 3.4. λ1(̂fc) = ζ1, the largest root of the polynomial t3 − t2 − t− 1.

Proof. By lemma 3.3, we have λ1(̂fc) = λ1(F̂). Thus we only need to show that λ1(F̂) = ζ1.
Recall that λ1(F̂) = limn→∞[d(1)n ]1/n. Hence, the proof is finished if we can show that the
degree sequence d(1)n of F satisfies the linear recurrence:

d(1)n = d(1)n−1 + d(1)n−2 + d(1)n−3,

for all n.

9
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The leading term of F(x1,x2,x3,x4) = ((F)1,(F)2,(F)3,(F)4) in terms of degree is x1x2x4
in (F)4. Moreover, (F)3 has a unique leading monomial, and x1x2x4 is the unique leading
monomial in (F)4. By direct calculation, we find that F 2 = ((F 2)1,(F 2)2,(F 2)3,(F 2)4) is
given by: (

−x4,x3 − x1x2x4,x2 − x2x
2
4,−x1 + x1x

2
2 + x2x3x4 − x1x

2
2x

2
4

)
.

Hence, again, the leading term of F2 is contained in (F 2)4, and (F 2)4 has a unique leading
monomial. One can directly check the same phenomenon for F3 and F4.

We will prove by induction that the leading term of f n = (( f n)1,( f n)2,( f n)3,( f n)4) is con-
tained in ( f n)4, and moreover ( f n)4 has a unique leading monomial. In addition the concerned
linear recurrence for the degree sequence holds. Assume by induction that this claim holds
until n− 1. We will show that it also holds for n. Since F n(x1,x2,x3,x4) is((

Fn−1
)
2
,−

(
Fn−1

)
4
,
(
Fn−1

)
1
−
(
Fn−1

)
1
·
(
Fn−1

)
2

2
,−

(
Fn−1

)
3

+
(
Fn−1

)
1
·
(
Fn−1

)
2
·
(
Fn−1

)
4

)
and since (

Fn−1
)
2
=−

(
Fn−2

)
4

and (
Fn−1

)
1
=
(
Fn−2

)
2
=−

(
Fn−3

)
4

it follows that the leading degree of Fn is that of (Fn−1)4 · (Fn−2)4 · (Fn−3)4 which is contained
in ( f n)4, and that ( f n)4 has a unique leading monomial, which is the product of the unique
leading monomials in (Fn−1)4, (Fn−2)4 and (Fn−3)4. From this, we have immediately the
linear recurrence:

d(1)n = d(1)n−1 + d(1)n−2 + d(1)n−3.

Finally, we prove proposition 2.1.

Proof of proposition 2.1. First, we have the known fact that the cohomology groups of X
come from the pullback on cohomology of the embedding ι : X ↪→ P2m. [For the convenience
of the readers, we briefly recall the arguments. By the Lefschetz hyperplane theorem, for j6
2m− 2, the pullback ι∗ : Hj(P2m)→ Hj(X) is an isomorphism. For j> 2m+ 2 one can use
Poincare duality to determine the cohomology group. It remains to show that H2m−1(X) = 0.
This can be done by computing the Euler characteristic of X, and the latter can be done by
using the normal bundle sequence and Whitney sum formula.]

In particular, this means the following: H2j+1(X) = 0 for all j; if 2j is even and 6 2m− 2
thenH2j(X) is generated by hj where h= ι∗(H) is the pullback of a hyperplaneH in P2m, while
the remaining groups are computed using Poincare duality. Hence H∗(X) is generated by h,
and we have h2m−1 = H2m−1.X= 2.

Thus, if π 1,π 2 : X×X→ X are the two canonical projections, then the cohomology class
of the diagonal of X is

{∆X}=
1
2

2m−1∑
j=0

π ∗
1

(
hj
)
.π ∗

2

(
h2m−1−j

)
.

10
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Indeed, by Kunneth’s formula and the description of the cohomology group of X from the pre-
vious paragraph, we have {∆X}=

∑2m−1
j=0 ajπ ∗

1(h
j).π ∗

2(h
2m−1−j), for constants aj. To determ-

ine ai, we can do as follows. By the definition of the diagonal, we have (π 1)∗({∆X}.π ∗
2(h

i)) =
hi for all 06 i6 2m− 1. On the other hand, from the formula for {∆X}, by the projection
formula, we obtain easily (π 1)∗({∆X}.π ∗

2(h
i)) = (π 1)∗(aiπ ∗

1(h
i).π ∗

2(h
2m−1−i).π ∗

2(h
i)) =

ai(h2m−1).hi. Since h2m−1 is 2, it follows that 2ai = 1 for all i, and hence ai = 1/2 for all i.
From this, we get the following formula for the Lefschetz number of a map g : X→ X:

L(g) =
2m−1∑
j=0

g∗
(
1
2
hj
)
.h2m−1−j.

In fact, by the previous formula for {∆X}, we have

L(g) = {Γg} .{∆X}=
2m−1∑
j=0

1
2
{Γj} .π ∗

1

(
hj
)
.π ∗

2

(
h2m−1−j

)
.

For each j, we have

1
2
{Γj} .π ∗

1

(
hj
)
.π ∗

2

(
h2m−1−j

)
=

1
2
(π 2)∗

(
{Γj} .π ∗

1

(
hj
))

.h2m−1−j.

By definition, we have (π 2)∗({Γj}.π ∗
1(h

j)) = g∗(hj), thus we obtain the claimed expression
for L(g). Each of the summands in the right hand side is > 0, and hence L(g)> 0. We denote
by dj(g) := g∗( 12h

j).h2m−1−j the jth degree of g.
Now, we will show that for any two dominant rational maps g1,g2 : X 99K X, and any j6

2m− 1 then dj(g1 ◦ g2)6 dj(g1)dj(g2). To this end, we follow the ideas in [32, 57] of using
automorphisms of X to regularise positive closed currents. We recall that the quadric X is a
homogeneous space, whose automorphism group is the subgroup of the linear automorphisms
of P2m preserving the quadratic form. Hence, by using a convolution process with the aid of
the Haar measure of the automorphism group of X, for any positive closed (j, j) current T on
X, there is a sequence of positive closed smooth (j, j) forms Tϵ weakly converging to T so that
(recall that the cohomology of X is generated by h) in cohomology {Tϵ}= {T}.

Now we recall how dj(g1 ◦ g2) can be computed. There is a Zariski open set Z⊂ X so that if
we choose generic algebraic varieties in X: Vj of codimension j representing the cohomology
class hj and W2m−j of codimension 2m− j representing the cohomology class h2m−j, then

d(g1 ◦ g2) = (g2|Z)−1 (g−1
1 (Vj/2)

)
.W2m−j.

Here g1|Z is a proper map of finite fibres, and hence the preimage of g1|Z of any variety is
again a variety of the same dimension. Moreover, we have the following property: If Tϵ is a
sequence of positive closed smooth forms weakly converging to the current of integration over
g−1
1 (Vj)/2 and being of the same cohomology class as that of g−1

1 (Vj)/2 (which is proven in
the above), then

(g2|Z)−1 (g−1
1 (Vj/2)

)
.W2m−j 6 lim

ϵ→0
g∗2 ({Tϵ}) .h2m−j,

because g∗2({Tϵ}).h2m−j is the cohomology class of g∗2(Tϵ).W2m−j, and the latter is a positive
closed current for all ε, and any cluster point of {g∗2(Tϵ).W2m−j} (when ε decreases to 0) will
coincide with (g2|Z)−1(g−1

1 (Vj/2)).W2m−j when restricted to Z. Since

11



Nonlinearity 37 (2024) 075006 C Bisi et al

{Tϵ} = {g∗1 (Vj/2)}= g∗1
(
hj/2

)
=

[
g∗1

(
hj/2

)
.h2m−j

]
/2.hj = dj (g1)

hj

2
,

we obtain

(g2|Z)−1 (g−1
1 (Vj/2)

)
.W2m−j 6 dj (g1)g

∗
2

(
hj/2

)
.h2m−j = dj (g1)dj (g2) .

Therefore, the degree sequences are log concave. From this, we obtain

L(g1 ◦ g2) =
∑
j

dj (g1 ◦ g2)6
∑
j

dj (g1)dj (g2)

6

∑
j

dj (g1)

∑
j

dj (g2)

= L(g1)L(g2) .

Applying for g1 = gn and g2 = gn
′
we obtain the log concavity L(gn+n

′
)6 L(gn)L(gn

′
)

needed. From this log concavity property, it is well known that the sequence n 7→ L(gn)1/n is
decreasing.

Remark 3.5. One can also prove proposition 2.1 by a purely algebraic proof, which replaces
regularisation of currents by Chow’s moving lemma and which is valid on any algebraically
closed field, see [62].

3.2. Experimental results

In this subsection we calculate the fixed point sets of the iterates fnc , as well as the degree

sequences d(1)n , d(2)n and d(3)n , for as large as possible n’s, to help study conjecture 1.5. We
also study how close the degree sequence d(2)n and d(3)n are to the linear recurrence vn = 3/2 ·
(vn−1 − vn−3)+ 2vn−2 related to the polynomial t3 − 3/2 · (t2 − 1)− 2t (for which ζ2 is the
largest root). These calculations will be used in the next subsection, where we propose an
approach towards solving conjecture 1.5. Here we recall the relevant relations from lemmas
3.3 and 3.4:

lim
n→∞

[
d(1)n

]1/n
= ζ1 = λ1

(
F̂
)
= λ1

(̂
fc
)
,

lim
n→∞

[
d(3)n

]1/n
= λ3

(
F̂
)
= λ2

(̂
fc
)
,

lim
n→∞

[
d(2)n

]1/n
= λ2

(
F̂
)
=max

{
λ1

(
F̂
)
,λ3

(
F̂
)}

=max
{
λ1

(̂
fc
)
,λ2

(̂
fc
)}

.

Formal computer algebra techniques (such as Gröbner basis routine on the softwares
Mathematica and Maple) can only compute up to about N= 5. Hence, we utilize regenera-
tion [44–46] and the trace test [43, 52, 59] implemented in Bertini [1]. Although numerical
routines, the trace test provides a high level of confidencewith reliable performance.Moreover,
parallel computing can be used to speed up the computations. We note that the computations
for finding the periodic points are more expensive and difficult than those for calculating the
degree sequences.

12
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The first table reports on the calculations for periodic points of fc (up to period n= 12), as
well as the exponential growth of isolated periodic points. All the isolated periodic points are
hyperbolic.

N Fixed points on general fiber []IsoFixN ( fc)]
1/N

1 4 4
2 C (occurring with multiplicity 1) 0
3 10 2.15443469003
4 D1 (multiplicity 1) & D2 (multiplicity 2) 0
5 44 2.13152551327
6 C (multiplicity 1) AND 12 points 1.51308574942
7 186 2.10967780991
8 D1 (multiplicity 1) & D2 (multiplicity 2) AND 128 points 1.83400808641
9 820 2.10744910267
10 C (multiplicity 1) AND 1440 points 2.06936094886
11 3634 2.10703309279
12 D1 (multiplicity 1) & D2 (multiplicity 2) AND 6908 points 2.08903649661

The next table computes the degree sequence for the iterates Fn (up to n= 14), as well as
their exponential growth:

N d(1)N d(2)N d(3)N

[
d(1)N

]1/N [
d(2)N

]1/N [
d(3)N

]1/N
1 3 5 3 3 5 3
2 5 9 7 2.2360679775 3 2.64575131106
3 9 25 17 2.08008382305 2.92401773821 2.57128159066
4 17 49 37 2.03054318487 2.64575131106 2.46632571456
5 31 109 79 1.98734075466 2.55555539674 2.39621299048
6 57 225 167 1.96175970274 2.46621207433 2.34667391139
7 105 477 353 1.94420174432 2.41348988334 2.3118934527
8 193 1005 745 1.93061049898 2.37285258221 2.28570160944
9 355 2117 1571 1.92025412137 2.34166378698 2.26532588341
10 653 4465 3311 1.91201510161 2.31729938473 2.24903346712
11 1201 9401 6977 1.90527844956 2.29719383004 2.23575612581
12 2209 19817 14701 1.8996910486 2.28079626154 2.22473817189
13 4063 41741 30975 1.89497551023 2.2668767672 2.2154523255
14 7473 87961 65263 1.89094202127 2.25508846088 2.2075207175

We can see from the above two tables that, as predicted by conjecture 1.5, the exponential
growth of the degree sequence is much larger than that of the isolated periodic points. From
the table for the degree sequence above, we can readily check that the sequence d(1)n ’s indeed
satisfies the linear recurrencewn = wn−1 +wn−2 +wn−3, as proven in lemma 3.4. If conjecture
1.5 holds, then we must have λ2(F̂) = λ3(F̂), and a first idea towards actually showing that
λ2(F̂) = λ2(F̂) = ζ2 is to show that both sequences d(2)n ’s and d(3)n ’s satisfy the linear recur-
rence wn = 3/2 · (wn−1 −wn−3)+ 2wn−2. It turns out that neither of these sequences satisfies
this linear recurrence, but the next two tables show that the differences to this linear recurrence
are relatively small (in comparison to the size of the concerned degree sequences).

13
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N d(2)N 3/2 ·
(
d(2)N−1 − d(2)N−3

)
+ 2d(2)N−2 d(2)N −

[
3/2 ·

(
d(2)N−1 − d(2)N−3

)
+ 2d(2)N−2

]
1 5
2 9
3 25
4 49 48 1
5 109 110 −1
6 225 224 1
7 477 482 −5
8 1005 1002 3
9 2117 2124 −7
10 4465 4470 −5
11 9401 9424 −23
12 19817 19856 −39
13 41741 41830 −89
14 87961 88144 −183

N d(3)N 3/2 ·
(
d(3)N−1 − d(3)N−3

)
+ 2d(3)N−2 d(3)N −

[
3/2 ·

(
d(3)N−1 − d(3)N−3

)
+ 2d(3)N−2

]
1 3
2 7
3 17
4 37 35 2
5 79 79 0
6 167 167 0
7 353 353 0
8 745 745 0
9 1571 1573 −2
10 3311 3317 −6
11 6977 6991 −14
12 14701 14731 −30
13 30975 31039 −64
14 65263 65399 −136

3.3. Further analysis & a road map towards an affirmative answer to conjecture 1.5

In this Subsection we further analyze the experimental findings in the previous Subsection, in
connection to conjecture 1.5. Since part 1 of conjecture 1.5 is solved by lemma 3.4, it remains
to treat parts 2 and 3 of conjecture 1.5.

3.3.1. An approach towards establishing the upper bound λ2(̂fc)6 ζ2. As seen from before,
this is equivalent to establishing that

lim
n→∞

[
d(3)n

]1/n
6 ζ2.

Here is an approach to showing this. From the last 2 tables in the previous Subsection, it
seems very plausible that for n> 5, we should have d(3)n 6 3/2 · (d(3)n−1 − d(3)n−3)+ 2d(3)n−2. Also,

it seems very evident that d(3)n+1 > 2d(3)n for all n> 1. This is indeed enough to proving the
desired upper bound, as seen in the next lemma.

14



Nonlinearity 37 (2024) 075006 C Bisi et al

Lemma 3.6. Assume that for all n> 5, we have

d(3)n 6 3/2 ·
(
d(3)n−1 − d(3)n−3

)
+ 2d(3)n−2,

d(3)n > 2d(3)n−1.

Then λ3(F̂)6 ζ2.

Proof. Because [d(3)n ]1/n is a decreasing sequence (see [57], and see also proposition 2.1), we
have d(3)n /d(3)n−1 6 [d(3)n−1]

1/(n−1) for all n> 2. Therefore, from the assumption that d(3)n > 2d(3)n−1
for all n> 5, we obtain

26 limsup
n→∞

d(3)n

d(3)n−1

6 lim
n→∞

[
d(3)n−1

]1/(n−1)
= λ3

(
F̂
)
.

Hence, by lemmas 3.3 and 3.4, we have that λ3(F̂) = λ2(F̂)> λ1(F̂). Since λ1(F̂−1) = λ3(F̂)

and λ2(F̂−1) = λ2(F̂), we have λ1(F̂−1)2 > λ2(F̂−1). Applying theorem 1 in [17] and the fact
that the first degree sequence for F−1 is the same as the third degree sequence for F, it follows
easily that for all j> 0 we have

lim
n→∞

d(3)n+j

d(3)n

= λ3

(
F̂
)j
.

Assume that d(3)n 6 3/2 · (d(3)n−1 − d(3)n−3)+ 2d(3)n−2 for all n> 5. Dividing d(3)n−3 on both side
of the inequality, and taking limit when n→∞, we obtain

λ3

(
F̂
)3

6 3/2 ·
(
λ3

(
F̂
)2

− 1

)
+ 2λ3

(
F̂
)
.

Looking at the graph of the function t 7→ t3 − 3/2 · (t2 − 1)+ 2t (for t ∈ [1,∞), recalling that
dynamical degrees of a map are> 1), we see that the above inequality holds only if λ3(F̂)6 ζ2.

Hence, one promising approach towards establishing λ2(̂fc)6 ζ2 is to answer in the affirm-
ative the following question:

Question 1.

a) Is it true that d(3)n 6 3/2 · (d(3)n−1 − d(3)n−3)+ 2d(3)n−2 for n large enough?

b) Is it true that d(3)n > 2d(3)n−1 for n large enough?

3.3.2. Two approaches towards establishing the lower bound λ2(̂fc)> ζ2. Again, to prove
that λ2(̂fc)> ζ2 is the same as proving that λ3(F̂)> ζ2, and also is the same as proving that
λ2(F̂)> ζ2.

To this end, we have two approaches. One is again to base on the last two tables in the
previous Subsection, while the other is based on a new viewpoint. This new viewpoint gives
even more support to that we should have λ2(̂fc)> ζ2.
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Approach 1: As we mentioned, the last two tables seem to show that while d(3)n (as well

as d(2)n ) does not satisfy the linear recurrence wn = 3/2 · (wn−1 −wn−3)+ 2wn−2, it is very
close to satisfying the linear recurrence. More precisely, the difference is relatively small, in
the sense that:

d(3)n − 3/2 ·
(
d(3)n−1 − d(3)n−3

)
− 2d(3)n−2

d(3)n

is small. This prompts us to ask the following question:

Question 2. Is it true that

limsup
n→∞

d(3)n − 3/2 ·
(
d(3)n−1 − d(3)n−3

)
− 2d(3)n−2

d(3)n

> 0?

We have the following result.

Lemma 3.7. Assume that question 2 has an affirmative answer. Then λ3(F̂)> ζ2.

Proof. Since λ1(F̂)> 1, it follows by properties of dynamical degree i.e. log-concavity ) that
also λ3(F̂)> 1. Therefore, there cannot be a subsequence nk of the set of positive integers so
that d(3)nk−1 − d(3)nk−3 6 0 for all k. From this and the assumption that the answer to question 2 is
affirmative, we obtain

limsup
n→∞

d(3)n

d(3)n−2

> 2.

Then we have λ3(F̂)>
√
2. By lemmas 3.3 and 3.4, 2> λ1(F̂) and λ2(F̂) =

max{λ1(F̂,λ3(F̂)}. Therefore λ3(F̂)2 > λ2(F̂). As in the proof of lemma 3.6, we then obtain
λ3(F̂)3 > 3/2 · (λ3(F̂)2 − 1)+ 2λ3(F̂). Since the polynomial t3 − 3/2 · (t2 − 1)− 2t has 3 real
roots with approximate values−1.202, 0.591 and ζ2 ∼ 2.1108, while λ3(F̂)> 1 by definition,
we conclude that we must have λ3(F̂)> ζ2.

Hence, a promising approach to establishing the lower bound λ3(F̂)> ζ2 is to solve in the
affirmative question 2. However, Approach 2 below seems to have more evidence to support
than this Approach 1.

Approach 2: In this approach, we compare the degree sequence d(3)n ’s (respectively d(2)n ’s)
with the sequence bn’s (correspondingly cn’s). The sequence bn’s satisfies the linear recurrence
wn = 3/2 · (wn−1 −wn−3)+ 2wn−2 and has the first 3 initial values the same as that for the
sequence d(3)n ’s. Similarly, the sequence cn’s satisfies the linear recurrence wn = 3/2 · (wn−1 −
wn−3)+ 2wn−2 and has the first 3 initial values the same as that for the sequence d(2)n ’s. From
the experimental results in the previous Subsection, we get the following two tables.
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N d(3)N = 3rd degree of F bN = 3/2 · (bN−1 − bN−3)+ 2bN−2 Difference= d(3)N − bN
1 3 3 0
2 7 7 0
3 17 17 0
4 37 35 2
5 79 76 3
6 167 158.5 8.5
7 353 337.25 15.75
8 745 708.875 36.125
9 1571 1500.0625 70.9375
10 3311 3161.96875 149.03125
11 6977 6679.765625 297.234375
12 14701 14093.4921875 607.5078125
13 30975 29756.81640625 1218.18359375
14 65263 62802.0560546875 2460.9439453125015

N d(2)N = 2nd degree of F cN = 3/2 · (cN−1 − cN−3)+ 2cN−2 Difference= d(2)N − cN
1 5 5 0
2 9 9 0
3 25 25 0
3 49 48 1
5 109 108.5 0.5
6 225 221.25 3.75
7 477 476.875 0.125
8 1005 995.0625 9.9375
9 2117 2114.46875 2.53125
10 4465 4446.515625 18.484375
11 9401 9406.1171875 −5.1171875
12 19817 19830.50390625 −13.50390625
13 41741 41888.216796875 −147.216796875
14 87961 88384.1572265625 −423.1572265625

It seems very evident that we should have d(3)n > bn for all n> 1. This prompts us the fol-
lowing question.

Question 3. Is it true that we have d(3)n > bn for all n> 1? (In the proof, we only need d(3)n >
εbn for all n> 1 and a constant ε> 0.)

We have the following result.

Lemma 3.8. Assume that question 3 has an affirmative answer. Then λ3(̂fc)> ζ2.

Proof. This follows easily from the fact that limn→∞ b1/nn = ζ2.

(Note that, on the other hand, it seems that for n> 11 then d(2)n 6 cn. Using the latter
inequality, we obtain only the upper bound λ2(F)6 ζ2, which is already discussed in the previ-
ous Subsubsection and not the lower bound wanted. However, one can ask whether d(2)n > εcn
for all n> 1 and a constant ε> 0. This inequality seems to be supported by the data, and is
also enough to deduce that λ3(̂fc)> ζ2.)
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Hence, a promising approach towards showing λ2(̂fc)> ζ2 is to solve question 3 in the
affirmative.

3.3.3. An approach to part 3 of conjecture 1.5. We divide this into two tasks: one concerning
theWeaker estimate (which provides a counter-example to conjecture 1.1) and one concerning
the Stronger estimate (which provides a counter-example to conjecture 1.3).

An approach towards the Weaker estimate in part 3 of conjecture 1.5:
From the table for the number of isolated periodic points, we find that the sequence
[]IsoFix2n+1( fc)]

(1/2n+1) (for 06 n6 5) is a decreasing sequence: 4, 2.15443469003,
2.13152551, 2.10967780991, 2.10744910267, and 2.10703309279. Also, we find that the fixed
point set of f2n+1

c (for 06 n6 5) consists of isolated points only. These facts do not look like
a random coincidence, and hence naturally lead to the following question:

Question 4. Is it true that the sequence []IsoFix2n+1( fc)]
1/(2n+1) (for n= 0,1,2, . . .) is a

decreasing sequence?
If question 4 has an affirmative answer, then since []IsoFix9]1/9 = 2.1074. . . < 2.108, we

obtain right away a proof of the Weaker estimate in part 3 of conjecture 1.5.

Here is a heuristic explanation for why question 4 can have an affirmative answer: We
know from proposition 2.1 that the Lefschetz numbers {L(̂fnc)1/n} for the map f̂c : Xc 99K Xc is
decreasing. It seems that in this special case, we can localise this property to the map fc = f̂c|Zc .
If this is so, and if we can show that the fixed point set of fc consists of only isolated points (as
seen in the experiments), then question 4 is solved in the affirmative (since then the Lefschetz
number is the same as the number of fixed points).

An approach towards the Stronger estimate in part 3 of conjecture 1.5:
This part is probably more difficult to establish. Our clue is that from the table we
observe the following phenomenon: for all 06 n6 5, we have []IsoFix2n+1( fc)]

1/2n+1 >
[]IsoFix2n+2( fc)]

1/2n+2. Thus comes another question:

Question 5. Is it true that []IsoFix2n+1( fc)]
1/2n+1 > []IsoFix2n+2( fc)]

1/2n+2 for all
n= 0,1,2, . . .?

If question 5 has an affirmative answer, and if moreover the Weaker estimate in part 3 of
conjecture 1.5 holds, then the Stronger estimate in part 3 of conjecture 1.5 follows readily.

Why question 5 should have an affirmative answer could be again contributed to a localisa-
tion of proposition 2.1. While the log concavity of the sequence IsoFixn( fc) is violated (see the
next paragraph), still some parts could be preserved, allowing us to have affirmative answers
to both questions 4 and 5.

In stead of question 5, the following variant is also enough for our purpose

Question 6. Is it true that ]IsoFix2n+1( fc)> ]IsoFix2n( fc) for all n= 1,2,3, . . .?

3.3.4. A speculation on the exponential growth of the isolated periodic points. Another
curious phenomenon, which we do not need in resolving conjecture 1.5, is that the sequence
[]IsoFix2n+2( fc)]

1/2n+2) (for n= 0,1,2, . . .) seems to be increasing. We do not know of a pos-
sible explanation for this interesting phenomenon.

However, if this increasing phenomenon is true, and the phenomena mentioned in questions
4 and 5 are also true, then we will obtain
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log2.08906 lim
n→∞

log]IsoFix2n ( fc)
2n

6 lim
n→∞

log]IsoFix2n+1 ( fc)
2n+ 1

6 log2.1071,

and it is then reasonable to speculate that indeed

lim
n→∞

log]IsoFixn ( fc)
n

also exists. (In this case, the limit must be contained in the interval [log2.0890, log2.1071].)

4. Discussion

Our paper is the first one to display a potential counter-example to a major folklore conjec-
ture, conjecture 1.1, in complex Dynamical Systems. At the same time, it presents explicitly
the first time a potential example of a polynomial birational map on affine 4-spaces whose
dynamical degrees are algebraic numbers but not algebraic integers, thus is also a potential
counter-example to another actively studied conjecture, that is conjecture 1.3. Even for the
larger class of all dominant rational selfmaps of projective varieties, or compact Kähler man-
ifolds, our maps are also the first potential counter-examples to the mentioned conjectures.

The methods in previous work are not applicable to analyse our maps, at least for the
moment. There are three common approaches toward computing dynamical degrees, which
involve establishing a linear recurrence between the degrees of the iterates. The first one (for
the first dynamical degree λ1) is to observe directly a linear recurrence between the degrees
of iterates of f. The second one is to construct a birational (or bimeromorphic) map π : Y→ X
for which the lifting map fY satisfies a so-called algebraic stability under which λj( f) is the
spectral radius of the pullback map f∗Y : H

j,j(Y)→ Hj,j(Y). In the current literature, all of these
approaches are only able to show that the concerned is a dynamical degree integer, which
is not the case of our map. (A generalization of this is the recent work [17] which shows
that the pullback map on an associated Banach space RZ(Y) is stable. However, unlike on the
finite dimensional cohomology groups, there is no guarantee that the eigenvalues on RZ(Y)
are algebraic integers. See the next paragraph for more discussion on this method.) Finally,
the third one is to use specialities of toric varieties and toric maps. A more recent method
t in [6, 7] is to use Diophantine approximation, but this can only prove that the concerned
dynamical degree is a transcendental number, again not the case for our maps.

Now we discuss more why the results in [17], which is a very strong result on computing
dynamical degrees, are not yet applicable to our maps. For example, the proof of theorem 2 in
[17]—which asserts that for a proper polynomial map of the complex affine spaceCd for which
λ2
1 > λ2, we always have that λ1 is an algebraic number—cannot be used to establish part 2

of conjecture 1.5 for two reasons. First, while it seems true that λ3(F̂) = λ1(F̂−1)2 > λ2(F̂−1)
(for example, if one can show that λ3(F̂)>

√
2), the map F−1 is not a polynomial map and

hence the arguments used in theorem 6.1 in [17]—which rely on the valuation theory on the
affine space—cannot be used. Second, even if the issue mentioned in the previous sentence can
be resolved, it can be difficult to actually construct a matrix with rational coefficients whose

spectral radius is exactly ζ2 and λ1(F̂−1) is also an eigenvalue.
Previous work only concentrated on confirming conjecture 1.1, and hence the developed

techniques cannot be used to prove conjecture 1.5 which aims to disprove conjecture 1.1.
Also, as mentioned, symbolic methods as Gröbner basis can be too slow and not having

enough features needed to analyse our maps.
To overcome the above disadvantages of the current techniques, we use the software Bertini

instead of symbolic methods. Also, we observe that while it seems that the second degree
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sequence of fc does not satisfy any linear recurrence, there are some good comparisons (both
lower and upper bounds) between the sequence and relevant linear recurrences. Since previous
work has no mention on how to proceed if the number of periodic points of a map on a Zariski
open set seems not as many as expected, we have to get around by looking whether the log-
concavity phenomenon in proposition 2.1 still holds for a specific map and a specific Zariski
open set.

5. Conclusions

In this paper, we presented a simple family of birational maps on smooth affine quadric 3-
folds, coming from a polynomial map on C4, which seem to be cohomologically hyperbolic
while having less periodic points than expected. Moreover, the second dynamical degree of
these maps seem to be an algebraic number, but not an algebraic integer.

This kind of maps requires the development of new tools/ideas stronger than those in the
current literature, see the previous Discussion section. Among the theoretical tools, it needs
the development of more effective non-proper intersections of varieties (not only for projetcive
varieties, but also for affine varieties), which help to establish various log concavity phenom-
ena. It also requires taking into account periodic points located in proper analytic subvarieties.
In dimension 2, only the case of bimeromorphic self-maps of surfaces has been dealt with in
the literature [24, 49, 58]. In higher dimensions, for holomorphic maps or more general mero-
morphic maps of compact Kähler manifolds satisfying certain technical conditions (including
a so-called algebraic stability and an assumption on the sequence of currents of integration
associated to the graphs of iterates of the map), there have been work in [23, 64]. Note that

since the first dynamical degree of our map F̂−1 is conjectured to be not an algebraic integer,
there will be no birational model of its which is 1-algebraic stable.

Besides conjecture 1.3, another consequence of conjecture 1.1 is the following:

Conjecture 5.1. Let X be a smooth complex projective variety, and f : X 99K X a dominant
rational map. If f is cohomologically hyperbolic, then the set of isolated periodic points of f
is Zariski dense.

Conjecture 5.1 is independent of the birational model of f. Besides the cases where con-
jecture 1.1 is known to be valid, one nontrivial case where conjecture 5.1 is solved in the
affirmative is when X is of dimension 2 and f is a birational map [65]. (In this case, f being
cohomologically hyperbolic is equivalent to λ1( f)> 1, and the latter fact can be checked by
a finite algorithm following the paper [22] mentioned above. Indeed, there is a sufficient cri-
terion for λ1( f)> 1 in terms of some inequalities involving only several first terms in the
degree sequence for f, see [65].) In light of the map considered in conjecture 1.5, it is inter-
esting to check whether conjecture 5.1 holds for every cohomologically hyperbolic birational
maps in dimension 3.

Concerning the equality for the Gromov–Yomdin’s and Dinh–Sibony’s bounds on the topo-
ligical entropy of a map f in terms of its dynamical degrees, i.e. htop( f)6maxlogλj( f), [19]
shows that a generic birational map of Cd will obtain this bound. On the other hand, the proof
therein uses the assumption that the maps concerned are algebraic stable (which is not satis-
fied for our map). The construction of the Banach space in [17] makes use of the Néron–Severi
groups of birational models of the given map, and for topological entropy a similar consider-
ation using topological entropies of birational models of the given map was proposed in [20].
It is interesting to see whether the ideas in [20] work for our map f̂c (or F̂). One can also try

20



Nonlinearity 37 (2024) 075006 C Bisi et al

to check if the more general approach of using etale covers of the map (but then, must work
with correspondences in general) in [60] can work.

Among the experimental tools, one needs faster and less expensive (while still being highly
reliable) methods to deal with numerical calculations for solving systems of equations, in par-
ticular those specially designed for compositions of simple maps. Indeed, the calculations
presented in section 2 are more or less at the upper limit of what current calculation methods
can afford us (even for the very simple map F).

Since dynamical degrees can be defined over any algebraically closed field [16, 62], it is
also meaningful to extend the study mentioned above to arbitrary algebraically closed fields.
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