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ABSTRACT: Infrasound waves generated at the Earth’s surface can reach high altitudes before

returning to the surface to be recorded by microbarometer array stations. These waves carry

information about the propagation medium, in particular, temperature and winds in the atmosphere.

It is only recently that studies on the assimilation of such data into atmospheric models have been

published. Intending to advance this line of research, we here use the Modulated Ensemble

Transform Kalman Filter (METKF) –commonly used in satellite data assimilation– to assimilate

infrasound-related observations in order to update a column of three vertically varying variables:

temperature and horizontal wind speeds. This includes stratospheric and mesospheric heights,

which are otherwise poorly observed. The numerical experiments on synthetic data but with

realistic reanalysis product atmospheric specifications (following the Observing System Simulation

Experiment paradigm) reveal that a large ensemble is capable of reducing errors, especially for the

wind speeds in stratospheric heights close to 30−60 km. While using a small ensemble leads to

incorrect analysis increments and large estimation errors, the METKF ameliorates this problem

and even achieves error reduction from the prior to the posterior mean estimator.
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SIGNIFICANCE STATEMENT: The stratosphere and mesosphere have significantly less obser-

vational coverage compared to the troposphere, especially for the winds. This lack of information

can reduce the accuracy of medium-range weather forecasts. By mimicking a realistic setup, this

study paves the way for including novel observations in the estimation of the atmospheric state

in these heights using an ensemble data assimilation method. These observations come from a

dataset of opportunity containing infrasound-related measurements that are routinely carried out

at several stations around the world.

1. Introduction

The skill of numerical weather prediction (NWP) forecasts has increased dramatically over the

last 50 years. Bauer et al. (2015) labelled this improvement “a quiet revolution”, and it is due

to three main factors. First, the dynamical models which describe and predict the evolution of

the atmospheric flow have improved considerably (Williamson 2007; Lynch 2008). These have

evolved in tandem with increasing computational power, which is needed as the spatio-temporal

resolution increases and more processes are represented explicitly. Furthermore, the modeling and

forecasting paradigm has shifted from single-trajectory to ensemble systems, which allows us to

equip the forecast with a probabilistic measure (Palmer 2019). The second factor is the availability

of observations, both in the temporal and spatial domains. The adequate use of remote-sensing

observations has proved vital to initialise and constrain NWP forecasts (Bluestein et al. 2022), like

the correct usage of the ever-expanding constellation of Earth-observation satellites (Eyre et al.

2020, 2022). Finally, we have the ever-evolving data assimilation (DA) techniques whose purpose

is to optimally combine information from these two (imperfect) sources of information (e.g., Asch

et al. 2016).

Today, NWP faces novel challenges and new frontiers in forecasting. Research on sub-seasonal

to seasonal forecast models has grown over the last decade (Vitart and Robertson 2018). This

is a challenging endeavor, since these processes exist somewhere between weather and climate

phenomena, and they have components associated both with the initial-value problem aspects of

NWP and the boundary-condition aspects of climate prediction. Predictability on these timescales

is closely related to the memory of the oceans. Furthermore, the stratosphere and its connection

to the troposphere also play a fundamental role in this regime (Baldwin and Dunkerton 2001;
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Baldwin et al. 2003). There is great potential in extending the assimilation of stratospheric data

with appropriate accuracy, in particular for variables like wind velocity, which are difficult to

observe. For instance, the European Centre for Medium-Range Weather Forecasts (ECMWF)

has detected systematic model errors in the stratosphere over short-range forecasts and reanalyses

(Shepherd et al. 2018; Simmons et al. 2020), and attempted to compensate for such errors using

machine learning techniques (Bonavita and Laloyaux 2020).

Recent years have seen a gradual increase in the availability of observations for the middle

atmosphere (stratosphere and mesosphere). In 2018, the European Space Agency (ESA) launched

the Aeolus satellite, which carried the first Doppler Wind Lidar (DWL) in space. In January 2020,

ECMWF started assimilating atmospheric winds retrieved by this instrument (Rennie et al. 2021),

including both Rayleigh-clear and Mie-cloudy winds. The instrument was designed to provide

information on the wind from the surface up to the lower stratosphere (∼ 30 km). Figure 1 of

Rennie et al. (2021) shows an example of a retrieval up to 20−28 km. These observations promise

to provide improvements in the forecast. For instance, simulation experiments with the ECMWF

system have shown error reductions of up to 2% for horizontal winds and temperature on days 2 to

3 in the tropical upper troposphere, and reductions of up to 1% in the polar regions out to several

days. Unfortunately, Aeolus deorbited and re-entered Earth’s atmosphere in 2023.

It is promising that the observation density in the middle atmosphere is slowly increasing, but

there are existing observation networks which are currently not exploited in operational DA. We

refer, in particular, to data collected from infrasound station networks around the world (Assink

et al. 2019; Marty 2019). These datasets contain information, albeit indirect, of stratospheric

variables. It is timely to further explore the use of these data sources to improve the stratospheric

representation in atmospheric models and NWP.

This paper exploits an infrasound dataset of opportunity using an ensemble DA method. These

data encompass signatures of infrasound from controlled explosions where the propagating waves

have entered the stratosphere and reflected back towards the ground. They are then recorded

by specialized sensor arrays (see Gibbons et al. 2015; Blixt et al. 2019, as well as Section 2b

below). We base our approach on one used to assimilate satellite observations, since these share

many similarities with infrasound measurements, since they are both integrated measurements.

Compared to previous works, this paper has two main contributions. The first is the integration
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of a full ray-tracing model into the DA process instead of geometric models. This complicates

the localization step in the ensemble DA process, since a straightforward formulation requires an

expensive computation of Jacobians of the ray-tracing model. In the case of radiative transfer

models needed for satellite DA (Campbell et al. 2010), this issue has been largely overcome by

a handful of methods, one being the Modulated Ensemble Transform Kalman Filter (METKF)

introduced by Bishop and Hodyss (2009), and refined by Bishop et al. (2017). METKF is a

specialized implementation of the Ensemble Transform Kalman Filter (ETKF) (Bishop et al. 2001)

that increases the size of an ensemble of forecasts into a modulated ensemble which, by design,

yields a desired localized covariance matrix. The second contribution of this work is the application

of the METKF for the assimilation of infrasound-related observations.

This paper follows the paradigm of Observing-Systems Simulation Experiments (OSSE), de-

scribed in Arnold and Dey (1986). OSSEs are commonly used in the atmospheric science com-

munity to assess the potential of assimilating new types of observations. OSSEs are constructed

by generating a known synthetic truth (by running an atmospheric model, for instance), simulating

imperfect observations for which the observation operator and error are known and characterized,

and attempting to reconstruct the original truth from these observations using DA techniques. In

the current work, we are interested in testing: (i) the ability of METKF to estimate a vertical atmo-

spheric profile from infrasound-related experiments with a relatively large ensemble (the idealized

setting); and (ii) the capacity of the METKF to overcome the sampling problems that are due to

limited-size ensembles (the realistic setting).

The rest of this paper is organized as follows. In Section 2 we discuss sources of infrasound data,

in particular the Hukkakero-Arces geographical setting used in our OSSE’s. Section 3 includes a

detailed description of the problem in terms of DA elements, as well as the justification for using the

METKF to localize vertically integrated quantities. Section 4 describes the setup for our OSSE’s,

and Section 5 presents and analyzes the results. We finish with conclusions and discussion in

Section 6.
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2. Infrasound-related measurements and their potential in DA

a. Infrasound propagation as a means to probe the atmosphere

There are different sources at the Earth’s surface (and aloft) that generate infrasound waves, that

is, acoustic inaudible waves in the 0.1−10 Hz range. These sources of infrasound can be natural

(e.g., volcanoes, earthquakes, ocean-generated microbaroms), or the result of human activities (e.g.,

controlled detonations of munition or quarry explosions). At such low frequencies, these waves

can travel for long distances, suffering little dissipation, and having a wide range of propagation

characteristics and various sensitivities to atmospheric conditions (Le Pichon et al. 2010, 2019).

Depending on the atmospheric structure, some of these waves travel up to middle atmospheric

or lower thermospheric altitudes from where they are reflected or refracted back to the surface,

to be detected by sensor arrays. While traveling through an atmospheric slab, they are affected

by the atmospheric conditions, in particular, winds and temperature. Therefore, the infrasound-

related measurements estimated at the instrument site contain useful integrated information about

the conditions along the propagation path. For example, an objective of the EU-funded ARISE

(Atmospheric dynamics Research InfraStructure in Europe) projects was to establish and ensure

the operation of this type of infrastructure for long-term observation and modeling of the middle

atmosphere (Blanc et al. 2018, 2019).

In the past, infrasound measurements have been used to evaluate and validate, and invert for

atmospheric model profiles. For instance, Assink et al. (2014) used volcanic infrasound to evaluate

winds and temperatures of the ECMWF forecast system. Smets et al. (2016) used these measure-

ments to evaluate the forecast skill on predicting sudden stratospheric warming events. In these

studies, values coming from an atmospheric profile (either forecast or analysis) are put through

a ray-tracing model to generate the predicted infrasound-related observations. These results are

then compared to the actual observations. This is the so-called forward modeling problem. A

more challenging problem is to take actual observations and try to infer the atmospheric values to

which they correspond, i.e., the so-called inverse problem. In general, this is an underdetermined

problem, i.e., it does not have a unique solution. Several recent works have explored the inversion

of infrasound-related observations to derive atmospheric profiles or to provide corrections to model

profiles (e.g., Le Pichon et al. 2005; Drob et al. 2008; Lalande et al. 2012; Johnson et al. 2012;
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Arrowsmith et al. 2013; Assink et al. 2013; Park et al. 2016). Recently, Amezcua et al. (2020) and

Amezcua and Barton (2021) conducted DA experiments using the infrasound dataset described

next.

b. Using infrasound observations from controlled detonation of ammunition in data assimilation

We start by noting that, from an atmospheric probing perspective, we are describing a dataset

of opportunity. There are several additional repeated explosion datasets available in this region,

stemming, e.g., from open-pit mining blasts (Gibbons et al. 2015).

In August and September since 1988, excess explosives have been disposed of by controlled

detonations in Hukkakero, Finland. Infrasound waves generated by these detonations are excited

in all directions, and their path through the atmosphere is mainly a function of the atmospheric

wind and temperature fields. Some of these waves are detected about 10 minutes later by the array

station ARCES (Norway), which is ∼ 180 km almost due North from the explosion site. It has

been concluded that these waves have been partially reflected or back-scattered by smaller-scale

atmospheric structures at about 30− 60 km altitude (Blixt et al. 2019; Vorobeva et al. 2023).

The exact altitude of the strongest reflection is unknown and varies between events, but it can

be estimated by indirect methods like matching observed travel times with those of simulated

infrasonic wave propagation paths.

This kind of transient explosion infrasound dataset is less complex than many other infrasound

datasets since the waves can be approximated to radiate from a single point source in both space

and time, with a known location and origin time. These data are sensitive to wind and temperature

in the stratosphere and lower mesosphere. A variety of infrasound wave propagation and atmo-

spheric probing studies have exploited infrasound data recorded from these explosions (Gibbons

et al. 2015; Green and Nippress 2019; Gibbons et al. 2019; Blixt et al. 2019; Cugnet et al. 2019;

Vera Rodriguez et al. 2020; Vorobeva et al. 2023). Blixt et al. (2019) performed near-inversion ex-

periments by associating observed quantities with wind averages over different altitude “channels”

(layers) computed from the ERA-Interim product (Dee et al. 2011). They simplified the acoustic

transmission problem using a straightforward geometric model. Vera Rodriguez et al. (2020)

performed an inversion of these observations applying a heuristic optimization algorithm, using

7
Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-23-0186.1.Unauthenticated | Downloaded 05/24/24 06:38 AM UTC



smoothness criteria to regularise the problem, and using the ERA-5 ensemble product (Hersbach

et al. 2019) to initialise the process and constrain its output.

Two recently published scientific papers exploited DA for the observations from this data set

(Amezcua et al. 2020; Amezcua and Barton 2021). These works applied different flavors of the

Ensemble Kalman filter (Evensen 2006, EnKF), a technique widely utilized in atmospheric science,

and which can be considered a sample-based implementation of the Kalman filter (Kalman 1960).

Both cases used the ERA5 10-member ensemble as background (Hersbach et al. 2019), and the

simple geometric model developed by Blixt et al. (2019), using the reflection heights inferred in

that work. EnKF relies on sample covariance matrices to spread information from observations

to model variables. For the number of variables in the atmospheric profiles at the heart of this

problem, the quality of a covariance matrix computed from a 10-member ensemble is low, often

plagued with spurious sampling errors. Localization is a way to ameliorate these problems (Hamill

et al. 2001; Anderson 2012). This is not trivial when using observations that contain integrated

quantities (Campbell et al. 2010). Amezcua et al. (2020) evaded this problem by taking averages

and reducing the number of vertical levels to update from 137 to only 6. Amezcua and Barton

(2021) used 131 levels and applied a type of localization (Shlyaeva et al. 2019) that required the

linearization of the observation operator, which was relatively straightforward for the geometric

model (Blixt et al. 2019). However, this is complicated and computationally expensive with a full

ray-tracing model, which is needed for a more realistic treatment of infrasound observations.

In the last decade, some methods were developed to implement localization in vertically-

integrated satellite observations. For instance, Lei et al. (2016) implemented a global group

filter to derive adaptive localization. This filter was similar to the hierarchical filter proposed in

Anderson (2007) and later used in Lei and Anderson (2014) to construct vertical localization func-

tions. Farchi and Bocquet (2019) recommend the creation of augmented ensembles by performing

e.g. a randomized singular value decomposition. Bishop et al. (2017) developed the Modulated

Ensemble Transform Kalman Filter (METKF), a variation of the ETKF (Bishop et al. 2001; Wang

et al. 2004) which avoids linearization by computing an extended (modulated) ensemble which

has, by construction, a desired localization structure. In the rest of the current paper, we apply this

method to assimilate infrasound-related data into realistic atmospheric vertical profiles.
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3. Methodology

This section introduces basic aspects of the DA method used and presents the nomenclature used

in the rest of the work. In this work we focus on a single assimilation step of the DA process, i.e.

there is no cycling.

a. Problem setup

Let us consider an atmospheric range-independent volume that is discretized into a profile of

𝑁𝑧 vertical levels centered at {𝑧1, 𝑧2, · · · , 𝑧𝑁𝑧
}. Each level has 𝑁var altitude-dependent physical

variables (we do not consider any horizontal variation). In our case, these are the cross-wind 𝑢(𝑧),
tail-wind 𝑣(𝑧) and temperature 𝑇 (𝑧), rendering 𝑁var = 3. At a given time 𝑡, the state vector x ∈ R𝑁𝑥

is the concatenation of the 𝑁𝑥 = 𝑁𝑧𝑁var elements. Namely,

x =

[
T,u,v

]⊤
, (1)

where
T =

[
𝑇1, · · · ,𝑇𝑁𝑧

]⊤
,

u =
[
𝑢1, · · · , 𝑢𝑁𝑧

]⊤
,

v =
[
𝑣1, · · · , 𝑣𝑁𝑧

]⊤
.

(2)

We assume that x follows a multivariate Gaussian (MVG) distribution, i.e. x𝑏∼ 𝑁
(
µ𝑏,B

)
, where

µ𝑏 ∈ R𝑁𝑥 and B ∈ R𝑁𝑥×𝑁𝑥 are the background mean and covariance matrix, respectively. If there

are unknown system parameters, these can be appended to the state vector and estimated by the

DA, using a process called state augmentation (e.g. Asch et al. 2016). In this work, however, we

only perform state estimation.

The observations y ∈ R𝑁𝑦 are functions of x, which can be measured. Mathematically,

y = ℎ
(
xtrue) +η. (3)

where xtrue ∈ R𝑁𝑥 is the true value of the state variable, which is indeed the value we are trying to

estimate. The term η ∈ R𝑁𝑦 corresponds to additive observational error and is assumed to follow

an MVG distribution with zero mean (unbiased error). Namely, η ∼ 𝑁 (0,R). The observational
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error covariance R ∈ R𝑁𝑦×𝑁𝑦 depends on the measuring system and is often assumed to be known.

Finally, the function ℎ : R𝑁𝑥 → R𝑁𝑦 is the so-called observation operator. In remote sensing of

atmospheric temperatures using satellite observations of radiance (Campbell et al. 2010), ℎ is a

radiation transfer model. The infrasound measurement problem also involves a wave (mechanical

instead of electromagnetic) traveling through an atmospheric slab and being modified by the

atmospheric conditions it encounters. In both cases, ℎ integrates (or sums) information from

state variables, reducing fields into scalars, and yielding 𝑁𝑦 ≪ 𝑁𝑥 . Next, we describe how ℎ was

previously modeled, and how the modeling has been improved in this work.

Amezcua et al. (2020) and Amezcua and Barton (2021) used a simplified observation operator,

derived from the geometrical model of Blixt et al. (2019). Although useful, this is a rough

approximation of the real process. It relates the cross-wind u to the shift in the backazimuth

angle 𝛿𝑏𝑎 detected at reception, but excludes the tail-wind v and temperature field T components

included in Eq (1). It considers the transmission path to be a perfect triangle, which is a rough

approximation (see, e.g., Ostashev and Norris (2022) to appreciate the real complexity of the ray

paths). It also considers a unique reflection height 𝑍max, corresponding to a single reading of

the infrasound array processing output time series. In reality, there are typically multiple arrivals

corresponding to multiple reflection heights and infrasound processing output readings (see Blixt

et al. 2019, Figs. 4 and 5 for illustrations).

Following Vera Rodriguez et al. (2020), in this work we use a full ray-tracing model, InfraGA,

developed by Dr. Philip Bloom at the Los Alamos US National Laboratory (Blom et al. 2015;

Blom and Waxler 2017, 2021). InfraGA simulates the infrasonic wave propagation from source

to receiver, and its numerical modeling links the three atmospheric fields in Eq (2), to three

observables estimated using the infrasound data recorded at the array station, which are related

to the direction-of-arrival of the infrasound wavefront impinging the station. They are 𝛿𝑏𝑎, 𝑡travel

(travel time), and 𝑣trace (trace velocity). In DA terms, the observation vector is:

y =

[
𝛿𝑏𝑎, 𝑡travel, 𝑣trace

]⊤
. (4)

When applying this InfraGA, we still consider a single and known 𝑍max. As in Blixt et al. (2019),

we introduce the reflection in the horizontal middle point of the path. We acknowledge that there

is an inherent time-evolution component in ℎ since the infrasound takes a finite time to travel
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between the source and the receiver, so the wave encounters a time-evolving atmosphere. In the

satellite case, the electromagnetic wave travels at the speed of light, so the atmospheric variability

is negligible, but the sound speed is much lower. Nonetheless, and in accordance with previous

works, we consider the travel time of the infrasound wave (about 10 minutes in our setting) to be

very small compared to the variability time scales of the atmospheric flow.

b. The ensemble transform Kalman filter

Having the background information and observations just described, the goal of DA is to obtain

a posterior distribution for the state variable. If all errors involved in the problem are MVG, and

ℎ =H ∈ R𝑁𝑦×𝑁𝑥 (linear), the posterior distribution (also known as analysis) is also MVG, with mean

µ𝑎 ∈ R𝑁𝑥 and covariance A ∈ R𝑁𝑥×𝑁𝑥 . These values can be obtained using the analysis equations

of the Kalman filter (Kalman 1960). The extended Kalman filter (EKF) is an adaptation of the

Kalman filter for nonlinear setups, yielding a suboptimal yet useful solution to the problem as long

as ℎ is not too far from linear (e.g., Jazwinski 1970). Ensemble Kalman filters (EnKFs) (e.g.,

Nerger et al. 2012; Houtekamer and Zhang 2016) are sample-based implementations of the EKF,

which avoid the computation and storage of the Jacobian matrix of ℎ (required by the EKF).

EnKFs rely on an ensemble to estimate means and covariances. Fortunately, modern ensemble

prediction systems (e.g., Palmer 2019) generate 𝑁𝑒 forecasts from different initial conditions

(selected to represent the uncertainty in the system) and evolved using a forecast model. At a time

𝑡, we denote the background ensemble as X𝑏 ∈ R𝑁𝑥×𝑁𝑒 , where each column is a valid forecast (we

do not need a time index since we do not perform cycling). The ensemble mean x̄𝑏 ∈ R𝑁𝑥 and a

matrix of perturbations X̂𝑏 ∈ R𝑁𝑥×𝑁𝑒 can be written as:

X𝑏
=

[
x𝑏1 ,x

𝑏
2 , · · · ,x

𝑏
𝑁𝑒

]
x̄𝑏 =

1
𝑁𝑒

X𝑏1

X̂𝑏
= X𝑏 − x̄𝑏1⊤,

(5)

where 1 ∈ R𝑁𝑒 is a vector of ones. Note that one can obtain the sample estimator of B, denoted P𝑏,

as:

P𝑏 =
X̂𝑏X̂𝑏⊤

𝑁𝑒 −1
(6)
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One can define an ensemble of predicted observations Y𝑏 ∈ R𝑁𝑦×𝑁𝑒 by applying ℎ to each

ensemble member, and compute the corresponding mean ȳ𝑏 ∈ R𝑁𝑦 and matrix of perturbations

Ŷ𝑏 ∈ R𝑁𝑦×𝑁𝑒 (e.g., Evensen 1994). Namely,

Y𝑏
=

[
ℎ

(
x𝑏1

)
, · · · , ℎ

(
x𝑏𝑁𝑒

)]
,

ȳ𝑏 =
1
𝑁𝑒

Y𝑏1

Ŷ𝑏
= Y𝑏 − ȳ𝑏1⊤.

(7)

One can compute the KF equations with the sample elements to transform x̄𝑏 into x̄𝑎 and P𝑏 into

P𝑎 respectively. However, this does not provide a way to transform individual ensemble members.

There is no unique way to do this, leading to different EnKF formulations. The ETKF is a

deterministic square root filter that uses a right matrix multiplication to transform the perturbations

X̂𝑏
into X̂𝑎

. Namely,

X̂𝑎
= X̂𝑏W𝑎

, (8)

where W𝑎 ∈ R𝑁𝑒×𝑁𝑒 is referred to as the transform matrix, chosen such that

P𝑎
= (𝑁𝑒 −1)−1X̂𝑎X̂𝑎⊤

(9)

fulfils the KF analysis equation for covariance. Using the Potter method and the Woodbury matrix

inversion lemma, it can be shown (Tippett et al. 2003) that this matrix is:

W𝑎
=

(
I+ Ŷ𝑏⊤R−1Y𝑏

𝑁𝑒 −1

)− 1
2

. (10)

A matrix C
1
2 ∈ R𝑁 is a square root of D ∈ R𝑁 if D = C

1
2 C

1
2⊤. There is an infinite number of square

root matrices, but Wang et al. (2004) propose using the symmetric matrix square root:

W𝑎
= G (I+𝚲)−

1
2 G⊤ (11)
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using the eigendecomposition

G𝚲G⊤
=

Ŷ𝑏⊤R−1Ŷ𝑏

𝑁𝑒 −1
, (12)

where G ∈ R𝑁𝑒×𝑁𝑒 is the matrix of eigenvectors and 𝚲 ∈ R𝑁𝑒×𝑁𝑒 is the (diagonal) matrix of

eigenvalues of the 𝑁𝑒 × 𝑁𝑒 positive definite and symmetric matrix on the right side of Eq (12).

Hunt et al. (2007) note that the mean x̄𝑎 can be found as the sum of x̄𝑏 and a linear combination of

the columns of X̂𝑏
, i.e.:

x̄𝑎 = x̄𝑏 + X̂𝑏
w𝑎 . (13)

The vector w𝑎 ∈ R𝑁𝑒 contains the coefficients for the linear combination. Explicitly:

w𝑎 =
1

𝑁𝑒 −1
W𝑎W𝑎⊤Ŷ𝑏⊤R−1

(
y− ȳ𝑏

)
. (14)

Finally, X𝑎 can easily be constructed by adding x̄𝑎 to each column of X̂𝑎
. Namely,

X𝑎
=

[
x̂𝑎1 + x̄𝑎, · · · , x̂𝑎𝑁𝑒

+ x̄𝑎
]
. (15)

c. Localization for integrated observation quantities: the modulated ETKF

The sample estimator quality is crucial for EnKF performance. When 𝑁𝑒 ≪ 𝑁𝑥 , sampling errors

lead to spurious off-diagonal elements in P𝑏. Recognizing this, both Anderson (2001) and Hamill

et al. (2001) proposed to artificially modify P𝑏 to reduce sampling errors; this modification is

called localization.

Localization can be performed either in state space or in observation space, see, e.g., Farchi

and Bocquet (2019) for an ample discussion on the topic. The localized covariance P𝑏
loc ∈ R𝑁𝑥×𝑁𝑥

in state space is obtained from the Schur (element-wise) product of P𝑏 and a localization matrix

L ∈ R𝑁𝑥×𝑁𝑥 . Explicitly, we have

P𝑏
loc = P𝑏 ◦L . (16)

A typical choice for this decay is the so-called Gaspari–Cohn function, which is a compact-support

approximation to a Gaussian (Gaspari and Cohn 1999). In the case of multiple variables per

level, one has to modify the different blocks of the matrix separately. When using model-space

localisation, the ETKF formulae discussed previously cannot be applied. A matrix square-root
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formulation is required instead. This implies that, if the observation operator is nonlinear, one

needs to compute its Jacobian as indicated in Shlyaeva et al. (2019). In fact, Amezcua and Barton

(2021) applied localization in this way to infrasound observations when using a simple geometric

propagation model, since in that case the calculation of the Jacobian was trivial.

Observation-space localization follows a different approach, see, e.g., Hunt et al. (2007) for a

detailed description. This paradigm focuses on the variables of a given gridpoint of the model and

looks at the observations that affect that gridpoint within a defined radius of interest. The local

observation precision (inverse of the covariance) matrix is modified to account for the distance of

observations from the gridpoint. This is

R−1
i,loc = R−1

𝑖 ◦L, (17)

where R−1
i is a submatrix of R specific to the 𝑖𝑡ℎ gridpoint, and L is a localization matrix with

the corresponding dimensions. The full analysis field is a collection of patches of local analyses,

minimizing jumps amongst the patches (Ott et al. 2004). This formulation is completely compatible

with the ETKF formulae discussed earlier (Hunt et al. 2007).

Applying localization to integrated quantities with complex observation operators is a challenge.

Campbell et al. (2010) analysed the case involving satellite observations. The difficulty arises

because the model space is a column with temperatures at each level, whereas the observation

space is a set of channels measuring radiance at different wavelengths. The observational data are

hence integrated quantities. Therefore, defining a ’distance’ between two channels, or between

a channel and a vertical level, is not conceivable as required for observation-space localisation.

Since in our problem we have spatially integrated infrasound wave propagation data, similar

difficulties arise. Our model space is an atmospheric slab with temperature and wind variables at

vertical levels, and our observation space has three integrated quantities related to the infrasound

propagation through the atmospheric slab. A naı̈ve implementation of model-space localization in

our case is not feasible since the Jacobian of the ray-tracing model is not available.

Bishop and Hodyss (2009) and Bishop et al. (2017) developed a clever method to apply localiza-

tion for integrated observations in the ETKF without requiring a Jacobian. It takes X𝑏 ∈ R𝑁𝑒 and
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converts it into a modulated ensemble U𝑏 ∈ R𝑁𝑚 , such that both have the same mean:

ū𝑏 = x̄𝑏 , (18)

but where U𝑏 produces a localized covariance. This requires a factorization of Eq (16) in the

following form: (
X̂𝑏X̂𝑏⊤

𝑁𝑒 −1

)
◦L =

Û𝑏Û𝑏⊤

𝑁𝑒 −1
, (19)

where Û𝑏 ∈ R𝑁𝑥×𝑁𝑚 is an ensemble of modulated perturbations, (hence the name Modulated

ETKF). Obtaining Û𝑏
from Eq (19) is possible using the Khatri–Rao product (Khatri and Rao

1968). We follow Bishop et al. (2017) for the next steps, albeit with some variations in notation. L
is a positive definite symmetric matrix, allowing for the eigendecomposition:

L = S𝚪S⊤
, (20)

where S ∈R𝑁𝑥×𝑁𝑥 is the matrix of eigenvectors, and 𝚪 ∈R𝑁𝑥×𝑁𝑥 is a diagonal matrix of eigenvalues.

The non-symmetric matrix square root of L is:

L
1
2 = S𝚪 1

2 , (21)

where 𝚪
1
2 is trivial to compute since it is diagonal. L

1
2 has the same shape as L. In its construction,

it is not necessary to keep all the eigenvectors of the localization matrix. Often, the leading 𝑁𝜆

eigenvalues in 𝚪 add to 90% (or any threshold) of the total sum of eigenvalues, and many of the

smallest eigenvalues are close to zero. Bishop et al. (2017) recommend keeping the leading 𝑁𝜆

eigenvalues to construct a rank-𝑁𝜆 approximate matrix square root L̃
1
2 ∈ R𝑁𝑥×𝑁𝑥 as:

L̃
1
2 = S[:,1:𝑁𝜆]𝚪

1
2
[1:𝑁𝜆,1:𝑁𝜆] . (22)

In Eq (22), the subindices indicate the number of [rows, columns] kept for each matrix. Finally

Û ∈ R𝑁𝑥×𝑁𝑚 is computed as the Khatri–Rao product (Khatri and Rao 1968):

Û𝑏
= L̃

1
2 ⋄ X̂𝑏

. (23)
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The Khatri–Rao product (denoted ⋄) is a column-wise Kronecker product. Explicitly, this is:

Û𝑏
=

[(
ℓ

1
2
1 ◦ x̂𝑏1 , · · · ,ℓ

1
2
1 ◦ x̂𝑏𝑁𝑒

)
,

(
ℓ

1
2
2 ◦ x̂𝑏1 , · · · ,ℓ

1
2
2 ◦ x̂𝑏𝑁𝑒

)
, · · · ,

(
ℓ

1
2
𝑁𝜆

◦ x̂𝑏1 , · · · ,ℓ
1
2
𝑁𝜆

◦ x̂𝑏𝑁𝑒

)]
(24)

We added parentheses to help identify the elements in Û𝑏
. Each parenthesis contains the original

𝑁𝑒-member ensemble modulated by a corresponding eigenvector ℓ
1
2
𝑖

of L̃
1
2 . This illustrates that

𝑁𝑚 = 𝑁𝜆𝑁𝑒 depends on the number of eigenvalues kept.

The ETKF is applied on U𝑏, yielding a modulated analysis ensemble U𝑎 ∈ R𝑁𝑚 . If one needs to

recover an ensemble of the original size (e.g., to continue the prediction process), there are ways

to select an ensemble X𝑎 from U𝑎 (Bishop et al. 2017), but it is not necessary for us.

4. Applying METKF to synthetic infrasound data: Experimental setup

We now implement the METKF in a synthetic yet realistic case involving infrasound-related

observations. We simulate the geographic and atmospheric settings of the Hukkakero explosion

site, with infrasound waves propagating to the ARCES array (Blixt et al. 2019). The source and

reception sites are separated by an approximate North-South distance of 𝐿 ∼ 180 km along the

great circle, with infrasound waves reflected roughly between 30 km and 50 km high.

We start the section by describing the construction of a realistic background ensemble X𝑏. Then,

we look into the design of a localization matrix, and the application of ℎ. As is conventional

for OSSE experiments, we produce a reference truth xtrue to compare against, and from which

synthetic observations are generated. We then apply the ETKF using a large ensemble to get a

solution without sampling error. Then we reduce the ensemble size, which introduces sampling

error, and finally we ameliorate this applying localization. The performance of the modulated

ensemble is compared with a raw ensemble of the same size.

To assess the DA results, we perform two complementary processes. The first is a single-

observation experiment. In this case, we take a single truth and generate a ’perfect’ observation,

i.e., we choose the realization of the observation error to be equal to 𝐸 [η] = 0. We then perform DA

with this observation and assess the quality of the result. The second is a statistical evaluation of the

DA performance. In this case, we consider 𝑁true truths and produce their respective observations
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Fig. 1. Background correlation matrix obtained from a regional sample of MERRA2 data, and used in

our experiments. The diagonal blocks correspond to correlations between vertical levels of the same physical

variable. The off-diagonal blocks correspond to correlations between different vertical levels of different physical

variables.

using different realizations of η. We perform the DA process, evaluate the performance in each

and every case and collect statistics.

a. Background-state generation

Ideally, we would have a large ensemble forecast for a given lead-time in the region of interest.

In its absence, we artificially generate a large ensemble that represents realistic atmospheric

structures. We use the Modern-Era Retrospective analysis for Research and Applications Version

2 (MERRA2), produced by NASA (Gelaro et al. 2017). This is a single-trajectory (i.e. not an

ensemble) reanalysis product with data beginning in 1980, which exploits several observation

types (Koster et al. 2016). It uses the GEOS-5 model with a spatial resolution of about 50 km

in the horizontal and with 72 vertical levels, with the uppermost level at 0.01 hPa. The temporal

resolution is 3 hours. With these reanalysis data, we create a realistic µ𝑏 and B to characterise

the MVG to sample from. The elements in this process are detailed with the help of Figure 2 and

Figure 1.
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Fig. 2. Background mean (blue lines) plus/minus 1 standard deviation (shaded cyan area) for the state variables.

The black lines represent the true profile used in the single-observation experiment.

1. We focus in the Northern Hemisphere autumn/winter period which is when the stratospheric

winds are strong and have the greatest influence on the propagation of infrasound waves.

This is also the period when the stratosphere-troposphere coupling is most prominent, and

therefore a better representation of stratospheric dynamics can have the greatest impact on

(tropospheric) numerical weather prediction (e.g., Charlton-Perez et al. 2013). We select 207

MERRA2 land grid points over Finland and northeast Norway (9 longitude by 23 latitude

points). We consider five days in November 2010 (17th to 21st, inclusive). To represent

common stratospheric conditions (e.g., a strong westerly polar vortex), we make sure to select

days without sudden stratospheric warming events. We extract data for five times a day (every

three hours, 9h–21h UTC).

2. The previous step provides a total of 5175 vertical profile samples of the {𝑢(𝑧), 𝑣(𝑧),𝑇 (𝑧)}
variables. We extract the lowermost 𝑁𝑧 = 60 model levels, spanning from the surface to about
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62 km altitude. We use these profiles to compute a correlation matrix C, shown in Figure 1.

This is a block matrix where each block corresponds to a different physical variable, at all

levels. The blocks are highlighted with black lines.

3. We use the statistics coming from the profiles in (1) to prescribe a MVG distribution from

which to sample. We do not use these profiles directly since they do not follow an MVG

distribution –there is no particular reason for them to do this, since these are columns coming

from different locations at different times of a single-trajectory reanalysis. This is different

from having, for example, a 12-hour ensemble forecast for a given location. Hence, we

construct the distribution as follows. We choose one of the profiles from (a) as µ𝑏. Mimicking

a realistic scenario, we prescribe background standard deviations that increase with altitude.

For 𝑇 , these standard deviations are set to vary linearly from 2 K to 8 K, while for both 𝑢 and 𝑣

they are set to vary linearly from 1.5 m/s to 6 m/s. These over-simplified values were partially

inspired in results from (Amezcua and Barton 2021). With these elements, we construct the

background covariance matrix B from:

B = 𝚺
1
2 C

(
𝚺

1
2

)⊤
, (25)

where 𝚺
1
2 is a diagonal matrix containing the background standard deviations. Note that the

climatological way in which we generate B is akin to an ensemble Optimal Interpolation (e.g.

Sakov and Sandery 2015) implementation.

4. Having prescribed an MVG distribution, we generate a random sample ensemble with 𝑁𝑒 +
𝑁true = 3200 members. We take one member as the reference truth for the single-observation

experiment, which is displayed with black line in the different panels of Figure 2, one for each

variable. The thick blue lines represent µ𝑏, and the cyan shaded areas indicate one standard

deviation it. Individual ensemble members are not shown to avoid cluttering.

b. Localization matrix design

Since we have 𝑁var = 3 physical variables (each with 𝑁𝑧 = 60 levels), both B and L are block

matrices with 𝑁2
var = 9 blocks. As explained in Lee et al. (2022), different localization length-scales

can be used for different blocks of L. For simplicity, in our implementation each block follows a
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Fig. 3. Normalized eigenvalue spectrum of L. Only 12 (red dots) out of 180 (black) eigenvalues are kept.

Gaspari–Cohn decay from the main diagonal with a fixed length scale 𝑙𝑧 = 0.5 km for all altitudes.

Even though we did not perform a proper sensitivity analysis to the localization length scale, some

brief experiments suggested that this length-scale yielded the best DA performance results from

the list 𝑙𝑧 = {0.5,1.0,1.5,2.0,2.5} km.

Figures 3 and 4 illustrate the construction of the low-rank approximation to L. Figure 3 is a

Scree plot, where the cumulative sum of its 180 normalized eigenvalues is shown. We keep the

first 12 (shown in red), which account for approximately 86% of the variability. In figure 4 we

show reconstructions with an increasing number of eigenvalues kept 𝑁𝜆 = {3,6,9,12,15}. In the

bottom right panel we show the exact L. The case with 𝑁𝜆 = 12 eigenvalues kept renders a very

good approximation with no visible spurious features like the ones observed in the panels of the

first row.

c. Application of the observation operator

Mapping state variables into observation space is required for two purposes. The first is to

generate synthetic observations (constructed from xtrue) to be assimilated. The second is to get Y𝑏

from X𝑏, as part of the analysis step of the ETKF algorithm.
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Fig. 4. Exact L (left) and its low-rank approximation L̃, based on 12 eigenvectors (right).

We use the InfraGA ray-tracing code to model infrasound wave propagation. This code is

provided under open access by Los Alamos National Laboratory at https://github.com/

LANL-Seismoacoustics/infraGA (e.g., Blom and Waxler (2021, 2017); last accessed 04 March

2024). Based on the ray-tracing simulations with mid-point reflection, we perform an eigenray

search in 3D using the stratified moving-medium Cartesian propagation mode of InfraGA (which

applies a horizontally homogeneous atmospheric profile). As further elaborated in Blixt et al.

(2019) and Vera Rodriguez et al. (2020), the propagation for this source-receiver setup involves

inserting a reflection point half-way along the great-circle, i.e. 90 km from the explosion site. It

is assumed that the corresponding dominant reflection occurs at the single altitude 𝑍max. This is

fixed at 𝑍max = 38 km based on previous works (Blixt et al. 2019; Amezcua et al. 2020; Amezcua

and Barton 2021). In the search for an eigenray, we scan inclination angles from 10◦ to 80◦,

and azimuth angle deviations of ±0.5◦. After running InfraGA with these settings, 31 out of
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Fig. 5. True (dark orange) and background (blue) trajectories coming from Hukkakero (bottom) to ARCES

(top), reflected at 𝑍𝑚𝑎𝑥 = 38 km.

the 3200 available profiles (0.96%) did not return the predicted observations. We examined the

vertical profiles in which the search for an eigenray failed, and found that they share an average

head wind of 𝑣 ≥ 10 𝑚/𝑠. These conditions do not allow for the physical existence of the desired

eigenray. We remove these profiles from the background ensemble. This removal does not change

the background statistics beyond the second decimal, with the largest changes in v.

Figure 5 shows a subset of the 3169 successful eigenray examples found. In this example, we

show 5 background trajectories (blue lines), and one corresponding to the synthetic truth (red line)

in the single-observation experiment. The axes correspond to the 3-D spatial dimensions, where

the propagation occurs from Hukkakero to ARCES, which is almost due North. We can appreciate

the complexity of the trajectories which was lost in the past when we approximated them as simple

triangles when using the geometric model.
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For our experiments, we randomly separate our 3169 profiles into two groups: 𝑁𝑒 = 2500

members for X𝑏, and 𝑁true = 669 truths to assess the DA performance. Figure 6 shows the resulting

observation space values for the 2500 predicted observations. The first row shows the marginal

distributions of the observed variables (blue histograms, with vertical blue line representing the

sample mean). We use the Shapiro-Wilk test (Shapiro and Wilk 1965) with significance 𝛼 = 0.05

to asses the Gaussianity of these distributions. Both 𝛿𝑏𝑎 and 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 can be considered Gaussian,

while 𝑡𝑡𝑟𝑎𝑐𝑒 fails the test (𝑝 ∼ 10−6), mostly due to its asymmetry (left skewness). For comparison,

we draw the closest Gaussian pdf (one with the same mean and standard deviation) in each panel.

The second row shows two-dimensional cross-sections of the three-dimensional observation space.

The aim of DA is hence to transform the cloud of predicted observations (blue dots) into a cloud

closer to the real observation (dark orange star), and then to map this change into the original

physical atmospheric variables. For reference, the means of the observed variables are shown in

blue lines.
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Fig. 6. Resulting predicted values in observation space for each background ensemble member (blue), and the

true observation (dark orange). The first row assesses marginal Gaussianity for the observed quantities.
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Finally, we need to prescribe observation error parameters. We consider η to be uncorrelated.

Hence, R has the following values:

R = diag

[(
0.1𝜋
180

[rad]
)2
, (1 [s])2,

(
0.5

[m
s

] )2
]
. (26)

Namely, the standard deviation of the observational errors are: 0.1◦ for 𝛿𝑏𝑎, 1 second for 𝑡travel,

and 0.5 m/s for 𝑣trace, which agree with previous works. The observational error is quite low with

respect to the spread of predicted observations, so we can expect large changes from Y𝑏 to Y𝑎 in

the assimilation.

5. Applying METKF to synthetic infrasound data: Results

a. Evaluation metrics

For convenience, we present key quantities commonly used to evaluate the performance of a DA

system. The analysis increment d𝑎𝑏 ∈ R𝑁𝑥 is defined as:

d𝑎𝑏 = x̄𝑎 − x̄𝑏, (27)

i.e. this is the difference between the analysis and background means, which quantifies the effect

observations have on the DA process. Hence, when there is no increment, there is no observational

impact.

The OSSE allows for a direct comparison of our results to a synthetic reference truth. A common

metric is the root-mean-square error of both x̄𝑏 and x̄𝑎 with respect to the synthetic truth:

RMSE𝑖 =

√︃
(x̄𝑖 −xtrue)2

, 𝑖 = {𝑏, 𝑎} (28)

where the square is evaluated element-wise, and the average (denoted by the overbar) can be

taken in space, over time (when several DA cycles are performed sequentially), or over different

experiment realizations. In cases with state variables of different physical units, it is common to

compute this metric separately or use an energy norm, see, e.g., Kalnay (2003). In our numerical

experiments, we compute these metrics for each physical variable at each vertical level. Hence,

both expressions in Eq (28) are vectors with 𝑁𝑥 elements.
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Fig. 7. Illustration of two background ensembles. Each panel corresponds to vertical profiles of different

physical variables. The dark blue lines to the small ensemble (𝑁𝑒 = 5), and the dashed grey lines to the

modulated ensemble (𝑁mod = 60). The gray shaded area corresponds to the mean plus minus three standard

deviations coming from the full background ensemble (𝑁𝑒 = 2500).

b. Choices for background ensemble

We apply (M)ETKF in four cases:

1. A large X𝑏 with 𝑁𝑒 = 2500. This produces a matrix P𝑏 indistinguishable from the one

prescribed in Subsection a.

2. A small X𝑏 with 𝑁𝑒 = 5 which is useful to illustrate errors coming from small samples.

3. A modulated X𝑏 with 𝑁mod = 60. This comes from modulating the small ensemble in point

(2) with the 𝑁𝜆 = 12 leading eigenvectors of L.

4. A raw ensemble with 𝑁𝑒 = 60 for comparison with point (3).

Figures 7 and 8 illustrate aspects of the modulated ensemble. Figure 7 shows the profiles for

𝑇 (𝑧) (left), 𝑢(𝑧) (middle), and 𝑣(𝑧) (right). The gray shaded area represents the full background
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ensemble (𝑁𝑒 = 2500). To avoid cluttering we do not show the individual ensemble members,

but instead a region corresponding to the mean plus minus 3 standard deviations for each vertical

level. The dark blue lines correspond to the randomly chosen small ensemble with 𝑁𝑒 = 5. The

gray dashed lines correspond to the modulated ensemble with 𝑁𝑒 = 60. By construction, the mean

and standard deviation of the small and the modulated ensemble coincide. However, the range of

values covered by the modulated ensemble is larger.
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Marginal Gaussianity test (Shapiro-Wilks) for two 60-member ensembles

Fig. 8. Marginal Gaussianity for the state variables in two ensembles with 60 members. The left panel

corresponds to a modulated ensemble, while the right column to a raw ensemble
.

We generated additional modulated ensembles where we kept fewer eigenvalues of L, in particular

𝑁𝜆 = {3,6,9}. However, they resulted in profiles with pronounced wave-like vertical variations

related to the spurious features discussed in Figure 4. These were therefore discarded and not

shown for brevity.

Before moving on, it is interesting to ponder whether the modulation process changes the

statistical characteristics of the ensemble. To answer this question, we compare the modulated

ensemble 𝑁𝑚𝑜𝑑 = 60 with a raw ensemble of the same size. For each variable at each vertical level,

we perform a Shapiro-Wilk test with significance 𝛼 = 0.05 for marginal Gaussianity. The p-values

for both ensembles are shown in Figure 8 (note the logarithmic scale for the x-axis).
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Let us start with the right panel. If all the variables were independent, the expected fraction

of failed local tests with 𝛼 = 0.05 would be 0.05. Due to the covariance structure, this increases

to 0.18. We can take this number as our basis to pass or fail a field significance test (see e.g.

Livezey and Chen (1983) for the distinction between local and field significance). In the left

panel we have the results for the modulated ensemble. In this case, the fraction of failed local

tests increases to 0.46. Furthermore, the p-values reach lower values than in the case of the raw

ensembles. This suggests that the modulated ensemble has lost Gaussianity with respect to the

raw ensemble. Our empirical result agrees with the theoretical loss of Gaussianity in modulated

ensembles demonstrated in Chan (2023).
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Fig. 9. Results in observation space of the application of (M)ETKF in the single observation experiment. Each

row corresponds to a different ensemble size, and each column a different observed quantity. The violin plots

represent the background (cyan/blue) and analysis (pink/purple), where the ticks correspond to minimum, mean

and maximum value. The black star corresponds to the given observation.
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c. Results

First we show the results for the single-observation experiment. Figure 9 displays the DA

elements in observation space, where columns correspond to different observed quantities and

rows correspond to a different background ensemble. In each panel, the background (blue) and

analysis (purple) elements are visualized with violin plots (Hintze and Nelson 1998), while the

given observation is shown with a black star. In observation space, the assimilation is successful in

all cases. The analysis ensembles are located closer to the given observation than the background

ensembles, and they have considerably reduced spread.
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Fig. 10. Background (top) and analysis (bottom) correlation matrices involved in the DA experiments with

infrasound observations.

Figure 10 depicts the sample background (top) and analysis (bottom) correlation matrices, which

we label C𝑏 and C𝑎 respectively. We display these instead of the covariance matrices to avoid

masking of the structures by the different magnitudes of the variables. Once more, we add thick

black lines to denote the 9 block matrices they are made of. In the upper left, we have C𝑏

generated by 𝑁𝑒 = 2500. This is indistinguishable from the prescribed C. The corresponding C𝑎

has structures similar to those found in C𝑏, but some changes are noticeable. For 𝑁𝑒 = 5, the

corresponding C𝑏 is visibly contaminated by sampling noise, as expected. The corresponding C𝑎

is therefore also contaminated by direct sampling noise, but also by spurious changes coming from

the calculation of an erroneous gain. In the modulated case C𝑏 is reduced to a matrix with thin
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strips around the main diagonals of the 9 blocks, as expected. This structure is changed when

computing C𝑎, with information spreading to the previously localised areas. For 𝑁𝑒 = 60 members,

C𝑏 is considerably similar to the one coming from 𝑁𝑒 = 2500, although some sampling noise is

still visible for off-diagonal elements in each one of the blocks.
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Fig. 11. Model space results for the single-observation experiments. Vertical profiles of 𝑣(𝑧) are shown for

different ensemble sizes. Dark lines correspond to the reference truth (black), background mean (dark blue),

and analysis mean (dark purple). Light shaded areas correspond to plus/minus 1 standard deviation (cyan for

background, pink for analysis).

Figure 11 displays the DA elements in the model space. For brevity, we only display the results

for the tail wind 𝑣(𝑧), which was the most benefited variable by the DA process (the results for the

other two variables are qualitatively similar, but less pronounced). Each column corresponds to a

different ensemble size. Each panel contains several lines: the true profiles are shown with thick

black lines, the background profiles are shown in blue (dark blue for the mean, shaded cyan region

for plus/minus 1 standard deviation), and the analysis profiles are shown in purple (dark purple the

mean, shaded pink region for plus/minus 1 standard deviation).
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The assimilation is effective for 𝑁𝑒 = 2500 members, with x̄𝑎 being much closer to x𝑡𝑟𝑢𝑒 than x̄𝑏.

Furthermore, there is a reduction in the spread from X𝑏 to X𝑎. The case 𝑁𝑒 = 5 shows different

results. In this case, x̄𝑎 is in general further from x𝑡𝑟𝑢𝑒 than x̄𝑏. We see pronounced errors in

levels above 𝑧 = 35 km and below 𝑧 = 10 km. This happens despite the fact that the assimilation

seems successful in observation space for the same ensemble size (Figure 9). This is because

the spurious correlation structures render the projection into model space defective. Moreover,

the analysis ensemble spread is too small (as expected from the small sample size), rendering an

overconfident and inaccurate ensemble. The third column shows the modulated ensemble. The

estimation is not as accurate as with 𝑁𝑒 = 2500, but it avoids the incorrect update that occurred

for 𝑁𝑒 = 5. In general, x̄𝑎 is closer to x𝑡𝑟𝑢𝑒 than x̄𝑏. The incorrect updates in the uppermost levels

(which happened with 𝑁𝑒 = 5) are no longer a problem when using the modulated ensemble. Using

a raw ensemble with 𝑁𝑒 = 60 yields very similar results to the case with 𝑁𝑒 = 2500, which is not

unexpected since this is a relatively small problem (𝑁𝑥 = 60).

After the visual examination of the results in Figure 11, we perform a more systematic quantifi-

cation of the DA performance. For this purpose, we repeat the DA experiment for the 𝑁true = 669

truths, each with a respective set of observations. These are generated with independent realizations

of η.

In Figure 12 we compute both RMSE𝑏 (blue line) and RMSE𝑎 (purple line) as prescribed in Eq

(28) for each variable and vertical level separately. The top row shows the case for 𝑁𝑒 = 2500.

Here, the assimilation always improves the estimation, which is clear since the purple line is always

to the left of the blue line. The largest error reduction occurs for both the wind components 𝑢(𝑧)
and 𝑣(𝑧), with an error reduction close to 2 m/s around 𝑧 = 30 km for both variables.

The second row corresponds to 𝑁𝑒 = 5 and the third row to 𝑁mod = 60. Both ensembles share

the same x̄𝑏, and hence they have the same RMSE𝑏. As expected, the small ensemble (𝑁𝑒 = 5)

yields RMSE𝑎 > RMSE𝑏 for most vertical levels. This implies that assimilating the observation

considerably damages the estimation due to the erroneous increments coming from sampling errors.

These spurious errors can reach 3 K for𝑇 (𝑧) and 4 m/s for 𝑢(𝑧). The use of the modulated ensemble

is effective in eliminating these errors for the three variables. For 𝑇 (𝑧), RMSE𝑎 ≈ RMSE𝑏, but at

least there are no negative consequences from the assimilation. For both 𝑢(𝑧) and 𝑣(𝑧), there is

noticeable error reduction due to the assimilation in this modulated case.
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Fig. 12. Evaluation of the performance of the (M)ETKF in terms of RMSE of x̄𝑏 (blue line) and x̄𝑏 (purple

lines) with respect to xtrue for different ensemble sizes (rows) and variables (columns).

The last row shows the case with 𝑁𝑒 = 60 members, which has RMSE values very similar to those

coming from 𝑁𝑒 = 2500 members. The performance of the modulated ensemble with 𝑁𝑚𝑜𝑑 = 60

members is considerably better than that with 𝑁𝑒 = 5 members, but slightly worse than the raw

ensemble with 𝑁𝑒 = 60 members.

d. The impact of assimilating different observations

When designing new observation systems and instruments, or devising new uses for existing

ones, one needs to determine the impact that the assimilation of these observations have on the

state variables. This is often referred to as the forecast sensitivity to observations (FSOI) (e.g.,
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Kotsuki et al. 2019). In its simplest form, FSOI can be performed with data denial experiments,

which are straightforward in an OSSE setting. Given the same background values, different subsets

of observations are assimilated independently to generate different analysis values.

For these experiments we use 𝑁𝑒 = 2500 members, since we want information without sampling

errors. We assimilate four subsets of observations:

{{𝛿𝑏𝑎}, {𝑡travel}, {𝑣trace}, {𝛿𝑏𝑎, 𝑡travel, 𝑣trace}}. (29)

For each subset, we perform 𝑁𝑡𝑟𝑢𝑒 = 699 experiments. For each experiment, we compute

the analysis increment d𝑏𝑎 as defined in Eq (27). After all experiments, we have 𝑁𝑡𝑟𝑢𝑒 = 699

vectors d𝑏𝑎. For each of the 𝑁𝑥 components of the d𝑏𝑎 we compute the following percentiles:

{10, 25, 50, 75, 90}. The results are displayed in Figure 13 as vertical profiles 𝑇 (𝑧) (top row),

𝑢(𝑧) (middle row), 𝑣(𝑧) (bottom row). The columns correspond to the groups mentioned in Eq

(29). When an observation has little or no impact for a particular variable at a particular level,

percentiles are close to zero (the analysis is almost the same as the background). On the other

hand, if there are big differences between the quantiles, this means that the observation has a large

impact and leads to large analysis increments. We note the following:

1. For all variables, d𝑎𝑏 can be positive and negative. The 50th percentile for all panels is close

to the zero line, and the 25th−75th and 10th−90th percentiles are qualitatively symmetric with

respect to each other.

2. For 𝑢(𝑧), the most informative observation is 𝛿ba. It provides non-zero analysis increments

throughout the whole atmospheric column, but particularly in the region from 15 to 50 km.

The role of this observation is consistent with the role suggested by the Blixt geometric model

(Blixt et al. 2019) and the findings of Amezcua et al. (2020). Both 𝑡travel and 𝑣trace provide

some information above 20 km. The increments coming from 𝑡travel increase with height, while

the increments coming from 𝑣trace peak at around 40 km, just above the reflection height.

3. For 𝑣(𝑧), the most informative observation is 𝑡travel. This observation has a large impact from

the surface to around 50 km high, peaking around 30 km. The next observation is 𝛿ba, with

smaller increments peaking at around 30 km and decreasing both towards the surface and
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Fig. 13. Analysis impact from assimilating different observations (columns): only 𝛿𝑏𝑎, only 𝑡travel, only 𝑣trace,

and three at the same time. The analysis increments are collected over 669 experiments. Each row shows a

variable (𝑇 in the top, 𝑢 in the middle, 𝑣 in the bottom). For each panel, we show the percentiles of the increment.

towards the top of the column. Assimilating 𝑣trace leads to moderate increments throughout

the column, except for a region around 50 km.

6. Summary and discussion

The objective of this paper was to implement an ensemble Kalman filter to assimilate infrasound-

related observations in order to update an atmospheric vertical profile. In this method, the quality
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of the sampling estimators for mean and covariance is crucial, and these estimators often come

from limited-size ensembles. Localization is a method often used in the EnKF community to

reduce sampling errors. Infrasound-related observations contain spatially-integrated information,

and can be difficult to localize. To achieve this, we borrowed a technique from the satellite DA

community: the modulated ensemble Kalman filter.

We performed state estimation experiments to update three height-dependent fields: cross wind,

tail wind, and temperature. We used 4 ensemble sizes: a large ensemble with 𝑁𝑒 = 2500, a small

ensemble with 𝑁𝑒 = 5, a modulated ensemble with 𝑁𝑒 = 60, and a (raw) ensemble with 𝑁𝑒 = 60

(to compare against the modulated ensemble). The assimilation process in the three-dimensional

observation space was successful in all cases. The mapping back to model space proved to be the

main challenge. With a 2500-member ensemble, we were able to reduce the RMSE of the analysis

mean in the middle atmosphere (around 30 km) from that of the background mean by about 2

m/s for the horizontal winds and about 1 K for the temperature. Using a 5-member ensemble led

to poor results (as expected), with the RMSE of the analysis mean being larger than that of the

background. The use of a 60-member modulated ensemble (5 original members modulated by the

leading 12 eigenvectors of the designed localization matrix) helped eliminate spurious increments.

The RMSE of the analysis mean was seldom larger than that of the background, and we even

had some reductions (although smaller than for the large ensemble). A 60-member raw ensemble

showed results similar to that of the 2500-member ensemble, and slightly better than that of the

modulated ensemble. With the large-ensemble setting, we also performed sensitivity analysis

experiments where we related the assimilation of each of the three observations by themselves to

the impacts they have in the vertical profiles at different levels.

This study demonstrates the possibility of assimilating infrasound observations using ensemble

DA with a full ray-propagation model as the observation operator. Furthermore, we have shown how

satellite DA techniques can be readily applied to ensure appropriate localization and therefore make

small ensembles useful. While we have shown some quantitative evidence of the improvement in

the estimation of quantities in vertical columns, it is important to remember that the ultimate aim is

to assimilate novel observations (in our case the infrasound-related quantities) in tandem with the

traditionally available observations like radiosondes (see e.g. Francis et al. (2023) for a discussion

on the role of radiosondes as anchor observations in remote sensing).
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This study generates some questions we are tackling in our current work. These are:

1. What does it mean for a ray-tracing routine to fail and what information does this failure give

to the DA process? As we mentioned 0.96% of the background ensemble members did not

generate a return when fed to InfraGA. If there were no errors in the observation operator, this

would mean that the likelihood of the observation occurring for a given background profile

is null, discarding the corresponding ensemble member (due to strong head winds like in our

case). In a particle filter setting (e.g van Leeuwen 2009), this would mean a zero posterior

weight. In an EnKF setting, this is more complicated and how to include this information

properly needs to be explored. It is important to mention that we did not change 𝑍𝑚𝑎𝑥

when running InfraGA. For instance, Blixt et al. (2019) performed ray-tracing with different

reflection heights and did not experience any failure for the vertical profiles they considered.

2. This study considered a prescribed 𝑍𝑚𝑎𝑥 . A more ambitious aim is to estimate this unknown

parameter within the DA process, i.e. to perform experiments with a joint estimation of

state and parameters. Furthermore, in reality there are partial reflections from multiple

heights. These reflection heights could be estimated simultaneously. The interaction of these

parameters with the observations, however, is complex and requires detailed analysis.

3. The assimilation process in a range-dependent (horizontally varying) regime is a larger goal,

especially when the transmission occurs over longer horizontal distances. Amezcua and Barton

(2021) performed this type of assimilation with the geometric model, but a range-dependent

ray-tracing routine could be applied. This is still computationally feasible. Applying more

exact wave-propagation routines like the solution of parabolic partial differential equations

is, for the moment, out of our scope. The reader is referred to Brissaud et al. (2022) for a

discussion of these types of models and their emulation using machine learning techniques

for computational efficiency.

4. In this study, the application of the observation operator yielded observed quantities which

behaved close to Gaussian, with trace velocity being the quantity with the largest departure

from this distribution. The modulation process within METKF yielded state variables which

lost marginal Gaussianity with respect to the original ensemble. This did not seem to have

harmful effects in the assimilation process. However, it is worth exploring these effects in the
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range-dependent regime and assessing whether extra steps (e.g. Gaussian anamorphosis) are

needed.

This study has underlined the possibility of exploiting under-used datasets. Middle- and upper-

atmospheric observations are considerably sparser –both spatially and temporally– than those

covering the lower atmosphere. Therefore, any existing observations, albeit indirect, are potentially

useful in NWP.

There is a call for assimilating more wind-related observations in the middle atmosphere and it

is notable that 3DVar assimilation experiments have also been performed for winds in the MLT

using meteor radar multi-station datasets (Stober et al. 2021). Our long-term goal is to assimilate

infrasound-related observations from natural sources like ocean-generated microbaroms. These

processes are continuous in time and space. This provides a constant observational record, but also

challenging aspects in the modelling and assimilation fronts.
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Amezcua, J., S. P. Näsholm, E. M. Blixt, and A. J. Charlton-Perez, 2020: Assimilation of atmo-

spheric infrasound data to constrain tropospheric and stratospheric winds. Quarterly Journal of

the Royal Meteorological Society, 146 (731), 2634–2653, https://doi.org/10.1002/qj.3809.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Monthly

Weather Review, 129 (12), 2884–2903, https://doi.org/10.1175/1520-0493(2001)129⟨2884:

AEAKFF⟩2.0.CO;2.

Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a

hierarchical ensemble filter. Physica D: Nonlinear Phenomena, 230 (1), 99–111, https://doi.org/

10.1016/j.physd.2006.02.011.

Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman fil-

ter data assimilation. Monthly Weather Review, 140 (7), 2359–2371, https://doi.org/10.1175/

MWR-D-11-00013.1.

Arnold, C. P., and C. H. Dey, 1986: Observing-systems simulation experiments: Past, present,

and future. Bulletin of the American Meteorological Society, 67 (6), 687–695, https://doi.org/

10.1175/1520-0477(1986)067⟨0687:OSSEPP⟩2.0.CO;2.

Arrowsmith, S. J., O. Marcillo, and D. P. Drob, 2013: A framework for estimating stratospheric

wind speeds from unknown sources and application to the 2010 December 25 bolide. Geophysical

Journal International, 195 (1), 491–503, https://doi.org/10.1093/gji/ggt228.

Asch, M., M. Bocquet, and M. Nodet, 2016: Data Assimilation. Society for Industrial and Applied

Mathematics, Philadelphia, PA, https://doi.org/10.1137/1.9781611974546.

Assink, J., P. Smets, O. Marcillo, C. Weemstra, J.-M. Lalande, R. Waxler, and L. Evers, 2019:

Advances in infrasonic remote sensing methods. Infrasound Monitoring for Atmospheric Studies,

Springer, 605–632, https://doi.org/10.1007/978-3-319-75140-5 18.

37
Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-23-0186.1.Unauthenticated | Downloaded 05/24/24 06:38 AM UTC



Assink, J. D., A. L. Pichon, E. Blanc, M. Kallel, and L. Khemiri, 2014: Evaluation of wind

and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound.

Journal of Geophysical Research: Atmospheres, 119 (14), 8659–8683, https://doi.org/10.1002/

2014JD021632.

Assink, J. D., R. Waxler, W. G. Frazier, and J. Lonzaga, 2013: The estimation of upper atmospheric

wind model updates from infrasound data. Journal of Geophysical Research: Atmospheres,

118 (19), 10–707, https://doi.org/10.1002/jgrd.50833.

Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes.

Science, 294 (5542), 581–584, https://doi.org/10.1126/science.106331.

Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and

A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science,

301 (5633), 636–640, https://doi.org/10.1126/science.1087143.

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction.

Nature, 525 (7567), 47–55, https://doi.org/10.1038/nature14956.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble

transform Kalman filter. Part I: Theoretical aspects. Monthly Weather Review, 129 (3), 420–436,

https://doi.org/10.1175/1520-0493(2001)129⟨0420:ASWTET⟩2.0.CO;2.

Bishop, C. H., and D. Hodyss, 2009: Ensemble covariances adaptively localized with ECO-

RAP. Part 2: a strategy for the atmosphere. Tellus A, 61 (1), 97–111, https://doi.org/10.1111/j.

1600-0870.2008.00372.x.

Bishop, C. H., J. S. Whitaker, and L. Lei, 2017: Gain form of the ensemble transform Kalman filter

and its relevance to satellite data assimilation with model space ensemble covariance localization.

Monthly Weather Review, 145 (11), 4575–4592, https://doi.org/10.1175/MWR-D-17-0102.1.

Blanc, E., and Coauthors, 2018: Toward an improved representation of middle atmospheric

dynamics thanks to the ARISE project. Surveys in Geophysics, 39 (2), 171–225, https://doi.org/

10.1007/s10712-017-9444-0.

38
Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-23-0186.1.Unauthenticated | Downloaded 05/24/24 06:38 AM UTC



Blanc, E., and Coauthors, 2019: Middle atmosphere variability and model uncertainties as inves-

tigated in the framework of the ARISE project. Infrasound Monitoring for Atmospheric Studies,

Springer, 845–887, https://doi.org/10.1007/978-3-319-75140-5 28.
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