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Abstract

This thesis reports novel advances in the study of binary phenomena,
with sensitivity analysis of energetic materials as a key application.
Its contributions are two-fold. Firstly, a new method is presented,
called permutation counting, for estimating marginal likelihoods in
Bayesian nonparametric models for binary data. By exploiting
the symmetries of exchangeable data sequences, this method yields
a new unbiased and strongly consistent estimator of the marginal
likelihood. An explicit algorithm for computing the importance weights
in polynomial time is provided, and numerous examples with real
data are given. The algorithm is also efficiently implemented in
an accompanying software package. The second half of the thesis
focuses on aspects of frequentist parametric inference in the context of
estimating sensitivities of energetic materials. New results pertaining
to the asymptotic theory of sequential experimental designs are proved,
thus justifying the construction of confidence intervals via large sample
theory in this setting. These theoretical results are accompanied by
extensive simulation studies, along with applications with real data. In
particular, we demonstrate that remnants of the high explosive amatol
are more sensitive to impact than previously believed in the literature.
Based on our results, we strongly recommend updating NATO’s official
protocol for sensitivity measurements.
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Sammendrag

I denne avhandlingen rapporteres det nye fremskritt innen studiet av
binære fenomener, med spesielt fokus på å anvende dem til å bestemme
følsomheten til energetiske materialer. Avhandlingen er todelt.
Først presenteres en ny metode basert på telling av permutasjoner
for å estimere marginalsannsynligheter innen Bayesianske ikke-
parametriske modeller for binære data. Ved å utnytte symmetriene
til utskiftbare datafølger gir denne metoden en ny forventningsrett
og sterkt konsistent estimator for marginalsannsynligheten, ved hjelp
av viktighetsutvalg (importance sampling). Det blir introdusert en
eksplisitt algoritme for å beregne viktighetsvektene i polynom tid,
og algoritmen blir anvendt på flere eksempler med ekte data. Det
hører også til programvare hvor algoritmen er effektivt implementert.
Den andre delen av avhandlingen setter søkelys på aspekter rundt
frekventistisk parametrisk inferens innen estimering av følsomheten
til energetiske materialer. Det presenteres nye resultater innen
asymptotikken til sekvensiell forsøksplanlegging, hvilket, i denne
sammenhengen, rettferdiggjør å konstruere konfidensintervaller basert
på teori av store utvalg. Disse teoretiske resultatene kombineres med
omfangsrike simuleringsstudier og anvendelser på eksperimentelle data.
Vi demonstrerer blant annet at krigsetterlatenskaper av høyeksplosivet
amatol er mer følsomme for slag enn det litteraturen har gitt uttrykk
for. Basert på resultatene våre anbefaler vi på det sterkeste en
oppdatering av NATOs offisielle prosedyrer for følsomhetstesting.
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Preface

I still remember vividly my first lecture in real analysis in Oxford back in 2014,
which professor Hilary Priestley commenced by dramatically declaring that the
course we were about to take could be summarised by a single symbol: R. If I
were to try the same exercise for this thesis, I would say that it can be summarised
by two symbols: 0 and 1. It was not necessarily my original intention to focus
explicitly on binary data when I first began my doctoral studies at the University of
Oslo in 2021, or even when I started working for the Norwegian Defence Research
Establishment (FFI) in 2018. However, upon immersing myself in the study of
sensitivity analysis of energetic materials, it gradually became evident to me that
the statistical analysis of such data contains a surfeit of rich mathematics whilst
simultaneously being highly useful for FFI.
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realm of statistics. I am thankful for the many weird and wonderful concepts he
has introduced me to, and for the enthusiasm with which he has done so. It was a
particular pleasure to sing with him on multiple occasions in the “Blindern Stunt-
and Pop-up Choir”. As for Erik, I am immensely grateful for all our motivating
conversations, both of work-related and extracurricular nature. As a chemist with
an expertise in the study of energetic materials, Erik has enabled me to place
the statistical analysis contained in the present thesis in a wider context, without
which this thesis would have been much weaker and less significant. With a passion
for writing and language, Erik has also provided tremendously useful support in
preparing manuscripts and presentations. I also had the privilege of experiencing
his supervision skills on multiple arenas, such as when we left work early one hot
summer day to play golf together.

Next, I want to thank all my co-authors: Per August Jarval Moen, Tomas
Lunde Jensen, John Fredrik Moxnes, Eirik Høyheim, Emil Aas Stoltenberg, Geir
Petter Novik and Sebastian Teigen Nygård. Without exception, working with
them has been extremely an instructive and stimulating experience, and I feel
very privileged to have been able to work with such a wide variety of scientists
and researchers. Furthermore, I thank my directors at FFI, Hege Jødahl, Ingebjørg
Kåsen and Ivar Sollien, for the flexibility they have granted me in working on my
PhD. Hege, in particular, has been exceptionally generous in allowing me to travel
to present my work and to start new collaborations with others. Thanks also to the
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academic faculty at the University of Oslo for providing an intellectually inspiring
environment in which to work.

Finally, a warm thanks to my closest family and friends, near and far, for
always showing me love and support.
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Thesis

1





But let your communication be, Yea, yea; Nay, nay: for whatsoever is
more than these cometh of evil.

Matt. 5:37

Hun er vor højeste glæde i verden, og – (sænker stemmen) hun er også
vor dybeste sorg, Gregers.

Hjalmar Ekdal, Henrik Ibsen’s Vildanden

Jeg har skrevet to taler, far. En er grøn, og en er gul. Og du kan selv
vælge hvad for en, det skal være.

Christian, Thomas Vinterberg’s Festen

I get up, I get down.
Yes (Anderson and Howe), Close to the Edge
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Chapter 1

Introduction

The world is full of binary data. This will come as no surprise to the modern
reader, as all digital information is stored, transmitted and communicated in
terms of zeros and ones. However, the idea of binary phenomena constitutes a
much more fundamental concept to the natural and social world than merely that
of digital information. In medicine, we record whether patients are healthy or
sick; in engineering, we record whether physical systems are intact or shattered;
in sociology, we record whether job applications are successful or not; in machine
learning, we train models to predict whether a given picture is of a cat or a dog.
In fact, it was the epistemological study of the uncertainty related to whether
certain events would occur or not (i.e. binary outcomes) by philosophers like
David Hume and Thomas Bayes that led to the birth of probability theory as
a mathematical discipline in the first place. It should come as no surprise that
the analysis of binary data, or tasks like binary classification, has been a key
application in the field of statistics ever since the birth of the subject. Like many
areas of mathematical statistics, a particularly appealing aspect of the analysis of
such data is the versatility of the mathematics involved. Indeed, a mathematical
model for predicting whether a patient is infected or immune to a certain disease
may later be adapted by an engineer to model whether a physical system is intact
or shattered. For the statistician, the data arising in these two settings are nearly
identically interpreted, with little regard to the application they are serving.

Having appreciated the generality of the themes involved in binary responses,
let us shift our attention to the key application of the present thesis, namely the
analysis of the sensitivity of energetic materials. These are molecules or compounds
which release large amounts of chemical energy quickly upon decomposition, and
are a key ingredient in explosives, propellants and pyrotechnics, both in civil and
military sector. A proper understanding of the sensitivities of such materials is
crucial for ensuring safety at each step of the life cycle of explosives, which includes
production, manufacture, transport, usage and destruction. This is particularly
true for explosive remnants of war (ERW) and dumped ammunition, whose hazard
properties are much less studied than newly manufactured explosives. There
already exist millions of tonnes of ERW and dumped ammunition worldwide, and
the volume is rapidly increasing with the horrific ongoing wars of aggression in
Ukraine and Gaza. It is worth noting that most victims of spontaneous detonation
of ageing explosives in ERW are civilians.
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Chapter 1. Introduction

Table 1.1: Data from fallhammer experiments on amatol extracted from explosive
remnants of World War II.

Height (log10 cm) 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55
# Reactions 0 1 2 2 5 2 2 2 1 1 1
# Trials 1 3 3 6 6 3 3 2 1 1 1

The sensitivity of an energetic material refers to its susceptibility to ignite
under different forms of external stimuli, such as physical impact, friction, electric
discharge or heat. To avoid too much generality, let us focus on the former, namely
impact. To measure impact sensitivity, an apparatus known as a fallhammer
is used, in which a weight of known mass is repeatedly dropped from different
heights onto samples of the explosive of interest. For each drop, the operator
observes whether an explosion occurred or not. Hence, the outcomes are binary in
nature (no explosion versus explosion), and depend on a single covariate, namely
the height from which the weight is dropped. To introduce some notation, let
t1, . . . , tn ∈ R denote these heights (usually on a log-scale in the sensitivity testing
literature) and let y1, . . . , yn ∈ {0, 1} denote the binary outcomes, where yi = 0
means no explosion and yi = 1 means explosion. A real dataset which was obtained
in the research involved in Paper VII is given in Table 1.1. Here, n = 30 drops
were conducted on a sample of amatol, a common explosive during World War I
and World War II, extracted from explosive remnants of World War II and analysed
at the Norwegian Defence Research Establishment (FFI).

Some key questions for the statistician to answer include:

• At what height is there a 50% probability of an explosion occurring? What
about a 99.9% probability? These heights are commonly referred to as h50
and h99.9, respectively.

• How confident should we be in our estimates of quantiles such as h50 or h99?

• How should we choose the heights t1, . . . , tn?

From a mathematical point of view, the third point in particular is of great
interest, as it marks a divergence from the standard assumptions of regression
problems usually encountered in statistics. Indeed, the standard assumption in
regression (including binary regression, i.e. regression with binary outcomes) is to
view the covariate values t1, . . . , tn as fixed, or, as realisations of independent and
identically distributed (i.i.d.) random variables. However, in sensitivity testing, the
ith height is usually determined from the results of the previous i−1 measurements,
meaning that the sequence t1, t2, . . . is in fact a stochastic process. A very simple
experimental design, which is one of the main points of study in Paper V and
Paper VI, is the Bruceton method. Introduced by Dixon and Mood (1948)
and named after the Bruceton Research Center in Pittsburgh, Pennsylvania, this
simple design is imposed both by NATO’s and the U.S. Department of Defense’s
standard procedures for sensitivity testing of explosives (NATO, 1999; NATO,
2009a; NATO, 2009b; U.S. Department of Defense, 2001). The design depends
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on two parameters, chosen by the researcher before the testing begins. First, the
researcher needs to decide on the first input t1. Second, the researcher chooses a
step size d > 0, determining how far up or down the weight should be set between
consecutive drops. The design is defined by the inductive rule

ti =




ti−1 − d if yi−1 = 1,

ti−1 + d if yi−1 = 0,
(1.1)

for i = 2, . . . , n. That is, if we observe an explosion, we go down one step at the
next measurement, and vice versa. We now see the source of the second half of
the thesis’ title, namely up or down. As a result of the up-and-down motion of the
Bruceton design, the covariate sequence t1, t2, . . . is a time-homogeneous Markov
chain, whose large-sample properties have been thoroughly studied (Derman, 1957;
Durham and Flournoy, 1994; Flournoy, 2002). This is also the main topic of
Paper V. Although other more efficient experimental designs have been proposed
since (Joseph, 2004; Langlie, 1965; Neyer, 1994; Wu and Tian, 2014), the Bruceton
design remains a simple, nonparametric alternative which is widely used in both
civil and military industry.

We conclude this chapter by considering some other key applications in which
binary responses naturally arise, other than sensitivity testing. A classic example
is that of current status data, in which we wish to monitor when individuals in
a population transition from a state A to another state B. For instance, suppose
we want to measure the onset of menarche in a population, i.e. the age at which
girls experience their first menstruation. We would do this by asking a sample
of n girls (of ages ranging from 8 to 20, say), whether they have experienced
menarche yet. If the girls’ ages are t1, . . . , tn, then their answers y1, . . . , yn ∈ {0, 1}
are binary indicators from which the onset of menarche is estimated. A similar
example involving current status data, monitoring immunity to the rubella virus,
is considered in Paper I. Although current status data problems are indeed very
similar to sensitivity testing, there is a crucial mathematical difference in how
the inputs t1, . . . , tn arise. In current status data problems, ti is the age of
the ith individual in the sample, and it is natural to assume that t1, . . . , tn are
independently sampled from some latent distribution, and in particular, that the
responses y1, . . . , yn are conditionally independent given t1, . . . , tn. In sensitivity
testing, on the other hand, ti is the height of the ith experiment, and is chosen by
the researcher. As mentioned in the previous paragraph, this typically means that
the heights ti are chosen according to some experimental design (depending on the
outcomes yi). Crucially, the responses y1, . . . , yn are not conditionally independent
given t1, . . . , tn.

A further application from sociology, which is the main topic of Paper VIII,
is to predict the outcome of applications in situations such as employment,
housing and participation in recreational activities. Here, the main question is
to estimate whether attributes such as the applicant’s sex, age or ethnicity affect
the probability of their application being successful. In order to do this, a field
experiment is needed, in which a large number n of essentially equal fictional
applications are sent out, which differ only in the aforementioned attributes,
mutatis mutandis. For example, if we wish to measure whether the applicant’s

7



Chapter 1. Introduction

ethnicity affects whether the application is successful, half of the applications
would be signed by a name signalling a certain ethnicity, whilst the other half
would be signed with a name signalling another. Letting ti denote the vector of
covariates (e.g. sex, age, ethnicity etc.) of the ith applicant, the binary outcome yi
is determined by whether they receive a response or not within a pre-determined
time limit. In Paper VIII, such an experiment was conducted to investigate
whether parents from an ethnic minority in Norway had a lower chance of receiving
a reply when enquiring on behalf of their ten-year-old child about a trial football
practice.

Having introduced the concept of binary data and the significance of sensitivity
testing of energetic materials in particular, we will now look closer at the question
of choice of methodology in the context of mathematical statistics. In the next
chapter, we will investigate four of the main approaches to statistical inference,
with a particular emphasis on how this affects the analysis of binary data problems.

8



Chapter 2

Approaches to statistical inference

Like any field of science, mathematical statistics may be approached by multiple
perspectives, all of which have their own strengths and weaknesses. Although
individual statisticians may have a favourite angle from which to approach
problems, awareness of the possibilities and limitations of the different approaches
to the subject is a crucial part of reaching scientific maturity.

2.1 The big picture (resolution: 2 x 2)

Although there exist many useful ways in which to split up the subject of
statistics, we shall focus on two dichotomies which prove particularly useful for
establishing a meta-narrative for the present thesis. Firstly, we shall separate
between frequentist and Bayesian statistics, which, loosely speaking, constitutes
a difference in the mathematical formulation of ignorance, and, consequently,
in how information is inferred from data. Secondly, we shall separate between
parametric and nonparametric statistics, which constitutes a difference in which
mathematical models are under consideration. Considering all four possible
combinations of these subfields, we end up with the 2× 2 grid in Table 2.2. This
meta-perspective is useful as it allows us to narrow in on the main focus of the
present thesis: namely the shaded regions of Table 2.2, frequentist parametrics
and Bayesian nonparametrics. Whilst the first two papers concern methodological
developments in the latter perspective, the remaining articles focus on the former,
and contain both methodological advances as well as considerations of real-world
applications. The only slight exception to this rule is Paper III, which, in
addition to a frequentist parametric regression analysis, also contains a comparison
between the frequentist parametric and Bayesian parametric viewpoints. In the
following chapters, we shall cover each of the four approaches outlined in Table 2.2.
Naturally, the chapters on frequentist parametrics and Bayesian nonparametrics
will serve as a preamble for the submitted manuscripts, but an introduction to
the two remaining perspectives is also vital for understanding the context in
which this thesis’ contributions reside. The following chapters do by no means
serve as complete accounts, but rather introduce some key concepts needed for
contextualising the articles.
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Chapter 2. Approaches to statistical inference

Table 2.2: The big picture of statistical inference, differentiating between frequentist
versus Bayesian inference and parametric versus nonparametric modelling. The shaded
regions indicate the focus of the present thesis.

Frequentist Bayesian
Parametric Frequentist

parametrics
Bayesian

parametrics
Nonparametric Frequentist

nonparametrics
Bayesian

nonparametrics
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Chapter 3

Frequentist parametrics

We begin with the domain of frequentist parametrics, which comprises the majority
of the articles written. In particular, we shall introduce the idea of confidence
curves, which provide a useful graphical summary how confident we should be in
our parameter estimates. Also known as classical statistics, frequentist statistics
form the largest and most standard approach to mathematical statistics currently.
The underlying idea is that data are probabilities may be inferred from frequencies
of occurrences in observations. That is, the frequency of the occurrence of an event
directly reflects the probability of that event occurring.

3.1 Maximum likelihood estimation and confidence
intervals

Suppose we want to infer properties of a parameter of interest θ ∈ Θ, living
in some parameter space Θ. In the parametric domain, Θ is assumed to be
finite-dimensional. We wish to infer properties of θ from observed data, say
y = (y1, . . . , yn) ∈ Y . We view the observations yi as realisations of random
variables Yi. In the simplest case, the variables Yi are assumed to be independent
and identically distributed (i.i.d.), whose density (or mass function, if they are
discrete) will be denoted fθ(y). The combined information from the model choice
and the observed data is summarised by the likelihood function

Ln(θ) =
n∏

i=1
fθ(yi). (3.1)

However, in practice, it turns out to be easier to work with the log likelihood
function, given by

ℓn(θ) = log Ln(θ) =
n∑

i=1
log fθ(yi).

The maximum likelihood estimator θ̂ is the maximiser of either of these functions,

θ̂n = arg max
θ

L(θ) = arg max
θ

ℓ(θ). (3.2)

11



Chapter 3. Frequentist parametrics

In most cases we will simply write θ̂ = θ̂n as the number of observations in the data
is implicitly known. The maximum likelihood estimator θ̂ is widely used due to
its appealing asymptotic properties. In particular, for i.i.d. data, letting θ0 denote
the true parameter value, we have that1

√
n
(
θ̂ − θ0

)
d−→ N

(
0, I(θ0)−1

)
(3.3)

where
I(θ) = −Eθ

[
∂2

∂θ∂θ⊤ log fθ(Y )
]

is the Fisher information of the model. In the case of regression, a similar result
holds, but here, the Fisher information takes the form

In(θ) = −Eθ

[
∂2

∂θ∂θ⊤

n∑

i=1
log fθ(Yi | zi)

]
,

where z1, . . . , zn are the observed covariates. The corresponding asymptotic result
for regression then asserts that

√
n(θ̂−θ0) d−→ N(0, I(θ0)−1), where now I(θ) is the

probability limit of In(θ) as n→∞.
The convergence result (3.3) yields a natural way of constructing confidence

intervals (CIs) for parameters of interest. Indeed, let ξ = g(θ) ∈ R be a focus
parameter. Suppose we want to construct a 100(1−γ)% CI for ξ, where 0 < 1−γ <
1 is our desired confidence level. Let Φ(a) = (2π)−1/2 ∫ a

−∞ exp{−x2/2} dx denote
the standard normal cumulative distribution function (c.d.f.). Then applying the
delta method to (3.3) and appealing to functional invariance2 of the maximum
likelihood principle, we obtain

√
n
(
g(θ̂)− g(θ0)

)
d−→ N

(
0,∇g(θ0)⊤I(θ0)−1∇g(θ0)

)
.

Hence, we obtain ξ̂ ± zγ/2σ̂/
√

n as our 100(1 − γ)% CI for ξ, where zγ/2 =
Φ−1(1− γ/2) and

σ̂2 = ∇g(θ̂)I(θ̂)−1∇g(θ̂).

Example 1. Let us study the data given in Table 1.1 via a standard model in
frequentist statistics, namely probit regression. Let ϕ(a) = (2π)−1/2 exp{−a2/2}
denote the standard normal probability density function (p.d.f.). We impose the
model Yi ∼ Bernoulli(pi), independently for i = 1, . . . , n, where pi = Φ(α + βxi) =
Φ(θ⊤zi). Here, θ = (α, β)⊤ are the model parameters and zi = (1, xi)⊤ are the
covariate vectors. Hence, P(Yi = 1) = Φ(α + βxi) = 1 − P(Yi = 0). The log-
likelihood takes the form

ℓn(θ) =
n∑

i=1

{
yi log Φ(θ⊤zi) + (1− yi) log[1− Φ(θ⊤zi)]

}
,

1Strictly speaking, all convergence statements should be of the form Xn
d−→ X, where X is

the random variable in the limit, not a distribution. We shall, however, abuse notation slightly
and write statements like Xn

d−→ N(0, 1) for brevity.
2Here, functional invariance refers to the fact that under the parametrisation ξ = g(θ), the

maximum likelihood estimator for ξ is found by simply applying the function g to that of θ,
i.e. ξ̂ = g(θ̂).

12



3.1. Maximum likelihood estimation and confidence intervals

which is concave in θ, and may thus easily be optimised numerically using e.g. the
Newton–Raphson method. Doing so for the data in Table 1.1, we obtain the
estimates α̂ = −7.319 and β̂ = 6.172. In the context of binary regression,
researchers are commonly particularly interested in estimating the median of the
dosage-response curve, i.e. the value x at which we have Φ(α + βx) = 1/2.
For the probit regression model (and indeed for many other standard model
choices), this value is given by ξ = g(α, β) = −α/β. For the data in Table 1.1,
ξ̂ = −α̂/β̂ = 1.186. In Figure 3.1, we see the resulting fitted curve.

To obtain the asymptotic distribution of θ̂, we first compute the Fisher
information, which in this case takes the form

In(θ) =
n∑

i=1

ϕ(θ⊤zi)2

Φ(θ⊤zi)[1− Φ(θ⊤zi)]
ziz

⊤
i .

Given the data in Table 1.1, the asymptotic covariance of θ̂ is estimated by

V = In(θ̂)−1 =
(

11.046 −8.932
−8.932 7.266

)
.

Now, letting ξ = g(α, β) = −α/β, we have ∇g(α, β) = (−1/β, α/β2)⊤, and so the
asymptotic variance of ξ̂ is estimated by

σ̂2 = 1
β̂2

{
V11 + 2ξ̂V12 + (ξ̂)2V22

}
= 0.002.

Hence, we obtain [1.141, 1.231] as our 95% CI for ξ.

The above procedure is commonly referred to constructing CIs via the delta
method. Although this is arguably the best known method for creating generic
CIs, it should be noted that there exist other alternatives which are based on
other large-sample results than (3.3). Another highly general recipe is to instead
construct CIs via Wilks’ theorem (Wilks, 1938), the main steps of which we shall
now go through. To begin, define the profile log-likelihood ℓprof by

ℓprof(ξ) = sup {ℓ(θ) : g(θ) = ξ} .

Next, let ℓ̂ = ℓ(θ̂) to be the maximum value the log-likelihood function takes
overall, and define the deviance function D(ξ) to be twice the difference between
these two quantities, D(ξ) = 2

{
ℓ̂− ℓprof(ξ)

}
. Wilks’ theorem now asserts that,

under model conditions,
D(ξ) d−→ χ2

1,

where χ2
p denotes the chi-squared distribution with p degrees of freedom. Note that

this theorem can be interpreted as a likelihood-ratio test between the alternative
hypothesis H1 : g(θ) = ξ against the natural null hypothesis H0 : g(θ) ∈ R, and
the manifold parametrised by g(θ) = ξ reduces the dimension of the parameter
space Θ by one dimension, yielding a chi-squared distribution with a single degree
of freedom. The resulting 100(1− γ)% CI resulting from Wilks’ theorem is the set
of values ξ which satisfy D(ξ) < Γ−1(1 − γ) = z2

γ/2, where Γ denotes the c.d.f. of

13



Chapter 3. Frequentist parametrics

Figure 3.1: A fitted probit curve based on the n = 30 observations from Table 1.1.

a χ2
1 distribution. In general, this CI will be different from that obtained via the

delta method. In particular, there is no guarantee that it will be symmetric about
the maximum likelihood estimator g(θ̂).

In the case of estimating quantiles of a sensitivity curve in binary regression, a
further method still is to invoke Fieller’s theorem (Fieller, 1954), which relies on the
following observation. Suppose (α̂, β̂)⊤ is a two-dimensional normally distributed
vector with mean (α, β)⊤ and 2× 2 covariance matrix V . Letting ξ = −α/β and
ξ̂ = −α̂/β̂, we have, by properties of the normal distribution, that

ξβ̂ + α̂ ∼ N(0, V11 + 2ξV12 + ξ2V22).

Consequently,
(ξβ̂ + α̂)2

V11 + 2ξV12 + ξ2V22
∼ χ2

1. (3.4)

Hence, our 100(1− γ)% CI will be the set of values ξ satisfying (ξβ̂ + α̂)2/{V11 +
2ξV12 + ξ2V22} < Γ−1(1− γ) = z2

γ/2. Equivalently,
(
β̂2 − z2

γ/2V22
)

ξ2 + 2
(
α̂β̂ − z2

γ/2V12
)

ξ + α̂− z2
γ/2V11 < 0, (3.5)

a quadratic inequality in ξ, whose set of solutions will depend on whether the
leading coefficient is non-negative, i.e. whether the parabola described by (3.5) is
convex or concave. If β̂2 − z2

γ/2V22 < 0, then said parabola is concave, and so the
CI will either be the union of two disjoint unbounded intervals or the entire real
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3.2. Confidence curves

line. However, in most cases, it will be the case that β̂2 − zγ/2V22 > 0, and so the
CI will be a bounded interval whose endpoints can be explicitly computed as

ξ̂ + g

1− g

(
ξ̂ + V12

V22

)
± zγ/2

β̂(1− g)

√√√√V11 + 2ξ̂V12 + ξ̂2V22 − g

(
V11 −

V 2
12

V22

)
,

where g = z2
γ/2V22β̂

2 < 1. Again, this interval is in general not symmetric about
ξ̂. Note also that the interval will be empty if the expression under the radical is
negative.

It is worth pointing out that unlike the delta method, the result (3.4) is
exact, and does not rely on use of the delta method. That is, CIs obtained via
Fieller’s theorem only rely on asymptotic normality of θ̂ itself, and no further
approximations. A further interpretation of Fieller’s theorem, which is explained
in Paper IV, shows that it may be perceived as a hybrid between the delta method
and the likelihood ratio test. This connection is also explained by Schweder and
Hjort (2016). In short, if we apply the likelihood ratio test via the profile log-
likelihood after the asymptotic normality assumption has been made (rather than
using the exact log likelihood function as we do in the vanilla likelihood ratio test),
then we recover Fieller’s theorem.

3.2 Confidence curves

Having seen three different recipes for constructing CIs for a focus parameter in the
binary regression setting, we now shift our attention to confidence curves (CCs),
which provide an appealing and illuminating graphical summary of the confidence
we ought to have in different point estimates. Schweder and Hjort (2016, Chapter
4) explain CCs as a consequence of inference via confidence distributions, the study
of which may serve as a revivification of fiducial inference, as originally explored
by Fisher (1935). However, in the present thesis, we shall merely apply CCs as a
useful graphical tool for frequentist inference.

The basic idea of CCs is to plot all CIs obtained when letting the confidence
level range between 0 and 1. For a given γ ∈ (0, 1) on the y-axis, we plot the
corresponding 100(1− γ)% CI obtained on the x-axis. In doing so, we combine an
infinite collection of confidence intervals in a single plot, obtaining a cusp-like curve
(see Figure 3.2 for examples). At the nadir of a CC, where the confidence level
is nil, all CIs collapse to a single point, namely the maximum likelihood estimate.
As the confidence level increases, the CIs become wider and asymptotically cover
the entire real line, which happens at 100% confidence.

Example 2. Let us now continue our analysis of the data from Table 1.1.
Previously, we calculated a 95% CI for ξ = −α/β using the delta method. We
will now compute CCs for ξ using two of the above methods, namely the delta
method and Fieller’s theorem. Since the construction of CCs via Wilks’ theorem
is much less numerically stable, we omit it in this analysis. The curves are plotted
in Figure 3.2. This figure also illustrates how we would read off a 95% CI, using
either the delta method or Fieller’s theorem. For example, if we want to read off a
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Figure 3.2: Confidence curves for ξ via the delta method and Fieller’s theorem. Note
that, given normality, the former is approximate and the latter is exact.

95% CI using the delta method, we simply locate where the line y = 0.95 intersects
the CC constructed using the delta method. Note that doing so, we recover the
interval given previously. From Figure 3.2, we also see explicitly that Fieller’s
theorem yields asymmetric CIs, whereas the delta method does not. In particular,
the CIs derived using Fieller’s theorem are more conservative regarding their lower
bounds than those derived using the delta method. For instance, Fieller’s theorem
yields [0.857, 1.276] as its 95% CI for ξ. Simulation studies consistently show that
this is due to the delta method being over-confident, see Abdelbasit and Plackett
(1983), Cox (1990), Faraggi et al. (2003) and Sitter and Wu (1993). Paper IV
reports a simulation study specifically investigating data obtained via the Bruceton
design (1.1) and reaches similar conclusions.

16



Chapter 4

Frequentist nonparametrics

Having seen the basic recipe for plain frequentist parametric inference, at
least in the case of binary regression, we shall now explore the corresponding
nonparametric approach. The general story of nonparametric inference and
estimation techniques comprises an extremely broad literature which stretches
well beyond the scope of this thesis, so we shall focus our attention on the binary
regression setting specifically. This story began in 1955, when Ayer et al. (1955)
provided a recipe for maximising the log-likelihood

ℓn(F ) =
n∑

i=1
{yi log F (ti) + (1− yi) log[1− F (ti)]} (4.1)

over the class of all distribution functions F . For the remainder of this chapter we
shall denote this maximiser by F̂ . Since (4.1) only depends on F via the values
taken at the points t1, . . . , tn, F̂ is only unique up to the values it takes in between
these points. However, any valid solution F̂ must be a valid distribution function,
i.e. non-decreasing and right-continuous. The maximisation of (4.1) can therefore
be thought of as a maximisation problem under shape constraints. A common
choice is to insist that F̂ should be a step function (as done by Groeneboom
and Jongbloed (2014)) or to linearly interpolate between the ti (as done by
Bhattacharya and Kong (2007)).

4.1 Binary responses and censored data

In order to understand further how the discovery of Ayer et al. (1955) relates
to other nonparametric estimators, it is now time that we consider the relation
between binary regression problems and censored data. In statistics, we call an
observation censored if it takes the form of an event {T ∈ A} for some set A,
rather than an exact value, say T = t. Whenever data are censored, any inferential
procedure must take into account that the exact value of the variable of interest has
not been observed, but rather that it is only known that it has landed in the set A.
Censored data are most frequently encountered in the subject of survival analysis,
in which one aims to estimate the time it takes for a group of individuals to go
from a state 0 to another state 1 (e.g. time until death for a group of patients).
In any such study monitoring a group of patients, censoring will naturally occur.
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Indeed, for all the patients who survive the study, the time of death is by definition
not observed, and so we only know that it will occur at some point after a certain
time t. Such observations are called right censored, since the censoring set A takes
the form [t,∞).

Censoring and binary responses are naturally related in the following way.
Suppose we have made a number of measurements at the inputs t1, . . . , tn ∈ R.
Now let X1, . . . , Xn be latent i.i.d. variables, each of which distributed according to
the distribution emitted by the c.d.f. F . That is, P(Xi ≤ a) = F (a), independently
for all i = 1, . . . , n. Then if we define the variables Yi to be the binary indicators
Yi = 1{Xi ≤ ti} for i = 1, . . . , n, then we recover the binary regression model.
Indeed, defining the Yi this way yields

P(Yi = 1) = P(Xi ≤ ti) = F (ti),

as required. Hence, any binary regression problem may equivalently be interpreted
as a problem in which all observations are either left or right censored. In fact, the
title of the original article by Ayer et al. (1955) includes the phrase “incomplete
information”, referring to the fact that the observations are not exact. Three
years after this work was published, it was discovered by Kaplan and Meier (1958)
that there also exists a canonical nonparametric estimator (called the Kaplan–
Meier estimator) in the case where each of the observations is either exact or right
censored. Due to the prevalence of such data in medicine research, the Kaplan–
Meier estimator is one of the most successful and substantial inventions in all of
mathematical statistics. In the time of writing this thesis, the article by Kaplan
and Meier (1958) has been cited more than 65,000 times. A further improvement
was made by Turnbull (1974), who showed that both the nonparametric maximum
likelihood estimator by Ayer et al. (1955) and the Kaplan–Meier estimator can be
seen as special cases of a class of nonparametric estimators given censored data.

Example 3. We will now analyse the data from Table 1.1 using the nonparametric
maximum likelihood estimator. The results are plotted in Figure 4.3. Note
that both the step function and the partially linear function are equally valid
realisations of F̂ , as F̂ is only unique up to its behaviour on the intervals between
the observed values ti.

4.2 Asymptotics

We will conclude this chapter by considering the large-sample properties of
the nonparametric maximum likelihood estimator, which were first established
by Groeneboom and Wellner (1992). Like in the parametric setting, the
nonparametric estimator also exhibits asymptotic normality. However, rather
than the standard convergence rate of

√
n, like we saw in (3.3), we now get

a rate of n1/3. This behaviour is indeed typical for nonparametric estimators,
and reflects the balance between an estimator’s flexibility and efficiency. If a
parametric model is known to be true, then a parametric estimator (like the
standard maximum likelihood estimator) is nearly always guaranteed to more
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Figure 4.3: The nonparametric maximum likelihood estimator, realised either as a step
function or a partially linear function, based on the n = 30 observations from Table 1.1.

efficient than any nonparametric approach. However, parametric models may be
misspecified and are thus not as flexible as nonparametric approaches.

The main asymptotic result for F̂ is summarised by Groeneboom and
Jongbloed (2014, Theorem 3.7). We restate this theorem here.

Theorem 4.2.1. Let X1, X2, . . . be independent random variables with c.d.f. F0
and let T1, T2, . . . be independent random variables with c.d.f. G. Insist also that
these sequences are independent of each other. For all i ∈ N, let Yi = {Xi ≤ Ti}
and suppose the data observed are {(Ti, Yi)}ni=1. Let t0 ∈ R be any point such that
0 < F0(t0), G(t0) < 1. Furthermore, assume that F0 and G are both differentiable
at the point t0 and that their derivatives f0(t0) and g(t0) are strictly positive. Then

n1/3
(
F̂ (t0)− F0(t0)

)
d−→ {4F0(t0)[1− F0(t0)]f0(t0)/g(t0)}1/3 2Z

where Z follows Chernoff’s distribution. That is, Z = arg maxt{B(t)− t2}, where
B(t) is two-sided Brownian motion with B(0) = 0.

Much like the standard asymptotic theory of parametric maximum likelihood
estimation, Theorem 4.2.1 is a fascinating and remarkably general result. The fact
that such a precise statement can be made with virtually no assumptions regarding
the behaviour of the functions F0 and G apart from local differentiable is certainly
a triumphant feat. Nevertheless, the theorem has its limitations. In particular,
note that it only asserts the large-sample behaviour of F̂ (t0) in a specific point t0,
and so it does not directly yield a convergence theorem for the estimated median
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Figure 4.4: Indications of cube root asymptotics for F̂−1(1/2).

F̂ −1(1/2), for example. It is worth mentioning here that Bhattacharya and Kong
(2007) have in fact established a limiting distribution for F̂ −1(1/2), but their setup
is rather different to that of Theorem 4.2.1. Indeed, rather than assuming that the
values t1, t2, . . . are sampled i.i.d. from F0, they insist that t1, t2, . . . all take values
in a finite set of k values v1, . . . , vk, and that approximately the same number of
binary trials are performed at each of these as the total number of trials tends to
infinity. Using linear interpolation between the inputs for F̂ , they derive, under
certain regularity conditions, asymptotic normality of F̂ −1(q), for 0 < q < 1, with
a normal limit and a convergence rate of √nc, where nc is the number of binary
trials performed at the input vc closest to the true quantile F −1

0 (q). The fact that
we recover square root asymptotics here, like we saw in Chapter 3, deserves a
moment of appreciation. It seems that by insisting that the inputs all take one of
finitely many possible values v1, . . . , vk, we somehow collapse the problem back to
the parametric realm and recover square root asymptotics. This is true in a very
real sense; when there are only finitely many inputs v1, . . . , vk, the nonparametric
maximum likelihood estimation can be seen as the simultaneous estimation of the
values (F (v1), . . . , F (vk)) under the constraint that 0 ≤ F (v1) ≤ · · · ≤ F (vk).
That is, there is a natural parametric formulation of the problem (also keeping
in mind that we interpolate linearly between the values v1, . . . , vk). When the
inputs t1, t2, . . . are simply assumed to be i.i.d. samples from F0, however, as is
the case in Theorem 4.2.1, this parametric formulation fails and we are forced
to think genuinely nonparametrically, as the number of parameters of the model
grows with the number of observations.
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It would probably be possible to extend Theorem 4.2.1 to also get results for
the estimated quantiles, but as far as the author is aware, this has not been done
yet. By performing a simple simulation study, however, we can see that any such
theorem will most likely need cube root asymptotics, much like Theorem 4.2.1.
With the Xi i.i.d. from a Student’s t-distribution with three degrees of freedom
and the Ti i.i.d. from a Uniform[0, 1] distribution, we simulate samples of size
S = 3000 of the variable n1/3(F̂ −1(1/2) − F −1

0 (1/2)) for n = 100, n = 1000 and
n = 10, 000. The results of this simulation are given in Figure 4.4, in which we
clearly see that these three distributions are of similar scale. Further work is
nevertheless needed to find the limiting distribution in explicit form.
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Chapter 5

Bayesian parametrics

We shall now shift our attention to Bayesian statistics. Although everything in
the present chapter will be explained in the context of parametric models, the
concepts introduced here will also be crucial when we come to the subject of
Bayesian nonparametrics in Chapter 6.

5.1 Prior and posterior distributions

Although the differences between frequentist and Bayesian statistics may be
formulated as a philosophical problem in epistemology, the mathematical difference
between the two perspectives may be summarised as follows: In Bayesian statistics,
unknown parameters are treated as random variables, whereas in frequentist
statistics, they are not. Returning to the notation introduced in Chapter 3, let
θ ∈ Θ be a vector of parameters whose properties we want to infer, residing in a
finite-dimensional space Θ. In the next chapter, on Bayesian nonparametrics, we
shall also include the possibility of Θ being an infinite-dimensional space, such that
θ can be for example a random probability measure, or a random function. Since
the parameters θ are unknown, we treat them as a random variable, and assign to
it a probability distribution π(θ), called the prior. The word prior is used because
the distribution π(θ) reflects our believes about θ prior to having observed any
data. There is no fixed recipe for choosing π correctly, and different problems
will require different priors. When eliciting a prior distribution, however, there
are some key concepts the researcher should keep in mind. Once such concept
is that of domain expertise. Statisticians should always confer with experts to
understand what kind of behaviour of θ is reasonable to expect. Another concept
to keep in mind is whether the goal of the statistical inference is really to answer
a key question, and, if so, to make sure the prior is as neutral as possible with
respect to it. For example, if θ has [0, 1] as its domain and the key question at
hand is to infer whether θ > 0.99, then a uniform prior would be biased.

Having chosen a suitable prior π, we then observe data y = (y1, . . . , yn) ∈ Y .
The key question for the Bayesian statistician at this point is: How have our
beliefs about θ changed after having observed y? This question is answered by the
posterior distribution, π(θ | y), which conditions on the observed data. By Bayes’
theorem,
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π(θ | y) = π(θ)π(y | θ)
π(y) , (5.1)

where π(y | θ) = Ln(θ) is the likelihood function from (3.1). Since conditioning on
θ is well-defined in the Bayesian paradigm, as θ itself is a random variable, we use
the notation π(y | θ) rather than Ln(θ). The denominator π(y) =

∫
π(θ′)π(y | θ) dθ′

is called the marginal likelihood and is usually an intractable integral. As we shall
see shortly, the marginal likelihood is a key ingredient in Bayesian model selection
and model averaging, which are the main themes of Paper I and Paper II.
From (5.1) and the relation π(y) =

∫
π(θ′)π(y | θ′) dθ′, we see that the posterior

is entirely defined in terms of the prior π(θ) and the likelihood π(y | θ). Thus, in
Bayesian statistics, the specification of these two objects is collectively referred to
as the choice of a model.

Due to its intractability, direct evaluations of the marginal likelihood are
typically avoided when computing the posterior density π(θ | y). One way to do this
is to choose a conjugate prior, i.e. a prior distribution of the same functional form
(as a function of θ) as the likelihood. For example, let y1, . . . , yn | θ be independent
Poisson(θ) variables, so that

π(y | θ) =
n∏

i=1

θye−θ

y! ∝ θnȳe−nθ,

where ȳ = n−1∑n
i=1 yi. Then, as a function of θ, π(y | θ) takes the same

functional form as a Gamma density, so choose a Gamma(a, b) prior for θ, with
π(θ) = {ba/Γ(a)}θa−1e−bθ for θ ≥ 0. Then we have

π(y | θ) ∝ π(θ)× π(y | θ) ∝ θa−1e−bθ × θnȳe−nθ = θa+nȳ−1e−θ(b+n).

As this must be a normalised density, we do not need to work out the normalisation
constant, so the above forces θ | y ∼ Gamma(a + nȳ, b + n).

5.2 Markov chain Monte Carlo (MCMC)

Although conjugate priors avoid evaluations of the marginal likelihood, their use
is quite limited. Ideally, we would like to be able to carry out posterior inference
regardless of the choice of prior. This is to a large extent achieved by Markov
chain Monte Carlo (MCMC) methods, which have been a tremendous success for
the field of Bayesian statistics over the preceding half-century. The basic idea
of MCMC is to construct a Markov chain θ1, θ2, . . . (with a transition kernel not
depending on the marginal likelihood) whose long-term behaviour mimics that
of the posterior distribution. That is, the chain is ergodic and has the posterior
distribution as its stationary distribution. Although there exist many MCMC
algorithms, the simplest and one of the most versatile is the Metropolis–Hastings
algorithm (Hastings, 1970; Metropolis et al., 1953). The algorithm requires a
choice of proposal distribution q(θ′ | θs) which samples a new proposed value θ′

24



5.2. Markov chain Monte Carlo (MCMC)

given that the current state of the chain is θs at iteration s ∈ N. This proposed
value θ′ is then accepted, so that θs+1 = θ′, with probability

η(θ′ | θs) = min
{

1,
π(θ′ | y)q(θs | θ′)
π(θs | y)q(θ′ | θs)

}
.

Otherwise, θ′ is rejected and θs+1 = θs. This process is repeated to obtain a
chain θ1, θ2, . . . . The first state θ1 is usually just sampled directly from the prior,
θ1 ∼ π(θ). At first glance, it seems like the marginal likelihood is still needed, as
η(θ′ | θs) intrinsically depends on π(y) through the posterior densities. However,
upon expanding we see that

π(θ′ | y)
π(θs | y) = π(y | θ′)π(θ′)/π(y)

π(y | θs)π(θs)/π(y) = π(y | θ′)π(θ′)
π(y | θs)π(θs)

,

so that all evaluations of the marginal likelihood are bypassed. In Algorithm 1,
the full Metropolis–Hastings algorithm is given as pseudocode.

Algorithm 1 Metropolis-Hastings
Require: Sample size S
1: θ1 ∼ π(θ)
2: S ← {θ1} ▷ Initialise sample
3: for s = 1, . . . , S − 1 do
4: θ′ ∼ q(θ′ | θs) ▷ Generate proposal
5: Calculate acceptance probability

η(θ′ | θ)← π(θ′)q(θs | θ′)
π(θs)q(θ′ | θs)

6: u ∼ Uniform[0, 1]
7: if u ≤ η(θ′ | θs) then
8: θs+1 ← θ′ ▷ Accept proposal
9: else

10: θs+1 ← θs ▷ Reject proposal
11: end if
12: S ← S ∪ {θs+1} ▷ Update sample
13: end for

To explore the properties of the Metropolis–Hastings algorithm further, we
will need to describe its kernel. The kernel of a Markov chain1 θ1, θ2, . . . is the
conditional density k satisfying

P(θs+1 ∈ A | θs = θ) =
∫

A
k(θ, θ′) dθ′.

By the presence of the accept/reject step in the Metropolis–Hastings algorithm,
its kernel takes the form

k(θ, θ′) = η(θ′ | θ)q(θ′ | θ) + [1− η(θ)] δθ(θ′), (5.2)
1We are assuming here that the chain is homogeneous, so that the kernel does not depend on

which iteration the chain is at.
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where
η(θ) =

∫
η(θ′ | θ)q(θ′ | θ) dθ′

and δθ denotes the degenerate distribution with unit mass at the point θ. It
is not difficult to show that the Metropolis–Hastings kernel k satisfies detailed
balance with respect to the posterior distribution π(θ | y). That is, π(θ | y)k(θ, θ′) =
π(θ′ | y)k(θ′, θ). Indeed, the second term of (5.2) clearly satisfies this relation. For
the first term,

π(θ | y)η(θ′ | θ)q(θ′ | θ) = π(θ | y)q(θ′ | θ) min
{

1,
π(θ′ | y)q(θ | θ′)
π(θ | y)q(θ′ | θ)

}

= min {π(θ | y)q(θ′ | θ), π(θ′ | y)q(θ | θ′)}

= π(θ′ | y)q(θ | θ′) min
{

1,
π(θ | y)q(θ′ | θ)
π(θ′ | y)q(θ | θ′)

}

= π(θ′ | y)η(θ | θ′)q(θ | θ′),

as required. In order to deduce ergodicity of the chain yielded by the Metropolis–
Hastings algorithm, we also need to verify that it is aperiodic and irreducible.
The former condition is automatically guaranteed as there is always a positive
probability that the proposal is rejected and θs+1 = θs. The latter is usually
guaranteed by choosing an appropriate proposal which yields an irreducible chain
(for example, if Θ = Rp, a Gaussian proposal will always work). Hence, the ergodic
theorem for continuous-state space Markov chains applies to the Metropolis–
Hastings algorithm, with the posterior as the stationary limit distribution. In
practice, we need to run convergence diagnostics to be confident that the chain
has converged, such as verifying a low correlation in trace plots, a quick drop-
off in autocorrelation, a sufficiently large effective sample size, and similar results
across different runs of the chain with different initial states. We also delete a
small proportion of the initial states of the chain (before the chain has reached its
equilibrium), called the burn-in.

In addition to merely sampling from the posterior distribution of θ | y, the
output of an MCMC algorithm can also be used to simulate the predictive
distribution. That is, the distribution of the next point in the data sequence,
conditioned on the observations that came before. Letting y′ denote the next
outcome, we have

π(y′ | y) =
∫

Θ
π(y′ | θ)π(θ | y) dθ, (5.3)

where π(y′ | θ) is the single-observation likelihood for y′ and π(θ | y) is the
posterior. After running an MCMC algorithm, we may simulate this distribution
by generating a new observation y′ (from the observation model) given each sample
of θ in the posterior.

Example 4. We return to the data from Table 1.1. In the Bayesian framework,
we use the same probit model as in Example 1, but we also impose independent
Uniform[−20, 20] priors for α and β. Running the Metropolis–Hastings algorithm
with a Gaussian proposal (with scale σ = 0.1) for S = 107 iterations and a burn-
in rate of 5%, we obtain the posterior densities of α, β and ξ = −α/β drawn
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5.2. Markov chain Monte Carlo (MCMC)

Figure 5.5: Posterior densities of α, β and ξ = −α/β given the n = 30 observations from
Table 1.1.

in Figure 5.5. Standard convergence diagnostics tools indicate that the MCMC
algorithm has converged, with an effective sample size of more than 1000 for both α
and β. Note how the posterior distributions peak around the maximum likelihood
estimates obtained in the frequentist analysis from Chapter 3. In Figure 5.6, we
see the predictive mean of the probit model, along with a 95% credibility band,
obtained empirically from the MCMC output.

The fact that the distributions in the above example look like normal
distributions is no coincidence. In fact, this alludes to one of the major theorems
of Bayesian statistics, namely the Bernstein–von Mises theorem. Letting θ0 denote
the true parameter value, this asserts that under mild regularity conditions, we
have that

√
n(θ − θ̂) | y d−→ N(0, I(θ0)−1),

in probability (where “in probability” in this case refers to the distribution of the
data sequence y1, y2, . . . ). Hence, the Bernstein–von Mises provides a mirroring
story to the asymptotic normality result in the frequentist case that we saw earlier
in Chapter 3. Hence, when working within a fixed model, there is asymptotic
agreement between the frequentist and the Bayesian statistician, and the prior
information is “washed out” as the number of observations increases.
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Figure 5.6: The predictive distribution of the next outcome given the n = 30 observations
from Table 1.1.

5.3 Bayesian model comparison

The Bayesian inferential procedure outlined so far has all taken place within a
single model choice. That is, only a single prior π(θ) and observation model
π(y | θ) are under consideration. Within this realm of Bayesian statistics, the
Bernstein–von Mises theorem asserts agreement between the frequentist and
Bayesian points of view. However, the frequentist and Bayesian stories begin to
diverge significantly once we consider multiple models, either for model selection
or model averaging. Although it is possible to consider infinite ensembles of
models simultaneously, we shall restrict ourselves to the situation in which there
are k models under consideration. We introduce a new parameter m, residing
in the model space M = {1, . . . , k}, deciding which model under which to
work. Now, m is an unknown parameter, and is therefore treated as a random
variable in the Bayesian framework. This involves choosing prior probabilities
pj = P(m = j) for j = 1, . . . , k. Having chosen a model m, we condition on m
in the remainder of the inferential pipeline. That is, the within-model prior takes
the form πj(θj) = π(θj |m = j), with θj ∈ Θj, for j = 1, . . . , k. Likewise, the
within-model likelihood is πj(y | θj) = π(y | θj, m = j) for j = 1, . . . , k. By the law
of total probability, the full model-averaged prior for θ is given by

π(θ) =
k∑

j=1
pjπj(θj),
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a mixture of the within-model priors. By Bayes’ theorem, the posterior probability
p⋆j for model j is given by

p⋆j = P(m = j | y) = pjπj(y)
π(y) ,

where
πj(y) =

∫

Θj

πj(θ)πj(y | θj) dθj

is the within-model marginal likelihood and

π(y) =
k∑

j=1
pjπj(y)

is the full model-averaged marginal likelihood.
The above calculations have a series of interesting consequences. First of all,

it illustrates how model selection and/or averaging in the Bayesian framework
is mathematically equivalent to two levels of posterior inference. For this
reason, MacKay (1992) refers to within-model and across-model inference as the
first and second levels of inference, respectively. One can ask what the point
of such a distinction would be, as the two levels seem quite similar, purely
mathematically speaking. The distinction is useful because unlike in the first
level of inference, the second level is fundamentally different in the Bayesian and
frequentist perspectives. Indeed, unlike the asymptotic equivalence of maximum
likelihood estimation and posterior inference due to the Bernstein-von Mises
theorem, it is precisely in tasks such as model comparison and hypothesis testing
that there is a critical distinction between Bayesian and frequentist statistics. For
instance, in the Bayesian perspective, model comparison and hypothesis testing
are mathematically equivalent procedures, and by choosing a uniform prior for the
models, pj = 1/k, the statistician can be neutral in the prior. This is not possible
in frequentist hypothesis testing, where a null hypothesis must be chosen.

The preceding derivations also show how the dichotomy between model
selection and model averaging naturally arises in Bayesian statistics. In terms
of the posterior model probabilities, model selection corresponds to choosing the
model with the larges value p⋆j , whereas model averaging corresponds to weighting
the different models under consideration by their posterior model probabilities
p⋆j . The pros and cons of model selection versus model averaging deserves a
mention. It is well-established in the machine learning literature that model
averaging, usually referred to as ensembling, increases predictive accuracy. That is,
a suitably weighted average of multiple trained models nearly always outperforms
any single model, in terms of minimising the objective loss. However, this increase
in predictive accuracy usually comes at the cost of reducing interpretability. To see
why this is the case, consider a simple scenario in which physicists want to know
whether there is a linear relationship between two parameters x and y of interest,
say y = ax + b. They have gathered data {(xi, yi)}ni=1 and want to compare the
constant model y = const (in which there is no linear relationship present) versus
the linear model y = ax + b. With a neutral prior on these two model choices, the
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posterior model probabilities come out as 0.1 and 0.9 for the constant and linear
models, respectively. Although the average of these two models can be shown to
have better predictive accuracy, it is of little use to the physicists to know that
90% of the time, there is a linear relationship present, and 10% of the time, there is
not. In this scenario, the prime motivation is not just to predict future outcomes,
but also to interpret the results. Therefore, model selection is more useful, thus
asserting a linear relationship, which had the larger posterior model probability,
after all. The compromise between accuracy and interpretability is still a vital
topic for the interplay between statistics and machine learning and has been ever
since it was so pertinently addressed by Breiman (2001).

Finally, the aforementioned derivations tell us that the marginal likelihood
is the main ingredient for all Bayesian model comparison. Accurate estimation of
the marginal likelihood is therefore a crucial topic in Bayesian statistics. Although
particular strategies exist when the mathematical elements involved are sufficiently
well-behaved, there is no general recipe. This is in contrast to how MCMC serves
as a nearly universal recipe for posterior inference.

Let us conclude this chapter by considering two methods for estimating the
marginal likelihood. Both of these appear in Paper II as benchmark approaches.
The first, called the naive approach, is given by

π̂naive(y) = 1
S

S∑

s=1
π(y | θ(s)), (5.4)

where θ(1), . . . , θ(S) ∼ π(θ), independently. By noting that

Eθ[π(y | θ)] =
∫

Θ
π(y | θ)π(θ) dθ = π(y),

we see that π̂naive(y) is unbiased, and therefore, by the law of large numbers,
consistent. However, it is rarely used in practice, as it is relatively unstable, which
manifests in practice as a large variance. Its instability can be understood in
loose terms by considering how the prior distribution and the likelihood function
typically distribute their densities. In most applications, the prior π(θ) is relatively
flat, covering a large space. In contrast, the likelihood π(y | θ) (here thought of as
a function of θ), is typically close to zero in nearly all parameter space except for
a small region of large contribution. Thus, when sampling independently from the
prior, which is the case in the naive estimator, the few samples which land in the
region of large likelihood-contribution will tend to dominate the sum in (5.4).

Although many different estimators of the marginal likelihood have been
proposed in the literature, we shall consider a simple alternative by Meng and
Wong (1996). This particular estimator is a near-optimal choice amongst a family
of estimators (with respect to a certain optimisation criterion), called bridge
estimators. It takes the form

π̂bridge(y) =
∑S

s=1 π(y | θ(s,1))1/2
∑S

s=1 π(y | θ(s,2))−1/2 , (5.5)

where the samples in the numerator and denominator are drawn independently
from the prior π(θ) and the posterior π(θ | y), respectively. Note that unlike the
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naive estimator, π̂bridge(y) depends on a posterior sample (usually generated using
MCMC).

Let us conclude by verifying that π̂bridge(y) is indeed a sensible estimator for
the marginal likelihood. We do this by taking the estimator of the numerator and
denominator of (5.5) separately and verify that we recover π(y). Expanding the
denominator, we have

Eθ | y
[
π(y | θ)−1/2

]
=
∫

Θ
π(y | θ)−1/2π(θ | y) dθ

=
∫

Θ
π(y | θ)−1/2 π(y | θ)π(θ)

π(y) dθ

= 1
π(y)

∫

Θ
π(y | θ)1/2π(θ) dθ

= 1
π(y)Eθ

[
π(y | θ)1/2

]
,

as required.
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Chapter 6

Bayesian nonparametrics

We now turn to the last of our four approaches to statistical inference
under consideration, namely Bayesian nonparametrics. Although there existed
antecedent ideas of nonparametric constructions within Bayesian inference already
in the 1960s, the subject firmly came to life with the introduction of Dirichlet
processes by Ferguson (1973). Before defining Dirichlet processes and examining
some of their elementary properties, let us spend a moment thinking through
what desiderata we would have for a Bayesian nonparametric process. Suppose
we have observed data y = (y1, . . . , yn), and we model these as i.i.d. observations
y1, . . . , yn |P ∼ P , where P is some probability measure inducing the distribution
of the yi. That is, P(yi ∈ A) = P (A) for all measurable sets A. As Bayesian
statisticians, we would like to treat P itself as a random object, and associate a
prior process to it. Rather than restricting P to a specific parametric form, as
we did in Chapter 5, we would now like to impose a prior process on the entire
space of random probability measures. What properties would we desire that such
a distribution should have? Ferguson puts forth two criteria, summarised here as
follows:

1. Large support: The prior process must be able to cover a wide range of
possible probability measures. That is, given a certain probability measure
Q, the process must, with positive probability, be able to generate measures
arbitrarily close to Q (measured by some appropriate metric).

2. Tractable updating theorems: The process must have a tractable
posterior form. That is, the process for P | y should be available in closed
form.

At first glance, these two desiderata look reasonable. Indeed, if the first criterion is
not met, then we might as well restrict ourselves to the parametric regime, which
is known to be more efficient than the nonparametric (see e.g. Miller Jr (1983)
and the introduction to Doss (1994)). The latter criterion also has merit, since a
process is of little use unless we are actually able to carry out posterior inference
with it. However, with the advent of modern MCMC algorithms (see Chapter 5),
it is possible to simulate posteriors which are not mathematically available in
closed form. Hence, the original requirement of explicit posteriors, although
highly reasonable in 1973, is arguably too restrictive and has thus de facto been
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replaced by a weaker requirement, namely that it should be possible to simulate
the posterior process. Indeed, in recent papers introducing new nonparametric
processes, inference is usually taken care of by means of an MCMC algorithm
(Hjort and Walker, 2009; Lijoi et al., 2020).

6.1 Dirichlet processes

Having briefly discussed what properties we would want a nonparametric process
to possess, let us shift our attention to the definition of Dirichlet processes. First,
recall that the k-dimensional Dirichlet distribution Dir(a1, . . . , ak) with parameters
a1, . . . , ak > 0 emits the density

f(x1, . . . , xk; a1, . . . , ak) = Γ(a1 + · · ·+ ak)∏k
j=1 Γ(aj)

k∏

j=1
x
aj−1
j , for (x1, . . . , xk) ∈ ∆k,

where ∆k = {(x1, . . . , xk) ∈ Rk : ∑k
j=1 xj = 1, xj ≥ 0 for j = 1, . . . , k} is the

standard k-simplex. Due to the restriction imposed by ∑k
j=1 xj = 1, the k-Dirichlet

distribution is really determined by the first k − 1 coordinates x1, . . . , xk−1, since
we can uniquely recover xk = 1− x1 − · · · − xk−1.

We are now ready to define Dirichlet processes. Let (Ω,F) be a measurable
space, let P0 be a fixed probability measure on (Ω,F) and let a > 0. We say that
a random probability measure P is distributed according to a Dirichlet process
with base measure P0 and concentration parameter a if, for all finite measurable
partitions1 A1, . . . , Ak of Ω, we have that

(P (A1), . . . , P (Ak)) ∼ Dir(aP0(A1), . . . , aP0(Ak)). (6.1)

When this is the case, we write P ∼ Dir(aP0). Ferguson (1973) proves that
Dirichlet processes indeed exist (meaning, they are uniquely determined by the
property (6.1)) and that they have large support.

Let us consider the simplest possible partition {A, Ω\A} with the aim of gaining
some intuition as to how the base measure P0 and the concentration parameter a
ought to be interpreted. By (6.1), the random variable P (A) is a random variable
following a Beta(aP0(A), a(1− P0(A))) distribution, so that

EP (A) = P0(A), Var P (A) = 1
a + 1P0(A)(1− P0(A)),

which tells us two things: (i) our prior guess for P is in fact P0, and (ii) a reflects
our confidence in this belief. That is, a large value of a corresponds to high
confidence in the prior mean P0.

In light of the aforementioned criterion 2, Ferguson proves the following result:

1Recall that a partition of a set is a collection of non-empty disjoint subsets whose union is
the whole set.
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Theorem 6.1.1. Let P ∼ Dir(aP0) and let y1, . . . , yn |P ∼ P¸ independently.
Then

P | y1, . . . , yn ∼ Dir(aP0 +
n∑

i=1
δyi),

where δy denotes the degenerate distribution with all its mass at the point y.

This theorem is indeed highly elegant, as it is able to classify the entire
behaviour of the posterior process in a single equation. It essentially tells us
that the Dirichlet process is the conjugate prior for the nonparametric observation
model y1, . . . , yn |P ∼ P . Due to the simplicity of the expression obtained
in Theorem 6.1.1, we are able to derive properties of the posterior process
straightaway. For instance, it follows directly that

P̂ (A) = E[P (A) | y1, . . . , yn] = a

a + n
P0(A) + 1

a + n

n∑

i=1
1{yi ∈ A},

from which we see that the prior guess P0 will carry less and less weight as the
sample size increases, and the empirical rate (1/n)∑n

i=1 1{yi ∈ A} will dominate.
Further, we have

Var (P (A) | y1, . . . , yn) = 1
a + n + 1 P̂ (A)

(
1− P̂ (A)

)
→ 0

as n→∞, so that the posterior variance decreases with the sample size.

6.2 Stick-breaking

Before we look at how a nonparametric process such as the Dirichlet process
can be used to model a distribution from binary data, we will look at one
more fundamental property of the Dirichlet process, namely its stick-breaking
representation. Let ξ1, ξ2, · · · ∼ P0 independently, let B1, B2, · · · ∼ Beta(1, a)
independently and define

W1 = B1, W2 = (1−B1)B2, W3 = (1−B1)(1−B2)B3, . . .

Then ∞∑

j=1
Wjδξj ∼ Dir(aP0) almost surely. (6.2)

This result has an immediate consequence, namely that if P ∼ Dir(aP0), then P is
almost surely discrete, even if P0 induces a continuous distribution. Furthermore,
stick-breaking has been very useful in the development of simulation techniques
for more complicated models based on the Dirichlet process, such as Dirichlet
process mixture models, commonly abbreviated DPMMs (Kalli et al., 2009;
Walker, 2007). The same holds for situations in which we have censored data,
of which binary outcomes are a special case, as we recall from Chapter 4. Doss
(1994) derived an MCMC algorithm for posterior inference for a Dirichlet process
prior given censored data in which the stick-breaking representation is repeatedly
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invoked. Let us briefly go through the mechanisms of this technique. Let
P ∼ Dir(aP0) and X1, . . . , Xn |P ∼ P independently. We model the binary
outcomes y1, . . . , yn given inputs t1, . . . , tn as realisations of binary indicators of
the form Yi = 1{Xi ≤ ti}. From our discussion regarding the connection between
binary outcomes and censored data from Chapter 4, we know that this is equivalent
to not observing the Xi directly, but only that Xi ∈ Ai, where Ai = (−∞, ti]
if yi = 1 and Ai = (ti,∞) if yi = 0. Hence, posterior inference amounts to
simulating the process P | {X1 ∈ A1, . . . , Xn ∈ An}, rather than the standard
form P | {X1 = x1, . . . , Xn = xn}. The algorithm by Doss (1994) achieves this by
alternating between the two following steps:

1. Sample X1, . . . , Xn |P ∼ P independently, conditioned on X1 ∈
A1, . . . , Xn ∈ An,

2. Sample P |X1, . . . , Xn ∼ Dir(aP0 +∑n
i=1 Xi),

The stick-breaking representation is used in the second step. In practice, it is
not possible to simulate infinitely many variables B1, B2, . . . or ξ1, ξ2, . . . , and
therefore, for most applications, we have to use a finite truncation of the stick
breaking representation, say

P ≈
K∑

j=1
W̃jδξj ,

for some large number K, where W̃j = Wj/
∑K

j=1 Wj. How large K should be
chosen depends on the problem at hand, but naturally, we want that ∑K

j=1 Wj is
close to 1. However, by cleverly treating K as a random variable, Doss (1994) is
able to carry out the above steps exactly, with no approximations.

Example 5. Let us return to the dataset from Table 1.1 one final time where
we impose a Dirichlet process prior on the sensitivity distribution. The base
measure is chosen to be uniform between the minimum and maximum of the
ti, i.e. Uniform[1.05, 1.55], and the concentration parameter is a = 1.0. Using
the successive substitution sampling algorithm by Doss (1994) with M = 500
iterations, we obtain the posterior distribution drawn in Figure 6.7. Here, we
see both the prior and posterior means and realisations from both processes. By
inspection, we see that the posterior variance is reduced.

6.3 Model comparison in Bayesian nonparametrics

We conclude this section, and thus the entire exploration of approaches to
statistical inference for binary data models, with a discussion about computation of
marginal likelihoods in Bayesian nonparametrics. Let proc denote a nonparametric
process for generating a random probability distribution (e.g. a Dirichlet process).
To avoid too much generality, let us restrict ourselves to cases like binary response
models, where the marginal likelihood takes the form of a probability, P(X1 ∈
A1, . . . , Xn ∈ An), where X1, . . . , Xn |P ∼ P independently and P ∼ proc. We
will first look at how this can be achieved when the generating process proc yields a
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Figure 6.7: Prior and posterior Dirichlet processes based on the n = 30 observations from
Table 1.1.

stick-breaking representation for P , like we saw for the Dirichlet process. Although
the following construction essentially extends to any process with a stick-breaking
representation (Gil-Leyva and Mena, 2023; Hjort, 1990; Paisley et al., 2010), we
shall focus on the expression (6.2). To employ this in practice, we have to use
a finite truncation as mentioned above, say P ≈ ∑K

j=1 W̃jδξj . Employing this
truncation and conditioning on P , we have

P(X1 ∈ A1, . . . , Xn ∈ An |P ) =
n∏

i=1
P (Ai) =

n∏

i=1

∑

j:ξj∈Ai

W̃j.

Hence, we obtain the following estimator for the marginal likelihood,

P̂stick = 1
S

S∑

s=1

n∏

i=1

∑

j:ξ(s)j ∈Ai

W̃
(s)
j , (6.3)

where ξ
(s)
j and W̃

(s)
j are generated as described above for ξj and W̃j, independently

for s = 1, . . . , S.
Although (6.3) is a useful alternative when stick-breaking is available, it cannot

be applied when P does not have such a representation. Let us finally briefly
discuss the challenge of estimating marginal likelihoods for generic nonparametric
processes. Since we wish to estimate a probability, namely P(X1 ∈ A1, . . . , Xn ∈
An), where Xi |P ∼ P independently for i = 1, . . . , n and P ∼ proc, the first
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and most naive approach would be to estimate it simply using frequencies of these
events,

P̂ = 1
S

S∑

s=1
1{X(s)

1 ∈ A1, . . . , X
(s)
1 ∈ An},

where X
(s)
1 , . . . , X(s)

n |P (s) ∼ P (s) independently and P (s) ∼ proc, independently
for s = 1, . . . , S. Although this estimator unbiased and strongly consistent, it
is unfortunately useless in practice. This is because even for moderately large
n (≥ 50, say), we will never experience that X

(s)
1 ∈ A1, . . . , X(s)

n ∈ An when
computing P̂. This estimator will thus always return zero. The main topic
of Paper I and Paper II is to remedy this problem by exploiting that when
X1, . . . , Xn |P ∼ P , the Xi are exchangeable, meaning that the distribution of
the vector (X1, . . . , Xn) is invariant under permuting its components. That is,
the distribution of X1, . . . , Xn does not depend on the ordering of the sequence
X1, . . . , Xn. This allows us to loosen the criterion X

(s)
1 ∈ A1, . . . , X(s)

n ∈ An,
effectively turning the rejection sampling algorithm yielding P̂ into an importance
sampling algorithm, where the importance weights are computed by counting a
certain number of permutations.
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Paper summaries

7.1 Paper I

Christensen, D. Inference for Bayesian nonparametric models with binary response
data via permutation counting. Bayesian Analysis 19, 293–318, 2024. DOI:
10.1214/22-BA1353

This paper’s primary concern is the problem of estimating the marginal likelihood
of a Bayesian nonparametric model given binary response data. In the article,
we introduce the idea of permutation counting, which is a new importance
sampling technique specifically aimed at this task. Let P ∼ proc be a
random probability distribution, modelled to generate the latent random variables,
i.e. X1, . . . , Xn |P ∼ P , independently. As we saw in the end of Chapter 6, it is, in
general, not possible to estimate the marginal likelihood simply by generating
from the observation model and counting frequencies of events. However, by
exploiting the symmetry introduced by exchangeability of the sequence X1, X2, . . . ,
this approach can be modified to yield an estimator that actually works in
practice. In the notation of Chapter 6, let X = (X1, . . . , Xn) ∈ Rn and let1

A = A1 × · · · ×An ⊂ Rn. Letting Sn denote the group2 of n-permutations, define
the permutation number of X with respect to A by

w(X; A) = #{σ ∈ Sn : σ(X) ∈ A},

where σ(X) = (Xσ(1), . . . , Xσ(n)). That is, w(X; A) is the number of permutations
σ with the property that when we permute the components of X according to σ,
we end up in the set A. In the paper, it is shown that Ew(X; A) = n! × P(X1 ∈
A1, . . . , Xn ∈ An), thus yielding the modified estimator

P̂perm = 1
S

S∑

s=1

1
n!w(X(s), A), (7.1)

where X
(s)
1 , . . . , X(s)

n |P (s) independently and P (s) ∼ proc, independently for
s = 1, . . . , S. Note that this modified estimator only requires that it is possible to

1In Paper I, the symbol B is used rather than A.
2Recall that an n-permutation is a bijection from the set {1, . . . , n} to itself, and that the set

of such permutations forms a group under functional composition.
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generate a sample X1, . . . , Xn |P ∼ P . In particular, it does not rely on properties
of the Dirichlet process or require a stick-breaking representation. It is proved
that the variance of P̂perm is smaller than that of the naive frequency counting
estimator.

Via simulations and real data problems, it is, perhaps even more importantly,
illustrated that P̂perm works in practice. Namely, even for large values of n,
there is a sufficiently large proportion of contributing terms in (7.1) and that the
importance weights w(X(s); A)/n! are reasonably balanced, so that the estimator
is able to obtain accurate results with a large effective sample size.

Regarding actually computing permutation numbers, it is shown that these
can be represented as permanents of a certain class of binary matrices. Although
the problem of computing permanents is in general #P-complete, it is proved
that the permanents arising in the specific context of the paper are computable
in polynomial time. This is done by exhibiting an explicit algorithm, an
implementation of which is available at the paper’s accompanying Github
repository.

The new estimator is applied in two problems: the first is a nonparametric
bioassay benchmark problem with a Dirichlet process prior. Here, other methods,
namely those explained in Chapter 6, are available, and it is shown that
permutation counting performs as well as existing methods. In the second problem,
real rubella seroprevalence data are analysed using a Pitman–Yor multinomial
process.

7.2 Paper II

Christensen, D.; Moen, P. A. J. perms: Likelihood-free estimation of marginal
likelihoods for binary response data in Python and R. Submitted for publication,
2024.

This paper presents a software implementation of permutation counting,
introduced in Paper I. The software, titled perms, is written in the programming
language C and implemented both as an R package and a Python library. The
paper goes through the extensive optimisation efforts made in the writing of the
software, and how this translates to efficiency in practice. Unlike the computer
code used for the examples in Paper I, perms is able to handle datasets of
magnitude up to a few thousand, rather than a few hundred. In addition, perms
is easier to use, with minimal effort required by the user of the software.

After going through the idea of permutation counting and the importance
sampling technique introduced in Paper I, the article shows how perms is used
in practice by considering a tractable toy problem. This is done independently
in both R and Python, with replicable code given for both. The paper then
moves on to more realistic applications. First, the marginal likelihood of a
Bayesian multivariate logistic regression model is estimated using perms, and its
performance is compared with existing methods. Next, a larger data problem is
considered, in which the marginal likelihood of a nonparametric bioassay model
with a Dirichlet process prior is estimated using perms and stick-breaking as
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outlined in Chapter 6. Although perms requires neither a tractable likelihood
function nor a stick-breaking representation, these examples are included to
compare the accuracy and computational cost of perms with alternative methods.
In both problems, perms achieves the same accuracy as the state of the art
alternatives with the same number of samples. However, perms is slower, which
alludes to a natural trade-off between flexibility and computational cost.

Next, the computational details of the software are presented, and the
techniques used to increase computational speed are summarised. In particular,
it is explained how perms exploits sparsity of the data structures arising in the
computation of permutation numbers. A simulation study comparing perms with
the Python implementation accompanying Paper I is presented, where it is shown
that perms is substantially faster. This has the consequence that perms is able to
handle more complicated problems with larger datasets, and an example of such
a problem, namely a novel Bayesian nonparametric changepoint analysis task, is
solved using perms in the conclusion of the paper.

7.3 Paper III

Jensen, T. L.; Moxnes, J. F.; Unneberg, E.; Christensen, D. Models for
predicting impact sensitivity of energetic materials based on the trigger linkage
hypothesis and Arrhenius kinetics. Journal of Molecular Modeling 26, 2020. DOI:
10.1007/s00894-019-4269-z

This paper considers models for predicting impact sensitivity of energetic materials
from quantum chemical properties. Under the trigger linkage hypothesis, which
asserts that the decomposition of an energetic material is initiated by breaking the
weakest bond. In the compounds considered in the article, this weakest bond is an
A–NO2 bond, where A denotes either a carbon, a nitrogen or an oxygen atom. By
Arrhenius’ theory of kinetics, the rate of reaction r is then related to the activation
energy Ea (i.e. the energy required to convert the reactant to the transition state)
by

r = c[A− NO2]n exp
(
− Ea

RT

)
,

where [A− NO2] is the molar concentration of A− NO2, c is a proportionality
constant (the pre-exponential factor), n is the reaction order, R is the molar gas
constant and T is the absolute temperature. Motivated by the fact that r has
been documented to correlate with impact sensitivity, and, working on a log scale,
we model3 ξ and log r to be inversely proportional. Here, ξ is the median of the
sensitivity curve (on a log scale), commonly referred to as h50 in the literature.
In doing so, we obtain the basis for the models under consideration in the paper,
namely

ξ = a + b
Ea

T
,

where a and b are the parameters of the model, to be estimated from data.
Unfortunately, it is both difficult and time consuming to calculate Ea and T

3In the notation used in the article, we have ξ = log I.
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directly. Therefore, the article considers a selection of techniques of approximating
these.

The most successful approach is to approximate Ea by the bond dissociation
energy (BDE) and T by the detonation temperature Tex. Here, the BDE is the
energy required to break the trigger-linkage. It is worth noting that the BDE and
Ea will coincide if the energy increases monotonically as the bond is broken.

Three families of molecules are considered in the paper: nitroaromatics,
nitramines and nitrate esters. For the former family, the aforementioned model
ξ = a + b(BDE/Tex) gives a good fit, with a coefficient of determination (R2) of
0.81. The model is used to predict the impact sensitivity of 1,3,5-triamino-2,4,6-
trinitrobenzene (TATB), whose impact sensitivity is only bounded above in the
existing literature. For nitramines, the fit is not as good, alluding to the fact that
other parameters than BDE and temperature of detonation are required to predict
impact sensitivity accurately for these compounds. For the nitrate esters, we get a
very good fit, but this analysis is only based on seven data points and is therefore
of limited value.

All regression analysis in the paper is done twice: both in a frequentist and
Bayesian framework. This is of particular use in the aforementioned nitrate esters
regression, in which the frequentist analysis yields a significant linear relationship
(p = 0.003), but when Bayesian model comparison is employed, a constant model
is preferred. This illustrates how model complexity is automatically penalised in
the Bayesian framework, a phenomenon sometimes called the Occam’s razor of
Bayesian inference.

7.4 Paper IV

Christensen, D.; Unneberg, E.; Høyheim, E.; Jensen, T. L.; Hjort, N. L. Improved
measurements of impact sensitivities of energetic materials. In Proceedings of the
25th International Seminar on New Trends in Research of Energetic Materials
(NTREM), Institute of Energetic Materials, University of Pardubice, Czechia,
2023.

The main issue this paper addresses is how one should construct confidence
intervals (CIs) for quantiles of an impact sensitivity curve under the probit model
when employing the Bruceton design. The three main alternatives are via the
delta method, via the likelihood ratio test and via Fieller’s theorem, as explained
in Chapter 3. This question is dealt with via simulations, where the step size is
varied and different values of the sample size n are considered. The quality of the
three aforementioned approaches to constructing CIs are compared by means of
their empirical coverage probabilities. The simulations consistently show that the
delta method is the poorest performing method, and that Fieller’s theorem yields
the best performance overall.

In the simulations conducted in the paper, CIs for both h50 = ξ and h99 are
considered. Comparing the results achieved with a sample size of n = 30 and
n = 100, it is concluded that n = 30 is insufficient to achieve any useful results
for h99. It is, however, concluded that n = 30 measurements suffice if one is
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only interested in constructing a CI for h50, as these perform rather well in the
simulations. It is important to keep in mind that all of these results assume that
the probit model is correct.

In addition to computing CIs, the article introduces the idea of confidence
curves (CCs), which were discussed in Section 3.2. Based on experiments
conducted at FFI, the CCs for h50 and h99 for cyclotetramethylene-tetranitramine
(HMX) are drawn. These plots are rather instructive, as they explicitly show how
Fieller’s theorem can yield non-central CIs, and that the CIs for h99 are much
wider than those for h50.

7.5 Paper V

Christensen, D.; Stoltenberg, E. A.; Hjort, N. L. Sequential experimental designs in
regression: Theory for the Bruceton and Langlie designs. Submitted for publication,
2023.

Motivated by the simulations conducted in Paper IV, this article formally verifies
asymptotic normality of the maximum likelihood estimator when a sequential
design like the Bruceton design is employed. When this is the case, the
covariate sequence4 X1, X2, . . . is a stochastic process, and the standard theory
for i.i.d. regression does not apply. Letting fθ(y |x) denote the regression model,
parametrised by θ, we assume that the covariate sequence X1, X2, . . . is chosen via
a sequential experimental design for the form

Xi = h({Xj, Yj}1≤j≤i−1),

so that the ith measurement Xi is allowed to depend on the data obtained up
to that point. The asymptotic properties of one such design, namely the famous
Robbins–Monro procedure, has been studied extensively, but nearly all the results
for this design rely the covariate sequence converging in probability to the target
of interest. In the Bruceton design and many other designs alike, this is not the
case, and so a separate theory must be developed.

Letting θ0 denote the true parameter value, the sequential design implies that
the variables

Jn = − 1
n

n∑

i=1
E
[

∂2 log fθ0(Yi |Xi)
∂θ0∂θ⊤

0

∣∣∣∣∣Xi

]

are not i.i.d. The paper therefore uses martingale theory to establish a large-sample
result of the form √

n(θ − θ0) d−→ N(0, J−1),
where J is the probability limit of Jn. This theorem requires the sequential design
function h to be chosen such that the sequence Jn behaves sufficiently well. In
particular, we require that the process Jn converges in probability to an invertible
matrix J .

4We use the notation of the paper here, where X1, X2, . . . denotes the sequence of covariates.
This is different from the notation of the preceding chapters, in which the notation t1, t2, . . . was
used.
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The second half of the article is to verify explicitly that Jn converges in the
Bruceton design and in a Markovian version of the Langlie design. By appealing
to Markov chain theory, it is proved that the process X1, X2, . . . is ergodic, which
in this sense implies that any empirical average of the form (1/n)∑n

i=1 g(Xi)
converges in probability, provided g is bounded. In particular, this means that
Jn converges in probability in the cases of logistic and probit regression. For the
Bruceton design, this result is proved straight forwardly via discrete state space
Markov chain theory (namely via Foster’s theorem). For the Markovian version of
the Langlie design, the kernel is chosen to be continuous to ensure irreducibility
of the chain, and so arguments from continuous state-space Markov chain theory
are applied. More specifically, ergodicity of the chain is proved by establishing
Harris recurrence, which again is verified by exhibiting a petite recurrent set. A
key component of the proof is to appeal to compactness of the state space [0, 1] of
the Langlie design.

7.6 Paper VI

Christensen, D.; Novik, G. P.; Unneberg, E. Estimating sensitivity with the
Bruceton method: Setting the record straight. Submitted for publication, 2024.

The main purpose of this paper is to clear up many of the misconceptions
persisting in the energetic materials industry regarding how sensitivity estimates
are to be obtained when employing the Bruceton design. The source of this
confusion stems from the fact that in the original article by Dixon and Mood
(1948) in which the Bruceton design is first introduced, an approximation
scheme for computing the maximum likelihood estimates is also proposed. Only
requiring pen-and-paper calculations, this approximation was indeed useful in
1948. However, as the Bruceton design has been adapted by NATO for research
involving sensitivity testing, so has the approximation been adapted, even though
nowadays, the maximum likelihood estimates can easily be computed using
standard spreadsheet software like Microsoft Excel or virtually any general purpose
programming language, like R or Python. As Dixon and Mood (1948) explain,
their approximation depends on certain numerical criteria being satisfied by the
data obtained, and its use should be avoided when these are not satisfied. This
has, however, led to the unfortunate situation that many researchers believe their
results are somehow “not valid”, when really it is only the use of the 1948
approximation that is invalid. Thus, perfectly useful datasets (for which the
maximum likelihood estimates exist and can be computed) are often discarded.

To examine how often the approximation does not apply even though the
maximum likelihood estimates exist, a simulation study is performed. Here,
it is found that a substantial proportion of the datasets generated are deemed
“not valid” by said approximation, even in cases where the maximum likelihood
estimates exist for nearly 100% of these datasets. In particular, a small choice of
the step size d seems to decrease the probability of the approximation being valid,
even though there is no such negative effect on the existence of the maximum
likelihood estimates.
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To illustrate further the information lost by applying the 1948 approximation,
five datasets from Paper VII are analysed using it. All of them are deemed as
“not valid” and should be, according to NATO’s guidelines (called STANAGs) on
the matter, discarded. It is worth pointing out that some of these datasets contain
as many as n = 70 measurements.

The paper also criticises that there are no instructions on how to create
confidence intervals in the STANAGs, and consequently, how little attention is paid
to the construction of confidence intervals in the energetic materials literature. The
paper summarises the theoretical foundations laid in Paper V and the simulation
studies from Paper IV, providing advice on how researchers should construct
confidence intervals in sensitivity experiments.

7.7 Paper VII

Novik, G. P.; Christensen, D. Increased impact sensitivity in ageing high
explosives; analysis of Amatol extracted from explosive remnants of war. Accepted
for publication in Royal Society Open Science, 2024.

This paper reports the results of experiments measuring the impact sensitivity
of amatol extracted from explosive remnants of war. A mixture of TNT and
ammonium nitrate, amatol was developed by the British during World War I in
response to a shortage of shortage of munition shells and high explosives, an event
called the shell crisis of 1915. Due to its many desirable properties as a high
explosive and low production cost, amatol was rapidly adapted as an explosive
filling and was widely used right up until the very end of World War II, when
TNT became plentiful. As a result of having been used as a substitute for TNT
by multiple countries for several decades, excessive supply of amatol can be found
today at ammunition dumping sites and in explosive remnants of war.

All samples of amatol analysed in the paper were collected in Finnmark county
during national explosive ordnance disposal clearance operations. They are all
of German origin and were produced before 1945. The key aim of the study
conducted in the paper is to investigate whether the sensitivity properties of the
samples collected were altered as a result of being exposed to nature for nearly 80
years. If no alteration had occurred, we would expect the impact sensitivity to be
the same as what is recorded for amatol in the literature. That is, similar to or
slightly less sensitive than TNT, for which it is well documented that5 h50 is circa
30 Joules.

To measure the impact sensitivity of the samples, fallhammer experiments
were conducted in FFI’s laboratories. The data obtained were analysed using
the methods outlined in Chapter 3, namely with a probit model on a log scale,
and with confidence intervals computed via Fieller’s theorem. The analysis shows
clearly that only one out of the five samples coincided with the impact sensitivity
of TNT. The remaining samples were significantly more sensitive, with their h50

5Here, the value h50 is measured in energy, not on a log scale.
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values ranging between 7.5 and 15.4 Joules. In the course of the experiments,
explosions were observed with impact as low as 6.2 Joules.

Although the paper does not address precisely why the substances analysed
have become so more sensitive to impact over time, it firmly demonstrates that
this is the case and that the standard references for TNT are of no use for
amatol extracted from explosive remnants of war. This in turn ought to have
an affect on risk assessment and policy making regarding whether further action
should be taken to locate and destroy such materials. In particular, explosive
ordnance disposal operators should take the findings of the paper into account
when encountering ordnance potentially containing amatol.

7.8 Paper VIII

Nygård, S. T.; Christensen, D. Unlevel playing field: Evidence of ethnic
discrimination in the access to children’s football from a field experiment in
Norway. Submitted for publication, 2023.

This paper reports the findings of a field experiment whose purpose was to
investigate whether people from ethnic minorities are discriminated against in the
access to participation in children’s sports. In the experiment, n = 949 emails were
sent out to local children’s football clubs all across Norway. Each email appeared
to be from a parent asking about his or her ten-year-old child participating in a
trial practice session. The emails only differed in whether (i) the sender appeared
male or female, (ii) the child was referred to as male or female and (iii) the sender’s
name signalled membership of an ethnic majority or minority. The ethnic majority
names were chosen to be common Norwegian names, whereas for the minority
group, common Somali and Pakistani names were chosen. All eight combinations
of the above three dichotomous choices were represented equally in the pool of
emails sent. Apart from these key differences, the textual content of the emails
were identical. The number of emails receiving a reply within two weeks were then
counted in each group.

Although this application is rather different to that of the previous seven
papers, many of the statistical tools are in fact quite similar. Indeed, note that
the indicator of whether an email received a reply is binary, and therefore all
the tools from sensitivity testing are largely applicable. The responses are all
modelled using standard logistic regression. To avoid issues with multiplicative
interaction terms (Braumoeller, 2004), regression is performed separately for the
minority and majority groups. Four models are considered, depending on whether
the regression should include covariates, and whether the regression should be
performed separately for each county. The best model (decided by comparing
the Akaike information criterion (AIC)) includes the covariates, with a single
regression model for all counties. The response rates are estimated using maximum
likelihood theory, and confidence curves are drawn (using likelihood profiling) for
the majority response rate, the minority response rate and the difference of these
two.
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The results show that the sex of the sender or their child has no significant
effect on the response rate, but that there is a significant difference (p < 0.001)
between the response rates for the ethnic majority and minority groups, standing
at 84.24% and 70.19%, respectively. In addition to the above three features, the
proportion of non-Western immigrants living in the municipality of the football
club is also included as a covariate, based on previous studies indicating that this
may have an effect on the response rates in this kind of field experiment. This
proportion is found to correlate positively (p = 0.006) with the response rate of
the minority group, but not with that of the majority group. This coincides with
the ideas of contact theory, in which it is postulated that an increase in ethnic
diversity leads to less prejudice.
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Chapter 8

Discussion

In this chapter, we elaborate further on some of the key topics of the papers listed.
In particular, we outline possibilities of further research. This discussion is not
meant to be exhaustive, but rather to explore ideas of further development of some
selected key concepts introduced.

8.1 Permutation counting

As the main topic of both Paper I and Paper II, permutation counting is one
of the chief themes of the present thesis. Although the technique is applied in
a multitude of different problems in both papers, there are various directions of
further study in which potential improvements of said technique can be made.
Firstly, it is worth exploring whether permutation counting can be applied to other
types of censored data, such as interval censoring or even perhaps more general
forms of incomplete observations. Although it is mentioned at the end of Paper I
that the algorithm for computing the permutation numbers w(X; A) does not
extend to cases with interval censoring, it might be possible to approximate them,
rather than computing them exactly. As permutation numbers can be realised as
permanents of binary matrices, a natural first step to take would be to apply some
of the approximation schemes for permanents which have been developed over the
last preceding decades (Chertkov and Yedidia, 2013; Jerrum and Sinclair, 1989;
Karmarkar et al., 1993). However, as permutation counting requires thousands
upon thousands of such permanents to be computed efficiently, it is not certain
that all these methods will be sufficiently fast. Fortunately, permutation counting
is entirely parallelisable, which helps tremendously.

Secondly, note that the importance sampler (7.1) yielded by permutation
counting naively samples from the prior as its proposal distribution at each
iteration. This is likely to be quite wasteful, and further research into combining
permutation counting with cleverer proposal distributions is encouraged. In
particular, sequential Monte Carlo techniques (see Cappé et al. (2007) for an
overview) may be particularly useful for this purpose, as they have been for
approximate Bayesian computation (ABC, see Marin et al. (2012) for a useful
review). Tools like these may open permutation counting to further domains,
such as problems with high-dimensional data. Although a simple example with
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multidimensional features was analysed in Paper II, it is improbable that the
naive sampler (7.1) is able to handle much more complicated problems.

Finally, it remains to be seen whether the idea of exploiting symmetries
introduced by exchangeability can be used in other areas of statistics. Indeed,
exchangeability is a standard assumption in many models, also ones without
censoring. Appealing to permutations of exchangeable data sequences can
sometimes lead to fruitful nonparametric tools, of which the permutation test is
a key example. The question remains whether there are other applications where
we simply do not benefit from permuting our observations, but also from counting
in how many ways this can be done in order to satisfy a certain criterion.

8.2 Predicting sensitivity

The main topic of Paper III, namely to predict the sensitivity of energetic
materials purely from their quantum chemical properties, is a rich area of study
with many successful efforts (see the references in Paper III). In order to
improve on the model considered in Paper III, namely ξ = a + b(BDE/Tex),
various directions of future study are worth exploring. To give one example, it is
reasonable to hypothesise that the above model works better for nitroaromatics
than nitramines due to the former group being a more homogeneous set of
compounds than the latter, as can be seen in Appendix B. Indeed, by definition,
at least one of the nitro groups of a nitroaromatic compound is attached to a
benzene ring, whereas this is not the case for nitramines (in fact, there need not
be an aromatic ring present at all in a nitramine). Furthermore, it has indeed been
documented that the BDE serves as an accurate approximation of the activation
energy for nitroaromatic compounds (Khrapkovskii et al., 2013). However, for
nitramines, the situation is typically more complicated, for instance due to multiple
decomposition routes (Samseth, 2022).

Furthermore, a complete description of the explanatory factors of a compound’s
sensitivity properties is most certainly required to contain parameters beyond the
molecular level. Indeed, as cited in Paper III, higher level properties such as
crystal morphology and crystal defects are known to affect sensitivity. When
building models which take these into account, a key challenge is how to combine
them with the purely quantum chemical properties of the molecules themselves.

8.3 Sequential experimental designs

Motivated by the simulation study presented in Paper IV, the asymptotic
properties of the probit model under sequential designs are verified in Paper V.
This kind of work can naturally be extended to the study of other sequential
designs than the Bruceton design, of which there exist multiple examples (Joseph,
2004; Neyer, 1994; Wu and Tian, 2014).

Arguably, the most well studied such sequential procedure is the Robbins–
Monro design, and there are many lessons to be learned from this work when
working with other designs (see Lai (2003) for an excellent review). In particular,
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in designs in which the covariate sequence converges to the point of interest (which,
in the case of binary responses, is the median of the distribution), care must be
taken to make sure that the sequence does not converge too quickly. Indeed, this
is the main point raised at the discussion of Paper V. This makes intuitive sense
in the case of one-dimensional linear regression, where there are two parameters:
the intercept α and the linear coefficient β. If all the measurements are made
at the same input, i.e. the covariate sequence is constant, then it is not possible
to estimate α and β simultaneously from data. The same problem arises if the
covariate sequence converges too quickly to a single point. As several experimental
designs in the sensitivity testing literature aim to converge to the median ξ,
verifying their large sample properties is of crucial importance for the study of
sensitivity testing.

8.4 Measuring sensitivity in practice

A considerable proportion of both Paper IV, VI and VII is devoted to
improvements to the current recommendations for measuring sensitivities of
energetic materials. In particular, Paper VI explains why the current protocols
from NATO and the U.S. Department of Defense are outdated, and that the
approximation introduced by Dixon and Mood (1948) should be replaced by plain
maximum likelihood estimation. This issue is also raised in Paper VII, since
the approximation would have deemed all datasets “not valid” even though the
maximum likelihood estimates existed and confidence intervals could be derived
without issue.

It is important here to realise that Paper VI does not call for discarding
the Bruceton method altogether. Indeed, the simulation studies and theoretical
developments from Paper IV and Paper V suggest that the up-and-down
experimental design is well-founded. The design is also appealing in the effect of it
being model-free, i.e. the design does not depend on the choice of statistical model.
In contrast, most of the more sophisticated designs that have been developed since
1948, like the Neyer design and the 3pod, rely on model assumptions (Neyer, 1994;
Wu and Tian, 2014). Simulation studies or theoretical results establishing how
well these perform compared to the Bruceton design under model misspecification
is encouraged. If the researcher has little knowledge beforehand of whether the
probit model is going to yield a good fit, it is perhaps not advisable to employ
an experimental design based on explicit model assumptions. In cases like these,
it is worth exploring whether an entirely nonparametric approach would yield
better results. This opens the door for new research questions to be asked.
For instance, suppose we combine the Bruceton up-and-down design with the
nonparametric maximum likelihood estimator (see Chapter 4). If we wanted to
construct confidence intervals for the median ξ = F −1(1/2) in this case, we would
first need to study the asymptotic properties of the estimator F̂ −1(1/2) specifically
for the Bruceton design. That is, we may not apply the results of Groeneboom
and Wellner (1992) or Bhattacharya and Kong (2007) directly, as these assume
that a different experimental design is being used. Interestingly, the up-and-down
design is also widely employed in bioassay experiments and medicine, but here
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it is uncommon to impose a parametric model and to estimate the median ξ via
maximum likelihood estimation. Rather, the median is estimated directly from the
covariate sequence, with the justification that the maximum likelihood estimator
may not always exist (Derman, 1957; Durham and Flournoy, 1994; Flournoy,
2002). It would be useful to compare this approach with that of maximum
likelihood estimation.

Finally, it is worth mentioning that although the main focus of the papers in
this thesis has been on impact sensitivity, there are similar questions to ask for
other types of sensitivity, such as friction or shock.
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Inference for Bayesian Nonparametric Models
with Binary Response Data via Permutation

Counting

Dennis Christensen∗,†

Abstract. Since the beginning of Bayesian nonparametrics in the early 1970s,
there has been a wide interest in constructing models for binary response data.
Such data arise naturally in problems dealing with bioassay, current status data
and sensitivity testing, and are equivalent to left and right censored observations
if the inputs are one-dimensional. For models based on the Dirichlet process, in-
ference is possible via Markov chain Monte Carlo (MCMC) simulations. However,
there exist multiple processes based on different principles, for which such MCMC-
based methods fail. Examples include logistic Gaussian processes and quantile
pyramids. These require MCMC for posterior inference given exact observations,
and thus become intractable when the data comprise both left and right censored
observations. Here we present a new importance sampling algorithm for nonpara-
metric models given exchangeable binary response data. It can be applied to any
model from which samples can be generated, or even only approximately gener-
ated. The main idea behind the algorithm is to exploit the symmetries introduced
by exchangeability. Calculating the importance weights turns out to be equivalent
to evaluating the permanent of a certain class of (0, 1)-matrix, which we prove
can be done in polynomial time by deriving an explicit algorithm.

MSC2020 subject classifications: Primary 62N01, 62G05; secondary 15A15.

Keywords: Bayesian nonparametrics, binary response data, current status data,
bioassay, permanents, importance sampling, binary classification.

1 Introduction
In many statistical applications, we only observe a Bernoulli random variable indicating
whether a real-valued latent variable is below or above a certain threshold. Examples
include problems in current status data and bioassay, where we aim to estimate a
distribution P governing the probability that an individual has transitioned from state
0 to state 1 before time t (Albert and Chib, 1993; Keiding et al., 1996; Groeneboom and
Jongbloed, 2014). Another example is sensitivity testing, in which we repeatedly choose
an impact level E of energy and then observe whether a physical system is intact or
broken after the impact. Such methods are used for studying the sensitivity of explosives
or a material’s resistance to stress (Dixon and Mood, 1948; Neyer, 1994; Christensen,
2022).

Since the beginning of Bayesian nonparametrics, there has been an interest in such

∗Department of Mathematics, University of Oslo, Oslo, Norway.
†Norwegian Defence Research Establishment (FFI), Kjeller, Norway, dennis.christensen@ffi.no

c© 2024 International Society for Bayesian Analysis https://doi.org/10.1214/22-BA1353

59



294 Bayesian Nonparametrics via Permutation Counting

binary response problems. Following the introduction of the Dirichlet process by Fer-
guson (1973), Antoniak (1974) showed that the posterior distribution of a Dirichlet
process given censored data is a mixture of Dirichlet processes, and applied this to
bioassay. Dirichlet processes with binary response data were further studied in Bhat-
tacharya (1981); Kuo (1988); Gelfand and Kuo (1991); Doss (1994); Newton and Zhang
(1999). These methods rely on one or more of the following particularly useful prop-
erties of the Dirichlet process: its conjugate posterior representation (Ferguson, 1973),
its explicit marginal distribution (Antoniak, 1974) and its stick-breaking representation
(Sethuraman, 1994). These three properties have also allowed for the development of
Markov chain Monte Carlo (MCMC) sampling methods for Dirichlet process mixture
models (DPMMs) (Ferguson, 1983; Lo, 1984). In the terminology of Papaspiliopoulos
and Roberts (2008), this may be achieved either with marginal MCMC methods (Es-
cobar and West, 1995; Neal, 2000) or conditional MCMC methods (Walker, 2007; Kalli
et al., 2011). Due to the tractability of the mixture components, such MCMC techniques
also apply when dealing with binary response data (see Paulon et al. (2020) for a recent
application with current status data and dependent censoring). In principle, this is not
only true for DPMMs, but for any mixture model with tractable marginal mixture dis-
tributions, such as normalised random measures with independent increments (NRMIs)
(Regazzini et al., 2003; Lijoi et al., 2005, 2007), or with stick-breaking representations
(Hjort, 1990; Paisley et al., 2010; Ishwaran and James, 2001). On the semiparametric
side, Bayesian inference for the proportional hazards model (Cox, 1972) with current
status data has been studied via Gibbs sampling (Cai et al., 2011) and expectation
maximisation (Wang et al., 2015).

Although models based on Dirichlet processes are largely applicable to problems
with binary response data, many nonparametric models are not. A notable example of
this is the logistic Gaussian process (Leonard, 1978; Lenk, 1988, 1991) and the Gaussian
process density sampler (Murray et al., 2008). In these models, the likelihood function
will contain an integral of a Gaussian process due to the censoring. Thus, a direct
implementation of MCMC-based inference is not feasible. Furthermore, since there is
no conjugate posterior representation for such models, alternatives such as successive
substitution sampling (Doss, 1994) are also out of reach. The same is true for other
model choices in Bayesian nonparametrics, such as quantile pyramids (Hjort and Walker,
2009), normalised infinitely divisible multinomial (NIDM) processes (Lijoi et al., 2019)
and Pitman-Yor multinomial processes (Lijoi et al., 2020). These examples are in line
with Orbanz and Teh’s (2011) prediction that over time, more Bayesian nonparametric
models which are not based on the Dirichlet process will continue to arise.

In this paper, we introduce a new importance sampling algorithm which enables full
Bayesian inference for models with exchangeable binary response data. The construction
is highly general and applies to any model from which a data sample can be simulated.
In particular, it does not rely on the tractable properties of Dirichlet processes. Unlike
approximate methods such as the approximate Bayesian computation (ABC) rejection
sampling algorithm (see Marin et al. (2012) for a review), our new simulation algorithm
converges to the true posterior distribution, not just an approximation of it. As is
illustrated in our simulation case study (see Section 4), this exact convergence result
also holds when it is only possible to sample from a finite-dimensional truncation of the

60



D. Christensen 295

model, as studied by Muliere and Secchi (1995); Campbell et al. (2019); Arbel et al.
(2019); Lijoi et al. (2019, 2020).

The key to the new algorithm is to exploit the symmetry introduced by exchange-
ability of the data, and then essentially to correct for this exploitation by multiplying by
an appropriate importance weight. Calculating the weight turns out to be equivalent to
evaluating the permanent of a (0, 1)-matrix, that is, a matrix whose entries are all either
0 or 1. For a general such matrix, this is known to be a #P-complete problem (Valiant,
1979). However, for the matrices arising in our setting, we are able to derive an explicit
algorithm which computes their permanents in polynomial time. Code for implementing
this new algorithm can be found in the publicly available GitHub repository.

The remainder of the paper is structured as follows. In Section 2, we set up the
problem and introduce the importance sampling algorithm. We show how to calculate
the marginal likelihood and how to carry out posterior inference. In Section 3, we
derive an algorithm for calculating the importance weights in polynomial time. Next,
in Section 4, we apply the new importance sampling algorithm to experiments with
both simulated and real data. The theory is then extended in Section 5 to problems
with multidimensional inputs. Finally, we briefly discuss extensions, limitations and
consistency in Section 6.

2 Construction
2.1 Model

Let ([0,∞),F ) be the measurable space of non-negative real numbers equipped with the
Borel σ-algebra. We use [0,∞) as our sample space to more conveniently illustrate the
theory, although everything also applies to R or a real bounded interval. Let P ∼ π(·) be
a random probability distribution on ([0,∞),F ). Then P induces a random cumulative
distribution function (cdf) F on [0,∞). Our binary data y = (y1, . . . , yn) ∈ {0, 1}n is
assumed to be generated by

yi | F ∼ Bernoulli(F (ti)),

independently for i = 1, . . . , n, for some known thresholds t1, . . . , tn. That is, π(yi |
F ) = F (ti)yi{1 − F (ti)}1−yi . We also write π(y) for the marginal distribution of y,
having marginalised over F .

It is useful to introduce the latent variables x = (x1, . . . , xn) ∈ [0,∞)n with xi | P ∼
P independently for i = 1, . . . , n. That is, π(xi | P ) = P . Then our binary variables yi

can be seen as indicator variables, yi = 1xi≤ti . Let π(x) be the marginal distribution of
x, marginalising over P . Note that the xi need not be marginally independent. However,
they will always form an exchangeable sequence. The same is true for the yi. Since π(·)
may both refer to the distribution of P and the marginal distributions of x or y, we will
make it clear from context which distribution is in use.
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We shall need to introduce some notation. Given y1, . . . , yn, let

Bi =
{

[0, ti] if yi = 1,
(ti,∞) if yi = 0,

(2.1)

for i = 1, . . . , n. Thus, observing y is equivalent to observing that xi ∈ Bi for all
i = 1, . . . , n. Now, let n0 = #{i | yi = 1}. Then, by exchangeability, we may without
loss of generality order the yi so that y1 = · · · = yn0 = 1 and yn0+1 = · · · = yn = 0,
and further so that t1 ≤ · · · ≤ tn0 and tn0+1 ≤ · · · ≤ tn. Note that this also induces
an ordering of the sets B1, . . . ,Bn. We write B = B1 × · · · × Bn, so that observing
y is equivalent to observing that x ∈ B. For now, we will assume that there are no
repeated values amongst the thresholds t1, . . . , tn. Later on, in Section 2.2, we show
how to account for situations where we have repeated values amongst them.

2.2 Estimating the marginal likelihood
Our first objective is to estimate the marginal likelihood π(y) = P(x ∈ B) of the model.
In addition to being valuable in its own right, this will also guide how to perform
posterior inference for P in general, to be covered in Section 2.3. For brevity of notation,
define the measure P on ([0,∞)n,Fn) by P(A) = P(x ∈ A). The marginal likelihood
will be estimated via an importance sampling algorithm, exploiting the symmetries
present as a result of the xi being exchangeable.

Let 1 denote the indicator function, so 1B(x) returns 1 if x ∈ B and 0 otherwise.
Consider first the following naive estimator.

P̂T (B) = 1
T

T∑

t=1
1B(x(t)), (2.2)

where x(t) ∼ π(·) independently for t = 1, . . . , T .

By the law of large numbers, P̂T (B) is indeed a consistent estimator for the marginal
likelihood P(B). However, in practice, we will never experience that x ∈ B if n is even
moderately large, so P̂T (B) will always just be zero. This is also true even if parallel
computing is employed, as the acceptance probability decreases exponentially with n.
In order to adjust it to yield something practically feasible, we will have to loosen the
condition that x ∈ B by replacing B with a larger space. We do this by exploiting the
symmetries of the measure P due to the exchangeability of the xi.

The group Sn of n-permutations acts on [0,∞)n via permutations of indices. Specif-
ically, for x = (x1, . . . , xn) ∈ [0,∞)n, we write σ(x) = (xσ(1), . . . , xσ(n)) for the result
of hitting x with the permutation σ ∈ Sn. Similarly, Sn acts on Fn via permutations,
and we write σ(B) = Bσ(1) × · · · × Bσ(n) for B = B1 × · · · × Bn ∈ Fn. We define the
orbit1 Orb(B) of B to be the set

Orb(B) =
⋃

σ∈Sn

σ(B).

1Strictly speaking, this is the union of the orbit, where the orbit is usually defined as {σ(B) | σ ∈ Sn}.
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Figure 1: A two-dimensional example of calculating permutation numbers.

Next, we define the permutation number w(x; B) of x with respect to B as

w(x; B) = #{σ ∈ Sn | σ(x) ∈ B}.

Note that 0 ≤ w(x; B) ≤ n! for all x, and furthermore that w(x; B) = 0 if and only if
x /∈ Orb(B), that is, if and only if σ(x) /∈ B for all permutations σ ∈ Sn.

Example. We show how to calculate permutation numbers in a simple two–dimensional
example. Consider the set B = B1 × B2 = [0, 2] × (1,∞), drawn in Figure 1a. In order
to calculate the permutation numbers of the points p, q, r, s, we hit these points with the
nontrivial permutation σ ∈ S2, as shown in Figure 1b. That is, we reflect them across
the diagonal x1 = x2. Now, p /∈ B and σ(p) /∈ B, so w(p; B) = 0. Next, q ∈ B and
σ(q) /∈ B, so w(q; B) = 1. Similarly, r /∈ B and σ(r) ∈ B, so w(r; B) = 1. Finally, s ∈ B
and σ(s) ∈ B, so w(s; B) = 2. Note in particular that w(r; B) > 0 even though r /∈ B.

In Section 3, we will derive an algorithm for efficiently computing the permutation
numbers w(x; B). For now, we shall show how they can be used to construct an impor-
tance sampling algorithm as an alternative to (2.2). Consider the modified estimator

P̂IS
T (B) = 1

T

T∑

t=1

1
n!w(x(t); B), (2.3)

where x(t) ∼ π(·) independently for t = 1, . . . , T . This is essentially an importance
sampling estimator with proposal distribution x ∼ π(·) and weights W (x) = w(x; B)/n!.

Proposition 2.1. P̂IS
T (B) is an unbiased and consistent estimator for the marginal

likelihood P(B).
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Proof. We have that w(x; B) = #{σ ∈ Sn | σ(x) ∈ B} = #{σ ∈ Sn | x ∈ σ(B)}, so that
taking expectations, we get

E
[

1
n!w(x; B)

]
= 1

n!

∫

Orb(B)
w(x; B) dπ(x) = 1

n!
∑

σ∈Sn

∫

σ(B)
dπ(x)

= 1
n!
∑

σ∈Sn

P(σ(B)) = P(B),

where we have used exchangeability for the final equality. This proves that the estimator
is unbiased. Applying the law of large numbers to (2.3) establishes consistency.

The benefit of calculating P̂IS
T (B) rather than the naive estimate P̂T (B) is that

we only require x to land in Orb(B), which is a much larger set than B. In practice,
this means that we get way more contributing samples when calculating (2.3) rather
than (2.2).

Given x and B, it is not, a priori, easy to determine whether x ∈ Orb(B). However,
by considering the order statistics of x, we can establish an easily verifiable criterion.

Definition 2.1. Let x ∈ [0,∞)n be fixed and let σ ∈ Sn be any n-permutation such
that xσ(1) ≤ · · · ≤ xσ(n). That is, σ(x) are the order statistics of x. We say that x is
B-admissible if σ(x) ∈ B.

Proposition 2.2. Let x ∈ [0,∞)n. Then w(x; B) > 0 if and only if x is B-admissible.

Proof. See the Supplementary Material (Christensen, 2023).

Proposition 2.2 simplifies computations significantly. For instance, when calculating
P̂IS

T (B), we now have a simple criterion for checking whether x ∈ Orb(B). Namely, we
check whether σ(x) ∈ B, where σ is as in Definition 2.1.

Example. We illustrate the volume of Orb(B) via a simple simulation study. For n =
1, . . . , 300, we let 0 < r1 < . . . rn < 1 be uniformly spaced and simulated u1, . . . , un ∼
Uniform[0, 1] independently. As in Section 2.1, we write n0 = #{i | ui ≤ ri} and let
t1 < · · · < tn0 be those ri satisfying ui ≤ ri. Similarly, we let tn0+1 < · · · < tn be those
ri satisfying ui > ri. This defines the set B.

Two experiments were conducted, one where x1, . . . , xn ∼ Uniform[0, 1] and another
where x1, . . . , xn ∼ Beta(2, 2), independently. The probability that x ∈ B is given by

P(x ∈ B) =
n0∏

i=1
F (ti) ×

n∏

i=n0+1
{1 − F (ti)} ,

where F denotes the cdf of the Uniform and Beta distribution in the first and second
experiment, respectively. In either case, this probability decays exponentially and gets
vanishingly small as n gets large. In order to compare P(x ∈ B) with the probability
P(x ∈ Orb(B)), we repeatedly simulated copies of x a total of 1000 times and counted

64



D. Christensen 299

Figure 2: Empirical estimates of P(x ∈ B) and P(x ∈ Orb(B)) for x1, . . . , xn ∼
Uniform[0, 1] independently and x1, . . . , xn ∼ Beta(2, 2) independently.

how many times we observed x ∈ B and how many times we observed x ∈ Orb(B)
(using Proposition 2.2). We did this 100 times for each n and averaged the results,
which are plotted in Figure 2. We note that in both experiments, we get a much higher
acceptance proportion when working with Orb(B). Also, this proportion does not seem
to decrease with n. This makes sense intuitively, since the number of permutations
increases exponentially with n.

Remark. The quality of the estimate P̂IS
T (B) is diagnosed by calculating the effective

sample size (ESS), given by

ESS =

(∑T
t=1 w(x(t); B)/n!

)2

∑T
t=1
(
w(x(t); B)/n!

)2 =

(∑T
t=1 w(x(t); B)

)2

∑T
t=1 w(x(t); B)2

.

In (2.3), it may be useful not to treat T as a fixed sample size, but rather to keep adding
terms until the ESS reaches a fixed, predetermined value.

In principle, P̂IS
T (B) can also be computed in cases where all observations are only

right or left censored. That is, in cases where n0 = 0 or n0 = n. However, for such
problems, we experience that the ESS increases too slowly. By studying the geometry of
the situation, we can gain some insight into why this is the case. The ESS will be small
if only a few weights dominate. Now, if all the Bi extend to the right, say, then samples
x(t) with all x(t)

i far to the right will yield large permutation numbers w(x(t); B). Indeed,
the maximum value w(x(t); B) = n! is attainable if the x

(t)
i are sufficiently far to the

right. However, when both left and right censored observations are present, the Bi are
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no longer nested, and so the weights tend to be more uniformly spread out, making a
larger effective sample size obtainable.
Remark. Some of the thresholds ti may be equal. Let r1 ≤ · · · ≤ rl be the unique
values of the set {t1, . . . , tn} and for each j = 1, . . . , l, let aj = #{i | ti = rj} and
bj = #{i | ti = rj , i ≤ n0}. That is, aj is the number of trials conducted at input rj

and bj is the number of successes. The observations are now a sequence of binomial
variables, and so the marginal likelihood takes the form P(x ∈ B) ×∏l

j=1
(
aj

bj

)
. Hence,

if we have repeated trials, we may simply redefine w(x; B) to be w(x; B) × ∏l
j=1

(
aj

bj

)

and carry out our analysis as normal. We continue without explicitly multiplying by this
factor in our notation, but it should be kept in mind that the permutation numbers are
multiplied by this factor if the data include repeated trials.
Remark. In (2.3), the samples come from the prior. Although the simulation study
above indicates that this naive approach works sufficiently well, other choices of proposal
distribution may be more efficient and increase performance. Examples of methods that
might do so include sequential Monte Carlo (see Cappé et al. (2007) for a review),
defensive mixture proposal distributions (Hesterberg, 1995) and population Monte Carlo
(Cappé et al., 2004). For the sake of simplicity, in the present paper, we shall only
consider the case where the samples are drawn from the prior.

We conclude this section by showing that our estimate P̂IS
T (B) yields a smaller

variance than the naive estimate P̂T (B).
Proposition 2.3. We have that

Var
(

1
n!w(x; B)

)
= Var (1B(x)) + P(B) − 1

n!
∑

σ∈Sn

P(σ(B) ∪ B).

In particular,
Var

(
1
n!w(x; B)

)
≤ Var (1B(x)) .

Proof. Using the same reasoning as in Proposition 2.1, we have that
w(x; B)2 = #{(σ, τ) ∈ S2

n | σ(x), τ(x) ∈ B} = #{(σ, τ) ∈ S2
n | x ∈ σ(B) ∩ τ(B)},

and so

E

[(
1
n!w(x; B)

)2
]

= 1
(n!)2

∫

Orb(B)
w(x; B)2 dπ(x) = 1

(n!)2
∑

σ,τ∈Sn

∫

σ(B)∩τ(B)
dπ(x)

= 1
n!
∑

σ∈Sn

P(σ(B) ∩ B) = 1
n!
∑

σ∈Sn

{P(σ(B)) + P(B) − P(σ(B) ∪ B)}

= 2P(B) − 1
n!
∑

σ∈Sn

P(σ(B) ∪ B).

Subtracting E[(1/n!)w(x; B)]2 from both sides yields the first result. For the second,
note that P(σ(B) ∪ B) ≥ P(B) for all σ ∈ Sn.
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2.3 Posterior inference
We now extend the results from the previous section to a general importance sampling
algorithm targeting the posterior distribution of P given that x ∈ B. Let θ = θ(P ) ∈ R
be some quantity related to P , such as a specific cdf value F (t) = P ([0, t]) or a quantile
F−1(q). Then consider the estimator

θ̂IS
T =

∑T
t=1 θ(t)w(x(t); B)
∑T

t=1 w(x(t); B)
, (2.4)

where θ(t) = θ(P (t)), x(t) ∼ P (t) and P (t) ∼ π(·), independently for t = 1, . . . , T .

Proposition 2.4. The statistic θ̂IS
T is a consistent estimator for the posterior mean

E[θ | x ∈ B].

Proof. The expression (2.4) is precisely the self-normalised importance sampling esti-
mator targeting
∫
[0,∞)n×R θw(x; B) dπ(x, θ)
∫
[0,∞)n×R w(x; B) dπ(x, θ) =

∫
Orb(B)×R θw(x; B) dπ(x, θ)
∫
Orb(B)×R w(x; B) dπ(x, θ) =

∫
B×R θ dπ(x, θ)∫
B×R dπ(x, θ)

=
∫

R
θ dπ(θ | x ∈ B) = E [θ | x ∈ B] ,

as required.

3 Permutation numbers
We now outline how to calculate the permutation numbers w(x; B). For the remainder
of this section, assume that x is B-admissible, so we know that w(x; B) > 0. The first
step of the derivation is to express the permutation number w(x; B) as the permanent
of a (0, 1)-matrix.

Definition 3.1. Let A = (aij) be an m × n matrix where m ≤ n. Let Sn,m denote the
set of all m-permutations of the set {1, . . . , n}. The permanent perm(A) of A is defined
by

perm(A) =
∑

τ∈Sn,m

m∏

i=1
ai,τ(i) (3.1)

Note that the permanent is defined for rectangular matrices, not just square ones.
In order to express the permutation number w(x; B) as the permanent of a matrix, we
make the following definition. Given x ∈ [0,∞)n, the matching matrix A = (aij) of x is
the n × n (0, 1)-matrix defined by

aij =
{

1 if xi ∈ Bj

0 if xi /∈ Bj .
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Lemma 3.1. Let A be the matching matrix of x. Then

w(x; B) = perm(A).

The key ingredient in the proof is to count the number of matchings in a bipartite
graph. If the reader is unfamiliar with these notions, we recommend reading Bollobás
(1979, Chapter 3).

Proof of Lemma 3.1. Let G = (V,E) be the bipartite graph with vertex set V =
{x1, . . . , xn}∪{B1, . . . ,Bn} and edges E = {(xi,Bj) ∈ V 2 | xi ∈ Bj}. Then the permuta-
tion number w(x; B) is equal to the number of bijections f : {x1, . . . , xn} → {B1, . . . ,Bn}
such that xi ∈ f(xi). That is, the number of perfect matchings in G. But this is precisely
the permanent of the biadjacency matrix of G. That is, the permanent of the matrix
A.

Permanents are notoriously difficult to compute. Unlike the closely related deter-
minant function (which is obtained by multiplying each term in (3.1) by sign(τ)), the
permanent function is not multiplicative, and thus we cannot employ Gaussian elimina-
tion to compute permanents in polynomial time. In general, computing permanents of
(0, 1)-matrices is known to be a #P-complete problem (Valiant, 1979). The fastest gen-
eral formula known for (0, 1)-matrices is that by Ryser (1963), which requires O(2n−1n)
operations for an n × n matrix. More recently, Huh (2022) has presented an efficient
quantum algorithm for estimating permanents.

A (0, 1)-matrix A is said to be convertible if there exists a matrix A′ obtained by
changing the signs of some of the entries in A such that perm(A) = det(A′). This
means that perm(A) can be computed in polynomial time. Little (1975) provided a
classification of all convertible matrices. Namely, a matrix A is convertible if and only
if it can be realised as the biadjacency matrix of a bipartite graph G which does not
contain an even subdivision J of the complete bipartite graph K3,3 such that G − V (J)
has a perfect matching. It is easy to construct examples of matching matrices which
violate this criterion. For example, let x = (1, 1, 1, 3) and B = [0, 2]3 × (2,∞). If G
denotes the graph constructed in the proof of Lemma 3.1, then G ∼= K3,3 + K1,1, where
the plus denotes disjoint union. Thus, G contains K3,3 as a subgraph and still contains a
perfect matching once this subgraph has been removed. Consequently, the corresponding
matching matrix is not convertible.

The above example demonstrates that we cannot use convertibility to compute the
permanents of matching matrices. However, we will show that matching matrices belong
to a larger class of matrices, which we shall call block rectangular. We will then prove
that the permanent of a block rectangular matrix can be calculated in polynomial time.

3.1 Block rectangular matrices
We begin with the definition of block rectangular matrices.
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Definition 3.2. Let k,m, n be natural numbers, where k,m ≤ n. Let α ∈ Zk
>0 and

β, γ ∈ Zk−1
≥0 be three integer-valued vectors such that

k∑

r=1
αr = n,

k−1∑

r=1
βr ≤ m,

k−1∑

r=1
γr ≤ m (3.2)

and
t∑

r=1
βr ≤

t∑

r=1
αr,

k−1∑

r=t

γr ≤
k∑

r=t+1
αr (3.3)

for all t = 1, . . . , k. The block rectangular matrix M = (mij) associated to α, β, γ,m is
the m × n (0, 1)-matrix such that mij = 1 if and only if there exists t ∈ {1, . . . , k} such
that

t−1∑

r=1
βr < i ≤ m −

k−1∑

r=t

γr,

t−1∑

s=1
αs < j ≤

t∑

s=1
αs. (3.4)

We say that a matrix M is block rectangular if there exist α, β, γ,m such that M is the
block rectangular matrix associated to α, β, γ,m. Note that we suppress k and n in the
definition as these are implicitly defined through α.

Example. We consider three examples of constructing a block rectangular matrix from
its associated parameters, as well as an example of a matrix which is not block rectan-
gular.

(a) Let α = (1, 3, 1, 1, 1), β = (0, 1, 2, 1), γ = (1, 1, 1, 0) and m = 7. This choice of
α, β, γ satisfies conditions (3.2) and (3.3). Constructing the matrix from these
parameters is done as follows. Firstly, n =

∑5
i=1 αi = 7, which, together with

m = 7, determines the dimensions of the matrix. We consider each rectangular
block separately. Letting t = 1 in (3.4), we obtain that 0 < i ≤ 4 and 0 < j ≤ 1.
Repeating this step for t = 2, . . . , T establishes the dimensions of all the rectangular
blocks, resulting in the matrix shown in Figure 3a.

(b) A block rectangular matrix need not be square. Let α = (3, 2, 2, 1), β = (1, 0, 2), γ =
(1, 1, 1), m = 6. Then α, β, γ satisfy conditions (3.2) and (3.3), but n =

∑4
r=1 αr =

8 > 6, so the resulting matrix, shown in Figure 3b, is not square.

(c) In the two examples above, we have m =
∑k−1

r=1 βr +
∑k−1

r=1 γr. This need not be
the case. Indeed, let α = (2, 3, 1, 2), β = (1, 0, 2), γ = (0, 1, 1),m = 7. Then α, β, γ

satisfy condition (3.2) and (3.3), but
∑3

r=1 βr +
∑3

r=1 γr = 5 < 7. This means
that the matrix contains 7 − 5 = 2 rows of ones, as can be seen in Figure 3c. This
example illustrates why we need to include m as a separate parameter in order to
describe the matrix uniquely.

(d) The matrix in Figure 3d is not block rectangular. Indeed, if it were, then it would
be associated with the parameters α = (2, 2, 2, 2), β = (2, 3, 1), γ = (3, 1, 0),m = 8.
But then we have that α1 + α2 = 4 < 5 = β1 + β2, which violates condition (3.3).
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Figure 3: The matrices from the example above with the contours of the rectangular
blocks highlighted.

As the definition stands, it is possible for a block rectangular matrix to contain a
row of zeros. Indeed, consider for instance the matrix A parametrised by α = (1, 1, 1),
β = (1, 0), γ = (0, 1), m = 1. Then A is the 1 × 3 zero matrix since no i, j, t will satisfy
condition (3.4). We say that a block rectangular matrix A is complete if it does not
contain a row of zeros.

Note that multiple parametrisations will give rise to the same block rectangular
matrix. Indeed, we can always subdivide a rectangular block into more rectangular
blocks of equal heights. In our notation, this would mean that for some r ∈ {1, . . . , k−1},
we have βr = γr = 0. However, by insisting that k = dim(α) should always be minimal,
we obtain a unique parametrisation for every block rectangular matrix. We refer to this
as the minimal parametrisation.

There are examples of block rectangular matrices which cannot be realised as match-
ing matrices. For example, let α = (1, 1, 1), β = (1, 1), γ = (1, 1),m = 3. Then A is the
3 × 3 identity matrix, which is not a matching matrix. However, we have the following
converse result.
Proposition 3.1. Let x be B-admissible and let A be the matching matrix of x. Then,
after permuting its columns if necessary, A is a complete block rectangular matrix.

Proof. See the Supplementary Material (Christensen, 2023).
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B1

B2,B3

B4

B5

B6

B7

x1 x2, x3, x4 x5 x6 x7

(a)

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
0 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)

Figure 4: Example of a matching of x and B. (a) Pictorial representation of x and B.
The xi are marked along the horizontal axis. The Bi are drawn along the same axis,
and stacked vertically for visual clarity. (b) The resulting matching matrix, with the
contours of the rectangular blocks highlighted.

Example. Suppose we have four left-censored observations, with s1 = 2, s2 = s3 =
3, s4 = 4, and three right-censored observations, with t5 = 1, t6 = 2, t7 = 3. Next,
let x = (x1, . . . , x7) = (0.5, 1.5, 1.5, 1.5, 2.5, 3.5, 4.5). See Figure 4a. To construct the
matching matrix A, we first consider x1. We observe that x1 ∈ B1, . . . ,B4, but not
B5,B6 or B7. Hence the first column of A consists of four ones followed by three zeros.
We continue this way for all the xi, which results in the matrix in Figure 4b. Note that
A is block rectangular. In fact, we recognise it as the matrix from Figure 3a.

We are now ready to state the main result of this section.

Theorem 3.1. Let A be an m×n complete block rectangular matrix. Then there exists
an implementable algorithm for computing perm(A), whose computational complexity
grows polynomially with n.

Proof. See the Supplementary Material (Christensen, 2023).

Thus, with Theorem 3.1, we are able to compute the permutation numbers needed
for the estimators (2.3) and (2.3). Code for computing permanents can be found in
the publicly available GitHub repository. For a reasonably large value of n, say n =
200, this new approach is able to compute tens of thousands of permanents of n × n
block rectangular matrices within a few hours. This is in contrast with more general
approaches, such as the aforementioned Ryser’s formula, which would not be able to
handle even a single matrix of this dimension. In the following section, we illustrate the
efficiency of the new approach with experiments.
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4 Experiments
We now look at two simulation studies and a real data example in order to illustrate
the performance of the new estimator. The first simulation study is a tractable bioassay
problem involving a Dirichlet process model. Such models were first studied by Antoniak
(1974). This problem is included to verify that the new algorithm agrees with existing
methods. More precisely, we will compare it with the successive substitution sampling
(SSS) algorithm introduced by Doss (1994). In the second simulation study, we employ
the new algorithm to fit a quantile pyramids model, introduced by Hjort and Walker
(2009), to binary response data. This is an example of a process from which data samples
may only be simulated approximately, but where our new algorithm nevertheless works
exactly. Finally, we employ a Pitman-Yor multinomial process model (Lijoi et al., 2020)
to real seroprevalence data, originally studied by Keiding et al. (1996). All code was run
on a computer running Windows 11 Pro with an Intel(R) Core(TM) i7-8550U CPU @
1.80GHz and 16GB DDR4 RAM.

4.1 Simulations

A tractable Dirichlet process problem

For the first simulation study, we used the data reported in Table 1. This data was
generated by simulating n = 100 points u1, . . . , un ∼ 1

3N (−2, 0.72) + 2
3N (1, 0.72), a

mixture of two normal distributions, and observing whether these points were below
or above the respective thresholds in Table 1. Thus, for example, since the number of
trials at the threshold −3 was 10, the number of successes there refers to the quantity
#{i ∈ {1, . . . , 10} | ui ≤ −3}. In the prior we let P be distributed according to a
Dirichlet process with concentration parameter α = 1 and base measure N (0, 1). The
prior mean and individual realisations of the prior process are plotted in Figure 5.
Using (2.3), the log marginal likelihood was calculated to be −12.861. Note that we
have repeated thresholds in the data set. Repeating this calculation ten times yielded
a standard deviation of 0.0137, showing that the estimate is stable. On average, it took
T = 438, 606 iterations to yield an ESS of 2000. Out of these, an average number
of 411, 837 yielded a vanishing permanent which could immediately be discarded. The
average computation time for calculating the permanents was 6 minutes and 33 seconds.
The slowest run took 6 minutes and 57 seconds.

Due to the posterior tractability of the Dirichlet process, the posterior process can be
simulated directly, for instance via the SSS method, introduced by Doss (1994). Table 2
show how the new importance sampling algorithm compares with the SSS method by
comparing the values of the posterior mean at various quantiles. As we can see, the two
methods are in agreement. Figure 5 shows plots of the posterior mean, calculated using
the two different methods, along with individual realisations of the posterior process.
This plot further verifies the agreement of the two approaches, illustrating that the new
algorithm indeed converges to the posterior process.
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Threshold Number of successes Number of trials
−3 0 10
−2.33 0 10
−1.67 2 10
−1 1 10
−0.33 4 10

0.33 6 10
1 9 10
1.67 10 10
2.33 10 10
3 10 10

Table 1: The thresholds, number of successes and number of trials for the Dirichlet
process simulations.

Figure 5: Prior and posterior estimates of the Dirichlet process model given n = 100
binary response data points. On the left, the solid curve is the prior mean and the dotted
curves are realisations of the prior process. On the right, the solid and dashed curves
are the posterior mean as obtained via permutation counting or successive substitution
sampling, respectively, and the dotted curves are realisations of the posterior process.

Quantile pyramids simulations
Our next simulation study is a problem in which we wish to fit a quantile pyramids
model, given binary response data. Such models were first studied by Hjort and Walker
(2009), and provide an appealing alternative to Pólya trees, since they avoid the spec-
ification of a partition of the sample space. More specifically, we model P as a Beta
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q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SSS −1.851 −0.949 −0.572 −0.283 0.015 0.305 0.525 0.784 1.176
PC −1.842 −0.950 −0.576 −0.290 0.040 0.349 0.558 0.789 1.130

Table 2: Posterior estimates of E[F−1(q) | x ∈ B] for different values of q, calculated
via successive substitution sampling (SSS) and the new importance sampling algorithm
based on permutation counting (PC).

quantile pyramid with parameters (1
2am, 1

2am), where am = cm3 and c = 2.5. This is
the same model as that considered in the simulation study by Hjort and Walker (2009).
Given exact observations, the posterior process is intractable and so MCMC-based infer-
ence is required. As a result, there is, a priori, no straightforward way of simulating the
posterior process given censored data. However, our new importance sampling algorithm
will circumvent this issue.

As can be seen from (2.3), we require that it is possible to generate samples xi ∼ P .
For the quantile pyramids model, this can only be done approximately. Indeed, the
process is realised by simulating the quantiles F−1(j/2K), j = 1, . . . , 2K − 1, for some
finite number K. Increasing the value of K increases the precision of the realisation.
If K were allowed to be infinite, then F would, by absolute continuity, be uniquely
determined. Thus, for i = 1, . . . , n, we could sample xi ∼ P by first sampling uniform
variables ui ∼ Unif[0, 1] and then letting xi = F−1(ui). In practice, K is a finite
number, and so this approach cannot determine the exact value of the xi. However,
by finding the numbers ji such that ui ∈ (ji/2K , (ji + 1)/2K ], we know that xi ∈
(F−1(ji/2K), F−1((ji + 1)/2K)]. Thus, by increasing the value of K if necessary, we
can make these intervals arbitrarily fine and thus know for certain whether xi ∈ Bj for
j = 1, . . . , n. That is, we can sample the value of w(x; B) exactly, even though x was
only simulated approximately. As a result, the convergence results for the importance
sampling algorithm still hold exactly.

The synthetic data were simulated as follows. For n = 100, we let 0 < r1 < · · · <
rn < 1 be equally spaced points on the unit interval [0, 1], and simulated u1, . . . , un ∼
Beta(1/2, 1) independently. Thus, the true underlying distribution is also the same
as in the original simulation study undertaken by Hjort and Walker (2009). Writing
n0 = #{i | ui ≤ ri}, we let t1 < · · · < tn0 be those ri such that ui ≤ ri. Similarly,
we let tn0+1 < · · · < tn be those ri such that ui > ri. As in Section 2.1, we then let
B = B1, . . . ,Bn, where Bi = [0, ti] for i = 1, . . . , n0 and Bi = (ti, 1] for i = n0 + 1, . . . , n.

Using (2.3), we calculated the log marginal likelihood to be −53.698. Performing this
calculation 10 times yielded a standard deviation of 0.013, showing that the estimate
is stable. On average, it took T = 29, 965 iterations to obtain an effective sample
size of 2000. Out of these, an average number of 8227 yielded vanishing permanents
which could be discarded immediately. The average computation time for calculating
the permanents was 6 minutes and 25 seconds. The slowest run took 8 minutes and
8 seconds. In Figure 6, we plot prior and posterior cdfs given the simulated data. We
see that the posterior estimate has moved closer to the true cdf, and that the posterior
variance is smaller than that of the prior. Indeed, Kolmogorov-Smirnov distances from
the prior and the posterior means to the ground truth are 0.25 and 0.094, respectively.
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Figure 6: Prior and posterior estimates of the Beta quantile pyramid model given n =
100 binary response data points. On the left, the solid curve is the prior mean and
the dotted curves are realisations of the prior process. On the right, the solid curve is
the posterior mean, the dotted curves are realisations of the posterior process and the
dashed curve is the true Beta(1/2, 1) cdf.

4.2 Real current status data
We also applied the new importance sampling algorithm to a real rubella seropreva-
lence data set, originally studied by Keiding et al. (1996), provided by the Institute
of Virology, Vienna. In this data set, the immunisation status of n = 230 Austrian
males older than three months was tested during the period 1–25 March 1988. On a log
scale, the data were scaled linearly so that the standard probit model P(y = 1) = Φ(x)
gave the best probit model fit. To model the time to infection, we used a Pitman-Yor
multinomial (PYM) process (Lijoi et al., 2020) as prior for P . For the sake of simplic-
ity, we used the realised probability distributions of the process to model the survival
distribution directly, rather than imposing a PYM mixture model. Lijoi et al. (2020)
showed that given exact observations, posterior simulation of PYM processes are pos-
sible without the use of MCMC methods, via the empirical marginalisation of a latent
variable. Unfortunately, this algorithm does not apply to censored data. Although it
would theoretically be possible to apply the SSS method (Doss, 1994) or similar algo-
rithms to the PYM process model given censored data, each iteration of the sampling
algorithm would require the aforementioned marginalisation. As a result, this approach
would be computationally expensive and of questionable accuracy. On the other hand,
since it is straightforward to generate samples from the PYM process model (Ridout,
2009; Lijoi et al., 2020), the new importance sampling algorithm can be directly applied
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Figure 7: Posterior estimates of the Pitman-Yor multinomial process model given the
Rubella data set (n = 230). On the left, the dotted curve is the prior mean, the solid
curve is the posterior mean and the dashed curve is the nonparametric MLE. On the
right, the solid curve is the posterior mean and the dotted curves are realisations of the
posterior process.

for posterior inference. In the notation of Lijoi et al. (2020), we set the hyperparameters
α = 2.0, σ = 0.7, H = 100, along with the standard normal distribution N (0, 1) as base
measure. These choices serve only as an illustration, and with more work, one could
optimise this choice further, or impose hyperparameter priors in order to achieve a fully
Bayesian approach. The log marginal likelihood was calculated to be −92.864. Reach-
ing an ESS of 2000 required T = 393, 011 iterations. Out of these, 219, 492 yielded a
vanishing permanent and could be discarded. Calculating the permanents took 3 hours,
55 minutes and 27 seconds of computation time. In the left plot of Figure 7, we see the
prior mean, the posterior mean and the nonparametric maximum likelihood estimator
(MLE) (Ayer et al., 1955) of the cdf F . The nonparametric MLE is a frequentist estima-
tor, analogous to the that by Kaplan and Meier (1958) for right censored data, as shown
by Turnbull (1974). In the right plot, we see individual realisations from the posterior
process, along with the posterior mean. The Kolmogorov-Smirnov distance from the
prior mean and the posterior mean to the nonparametric MLE are 0.204 and 0.158, re-
spectively, indicating an improved fit. Indeed, we see the same qualitative behaviour in
the posterior mean as the penalty term models studied by Keiding et al. (1996). For the
PYM process model, possible improvements may be achieved by optimising parameter
choices, or indeed by introducing a similar penalty mechanism into the model.
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5 Binary classification with multidimensional data
So far, we have assumed that the xi are all one-dimensional. In this section, we show
how the theory developed in the previous sections can be extended to problems where2

xi ∈ Rp for p ≥ 1. This will both enable the addition of covariates, as well as provide
an inference framework for binary classification models with multidimensional data.

Let g ∼ π(·) be a (possibly random) function from Rp to R and let F ∼ π(·)
be a (possibly random) cdf on R. We model the binary responses yi as yi | F, g ∼
Bernoulli(F (g(xi))) independently for i = 1, . . . , n.
Example. We now consider three key examples which are covered by the above setup.

• Let g almost surely be a neural network and let F almost surely be the sigmoid
activation function F (a) = 1/(1+exp(−a)). Then the above model is the standard
neural network model for binary classification (Bishop, 2006).

• Let g be a Gaussian process and let F almost surely be the sigmoid activation
function. Then the above model is the standard Gaussian process model for binary
classification (Rasmussen and Williams, 2006).

• Let g almost surely be a linear function with coefficients β and let F be the cdf
of a random probability distribution P . Then the above model is semiparametric,
and corresponds to the addition of covariates in the basic model introduced in
Section 2.1.

Again, we first provide an estimator for the marginal likelihood π(y) of our n obser-
vations y = (y1, . . . , yn) ∈ {0, 1}n, which now takes the form

π(y) = E

[
n∏

i=1
F (g(xi))yi {1 − F (g(xi))}1−yi

]
.

We need to introduce some notation before we can write down our estimator. Given
F , let z = (z1, . . . , zn) ∼ π(· | F ) be distributed such that P(zi ≤ t | F ) = F (t)
independently for all i = 1, . . . , n. Also, given g, write Bg = Bg,1 × · · · × Bg,n, where

Bg,i =
{

(−∞, g(xi)] if yi = 1,
(g(xi),∞) if yi = 0.

Then,

P(z ∈ Bg | g, F ) =
∫

Bg

dπ(z | F ) =
n0∏

i=1
F (g(xi))yi{1 − F (g(xi))}1−yi . (5.1)

2In generative models for binary classification, there is also a distribution for the inputs xi. However,
for evaluation of the marginal likelihood and posterior inference of the hyperparameters, we condition
on these input values, effectively treating them as constant. Hence, everything in this section also
applied to generative models, but we omit conditioning on the value of xi for the sake of clarity.
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Now consider the following estimator.

π̂IS
T (y) = 1

T

T∑

t=1

1
n!w(z(t); Bg(t)), (5.2)

where z(t) ∼ π(· | F (t)), F (t) ∼ π(·) and g(t) ∼ π(·).
Proposition 5.1. The statistic π̂IS

T (y) is an unbiased and consistent estimator for the
marginal likelihood π(y).

Proof. Using double expectation, we have that

E
[

1
n!w(z; Bg)

]
= 1

n!E [[E[w(z; Bg) | g, F ]] = 1
n!E

[∫

Orb(Bg)
w(z; Bg)π(dz | F )

]

= 1
n!E

[∑

σ∈Sn

∫

σ(Bg)
π(dz | F )

]
= E

[∫

Bg

π(dz | F )
]

= E

[
n∏

i=1
F (g(xi))yi{1 − F (g(xi))}1−yi

]
= π(y),

where the penultimate equality follows from (5.1). This proves that the estimator is
unbiased. Applying the law of large numbers to (5.2) establishes consistency.

As in Section 2.3, it is possible to extend this result to a normalised importance
sampling estimator for general posterior inference for g and P .

6 Discussion
We conclude the paper with a few points of discussion which shed light on directions
for future work and further improvements.

In this paper, we have only considered binary responses, which for one-dimensional
inputs corresponds to left and right censored observations. This is because such data
yield block rectangular matching matrices, whose permanents are computable in poly-
nomial time. However, for more complicated observations, such as interval censored
data or polychotous responses (as opposed to binary), it is easy to construct examples
of matching matrices which are not block rectangular. Hence, in order to apply the
methods developed in this paper to such problems, it is necessary to develop an efficient
and accurate estimation procedure for the permanents of the corresponding matching
matrices. Further work in this direction is encouraged.

We have proved the consistency of the new estimator (2.4), in the sense that as
T → ∞, this converges to the posterior mean E[θ | x ∈ B]. However, a separate ques-
tion is whether this posterior mean itself is consistent. For parametric models, this is
guaranteed via the Bernstein–von Mises theorem, which asserts consistency of the pos-
terior mean and links Bayesian credibility sets with frequentist confidence intervals.
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In contrast, Doss (1985a,b) and Diaconis and Freedman (1986) showed that for non-
parametric models, there exist examples of reasonable choices of priors which lead to
inconsistent posteriors. Hence, consistency does not automatically apply in Bayesian
nonparametrics. Multiple positive consistency results have since been established for
specific choices of nonparametric priors (Brunner and Lo, 1996; Ghosal et al., 1999),
some of which also allow for censored data (Kim and Lee, 2004; De Blasi et al., 2009;
Camerlenghi et al., 2021; Jongbloed et al., 2022). In general, the issue of consistency in
Bayesian nonparametrics should be considered only a partially resolved question, espe-
cially for problems involving censored data. Further research in this area is needed to
answer to which extent the asymptotic theory of the frequentist nonparametric MLE
(Ayer et al., 1955; Groeneboom and Jongbloed, 2014) transfers to the Bayesian non-
parametric setting.

Supplementary Material
Supplementary Material for “Inference for Bayesian nonparametric models with binary
response data via permutation counting” (DOI: 10.1214/22-BA1353SUPP; .pdf). Proofs
of Proposition 2.2, Proposition 3.1 and Theorem 3.1.
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Abstract
In order to predict the impact sensitivity of high explosives, we designed and evaluated several models based on the trigger
linkage hypothesis and the Arrhenius equation. To this effect, we calculated the heat of detonation, temperature of detonation,
and bond dissociation energy for 70 energetic molecules. The bond dissociation energy divided by the temperature of
detonation proved to be a good predictor of the impact sensitivity of nitroaromatics, with a coefficient of determination
(R2) of 0.81. A separate Bayesian analysis gave similar results, taking model complexity into account. For nitramines, there
was no relationship between the impact sensitivity and the bond dissociation energy. None of the models studied gave good
predictions for the impact sensitivity of liquid nitrate esters. For solid nitrate esters, the bond dissociation energy divided
by the temperature of detonation showed promising results (R2 = 0.85), but since this regression was based on only a few
data points, it was discredited when model complexity was accounted for by our Bayesian analysis. Since the temperature of
detonation correlated with the impact sensitivity for nitroaromatics, nitramines, and nitrate esters, we consider it to be one
of the leading predictive factors of impact sensitivity for energetic materials.

Keywords Explosives · Impact sensitivity · Bond dissociation energy · Temperature of detonation · Arrhenius kinetics

Introduction

By using quantum chemical and thermodynamic calcula-
tions, new energetic molecules can be designed and charac-
terized in terms of their geometry, density, and performance
as explosives and propellants [1–5]. It is important to predict
the sensitivity of energetic materials, but despite consid-
erable efforts made during the last decades, developing a
reliable and general method is still challenging [6–11]. By
the sensitivity of an energetic material, we refer to its sus-
ceptibility to initiate due to external thermal, mechanical, or
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electrostatic stimuli. The study of the underlying causes that
govern sensitivity is not only important for understanding
liquid and solid-state phenomena in general but above all for
ensuring safe handling, transport, and storage of energetic
materials.

One of the most well-known measures of the sensitivity
of an explosive is its impact sensitivity, which is determined
by dropping a mass upon the sample, measuring the critical
point at which a pre-decided fixed percentage of the drops
will lead to an explosion. We refer to this critical point as
the critical impact level of the material, which may either
be given as the critical height (cm) or potential energy (J).
Hence, the impact sensitivity and the critical impact level
are inversely correlated.

The impact sensitivity is related to macroscopic param-
eters such as particle size, crystals defects, polymorphism,
and crystal orientation. Defects play a particularly promi-
nent role since they form hot-spots under fast compression
of the material. The initiation process can be divided into
two steps. First, the material is compressed and deformed,
leading to heating of the hot-spots. In the second step, the
material inside and surrounding the hot-spots self-ignites
and propagates into an explosion, provided that the hot-spot
temperatures are sufficiently high. The critical temperature
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at which the explosive self-ignites during impact has been
measured to be between 390 and 1060◦ C [12, 13].

There are many operational factors which also affect
the critical impact level measured, such as the type of
fallhammer used, the test procedure itself, and operator-
related judgment of explosion/no-explosion. In addition, the
impact sensitivity will depend on the thickness and size
of the sample [14, 15]. In general, the measured critical
impact level depends on a variety of experimental factors
in addition to molecular-related properties. Consequently,
predicting impact sensitivities with reasonable accuracy
appears to be too subtle a problem to be explained by a
model based on fallhammer measurements alone.

Additional key factors responsible for the sensitivity
of an energetic material include the molecular properties
related to the kinetics and the thermodynamics of the
decomposition reactions. Numerous studies have been
carried out in order to correlate the impact sensitivity
with properties like heat of detonation [16–18], detonation
velocity [19], bond dissociation energy [22, 23], oxygen
balance [24], electrostatic potential of the molecular surface
[25–27], band gap [28], 15N NMR chemical shift [29],
“doorway modes” in the region 200–1000 cm−1 [30], and
free space in the crystal lattice [31]. More recent studies
focusing on physical factors report that there are only weak
correlations or trends between the impact sensitivity and
heat of detonation, electrostatic potential, and free space in
the crystal lattice [7, 8, 17].

Due to the complexity of initiation of the decompo-
sition pointed out by Dlott, care must be taken before
drawing mechanistic conclusions based on simple corre-
lation studies [32]. Moreover, if a study is based on too
few compounds to make conclusive judgments, we risk
asserting accidental correlations [33]. Using a large set of
molecules, Keshavarz et al. derived models based on the
CHNO ratios and different molecular moieties [34, 35].
Quantitative structure-property relationship (QSPR) mod-
els have also been developed for large sets of molecules
[36, 37], and seem to be able to predict the impact sen-
sitivity with reasonable accuracy. However, unlike models
based on physical factors, these QSPR models do not reveal
much information about the intrinsic factors that govern the
impact sensitivity. Since they generally contain a surfeit of
adjustable parameters, they are also prone to over-fitting.

Models for predicting the impact sensitivity based on
the Arrhenius equations and the thermodynamics of the
decomposition were introduced in the 1940s and 1950s [12].
In a study of 15 molecules, Wu et al. showed that the ratio
between the dissociation energy of the weakest –NO2 bond
and the heat of decomposition correlated with the impact
sensitivity [1, 44]. This approach was refined by Mathieu et
al., investigating models based on larger sets of molecules
[38–40]. For various families of energetic materials, they

found correlations between the impact sensitivity and the
bond dissociation energy divided by the decomposition
energy. In these models, the enthalpies of formation were
either neglected or calculated with a simplified method, and
the decomposition energies were computed assuming that
the energetic molecule decomposed to H2O–CO2 arbitrarily
[38–40]. Instead of calculating the bond dissociation
energies for each molecule separately, the –NO2 bond
dissociation energy was assigned to a constant value by
considering into which family of energetic materials the
molecule belonged, along with the functional groups in the
neighboring position of the nitro group [38–40].

In this work, we report density functional theory (DFT)
calculations of the –NO2 bond dissociation energies and
thermodynamic calculations of the heat and temperature
of detonation for 70 energetic molecules. We then apply
our results to investigate how these properties can predict
impact sensitivity. All –NO2 bond dissociation energies
in the molecules are calculated separately. When overlap
between the data sets is accounted for, we reach a total
of 91 data points on which our regression models are
based. Impact sensitivity models based on bond dissociation
energies, heats of detonation, detonation temperatures, and
total energies are evaluated for these molecules. 1,3,5-
Triamino-2,4,6-trinitrobenzene (TATB) is known for its low
sensitivity, and has been frequently used in models for
predicting impact sensitivities [18, 19, 34, 37, 38]. However,
its critical impact level (490 cm; 2.5 kg drop weight) is not
a measured value but an estimate based on extrapolating
the measured critical heights and oxygen balances of only
three energetic molecules. The measured critical height of
TATB is only reported to be higher than 320 cm [41]. We
will therefore use our most promising model to make a more
accurate prediction of this value.

Theory andmethods

Modeling the critical impact level

We model the critical impact level of an energetic mole-
cule as a continuous random variable I with the property
that its (natural) logarithm log I is governed by a normal
distribution with mean μ and variance σ 2, so that

log I ∼ N
(
μ, σ 2

)
. (1)

In general, μ will depend on the individual choice of
molecule, whereas σ 2 is assumed to be constant across
families of molecules. The variance will depend on the
level of statistical noise in the data set under consideration,
which is largely due to experimental inaccuracies. However,
when modeling quantum mechanical phenomena, genuine
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randomness in nature may also have an effect on the
measurements. The Bruceton method and UN test procedure
are among the most common schemes for measuring critical
impact levels. The former gives the impact energy level
I50 (J) or height H50 (cm) at which 50% of the test samples
are expected to explode, whereas the latter gives the impact
energy level I1:6 (J) or height H1:6 (cm) that results in an
explosion for at least one in six test drops [42, 43]. For
dimension reasons, we introduce a reference value I 0 of
1 J. We let the critical impact level I denote either I50/I

0

or I1:6/I 0, depending on whether the data set upon which
the regression is based is in accordance with the Bruceton
method or the UN test procedure.

We now motivate our choice of models. According to the
hot-spot theory, when an energetic material is subjected to
a mechanical impact, material deformation will increase the
hot-spot temperatures. If this temperature is above a critical
level, the molecule will decompose. The trigger linkage
hypothesis states that the first step in the initiation of an
energetic molecule is a bond cleavage. The decomposition
is triggered by the homolytic fission of an A–NO2 bond, and
so the reaction is given by

A–NO2 → (A–NO2)
� → A · + · NO2, (2)

where the star � denotes the transition state and A is either
C, N, or O.

At high temperatures, similar to what the material is
exposed to by impact or shock, the C–NO2 bond disso-
ciation is the dominant reaction in the initial decomposi-
tion phase for nitroaromatic molecules [33]. However, at
lower temperatures, reactions involving the other functional
groups on the aromatic ring may occur. Furthermore, auto-
catalyzed reactions and self-heating of the material because
of exothermal reactions determine the rate of reaction r in
the next decomposition phase. The kinetic theory attributed
to Arrhenius dictates that r is inversely exponentially depen-
dent on the activation energy Ea (the energy required to
transform the reactant into the transition state), giving us

−d [A–NO2]

dt
= r = c [A–NO2]n exp

(
− Ea

RT

)
, (3)

where [A–NO2] is the molar concentration of A–NO2, t

is time, c is a constant (the pre-exponential factor), n is
the reaction order, R is the molar gas constant, and T

is the absolute temperature. Since it has been assumed
that the rate of reaction given by the Arrhenius equation
correlates negatively with the impact sensitivity of an
energetic material [1, 12, 38, 44], we make the assumption
that these quantities are inversely proportional. That is, the

sum μ + log r is constant. Combining this with taking
logarithms on both sides of Eq. 3, we get that

−μ = c + n log [A–NO2] − Ea

RT
. (4)

When [A–NO2] and n are assumed to be constant, Eq. 4
takes the form

μ = c1 + Ea

RT
, (5)

where c1 is a constant.
Equation 5 forms the basis for our models. In order to

calculate μ, we first need to calculate Ea and T . Unfor-
tunately, these parameters are difficult to determine. Even
though Ea can be calculated by quantum mechanical meth-
ods, several transition states and different decomposition
routes need to be considered, making the calculations very
time-consuming. For this reason, we have evaluated vari-
ous approximation schemes for Ea and T . In our first three
models, we assume that the activation energy in Eq. 5 is
constant.

The Arrhenius law requires a particular temperature.
During the complex sequence of events leading to an explo-
sion, the temperature in the surroundings of a decomposed
molecule will deviate from the ambient temperature. A
small number of neighboring molecules are envisioned
to decompose and release energy, increasing the local
temperature. If the decomposition reaction produces more
heat than is lost in conjunction with the heating of the
nearby species, heat convection, and conduction to the
surroundings, the temperature will rise rapidly. If this
occurs, the reaction may propagate into an explosion.
Therefore, T is a local temperature, varying in space and
time during these events. In this picture, the more energy
released during decomposition, the higher the local temper-
ature. Consequently, the heat of detonation Q (kJ dm−3)
is assumed to be proportional to T . This gives our first
model, which was studied in References [1, 7, 8, 16–18, 44],
namely

μ = c1 + c2

Q
. (6)

Here, the constants c1, c2 are fitted to critical impact level
data by linear regression and Q is calculated in EXPLO5
[45], which uses the chemical formula, the enthalpy
of formation, and density to calculate the detonation
properties. The enthalpies of formation and densities are
taken from References [46–49]. These references do not
contain enthalpy of formation or density for all the energetic
materials we shall consider, so for the remaining molecules,
these parameters are estimated using the method described
in References [50–54].

Song et al. assumed that the total energy Etotal (Hartree)
of an energetic molecule correlates with the energy release
of the decomposition reaction [20, 21]. This motivates the
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assumption that Etotal and T are proportional, giving us the
model

μ = c1 + c2

Etotal
, (7)

where Etotal is calculated by Gaussian09 [55]. The zero-
point energy is not included in this calculation.

A new model, to our knowledge not discussed in
the literature, results from assuming that T in Eq. 5 is
proportional to the detonation temperature Tex (K) of the
material, leading us to

μ = c1 + c2

Tex
, (8)

where Tex is calculated in EXPLO5.
The models above require a constant Ea for the

homolytic cleavage of the A–NO2 bond for each class of
energetic material. This is clearly a rough approximation. It
has been proposed that Ea is proportional to the bond disso-
ciation energy BDE (kJ mol−1), that is, the energy required
to break the trigger-linkage [1, 38–40, 44]. However, a pro-
portional relationship between BDE and Ea is likely to
hold only for compounds where the resonance stabiliza-
tion and the structure of the transition states are relatively
similar. Khrapkovskii et al. reported a significant correla-
tion between the measured value of Ea for the C–NO2

homolysis in nitroaromatic substances with different sub-
stituents and the values of BDE calculated by the hybrid
DFT functional B3LYP and a small basis set 6-31G(d,p),
with a coefficient of determination R2 of 0.72 [56]. This
motivates the assumption that Ea and BDE are proportional.

Our fourth model in question was studied in References
[22, 23]. It is based on BDE alone, and reads

μ = c1 + c2 (BDE) , (9)

where we have assumed that T in Eq. 5 is constant. By
including BDE and the approximations used in Eqs. 6, 7,
and 8 for the local temperature into Eq. 5, we arrive at our
final three models of consideration, which take the form

μ = c1 + c2

(
BDE

Q

)
, (10)

μ = c1 + c2

(
BDE

Etotal

)
, (11)

μ = c1 + c2

(
BDE

Tex

)
. (12)

Equations 10 and 11 were studied in References [1, 19,
38–40, 44] and [20, 21], respectively.

We study three families of energetic molecules: nitroaro-
matics, nitramines, and nitrate esters. For each family, we
make a choice of which bond rupture we believe to be
the key step in the initiation process. We choose C–NO2,

N–NO2, and O–NO2 for nitroaromatics, nitramines, and
nitrate esters, respectively.

Density functional theory calculations

Our original intention was to optimize the geometry of
molecules and radicals with the M06 functional and the
6-311+G(2d,p) basis set, since M06 is reported to calculate
homolytic dissociation of C–NO2 bonds accurately [57].
However, we were not able to calculate several hundred val-
ues of BDE with this choice of functional and basis set
due to limited computer power. In order to avoid this dif-
ficulty, we instead chose the B3LYP functional, which is
widely used in optimizing the geometry of energetic mate-
rials. This functional is known to systematically undershoot
the value of BDE for C–NO2 [57], but Khrapkovskii et al.
have shown that with a small basis set (6-31G(d,p)),
it calculates BDE for substituted nitroaromatics with simi-
lar accuracy as wB97xd/6-31+G(2df,p), G2, G3, G3B3 and
CBS-QB3 [56]. In Table 1, we show how the calculated
value of the C–NO2 BDE for nitrobenzene converges by
increasing the size of the basis set. This value has been
measured to be 298.7 kJ mol−1 [58] and 314.5 kJ mol−1

[59].
The BDE values in Table 1 are calculated according to

the method in Reference [60]. Table 1 also illustrates how
the B3LYP functional undershoots the BDE values, but it
should be borne in mind that in our models, differences in
BDE are more important than the particular values they take.
The calculation is defined by

BDE = E (A·) + E (NO2·) − E (A–NO2) , (13)

where E (A·), E (NO2·), and E (A–NO2) denote the ground
state electronic energies (open shell model) of the species
A·, NO2· and A–NO2, respectively. In Eq. 13, the zero-point
energy is neglected since Song et al. have shown that it
bears no important role for the correlation between I50 and
BDE/Etotal [20].

Table 1 The C–NO2 bond dissociation energy BDE (kJ mol−1) for
nitrobenzene calculated with the B3LYP and M06 functional at 298 K
by using different basis sets

Basis set B3LYP M06

6-31G 301.3 329.9

6-31G(d) 290.1 312.6

6-31G(d,p) 290.2 312.6

6-311G(d,p) 278.7 299.7

6-31+G(d,p) 282.6 305.4

6-311+G(d,p) 276.3 297.5

6-311+G(2df,2p) 277.3 299.6
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Experimental measurements

Since variation in the measurements of critical impact
level causes difficulties in parametrizing and validating
models, it is important to keep observational uncertainties
to a minimum when conducting experiments. The critical
impact level data for the nitroaromatic materials is obtained
from the Wilson et al. data set, where the tests were
performed in the same laboratory with the same equipment
and according to the same test procedure [48]. Wilson
et al. also ensured that the molecules considered had a
similar particle distribution, and so we find this data set
to be the most useful one for our purposes. It should
be noted that the critical height of 1,3-diamino-2,4,6-
trinitrobenzene (DATB) and TATB are only given as a
lower limit below which they did not explode, namely
H50 > 200 cm for both molecules. Therefore, these values
are not included in the training set from Wilson et al.
In our analysis, we also consider two other data sets for
nitroaromatics in order to reduce the risk of asserting any
accidental correlations. These are taken from Storm et al.
[41] and Meyer et al. [47]. The critical impact levels for
the nitramines and nitrate esters are obtained from Storm
et al. and Meyer et al., respectively. For the Wilson et al.
and Storm et al. data sets, the Bruceton procedure was
used, while the Meyer et al. data set is based on the
UN test procedure. Hence, there are systematic differences
between the measured critical impact levels in these data
sets, which emphasizes that we cannot easily combine them
in order to parametrize and validate the models collectively
[8].

Statistical analysis

In order to evaluate the predictive ability of our models,
we calculate the coefficient of determination (R2), root-
mean-square error (RMSE), absolute mean, and maximum
deviation between our predictions and the measurements
from our data sets. The most promising model is also
developed in parallel via Bayesian regression, taking
model complexity into account. We evaluate the predictive
power of this Bayesian model via the model evidence
function. In addition, we also perform a simple sensitivity
analysis in order to evaluate the consequences of inaccurate
calculations or measurements.

In the frequentist framework, the mean μ and variance σ 2

in the distribution (1) are estimated using the sample mean
and correctly scaled sample variance, respectively, which
are unbiased. We also note that our assumption (1) may be
rephrased as

I ∼ Lognormal
(
μ, σ 2

)
, (14)

and so in the frequentist framework, we may predict the
mean and variance of a new critical impact level Inew as

E [Inew] = exp

(
μ + σ 2

2

)
, (15)

var(Inew) =
[
exp

(
σ 2

)
− 1

]
exp

(
2μ + σ 2

)
. (16)

In the Bayesian framework, we introduce a conjugate
prior distribution for the model coefficients and estimate the
variance by maximizing the evidence function. Then any
new critical impact level Inew|D given observed data D
will be governed by the predictive distribution, which will
also be lognormal due to the functional form of the prior
distribution. That is,

Inew|D ∼ Lognormal
(
μD, σ 2

D
)

, (17)

where μD and σ 2
D are the mean and variance of the

predictive distribution, respectively. Recall that unlike
in the frequentist framework, σ 2

D will depend on the
individual choice of molecule considered. The expectation
and variance of the new critical impact level Inew|D may
then be calculated as

E [Inew|D] = exp

(
μD + σ 2

D
2

)
, (18)

var (Inew|D) =
[
exp

(
σ 2
D

)
− 1

]
exp

(
2μD + σ 2

D
)

. (19)

Later, we predict the critical impact level for DATB and
TATB, both in the frequentist and Bayesian framework.

Results and discussion

The molecular structure of these energetic materials
together with the computed data are available in the
Electronic Supplementary Material.

Nitroaromatics

We perform the linear regression for nitroaromatic materials
in two separate ways, both in a frequentist framework
and via Bayesian regression. In the former framework,
the model coefficients are determined by minimizing a
non-regularized sum-of-squares error function, and the
predictive ability of the model is evaluated via cross-
validation. Note that with this approach, the issue of model
complexity is not addressed. However, when performing
regression with relatively few data points, the issue of
model complexity becomes a key point for avoiding over-
fitting. In the Bayesian framework, analysis of model
complexity is built in by design, which leads us to somewhat
different conclusions than those relying on the frequentist
approach, in particular for the Storm et al. data set. In the
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Table 2 The coefficient of determination between the log critical impact level and the reciprocal of the heat of detonation, the reciprocal of the
total energy, the reciprocal of the temperature of detonation, the bond dissociation energy, the bond dissociation energy divided by the total energy,
the bond dissociation energy divided by the heat of detonation, and the bond dissociation divided by the temperature of detonation. The regression
is based on the Wilson et al., Storm et al., and Meyer et al. data sets, respectively

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

Wilson et al. 0.20 0.24 0.41 0.56 0.48 0.76 0.81

Storm et al. 0.41 0.26 0.54 0.56 0.42 0.64 0.67

Meyer et al. 0.64 0.21 0.75 0.41 0.40 0.70 0.69

Bayesian framework, the predictive quality of the model
is addressed by evaluating the model evidence rather than
cross-validation.

Frequentist framework

The results for the nitroaromatic materials based on the
Wilson et al., Storm et al., and Meyer et al. data sets are
shown in Table 2.

We note that 1/Tex correlates better with log I than
1/Q for all three data sets. The most promising predictor
of critical impact levels overall is BDE/Tex, with R2 =
0.81, 0.67, and 0.69. Figure 1 illustrates the merit of this
model for the Wilson et al. data set.

Table 2 shows only a weak correlation between
BDE/Etotal and log I . These results are not in line with
those of Song et al., which indicate merit for this model [20,
21]. However, they derived this correlation by using a small
data set. For molecules of similar structure, Etotal is likely
to correlate with Q, but this is unlikely to hold in general;
we get virtually no correlation (R2 = 0.03) when plotting
these parameters against each other.

As there are only 24, 17, and 16 molecules in the
Wilson et al., Storm et al., and Meyer et al. data sets,
respectively, our regression is a priori prone to over-fitting.
In order to evaluate its predictive ability, we use leave-one-
out cross-validation; the results of which are summarized in
Table 3.

Fig. 1 The log critical impact level of the nitroaromatics in the Wilson et al. data set plotted against the bond dissociation energy divided by the
detonation temperature, along with the best-fitting regression line (R2 = 0.81)
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Table 3 Leave-one-out cross-validation of the model based on the bond dissociation energy divided by the temperature of detonation. The RMSE,
absolute average deviation, maximum deviation, and the compounds with largest deviation are given. See the “Statistical analysis” section for how
the predicted critical impact level is calculated from the model

Average abs. Maximum Maximum

Data set RMSE (J) deviation (J) deviation (J) deviation compound

Wilson et al. 6.1 3.7 25 CL-14

Storm et al. 15 10 40 Styphnic acid

Meyer et al. 9.1 6.6 21 Picramic acid

Our cross-validation does not show any particularly
convincing results for either data set, revealing that more
parameters than just BDE/Tex are needed to predict the
critical impact level of nitroaromatic compounds. The most
promising numbers are for the Wilson et al. data set, with
an RMSE of 6.1 J and an average absolute deviation of
3.7 J between the predicted and measured I50. 5,7-Diamino-
4,6-dinitrobenzofuroxan (CL-14) has the largest deviation
(25 J). The (Wilson et al.) model predicts the critical impact
level I50 of CL-14 to be 48 J, while the measured I50 is
29 J. We note that the calculated C–NO2 BDE in CL-14 is
quite large, at 318 kJ mol−1. However, this NO2 group is
surrounded by an amino group on each of the neighboring
carbons, as is also the case for TATB. Hence, this value for
CL-14 is not particularly surprising, as the BDE of TATB is
calculated to be 310 kJ mol−1. The deviation between the
measured and predicted critical impact level of CL-14 may
indicate that this molecule follows another decomposition
route.

CL-14 contains a furoxan ring, as is also the case
for three other molecules in the Wilson et al. data set,
namely 7-amino-4,6-dinitrobenzofuroxan (ADNBF),
4,6-dinitrobenzofuroxan (DNBF), and 8-amino-7-
nitrobenzobisfuroxan (CL-18). These have deviations of
-3 J, -8 J, and 2 J (respectively) between the predicted
and measured I50. If the decomposition is initiated in the
furoxan ring, a larger deviation may be expected.

From Table 3, we see that in the Storm et al. data set,
1,3-dihydroxy-2,4,6-trinitrobenzene (styphnic acid) has the
largest deviation between the predicted and measured I50.
Our model predicts this value to be 45 J, while it is measured
to be 11 J. The BDE is calculated to be 287 kJ mol−1

by using the M06 functional and the 6-311G+(2d,p) basis

set. This is similar to the value calculated when using
B3LYP/6-31G(d), which is 274 kJ mol−1.

Bayesian regression

We now perform Bayesian linear regression separately
on the three data sets for the most promising model,
namely (12). In order to adapt the Bayesian framework,
we introduce a zero-mean, isotropic bivariate normal prior
distribution over the model coefficients c = (c1, c2)

T with
covariance matrix τ 2I , so that

c ∼ N
(
0, τ 2I

)
. (20)

We follow the process outlined in Reference [61], in
which the first step is to maximize the evidence function in
order to obtain estimates for the parameters σ 2 and τ 2, a
technique also known as emperical Bayes. We then compute
the posterior distributions for the model coefficients by
updating our prior distributions separately over the the
data sets. Using the mean of this posterior distribution
as our estimate for the model coefficients c, we obtain
our linear models. Note that this process is equivalent
to minimizing a regularized sum-of-squares error function
with regularization term λ = σ 2/τ 2, and so model
complexity is intrinsically accounted for. A summary of
the model coefficients computed, along with the relevant
parameters, is provided in Table 4.

We see that the penalizing regularization term plays a
substantial role for the regression on the Storm et al. data set.
Although values of R2 in the frequentist analysis for Storm
et al. and Meyer et al. were relatively close in value (0.67

Table 4 Bayesian regression for the three nitroaromatic data sets, based on Eq. 12, with a prior distribution given by Eq. 20. The variances σ 2 and
τ 2, the regularization coefficient λ = σ 2/τ 2 and the effective number of parameters γ = cT c/τ 2 are also included

Data set c1 c2 σ 2 τ 2 λ = σ 2/τ 2 γ = cT c/τ 2

Wilson et al. − 1.31 59.92 0.11 1.7 × 103 6.2 × 10−5 1.98

Storm et al. 2.80 2.18 0.82 12 6.7 × 10−3 1.03

Meyer et al. − 0.81 44.40 0.23 1.0 × 103 2.2 × 10−4 1.93
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Table 5 Evaluation of the (log) model evidence for the proposed linear model (12), along with the (log) model evidence for an alternative constant
model (21). The Bayes factor and its preference are also listed for the three data sets

Linear hypothesis Constant hypothesis Bayes factor Preferred

Data set model evidence (log) model evidence (log) (linear against constant) model

Wilson et al. − 14.46 − 26.13 1.2 × 105 Linear

Storm et al. − 23.40 − 21.12 0.10 Constant

Meyer et al. − 17.78 − 18.96 3.25 Linear

and 0.69, respectively), the Bayesian analysis suggests that
there is little evidence supporting a linear term in the model
for the Storm et al. data set. Considering the interpretation
of the parameter γ = cT c/τ 2 provided in Reference
[62], namely as the effective number of parameters for
the model, we see that for the Storm et al. data set, there
is effectively only a single parameter (the constant term)
governing the distribution of data points. This is in contrast
to the corresponding results for the Wilson et al. and Meyer
et al. data sets, where the effective number of parameters
is calculated to be approximately equal to 2, supporting the
claim that log I indeed depends linearly on BDE/Tex.

We evaluate the predictive ability of our models in
the Bayesian framework by calculating the (log) model
evidence function. Since the Bayesian regression penalizes
the model complexity for the Storm et al. data set, we
also compare the evidence for our proposed model to that
of a separate constant model which asserts no correlation
between log I and BDE/Tex. That is, our other model
claims that I is governed by a lognormal distribution of the
form

I ∼ Lognormal
(
μ0, σ

2
0

)
(21)

with constant mean μ0 and constant variance σ 2
0 . We

perform the corresponding Bayesian regression for this
alternative model and compare the results to our original
model (12) by calculating the Bayes factor. The results of
this model comparison are presented in Table 5. A Bayesian
factor larger than unity indicates preference towards the
linear model, while a factor smaller than unity indicates
preference towards the constant model.

From Table 5, we see that Bayesian regression on the
Wilson et al. and Meyer et al. data sets prefers the linear

model (12), whereas it prefers the constant model (21) for
the Storm et al. data set. Hence, our prediction of the critical
impact level of TATB will be based on the Wilson et al.
data set rather than that of Storm et al. Note that the model
comparison for the Wilson et al. data set is several orders of
magnitude more decisive than for that of Meyer et al.

We make two predictions of the critical impact level I50

of DATB and TATB, one based on the frequentist framework
and another from the Bayesian predictive distribution. The
predictions and their uncertainties are calculated using
Eqs. 15 and 16. The results are given in Table 6.

Storm et al. measured the critical impact level (H50, 2.5 kg
drop weight) of TATB to be larger than 320 cm (I50 > 78 J).
Additionally, they predicted H50 to be 490 cm (I50 = 120 J)
based on the measured impact sensitivity and the oxygen
balance for trinitrobenzene, 2,4,6-trinitroaniline and DATB
[41]. Using the Wilson et al. data set, our frequentist and
Bayesian prediction ofI50 for TATB are 97 J and 95 J,
respectively. We note that the Bayesian prediction is less
certain since the variance of the predictive distribution
accounts for uncertainty related to the model coefficients,
as well as noise in the data. This difference in certainty for
the two models is illustrated in Fig. 2.

The frequentist and Bayesian predictions of I50 for
DATB are 61 J and 60 J, respectively. In the Storm et al.
data set, its measured value is 78 J [41], which is consistent
with the difference between the Wilson et al. data set and
the Storm et al. data set. Indeed, the former data set is
more sensitive than the latter for materials with a critical
impact level larger than 15 J. For more sensitive materials
(I50 < 15 J), the differences in critical impact level are
smaller [8]. In the Storm et al. data set, a sample mass
of 40 mg was used, while in the Wilson et al. data set, it
was 35 mg. It has been reported that nitroaromatics such

Table 6 Frequentist and Bayesian predictions of the critical impact level I50 (J) of DATB and TATB based on Eq. 12. The standard deviation of
the respective predictions are included in parentheses

Frequentist Bayesian

μ μD σ 2 σ 2
D predicted I50 (J) predicted I50 (J)

DATB 4.06 4.03 0.11 0.15 61 (21) 60 (24)

TATB 4.52 4.48 0.11 0.16 97 (34) 95 (40)
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Fig. 2 Frequentist and Bayesian
predictions of the critical impact
level of TATB, based on the
lognormal model fitted to the
Wilson et al. data set. The
red-shaded region comprises
one standard deviation on either
side of the exponential curve, as
calculated by Eqs. 16 and 19 for
the frequentist and Bayesian
prediction, respectively

as tetryl, 2,4,6-trinitrotoluene (TNT) and o-trinitrophenol
become more sensitive when the thickness or the amount
of sample is reduced [14, 15]. The smaller the sample, the
more energy is released per unit volume of explosive. The
Wilson et al. data set is based on a smaller sample mass
than that used in the Storm et al. data set, which may be one
of the main reasons for the difference in measured critical
impact levels.

Model sensitivity analysis

We now perform a simple sensitivity analysis of our fre-
quentist and Bayesian models, investigating how sensitive
they are to slight changes in the input variables upon which
the regression is based. From the “Bayesian regression”

section, we expect the Bayesian model to be more sensitive
to such alterations than the frequentist model, since the vari-
ance of the Bayesian predictive distribution also accounts
for uncertainty in the model coefficients. This can be seen
explicitly by observing how the predicted value of I50 for
DATB changes if we over- and underestimate the values of
BDE and Tex in turn in the Wilson et al. data set. When
multiplying BDE and Tex by (1 + ε), where ε = -0.05,

-0.04, . . . , 0.04, 0.05, the frequentist prediction of I50 for
DATB changes by no more than 10−13% of its original
value. On the other hand, the corresponding difference in
the Bayesian prediction ranges from 10−8% to 10−6%.

Inaccuracies in the measured critical impact level may
also affect how the model makes new predictions. We mea-
sure the sensitivity of our frequentist and Bayesian models

Table 7 The coefficient of determination (R2) between the log critical impact level of nitramine compounds and the reciprocal of the heat of
detonation, the reciprocal of the total energy, the reciprocal of the temperature of detonation, the bond dissociation energy, the bond dissociation
energy divided by the total energy, the bond dissociation energy divided by the heat of detonation, and the bond dissociation divided by the
temperature of detonation. The calculations are first based on using the weakest (N-N) bond, and then the weakest C–NO2 or N–NO2 bond. The
regression is based on the Storm et al. data set

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

N–NO2 0.34 0.12 0.44 0.04 0.10 0.41 0.34

C–NO2 or N–NO2 0.34 0.12 0.44 0.11 0.12 0.49 0.41
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by multiplying the values of I in the data set by (1 + ε),
where ε is drawn (separately for each molecule) from
a uniform probability distribution of range [-0.05, 0.05].
We then calculate the absolute difference in the predicted
I50 of DATB before and after perturbing the input, given
as a percentage of the original predicted value of I50.
Averaging over 500 such random simulations, we find
the predicted I50 of DATB to deviate from the original
prediction by a factor of 1.3% for both the frequentist
and the Bayesian model. This result indicates that inexact
experimental measurements may sully the accuracy of the
model.

Nitramines

The results for the nitramines based on the Storm et al.
data set are shown in Table 7. We see that neither 1/Q nor
1/Tex is strongly correlated with log I (R2 = 0.34 and 0.44,
respectively), and for the N–NO2 BDE, we get virtually no
correlation with log I (R2 = 0.04).

In addition to N–NO2 bond, some of the nitramines
contain one or more C–NO2 bonds. For such molecules, the
C–NO2 bond may be weaker than the N–NO2 bond when
three NO2 groups are attached to the same carbon atom.
This is due to repulsive forces between the NO2 groups
and also their attraction to electrons in the C–NO2 bond.

If the weakest bond in the model is taken to be either
N–NO2 or C–NO2, there is still low correlation between
log I and BDE, indicating that molecular rearrangements
and auto-catalyzed reactions play a key role in the initial
nitramine decomposition. Contrary to the promising result
for nitroaromatics, we only see a weak correlation between
log I and BDE/Tex (R2 = 0.41). This observation is
illustrated in Fig. 3, where log I is plotted against BDE/Tex.

We now comment on the outliers marked in Fig. 3. First,
bis-(2,2,2-trinitroethyl)-nitramine has a positive oxygen bal-
ance which results in a relatively low value of Tex since
the molecule does not contain enough carbon or hydrogen
to utilize all the oxygen. This leads to a particularly high
value of BDE/Tex, which illustrates how our model predicts
compounds with a positive oxygen balance to be less sensi-
tive to impact than what they actually are. Next, N,N’-dinitro-
methanediamine and N,N’-dinitro-1,2-ethanediamine con-
tain the –NH–NO2 functional group. The values of the
N–NO2 BDE for these molecules (220 kJ mol−1 and
214 kJ mol−1, respectively) are relatively high compared
with those of nitramines, which usually range from 150
to 170 kJ mol−1. We calculated BDE of these compounds
with the M06 functional and the 6-311+G(2d,p) basis set
in order to exclude the possibility for any erroneous geom-
etry optimization caused by the B3LYP functional. The
M06 functional with the 6-311+G(2d,p) basis set predicts

Fig. 3 The log critical impact level of the nitramines in the Storm et al. data set plotted against the bond dissociation energy divided by the
detonation temperature, along with the best-fitting linear regression line (R2 = 0.41). The weakest N–NO2 or C–NO2 bond is used as the weakest
bond for the model
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Table 8 The coefficient of determination (R2) between the log critical impact level of nitrate ester compounds and heat of detonation, total energy,
detonation temperature, and bond dissociation energy and ratios between the bond dissociation energy and heat of detonation, total energy, and
detonation temperature. The regression is based on the Meyer et al. data set

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

Solids + liquids 0.00 0.19 0.17 0.00 0.19 0.00 0.11

Solids 0.29 0.83 0.83 0.68 0.49 0.49 0.85

Liquids 0.05 0.16 0.16 -0.02 0.11 0.03 0.10

BDE for N,N’-dinitromethanediamine and N,N’-dinitro-
1,2-ethanediamine to be 244 kJ mol−1 and 241 kJ mol−1,
respectively. Thus, the divergence of these two molecules
from the regression line cannot be explained by the high
BDE calculated by the B3LYP functional alone.

The initial decomposition of nitramines can take
place through several mechanistic routes. For example,
at least four initial mechanisms for the decomposition
of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) have been
suggested: N–NO2 homolysis, HONO elimination, the
“tripple whammy” mechanism, and NONO isomerization.
Using the couple cluster theory, the Ea value of the HONO
elimination has been calculated to be lower than that of the
N–NO2 homolytic reaction for RDX [63]. A recent study
of the initial decomposition process of liquid RDX has
revealed that HONO elimination is likely to be the major
decomposition pathway [64].

In order to investigate whether HONO elimina-
tion is an alternative decomposition route for N,N’-
dinitromethanediamine, we calculate the energy required
to break the N–NOOH bond. The HONO BDE is calcu-
lated to be 420 kJ mol−1. When the hydrogen atom is
moved from the nitrogen atom to the oxygen atom, the
length of the N–N bond decreased from 1.379 to 1.257
Å (M06/6-311+G(2d,p)). The bond becomes more like a
double bond, making it unlikely to break without more
molecular rearrangements.

Nitrate esters

The nitrate ester data set (from Meyer et al.) consists of
both liquids and solids. Table 8 shows that when these
are considered simultaneously, none of our models seems
to give any satisfactory predictions. When solids and

Fig. 4 The log critical impact level of the liquid and solid nitrate esters in the Meyer et al. data set plotted against the bond dissociation energy
divided by the detonation temperature, along with the best-fitting linear regression line for the solids (R2 = 0.85)
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liquids are treated separately, no model shows any notable
improvement for the liquids. Denisaev et al. have found a
correlation between

√
H50 and ρQ, where ρ is the density,

for liquid nitrate esters [16]. The critical impact levels of
liquid nitrate esters are sensitive to experimental factors
such as the presence of bubbles in the liquid which can
significantly alter the impact sensitivity of a liquid explosive
[12].

There seems to be a strong correlation between log I and
BDE/Tex for solid nitrate esters, but as can be seen in Fig. 4,
this assertion is based on very few data points. In order to
investigate whether this correlation is genuine or just a result
of over-fitting, we perform a Bayesian model comparison
with a constant model (which asserts no correlation between
BDE/Tex and log I ) as in the “Bayesian regression” section.
When model complexity is accounted for, the Bayes factor
comes out to be 0.554, in favor of the constant model.
Hence, more data points are needed for further investigation
of the the merit of the linear model. Similar results hold for
the other seemingly promising model, namely (8), with a
Bayes factor of 0.552, again favoring the constant model.

Conclusion

By investigating 70 energetic nitroaromatics, nitramines,
and nitrate esters, we have evaluated seven models for
predicting critical impact level, the quantity from which
impact sensitivity is determined. Input parameters were the
molecules’ temperature of detonation, heat of detonation,
and bond dissociation energy. Our regression was based on
three separate data sets comprising 91 data points in total.

For the largest nitroaromatics data set, the bond dissocia-
tion energy divided by the temperature of detonation was the
best predictor of critical impact level, with a coefficient of
determination (R2) of 0.81. Leave-one-out cross-validation
gave a root-mean-square error (RMSE) of 6.1 J and the
absolute average deviation was 3.7 J between the predicted
and the measured values. A separate Bayesian regression
also assigned similar merit to the predictive power of
this model, also when accounting for model complexity.
The frequentist and Bayesian models predicted the critical
impact level of TATB to be 97 J and 95 J, respectively. Our
sensitivity analysis showed this prediction to be more robust
under changes in calculations of molecular parameters than
measurements of critical impact levels.

For nitramines, our analysis showed that the temperature
of detonation is a moderately useful predictor of critical
impact level, unlike the N–NO2 bond dissocation energy,
which we found to have virtually no such predictive ability.
Hence, N–NO2 homolysis is unlikely to be the only reaction
taking place in the initial phase of the decomposition.

None of the models was able to predict the critical impact
level of liquid nitrate esters, but for a small data set of
solid nitrate esters, there seemed to be promising results
for bond dissociation energy divided by the temperature
of detonation. However, our Bayesian model comparison
revealed that more data points are necessary to validate this
correlation.

Our results regarding nitroaromatics, nitramines, and
solid nitrate esters allude to the temperature of detonation
being a better predictor of critical impact level than the heat
of detonation. Moreover, a high ratio of bond dissociation
energy to temperature of detonation indicates low impact
sensitivity, whereas a small ratio suggests that the material is
highly sensitive to impact. Having evaluated the predictive
power of our models, we conclude that predicting impact
sensitivity of energetic materials with acceptable accuracy
may require inclusion of additional parameters such as
hardness, crystal defects, particle size, amount of sample,
heat conductivity, and heat capacity.
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adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
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Abstract 
Accurate estimation of impact sensitivity is crucial for safe production, handling, storage 
and transport of energetic materials. Indeed, molecular characteristics will affect sensitivity, 
and for solid materials, factors like particle size, lattice defects and morphology also play a 
role and make reproducibility difficult. As various synthesis and recrystallisation methods 
may lead to differences in crystal properties, it is important to determine the impact 
sensitivity whenever an energetic material is prepared. Of particular interest is the median 
ℎ50, namely the impact energy level at which there is a probability of 50% of an explosion 
occurring. This value has been shown to correlate with quantum chemical properties of the 
energetic material in question, providing insight into the underlying causes which govern 
sensitivity. However, in practical applications, it may be more important to estimate extreme 
values like the 99% quantile ℎ99. In addition to providing point estimates, we would like to 
derive confidence intervals to address their uncertainty. In this work, we cover the most 
common methods for constructing such confidence intervals (the delta method, Fieller’s 
theorem and the likelihood-ratio test) and compare their performance on sensitivity data via 
simulations. Our experiments indicate that Fieller’s theorem is the superior method, and we 
therefore use it to construct confidence intervals for ℎ50 and ℎ99 for cyclotetramethylene-
tetranitramine (HMX), using new data. Based on our results, we formulate recommendations 
for researchers measuring sensitivities of synthesised molecules. 
Keywords: Energetic materials, Impact sensitivity; Bruceton method; Confidence intervals; 
HMX 

1 Introduction 
Energetic materials are molecules or compounds that release chemical energy quickly when 

they decompose and are necessary ingredients in explosives, propellants and pyrotechnics. They 
have both civilian and military applications, e.g. in mining, oil and gas well technology, 
construction, demolition, ammunition, and rocket motors. The production and usage of several 
energetic compounds and compositions are expected to increase the next years [1], and the search 
for new materials is vigorously pursued internationally today. 

The development of energetic material has a long history, and traditional workhorses such 
as 2,4,6-trinitrotoluene (TNT), cyclotrimethylene-trinitramine (RDX) and cyclotetramethylene-
tetranitramine (HMX) have been around for decades [2–4]. However, a downside with many 
high-performance compounds is that they are sensitive to external stimuli, e.g. to heating, 
friction, shock, spark or impact. As safety is an essential issue for production, handling, storage, 
transport and disposal of energetic materials, synthesis of less sensitive—but still well 
performing—materials is encouraged. One example is 1,1-diamino-2,2-dinitroethylene (FOX-7) 
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[5], which has the same empirical formula (and consequently the same oxygen balance) as HMX 
and RDX, but is far less sensitive to impact [6]. 

It is thus utterly important to carry out good sensitivity measurements of new energetic 
materials. Possible intermediate products should also be considered in this respect. Moreover, 
the sensitivity of some molecules may be altered upon crystal modification, and a good 
knowledge of the sensitivity of recrystallised products is therefore also advantageous. In addition 
to the safety aspect, insight into the sensitivity may make us better able to understand the 
decomposition mechanisms that external stimuli initiate. 

When measuring impact sensitivity, a fallhammer apparatus is used. In this device, a sample 
of the explosive is positioned between two cylinders covered by a ring. A weight of known mass 
is then repeatedly dropped from various heights onto the top cylinder. The operator registers 
whether the drop caused the sample to explode via visual and auditory clues, as well as with a 
decomposition gas detector. The explosive’s sensitivity is then estimated from these observations 
[7, 8]. 

The log energy levels 𝑥 = (𝑥1, … , 𝑥𝑛) used in the fallhammer tests (equivalently, the log 
drop heights of the weight) are commonly decided with the Bruceton “up-and-down” method, 
originally introduced in 1948 by Dixon and Mood [9]. This method is commonly applied in the 
energetic materials industry and recognised by both NATO and the U.S. Department of Defense 
[7, 8]. The Bruceton method depends on two parameters, namely an initial impact energy level 
𝑥1 and a step size 𝑑. The first drop test is performed at energy level 𝑥1, at which point the 
researcher observes the outcome 𝑦1 ∈ {0,1}, where 1 and 0 denote explosion and non-explosion, 
respectively. For the remaining drops, the impact energy level 𝑥𝑖 is obtained from 𝑥𝑖−1 by adding 
or subtracting 𝑑, depending on whether the drop at 𝑥𝑖−1 caused an explosion or not. More 
precisely, for i = 2, … , n, we have 

 

𝑥𝑖 = {
𝑥𝑖−1 + 𝑑 if 𝑦𝑖−1 = 0
𝑥𝑖−1 − 𝑑 if 𝑦𝑖−1 = 1.

 (1.1) 

 
We shall write 𝑦 = (𝑦1, … , 𝑦𝑛) and refer to the tuple {𝑥, 𝑦} as a Bruceton data set.  

For a large number of explosives, the impact sensitivity can be accurately modelled using 
probit regression. That is, 

 
ℙ(𝑦𝑖 = 1) = Φ(𝛼 + 𝛽𝑥𝑖), (1.2) 

 
where α, β are parameters to be estimated and Φ(𝑥) = (2𝜋)−1 2⁄ ∫ 𝑒−𝑡2 2⁄𝑥

−∞
d𝑡 is the standard 

normal cumulative density function (CDF). The parameters α, β of the model are estimated by 
maximizing the log-likelihood, which, up to a constant, is given by 
 

ℓ(𝛼, 𝛽) = ∑{𝑦𝑖 log Φ(𝛼 + 𝛽𝑥𝑖) + (1 − 𝑦𝑖) log[1 − Φ(𝛼 + 𝛽𝑥𝑖)]}

𝑛

𝑖=1

, (1.3) 

 
where log denotes the natural logarithm. We let �̂�, �̂� denote the resulting maximum likelihood 
estimators (MLEs). Since (1.3) is globally concave, �̂�, �̂� may be easily computed numerically 
with the Newton-Raphson method. 

A subtle remark needs to be made about how the generative process (1.1) for the 𝑥𝑖 affects 
the model. Normally, in problems dealing with regression, the inputs 𝑥𝑖 are interpreted as fixed, 
given constants. However, in our case, they are generated by the process (1.1), which depends 
on the observations 𝑦𝑖. Although the log-likelihood (1.3) looks the same in both paradigms, the 
underlying models are different, depending on whether or not we condition on the 𝑥𝑖, viewing 
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them as fixed. This affects, for example, the value of the Fisher information matrix, to be 
introduced in Section 2.1. However, all results in this article are based on large-sample theory, 
and so for our purposes, the two paradigms are asymptotically equivalent [10, 11, 12]. We may 
therefore view the xi as given without further issues. 

It should also be noted at this point that the original article by Dixon and Mood also 
introduces a way of approximating the MLEs �̂�, �̂� with pen and paper, avoiding any numerical 
optimisation [9]. However, as numerical optimisation tools are built into virtually any 
programming language or spreadsheet software nowadays, this approximation has become 
obsolete and should be avoided. Crucially, there are many instances where the MLEs exist and 
converge, but where the approximation of them is deemed invalid because a certain numerical 
criterion is violated [9]. It is particularly unfortunate when researchers apply said approximation 
and are forced to discard their experimental data on the grounds that they are invalid (where 
“invalid” here means that the approximation is invalid), rather than calculating the MLEs directly 
and getting a valid answer. Throughout this paper, the term Bruceton method refers to the “up-
and-down” procedure only, and not to the accompanying approximation of the MLEs. 

In the study of energetic materials, we are particularly interested in estimating the median 
ℎ50 = − 𝛼 𝛽⁄ , which corresponds to the impact energy level at which there is a probability of 
1 2⁄  of an explosion occurring. Indeed, ℎ50 has been shown to correlate with a variety of quantum 
chemical properties, studied either via statistical modelling or machine learning [13, 14]. 
However, for practical applications, other quantiles may be more important, such as ℎ01 or ℎ99, 
namely the impact energy levels at which there is a probability of 0.01 and 0.99 of an explosion 
occurring, respectively. Note that in general, for a probability 𝑝 ∈ [0,1], we have, by definition 
of the probit model, that 

 

ℎ100𝑝 =
1

β
(𝑧𝑝 − α), (1.4) 

 
where 𝑧𝑝 = Φ−1(𝑝). In particular, we recover ℎ50 = −α/β, since 𝑧1/2 = 0. Thus, estimates of 
any quantile ℎ100𝑝 can be obtained from estimates of α, β via ℎ̂100𝑝 = (𝑧𝑝 − α̂)/β̂. 

When estimating ℎ50 (or generally, ℎ100𝑝) for a particular material, it is crucial to address 
the uncertainty of the estimate by means of a confidence interval (CI). Indeed, a single point 
estimate ℎ̂50 = −α̂/β̂ is of little value if we do not know how uncertain it is. Thus, in addition 
to the MLE ℎ̂50, we would like to derive a CI [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)] such that 

 
ℙ(𝑢(𝑥, 𝑦) ≤ ℎ50 ≤ 𝑣(𝑥, 𝑦)) = 1 − γ, (1.5) 

 
where 1 − 𝛾 is the desired confidence level, with the most standard choice being 𝛾 = 0.05. Three 
of the most common ways of constructing such a CI are via the delta method, via the likelihood-
ratio test and via Fieller's theorem [15, 16]. In this paper, we shall explore the properties of these 
methods and how they apply to the case of estimating impact sensitivities from Bruceton data 
sets. 

The remainder of the paper is structured as follows. In the next section, we present the 
methods for constructing CIs. Then, in Section 3, we determine which method yields the most 
satisfactory results via simulations. In Section 4, we introduce the notion of confidence curves, 
which provide an intuitive geometric illustration addressing the confidence in our estimates. We 
then look at real measurements for cyclotetramethylene-tetranitramine (HMX) in Section 5 and 
show how confidence curves allow us to extract more information about the explosive from the 
data. Finally, we conclude and provide a couple of points of discussion in Section 6. 
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2 Confidence intervals 
In this section, we go through the main methods for constructing a CI for ℎ50 (and more 

generally for ℎ100𝑝), starting with the delta method. 

2.1. Via the delta method 
The first approach relies on the large-sample properties of the MLEs. Let 𝜃 = (𝛼, 𝛽)⊤ and 

𝜃 = (�̂�, �̂�)⊤. The Fisher information matrix ℐ(𝜃) is given by 
 

ℐ(𝜃) = −𝔼 [
𝜕2ℓ(𝜃)
𝜕𝜃𝜕𝜃⊤ |𝜃] = ∑

𝜙2(𝜂𝑖)

Φ(𝜂𝑖)[1 − Φ(𝜂𝑖)]

𝑛

𝑖=1

(
1 𝑥𝑖

𝑥𝑖 𝑥𝑖
2),  (2.1) 

 
where 𝜂𝑖 = 𝛼 + 𝛽𝑥𝑖 and 𝜙(𝑥) = (2𝜋)−1/2𝑒−𝑥2/2  is the standard normal probability density 
function (PDF). Writing 𝑉 = ℐ(𝜃)−1, the asymptotic normality of the probit model yields the 
large-sample approximation 
 

𝜃 ≈ 𝑁(𝜃, 𝑉),  (2.2) 
 
where 𝑁(𝜇, 𝜎2) denotes the normal distribution with mean 𝜇 and variance 𝜎2. Now, applying 
the delta method (see for example [17]) in this setting yields the approximation 
 

ℎ̂50 ≈ 𝑁 (ℎ50,
1

𝛽2
( 𝑉11 + 2ℎ50𝑉12 + ℎ50

2 𝑉22)). (2.3) 

 
The 1 − 𝛾 CI derived via the delta method is thus 
 

ℎ̂50 ±
𝑧𝛾 2⁄

�̂�
√𝑉11 + 2ℎ̂50𝑉12 + ℎ̂50

2 𝑉22.  (2.4) 

 
In order to derive the corresponding 1 − 𝛾 CI for ℎ100𝑝, we just replace ℎ̂50 with ℎ̂100𝑝 =

(𝑧𝑝 − �̂�)/�̂� in (2.4). 

2.2. Via the likelihood-ratio test 
The second approach for constructing a CI is via the likelihood-ratio (LR) test. Rather than 

using the approximation (2.2), the LR test relies on Wilks' theorem [18], which is another 
convergence result involving the log-likelihood (1.3). The test is used for answering whether we 
have sufficient evidence to reject the null hypothesis 𝐻0 : − 𝛼 𝛽⁄ ∈ ℝ in favour of an alternative 
hypothesis of the form 𝐻1 : − 𝛼 𝛽 = 𝜌⁄ , for some value 𝜌. The 1 − 𝛾 CI will then consist of 
precisely those values 𝜌 for which the null hypothesis is rejected when the significance level is 
set at 𝛾. Unlike that derived via the delta method, this CI is in general not symmetric about the 
MLE  ℎ̂50, and can sometimes be unbounded. 

In order to perform the test, we first define the profile log-likelihood ℓprof by 
 

ℓprof(𝜌) = sup{ℓ(𝛼, 𝛽) ∶  − 𝛼 𝛽 = 𝜌⁄ }.  (2.5) 
 
That is, the maximum value the log-likelihood function takes given that that 𝐻1 holds. Similarly, 
we let ℓ𝐻0

= ℓ(�̂�, �̂�) denote the maximum value the log-likelihood function takes overall. In 
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order to determine whether 𝐻0 should be rejected for a specific value 𝜌, we use the deviance 
function 𝐷(𝜌) as our test statistic, which is defined as twice the difference of these two quantities. 
Namely, 
 

𝐷(𝜌) = 2{ℓ𝐻0
− ℓprof(𝜌)}.  (2.6) 

 
Inferring the probability distribution of 𝐷(𝜌) is in general an infeasible problem. However, 
Wilks' theorem asserts that as 𝑛 → ∞, 𝐷(𝜌) converges in distribution to a chi-squared distributed 
random variable with one degree of freedom. Thus, we obtain the approximation 𝐷(𝜌) ≈ 𝜒1

2, 
and the resulting CI will comprise all those values 𝜌 which satisfy that 𝐷(𝜌) < Γ−1(1 − 𝛾), 
where Γ is the CDF of the 𝜒1

2 distribution. By the relation between the chi-squared and normal 
distributions, one can show that Γ−1(1 − 𝛾) = 𝑧𝛾 2⁄

2 . Thus, the resulting CI contains those values 
𝜌 which satisfy that 𝐷(𝜌) < 𝑧𝛾 2⁄

2 . One can analogously derive the CI for ℎ100𝑝 by replacing 
𝐻1: − 𝛼 𝛽⁄ = 𝜌 with 𝐻1: (𝑧𝑝 − 𝛼) 𝛽⁄ = 𝜌 in the above derivation. This means redefining the 
profile log-likelihood as ℓprof

𝑝 (𝜌) =  sup{ℓ(𝛼, 𝛽) ∶ (𝑧𝑝 − 𝛼) 𝛽 = 𝜌⁄ } and the deviance function 

as 𝐷𝑝(𝜌) = 2{ℓ𝐻0
− ℓprof

𝑝 (𝜌)}. 

2.3. Via Fieller’s theorem 
Finally, the third method for deriving CIs is via Fieller's theorem [19], which in this context 

can be viewed as a hybrid between the delta method and the LR test. We start the same way as 
the former, using the asymptotic approximation (2.2). We then write down the log-likelihood 
for this approximation, which, up to a constant, takes the form 

 

𝜆(𝜃) = −
1

2
(𝜃 − 𝜃)

⊤
𝑉−1(𝜃 − 𝜃). (2.7) 

 
As a function of 𝛼 and 𝛽, this equals 
 

𝜆(𝛼, 𝛽) = −
1

2

1

𝑉11𝑉22 − 𝑉12
2 {𝑉22(�̂� − 𝛼)2 − 2𝑉12(�̂� − 𝛼)(�̂� − 𝛽) + 𝑉11(�̂� − 𝛽)

2
}. (2.8) 

 
The CI derived via Fieller's theorem is then obtained from applying the LR test to (2.8) rather 
than (1.3). In this way, Fieller's theorem can be seen as a special case of Wilks' theorem. A nice 
property of this approach is that the profile likelihood 𝜆prof(𝜌) = sup{𝜆(𝛼, 𝛽) ∶  − 𝛼 𝛽 = 𝜌⁄ } 
can be derived analytically. In fact, 
 

𝜆prof(𝜌) = −
1

2

(�̂� + �̂�𝜌)
2

𝑉11 + 2𝑉12𝜌 + 𝑉22𝜌2
.  (2.9) 

 
This results in the deviance function 
 

Δ(𝜌) = 2{𝜆(�̂�, �̂�) − 𝜆prof(𝜌)} = −2𝜆prof(𝜌) =
(�̂� + �̂�𝜌)

2

𝑉11 + 2𝑉12𝜌 + 𝑉22𝜌2
,  (2.10) 

 
and thus the 1 − 𝛾 CI obtained via Fieller's theorem consists of the values 𝜌 which satisfy that 
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(�̂� + �̂�𝜌)
2

𝑉11 + 2𝑉12𝜌 + 𝑉22𝜌2
< 𝑧𝛾 2⁄

2 . (2.11) 

 
Rearranging, we obtain 
 

(�̂�2 − 𝑧𝛾 2⁄
2 𝑉22)𝜌2 + 2(�̂��̂� − 𝑧𝛾 2⁄

2 𝑉12)𝜌 + �̂�2 − 𝑧𝛾 2⁄
2 𝑉11 < 0, (2.12) 

 
a quadratic inequality in 𝜌. We now see that if �̂�2 − 𝑧𝛾 2⁄

2 𝑉22 < 0, it is possible for the resulting 
CI to be the entire real line, or the disjoint union of two semi-infinite intervals. On the other 
hand, when �̂�2 − 𝑧𝛾 2⁄

2 𝑉22 > 0, we get a (possibly empty) bounded interval, whose endpoints are 
given by 
 

ℎ̂50 +
𝑔

1 − 𝑔
(ℎ̂50 +

𝑉12

𝑉22
)

±
𝑧𝛾 2⁄

�̂�(1 − 𝑔)
{𝑉11 + 2ℎ̂50𝑉12 + ℎ̂50

2 𝑉22 − 𝑔 (𝑉11 −
𝑉12

2

𝑉22
)}

1 2⁄

, 
(2.13) 

 
where 𝑔 = 𝑧𝛾 2⁄

2 𝑉22 �̂�2 < 1⁄ . Note that as expected, this interval is not symmetric about ℎ̂50. If 
we instead wish to derive a CI for ℎ100𝑝, we replace ℎ̂50 by ℎ̂100𝑝 = (𝑧𝑝 − �̂�) �̂�⁄  in (2.13). 

A particularly nice property of Fieller’s theorem is that if 𝜃 ∼ 𝑁(𝜃, 𝑉) were to be true, then 
Δ(𝜌) actually follows a 𝜒1

2  distribution exactly. Hence, unlike the delta method, any inaccuracies 
in the CIs derived from Fieller's theorem will stem from the approximation  𝜃 ≈ 𝑁(𝜃, 𝑉) alone. 

3 Simulations 
To see in practice which of the methods outlined in the previous section yields the most 

satisfactory results, we conducted two simulation studies in which we calculated CIs for ℎ50 and 
ℎ99. For both quantiles, we looked at data sets of size 𝑛 = 30 and 𝑛 = 100. Various similar 
studies have been conducted for ℎ50 in order to compare the performance of the approaches 
described above [20–23], and have generally found that the delta method is inferior for small 
data sets. Our contribution is to report such simulations for Bruceton data sets specifically. In 
particular, in our simulations, the inputs 𝑥𝑖 were not seen as fixed, but were rather generated by 
the process (1.1) separately for each iteration. 

3.1. Results for 𝒉𝟓𝟎 
In our first simulation study, we generated 𝑇 = 10,000 Bruceton data sets {𝑥, 𝑦}𝑡=1

𝑇  with 
underlying true parameters 𝛼 = 0 and 𝛽 = 1. Note that if we had chosen other values for these 
two parameters, we could nevertheless rescale the experiment to obtain 𝛼 = 0 and 𝛽 = 1. The 
initial impact energy level 𝑥1 was set to be 𝑥1 = 0, whereas the step size 𝑑 ranged over the values 
𝑑 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We also ran simulations for 𝑑 = 0.4, but for 𝑛 = 30, both 
Fieller’s theorem and the LR test produced unbounded CIs more than 10% of the time. Similarly, 
for 𝑑 = 1.1, the MLEs failed to converge in more than 10% of the runs when 𝑛 = 30. 
Consequently, these runs were discarded. 

For each of the data sets, we calculated CIs for ℎ50 with significance level 0.05 via the delta 
method, the LR test and Fieller's theorem. All unbounded CIs were discarded. We then checked 
whether each CI contained the true value ℎ50 = − 𝛼 𝛽 = − 0 1⁄ = 0⁄ . For a theoretically exact 
CI, this will happen 95% of the time. The best performing method is thus that which yielded a 
coverage probability closest to 0.95. In Table 1, we see the resulting observed coverage 
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probabilities. As we can see, the delta method consistently underperforms compared to the other 
methods. For all step sizes, Fieller’s theorem provides the best performing CIs, both for 𝑛 = 30 
and 𝑛 = 100. However, Fieller’s theorem produced unbounded CIs more often than the LR test. 
For example, for 𝑛 = 30 and step sizes 𝑑 = 0.5, … , 1.0, there were 1187, 562, 300, 92, 35 and 
11 unbounded CIs by the former method, compared with 563, 12, 2, 0, 0 and 0 for the latter. One 
way of resolving this is by increasing the step size. Indeed, for 𝑛 = 100, Fieller’s theorem 
yielded unbounded CIs only twice (for 𝑑 = 1.0). To researchers performing sensitivity tests, we 
recommend employing Fieller’s theorem when deriving confidence intervals, due to a 
consistently better performance. 

Table 1. Results from the first simulation study, comparing the coverage probabilities for ℎ50 for 
the delta method (Delta), the likelihood-ratio test (LR) and Fieller’s theorem (Fieller). The best 
coverage probability is typed in bold. *More than 10% of the CIs were unbounded.   

 𝑛 = 30  𝑛 = 100 
𝑑 Delta LR Fieller  Delta LR Fieller 
0.5 84.33 91.18   92.86*  91.28 93.45 93.96 
0.6 85.44 92.43 92.84  91.78 93.66 94.18 
0.7 
0.8 
0.9 
1.0 

85.98 
85.96 
86.10 
86.21 

92.79 
93.04 
93.48 
93.58 

93.20 
93.52 
93.86 
93.99 

 92.05 
92.41 
92.60 
92.80 

93.78 
93.95 
93.84 
93.90 

94.19 
94.52 
94.38 
94.52 

3.2. Results for 𝒉𝟗𝟗 
We also repeated the simulation study explained in the previous section for ℎ99. The results 

are given in Table 2. As we can see, the delta method is still underperforming for all step sizes, 
both for 𝑛 = 30 and 𝑛 = 100. Unlike the simulation study for ℎ50, we do not really observe a 
consistent satsifactory performance from any particular method for 𝑛 = 30. This indicates that 
the sample size 𝑛 = 30 is too small for estimating an extreme quantile like ℎ99 [24]. For the 
increased sample size 𝑛 = 100, we again see that Fieller’s theorem is the best performing 
method overall, and that it produces accurate results for all step sizes. We thus recommend using 
a sample size of 𝑛 = 100 and Fieller’s theorem when estimating an extreme quantile, such as 
ℎ99, of an impact sensitivity. 

 
Table 2. Results from the first simulation study, comparing coverage probabilities for ℎ99. *More 
than 10% of the CIs were unbounded.   

 𝑛 = 30  𝑛 = 100 
d Delta LR Fieller  Delta LR Fieller 

0.5 72.40 92.33   94.62*  86.43 93.96 94.72 
0.6 76.33 92.48 97.47  87.94 94.24 95.24 
0.7 
0.8 

80.96 
81.95 

93.82 
96.21 

98.17 
98.17 

 89.58 
89.77 

94.08 
94.25 

95.11 
94.73 

0.9 83.85 96.78 98.44  90.10 94.34 95.50 
1.0 90.17 97.18 98.10  90.05 94.09 95.45 

4 Confidence curves 
In this section, we introduce the notion of confidence curves (CCs), which provide a visual 

interpretation of the confidence in our estimates. Based on the results from the previous section, 
we shall focus on creating CCs from Fieller’s theorem. Recall from Section 2.3 the 
approximation Δ(𝜌) ≈ 𝜒1

2, where Δ(𝜌) is defined in (2.10). Now, the confidence curve (CC) for 
ℎ50 is defined by 
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cc(𝜌) = Γ(Δ(𝜌)) = Γ (
(�̂� + �̂�𝜌)

2

𝑉11 + 2𝑉12𝜌 + 𝑉22𝜌2
), (4.1) 

 
where we recall that Γ denotes the CDF of the 𝜒1

2 distribution. More generally, the CC for ℎ100𝑝 
is defined by 
 

cc𝑝(𝜌) = Γ (
(�̂� − 𝑧𝑝 + �̂�𝜌)

2

𝑉11 + 2𝑉12𝜌 + 𝑉22𝜌2
).  (4.2) 

 
Now, it is not difficult to show that as 𝑛 → ∞, we have 
 

ℙ({𝜌 ∶  cc(𝜌) ≤ 1 − 𝛾}) → 1 − 𝛾 (4.3) 
 
for all 𝛾 ∈ (0,1). Hence, we can read off CIs of any desired confidence level 1 − 𝛾 directly from 
the curve.  

 How to read information from a CC is best seen with an example. In the following 
illustration, we generated a Bruceton data set with 𝑛 = 30, 𝛼 = 0, 𝛽 = 1, 𝑥1 = 0, 𝑑 = 0.7, 
and used (4.1) to obtain the CC drawn in Figure 1. Here, we can read off the CI for any wanted 
significance level 𝛾. For example, the points at which the curve intersects the line 𝑦 = 0.95 gives 
the endpoints of the 95% CI for ℎ50, namely [−0.53, 0.33]. Note also that the curve is zero at 
the MLE ℎ̂50 = −0.06. 

 

 
Figure 1. A CC for ℎ50 after 𝑛 = 30 observations. The solid curve is the actual confidence  

curve, and the dotted line is given by 𝑦 = 0.95. The points at which this line intersects  
the curve is the 95% CI for ℎ50. 
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5 Application: HMX 
In this section, we demonstrate how to calculate CIs in practice with a real data example. 

We performed 𝑛 = 100 drops in a Bundesanstalt für Materialprüfung (BAM) fallhammer 
apparatus on 40 mm3 samples of Eurenco HMX Class 1. The molecular structure and a scanning 
electron micrograph of the crystals are shown in Figure 2. We used a 2 kg drop weight with 𝑥1 =
1.30 and 𝑑 = 0.05 on a log10 scale. That is, the height of the first drop was 101.30 = 19.95 cm, 
and so on. The data from the experiment is given in Table 3. 

 

     
Figure 2. Molecular structure of HMX (left) and scanning electron micrograph of HMX  

Class 1 crystals. The distance between each mark on the bar scale is 50 𝜇m. 

 
Table 3. Bruceton data from the fallhammer drops on HMX with 𝑛 = 100.  

Height (log10) 1.15 1.20 1.25 1.30 1.35 1.40 
# Explosions 0   3 18 15 12 2 
# Trials 3 21 33 27 14 2 

 
Based on these data, we obtain �̂� = −15.53 and �̂� = 12.26, which further yields (still on a log10 
scale) ℎ̂50 = 1.27 and ℎ̂99 = 1.46, with 95% CIs [1.24, 1.29] and [1.40, 1.61], respectively. For 
the sake of completeness, we also computed ℎ̂01 = 1.08, with the 95% CI [0.93, 1.14]. 
Converting back to cm, this corresponds to 10ℎ̂01 = 11.94 cm, 10ℎ̂50 = 18.49 cm and 10ℎ̂99 =
28.62 cm, with 95% confidence intervals [8.43, 13.73], [17.50, 19.55] and [24.87, 40.68], 
respectively. In Figure 2, we see CCs for ℎ50 and ℎ99 on the log10 scale. We see that the CC for 
ℎ50 is much narrower than that for ℎ99, reflecting that the former is easier to estimate than the 
latter.  
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Figure 3. Confidence curves for ℎ50 and ℎ99 for HMX based on Bruceton data with 𝑛 = 100.

6 Conclusion
In this paper, we have covered the main methods for computing confidence intervals for ℎ50

(and more generally for ℎ100𝑝 where 𝑝 ∈ [0,1]), which is crucial to ensure safe handling of 
energetic materials, including during synthesis of molecules. We found in our simulation study 
that Fieller’s theorem yielded satisfactory results for a standard Bruceton data set with 𝑛 = 30
when estimating ℎ50, and thus recommend that researchers employ this method. For ℎ99, we 
found that a larger sample size, such as 𝑛 = 100, was necessary in order to obtain similar results, 
again via Fieller’s theorem. We then calculated confidence intervals for ℎ01, ℎ50 and ℎ99 for 
HMX from a newly obtained Bruceton data set.

Through the calculation of confidence intervals and confidence curves, we have seen how 
to extract more information from sensitivity data, allowing us to assess the uncertainty of our 
estimates. We therefore strongly recommend to all researchers working with impact sensitivity 
that they include their raw data in their publications, rather than simply reporting point estimates 
of 𝛼 and 𝛽.

In future work, it would be useful to consider more refined techniques for constructing 
confidence intervals. In particular, one may improve the likelihood-ratio test, for instance by 
applying the Bartlett correction [25–27]. We refer the reader to [28–30] for further reading on 
this point. Also, in this article, we have only considered the construction of confidence intervals 
for ℎ100𝑝 for a single explosive. It would be interesting to conduct a similar simulation study to 
investigate approaches to hypothesis testing for comparing the sensitivities of two or more 
explosives.
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Abstract  

Millions of tonnes of explosive remnants of war remain in nature, and the volume is continuously 

growing. The explosive legacy of wars represents an increasing threat to the environment and to 

societal safety and security. As munitions continue to deteriorate, harmful constituents will 

eventually leak into the environment, poisoning ecological receptors and contaminating the 

surrounding soil and groundwater. Moreover, deterioration due to exposure to various 

environmental factors may ultimately cause the munitions to become increasingly sensitive to 

external stimuli and susceptible to accidental detonation. To thoroughly assess how to address these 

ageing munitions, we must first establish certain threshold values for the safe and secure handling 

and final disposal of the explosive ordnance. One key factor is to establish how the impact sensitivity 

of the explosives evolves over time. In the present work, we investigated the high explosive 

substance Amatol extracted from ageing explosive remnants of war. The results obtained in the 

analysis indicate that the high explosives in the examined specimens generally were much more 

sensitive to impact than previously assumed. Furthermore, the analysis revealed that the 

standardised methodology of impact sensitivity testing was insufficient for estimating the 

sensitivities in question, and a more careful statistical analysis was required.  

 

Keywords 
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 1. Introduction 

In the event known as the Shell Crisis of 1915, the stock of UK artillery shells was unexpectedly 

depleted due to an unanticipated and prolonged period with a high rate of fire on the front lines in 

World War I (WWI). It soon became evident that the supply of high explosives in use (predominantly 

2,4,6-trinitrotoluene [TNT] and 2,4,6-trinitrophenol [picric acid]) was insufficient (Fedoroff, Aaronson, 

Reese, Sheffield, & Clift, 1960). To eke out the available supply of TNT for shell, grenade and bomb 

fillings, the Research Department at the Royal Arsenal in Woolwich developed mixtures of 

ammonium nitrate and TNT. These binary mixtures, known as Amatols, were easy to manufacture 
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and exhibited several favourable properties, including the effectiveness they exhibited in shell-

bursting trials. Ammonium nitrate, which was being manufactured from atmospheric nitrogen for the 

first time, was a readily available explosive ingredient and was all the more valuable since it leaves no 

solid residue upon decomposition and ensures a high volume of gaseous explosion products 

(Urbanski, 1967). Live fire gun trials substantiated the trials at rest, and the adoption of Amatols as 

high explosive fillings in munitions followed quickly thereafter (Robertson, 1920). 

In addition to being an easily available explosive in a time of necessity, the Amatols also enabled a 

highly economical output of explosive material, as the cost of ammonium nitrate was about one 

quarter of that of TNT. The Amatols were therefore proposed with the objective of economising the 

volume of TNT and simultaneously taking advantage of the excess of oxygen contained by 

ammonium nitrate to compensate partially or completely for TNT’s oxygen deficiency (The War 

Office [UK], 1925). For similar reasons, several governments authorised its use shortly after Great 

Britain (e.g.  War Department [US], 1944). 

TNT and Amatol were the preferred high explosive fillings for most high explosive artillery shells at 

the outset of World War II (WWII), largely due to their availability and their combination of high 

power and low sensitivity. In particular, they were easy and safe to handle and transport. Towards 

the end of WWII, the rapid production of an enormous supply of TNT eventually removed the 

necessity of using ammonium nitrate as a substitute for TNT. Another contributing factor to the 

disuse of Amatols as high explosives in munitions was the emergence of other explosives during 

WWII, such as pentaerythritol tetranitrate (PETN) and cyclotrimethylenetrinitramine (RDX) and their 

binary and ternary mixtures, which are more powerful than TNT (U.S. Army Material Command, 

1965).  

Although they are now mostly obsolescent, Amatols were universally used for several decades by all 

nations in all types of ammunition as a substitute for TNT (U.S. Army Material Command, 1965). 

Consequently, the only time Amatols are normally encountered in explosive ordnance today is in 

legacy munitions, at ammunition dumping sites and in explosive remnants of war (ERW).  

As a considerable percentage of both WWI and WWII munitions contained Amatol filling, its ageing 

characteristics are a subject of immense importance. Several studies have revealed that the 

deterioration of explosive fillers can make the munitions increasingly sensitive to external stimuli and 

susceptible to detonation if subjected to heat, shock or friction (Albright, 2012; Hamer, 2004; Long, 

2005; Pfeiffer, 2012). An increasing number of spontaneous detonations have also been reported in 

ageing munitions, possibly resulting from deteriorating or changing technical or chemical properties 

(Ford, Ottemöller, & Bapite, 2005; Nordaas, 2019). Earlier studies regarding samples of high 

explosives extracted from ERW (e.g. TNT and PETN) have indicated that the impact sensitivity of 

ageing explosives does not appear to have been reduced over the last eight decades and that in 

some cases, the explosives can even become increasingly sensitive to stress (Geir P. Novik, 2022). 

Some reports have also indicated that under specific circumstances, Amatols can form dangerous 

compounds that may increase their sensitivity (i.e. Picatinny Arsenal, 1943; U.S. Army Material 

Command, 1965; War Department [US], 1944). However, few studies have analysed the properties of 

ageing Amatols in ERW. Consequently, we do not have sufficient data available to properly assess the 

risks related to spontaneous detonation or the clearance and handling of ERW with Amatol filling. 

ERW at terrestrial and aquatic sites also present an international environmental problem due to the 

release of explosive material from the corroding ordnance, in addition to the risks associated with 

the potential for accidental detonations (Sunahara et al., 2009). Similar to most explosive fillings used 

in munitions, Amatols represent a source of contamination which can be toxic to ecological 
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receptors, damaging the impacted sites and surrounding areas exposed to the offsite migration of 

contaminants. As several of the chemicals used in ammunition are highly poisonous and have been 

proven to contaminate living organisms and the surrounding soil and groundwater, the leakage and 

bioaccumulation of toxic constituents from corrosive munitions pose a formidable threat to the 

ecosystem (ATSDR, 1995; Koske, Goldenstein, & Kammann, 2019; Koske et al., 2020; Schuster et al., 

2021; Yinon, 1990). Some munitions’ constituents have also been proven to enter the food chain and 

could therefore directly affect human health upon the consumption of contaminated food (Maser & 

Strehse, 2021).  

As munition casings continue to deteriorate, we expect an increase in the release of their harmful 

constituents in the future (Geir P. Novik, Sommer, & Abrahamsen, 2022). Consequently, there is a 

time limit pertaining to when ERW and their explosive fillings can be identified and handled safely 

and appropriately based on an assessment of the viable options. As a result of the potential dangers 

related to ERW risks, their removal is a highly prioritised task for many countries and international 

organisations, such as the North Atlantic Treaty Organization (NATO) and the United Nations (UN) 

(Geir P. Novik, Abrahamsen, & Sommer, 2023). To properly assess and ideally mitigate the risks 

related to accidental detonations and the uncontrolled release of harmful substances, we rely on 

accurate data and a proper statistical analysis of the specifics of the applicable ERW, including its 

sensitivity. 

In this study, we have analysed the impact sensitivity of Amatol extracted from ageing ERW via 

statistical analyses of new fallhammer measurements. In accordance with the recommendations of 

Christensen et al. (2023), we have employed the Bruceton up-and-down test procedure and compute 

confidence intervals using Fieller’s theorem. Our analysis shows that all collected samples were more 

sensitive than the standard reported value for Amatol in the literature. This study therefore also 

serves to illustrate why these standards are insufficient and require an update. 

 

2. Materials and methods 

2.1 Sample characteristics 

The first experiments using ammonium nitrate (H4N2O3) as a component in explosive mixtures began 
in the second half of the 19th century, although the substance was originally discovered 200 years 
earlier (Urbanski, 1965). However, it only gained supreme military importance as an ingredient of 
high explosives during WWI (The War Office [UK], 1925). One of the most commonly used military 
high explosives at the outbreak of WWI was TNT (C7H5N3O6). This was partially due to its explosive 
characteristics (i.e. high output and low sensitivity) but also because of its ease of manufacture and 
its suitability for melt loading, either as a pure explosive or as a binary mixture (Gibbs & Popolato, 
1980). Since the colossal demand for high explosives in WWI could not be fulfilled by the output of 
explosives such as TNT and picric acid, various compositions, such as mixtures of aromatic 
compounds with ammonium nitrate, were introduced and widely implemented (Urbanski, 1967). 
These compositions were explosives in which two or more explosive compounds were mixed to 
produce an explosive substance with more suitable characteristics. Generally, the properties of the 
composition exhibit an intermediate state between those of the individual explosive ingredients (U.S. 
Department of the Army, 1984). 
 
Amatols (C7H9N5O9) are binary mixtures of ammonium nitrate and TNT, as illustrated in Figure 1. 
Compared to TNT, they were cheaper to produce, and they produced greater volumes of gas per unit 
weight upon explosion (Fedoroff et al., 1960). When TNT detonates, free carbon is present, 
suggesting that it is deficient in oxygen (The War Office [UK], 1925). For Amatols, on the other hand, 
the addition of ammonium nitrate, which is rich in oxygen, yields a more complete combustion of the 
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TNT component. For this reason, the smoke produced by the detonation of Amatol has a light white-
yellowish colour, in contrast to the heavy black smoke produced by the detonation of pure TNT 
(Fedoroff et al., 1960). In general, due to its tendency to increase chemical stability and decrease 
sensitivity to friction and shock, ammonium nitrate is the most widely used oxygen carrier in 
explosives (Urbanski, 1965). Although it is technically possible to detonate straight ammonium 
nitrate given a sufficiently powerful impulse, its chemical properties suggest that it should not be 
used alone as an explosive (The War Office [UK], 1925). 
 
There are many types of Amatols, which differ only in terms of the proportion at which TNT and 
ammonium nitrate are present (The War Office [UK], 1925). The constitution of any one of these is 
reflected in the nomenclature for each mixture. Thus, Amatol 80/20 denotes a mixture of 80% 
ammonium nitrate with 20% TNT, by mass. Generally, the first number invariably refers to the 
percentage of ammonium nitrate, although in German nomenclature, the Amatol compositions 
(known as various types of Füllpulver, shortened Fp. 60/40, 20/80, etc.), the numerators refer to the 
percentage of TNT present. The principal Amatols are 40/60 and 80/20. Examples of other 
proportions that have been used are 45/55, 50/50, 83/17 and 90/10. 
 
 

 

a)                                                                       b)        c) 

                     
   

Fig. 1. Chemical formulas of a) Amatol and its constituents; b) TNT; and c) ammonium nitrate 

(PubChem, 2024). 

 
Amatols were commonly used during WWI and WWII in most countries. Particularly, the mixture 
consisting of 40% ammonium nitrate and 60% TNT accrued immense importance (Urbanski, 1967). It 
was known in Germany as Füllpulver No 13 or Fp. 60/40 and in Great Britain as Amatol 40/60, and it 
was cast loaded in a broad variety of bombs and shells (Fedoroff, Aaronson, Clift, & Reese, 1958). 
However, as Amatols are generally considered comparatively insensitive, they require a special 
exploder system to ensure their complete detonation (The War Office [UK], 1925). When efficiently 
detonated, Amatol 40/60 is slightly less violent than TNT alone. Owing to the hygroscopic nature of 
ammonium nitrate, Amatols are considered highly unstable in storage, unless it is possible to exclude 
moisture. For example, at 90% relative humidity (RH) and 30 °C, Amatol 80/20 would contain 
approximately 61% moisture in two days. This would not only lower the sensitivity and velocity of the 
detonation to a low order, but it could result in a failure to detonate (Fedoroff et al., 1960). Another 
effect that has been observed as a result of the exposure to moisture and high temperatures is that 
Amatol may congeal into a dense, hard mass as a result of changes in the crystalline form of the 
ammonium nitrate (The War Office [UK], 1925). 
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In the existing literature, Amatols are generally considered to be equally or less sensitive to impact 
than TNT (e.g. Fedoroff et al., 1960; Hershkowitz & Akst, 1975; The War Office [UK], 1925; U.S. Army 
Material Command, 1965; U.S. Department of the Army, 1984; U.S. War Department, 1945; War 
Department [US], 1944). However, some reports indicate that the introduction of impurities to the 
production of Amatol can result in slightly increased sensitivity compared to that of pure TNT (The 
War Office [UK], 1925). According to a study by Hackel (1937, as cited in Urbanski, 1967), the impact 
sensitivity of mixtures of nitro compounds with ammonium nitrate (Amatols) was found to be higher 
than that for pure nitro compounds due to the friction produced by the hard crystals of the 
ammonium nitrate. In this study, Hackel found mixtures containing 30 to 60% of ammonium nitrate 
to be equally as sensitive as picric acid, an explosive substance that is slightly more sensitive to 
impact than TNT (U.S. Army Material Command, 1965). However, due to the hygroscopic nature of 
ammonium nitrate, it will begin to deteriorate if exposed to water, and studies have demonstrated 
that the explosive compositions containing ammonium nitrate can become progressively less 
sensitive to impact as the moisture content increases (Montesi & Menichelli, 1964). It has also been 
proven that the impact sensitivity can be reduced to such a level where the amount of force required 
for the initiation of the substances renders them impracticable as explosives (e.g. Johansen, 2005), as 
standard means of initiation would result in failures to detonate (Fedoroff et al., 1960). Moreover, a 
high moisture content can decrease the detonation velocity, which in many cases would entail that a 
continuation of an explosive shockwave within the substance by its own means is unachievable.  
 
However, studies have also revealed that the presence of moisture, when combined with other 
factors, can contribute to an increase of the impact sensitivity in Amatols; it is known that explosive 
compositions containing ammonium nitrate might become sensitised if contaminated with small 
amounts of metals or if the composition comes into contact with metal, as these contaminating 
metals might react chemically with the ammonium nitrate, forming complex salts and sensitising the 
mixture (Montesi & Menichelli, 1964). A contamination of the Amatols could occur during normal 
handling and mixing, or it could come into contact with bare metal surfaces when loaded in ordnance 
or if any preventive lacquers deteriorate over time. An investigation of the stability of various 
mixtures of ammonium nitrate and TNT conducted after WWII at the Laboratoire Centrale des 
Poudres in Paris also demonstrated that mixtures of military grade TNT and pure ammonium nitrate 
had in some cases decomposed with the evolution of ammonia that attacked the TNT to form various 
unstable coloured compounds (F. M. Lang and J. Boileau, 1952, as cited in Fedoroff et al., 1960). 
According to Fedoroff et al. (1960), in the presence of iron, the hydrolysis of moist ammonium nitrate 
may occur with the formation of ammonia solution (NH4OH), which reacts with TNT to form an 
exudate of a brown oily material igniting at 67°C . This can be detected by the discolouration of the 
explosive and the odour of ammonia (NH3). In addition to being reactive to iron, mixtures of Amatols 
may, in the presence of moisture, also attack metals such as copper, brass, bronze and lead and can 
form dangerously sensitive compounds with copper and its alloys (Picatinny Arsenal, 1943; U.S. Army 
Material Command, 1965). However, as this was a well-known attribute of Amatols, it was 
considered general practice at the time to coat the insides of munitions with acid-proof paint prior to 
loading to prevent the corrosion caused by contact between Amatols and metal (Fedoroff et al., 
1960). 
 
 

2.2 Sampling location and methodology 

To ensure the reliability of the data, all samples of Amatol in this study have been extracted from live 

ordnance originating from WWII during national explosive ordnance disposal (EOD) clearance 

operations in Norway. Consequently, all explosive objects utilised in this analysis originate from 

explosive ordnance that were produced before May 1945. All the explosive objects were localised 

and reported to the relevant governmental agencies by members of the public prior to their 
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exploitation and final disposal. In all cases, the munitions were subject to handling (moving the 

object) by the discoverer or by the designated EOD team. All the samples of high explosives were 

extracted from the relevant objects and analysed within the last three years (2021 - 2023). The first 

author personally executed the physical extraction of the high explosives from the ordnance. In all 

situations, it was deemed safe to move the explosive objects to a site suitable for the extraction of 

the high explosive samples as well as the final disposal of the ordnance. All explosive objects included 

in this study are of German origin and were located in an area heavily contaminated with explosive 

remnants of WWII, namely Finnmark county in the northernmost region of Norway. The required 

disassembly of the ordnance to gain access to their high explosive fillings was performed with the use 

of explosive cutting charges (shaped charges), as indicated in the example in Figure 2.  

After the required dismantlement of the explosive ordnance, an initial sample of the high explosives 

was retrieved at the point of entry, centre mass of the explosives. As some of the studied objects 

were found to contain several types of high explosive fillings, multiple samples were collected of the 

various compounds (in the case of Amatol fillings, casted TNT was frequently used as a seal to 

prevent any moisture from coming into contact with the hygroscopic Amatols).  

In total, high explosive samples were collected from over 20 unexploded objects potentially 

containing Amatol fillings. Of these, five unique samples of Amatol were included in this study. Of 

these five, three were discovered with their respective fuzes installed and (based on a visual 

inspection) in a condition that would suggest that they were still fully intact (i.e. no visible cracks or 

fractures in their outer casings). The remaining two objects were also apparently intact but were 

found without fuzes installed, increasing their explosive fillings’ exposure to environmental factors. 

Of these two, one was retrieved from an ammunition dumping site (lake) at about a five-metre 

depth. The remaining four objects were all located on land. The specifics for the particular objects 

are as follows: one German HE artillery projectile (no fuze, located in water [hereafter designated as 

substance A]), one German HE aerial bomb (no fuze, located on land [substance B]), one German HE 

artillery projectile (fuze installed, located on land [substance C]), two German HE mortar projectiles 

(fuze installed, located on land [substances D and E, respectively]). 

According to the relevant literature, all ordnance included in this study were identified as carrying 

high explosive fillings of the substance Füllpulver 60/40, otherwise known as Amatol 40/60 (Der 

Reichsminister der Luftfart, 1942; Ordnance Bomb Disposal Center [US]; The War Office [UK], 1944; 

U.S. War Office, 1953a, 1953b). The identification of Amatols was later confirmed by analysing the 

samples with an ion chromatograph and an ultra-performance liquid chromatography-mass 

spectrometer (UPLC-MS/MS).   
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Fig. 2. A German 88 mm HE projectile (type 8.8 cm Sprgr. Patr. L/4.5 (Kz)) cut with a flexible linear-

shaped charge. Its filling is identified as Füllpulver 60/40 (i.e., Amatol 40/60). 

 

2.3 Storage and preparation of samples 

Once extracted, the Amatol samples were immediately placed in airtight containers (50 ml sterile 

polypropylene screw-cap tube) and stored in approved ammunition storage facilities. Aside from 

humidity control (at most 50% RH), the samples were stored in normal atmospheric conditions, in 

continuation of the normal temperature fluctuations that would appear in nature, albeit with less 

violent variations, as the samples were stored under cover and protected from direct sunlight.  

The physical appearance of all samples was found to resemble a grainy, brown sugar-like form (as 

opposed to the white to light buff colour normally associated with Amatol), indicating the presence 

of impurities in the composition or that the Amatols had been subjected to exposure to light and 

moisture (U.S. Army Material Command, 1965).  

At the time of extraction, all substances, with the exception of substance A, appeared to be dry and 

powdery. We established the exact moisture content of each sample as follows. First, we introduced 

a dried Pyrex crystalliser with a ribbed cover, of combined mass W1 (all masses were accurate up to 

1/10 mg). The ribbed cover was used to catch the small amounts of TNT which sublime upon heating 

(Fedoroff et al., 1960). Each substance was then analysed by adding a sample of mass 𝑊𝑆  to the 

crystalliser. The total mass of the crystalliser, cover and sample was obtained, and the specimen was 

heated for 2 to 3 hours at a temperature of 75oC and then cooled in a desiccator. Letting 𝑊2 denote 

the combined mass of the specimen after this process, the original moisture content 𝑤 (as a 

percentage) of the sample is yielded by 

𝑤 =  100{𝑊𝑆 − (𝑊2 − 𝑊1)} 𝑊𝑆.⁄  
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It was found that the moisture content of substance A was 22.2% and that the remaining substances 

had moisture contents of 0.33 ± 0.25%. These results coincide with the samples’ individual physical 

appearances at the time of extraction. However, their discolouration indicates that all of the tested 

substances may have undergone some exposure to moisture at one point in time. 

Preceding the impact sensitivity analysis, the samples were prepared in accordance with the 

requirements of NATO STANAG 4489 (NATO, 1999) and the United Nations Manual of Tests and 

Criteria - Classification Procedures, Test Methods and Criteria Relating to Explosives, Test 3 (a) (ii) 

(United Nations, 2019). Powdered substances are to be sieved, and only the fraction with a particle 

size of 0.5-1.0 mm is to be used for testing. For pressed or cast substances, where the powder was 

excessively coarse to all pass the sieve, the particle sizes are reduced by gently crushing it using a 

pestle and mortar. Only the fraction passing a 1000 µm sieve and retained on a 500 µm sieve was 

used for the test.  

As one of the substances consisted of a paste-like material (substance A), it was treated as a paste-

like or gel-type substance as per United Nations (2019, p. 86) test procedures, wherein a cylindrical 

tube of 40 mm3 capacity (3.7 mm diameter and 3.7 mm height) is inserted into the substance, and, 

after levelling off the surplus, the sample is removed from the tube by means of a wooden rod. A 

sample from this substance was placed in a humidity-controlled environment to reduce the moisture 

level of the sample to about 0.5% in preparation for further analysis. This particular substance 

underwent analysis in both its original (22.2% moisture) and prepared (0.33% moisture) state, 

hereafter denoted respectively as substance A1 (original) and substance A2 (prepared). 

 

2.4 Impact sensitivity testing  

The impact sensitivity of an explosive substance is its susceptibility to detonation under impact. This 

parameter characterises the safety of explosives in handling and transportation (Rădeanu, Rus, Jitea, 

Miron, & Vasilescu, 2020). To determine the impact sensitivity of a substance, a type of device known 

as a fallhammer apparatus is normally applied. There are several versions of these types of devices, 

but the United Nations recommends the Bundesanstalt für Materialforschung und -prüfung (BAM) 

fallhammer, which has also become the most frequently used standard impact sensitivity measuring 

device (Gruhne et al., 2019). However, the various apparatuses all operate on the same principle: A  

sample of assorted sizes of the tested explosive substance are subjected to the impact of falling 

weights, and the researcher estimates the sensitivity of the explosive based on which heights 

resulted in explosions (Meyer, Köhler, & Homburg, 2005). The main differences between the various 

fall hammer apparatuses are mainly related to their design and the manner in which the sample is 

subjected to the drop weight impact via different types of plungers (Suceska, 1995).  It is currently an 

active area of research to better understand how energy is transferred through the explosive sample 

in the fallhammer test (e.g., Monogarov, Meerov, Fomenkov, & Pivkina, 2023; Samseth, 2022).  

The BAM fallhammer test was initially developed to obtain better reproductive data compared to 

that of existing tests at the time (Meyer et al., 2005), and is generally considered to yield reasonably 

reproducible results (Suceska, 1995). In this analysis, the OZM BFH 12 BAM Impact Apparatus was 

applied, and the tests were performed in accordance with the requirements of the test procedure 

described in NATO STANAG 4489, Annex C; BAM Impact Machine (NATO, 1999). The BAM Impact 

Machine is presented in Figure 3a. The essential parts of the BAM fallhammer are the steel block 

with the base, the anvil, the guiding rods, the drop weight with the locking and unlocking device and 

the impact device. The impact device, as presented in Figure 3b, consists of two coaxially arranged 
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steel cylinders with polished surfaces and rounded edges, held in place by a cylindrical steel guide 

ring with an inner diameter of 10 mm.  

 

a)                                                                                                 b) 

          

Fig. 3. a) The BAM impact machine (NATO, 1999) and b) The fallhammer impact device (NATO, 1999). 

 

The device is prepared by partially pushing one of the cylinders into a guide ring and positioning it on 

the intermediate anvil fitted with a locating ring. Using a measuring spoon, 40 mm3 of the prepared 

high explosive samples (e.g. crushed and sieved to a particle size of 500-1000 µm) are placed inside 

the impact device, ensuring that a centre heap is formed. The impact device is then closed with a 

second steel cylinder by carefully pressing it into the guide ring until it touches the sample. For the 

impact sensitivity testing, assorted drop weights with masses ranging from 0.25 kg to 10 kg are 

available. The body of each drop weight has two guide grooves, in which it moves between the guide 

rails. It is equipped with a suspension spigot that arrests the weight in the release mechanism and is 

further provided with a cylindrical striker, a height marker and the rebound catch for stopping the 

weight after rebounding from the anvil. Based on the anticipated results (e.g. on the basis of the 

specific characteristics of the explosive substance undergoing the test), the drop weight is secured in 

the release mechanism, and the weight is then positioned to the desired height. When the release 

mechanism is activated, the drop weight is unlocked, and its striking head impacts the upper cylinder 

of the impact device. 

Depending on the characteristics of the tested explosive substance, the mass of the drop weight and 

the drop height (the combined product of which is the impact energy), the sample may or may not 

initiate upon impact. In judging the results, a distinction is made between no reaction, decomposition 

(without flame or explosion) and explosion (with weak to strong report or inflammation). The 

verification of decomposition and explosion can be recognised based on several factors, including 

sound, gas, flame and smoke or via an inspection of the impact device for sooty deposits after the 

upper cylinder has been removed. If none of these effects are noticed, an initiation failure (no 

reaction) is registered. Of the three possible types of reactions, both decomposition and explosion 

are considered positive test reactions (initiations) according to STANAG test procedures (NATO, 

1999). In our experiments, in addition to audio-visual observations, a decomposition gas detector 

(MultiRAE model PGM6208) was used to classify the reactions.  
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The tests were performed at ambient temperatures (i.e. 23.6oC +1.4oC), according to the United 

Nations’ (2019, p. 80) recommended test conditions. As the scope of the test method was within the 

range of -30oC to +80oC, no particular environmental modification was required. 

As repeated drops from the same height in a fallhammer will not invariably yield the same result 

(reaction versus no reaction), the impact sensitivity of an energetic material must be estimated 

statistically. Hence, the weight is dropped repeatedly from a range of (log) heights 𝑥1, … , 𝑥𝑛, and for 

each 𝑥𝑖, we observe a binary outcome 𝑦𝑖 ∈ {0,1}, where 𝑦𝑖 = 1 if a reaction occurred and 𝑦𝑖 = 0 

otherwise. In accordance with STANAG 4489, the heights are determined according to the Bruceton 

up-and-down procedure (Dixon & Mood, 1948), meaning that an initial height 𝑥1 is chosen for the 

first drop, and the consecutive heights are chosen inductively by 

𝑥𝑖 = {
𝑥𝑖−1 + 𝑑 if 𝑦𝑖−1 = 0
𝑥𝑖−1 − 𝑑 if 𝑦𝑖−1 = 1,

(1) 

for 𝑖 = 2, … , 𝑛, where 𝑑 > 0 is the step size of the test, chosen by the operator. That is, we descend 

one step if a reaction is observed and ascend one step if not. In our experiments, the step size was 

set as 𝑑 = 0.05, in accordance with STANAG 4489. 

When assessing sensitivity, our primary interest is in quantiles such as ℎ50, which is the height from 

which there is a 50% probability of a reaction occurring. The median ℎ50 is of particular interest, 

since it is known to correlate with quantum chemical properties of the energetic material (Jensen, 

Moxnes, Unneberg, & Christensen, 2020).  

In addition to point estimates, we also wish to quantify the uncertainty of our results by means of 

confidence intervals (CIs). The use of large-sample theory to construct CIs for the Bruceton up-and-

down method was verified by Christensen, Stoltenberg, Hjort (2023). Christensen et al. (2023) found 

via simulations that Fieller’s theorem yields the most satisfactory CIs for the quantiles when the 

Bruceton up-and-down-method is employed. As recommended by Christensen et al. (2023), we used 

the existence of a bounded 95% CI for ℎ50 via Fieller’s theorem as a necessary criterion for 

terminating our fallhammer experiments. This resulted in most of the data sets comprising more 

than 30 drops. The fact that 30 drops were not sufficient could allude to inhomogeneity of the 

substances tested, or statistical model misspecification. Although it would be possible to simply 

employ the delta method to construct CIs, as suggested by Dixon & Mood (1948), simulation studies 

consistently show that CIs constructed via Fieller’s theorem are more accurate for sensitivity data 

(see Christensen et al. (2023) and the references therein). In particular, the use of Fieller’s theorem 

does not impact the qualitative conclusions reached in this paper, but rather increases the accuracy 

with which they are derived.  

 

3. Results 

Prior to all testing, a reference material of recently produced TNT (‘Trinitrotoluene Type 1, Flake’ 

with a 0.44% content of hexanitrostilbene (HNS), produced by Zaklady Chemiczne ‘NITRO-CHEM’ S.A. 

in Bydgoszcz, Poland, released for sale following the Certification of Compliance and Analysis on 8th 

September 2017, was tested. The test of the reference sample indicated an impact sensitivity (ℎ50) of 

29.8 J, coinciding with the reported value (30 J) as described in STANAG 4489 (NATO, 1999). The full 

data from the impact sensitivity tests using the BAM Impact Apparatus are available at Novik & 

Christensen (2023). Here, we go over the main results.  
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For substance A1, we initially aimed to obtain a single reaction with a 5 kg weight, but when this was 

not achieved, we proceeded to drop a 10 kg weight to increase the impact energy. After the first five 

drops, we still had no reactions, and we therefore decided to execute 10 drops from the maximum 

height of 100 cm with the 10 kg weight. Out of these, only a single drop caused a reaction. Thus, for 

this experiment, the maximum likelihood estimators (MLEs) do not exist, and we have highly limited 

information about the true underlying parameters governing the sensitivity of substance 𝐴1. We can, 

however, assert with relatively high confidence that ℎ50 is above 98.07 J, that is, 100 cm with a 10 kg 

weight.  

For substance A2, we did not obtain a bounded 95% CI for ℎ50 after the first 𝑛 = 30 drops, and we 

therefore increased the number of drops in increments by 10 at a time until a valid confidence 

interval was achieved. This happened after 𝑛 = 70 drops. The resulting estimate for ℎ50 is 10.99 J, or 

22.41 cm with the 5 kg weight. The 95% and 99% confidence intervals for ℎ50 is [8.26 J, 13.06 J] and 

[5.25 J, 14.45 J], respectively. We see that the value of ℎ50 is significantly less than 30 J.  

For substance B, we decided to stop the experiment after 𝑛 = 30 drops, since this proved to be 

sufficient for obtaining a bounded 95% CI for ℎ50. From the data, the resulting estimate for ℎ50 is 

7.52 J, or 15.34 cm with a 5 kg weight. The 95% CI for ℎ50 is [3.53 J, 9.25 J]. We did not obtain a 99% 

CI for ℎ50, since we only did 𝑛 = 30 drops. Anyhow, we see that the value is significantly smaller 

than 30 J.  

For substance C, as with substance A2, we had not achieved a bounded 95% CI for ℎ50 after the first 

30 drops, and therefore decided to augment the dataset by increments of 10 drops until this was 

achieved. After 𝑛 = 50 drops, we had a 95% CI for ℎ50. The resulting estimate of ℎ50 is 31.60 J, or 

64.42 cm with a 5 kg weight. The 95% and 99% CIs for ℎ50 are [28.70 J, 35.90 J] and [27.01 J, 41.06 J], 

respectively. In particular, we do not have sufficient evidence to reject the hypothesis that ℎ50 = 30 

J.  

For substance D, since we had not obtained a bounded CI for ℎ50 after 30 drops, we increased the 

number of drops by increments of 10 until this was achieved, at n=70. The resulting estimate of ℎ50 

is 13.51 J. The accompanying 95% CI for ℎ50 is [4.88 J, 19.14 J]. As with substance B, we did not 

obtain a bounded 99% CI for ℎ50 for substance D. Anyhow, we still see that the value for ℎ50 is 

significantly smaller than 30 J.  

For substance E, since 30 drops were not sufficient for obtaining a bounded 95% CI for ℎ50, we 

increased the number of drops by increments of 10 until a valid CI was obtained, after 𝑛 = 70 drops. 

The resulting estimate of ℎ50 is 15.37 J, with the 95% CI [12.13 J, 19.06 J]. Again, this is significantly 

smaller than 30 J.  

To summarise our results graphically, we draw the confidence curves for ℎ50 for the substances A2, B, 

C, D and E in Fig. 4. These were drawn using Fiellers theorem, as explained by Christensen et al. 

(2023). Using these curves, we may obtain all CIs for any confidence level. For example, if we were to 

calculate where the line 𝑦 = 0.95 intersects these curves, we would recover the 95% CIs reported in 

the previous sections. As we can see, there is a substantial distance between the confidence curve 

for substance C and the other substances, whose confidence curves overlap more. This reflects how 

substance C exhibited an impact sensitivity in accordance with the existing literature on Amatol (30 

J), whilst all the other substances were significantly more sensitive to impact. Note also how some of 

the curves are skewed, which reflects the asymmetric confidence intervals reported in the previous 

sections. 
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intentional disturbance (e.g. construction work, fishing, recreational activities). Sometimes 

negligence towards the risks posted by the ERW can result in unauthorised handling of the ordnance, 

with false reassurance that the explosives does not pose any significant risk (Geir P. Novik, 2022).  

As munitions can remain intact and functional for decades, and even centuries, after the end of 

hostilities, ERW contamination is generally considered a major threat to societal safety and security. 

Simultaneously, toxic compounds, including nitroaromatic explosives are released into the 

environment by deteriorating munitions, representing an acute ecological and health hazard, 

resulting in serious environmental pollution problems in several countries and regions worldwide 

(Barreto-Rodrigues, Silva, & Paiva, 2009; Luo et al., 2023). Therefore, the clearance of ERW is a 

prioritised task in affected areas, and is recognised as a vital risk reduction tool (Geir P. Novik, 2023). 

However, all munitions subject to EOD clearance are, by nature, prone to be handled in one form or 

another (e.g. moving, relocating, rendering safe). Consequently, if the impact sensitivity of the 

explosives is in fact significantly higher than previously assumed, this would influence how ERW 

related risks are perceived, and form new boundaries for safe and practically feasible disposal 

techniques.   

 

5. Conclusions 

In this study we have analysed the composition high explosive substance Amatol, that were extracted 

from ageing explosive remnants of war. Our results clearly show that the samples studied were 

significantly more sensitive to impact than what one would expect based on the existing literature. A 

proper understanding of the hazard properties of explosive remnants of war is of vital importance, as 

there exist millions of tonnes of such remnants in nature in the form of unexploded ordnance and 

munitions disposed of at dumping sites on land, in lakes and at sea. The munitions are continuously 

deteriorating, resulting in hazardous materials being released into the environment, potentially 

posing an environmental, as well as a societal, risk. Moreover, as the explosives deteriorate over 

time, often resulting from inferior storage conditions or the presence of undesired factors such as 

moisture and certain metals, the munitions may become increasingly sensitive to external stimuli and 

susceptible to accidental detonation. In this study we analysed the composition high explosive 

substance Amatol, that were extracted from ageing explosive remnants of war. 

All explosive ordnance subject to this analysis were originally deemed safe to move and to transport 

by the EOD operative in charge. This is a risk decision based on a number of factors, most 

predominantly the risks related to a detonation in situ and their correlating risk mitigating actions, 

and the risks associated with moving or transporting the object to a location that is more suited for 

conducting a controlled detonation. In this risk assessment it is imperative to evaluate the technical 

condition of the explosive object, including its sensitivity to impact. This is an essential part of 

assessing whether the object should or could be relocated.  However, as this study has shown, these 

risk assessments were all conducted on the basis of what has proven to be erroneous information, as 

this study proved that Amatol can potentially have a significantly increased impact sensitivity 

compared to what is listed in most of the literature. As such, all risk assessments involving Amatols 

must account for the fact that handling these substances can involve a greater risk of accidental 

detonation as a result of increased impact sensitivity than what was the original premise.  

Furthermore, in addition to Amatol being one of the high explosive compositions most extensively 

used up until the end of World War II, several seemingly identical explosive objects were produced 

with alternating fillings in which the same object could contain several explosives or explosive 
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compositions. Consequently, not only do we need to assume that the filling in explosive ordnance 

containing Amatol can have developed an increased impact sensitivity, but, as the exact filling of 

various ordnance cannot always be verified by external features alone, the risk of increased impact 

sensitivity must be included for all explosive ordnance potentially containing Amatols.  We therefore 

recommend that EOD operators and other risk assessors now must account for the increase in 

impact sensitivity of Amatol in ageing ordnance and factor in this when encountering all munitions 

potentially containing Amatols. Moreover, as the required number of drops as described in the 

relevant standardised methodology of impact sensitivity testing (e.g. as NATO STANAG 4489) was not 

enough to produce a valid confidence interval in the majority of the experiments, these standards 

should therefore be revised to include a suitable method for constructing confidence intervals, such 

as Fieller’s theorem. In particular, no fallhammer test should be terminated until a 95% confidence 

interval for ℎ50 has been obtained. 
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Appendix A: Proof of Proposition 2.2

In this section, we prove Proposition 2.2 from the main text, which we restate here as
Proposition A.1.

Proposition A.1. Let x ∈ [0,∞)n. Then w(x;B) > 0 if and only if x is B-admissible.

Proof of Proposition A.1. Let σ ∈ Sn be as in Definition 2.1 from the main text. Clearly,
if x is B-admissible, then by definition, there exists a permutation in Sn, namely σ, such
that σ(x) ∈ B.

We prove the converse by induction on n. The base case n = 1 is trivial. For the
inductive step, assume the proposition holds for dim(B) < n and suppose w(x;B) > 0.
Then there exists a permutation τ such that τ(x) ∈ B. Let j be the index such that
σ(1) = τ(j). We claim that we may assume that j = 1 without loss of generality.

To prove the claim, it suffices to show that xτ(1) ∈ Bj . Indeed, then we can redefine
τ to map 1 to τ(j) and j to τ(1). To prove that xτ(1) ∈ Bj , first assume that Bj extends
to the left, so Bj = [0, tj). In this case, we have xτ(1) ∈ B1 ⊆ Bj , so xτ(1) ∈ Bj . On the
other hand, if Bj extends to the right, then Bj = [tj ,∞) and xτ(1) ∈ Bj as xτ(j) ≤ xτ(1).
In either case, we have that xτ(1) ∈ Bj , so we may assume j = 1.

Now, let x−1 = (x2, . . . , xn) and B−1 = B2 × · · · × Bn. As τ(x) ∈ B, it must also be
the case that τ ′(x−1) ∈ B−1, where τ ′ is the restriction of τ to the domain {2, . . . , n}.
Hence, w(x−1;B−1) > 0, and so by induction hypothesis, x−1 is B−1-admissible. That
is, σ′(x−1) ∈ B−1, where σ′ is the restriction of σ to the domain {2, . . . , n}. Since we
also know that xσ(1) = xτ(1) ∈ B1, we see that x is B-admissible.

Appendix B: Proof of Proposition 3.1

In this section, we prove Proposition 3.1 from the main text, which we restate here as
Proposition B.1

Proposition B.1. Let x be B-admissible and let A be the matching matrix of x. Then,
after permuting its columns if necessary, A is a complete block rectangular matrix.
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Proof of Proposition B.1. If A contained a row of zeros, then this would mean that for
some j ∈ {1, . . . , n}, we must have xi /∈ Bi for all i = 1, . . . , n. But then x is not
B-admissible, a contradiction.

Without loss of generality, we can assume that x1 ≤ · · · ≤ xn. This corresponds to
permuting the columns of A, or equivalently, to hitting x with the permutation σ from
Definition 2.1 from the main text. By the ordering of the Bi, each column aj of A takes
the form

aj = (0, . . . , 0︸ ︷︷ ︸
k
(1)
j

, 1, . . . , 1︸ ︷︷ ︸
k
(2)
j

, 0, . . . , 0︸ ︷︷ ︸
k
(3)
j

)T ,

where

k
(1)
j = # {i | xj ≥ ti, i ≤ n0}

k
(2)
j = # {i | xj < ti, i ≤ n0}+# {i | xj ≥ ti, i > n0}

k
(3)
j = # {i | xj < ti, i > n0} .

Furthermore, since the xi are in ascending order, we see that if j ≤ j′, then k
(1)
j ≤ k

(1)
j′

and k
(3)
j ≥ k

(3)
j′ . This means that the matrix A comprises a sequence of descending

rectangular blocks of ones, and can thus be described with parameters α, β, γ,m, as in
Definition 3.2 from the main text. Clearly, α, β, γ,m satisfy condition (3.2) from the
main text. It remains to show that they also satisfy condition (3.3) from the main text.

Assume for a contradiction that
∑t

r=1 βr >
∑t

r=1 αr for some t ∈ {1, . . . , k}. Then
aij = 0 for all i ≤ ∑t

s=1 βr and j >
∑t

s=1 αs. That is, xi /∈ Bj for all i ≤ ∑t
s=1 βr

and j >
∑t

s=1 αs. But then x is not B-admissible, since there exists no surjection from

{1, . . . ,∑t
r=1 αr} to {1, . . . ,

∑t
r=1 βr}. The corresponding condition for γ can be proved

similarly.

Appendix C: Proof of Theorem 3.1

In this section, we prove Theorem 3.1 from the main text, which we restate here as
Theorem C.1.

Theorem C.1. Let A be an m×n complete block rectangular matrix. Then there exists
an implementable algorithm for computing perm(A), whose computational complexity
grows polynomially with n.

The first step is to introduce the notion of subpermanents.

C.1 Subpermanents

To motivate the definition of subpermanents, we need a lemma which links permanents
to counting permutations.
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Lemma C.1. Let A be an m×n (0, 1)-matrix, where m ≤ n. Then perm(A) = #℘(A),
where

℘(A) =
{
τ ∈ Sn,m | ai,τ(i) = 1 for i = 1, . . . ,m

}
. (C.1)

Proof. This follows from Definition 3.1 from the main text and the fact that A is a
(0, 1)-matrix.

The notion of subpermanents now arises by sorting the number of permutations in
℘(A) by how many entries from the right-most and left-most rectangular blocks are in
each permutation.

Definition C.1. Let A be an m × n block rectangular matrix minimally parametrised
by α, β, γ,m, where m ≤ n and k = dim(α) ≥ 2. For 0 ≤ r ≤ α1 and 0 ≤ s ≤ αk, define
the set ℘rs(A) by

℘rs(A) =

{
τ ∈ ℘(A)

∣∣∣∣∣# {i | τ(i) ≤ α1} = r and #{i | τ(i) >
k−1∑

l=1

αl} = s

}
(C.2)

We define permrs(A) = #℘rs(A) to be the r, s-subpermanent of A.

Note that

perm(A) =

α1∑

r=0

αk∑

s=0

permrs(A). (C.3)

Hence, if we can calculate all subpermanents of A, we obtain the permanent as well.
It turns out that the subpermanents of A can be explicitly related to those of another
block rectangular matrix which has fewer rows than A. This removal of rows will happen
in a systematic fashion via series of moves, called trimming, splitting and merging, to be
defined momentarily. By applying these moves repeatedly to A, we end up with a block
rectangular matrix with a very simple parametrisation, whose subpermanents can be
calculated explicitly. Having done so, we may then reverse the moves we performed and
update the subpermanents accordingly. This will allow us to obtain the subpermanents
of A. We now proceed by defining trimming, splitting and merging, and establishing
the subpermanent relations.

C.2 Trimming, splitting and merging

Throughout this section, let A be an m×n complete block rectangular matrix minimally
parametrised by α, β, γ,m, where m ≤ n and k = dim(α) ≥ 2.

Definition C.2. The operations trimming, splitting and merging are defined as follows.

• If m > β1 > 0, a top trim of A is the process of replacing A with the block
rectangular matrix Att parametrised by α, βtt, γ,mtt, where βtt = (0, β2, . . . , βk−1)
and mtt = m− β1. This is equivalent to deleting the top β1 rows of A.
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4 SM for Bayesian nonparametrics via permutation counting

• If m > γk−1 > 0, a bottom trim of A is the process of replacing A with the block
rectangular matrix Abt parametrised by α, β, γbt,mbt, where γbt = (γ1, . . . , γk−2, 0)
and mbt = m− γk−1. This is equivalent to deleting the bottom γk−1 rows of A.

• If m > βk−1 > 0, a top split of A is the process of replacing A with the block
rectangular matrix Ats parametrised by α, βts, γ,mts, where βts = (β1, . . . , βk−2, 0)

and mts = m− βk−1. This is equivalent to deleting rows
∑k−2

r=1 βr+1, . . . ,
∑k−1

r=1 βr

from A.

• If m > γ1 > 0, a bottom split of A is the process of replacing A with the block rect-
angular matrix Abs parametrised by α, β, γbs,mbs, where γbs = (0, γ2, . . . , γk−1)

and mbs = m− γ1. This is equivalent to deleting rows m−∑k−1
r=1 γr + 1, . . . ,m−∑k−2

r=1 γr from A.

• If β1 = γ1 = 0, then a left merge of A is the process of replacing α, β, γ by

αlm = (α1 + α2, α3, . . . , αk), βlm = (β2, . . . , βk−1), γlm = (γ2, . . . , γk−1).

This is equivalent to merging the two left-most rectangular blocks when their ver-
tical positions and heights match.

• If βk−1 = γk−1 = 0, then a right merge of A is the process of replacing α, β, γ by

αrm = (α1, . . . , αk−1, αk−1 + αk), βrm = (β1, . . . , βk−2), γrm = (γ1, . . . , γk−2).

This is equivalent to merging the two right-most rectangular blocks when their
vertical positions and heights match. Note that merging does not actually change
the matrix A, only its parametrisation.

Combining trimming, splitting and merging in the following way, we obtain the
reduction algorithm.

Lemma C.2. After applying the reduction algorithm, A is still a complete block rect-
angular matrix with a minimal parametrisation.

Proof. It is easy to check that if conditions (3.2) and (3.3) from the main text were
satisfied to begin with, then they are still satisfied after applying the algorithm. Hence,
A is still block rectangular. Also, since trimming and splitting only remove rows, and
merging only changes the parametrisation of A, it is not possible that either move will
introduce a new row of zeros. Hence, A is still complete.

Assume for a contradiction that A is no longer minimally parametrised. Then for
some 1 ≤ r ≤ k − 1, we have βr = γr = 0. As A was minimally parametrised before
applying the algorithm, we cannot have 1 < r < k − 1. Hence, r = 1 or r = k − 1.
If r = k − 1, then the right merge step in line 17 was not performed, a contradiction.
Similarly, if r = 1, then the left merge step in line 8 was not performed, since none of
the steps from line 10 to line 18 change the values of β1, γ1. Hence there exists no such
r, and so the parametrisation of A is still minimal.
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Algorithm 1 Reduction

Require: Matrix A
1: if m > β1 > 0 then
2: A← Att

3: end if
4: if m > γ1 > 0 then
5: A← Abs

6: end if
7: if β1 = γ1 = 0 then
8: A← Alm

9: end if
10: if m > γk−1 > 0 then
11: A← Abt

12: end if
13: if m > βk−1 > 0 then
14: A← Ats

15: end if
16: if βk−1 = γk−1 = 0 then
17: A← Arm

18: end if

Note that in each if statement of the reduction algorithm, the value of k + m is
strictly decreased, so that if we repeatedly apply the algorithm, there will come a time
where no move is possible. We say that the matrix A is reduced if this is the case.

Lemma C.3. The matrix A is reduced if and only if exactly one of the following holds.

1. k = 1,

2. k = 2, β1 = 0 and γ1 = m,

3. k = 2, β1 = m and γ1 = 0,

4. k = 3, β = (0,m) and γ = (m, 0).

Proof. It is easy to check that if either condition holds, then no further reduction of
A is possible. For the converse, we consider case by case. If k = 1, then we are done.
Suppose that k = 2. If 0 < β1 < m or 0 < γ1 < m, then it would be possible to perform
a trim or a split. Also, if β1 = γ1 = 0, then it would be possible to perform a left (or
right) merge. Hence one of case 2 or 3 must hold.

Finally, assume that k ≥ 3. By the same argument as above, one of the following
must be true.

• β = (0, . . . , 0,m) and γ = (m, 0, . . . , 0),

• β = (m, 0, . . . , 0) and γ = (0, . . . , 0,m).
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6 SM for Bayesian nonparametrics via permutation counting

Assume that the former is true. By Lemma C.2, we know that the parametrisation
is minimal. This forces k = 3 and so case 4 holds. Finally, if the latter is true, then
again minimality of the parametrisation forces β = (m, 0) and γ = (0,m). However,
this parametrisation will yield a matrix with a row of zeros, which contradicts Lemma
C.2.

In Figure 1, we see how the matrix from Figure 3a from the main text is affected
by the reduction algorithm. Note that the final parametrisation belongs to case 3 in
Lemma C.3.

We will now derive formulae for the subpermanents of a reduced matrix A. In Defini-
tion C.1, we only defined subpermanents for matrices with k = dim(α) ≥ 2. In condition
1 in Lemma C.3, A is an m× n matrix of ones, parametrised with k = 1. We therefore
modify the reduction algorithm slightly by declaring that if k = 2 and β1 = γ1 = 0,
then we ignore the left and right merge moves in lines 7 and 16. This allows us to change
condition 1 in Lemma C.3 to the following.

1′. k = 2 and β1 = γ1 = 0.

Note that this parametrisation is no longer minimal.

Notation. For whole numbers i, j, if j ≤ i, we let

(
i

j

)
=

i!

j!(i− j)!
,

{
i

j

}
=

i!

(i− j)!
,

and declare that
(
i
j

)
=
{
i
j

}
= 0 if j > i.

Lemma C.4. The subpermanents of a reduced matrix A take the following form.

1′. If k = 2 and β1 = γ1 = 0, then

permrs(A) =

{(
m
r

){
α1

r

}{
α2

s

}
if r + s = m,

0 otherwise.

2. If k = 2, β1 = 0 and γ1 = m, then

permrs(A) =

{{
α2

m

}
if r = 0, s = m,

0 otherwise.

3. If k = 2, β1 = m and γ1 = 0, then

permrs(A) =

{{
α1

m

}
if r = m, s = 0,

0 otherwise.
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1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

0 1 1 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1







bottom−−−−→
split

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

0 0 0 0 1 1 1

0 0 0 0 0 1 1







left−−−−→
merge

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

0 0 0 0 1 1 1

0 0 0 0 0 1 1







top−−−→
split

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 1 1 1

0 0 0 0 0 1 1







right−−−−→
merge

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 1 1 1

0 0 0 0 0 1 1







top−−−→
trim

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 1 1 1

0 0 0 0 0 1 1







bottom−−−−→
split

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1







left−−−−→
merge

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1







bottom−−−−→
trim

1 1 1 1 1 0 0

1 1 1 1 1 0 0

( )

Figure 1: Reducing the matrix in Figure 3a.
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8 SM for Bayesian nonparametrics via permutation counting

4. If k = 3, β = (0,m) and γ = (m, 0), then

permrs(A) =

{{
α2

m

}
if r = s = 0,

0 otherwise.

Proof. We prove the first case for illustration. First note that ℘rs(A) = ∅ when r+s ̸= m.
When r + s = m, every permutation τ ∈ ℘rs(A) can be constructed as follows.

(i) Choose a subset I of size r from {1, . . . ,m}.

(ii) Assign values τ(i) for all i ∈ I such that τ(i) ≤ α1.

(iii) Assign values τ(i) for all i /∈ I such that τ(i) > α1.

There are
(
m
r

)
ways to perform step (i),

{
α1

r

}
ways to perform step (ii), and

{
n−α1

s

}
={

α2

s

}
ways to perform step (iii).

We now show how the subpermanents of A are affected by trimming, splitting and
merging.

Lemma C.5. The subpermanents of A are related to those of Att, Abt, Ats, Abs, Alm

and Arm via the following relationships.

permrs(A) =

{
αk + γk−1 − s

γk−1

}
permr,s−γk−1

(Abt)

=

{
α1 + β1 − r

β1

}
permr−β1,s(A

tt)

=

αk∑

l=0

{∑k−1
q=2 αq − (m− γ1 − r − l)

γ1 + l − s

}{
αk − l

s− l

}(
γ1

s− l

)
permrl(A

bs)

=

α1∑

l=0

{∑k−1
q=2 αq − (m− βk−1 − l − s)

βk−1 + l − r

}{
α1 − l

r − l

}(
βk−1

r − l

)
permls(A

ts)

=

α1+α2∑

l=r

{
α2

l−r

}{
α1

r

}
{
α1+α2

l

}
(
l

r

)
permls(A

lm)

=

αk−1+αk∑

l=s

{
αk−1

l−s

}{
αk

s

}
{
αk−1+αk

l

}
(
l

s

)
permrl(A

rm).

Proof. For the bottom trim, observe that every permutation τ ∈ ℘r,s−γk−1
(Abt) may

be extended to a permutation τ̄ ∈ ℘rs(A) by defining τ̄(i) = τ(i) for 1 ≤ i ≤∑k−2
l=1 γl, and choosing values τ̄(

∑k−2
l=1 γl + 1), . . . , τ̄(

∑k−1
l=1 γl) distinctly amongst the

indices {∑k−1
l=1 αl +1, . . . , n}. There are

{
αk+γk−1−s

γk−1

}
ways to to this, and every permu-

tation in ℘rs(A) can be recovered this way, thus yielding the result. The corresponding
relation for the top trim is proven similarly.
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Next, we prove the result for the top split. Given 1 ≤ l ≤ α1, we may extend every
permutation τ ∈ ℘ls(A

ts) to a permutation τ̄ ∈ ℘rs(A) as follows. First, we define

τ̄(i) = τ(i) for 1 ≤ i ≤∑k−2
q=1 βq and τ̄(i) = τ(i− βk−1) for

∑k−1
q=1 βq < i ≤ m. To define

τ̄(i) for
∑k−2

q=1 βq < i ≤∑k−1
q=1 βq, we do the following.

(i) Choose a subset I ⊆ {∑k−2
q=1 βq + 1, . . . ,

∑k−1
q=1 βq} of size r − l.

(ii) For all i ∈ I, assign values τ̄(i) such that τ̄(i) ≤ α1. Note that l such values out
of the possible α1 are already taken.

(iii) For all i /∈ I, assign values τ̄(i) such that α1 < τ̄(i) ≤ ∑k−1
q=1 αq. Note that

m− βk−1 − l − s such values out of the possible
∑k−1

q=2 αq are already taken.

There are
(
βk−1

r−l

)
ways to perform step (i),

{
α1−l
r−l

}
ways to perform step (ii) and

{∑k−1
q=2 αq−(m−βk−1−l−s)

βk−1+l−r

}
ways to perform step (iii). Any permutation in ℘rs(A) can be

recovered this way. Thus, summing over l = 0, . . . , α1, we get the result. The corre-
sponding relation for the bottom split is proven similarly.

For the left merge, fix l and let τ ∈ ℘ls(A
lm). Let I = τ−1({1, . . . , α1 + α2}) and let

τ ′ be the restriction of τ to {1, . . . ,m} \ I. By assumption, #I = l. Note that there are
exactly permls(A)/

{
α1+α2

l

}
permutations in ℘ls(A

lm) which yield the same τ ′. Given
τ ′, we may then extend it to a permutation τ̄ ∈ ℘rs(A) as follows.

(i) Choose a subset J ⊆ I of size r.

(ii) Assign values τ̄(i) such that τ̄(i) ≤ α1 for all i ∈ J .

(iii) Assign values τ̄(i) such that α1 < τ̄(i) ≤ α1 + α2 for all i ∈ I \ J .

There are
(
l
r

)
ways to perform step (i),

{
α1

r

}
ways to perform step (ii), and

{
α2

l−r

}
ways

to perform step (iii). For all permutations τ in ℘rs(A), there exists an l such that τ can
be recovered this way. Hence, summing over l = r, . . . , α1 + α2, we get the result. The
corresponding relation for the right merge is proven similarly.

Proof of Theorem C.1. Consider the following procedure. First, reduce A by repeatedly
applying the reduction algorithm until termination, and keep track of all the param-
eters involved in memory. Next, calculate the subpermanents of the resulting reduced
matrix using Lemma C.4. Then for every move performed in reverse order, update the
subpermanents using the relations in Lemma C.5. Once completed, we end up with all
subpermanents of the original matrix A. The permanent of A is then the sum of the
subpermanents, as shown in (C.3).

Now, reducing A requires at most k+m ≤ 2n applications of the reduction algorithm.
Further, each calculation involved in updating the subpermanents can be computed in
polynomial time. Thus, the complexity of the procedure above grows polynomially with
n, as required.
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10 SM for Bayesian nonparametrics via permutation counting

In practice, we compute all subpermanents on a log scale, and use the LogSumExp
function to compute the relations in Lemma C.5.
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Table 1 The nitroaromatic compounds in the Wilson et al. data set [1]. The sum formula, enthalpy of formation (∆Hf), density, bond dissociation 
energy (BDE), heat of detonation (Q), temperature of detonation (Tex), impact energy (I50) and molecular structure   

Compound

Formula ∆Hf (s)a

(kJ/mol)
Densityd

(g/cm3) 
BDE 

(kJ/mol)
Q 

(kJ/kg)
Tex

(K)
I50

d

(J) Molecular structure
Hexanitrobenzene (HNB) C6N6O12 125.9 1.99 225.5 6816 5456 2.7

1,2,3,5,6-Pentanitrobenzene 
(PNB)

C6HN5O10 49.4 1.91 223.1 6578 5163 2.7

1,2,3,5-Tetranitrobenzene (TetNB) C6H2N4O8 -43.5 1.82 226.1 5904 4528 6.9

1,3,5-Trinitrobenzene (TNB) C6H3N3O6 -47.7 1.68 284.6 5401 4026 17.4
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2,4,6-Trinitrophenol (Picric Acid) C6H3N3O7 -231.2 1.77 267.6 5029 3837 15.7

2,3,4,5,6-Pentanitroaniline (PNA) C6H2N6O10 -388.3 1.86 213.0 5027 4123 5.4

2,3,4,6-Tetranitroaniline (TetNA) C6H3N5O8 -49.0 1.87 216.6 5656 4269 11.5

2,4,6-Trinitroaniline (TNA) C6H4N4O6 -74.5 1.76 296.8 5077 3725 34.5

2,2',4,4',6,6'Hexanitrobiphenyl 
(HNBP)

C12H4N6O12 68.2 1.69 267.4 5657 4300 17.2

3,3'-Diamino-2,2',4,4',6,6'-
hexanitrobiphenyl (DIPAM)

C12H6N8O12 -28.5 1.79 276.1 5250 3924 16.4

4,6-Dinitrobenzofuroxan (DNBF) C6H2N4O6 190.0 1.76 277.5 6012 4506 18.6

7-Amino-4,6-dinitrobenzofuroxan 
(ADNBF)

C6H3N5O6 153.9b 1.88 296.5 5640 4117 24.5

5,7-Diamino-4,6-
dinitrobenzofuroxan (CL-14)

C6H4N6O6 86.0c 1.95 317.8 5163 3745 29.4
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8-Amino-7-nitrobenzobisfuroxan 
(CL-18)

C6H2N6O6 428.9c 1.93 313.1 6337 4641 13.7

2,3,4,5,6-Pentanitrotoluene (PNT) C7H3N5O10 -63.7c 1.76 226.8 6002 4608 4.4

2,3,4,5-Tetranitrotoluene 
(2,3,4,5TetNT)

C7H4N4O8 -69.8c 1.71 230.1 5616 4164 3.7

2,3,4,6-Tetranitrotoluene (2,3,4,6-
TetNT)

C7H4N4O8 -69.8c 1.71 231.9 5616 4164 4.7

2,4,6-Trinitrotoluene (2,4,6-TNT) C7H5N3O6 -67.1 1.67 263.5 5097 3592 24.0

2,3,4-Trinitrotoluene (2,3,4-TNT) C7H5N3O6 15.1 1.63 231.4 5514 3827 13.7

3,4,5-Trinitrotoluene (3,4,5-TNT) C7H5N3O6 -5.0 1.63 263.9 5432 3786 26.2

2-Amino-3,4,5,6-tetranitrotoluene 
(TetN-o-Tol)

C7H5N5O8 -234.7c 1.72 219.6 4897 3699 8.8

3-Amino-2,4,5,6-tetranitrotoluene 
(TetN-m-Tol)

C7H5N5O8 -234.7c 1.73 216.0 4899 3692 9.1
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4-Amino-2,3,5,6-tetranitrotoluene 
(TetN-p-Tol)

C7H5N5O8 -234.7c 1.72 228.6 4897 3699 11.5

2,2',4,4',6,6'-
Hexanitrodiphenylmethane 
(HNDPM)

C13H6N6O12 43.5c 1.71 254.6 5537 4055 9.6

aRef.[2]  bRef. [3] cRef. [4] dRef. [1]  

Table 2 The nitroaromatic compounds in the Storm et al. data set [5]. The sum formula, enthalpy of formation (∆Hf), density, bond dissociation 
energy (BDE), heat of detonation (Q), temperature of detonation (Tex), impact energy (I50) and molecular structure   

Compound

Formula ∆Hf
a

(kJ/mol)
Densityc

(g/cm3) 
BDE 

(kJ/mol)
Q 

(kJ/kg)
Tex   
(K)

I50
d  

(J) Molecular structure
Hexanitrobenzene (HNB) C6N6O12 125.9 1.99 225.5 6816 5456 2.9

1,3,5-Trinitrobenzene (TNB) C6H3N3O6 -47.7 1.68 284.6 5401 4026 25

2,4,6-Trinitrophenol (Picric Acid) C6H3N3O7 -231.2 1.77 267.6 5029 3837 21

2,3,4,5,6-Pentanitroaniline (PNA) C6H2N6O10 -388.3 1.86 213.0 5027 4123 3.7
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2,3,4,6-Tetranitroaniline (TetNA) C6H3N5O8 -49.0 1.87 216.6 5656 4269 10

2,4,6-Trinitroaniline (TNA) C6H4N4O6 -74.5 1.76 296.8 5077 3725 43

2,2',4,4',6,6'Hexanitrobiphenyl 
(HNBP)

C12H4N6O12 68.2 1.69 267.4 5657 4300 21

3,3'-Diamino-2,2',4,4',6,6'-
hexanitrobiphenyl (DIPAM)

C12H6N8O12 -28.5 1.79 276.1 5250 3924 32

2,4,6-Trinitrotoluene (2,4,6-TNT) C7H5N3O6 -67.1 1.67 263.5 5097 3592 39

1,3-Diamino-2,4,6-trinitrobenzene 
(DATB)

C6H5N5O6 -98.7 1.84 310.2 4805 3486 78

1,3,5-Triamino-2,4,6-
trinitrobenzene (TATB)

C6H6N6O6 -139.7 1.94 310.2 4440 3214 >78 

2,4,6,2',4',6'-
Hexnitrodiphenylamine (HNDP)

C12H5N7O12 41.4b 1.64b 245.9 5451 4158 12

Hexanitrostilbene (HNS) C14H6N6O12 78.2b 1.74b 243.9 5474 3981 9.6
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1,3-Dihydroxy-2,4,6-
trinitrobenzene (Styphnic acid)

C6H3N3O8 -523.0b 1.83b 274.3 4430 3516 11

2,4,6-Trinitroanisole C7H5N3O7 -153.2b 1.61b 244.9 5254 3780 47

2,4,6-Trinitrobenzoic acid C7H3N3O8 -402.9b 1.75a 269.3 4643 3639 27

2,4,6-Trinitrocresol C7H5N3O7 -252.3b 1.68b 255 4891 3568 47

aRef. [2] bRef.[6]  cRef. [1] dRef. [5]

Table 3 The nitroaromatic compounds in the Meyer et al. data set [6]. The sum formula, enthalpy of formation (∆Hf), density, bond dissociation 
energy (BDE), heat of detonation (Q), temperature of detonation (Tex), impact energy (I50) and molecular structure   

Compound

Formula ∆Hf
a

(kJ/mol)
BDE 

(kJ/mol)
Densitya

(g/cm3) 
Q 

(kJ/kg)
Tex   

(K)
I50

a
     

(J) Molecular structure
2,4,6,2',4',6'-
Hexnitrodiphenylamine (HNDP)

C12H5N7O12 41.4 245.9 1.64 5451 4158 7.5

Hexanitrostilbene (HNS) C14H6N6O12 78.2 243.9 1.74 5474 3981 5
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1,3-Dinitrobenzene C6H4N2O4 -27.2 295.0 1.50 4807 3388 39

2-Amino-4,6-dinitrophenol 
(Picramic acid)

C6H5N3O5 -248.5 306.4 1.76b 4189 3026 34

2,4,6,-Trinitrophenol (Picric acid) C6H3N3O7 -241.6 267.6 1.77 5029 3837 7.4

1,3-Dihydroxy-2,4,6-trinitrobenzene 
(Styphnic acid)

C6H3N3O8 -523.0 274.3 1.83 4430 3516 7.4

2,3,4,6-Tetranitroaniline C6H3N5O8 -49.0 216.6 1.87 5656 4269 6

2,4,6-Trinitrotoluene (TNT) C7H5N3O6 -67.1 263.5 1.65 5097 3592 15

1,3,5-Triamino-2,4,6-
trinitrobenzene (TATB)

C6H6N6O6 -139.7 310.2 1.93 4440 3214 50

2,4,6-Trinitroaniline (TNA) C6H4N4O6 -84.0 296.8 1.76 4978 3673 15

2,4,6-Trinitroanisole C7H5N3O7 -153.2 244.9 1.61 5254 3780 20
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1,3,5-Trinitrobenzene C6H3N3O6 -43.5 284.6 1.76 5630 3780 7.4

2,4,6-Trinitrobenzoic acid C7H3N3O8 -402.9 269.3 1.75c 4643 3639 10

2,4,6-Trinitrocresol C7H5N3O7 -252.3 254.9 1.68 4891 3568 12

2,4,6-Trinitropyridine C5H2N4O6 78.8 255.0 1.77 5879 4467 5.5

2,4,6-Trinitropyridine N-oxide C5H2N4O7 98.7 260.4 1.86 6407 4786 2.3

aRef. [6] bRef. [7] cRef. [2]

Table 4 The nitramine data set [5]. The sum formula, enthalpy of formation (∆Hf), density, bond dissociation energy (BDE), heat of detonation (Q), 
temperature of detonation (Tex), impact energy (I50) and molecular structure   

Compound
Chemical 
Formula

∆Hf
a

(kJ/mol)
Density 
(g/cm3)

BDE          
(N-NO2) 
(kJ/mol)

BDE        
(C-NO2) 
(kJ/mol)

Q 
(kJ/kg)

Tex    
(K)

I50
g    

(J) Molecular structure
N,N'-Dinitro-
methanediamine

C1H4N4O4 113.3 1.74c 220.3 - 7029 4779 3.2
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N-Nitro-N-methyl-
formamide

C2H4N2O3 -80.3 1.52d 206.7 - 5653 3778 78.4

N,N'-Dinitro-1,2-
ethanediamine

C2H6N4O4 -103.8b 1.71b 214.4 - 5432 3600 8.3

Methyl-2,2,2-
trinitro-
ethylnitramine

C3H5N5O8 -319.8 1.80e 165.1 143.3 6497 4648 2.2

Trinitroethylnitro-
guanidine

C3H5N7O8 -30.0 1.77f 156.5 152.6 6113 4535 3.7

Cyclo-1,3,5-
trimethylene-2,4,6-
trinitramine (RDX)

C3H6N6O6 66.9b 1.82b 171.9 - 6141 4224 6.4

N-Methyl-N,N'-
dinitro-1,2-
ethanediamine

C3H8N4O4 -85.0 1.53d 192.5 - 5385 3435 27.9

N,N'-Dinitro-N-[2-
(nitramino)ethyl]-
1,2-ethanediamine

C4H10N6O6 30.5 1.63f 182.0 - 5996 3829 9.6
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Trinitroethylcyano-
methylnitramine

C4H4N6O8 -155.5 1.75f 154.3 138.7 5606 4308 2.7

Bis-(2,2,2-
trinitroethyl)-
nitramine

C4H4N8O14 -353.8 1.97f 147.2 137.1 4373 3690 1.2

N,N'-dimethyl-N,N'-
dinitrooxamide 

C4H6N4O6 -305.4b 1.52b 150.4 - 4772 3534 19.4

Cyclo-1,3,5,7-
tetramethylene-
2,4,6,8-
tetranitramine 
(HMX)

C4H8N8O8 75.0b 1.96b 173.3 - 6036 4081 7.1

1,3,3,5,5-
Pentanitropiperdine

C5H6N6O10 -210.0 1.82f 172.2 150.7 5949 4325 3.4

Trinitroethyl-2-
methoxy-
ethylnitramine

C5H9N5O9 -424.2 1.62f 166.7 150.7 5343 3762 10.3

1,7-Dimethoxy-
2,4,6-trinitro-2,4,6-
triazaheptane

C6H14N6O8 -400.5 1.55f 170.5 - 5077 3308 40.7
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2,4,6-
Trinitrophenyl-
methyl-nitramine 
(Tetryl)

C7H5N5O8 20.0b 1.73b 130.8 258.3 5761 4183 7.8

N-(2,2-
Dinitrobutyl)-N-2,2-
trinitro-1-
butanamine

C8H14N6O10 -495.5 1.67d 150.6 148.5 4991 3335 19.6

N,N'-Dinitro-N,N'-
bis-(3-nitrazabutyl)-
oxamide

C8H14N8O10 162.3 1.66d 152.8 - 6277 3980 22.1

2,2,4,7,9,9-
Hexanitro-4,7-
diazadecane

C8H14N8O12 -438.4 1.63d 164.8 168 5297 3637 17.6

aRef. [3] bRef. [6] cRef. [8] dRef. [9] eRef. [10] fRef. [11] gRef. [5]

Table 5 The nitrate ester data set [6]. The sum formula, enthalpy of formation (∆Hf), density, bond dissociation energy (BDE), heat of detonation 
(Q), temperature of detonation (Tex), impact energy (I50) and molecular structure   

Compound

Formula ∆Hf
a

(kJ/mol)
Densitya

(g/cm3) 
BDE 

(kJ/mol)
Q 

(kJ/kg)
Tex

(K)
I50

a

(J) Molecular structure
Dinitrophenoxy-ethylnitrate C8H7N3O8 -292.8 1.60 161.6 5058 3573 20

Dioxyethylnitramine dinitrate 
(DINA)

C4H8N4O8 -275.7 1.49 160.1 5968 4139 6
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Dipentaerythritol hexanitrate 
(DIPEHN)

C10H16N6O19 -978.6 1.63 159.6 5754 3985 4

Erythritol tetranitrate C4H6N4O12 -502.5b 1.60 144.1 5709 4393 2

Mannitol hexanitrate (MHN) C6H8N6O18 -675.6 1.60 147.9 5801 4470 0.8

Pentaerythriol tetranitrate 
(PETN)

C5H8N4O12 -538.8 1.76 151.9 6203 4337 3

Trinitrophenoxyethylnitrate C8H6N4O10 -260.3 1.68 158.7 5495 3996 7.9

Nitroglycerine (NG) C3H5N3O9 -370.6 1.59 153.0 6087 4541 0.2

Methyltrimethylol-
methanetrinitrate (TMETN)

C5H9N3O9 -425.0 1.46 154.4 5840 3891 0.2

Butanetriol-trinitrate (BTTN) C4H7N3O9 -405.9 1.52 149.1 6119 4330 1

Diethyleneglycol dinitrate 
(DEGDN)

C4H8N2O7 -436.7 1.38 164.3 5495 3728 0.1
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Methylnitrate C1H3N1O3 -155.9 1.22 175.3 6310 4418 0.2

Nitroglycol (EGDN) C2H4N2O6 -242.7 1.48 160.9 6424 4668 0.2

Triethyleneglycol dinitrate 
(TEGDN)

C6H12N2O8 -628.8 1.34 165.3 4918 3218 12.7

Trimethylolnitromethane 
trinitrate (NIBTN)

C4H6N4O11 -228.1 1.68 149.9 6815 4946 2

aRef. [6] bRef. [2]
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Data from impact sensitivity tests of ageing Amatol using the BAM Impact Apparatus 

Table 1 

The results from the fallhammer drops on substance A1. The asterisks denote that a 5 kg weight was 

used. For the rest, a 10 kg weight was used.

Height (log10 cm) 1.75* 1.90* 1.70 1.80
1.8
5

2.00

# Reactions 0 0 0 0 0 1

# Trials 1 1 1 1 1 10

Table 2 

The results from the fallhammer drops on substance A2, using a 5 kg weight and the Bruceton up-

and-down method with n=70.

Height (log10 cm) 1.20
1.2
5

1.30 1.35 1.40
1.4
5

1.50 1.55 1.60 1.65
1.7
0

1.75 1.80

# Reactions 0 4 2 8 6 8 5 1 1 1 2 1 1

# Trials 4 6 9 13 13 12 5 1 1 2 2 1 1

Table 3

The results from the fallhammer drops on substance B, using a 5 kg weight and the Bruceton up-and-

down method with n=30 drops.

Height (log10 cm)
1.0
5

1.10
1.1
5

1.20
1.2
5

1.30
1.3
5

1.40
1.4
5

1.50 1.55

# Reactions 0 1 2 2 5 2 2 2 1 1 1

# Trials 1 3 3 6 6 3 3 2 1 1 1

Table 4 

The results from the fallhammer drops on substance C, using a 5 kg weight and the Bruceton up-and-

down method with n=50 drops.

Height (log10 cm) 1.65 1.70 1.75 1.80 1.85 1.90 1.95

# Reactions 0 0 4 9 4 5 1

# Trials 1 5 14 14 9 6 1

Table 5 

The results from the fallhammer drops on substance D, using a 5 kg weight and the Bruceton up-and-

down method with n=70 drops.

Height (log10 cm)
1.2
0

1.25
1.3
0

1.35
1.4
0

1.45
1.5
0

1.55
1.6
0

1.65
1.7
0

1.75

# Reactions 0 1 1 6 2 4 5 6 5 4 1 3

# Trials 1 2 7 8 6 8 10 10 8 4 3 3

Table 6

The results from the fallhammer drops on substance E, using a 5 kg weight and the Bruceton up-and-
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down method with n=70 drops. Since we used a different template in this experiment than in the 

others, the unit for the experimental design was log10 J rather than log10 cm.

Energy (log10 J) 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

# Reactions 0 1 2 2 3 10 10 6 1

# Trials 1 3 4 5 13 20 16 7 1
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