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1. Background

1.1. Introduction

Molecular dynamics with an ab initio potential, such as one obtained from DFT calcula-
tions, is very enticing from a theoretical point of view, but is often practically unfeasable
due to the great computational cost involved. This work was started without knowing
a priori if simulations could be carried out with simulation times long enough to obtain
useful statistics, but some hope came from the successful simulations of the silicon self-
interstitial by Sahli,[1] and from the recent development of ‘very soft’ PAW-potentials,
that is potentials working accurately even with a very low energy cutoff (see section
2.6).

The alternative to using an ab initio potential is to use an empirical potential. Two well-
tested empirical potentials for silicon are the Stillinger-Weber (SW) potential[2] and the
Tersoff (T3) potential.[3] A drawback with empirical potentials is that they are defined
for a limited range of conditions and problems, and it is generally not known how well
they perform outside that range. A given potential may for instance capture elastic and
cohesive properties of a material with the same accuracy as an ab initio potential, but fail
for other properties.[4] For silicon self-diffusion, Posselt et al. found that the activation
energies differed by about 1 eV between the SW potential and the T3 potential in a
non-systematic way, and that the migration mechanism also depended on the choice of
potential.[5]

With empirical potentials, transferability between different bonding environments can
also not be expected, so rather than a general phosphorus potential, a specific paramet-
risation for phosphorus in silicon is needed. Over the years, many groups have developed
parameters for more systems that can be used with the original form of the Tersoff po-
tential, for instance for all III-V semiconductors.[4] Yet, at least to my knowledge, no
such potential for phosphorus in silicon has been published.

A motivation for studying phosphorus diffusion in silicon has been the use of phosphorus-
doped silicon in the emitter layer in classical silicon solar cells. This front layer of the solar
cell is contacted with metal fingers, and the contact resistivity ρc depends strongly on the
phosphorus doping concentrationND. If the metal contacts take up 5% of the cell surface,
a contact resistance ρc < 2× 10−3 Ωcm2 is required to not degrade the output power by
more than 0.5%. This in turn requires a doping concentration ND > 1× 1019 cm−3,[6]
and even higher doping concentrations is required if the area occupied by metal contacts
is to be reduced further, or for contacting concentrator cells. Concentrations may reach
1× 1021 cm−3 in the outermost part of a typical emitter layer,[7, p. 40] corresponding
to about one phosphorus atom for every 50 silicon atoms, while the limit of electrically
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2 1. Background

active phosphorus is somewhat lower, about 2× 1020 cm−3.[7, p. 40] In this work, a unit
cell is simulated with one phosphorus atom to 64 silicon atoms, the concentration thus
being close to the concentration in the outermost part of the emitter layer, but this
unit cell approach does not allow for any phosphorus clustering, although phosphorus
precipitation in reality can be expected at this concentration.

A privilege with studying phosphorus in silicon is that there exists a wealth of experi-
mental and theoretical results from more than 60 years of studies on this system,1 results
that can be used to test new simulation results. Diffusion of dopants in silicon is discussed
in e.g. the reviews by Fahey (1989)[8], Hu (1994)[9], and Pichler (2004)[10]. Some key
properties of pure silicon are listed in table 1.1, while diffusion of phosphorus in silicon
is discussed in section 1.3.

Crystal structure Diamond
Lattice constant a / Å 5.43072 ± 0.00004 Å at 25 ◦C [11]
Si-Si distance / Å

√
3a/4 = 2.35 Å

Atomic density 8/a3 = 4.9948× 1022 cm−3

Melting point 1685K / 1412 ◦C
Thermal expansion coefficient 2.6× 10−6 K−1[12]

Table 1.1.: Some key properties of silicon at room temperature.

1.2. Diffusion and diffusivity

Diffusion is macroscopic redistribution of atoms2 due to their microscopic thermal mo-
tion. Such redistribution occurs in all materials, but at a negligible rate at temperatures
considerably below the melting point of the material. For silicon, with a melting point
of 1414 ◦C, diffusion is negligible at room temperature, but significant at elevated tem-
peratures, and controlled diffusion is commonly carried out at temperatures of about
800-1000 ◦C.

How do we describe and model diffusion? As is not uncommon in physics, different
pictures exist for different scales of interest. When it comes to describing diffusion, two
main pictures exists: the continuum picture and the atomistic picture. Since materials
consists of atoms, it is clear that the most fundamental picture of diffusion should be an
atomistic one. But a description involving every single atom becomes highly impractical
on a macroscopic scale, in which it becomes more practical to invoke a viscous fluid
model in which the atoms are smoothed out into a continuum. The two pictures can be

1 Silicon semiconductor technology took it first infant steps right before world war II, with for instance
the discovery of the p-n junction (then called ‘PN barrier’) often attribtued to R.S Ohl (U.S. patent
2402662, 1939), and the understanding and development gained speed in the early 50s. In a 1953
patent by P. Robsin, the process of diffusion to form a junction is described (U.S. patent 2823149,
1953), and in a 1955 patent by Ross (2862160), phosphorus is mentioned as a donor, but I’m not sure
just when phosphorus was first introduced.

2I will only be concerned with atoms here, but the concept of diffusion also applies to other small
particles such as molecules, viruses and bacteria.



1.2. Diffusion and diffusivity 3

connected through parameters known as diffusion coefficients in order to produce integral
diffusion models, but the diffusion coefficients are also commonly obtained empirically.

1.2.1. The continuum picture

Following Joseph Fourier’s 1822 treatise on heat diffusion[13] and Georg Ohm’s 1827
work on ‘electricity diffusion’ (Ohm’s law),[14] Adolf Fick presented his phenomenological
description of ‘mass diffusion’ in 1855.[15] In this picture, a species with concentration
c(r) will flow in the opposite direction of the concentration gradient of that species,
∇c(r). That is, it will show a flux,

J(r, t) = −D∇c(r, t). (1.1)

This relationship between the concentration gradient and the flux is known as Fick’s
first law, and the constant of proportionality D is known as the coefficient of diffusion or
diffusivity for the species in question. Often reported in units of m2 s−1 or cm2 s−1, the
diffusivity is in general a tensor, but it reduces to a scalar in cubic crystals. In general
the diffusivity of species i will depend on both the concentration of the same species ci
and of other species cj , on temperature, pressure, crystal defects and other factors that
will be quickly discussed below.

If G and R are the generation and recombination rates for the species in question, a
continuity equation could be set up as

∂c

∂t
= −∇J +G−R (1.2)

In the absences of sinks and sources (G = R = 0), the continuity equation combined
with Fick’s first law forms what is known as Fick’s second law,

∂c

∂t
= ∇(D∇c) = D∇2c (1.3)

where the last equality is true only when D is independent of position (via the concen-
tration).

The picture is slightly complicated by the fact that the diffusivity D itself may vary
with the concentration c. For the diffusivity of species at very low concentrations, such
as dopants, this concentration dependence is generally negligible, but at high concentra-
tions, such as the typical phosphorus concentrations in the solar cell emitter layer, the ef-
fect may be quite significant. As an example, A. Bentzen has obtained the concentration
dependence of the phosphorus diffusion coefficient over a large range of concentrations
using Boltzmann-Matano analysis of experimental data at 890 ◦C. From the intrinsic
value of about 4× 10−14 cm2 s−1, his diffusivity increases slowly up to a maximum of
1× 10−13 cm2 s−1 at a phosphorus concentration of 1019 cm−3, before it dips down to
1× 10−14 cm2 s−1 at 1020 cm−3, before it increases again.[7] Concentration gradients will
nevertheless not be considered in this work.
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The diffusivity depends strongly on the temperature, and the temperature dependence
found from experiments often takes the simple Arrhenius form,

D(T ) = D0e−Ea/kBT (1.4)

defined by a prefactor D0 and an activation energy Ea. Taking the logarithm on both
sides, we see that lnD as a function of 1/kBT forms a straight line with slope −Ea and
intercept lnD0.

lnD = lnD0 − Ea(kBT )−1 (1.5)

The parameters D0 and Ea can thus easily be extracted if a good fit can be made to a
straight line.

As mentioned, the diffusivity may also depend on other factors, such as crystal defects,
pressure, et cetera, that will not be touched upon in this work, but these are discussed
by e.g. Pichler.[10]

1.2.2. The atomistic picture

In the continuum picture, the diffusion coefficients are just empirical parameters, and
we have to invoke a model involving atoms to explain them. Such a model was found
independently by Einstein in 1905,[16] and Smoluchowski in 1906.[17]

Einstein related the Gaussian diffusion outwards from a point to the probability of finding
a particle moving by a random walk process,

f(x, t) = n√
4πD

e−x2/4Dt/
√
t, (1.6)

thus relating the mean square displacement of a particle (in one dimension), 〈x2〉, to the
diffusivity[16],

〈x2〉 = 2Dt, (1.7)

a relation that will be discussed further in section 3.1.5.

The diffusivity of a species can thus be found from a knowledge of the time-resolved dis-
placement of all atoms of that species. Such a naïve approach to finding the diffusivity is
often hindered, both in experimental and theoretical methods, by difficulties in obtain-
ing this detailed microscopic information, but from a molecular dynamics simulation it’s
readily available.

The major problem with obtaining diffusivities from a molecular dynamics simulation,
is that diffusion can be a quite slow process. For any given system, the simulation of a
large number of atoms over a long enough amount of time, may not be computationally
feasible.

In the solid phase, diffusion is several orders of magnitude slower than diffusion in the
liquid or gas phase. At a finite temperature T , the atoms will have kinetic energies
according to a Boltzmann distribution for that temperature (see section 3.1.4), but since
the atoms are ‘trapped’ by the neighbouring atoms in the crystal, the kinetic energy goes
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into vibrations most of the time, and averaged over the timescale of the vibrations, the
atoms will appear to be more or less fixed in space.

Every now or then, however, an atom will obtain enough energy to ‘jump’ to a different
position. A clear example of such a jump is illustrated in fig. 1.1, where a phosphorus
atom is seen making a jump from its lattice site into a neighbouring vacant site at 1400 K,
illustrating the vacancy mechanism of diffusion, at least one part of it. For this to really
constitute diffusion, the vacant site left behind by the P atom must also diffuse away
from the P atom before the P atom happens to jump back into it.
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Figure 1.1.: A ‘jump’ from one lattice site to another. The red line is a symmetric running
mean over 0.5 ps followed by a symmetric running median over 2.0 ps.

Due to the energy barrier that must be passed for the jump to take place, this is an
example of what is called an activated process, and the threshold energy is called an
activation energy Ea. In general there is not just one mechanism involved in diffusion,
and the value for the activation energy obtained by experiment or simulation is a weighted
average over all possible mechanisms. One mechanism may however be dominating to
such an extent that other mechanisms can be ignored.

Back to the concept of ‘jumps’, we can find the fraction of atoms having kinetic energy
greater than a given energy Ea as e−Ea/KT from the Boltzmann distribution, and so
the probability for a jump to happen is just e−Ea/kBT . In a simple model, we can then
estimate the number of jumps per second by multiplying this probability by an ‘attempt
frequency’ ν,

Γ = νe−Ea/kBT (1.8)

For a rough estimate, we may take the frequency to be 1013 Hz, a typical textbook value
for the vibration of atoms in a crystal at room temperature.[18, p. 212] As seen in fig. 1.2,
the atoms do vibrate at frequencies of roughly this order of magnitude, but the motion
is neither simple nor harmonic. If it was, we would not need simulation anyway.

In fig. 1.3, the estimated number of jumps in 100 ps is plotted from (1.8), for three dif-
ferent activation energies. 100 ps was choosen, since it’s about the maximum simulation
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time we can conveniently sample.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time [ps]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

r(
t)
−
r(

0)
 [

Å
]

Figure 1.2.: Simulated motion of a silicon atom in a 64-atom supercell at 1400 K (solid
line), with a least square fit to a function f(t) = a cos[(2πf)t+ c] + d (dashed line). The
fitted frequency is f = 3× 1012 Hz, corresponding to a period of 0.3 ps.
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Figure 1.3.: Estimated number of jumps in 100 ps, from (1.8) with ν = 1013 Hz.

1.3. The case of phosphorus diffusion in silicon

1.3.1. Solubility limit and preferred site

According to the standard phosphorus-silicon binary phase diagram,[19] more than 2%
P can be solved in silicon at temperatures between 1350K and 1500K without the
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formation of new phases, and even at 1000 K more than half a percent can be solved.3

Sheet resistivity and Hall effect measurements have shown that below about 2–3× 1020 cm−3

(or 0.4-0.6%), the density of electrically active dopants in properly annealed samples fol-
low the chemical concentration of phosphorus closely, but above such a concentration,
the density of electrically active dopants ne plateau.[21] A concentration of about half a
percent therefore seems to be the maximum solubility of unclustered P,[22] but higher
concentrations are common in the heavily doped emitter layer in solar cells.[23] The
nature of the electrically inactive phosphorus has not been fully established yet, but a
mix of SiP precipitates and mobile P defects is suggested.[24][25]

The atomic radii of silicon and phosphorus are 1.17 and 1.10 Å, respectively. Through
the observation of a very slight lattice contraction following the addition of phosphorus, it
was demonstrated in the 1940s that phosphorus enters mainly substitutional sites.[26]

1.3.2. Interstitials

While phosphorus prefers substitutional sites, phosphorus interstitials are of interest for
their role in diffusion processes, as discussed in the next section. Direct experimental
evidence for phosphorus interstitials is probably missing, so their binding energy have
formerly been taken from fitting diffusion models to experimental data, and lately also
from purely theoretical investigations,[10, p. 391] such as nudged elastic band studies.

The tetrahedral structure of silicon is a relatively open one, with a spherical packing
density of only π

√
3/16 ≈ 0.34,4. The eight-atom cubic unit cell, shown in fig. 1.4a,

contains eight equivalent tetrahedral voids (Td symmetry),5 all potentially large enough
to hold an atom without distorting the surrounding structure considerably. Interstitials
at two different tetrahedral sites are shown in fig. 1.4b and 1.4c.

A tetrahedral site can be distorted into a “hexagonal” site with D3d symmetry, at the
centre of a slightly distorted hexagon, with normal in the 〈111〉 direction. Fig. 1.4d shows
a hexagonal interstitial at (3

8 ,
5
8 ,

3
8), distorted from the tetrahedral position (4

8 ,
4
8 ,

4
8) in

fig. 1.4b.

An alternative to the “pure” tetrahedral and hexagonal interstitials are the “interstitial-
cies”, consisting ofN+1 atoms sharingN lattice sites, of which the simplest, consisting of
two atoms sharing one site, are called “split interstitials” or “dumb-bell interstitials”.[10,
p. 6] Two symmetrically inequivalent such configurations exists, the “split 〈110〉” and
the “split 〈001〉” configurations depicted in fig. 1.4e and 1.4f.

For equivalent atoms, the split 〈001〉 site has D2d symmetry, reducing to C2v for inequi-
valent atoms, while the split 〈110〉 site has C2v symmetry for equivalent atoms, reducing

3Solubility limits are not easy to measure to high precision. A recent compilation by Safarian and
Tangstad shows the variation between different studies, and suggests lower solubilities at elevated
temperatures.[20]

4Close-packed spheres have a spherical packing density of π/3
√

2 ≈ 0.74.
5Tetrahedral sites are found at ( 1

4 ,
1
4 ,

3
4 ), ( 1

4 ,
3
4 ,

1
4 ), ( 3

4 ,
1
4 ,

1
4 ), ( 3

4 ,
3
4 ,

3
4 ), at the edges (0, 0, 1

2 ), (0, 1
2 , 0),

( 1
2 , 0, 0), and at the centre ( 1

2 ,
1
2 ,

1
2 )
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(a) Clean cell (b) Tetrahedral (c) Tetrahedral

(d) Hexagonal (e) split 〈110〉 (f) split 〈001〉

Figure 1.4.: Interstitial and interstitialcy configurations in the cubic silicon unit cell, with
edge atoms from neighbouring cells included.
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to C1h (just a mirror plane) for inequivalent atoms.[10, p. 12] An advantage of the lower
symmetry of the split 〈110〉 site compared to the split 〈001〉 site is that there is freedom
for relaxing the bond lengths. While the split 〈001〉 site is quite strained, the atoms in
the split 〈110〉 position can relax freely in the 〈001〉 direction. In figure 1.4e normal bond
lengths have been obtained without relaxing the neighbour atoms.

Early theoretical investigations by Car suggested the energetical stability of P at the
hexagonal site over the tetrahedral site and P-Si interstitialcies.[27] In a 2003 nudged
elastic band (NEB) study, Liu et al. identified four lowest energy configurations for
insterstitial phosphorus in silicon;[28]

• PXi , a split 〈110〉 configuration (fig. 1.4e) distorted in the 110 direction so that
symmetry is reduced from C1h to C1.

• PX2
i , a configuration with approximate C2 symmetry, suggested to be viewed as a
PXi configuration with local structural distortion.

• PHi , a hexagonal configuration with D3d symmetry, as in fig. 1.4d

• PSi , a split 〈001〉-like configuration, with symmetry reduced from C2v to C1h.

Of these, the PXi and PX2
i were reported to be the lowest energy structures for the

neutral charge state, and PHi and PSi the lowest energy structures for the +1 charge
state.[28]

A 2006 NEB study by Harrison et al. confirmed a hexagonal site as the most stable one
for the +1 charge state, but suggested a “bond-centre” site to be preferred in the neutral
case.[29] The suggested name is a bit confusing, since the configuration is not similar to
the traditional bond-centre site described in Pichler[10, p. 12], which is literally at the
center of a Si-Si bond and has C3v symmetry. Instead, P is displaced 1.55 Å normal
to the bond, forming a triangle, with the two Si atoms with the two Si-P bonds being
of equal length. The Si-Si bond part of the triangle increased in length by 30 %, so
its possible that the configuration could be viewed as a form of interstitialcy with three
atoms sharing two lattice sites.

1.3.3. Diffusion

Substitutional phosphorus, like other substitutional defects, is considered immobile, but
can enter a mobile state through a (random) encounter with mobile defects such as
interstitials or vacancies, or by concerted exchange (direct interchange of a pair of atoms).
Many different mechanisms come into play, but it is commonly accepted today that the
dominant mechanism for phosphorus diffusion in silicon is mediated by self-interstitials
(or -interstitialcies), not by vacancies or concerted exchange, except at very high doping
concentrations, for which it has been suggested that vacancy-mediated diffusion becomes
the dominant mechanism.[7, 28, 30]

In the classic interstitial mechanism, a self-interstitial, which migrates through the in-
terstices of the lattice, approaches the substitutional defect and “kicks” it out into an



10 1. Background

interstitial position, itself taking over the lattice site. The process is often called “kick
out reaction”;[8]

I + P � Pi,

where I is the self-interstitial, P the substitutional phosphorus, and Pi the interstitial
phosphorus,6 which can migrate and eventually kick out a silicon atom to return to a
lattice site.

< FIGUR ála fig. 17 i Fahey >

In the classic interstitial mechanism, the mobile defect is considered to be a single atom,
either a host-interstitial or a dopant-interstitial. An alternative is to consider instead
a “interstitialcy”, a term coined by Frederick Seitz, better known for the Wigner–Seitz
cell, to describe an entity that “has the same type of phase-like existence as a vacancy or
a dislocation, since the pattern can move without having a fixed atom move with it”,[31]
and commonly associated with a pair of atoms.

Following Fahey,[8, p. 322] the migration of an interstitialcy with a pair of atoms centred
around a lattice site A, takes place when the pair is shifted along its principal axis towards
another (occupied) lattice site B to such an extent that one of the two atoms ends up
forming a new pair with the atom at site B, while the other atom relaxes at site A. If
the atom at site B happens to be a P atom, it becomes part of a P-Si pair (PI using
defect nomenclature), that can then migrate in the same manner. The process is written
(self-interstitials and -interstitialcies are both denoted I)

I + P � PI.

It’s important to note that it is not the same pair of atoms that migrate over time. Each
time the interstitialcy makes a jump, one of the atoms moves along, while the other is
left behind, and each jump is considered independent of the previous one.[8, p. 323]

< FIGUR ála fig. 15 i Fahey >

In practice, distinguishing between interstitial and interstitialcy mechanisms is often not
needed, and it’s also very hard to distinguish the two experimentally.[8, p. 295]

< SETT INN FIGUR INSPIRERT AV Martin-Bragado 2005 > ?

On the overall activation energy for phosphorus diffusion, Fahey wrote in a 1989 review
on point defects and diffusivities in silicon, that “determination of QP by different studies
using a variety of techniques agree to within 0.2 eV and are considered accurate.”[8] The
situation is more or less the same today, with an accepted overall activation energy of
about 3.5 eV.[10] Interestingly, two studies in the early 2000s suggested a significantly
lower value of 2.7–2.8 Å at low temperatures,[32][33] indicating the possibility of a change
in dominant diffusion mechanism at some temperature, but this is yet to be confirmed.

Table 1.2 lists a selection of reported diffusivities for phosphorus, including two review
values, three ‘non-standard’ values, and two values from purely theoretical investigations.
Most older results form part of the review results by Fahey[8] and Pichler,[10] and are
not included separately.

6For an introduction to defect nomenclature, see e.g. Fahey[8].
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Ea [eV] Conditions Ref.
3.51–3.67 selective listing of earlier work Fahey(1989)[8, p. 320]
3.507 regression 900-1200 ◦C from 16 studies Pichler(2004)[10, p. 395]
2.81 850, 900, 1000 ◦C Haddara(2000)[32]
2.74± 0.07 810 – 1100 ◦C Christensen(2003)[33]
2.88± 0.15 800 – 1050 ◦C Naganawa(2008)[34]
3.1–3.5 NEB Liu(2003)[28]
3.43 NEB Harrison(2006)[29]

Table 1.2.: Activation energies for overall diffusion of phosphorus in silicon.

An activation energy of about 3.5 eV would require very long simulations to be able
to see any jumps. While the estimate presented in fig. 1.3 is a very rough one, the
indicationt that simulating diffusion with such an activation energy is several orders of
magnitude out of reach, is not encouraging. On the other hand, the total activation
energy of interstitial diffusion can be partitioned into a formation enthalpy of the PI
complex, H f

PI, and a migration energy of the complex, Em
PI;[8, p. 323]

EPI = H f
PI + Em

PI, (1.9)

with the formation enthalpy H f
PI being by far the larger term of the two. If we start

the simulation with a phosphorus interstitial, we have effectively already supplied the
enthalpy to create the PI complex, and we can expect diffusion measured from such a
starting point to correspond more or less to the migration energy Em

PI. More or less
because in molecular dynamics, just like in experiment, different diffusion mechanisms
are usually at the play at the same time. It may also happen during any given simulation
that the complete activation energy EPI is supplied, so that phosphorus, after having
returned to a lattice site, forms a new complex and diffuses further. This may complicate
the process of describing the diffusivity using a simple Arrhenius form (1.4).

Two quite recent studies have attempted to estimate the migration energy using ab
initio calculations and the nudged elastic band method. Liu et al. (2003) found a
migration energy of 0.6–0.7 eV for a mechanism where P migrates between split 〈110〉
sites through hexagonal sites.[28] Harrison et al. (2006) found a lower barrier of 0.18 eV
for a different mechanism where P diffuses between what they call “bond-centred” sites,
through another site that was not named.[29]





2. Density Functional Theory

This chapter consists of two parts. The short sections 2.1–2.9 give a general presentation
of density functional theory (DFT), while the lengthy section 2.10 is concerned with the
practical choices made in the application of the theory in this specific work.

The aim of the first part has not been to introduce DFT,1 but rather to describe or
summarise important concepts in the theory (sec. 2.1–2.4) as implemented in VASP
(sec. 2.5–2.9) in a somewhat superficial way, and since notation varies between different
authors, to provide a consistent notation to be used when referring to concepts later
on. Readers experienced with DFT may safely jump directly to the second part (section
2.10), or even directly to the summary subsection 2.10.5 if in a rush.

2.1. Describing materials

As touched upon in section 1.2, matter – or materials, “matter from which a thing is or
can be made”2 – can be described in different pictures. With theories such as density
functional theory, materials are pictured as nuclei and electrons. From a knowledge
of the constituent nuclei and electrons, all properties of a material can in principle be
calculated to the accuracy of interest, limited only by the available computational power
(this is a most severe limitation though). And unless radioactivity is of interest, there is
no need to worry about what happens within the nuclei (not to say what might happen
within the electrons, if anything happens there).

While nuclei can be described well using classical mechanics in most situations, electrons
require a quantum mechanical description, as their de Broglie wavelength is often larger
than the average inter-particle separation.3

1 A good practical introduction is given by Scholl(2009)[35], while a more theoretical and authoritative
introduction is given by Parr(1994)[36]. Chapter 12 in Kantorovich(2004)[37] is somewhere in the
middle, and is a personal favourite of mine. The comprehensive book by Martin(2004)[38] and the
more compact book by Kohanoff(2006)[39] are good reference books that put DFT in context of
other methods, but they may be a bit daunting on their own. Chemists may find chapter 8 in
Cramer(2004)[40] a good read. This chapter borrows from all the aforementioned books.

2New Oxford American Dictionary 2nd ed. 2005. I will not delve into the definition of ‘thing’.
3The de broglie wavelength is λ = h/p after de Broglie’s 1924 hypothesis of the wave properties
of matter.[41] A (classical) particle with mass m has momentum p =

√
2mE and thermal energy

E = kBT , giving a “thermal de Broglie wavelength”[42, p. 114] of λ = h/
√

2mkBT = 18Å/
√
ArT ,

where Ar = m/mu is the (dimensionless) relative atomic mass with mu ≈ 1.66× 10−27 kg being the
atomic mass constant, and T is the temperature in Kelvin. For an electron, Ar = 1/1800, and the
thermal de Broglie wavelength at room temperature is about 77Å, much larger than the expected
inter-particle separation. For a Si-atom, on the other hand, Ar = 28 and λ 0.2Å. It should be noted
that for the lightest elements, quantum effects such as tunneling do have practical effects e.g. on the

13
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In quantum mechanics, a system of particles is fully described by the concept of a (time-
dependent) quantum state |Ψ(t)〉, or its representation in position-space; a many-body
wavefunction Ψ(X, t) = 〈X|Ψ(t)〉, with X = {xi,Rk} being the set of all electron spin
coordinates xi and all nuclei coordinates Rk. The state (or states) with the lowest energy
is called the ground state (GS), while the others are called excited states. Observables
like energy, momentum, et cætera are extracted by letting the appropriate Hermitian
linear operator act on the state. For instance, the energy is the expectation value of an
energy operator, a Hamiltonian Ĥ, consisting of operators for the kinetic energy4 and
various potential energy terms. The (non-relativistic) Hamiltonian for a system of Ne

electrons and NN nuclei, in Hartree atomic units5, is

Ĥ = K̂N + V̂NN + K̂ + V̂ee + V̂Ne (2.1)

= −1
2

NN∑
k=1

1
mk
∇2
k +

∑
k<l

ZkZl
rkl︸ ︷︷ ︸

nuclei

−1
2

Ne∑
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1
me
∇2
i +

∑
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e2

rij︸ ︷︷ ︸
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+
Ne∑
i=1

NN∑
k=1

Zk
rik

(2.2)

with the five terms representing nucleus kinetic energy K̂N , nucleus-nucleus interactions
V̂NN , electron kinetic energy K̂, electron-electron interactions V̂ee and electron-nucleus
interactions V̂Ne, respectively. The indices i and j run over all electrons, while k and l
run over all nuclei.

As seen, only electromagnetic (Coulombic) interaction is included. The particles also
interact gravitationally, but this can safely be ignored since the gravitational force is so
much weaker than electromagnetic one.6 At the atomic scale, gravitation is completely
negligible. But other terms could be included in the Hamiltonian depending on the prob-
lem at hand, such as interaction with external electric or magnetic fields, spin coupling
terms, et cetera.

2.2. The many-particle problem and the Born Oppenheimer
approximation

Our systems of interest consist of large number of nuclei and electrons, particles whose
motion are correlated by their Coulombic interactions. While there is no known way to
describe the mutual interaction of many particles in general, the reductionist principle
of physics leads to a description in terms of a sum of pairwise interactions, for which

kinetics of reactions, but we are in the luck of working with no element lighter than Si, so we don’t
have to worry about this as a non-negligible source of error.

4Since quantum mechanical particles do not follow trajectories in the way classical particles do, the
name ‘kinetic energy’ is a bit misleading, Reflecting the spatial variation of the wavefunction, Sauer
and Kuhn suggested the name ‘localisation energy’ instead[43]. Yet, there is an analogy with classical
kinetic energy, and with ‘kinetic energy’ being the dominating expression, it will be used here too.

5 where the electron mass me, the elementary charge e, the reduced Planck constant ~ and the Coulomb
constant ke = 4π/ε0 all are unity by definition.

6Remember that a small kitchen magnet counteracts the gravitational pull of the entire Earth.
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simple expressions exist.7 With such an approach, equations describing the motion of a
general system of many particles can be set up, with ‘many’ now meaning ‘more than
two’, but the correlated equations cannot be solved ‘exactly’ (analytically), no matter
which specific equations are used for the pairwise interactions. This is the many-particle
problem or many-body problem, perhaps first encountered by Newton as he studied the
three-body problem of the motion of the Earth-Moon-Sun system interacting gravit-
ationally.8 Now, approximate solutions to the Earth-Moon-Sun system can be found
quite easily by noting that the problem can be decoupled into the Earth-Sun and the
Earth-Moon problems, due to the large mass difference between the three ‘particles’.

Similarly, the quantum-mechanical two-body problem of a single electron interacting
with a single nuclei is solvable, while the introduction of more particles makes approx-
imate numerical solutions necessary. And with the electron being 1800 times lighter
than the lightest nucleus, the hydrogen nucleus, approximate solutions may be found by
decoupling the motion of the nuclei and the electrons. This is the central idea of the
Born Oppenheimer approximation[45].

In the Born-Oppenheimer approximation, we assume that the full wavefunction Ψ(R,x, t)
can be decoupled into a nuclei wavefunction Θn(R, t) and an electronic wavefunction
Φ(x; R) depending only parametrically on R (indicated following a semicolon here, but
usually left out)

Ψ(R,x, t) = Θ(R, t)Φ(x; R) (2.3)
and the electronic structure problem is now to find solutions Φ to the Hamiltonian,

Ĥe = K̂ + V̂ee + V̂Ne (2.4)

The expectation value of this Hamiltonian plus the (constant) nuclear-nuclear repulsion
energy VNN is the electronic energy,[40, p. 110] a parametric function of the nuclear
coordinates called the potential energy surface. This parametric dependence on the nuc-
lear coordinates amounts to the electrons adjusting their positions x instantaneously to
a given nuclei structure. The Born-Oppenheimer approximation is fundamental in most
electronic structure methods, including DFT, and further references to the Hamiltonian
in this chapter will implicitly be to the electronic Hamiltonian unless otherwise stated.
We will return to the nuclei structure in chapter 3.

While the Born-Oppenheimer approximation is justified in most cases,[40, p. 111] it’s
important to keep in mind the limitations it impose. A phenomena such as Joule heating,
for instance, utilised in everyday electrical heating appliances, can not be described using
the approximation, since it involves electrons dissipating energy into ionic vibrations,
coupling the motion of the electrons and the nuclei.[46]

7 Two-particle interactions are often sufficient for relatively weak forces such as gravitational forces
or Coulomb forces, while for strong interactions the inclusion of three-particle interactions is hardly
avoidable.[44]

8Principia, Book 1, section XI, Proposition 66 and its corollaries, http://en.wikisource.org/wiki/
The_Mathematical_Principles_of_Natural_Philosophy_(1729)/Book_1/Section_11#Prop66
http://books.google.com/books?id=ySYULc7VEwsC&pg=PA173 (Newton, 1687, english transl. by
Motte 1729) The problem received great attention, as exemplified by the two-volume work La Théorie
du mouvement de la lune, 1800 pages in length, published in1860 and 1867 by Charles-Eugène
Delaunay on the system.

http://en.wikisource.org/wiki/The_Mathematical_Principles_of_Natural_Philosophy_(1729)/Book_1/Section_11#Prop66
http://en.wikisource.org/wiki/The_Mathematical_Principles_of_Natural_Philosophy_(1729)/Book_1/Section_11#Prop66
http://books.google.com/books?id=ySYULc7VEwsC&pg=PA173
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2.3. Electron density as the fundamental variable

In density functional theory (DFT), the (observable) electron density ρ(r) rather than
the (non-observable) quantum state |Φ〉 is considered the fundamental entity for the
electronic structure problem, and other observables are extracted from functionals of
the electron density ρ(r) rather than from operators acting on the state. This approach
was first tried by Thomas[47] and Fermi[48] in the late 1920s, and formally justified in
1964 by Hohenberg and Kohn (HK), who proved that a degenerate ground state density
determines the external potential and thus the Hamiltonian (first HK theorem), and
also that the energy functional E[ρ(r)] is variational with respect to the density (second
HK theorem).[49] Later, Levy generalised their proofs to also include degenerate ground
states, and to allow a larger set of trial densities.9[50, 51]

The energy functional consists of the same three contributions as the Hamiltonian (2.4);
with V̂ee({r}) ↔ Eint[ρ(r)], the potential energy arising from the ‘internal’ electronic
field, and VNe({r})↔ Eext[ρ(r)], the potential energy arising from the ‘external field’ set
up by the nuclei (and in general other external fields).

The energy functional can then be written

E[ρ(r)] = K[ρ(r)] + Eint[ρ(r)] + Eext[ρ(r)]. (2.5)

With the nuclei at fixed positions {Rk}, the potential energy functional for the electron
density ρ(r) is just

Vext(r) =
M∑
k=1

Zk
|r−Rk|

, and then Eext[ρ(r)] =
∫
ρ(r)Vext(r) dr. (2.6)

where Zk is the atomic number

The repulsive potential between the electrons Vint is more difficult to describe in a simple
manner. A simple first approximation is the classical electrostatic interaction described
by the Hartree potential,

VH(r) =
∫

ρ(r′)
|r− r′|dr′, and then EH[ρ(r)] =

∫
ρ(r)VH(r)dr, (2.7)

Since the potential depends on the density, this is a self-consistent field problem, but
the main problem is that the potential does not take account of quantum mechanical
exchange and correlation, and that it includes self-interaction. For these reasons, ap-
proximating Eint[ρ] ≈ EH[ρ] is considered a very poor approximation,[52, p. 208] and
better approximations are discussed in the next two sections below.

But first, how is the kinetic energy to be found from an electron density (K[ρ])? That’s
not a trivial problem, and the most successful solution involves the re-introduction of a
one-particle formalism, in what is known as the Kohn-Sham method.

9by only requiring densities to be Ne-representable, not necessarily V -representable
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2.4. The Kohn-Sham self-consistent field method

The ansatz in the Kohn-Sham (KS) method[53] is that a system of correlated electrons
can be described by an auxillary system of independent electrons (or formally quasielec-
trons) moving in a potential altered to make the density the same for both systems.
Since the density determines all properties of the full many-body system according to
the Hohenberg-Kohn (HK) theorems, an exact solution to the independent-particle prob-
lem should yield an exact solution to the correlated-particle problem. This is represented
schematically in figure 2.1.

Correlated-particle system: Independent-particle system:
Vext(r) HK⇐= ρ(r) KS⇐⇒ ρ(r) HK=⇒ VKS(r)
⇓ ⇑ ⇑ ⇓

Ψi({r}) =⇒ Ψ0({r}) ϕ1...Ne(r) ⇐= ϕi(r)

Figure 2.1.: Schematic representation of the Kohn-Sham ansatz. Adopted from [38, p. 137].

The unlabelled arrows in the left part indicate the usual solution of the Schrödinger
equation of a correlated many-electron system, in which the potential Vext(r) determines
all the states of the system Ψi({r}), including the ground state Ψ0(r) with the corres-
ponding density ρ(r).10 The Hohenberg-Kohn theorem completes the circle by proving
that the ground state density ρ(r) determines Vext(r). Note that in theory the ground
state density determines excited states as well as the ground state, but practical methods
for calculating properties of excited states still represents a big challenge.[38, p. 136] We
will, however, only be concerned with the ground state here.

While the left part of the figure represents the “real” correlated many-body problem, the
right part is the fictitious independent-particle system introduced by Kohn and Sham.
If {ϕi} is the set of the lowest Ne quasielectron orbitals, the ground state density is11

ρ(r) =
Ne∑
i=1
|ϕi(r)|2, (2.8)

Now, the kinetic energy of these quasielectrons is just

K0[ρ] =
Ne∑
i=1
〈ϕi|t̂|ϕi〉, where t̂ = −1

2∇
2 (2.9)

is the single-particle kinetic energy operator.

Algebraically we can rewrite the energy functional (2.5),

E[ρ] = K[ρ] + Eint[ρ] + Eext[ρ] (2.10)
= K0[ρ] + EH[ρ] + Eext[ρ] + (K[ρ]−K0[ρ]) + (Eint[ρ]− EH[ρ]) (2.11)
= K0[ρ] + EH[ρ] + Eext[ρ] + Exc[ρ], (2.12)

10An index 0 is omitted since ρ will always refer to the ground state density
11Single-electron orbitals are assumed here. If closed-shell orbitals are used, the sum is multiplied by

two and upper-limited by Ne/2. The same goes for the sums below.
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where all the ‘difficulties’ are now collected in the exchange-correlation (xc) functional,

Exc[ρ] = (Eint[ρ]− EH[ρ]) + (K[ρ]−K0[ρ]), (2.13)

to which we will return in the next section. Note that the exchange-correlation functional
includes not only quantum mechanical exchange and correlation, but also corrections for
the classical self-interaction in the Hartree potential, and for the difference in kinetic
energy between the non-interacting system and the real one; K − K0. The name is
therefore really a misnomer.[40, p. 256]

The quasielectrons12 move in an effective potential

VKS(r, [ρ]) = VH(r) + Vext(r) + Vxc(r), where Vxc(r) = δExc[ρ]
δρ

(2.14)

is not known, and we can find the quasielectron orbitals from the set of equations[
t̂+ VKS(r, [ρ])

]
ϕn(r) = εnϕn(r) (2.15)

and the corresponding energy from (2.8) and (2.12). Note that the total energy is not
just the sum of the quasielectron eigenergies εn. These are self-consistent field problems
requiring iterative solutions, since VKS(r, [ρ]) depends on the density.

2.5. The exchange-correlation potential

The Kohn-Sham scheme provides a neat solution to the problem of defining a kinetic
energy functional, and the mapping of the of interacting electrons onto non-interacting
quasielectrons is exact in the limit of an exact effective potential VKS(r). The remaining
problem is to provide a good approximation to VKS(r), or rather to Vxc(r), in which all
the difficulties are collected, and this problem remains the top challenge for the DFT
method.[37, p. 527][36, p. 153]

While the exchange-correlation potential is inherently non-local, a popular starting point
is a local approximation known as the local density approximation (LDA), as taken by
Kohn and Sham themselves in their 1965 paper.[53] LDA utilizes the well-understood
behaviour of the uniform gas.13 If εuni

xc [ρ] is the exchange-correlation functional for a
uniform electron gas of density ρ, LDA corresponds to evaluating this functional for
each volume element dr;

ELDA
xc [ρ] =

∫
εuni

xc [ρ]ρ(r) dr (2.16)

12At some point I may forget to include ‘quasi-’ and just write ‘electrons’. To avoid any confusion,
Kohn-Sham DFT is only concerned with quasielectrons, so even if omitted, ‘quasi-’ should still really
be there.

13 The exact local exchange is given by the Dirac exchange functional εx[ρ] = Cxρ
1/3, with Cx =

−3/4(3ρ/π)1/3,[54][36, p. 108] while correlation has been tabulated with increasing levels of accuracy,
with the currently most accurate results found from quantum monte carlo (QMC) calculations.[38,
p. 109 and references 297-299 within]
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Such an approach is expected to work well only for sufficiently slowly varying densities
(“uniform-like”), but in addition it has turned out that in many cases there are fortunate
cancellation of errors resulting in better-than-expected results.[55][37, p. 529][36, p. 180]
It’s hard to come up with a better local approximation than LDA, at least one that is
somewhat intuitive since the effects that are to be described are inherently non-local,
so to improve on LDA the logical next step is to move to a gradient approximation,
including some dependency on the density gradient ∇ρ, but exactly how to do this is far
from straightforward and different and many different functionals have evolved over the
years.

In this work we will make use of the PBE-GGA functional introduced by Perdew, Beckge
and Eizenhover in 1996,[56] where GGA is short for generalised gradient approximation,
Perdew and Yue’s contrasting term to the earlier gradient expansion approximation
(GEA).[57] Compared to other functionals PBE-GGA has a relatively simple form, sat-
isfying what the authors consider the most important conditions, and introduced as an
alternative to what the authors called “the Byzantine PW91” functional in a paper titled
“GGA made simple”. The other defining feature of PBE-GGA is that is non-empirical,
making it a general-purpose functional in contrast to ‘semi-empirical’ functionals like
B3LYP or revPBE that provide better results for specific problems. PBE-GGA can be
sketched as

EGGA
xc [ρ] =

∫
εuni

xc [ρ]ρ(r)Fxc(s) dr, where s = |∇ρ|2kFρ
(2.17)

is the first-order reduced density gradient, kF = (3π2ρ)1/3 is the Fermi vector, and
Fxc(s) is some dimensionless function called the enhancement factor chosen to fulfil a set
of conditions. F (0) = 1, so the functional reduces to LDA for s = 0. See [57], [56] and
[38, p. 154] for details.

2.6. Pseudopotentials

So far, two important approximations have been introduced; the Born Oppenheimer
approximation and the approximate handling of exchange and correlation using the
PBE-GGA functional. Still, calculations using a plane wave basis, except for very small
systems, would not be feasible without one more important approximation.

When expanding the one-particle orbitals in a plane wave basis, (2.20), it is evident that
a much larger amount of plane waves must be included to accurately describe the more
localised core orbitals than the less localised valence orbitals. Further, the core orbitals
for a givent atom resemble each other when the atom is in different environments, since
it’s the valence orbitals that take part in chemical binding and most interesting material
properties.

The basic idea of the pseudopotential approach is to replace the inner orbitals with a
fixed potential, and only threat the valence orbitals variationally. For the element of
silicon for instance, the common pseudopotential approach is to threat only the four
valence electrons variationally, leaving the remaining ten core electrons to some fixed
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pseudopotential. Of course all kinds of practical difficulties may arise, such as the ques-
tion of which electrons to include in the core, and how to actually do the partitioning
without introducing unphysical effects. Several different methods have therefore evolved
over the years. Here, the projector augmented-wave (PAW) method[58] is used, which
has the elegant feature that the wavefunction in the core region can be fully reconstruc-
ted. For more information, see e.g. the chapter on pseudopotentials in Martin(2004)[38,
pp. 204-299].

The specific pseudopotentials usd in this work were provided by Georg Kresse and are
referred to as “very soft”[59] (not to be confused with “ultrasoft” potentials which are
not based on the PAW method). They are ‘softer’ than the potentials included in the
standard VASP distribution,[60] since they have 26% larger core radius.14

2.7. Bloch states and the plane wave basis

A few words must be said about the orbitals ϕn used in the Kohn-Sham equations (2.15).
In a periodic system, they should be Bloch states. In general for some reciprocal vector
k,

ϕnk(r) = eik·runk(r) (2.18)

where unk(r) is a function that shares the periodicity of the lattice, uk(r + G) = uk(r),
where G = hb1 + kb2 + lb3 and k is any reciprocal space vector.

In the VASP code used in this work, a plane wave basis is used. Such a basis make use of
the fact that a periodic function can always be represented by a Fourier series,

unk(r) =
∑
G
cnkGei G·r (2.19)

making (2.18)
ϕnk(r) =

∑
G
cnkGei(k+G)·r (2.20)

This makes for a well-defined basis, exact in the limit of all G, and just as important,
one that can be systematically truncated by including only components with

|G + k|2

2 ≤ Ecut (2.21)

for some scalar cutoff energy Ecut. Note that leaving out long reciprocal space vectors G
corresponds to leaving out short real space vectors r. Introducing the cutoff is therefore
associated with discretising real space.

Why plane waves? One advantage is how effectively they can be transformed between
real and reciprocal space using Fast Fourier Transform (FFT), allowing each part of the
Hamiltonian to be evaluated in the most appropriate space. In particular, the kinetic
14The verysoft potentials have RCORE=2.4. Since no versioning is used, for identification,

the SHA-1 of the Si and P potentials are cf786bc703f03a562aae3661fa6cc65f86bc3097 and
8058b1b1a564e2d79696e3c30bdac2d44ff524a0, respectively.
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term of the Hamiltonian is diagonal in reciprocal space when using a PW basis. Another
advantage of a PW basis is that the Hellman-Feynman force theorem can easily be
applied since the basis functions don’t depend on the nuclear coordinates (see section
2.9). Third, the PWs (and their derivatives) are quite simple to evaluate analytically.[39,
p. 187]

2.8. Brillouin zone integration and the k point density

For periodic systems, calculations of observables generally involves integrals over the
Brillouin zone[38, p. 89]15. For example, we may compute the total energy per unit cell
as[61, p. 24]

Etot = 1
Ω

∫
BZ
E(k) dk (2.22)

where Ω is the Brillouin zone volume and E(k) is the total energy found from solving the
Kohn Sham equations for a given k. For computational evaluation such integrals have
to be turned into sums over a discrete set of k-points. In 1973 Baldereschi suggested a
first approximation could be made by including only a single k-point,

Etot = (2π)3

Ω Ē, Ē = Ek∗ (2.23)

for a ‘mean value point’ k∗ determined by crystal symmetry[62]. This idea has later been
generalised into sets of optimal (so-called ‘special’) k points by Chadi and Cohen[63],
Monkhorst and Pack[64] and others. Including only points in the irreducible Brillouin
zone (IBZ) results in a sum over points with weights wk∗ ;

Etot = (2π)3

Ω
∑
k∗
wk∗E(k∗) (2.24)

When supercells are used, as will be done here, the k point density can be reduced, since
a larger supercell (real space) corresponds to a smaller Brillouin zone (reciprocal space),
but the benefit of fewer k points is cancelled by the increased number of bands. This
is illustrated, for the sake of simplicity, for a one-dimensional lithium chain with bond
length 2.38 Å in figure 2.2.16 Since the atoms are evenly spaced, the system is periodic,
and we can define a unit cell with lattice parameter a = 2.38 Å containing a single atom.
The brillouin zone is then a line segment of length 2π/a. The left part of figure 2.2 shows
the energy bands sampled at 17 k points between −π/a and π/a.17

Now, we could define a cell with lattice parameter a′ = 2a = 4.76 Å containing two
atoms. The brillouin zone is then reduced to a line segment of length 2π/a′ = π/a,
15The term ‘Brillouin zone’ will be used throughout this work as a shorthand for ‘first Brillouin zone’

as no other Brillouin zones will be encountered.
16I really wanted to see such an illustration myself, but for some reason I didn’t find one in any textbook

I’ve seen, which is one reason why I include it here even though it’s slightly off-topic.
17Of course there is some symmetry here. Really, we would only have to sample the irreducible brillouin

zone of length π/a, but the whole Brillouin zone was sampled here for the purpose of illustration.
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Figure 2.2.: Illustration of the effect of using supercells in one dimension. The left figure
shows the band structure calculated from a ‘unit cell’ with lattice parameter 2.38 Å
containing a single Li atom. The right figure shows the band structure calculated from
a ‘supercell’ with lattice parameter 4.76 Å containing two Li atoms.

but should still contain the whole band structure, since the choice of unit cell size is
arbritrary (as long as translational symmetry is retained). In the right part of the figure
it is shown how the lowermost band “wraps back” into the first brillouin zone. Even
though the number of k points used for the ‘double cell’ (right) is half the number used
in the ‘single cell’ (left), the distance between k points are the same; π/(8a) ≈ 0.165Å−1

in both cases.

2.9. Forces from the Hellman-Feynman force theorem

For the dynamics discussed in the next chapter, a method to calculate the force acting
on each atom is also needed. If we take the nuclei to be classical point particles, the
force Fk acting on a nucleus k at position Rk is determined from the potential energy

Fk = − ∂E

∂Rk
(2.25)

The energy E here is the sum of the expectation value of the electronic Hamiltonian
〈Φ|Ĥe|Φ〉 and the nuclear-nuclear interactions ENN. In both cases we are interested in
finding the derivative of E with respect to some perturbation λ, for instance a component
of Rk,

∂E

∂λ
=
〈
∂Φ
∂λ

∣∣∣∣Ĥ∣∣∣∣Φ〉+
〈

Φ
∣∣∣∣Ĥ∣∣∣∣∂Φ

∂λ

〉
+
〈

Φ
∣∣∣∣∂Ĥ∂λ

∣∣∣∣Φ〉+ ∂ENN
∂λ

(2.26)

If |Φ〉 is an eigenstate of Ĥ with energy Ee, the first two terms become

Ee

(〈
∂Φ
∂λ

∣∣∣∣Φ〉+
〈

Φ
∣∣∣∣∂Φ
∂λ

〉)
= Ee

∂

∂λ
〈Φ|Φ〉 = Ee

∂

∂λ
(1) = 0 (2.27)
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using the normalisation 〈Φ|Φ〉 = 1. Thus the force is

Fk = −
〈

Φ
∣∣∣∣ ∂Ĥe

∂Rk

∣∣∣∣Φ〉− ∂ENN
∂Rk

(2.28)

This is often referred to as the Hellmann-Feynman theorem after Hellmann[65] and
Feynman[66], but also as the ‘force theorem’.[38, p. 56] The theorem is also used when
calculating the stress tensor, where λ = εαβ, a component of the strain tensor.

We assumed above that |Φ〉 is an exact eigenstate of Ĥ, but when |Φ〉 is expanded in
a finite basis set, it is generally not so. However, it turns out that as far as the basis
functions do not depend on the nuclei coordinates (plane waves do not), (2.28) is still
valid.[see e.g. 37, p. 557]

A further simplification arises from the fact that the only term in the electronic Hamilto-
nian that depends on the nuclei coordinates is the term describing electron-ion interac-
tion:

Fk = −
∫
∂Vext(r)
∂Rk

ρ(r) dr− ∂ENN
∂Rk

(2.29)

where the first term is the attraction to the (unperturbed) electronic density ρ(r), and
the second term the repulsion to the other nuclei (which are kept fixed).

Note that the final simplification assumes Vext(r) to be a local potential. In the case of
non-local pseudopotenstials, (2.29) can not be used, but more complicated expressions
can be derived from (2.28), which is still valid.[38, p. 57]

2.10. Choice of parameters

As described in chapter 3 on Born Oppenheimer molecular dynamics below, the purpose
of using density functional theory is to accurately calculate the forces between atoms.
From a knowledge of the forces, the dynamics of the atoms can be simulated using
simple newtonian dynamics. Since atoms vibrate at frequencies in the order of 1012 Hz
(see fig. 1.2), forces will have to be re-calculated in the order of once every femtosecond
to produce trajectories that are smooth and hopefully, realistic simulations of Nature.

With the time step more or less fixed, the simulation length is then limited mainly
by the time it takes to carry out each force-calculation. If each force-calculation takes
about 1 CPU second to carry out, and we re-calculate the forces every 1 fs, simulating
1 ns takes 106 CPU seconds or 278 CPU hours, or if parallelised over 8 CPU cores, 35
clock hours.18 It’s therefore fundamentally important to optimize the force calculation
as much as possible, which is the topic of most of this section on “choice of parameters”.
Our system must be as simple as possible, yet behave as similarly as possible to the
real physical system we are trying to describe. The art of computer simulation is to
simplify as much as possible, yet not too much. However, we will start discussing an
18If we could just simulate 1 ns in ”less” than 1 ns we could actually predict the future, but such

simulation speeds are apparently far into the future themselves.
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important parameter that does not affect the calculation time; the lattice parameter of
the simulation cell.

2.10.1. Lattice constant

Choosing a too small lattice parameter a will add an artificial positive external pressure
on the simulation cell, while choosing it too large will add a negative external pressure
(corresponding to an isotropic pull). In figure 2.3, the pressure and total energy of the
system is plotted as a function of the lattice constant, varied in steps of 0.01 Å. The
pressure is calculated as P = 1

3
∑
α σαα where σ is the stress tensor. A realistic lattice

parameter is one that zero out the external pressure,19 and following the variational
principle, that minimizes the total energy. The lattice parameter fulfilling such conditions
is indicated by a vertical line for each set. The first two sets make use of fully converged
parameters (‘standard’ potentials, 125 k points in the Brillouin zone20 and plain wave
energy cutoff of 800 eV), while the last set is discussed below.
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Figure 2.3.: Total energy and pressure as a function of varying the lattice parameter a
of a 8-atom cubic unit cell. For the 64-atom cell, the lattice parameter is 2a, and the
energy plotted is the cube root of the total energy, for comparison with the 8-atom cell.
All energies are given relative to the minimum energy E0 for each configuration. The
absolute minimum energies of the different configurations are not the same.

The first to notice about the figure is that even for fully converged parameters, using
LDA results in a lattice parameter 0.46 % (2.5 pm) shorter than the experimental value of
19Ideally one that makes the pressure equal the standard atmosphere of one bar, but such a small

pressure is not really distinguishable from zero bar within the precision we work with. The scale on
fig 2.3 should make this clear.

20although only 10 are actually used for calculation due to symmetry



2.10. Choice of parameters 25

5.43 Å21 (indicated with a thick, dashed line), while using PBE-GGA results in it being
0.75 % (4.1 pm) too long. This is the well-known tendency of LDA to overbind, and
the rather common tendency of PBE-GGA to underbind. Now, in this particular case of
pure silicon, it turns out that the LDA-value comes closer to the experimental value than
the PBE-GGA value, in line with the results of Haas et al.[69]22 This is most likely due
to fortunate cancellation of errors,[see e.g. 38, p. 167] and since the purpose here is not
to calculate accurate lattice constants, we will stay with the theoretically more robust
PBE-GGA as it would be rather fortenous to expect the same level of error cancellation
for every different configuration visited during a simulation at elevated temperatures.
Rather, we could expect the cancellation to work better for some configurations than
others, and thus produce non-systematic errors.

Now, foreseeing the results of the next sections, we will look quickly into the effects of the
approximations decided upon in those sections. First, replacing the ‘standard’ potential
with the ‘very soft’ potential (see section 2.6) lead to a 0.15 % (0.8 pm) reduction in
a. Then lowering the plane wave energy cutoff from 800 eV to 180 eV lead to a 0.09 %
(0.5 pm) increase, largely cancelling the previous effect. Finally, reducing the k point
density from 20.5 to 1.3× 103/Å−3 lead to a 0.29 % increase (1.6 pm). The plot for this
final configuration is included in 2.3 as the third curve.

To sum up, a lattice constant of 5.47 Å will be used in the simulations. This is 0.74% off
the experimental lattice constant of 5.43 Å, and since the Si-Si bond length is (

√
3/4)a

and thus proportional to a, the silicon bond length is also 0.74 % off. So while the
experimental equilibrium Si-Si bond length is 2.352Å, the equlibrium Si-Si bond length
in our simulation cell is 2.369Å. This should be kept in mind when bond lengths are
discussed in the results section.

Now, we may ask what happens when we add temperature in the form of ionic motion.
Should the lattice parameter then be increased? This question is not as easy to answer as
it may seem. First, a solid heated to diffusion temperatures will usually require very long
times to actually expand to its equilibrium volume, much longer than the timescale of
the experiment itself, so it is not very realistic to expect the solid to be at its equilibrium
volume. Second, we have no simple way of actually finding the volume expansion. Or
do we?

21The lattice parameter of silicon is lattice parameter of silicon is 5.431Å at room temperature
(293.15K),[67], but we should really compare with the lattice parameter at zero kelvin since the
ions are at rest. Using the linear thermal expansion coefficient of 2.6× 10−6 K−1 at room temper-
ature,[CITATION NEEDED] we can extrapolate to find a lower bound of 5.427Å for the lattice
parameter at zero kelvin. This is a lower bound since the thermal expansion coefficient itself is a
function of temperature, and has been shown to decrease to zero near 120K and even becoming
slightly negative for even lower temperatures.[68] Experimental data are scarce for temperatures be-
low 100 K, but if we are content with two decimals, we can take the experimental lattice parameter
of silicon at zero kelvin to be 5.43Å.

22Following Haas, some minor adjustments to the PBE functional actually make the functional calculate
lattice parameters much closer to experimental values. On the other hand, these adjustments tended
to produce worse atomisation energies. Since neither property is the interest of this work, we will
stick to the very well-tested and theoretically robust standard PBE GGA functional.
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2.10.2. k point density

As illustrated in section 2.8, the number of k points needed is inversely proportional to
the cell size. For large supercells only a single k point, the Γ point, is needed, but we
may well ask if the a = 10.94Å cell (2 × 2 × 2) used in the simulations here is ‘large
enough’ to justify including only a single k point, making the distance between k points
2π/a = 0.574Å−1.

Since the purpose of the density functional calculations here is to provide forces for
dynamics, the effect of reducing the k point density was studied on a simple dynamics
model. The model is a cell with 62 Si atoms, one P atom and one vacancy, and we
calculate the energy as the P atom moves from its lattice position into the adjacent
vacancy while the remaining Si atoms are kept still. Figure 2.4 shows the resulting force
and total energy change as a function of the reaction coordinate of phosphorus, r. In
order to move from its original lattice site into the vacancy it has to pass a barrier, the
height of which is the activation energy for this model process. The activation energy
for the converged configuration (5x5x5 k points) is 1.55 eV, while the activation energy
increases to 1.61 eV for the Γ-only configuration. If the error of 3.8% in the activation
energy of this model diffusion process is representable for other diffusion processes as
well, the low k point density is expected to be a noticeable, but acceptably small source
of error.
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Figure 2.4.: Phosphorus atom moving in the [111] direction from its initial lattice site
(r = 0) into a neighbour vacancy (r = 1), with all other atoms fixed. Top: Force acting
on the phosphorus atom in the [111] direction. Bottom: Difference in the total energy
between the system with phosphorus at r and at r = 0.
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Why the Γ point and not some other k point? From the computational cost perspective,
the Γ point is the best single k point to include, since it shows time-reversal symmetry,
k = −k, allowing the computational cost to be halved. From an accuracy point of view
the Γ point is generally not the optimum single k point to include when describing a
single configuration, as the optimum point is dictated by the crystal symmetry of that
configuration[62]. But in our MD simulations, the system should not be constrained
by any specific symmetry, but rather be allowed to visit a large number of different
configurations, most of will have no special point group symmetry. As such, there should
be no a priori reason for the Γ point to be any worse a choice than any other k point. It
is even likely to be less discriminate towards a specific symmetry than any other point.

If results are to be compared between different supercells, using only the Γ point may
also be advantageous. As Castleton et al. point out[70], incomplete k-point convergence
give rise to errors that in general vary with the supercell size in a ‘non-rational’ (non-
simple) way, while such errors probably vary in a more ‘rational’ (simple) way for Γ point
calculations. As a consequence, they recommend using either fully converged k-point sets
or the Γ-point only when comparing supercells of different size.

2.10.3. Plane wave energy cutoff

While force-minimised high-symmetric configurations may be described well by a rel-
atively small basis set, less symmetric and stressed configurations will require a larger
one for a good description. During a MD simulation, the system will visit a large num-
ber of configurations of various symmetry and local stress. With a limited basis set,
we expect some configurations to be better described than other. A too limited plane
wave basis set may for example lead to large undulations in the electronic density being
smoothed out, effectively making stressful configurations where the atoms are very close
more favourable than they should be. This is just one imaginable basis set effect.

To get a slight feel for the above described basis set effect, we return to the model
diffusion process described in section 2.10.2 on k points above, in which a phosphorus
atoms move into a adjacent vacancy. With the number of k points fixed (nk = 1), the
effect of varying the energy cutoff Ecut on the activation energy for the model process
was studied.

As a function of varying cutoff, the lower part of figure 2.5 shows the difference in
energy for each increment on a logarithmic scale. As expected, the energy difference
decreases towards zero as the converged value is approached. More interesting, the error
from the ‘very soft’ potential is almost one order of magnitude lower than from the
‘standard’ potential for cutoffs below 300 eV. The upper figure shows the percentage
error in the energy barrier, compared to converged values Econv (1.622 eV for the normal
GGA potential, 1.618 eV for the ‘very soft’ GGA potential and 1.565 eV for the LDA
potential). Here we see that the ‘very soft’ potential works very well down to even
120 eV. This is very impressive, but since this is just a model reaction, we increase the
cutoff value to 180 eV in the MD simulations to add a little more flexibility to the basis
set.
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Figure 2.5.: Influence of the energy cutoff on the energy barrier for a phosphorus atom
to jump into a neighbour vacancy site. Top: The error in barrier energy relative to the
converged energy barrier value for each potential. Note that the converged values for the
different potentials. The converged value is taken as the average barrier height found
from calculations using 800, 900 and 1000 eV as energy cutoff. Bottom: Difference in
barrier energy upon increase of the energy cutoff by 50 eV.
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2.10.4. Cell size

A too small simulation cell will result in spurious self-interaction across the periodic
boundaries, but from a computational cost perspective it was quickly found that a sim-
ulation cell larger than 2× 2× 2 (64 atoms) would not be viable with MD simulations.
While we can give no authorative answer to whether this cell is “large enough”, a small
test was carried out to check the “range” of a P-Si defect (one of the configurations
discussed in section 4.2 below). The defect was introduced into a very large cell, a
6 × 6 × 6 cell with lattice parameter 32.8 Å containing 1728 atoms, and the whole cell
was relaxed.

The right part of fig. 2.6 shows the distance each of the atoms in the cell relaxed as a
function of the radial distance from the defect center. The two vertical lines indicate
the length of 8-atom cell (5.47 Å) and a 64-atom cell (10.74 Å). The left part of the
figure shows a small part of the cell encompassing a 64-atom cell around the defect, with
the size of the 64-atom cell indicated by a blue square. As we see, the defect causes
some distortion even beyond the boundaries of the 64-atom cell, but the error from
self-interaction is most likely not any worse than the other small errors we’ve already
introduced.
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Figure 2.6.: Left) A small part of the 6× 6× 6 unit cell (side length 32.8 Å), showing the
relaxed split 〈110〉 Si-P pair. Indicated with a blue frame is the 2× 2× 2 cell with side
length 10.94 Å. Right) Relaxation distance for all the 1728 atoms in the cell as a function
of radial distance from the defect centre.

2.10.5. Summary and parallelisation

After a somewhat lengthy discussion, the standard setup to be used to calculate the
forces at each step in the molecular dynamics runs is now defined; using a 2× 2× 2 cell
with lattice parameter 10.94 Å, the “very soft” PAW PBE potential with energy cutoff
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of 180 eV, and a single k point (the Γ point) with a optimised VASP build for Γ-only
calculations.23

Test calculations were carried out at two different Norwegian computing clusters; the
Titan cluster at University of Oslo, and the Stallo cluster at University of Tromsø, for
which the results are shown in fig. 2.7. The calculations included 46656 plane waves and
about 165 bands (163-168 depending on the number of cores).
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Cluster Cores Time Speedup Efficiency
n tn [s] t1/tn t1/(ntn)

Stalloa 1 13.09 – –
8 3.71 3.6 44%
16 2.17 6.2 38%
32 1.42 9.3 29%
64 1.42 9.3 14%

Titanb 1 16.33 – –
8 3.81 4.3 54%
16 2.74 6.0 37%
32 1.97 8.3 26%
64 1.75 9.3 15%

a 2 × 2.66 GHz Intel Xeon quad core nodes.
b 2 × 2.3 GHz AMD Opteron quad core nodes.

Figure 2.7.: Scaling on two different clusters, Titan and Stallo, both with Infiniband
connect. For a short molecular dynamics simulation parallelised over n cores, tn is the
mean clock time per step in seconds (100 steps, with the two first left out from the mean).
Ideal scaling corresponds to the total CPU time ntn being constant, and the clock time
decreasing as 1/n. The actual speedup t1/tn as a percentage of the ideal speedup is
shown in the last column of the table. This can be considered the efficiency of computer
resource utilisation.

The serial calculation time per ionic step is about 13 seconds on Stallo, and a few seconds
longer on Titan. This includes on average three electronic steps per ionic step. While I
find this number impressive for an ab initio calculation, it still means simulating a nano-
second would take 150 days. The clock time needed can be reduced by distributing the
work over several CPU cores, working in parallel, but as the results shows, the calculation
scales poorly. While the clock time is reduced by a factor of ten by using 64 cores, the
efficiency is only about 15 %, meaning that a large amount of computational resources
are wasted. Surprisingly, even parallelisation over several cores at the same node is only
45% efficient, indicating that inter-node communication is not a bottleneck.

Of course, good scaling requires a task that actually can be parallelised. A molecular
dynamics simulation is not very well suited in that respect; Two ionic steps can logically
not be carried out parallelly, as one depends on the other, and neither can two electronic
steps. We are left parallelising the calculation for each electronic step, and with only
one k point, what remains is the options to parallelise over bands (n) and plane waves
(G) in (2.20).
23Thanks to Espen Flage-Larsen for the build!
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The VASP code can handle parallelisation over bands and plane waves efficient up to at
least 32 cores in typical cases.[71] But with electronic steps calculated in less than one
clock-second, it is possible that initialisation steps and other parts of the code that can
not be parallelised, starts to dominate over the parallelised parts of the code. Investig-
ating this further could be an interesting study on its own, but here we will just accept
the current scaling situation and parallelise only over eight cores.





3. Molecular dynamics simulations

In section 2.2 we used the Born Oppenheimer approximation to separate the total
Hamiltonian Ĥ into a nuclei part ĤN and an electronic part Ĥe, and in the remainder
of chapter 2 we only looked at the electronic one. In this chapter we will be concerned
with the Hamiltonian for the N nuclei, which in the absence of any constraints can be
written as a sum of the kinetic energy and the potential energy,

ĤN = K̂N + V̂N =
N∑
k=1

1
mk
∇2
k + VN , (3.1)

Since we will only be concerned with the nuclei Hamiltonian, I will skip the subscripts
N from now on.

In contrast to the electrons, we assume that the nuclei can be treated as classical entities,
following trajectories rk(t) described by classical equations of motion, be it in the first-
order formulation of Hamilton,

drk
dt

= ∂H

∂pk
,

∂H

∂rk
= −dpk

dt
, (3.2)

where motion occurs in a way as to preserve the Hamiltonian function, 1

H(r, p, t) = K(p, t) + V (r, t) =
N∑
k=1

pk(t)2

2mk
+ V (r, t), (3.3)

or the second-order formulation of Newton,

d2

dt2
rk = 1

m
Fk, (3.4)

where motion is a response to an applied force.

Using the formulation of Newton, trajectories was evolved by integrating (3.4) using
the velocity Verlet algorithm (section 3.2) and forces from the Hellmann-Feynman force
theorem (section 2.9), as implemented in VASP. Temperature was maintained by the
‘velocity scaling thermostat’ (section 3.3.2).

1 r, p is shorthand for {rk,pk} = {rkx, pkx}, the set of all positions and momenta. For N atoms, we have
6N Cartesian coordinates, but excluding movement relative to the frame, we are left with 6(N − 1)
degrees of freedom, which means we only need that many generalised coordinates. Generalised
coordinates is used in statistical mechanics, but since the topic is only touched upon here, I’m not
distinguishing notation between the two, although I’m not sure if that was a good idea or not.

33
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3.1. Statistical mechanics

What is obtained from a molecular dynamics simulation, is the configuration or micro-
state of the system (the positions and momenta of every single atom) at any given time
included in the simulation – a quantity that can not be measured experimentally. How
to relate the microscopic configuration to macroscopic quantities that can be measured
experimentally (observables), such as temperature (3.14) or diffusivities (3.32) is the
subject of statistical mechanics.

Statistical mechanics is concerned with statistical ensembles, an ensemble being a the-
oretical construct holding a large number of copies (sometimes infinitely many) of es-
sentially the same system, that is; a collection of systems described by the same set of
microscopic interactions, and sharing a common set of macroscopic control variables like
internal energy E, volume V and number of atoms (or moles) N .[72, p. 63]

Each system in an ensemble has a different microstate, but all systems share the same
macrostate. A microstate is specified by specifying the state of each individual particle
in the system, while a macrostate specifies only how many particles are in each state.

In statistical mechanics, (macroscopic) observables are found from averages over micro-
states. For some observable A, represented by the operator Â, such an ensemble average
can be written

〈A〉 =
∑
i

Pi〈i|Â|i〉 =
∑
i

〈i|P̂ Â|i〉, (3.5)

where angle brackets 〈· · · 〉 indicate an ensemble average, or expectation value, and Pi =
〈i|P̂ |i〉 is the probability that any given system in the ensemble will be in a microstate
i, depending on what kind of ensemble we are simulating. We are not concerned with
discrete states, however, but rather continuous states of coordinates q and momenta p in
the 6N−6-dimensional classical phase space for N particles. The probability operator is
then replaced by a distribution function ρ(p, q), and (3.5) can be shown to reduce to2

〈A〉 =
∫
ρ(r, p)A(r, p) dr dp (3.6)

As with the probability operator, the phase space density function will depend on what
kind of ensemble we study. Two types of ensembles will be introduced in section 3.1.2.

3.1.1. The ergodic hypothesis

The basic idea of molecular dynamics is that the average over all systems in the ensemble
at a single time (3.6) can be replaced by an average over a single system in the ensemble
at all times, that is over the time evolution of that system,

Ā = lim
τ→∞

1
τ

∫ τ

0
A(r(t), p(t)) dt (3.7)

along the trajectory, where τ is the observation time.
2See e.g. [73, pp. 13-15]. Again, generalised coordinates could be used instead.



3.1. Statistical mechanics 35

The ergodic hypothesis has only been proved for some simple model systems such as
the hard sphere gas.[74] For a general system, it can neither be proven or disproven,[72,
p. 99] but it can be tested by comparing Monte Carlo results (ensemble averages) with
molecular dynamics results (time averages). Its plausibility for any given system may
also be discussed in terms of the energy barriers of the system, since unsurpassable
energy barriers will separate phase space into regions that can not be sampled from the
same initial conditions.

For the simulation of phosphorus diffusion in silicon, the ergodic hypothesis is expected
to hold, but we may still run into sampling problems if we can not simulate the system
for a long enough time τ . In practice, we also have to use finite time steps ∆t instead of
infinitesimals dt, as discussed in section 3.2 below.

3.1.2. Ensembles

The Hamiltonian (3.3), describes a system completely isolated from its surroundings. For
such a system, the number of particles N , the volume V and the internal energy E are
all conserved, since there is no mechanism in the model for exchanging particles, volume
or energy with the surroundings. During a simulation, only configurations with the same
N , V and E will thus be visited, configurations of the so-called microcanonical or NV E
ensemble. This ensemble is characterised by the phase space probability function being
constant,

ρ ∝ δ(E −H(r, p)), (3.8)

with equal probability of sampling phase space points on the hypersurfaceH(r, p) = E.

Molecular dynamics samples configurations from the microcanonical ensemble, but we
may well be interested in sampling ensembles with other control variables to better
simulate experimental conditions. In a typical experiment, it is easier to control the
temperature T than the internal energy E, the pressure P than the volume V , and often
the chemical potential µ than the number of particles N . Such an µPT ensemble is the
grand canonical ensemble.

In the case of a solid system, the volume and number of particles will generally vary
little, justifying the use of the simpler NV T or canonical ensemble, where the phase
space probability function is the Gibbs probability distribution,

ρ(r, p) = 1
Z

e−βH(r,p), Z =
∫

e−βH(r,p) dr dp (3.9)

Methods for carrying out a molecular dynamics simulation sampling the canonical en-
semble is discussed in section 3.3 on thermostats below. It is worth noting that the
constant-volume restriction may not always be justified, even for solids. If the unit cell
is relaxed at zero temperature, and simulations are carried out at elevated temperatures,
this will lead to an artificial pressure build-up.

Experimentally, the lattice parameter of silicon has been shown to expand by about
0.026 Å, from 5.431 Å to 5.457 Å, when the temperature is increased from 298 K to



36 3. Molecular dynamics simulations

1500 K.[12] With the quite flat minimum in the energy-lattice parameter curve (fig. 2.3)
and uncertainties related to it, this effect is expected to be of less importance, but it
could be interesting to investigate. Especially at temperatures close to the melting point,
at least equilibrating the system using a NPT ensemble rather than a NV T ensemble
might be advantageous.

3.1.3. The virial and the equipartition theorems

The virial theorem is one of the theorems connecting microscopic phase space functions
with macroscopic thermodynamic observables. If xi and xj are generalised coordinates,
then the virial theorem states that3〈

xi
∂H

∂xj

〉
= kBTδij (3.10)

where the brackets indicate an average over a microcanonical ensemble, which can, if the
system is ergodic, be replaced by an average over time.

If we take xi = pi, a momentum component, then for a system described by a Hamiltonian
(3.3), we have 〈

pi
∂H

∂pi

〉
= kBT, (3.11)〈

p2
i

2mi

〉
= 1

2kBT, (3.12)

where mi is the mass of the particle having the momentum component pi. Summing
both sides over all 3N − 3 components, results in the equipartition theorem,

3N−3∑
i=1

〈
p2
i

2mi

〉
=

3N−3∑
i=1

1
2kBT, (3.13)

〈K〉 = 1
2fkBT, (3.14)

where f = 3N − 3 is the degrees of freedoms. The theorem relates the thermodynamic
temperature T to the average kinetic energy 〈K〉. From the relation, we could also define
an ‘instantaneous temperature’

T (t) = 2K(t)
fkB

= 2
fkB

N∑
k=1

εk(t) =
N∑
k=1

mkvk(t)2

fkB
, (3.15)

that we will make use of in the next section to discuss temperature fluctuations in a
system.

3For a proof, see e.g. [72, p. 81].
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3.1.4. Maxwell-Boltzmann distribution for kinetic energies

With the Hamiltonian being separable,H(r, p) = K(p)+V (r), Gibbs probability function
(3.9) is separable as well; ρ(r, p) = ρT (p)ρV (r). With the total kinetic energy

K(p) =
3N∑
k,x=1

p2
kx

2mk
(3.16)

from (3.3), we find

ρT (p) = e−βK(p)∫
e−βK(p)dp

=
3N∏
k,x

e−βp2
kx/2mk∫

e−βp2
kx
/2mkdpkx

=
3N∏
k,x

ρMB(pkx), (3.17)

where pkx is a momentum component for nucleus k, related to a velocity component by
pkx = mkvkx, so we can find the distribution of velocities

ρMB(vkx) = e−βmkv2
kx/2∫

e−βmkv2
kx
/2dvkx

=
(
βmk

2π

)1/2
e−βmkv2

kx/2, (3.18)

which is the Maxwell-Boltzmann distribution, anticipated by the choice of subscript.
This is a Gaussian with standard deviation σ = 1/

√
βmk =

√
kBT/mk about 〈vkx〉 =

0.

Although derived in the canonical ensemble, the velocity distribution is expected to be
Maxwellian in any equilibrium situation, since properties in different ensembles become
equivalent in the thermodynamic limit (large N and V ).[75, p. 65] With only 65 atoms
we can not really claim being close to the thermodynamic limit, but we will still assume
a Maxwellian distribution.

Now, for the speed vk =
√
v2
kx + v2

ky + v2
kz, we have

ρMB(vk) = 4π
(
βmk

2π

)3/2
v2
ke−βmkv

2
k/2. (3.19)

From its second and fourth moments,

〈v2
k〉 =

∫ ∞
0

v2
kρMB(vk) dvk = 3

mkβ
, (3.20)

and
〈v4
k〉 =

∫ ∞
0

v4
kρMB(vk) dvk = 15

(mkβ)2 , (3.21)

we can find the relative variance in single-particle kinetic energy εk = 1
2mkv

2
k as

σ2
εk

〈εk〉2
= 〈ε

2
k〉 − 〈εk〉2

〈εk〉2
= 〈v

4
k〉 − 〈v2

k〉2

〈v2
k〉2

= 2
3 , (3.22)

and the relative variance in instantaneous temperature (3.15),[73, p. 127]
σ2
T
〈T 〉2

= 2
f

= 2
3N − 3 . (3.23)

We will come back to this instantaneous temperature fluctuation in section 3.3 on ther-
mostats.
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3.1.5. The Einstein-Smoluchowski diffusion relation

Following Frenkel[73, pp. 78-79], we start with Fick’s second law (1.3),

∂c

∂t
−D∇2c = 0 (3.24)

where c(r, t) is the concentration, whose second moment is

〈r2(t)〉 ≡
∫
V
r2(t)c(r, t) dV, (3.25)

and normalisation is ∫
V
c dV = 1. (3.26)

We multiply (3.24) by r2, and integrate over all space (V ),

∂

∂t

∫
V
r2(t)c(r, t) dV = D

∫
V
r2(t)∇2c(r, t) dV (3.27)

The left hand side is just
∂

∂t
〈r2(t)〉, (3.28)

while the integral on the right hand-side can be treated with partial integration and the
divergence theorem. Here, S is the surface of all space, with surface element dS = n̂dS,
n̂ being the surface normal.∫

V
r2∇2c dV =

∫
V
∇ · (r2∇c) dV −

∫
V
∇r2 · ∇c dV

=
∮
S
r2∇c · dS︸ ︷︷ ︸

0

−2
∫
V

r · ∇c dV

= −2
∫
V
∇(cr) dV + 2

∫
c∇r dV

= −2
∮
S
cr · dS︸ ︷︷ ︸
0

+2
∫
c∇r dV

= 2d
∫
V
c dV

= 2d (3.29)

since ∇r = d, the dimensionality. Substituting (3.28) and (3.29) into (3.27), and letting
d = 3, we have

∂

∂t
〈r2(t)〉 = 6D. (3.30)

Since motion at the microlevel is chaotic, Fickian diffusion is only obtained over ‘long’
time scales, making the relation exact in the limit t→∞,

D = 1
6 lim
t→∞

∂

∂t
〈r2(t)〉. (3.31)
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This is the Einstein-Smulowski relation, revealed independently by Einstein (1905)[16]
and Smoluchowski (1906),[17] which relates the macroscopic self-diffusion coefficient D
to the slope of the microscopic mean-square displacements r2 as a function of time.

If we have Nα atoms of a species α, the self-diffusion coefficient Dα for species α is

D = 1
6Nα

lim
t→∞

d

dt

Nα∑
k=1

〈
rk(t)2

〉
, (3.32)

While the relation is generally exact in the limit of infinite trajectories, we can only finite
ones, in practice timespans of picoseconds or nanoseconds. This calls for the question
about how long is ‘long enough’, a question that is not necessarily easy to answer in
advance. During a simulation, we have some options, however. One way is to monitor
the slope of the mean square displacement. If the slope approaches a straight line, that
is a good indication for the validity of the Einstein relation.

3.2. The velocity Verlet algorithm

The trajectory rk(t) of a classical particle k can in principle be found by integrating
Newton’s law of motion

r̈k(t) = 1
mk

Fk(t). (3.33)

with Fk(t) the force acting on the particle (atom) at time t. No analytic expression is
available for Fk(t) (if it was, carrying out a simulation would not be necessary), but
rk(t) can be found in a step-wise manner using finite-difference methods to estimate the
position rk(t+ ∆t) for small ∆t. In principle, using a Taylor expansion to infinite order,
the position can be found for any ∆t, but that would require knowledge about the time
derivatives of rk(t) to infinite order. In practice the expansion has to be truncated at low
order, requiring ∆t to be small to minimize truncation errors. Apart from truncation
errors, which will depend on the specific finite-difference method, all such methods will
be prone to round-off errors, since a small round-off error in each step may grow very
large with very many steps.

The ‘prototype method’ is the Euler method, which makes use of a Taylor expansion to
first order around time t,

rk(t+ ∆t) ≈ rk(t) + vk(t)∆t, (3.34)

where vk(t) = ṙk(t) is the particle’s velocity.

In the Verlet method,[76], here shown in the “velocity Verlet” variant by Swope,[77] we
expand to second order about t,

rk(t+ ∆t) ≈ rk(t) + vk(t)∆t+ 1
2mk

Fk(t)(∆t)2, (3.35)
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and about t+ ∆t, evolving backwards in time,

rk(t) ≈ rk(t+ ∆t)− vk(t+ ∆t)∆t+ 1
2mk

Fk(t+ ∆t)2. (3.36)

Substituting 3.35 for rk(t+ ∆t in 3.36, and solving for vk(t+ ∆t),

vk(t+ ∆t) = vk(t) + ∆t
2mk

[Fk(t) + Fk(t+ ∆t)] (3.37)

In the velocity Verlet algorithm, (3.35) and (3.37) are used in combination to evolve the
positions and velocities simultaneously.

While the Euler method is a one-step algorithm, we see that the Verlet algorithm is
a two-step algorithm, requiring information both from the current and the previous
step. In the initial step, there is no previous step, so positions and velocities have to be
supplied. The initial positions will be discussed in section 4.2, and the initial velocities
in section 3.2.1 below.

The Verlet method requires relatively short time steps compared to more advanced
methods, such as the class of predictor-corrector algorithms, but a major advantage
of the Verlet method is that it exhibits little long-term drift. This is related to the
method being time-symmetric and sympletic (it preserves phase-space volume), unlike
the Euler method and most of the more advanced methods.[73, pp. 61-63]

3.2.1. Initial velocities

For the first step, the positions and velocities (or momenta) of all the atoms have to
be specified manually. The velocities should be sampled from a Maxwell-Boltzmann
velocity distribution (3.18), that is, from a normal distribution

f(vkx) =
( 1

2πσ2

)1/2
e−v2

kx/2σ2 (3.38)

where σ = 1/
√
βmk is the width of the Gaussian and vkx is a single velocity component.

We can get a computer to generate a set of random (or pseudo-random) numbers ξ from
a uniform distribution with a given range, like [0, 1]. To turn these into random numbers
from a normal distribution, we make use of the cumulative distribution function

F (X) =
∫ X

−∞
f(vkx) dvkx =

( 1
2πσ2

)1/2 ∫ X

−∞
e−v2

x/2σ2
dvx, (3.39)

since ξ = F (X) is a uniformly distributed variable in the range [0, 1]. The problem of
sampling f(vx) then consists of solving the equation F (X) = ξ for X. In the most naïve
approach, known as inverse transform sampling, we just find X = F−1(ξ). But since we
don’t have a closed form expression for F (X), a computationally more efficient method is
preferred. A common approach, which is also used in VASP, is the Box-Muller transform
sampling method, which is described very well in [72, p. 101]. From two random numbers
ξ1 and ξ2, two gaussian random numbers X and Y are generated by

X = σ
√
−2 ln ξ2 cos(2πξ1), (3.40)

Y = σ
√
−2 ln ξ1 sin(2πξ2). (3.41)
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3.3. Thermostats

3.3.1. No thermostat

The Hamiltonian (3.3) describes an isolated system, in which the total energy E must
necessarily be a constant of motion. Upon the start of the simulation, a temperature
T (t = 0) is imposed by giving the system a total kinetic energy K corresponding to that
temperature. The potential energy is found by solving the electronic Hamiltonian.

By following the time evolution of such a Hamiltonian, we will sample a microcanonical
ensemble. While the total energy E = K+V is a constant of motion, the kinetic energy
K and potential energy V themselves will fluctuate as energy is exchanged in particle
collisions, and over time the kinetic and potential energy may very well each drift away
from their initial values. And if they do, so does the temperature, according to (3.15).
A most dramatic example of this can be seen in fig. 3.1 below, showing the temperature
and total energy variation for the first 0.5 ps of a 5.0 ps simulation of a system of 62
silicon atoms and a phosphorus atom in a 64-atom cell. The system starts with an initial
temperature of 1400 K, but rapidly drops to a mean temperature of 690 K. Interestingly,
the system remains very stable at this temperature for the remaining 4.5 ps.
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Figure 3.1.: Instantaneous temperature variation for a system with no thermostat, starting
at 1400 K. To be able to see the rapid temperature drop, only the first 0.5 ps of the 5.0 ps
simulation is shown. In the remaining 4.5 ps, the system remained very stable at the
same temperature.

3.3.2. Ad-hoc velocity-scaling thermostat

In thermodynamics, constant temperature is achieved by putting the system in contact
with an infinite heat bath, or with a thermostat. The simplest approach to simulating
a thermostat is to just rescale the particle velocities so that the instantaneous temper-
ature T (t) matches the temperature T of the thermostat. From the definition of the
instantaneous temperature (3.15), we see that rescaled velocities can be introduced as

v′j =
√
T

Tk
vj . (3.42)
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Physically, such a rescaling corresponds to a process where energy is instantaneously
transferred between the heat bath and all the particles. As such, it is not the most
realistic model. Also, there is no inherent clue on how often the re-scaling should be
carried out. Re-scaling the temperature every single step is clearly not a good idea, since
that would result in a delta function distribution instead of the Gaussian distribution
with standard deviation

σT = 〈T 〉
√

2
3N − 3 (3.43)

expected for a canonical ensemble with N particles from (3.23). The number of steps
between rescaling is therefore a parameter that has to be selected such as to obtain
a temperature distribution similar to the temperature distribution for a canonical en-
semble.4

In this work, the rescale periode has been set to 50. Fig. 3.2a shows the resulting instant-
aneous temperature and total energy variations for a 5 ps simulation of the same system
simulated without a thermostat in section 3.3.1 above. In the temperature distribution,
we see that the rescaling results in a strong peak at the thermostat temperature, but
otherwise the shape is quite Gaussian. In particular, it’s satisfying that the distribution
is quite symmetric. If the temperature had dropped between each rescaling in the same
way as it did in 3.1, the result would have been a very asymmetric distribution. The
standard deviation of 110 K is lower than 146 K, the standard deviation for the per-
fect canonical distribution, (3.43), but it was considered acceptably close, and a more
systematic investigation of the effect of varying the rescale period was not carried out,
although it would certainly be interesting.

3.3.3. Nose-Hoover thermostat

While velocity-scaling is a simple and straightforward approach to keeping the thermo-
dynamic temperature constant, it does not sample a canonical ensemble, but rather some
canonical-like ensemble. More advanced thermostat models have therefore evolved, that
accurately sample a canonical ensemble, of which the most popular approaches are those
of Andersen[78] and Nose[79–81].

In Andersen-type thermostats, the temperature is controlled by stochastic collisions with
the heat bath.5 This makes the simulation non-deterministic and the interpretation of
the trajectories somewhat difficult.

In Nose-type thermostats, a heath bath is added as a component s to the Lagrangian,
forming an “extended system” coupled with the original system, from which a new
Hamiltonian can be derived in the Nose-Hoover scheme. The original system is allowed
to exchange energy with the thermostat through variations in s, thus breaking the energy
conservation of the original system, but conserving the total energy of the system plus the
thermostat. The heath bath is associated with an “effective mass” called the Nose mass,
that is used to control the coupling strength. The Nose-Hoover equations of motion are

4In VASP this is the NBLOCK parameter
5 A simple pseudo-code is given in [73, p. 129].
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smooth, deterministic and time-reversible, but may lead to high-frequency temperature
oscillations, and some care must be taken in the choice of the Nose mass.[82]

The simulation carried out above with no thermostat (fig. 3.1) and with velocity-scaling
(fig. 3.2a), was repeated using a Nose-Hoover thermostat. As seen in figure 3.2b, the
thermostat gives a near-perfect Gaussian distribution with a standard deviation of 130 K.
It is worth noting that this is still lower than the expected 146 K for a perfect canonical
ensemble of this size and temperature. It is possible that this is an effect of non-ergodicity,
with the distribution not fully corresponding to the state-averaged distribution, or an
effect of choosing a non-optimal Nose mass.
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(b) Nose-Hoover thermostat

Figure 3.2.: Instantaneous temperature distribution (above) and total energy fluctuation
(below) in a simulation using velocity-scaling (left) and Nose-Hoover thermostat (right),
for a system with N = 62, T = 1400K. A 0.5 ps symmetric running mean is drawn
(black) on top of the raw data (gray). The standard deviation σ is indicated by a solid,
green overlay. In the upper right, the temperature distribution and its standard deviation
is shown, together with a Gaussian (thick black line) with the same standard deviation
and normalisation.

At this point, the Nose-Hoover thermostat may seem superior to the velocity-scaling
thermostat, and it probably is. The choice of using the velocity-scaling thermostat was
taken primarily based on reports of energy drift issues with the Nose-Hoover thermostat
within my group. I’m not sure if this could have been related to the implementation in
VASP, poor choice of parameters, or a more general issue with the method, and I regret
that I did not investigate this further. Yet, the velocity-scaling thermostat does keep the
temperature, produces a quite Gaussian distribution, and its simplicity at least makes
it very transparent.

3.4. Monitoring translational order

Crystals are characterised by the presence of short- and long-range translational order,
and the melting of a crystal is characterised by the loss of long-range translational order.
During a molecular dynamics simulation it can therefore be useful to monitor to what
degree translational order is preserved with a simple parameter.
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For the current purpose we can assume all M atoms are equal, and we can then write
the structure factor as[38, p. 241] a Fourier Transform

FG(R0) =
M∑
j=1

e−iG·R0
j , (3.44)

where G = hb1 + kb2 + lb3 is a vector in the reciprocal lattice, related to a vector in
the direct lattice, R0 = ua1 + va2 + wa3, by ai · bj = 2πδij .

Since the structure factor is in general a complex number, it’s practical to work with
the modulus, which I denote F 0

G = |FG(R0)|. Now, for a real structure with atoms at
positions R, in general different from the ideal lattice sites R0 at any given time, a simple
translational order parameter can be devised from the ratio of moduluses FG/F

0
G;6

λG = 1
F 0

G

∣∣∣∣∣∣
M∑
j=1

e−iG·Rj

∣∣∣∣∣∣ = 1
F 0

G

√√√√√ M∑
j=1

cos(G ·Rj)

2

+

 M∑
j=1

sin(G ·Rj)

2

, (3.45)

using any G vector that gives rise to a non-zero structure factor F 0
G. This parameter

is unity for a perfect crystal, and positive but small, of order
√
M , for a completely

disordered system. The exact value will depend on the choice of G vector(s).

For the diamond structure, we have a conventional (cubic) unit cell with unit cell vectors
of length a aligned to the cartesian unit vectors and a basis of eight atoms. The smallest
G vectors that give rise to a non-zero F 0

G are the [111], [220], [311] and [400] vectors,
with h2 + k +2 +l2 = 3, 8, 11 and 16, respectively. For h + k + l even and divisable by
four, F 0

G = 8 (the number of atoms), while for h+ k + l odd, F 0
G = 8/

√
2.

To illustrate some aspects of the order parameter 3.45, we start with a perfect silicon
crystal, for which the order parameter is unity. We then randomly displace all atoms so
that the mean radial distance between an atom and its associated lattice site 〈|R−R0|〉
is a fixed value. The order parameter is calculated and averaged over a large number of
different random configurations with the same 〈|R−R0|〉. The left part of fig. 3.3 shows
the result on the translational order parameter (3.45) using different G vectors. As we
see, the shorter G vectors are less sensitive to small displacements, such as vibrations.
The right part of the figure shows the effect of the system size. The shaded part is the
standard deviation. In each case, the parameter approaches a value of about

√
M for a

disordered system.

Fig. 3.4 shows an example of melting from an actual MD run with 64 Si atoms and one P
atom at 1600 K, where the system melted after being in a semistable, crystalline state for
almost 29 ps, with 3.4a showing the translational order parameter using three different
G vectors, and 3.4b showing the change in potential energy that also accompanies a
melting (there is no change in kinetic energy); about 0.3 eV per atom. In macroscopic
units, this corresponds to a change in internal energy ∆U = 29 kJmol−1, about half the
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Figure 3.3.: Translational order parameters λ as a function of mean random displacement
from lattice sites.
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(a) Translational order parameter λ
from (3.45).
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Figure 3.4.: Translational order and potential energy per atom for a system with 65 atoms
at 64 lattice sites (one interstitial) at 1600 K which melts after slightly less than 29 ps.



46 3. Molecular dynamics simulations

experimental enthalpy of fusion ∆fusH of pure silicon,7

An even simpler test than (3.45), introduced by Verlet in 1968, just ignores the imaginary
part of (3.45).[85][75, p. 117] This works best with G vectors that give completely real
structure factors for the ideal structure R0, such as [400], which Verlet used;

λ′ = 1
F 0

G

M∑
j=1

cos (G400 ·Rj) = 1
M

M∑
j=1

cos (4πu) (3.46)

This parameter is unity for the perfect lattice, and fluctuate about zero for a completely
disordered system. In 1968 the computationally simpler form of (3.46) over (3.45) may
have been important, but today it is generally not so. However, there is another inter-
esting distinction between the two tests. While (3.45) is origin-independent, (3.46) is
origin-dependent. If all atoms are translated d/4 in each direction, the parameter drops
to zero, even though the translational order is still perfect. Therefore a comparison of
the two tests can act as a quick test to determine if the whole system is drifting or not.

A comparison between the two order parameters is shown in figure 3.5a for a system
with 64 silicon atoms and one phosphorus atom at 1400 K (the experimental melting
point of pure silicon is 1685 K). Note that the extra phosphorus atom introduces a local
distortion into the crystal, but this is quite short-ranged, so the overall translational
order of the crystal is still largely preserved, as reflected in the order parameters.

3.4.1. Handling drift of the reference frame

Comparing the two translational order parameter functions, it’s seen that the whole
system drifts over time in this particular run, although the shift is not easily quantified
from this information alone. There is nothing inherently unphysical about the drift, as
the total momentum is conserved and there is no drift in the mass centre. If an atom
moves 10 Å to the right in a cell with 101 equal atoms, momentum may be conserved
in different ways: by another atom moving 10 Å to the left, by two atoms moving 5 Å
to the left, or by all the other 100 atoms moving 0.1 Å to the left. Thus the effect is to
some extent an effect of the small cell, as a small cell will have a small inertia, making
it more vulnerable for concerted movement of all the atoms than a larger cell.

Whether the drift causes a problem for analysis and needs to be subtracted depends on
whether a fixed reference frame is expected. Having a fixed reference frame becomes
important when comparing the system to another one. In our case we’re interested in
comparing the system to a reference lattice – the perfect diamond structure, so a method
to quantisise the drift was devised: For any given timestep we first assign each atom to
its nearest lattice site and then calculate the drift as the directional median distance

6From microfiche F.25, available online at http://www.ccl.net/cca/software/SOURCES/FORTRAN/
allen-tildesley-book/f.25.shtml See [83, p. 171] for discussion.

7To convert to macroscopic units, we multiply by the Avogradro constant, and convert electronvolts to
kilograms: 0.3 eV×6.022× 1023 mol−1×1.60× 10−22 kg eV−1 = 29 kJmol−1. Enthalpy change ∆H =
∆U + p∆V , but ∆U is normally the dominant term. Experimentally, ∆fusH = 50.2 kJmol−1.[84,
p. 6.130].

http://www.ccl.net/cca/software/SOURCES/FORTRAN/allen-tildesley-book/f.25.shtml
http://www.ccl.net/cca/software/SOURCES/FORTRAN/allen-tildesley-book/f.25.shtml
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between an atom and its lattice site.8 The result is a vector δ(t) that can be subtracted
from the trajectory or added to the reference lattice after appropriate smoothing over
lattice vibrations and minor wiggles; a symmetric running mean over 4 ps was found to
work well. Fig. 3.5b shows the components of the drift vectors before (semitransparent
lines) and after (solid lines) applying such a smoothing.
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Figure 3.5.: Translational order and lattice drift for a system with 65 atoms at 64 lattice
sites (one interstitial) at 1400 K.

8Note that since we have added an extra atom, there will in general be two atoms assigned to the same
site, but if there is no lattice drift the atoms will still be centred about lattice sites.





4. Results and discussion

4.1. Introduction

All calculations were carried out using a 64-atom silicon unit cell with an extra phos-
phorus atom added. When a name is necessary, the system will be referred to as Si64P.
All simulations started from a relaxed structure with phosphorus at an interstitial posi-
tion. The rationale for this choice was given in section 1.3.3.

4.2. Initial structures

Two trajectories with even very minor differences in initial properties (structure and/or
velocities), can easily diverge exponentially from each other due to Lyapunov instabil-
ity.[73, p. 72] Trajectory averages, on the other hand, are relatively stable with respect
to such minor differences. However, since many different interstitial and interstitialcy
positions have been reported in literature (section 1.3), we will look slightly into the
stability of the different structures, to make sure we start from a quite stable initial
position.

Structures were prepared and relaxed with phosphorus at the tetrahedral site, the
hexagonal site, the “classic” bond-centred site (with C3v symmetry) and the split 〈110〉
site. Special interest was taken in the split 〈110〉 site, since it has been identified as the
most stable site in a recent nudged elastic band study.[28] Since there is some freedom
in defining the site, several structures were prepared with slight variations to see if they
would result in the same minimum-energy structure or not. All relaxations were carried
out in a two-step manner using the conjugate gradient method, requiring forces on the
atoms less than 0.05 eV/Å.

The tetrahedral site (fig. 4.1a), where the phosphorus atom is surrounded by four nearest
neighbours, turned out less stable than anticipated from purely geometrical considera-
tions. On the first relaxation attempts, it relaxed into the more stable hexagonal position
(fig. 4.1b), with phosphorus surrounded by six neighbours. It was eventually possible
to relax the tetrahedral configuration, but this indicates that the minimum is a very
shallow one. Energetically, the tetrahedral site is less favourable than the hexagonal and
split 〈110〉 sites by about 1 eV.

The bond-centred 〈111〉 site (fig. 4.1c) is the energetically least favourable of the invest-
igated sites, due to the large distortion effect it has on the neighbouring silicon atoms. In

49
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the relaxed structure, each of the two silicon atoms has moved 0.9 Å away from its ori-
ginal lattice site. It is interesting that the original symmetry is preserved, even though
the relaxation was carried out without use of symmetrisation, illustrating the general
importance of starting relaxations from slightly asymmetric structures.

The figures 4.1d and 4.1e show the two lowest-energy variants of the split 〈110〉 configur-
ation, both close to 0.1 eV lower in energy than the hexagonal configuration. While the
two variants are practically equal energetically, there is considerable variation in bond
lengths, illustrating the relative freedom available in this configuration.

An interesting case is fig. 4.1f, showing a structure that emerged from relaxing a
split 〈110〉 variant, and which I will refer to as just the “triangle” configuration. A
relaxed split 〈110〉 configuration is already shifted in the [110] direction with respect to
the shared lattice site, with Si closer to the lattice site than P. The triangle configuration
can be viewed as a result of further shifting the pair in the same direction. It can be seen
that the structure in figs. 4.1e and 4.1f are not very different, and 4.1e may be viewed
as an intermediate structure between 4.1d and 4.1f.

At the point of identifying the triangle structure, I had not yet seen such a structure
before, and it was therefore quite exciting to later find a very similar structure reported
as the lowest-energy configuration in a NEB study by Harrison et al., referred to as a
bond-centre site,[29] a name I will not use, however, since it conflicts with the classic
bond-centre site with C3v symmetry (fig. 4.1c). In the structure found by Harrison, the
two P-Si bonds are 2.19 Å long, with an angle of 107◦, while the structure in fig. 4.1f
has P-Si bonds 2.22 Å long, with an angle of 101◦. This agreement is satisfying.

Comparing the total energies of the relaxed structures, the triangle configuration is the
lowest-energy configuration. This is in agreement with the NEB study by Harrison,[29]
while the NEB study by Liu[28] identified a split 〈110〉 configuration as minimum. Bond
lengths or angles were not reported by Liu, so it’s not possible to compare the structure
with the structures found here.

4.3. Trajectories

In total, 25 trajectories were simulated at 14 temperatures, ranging from 700K to 1700K.
In addition, an attempt was made running a simulation at 1750 K, but this system
melted almost immediately. At temperatures in the range 1600 to 1700K, the system
could easily melt, but could also remain in a crystalline state for tens of picoseconds.
Excluding the melted parts of the trajectories, the total simulated time was 1036 ps.

Note that simulations were started either from a split 〈110〉 configuration (fig. 4.1e)
or from a hexagonal configuration (fig. 4.1b), not the triangle configuration (fig. 4.1f),
due to initial mistakes in assigning the correct minimum-energy structure. Looking at
the trajectories, it is however apparent that when P starts in the hexagonal position,
it quickly moves into a split 〈110〉-like structure, as exemplified in fig. 4.3c → 4.3d,
and we could expect the same to happen for the triangle configuration, but it is a bit
unfortunate that it was not tested.
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(a) Tetrahedral, −1.188 eV (b) Hexagonal, −2.136 eV (c) Bond-centred 〈111〉,
−0.883 eV

(d) split 〈110〉, −2.214 eV (e) split 〈110〉, −2.215 eV (f) “triangle”, −2.384 eV

Figure 4.1.: Relaxed structures with P in interstitial/interstitialcy positions. The light-
grey bond-framework is the perfect silicon structure with no defects, while the spheres
are the positions of the relaxed atoms, with phosphorus in red and silicon in grey. Bond
lengths are given in Ångstrøm, and should be compared to the equilibrium Si-Si bond
length in this unit cell, 2.37 Å, not the experimental bond length of 2.35 Å (see section
2.10.1). The energies are total energies relative to the total energy of the 64-atom Si-cell
without P. They are not formation energies or bond-energies, and are included only as a
relative measure to compare the configurations.



52 4. Results and discussion

In this section, two specific trajectories will be discussed in some detail, before the more
statistically oriented discussion that follows in the next sections. The first trajectory is a
30 ps simulation at 1000 K, in which a single diffusive jump takes place. This trajectory
shows many features that are quite typical of most simulations. The second example,
at 1300 K, is a more rare case in term of diffusion distance, with phosphorus migrating
about 10 Å during the 90 ps simulation time.

4.3.1. Example 1

Figure 4.2 shows some snapshots and plots from a trajectory at 1000 K, where phosphorus
starts in a split 〈110〉 position, sharing the site labelled 2 with a Si atom. During the
first 18 ps, phosphorus moves between two split positions, centred about site 1 (fig. 4.2d)
and 2 (fig. 4.2c), respectively, and the intermediate position is similar to the “triangle
configuration”. Such a movement is seen in many of the simulations, especially at low
temperatures, with Si-P-Si triangle-like structure moving in a quite correlated way back
and forth between two lattice sites. In this example, the mean Si-P-Si angle is about
112◦.

The stability of the Si-P-Si structure is eventually broken, with P first jumping into
lattice site 2 (fig. 4.2e), pushing the Si atom into forming a Si-Si pair, which after a
few picoseconds returns to push P through a hexagonal site (fig. 4.2f) into a new lattice
site 4 (fig. 4.2g).

The complete phosphorus trajectory is shown in fig. 4.2b, while fig. 4.2a shows its
displacement r(t) (above), and its distance to the three nearest lattice sites (below),
with dashed lines indicating the distances in the initial structure, and the closest lattice
site at any given time is indicated by the colour-coded band at the bottom. Vertical
grey lines indicate the times at which the snapshots in fig. 4.2c–4.2g were taken.

The lattice site distance plot illustrates quite well the jumping back and forth that
takes place in the first 18 ps. Interestingly, P is never stable in the middle position,
the “triangle” position. It is possible that this is a bias arising from starting in the
split 〈110〉, but it seems a bit unlikely for the bias to remain over such a long timespan,
since the Si-P-Si system is far from isolated.

4.3.2. Example 2

Figure 4.3 shows some snapshots and plots from a trajectory at 1300 K. Here, phosphorus
starts in a hexagonal position (fig. 4.3c), but immediately (in less than 200 fs) enters
a split 〈110〉-like position (fig. 4.3d). This is typical for the trajectories that started
from the hexagonal configuration. Interestingly, some of the Si-P-Si dynamic seen in the
previous example, can also be seen here during the first 5 ps, indicating that this type of
dynamics is not an effect of the initial structure. During this timespan, the mean angle
for the Si-P-Si structure is about 115◦.
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for the P atom.
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(d) Si-P pair sharing site 1. (e) P at site 2. A Si-Si pair
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(h) Relaxed final structure.
Note: along [111] direc-
tion.

Figure 4.2.: 30 ps simulation at 1000 K. (c-g) shows 5 selected configurations viewed along
the [1̄11̄] direction, indicated on (a) by vertical grey lines. (h) shows the final structure
after geometry relaxation. Interstitial silicon atoms are drawn with a darker shade than
silicon atoms at lattice sites. Vibrations have beeen smoothed out by a 0.5 ps symmetric
mean.
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Figure 4.3.: 90 ps simulation at 1300 K. (c-f) shows 6 selected configurations, indicated
on (a) by vertical grey lines. Only interstitial silicon atoms are shown.
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After 5 ps, the P atom makes a very short visit to lattice site 1 before returning to a
rotated split 〈110〉-like configuration. At 9 ps it approaches the Si atom at lattice site
2, and effectively changes place with it, through a process that involves many steps and
takes about 10 ps. In the lattice site distance plot in fig. 4.3a it is seen that the P atom
first enters the lattice site at about 12 ps (fig. 4.3e), but then retracts. This is part
of the process where P and Si change places. At about 18 ps, the change of places is
complete, and the P atom can diffuse further in the same direction.

I will not attempt to describe the remainder of the trajectory, since the dynamics is
quite complex, but I have included a snapshot showing a split 〈110〉-like configuration
(fig. 4.3f), which is seen all the time, and also an intermediate hexagonal position (fig.
4.3f), which the P atom rapidly passes through from one site to another, just as in the
previous example.

It should perhaps be stressed that these snapshots are just snapshots, and should thus
not be taken as particularly representative for phosphorus diffusion in silicon in general.
Studying single trajectories may provide some intuitive familiarity with the system, but
with such complex dynamics there is also inherent a great danger of seeing what you
expect to see.

4.4. Melting

The lowest temperature at which the system melted was 1600K (1330 ◦C), making this
an upper limit for the melting point of the system. It is likely that the melting point
is lower though, since a system near its melting point can remain in a metastable state
for a long time, even on a macroscopic timescale. That no melting was seen at 1550K
may be due to the temperature being below the melting point, or just as well due to
metastability.

Figure 4.4a shows an example of a melted system at 1600 K; the lines are 20 ps trajectories
of the 65 atoms in the system, starting after the system melted from its original crystalline
state. It is evident that no long scale order is present, and to be sure the lattice order
parameter (3.45) is ∼ 0.1. If we were to follow a single atom on its journey, however, we
would find some local order, that can be revealed from e.g. the radial pair distribution
function, discussed in section 4.4.1 below.

The difference to the crystalline state, exemplified with 20 ps trajectories in fig. 4.4b, is
of course striking. The example is from a simulation at 1700 K, the highest temperature
for which the system remained in a crystalline state for a considerable time. Yet, while
the system depicted here could melt at any moment, the trajectories are not qualitatively
different from the trajectories obtained at a temperature below the melting point. The
“nests” are larger due to the higher kinetic energy, but they are still centred about
points, and the points are part of a lattice, indicated by the grid for which the lattice
order parameter (3.45) is > 0.8, using G111.

Techniques for determining the melting point from a molecular dynamics simulation are
discussed e.g. by Yoo.[86] A direct approach involves starting from a system where half
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(a) Liquid state at 1600K (kinetic en-
ergy 204 meV/atom)

(b) Crystalline state at 1700K (kinetic
energy 216 meV/atom)

Figure 4.4.: Two 20 ps trajectories of the Si64P system, viewing along the 001 direction,
at the same scale; the scale bar in the lower left is 1 Å.

the cell is crystalline, and the other half is liquid. Using a NPH ensemble, the two parts
may even start at different temperatures, and then equilibrate. Using this approach,
Yoo found a melting point for pure silicon Tm = 1540± 50 K, and also noted that other
DFT-based studies have underestimated the melting point.[86]

With pure silicon experimentally melting at 1687K, and with only a very modest reduc-
tion when phosphorus at doping concentrations is added,[20] our upper limit of 1600K
indicates that the melting point is underestimated in this work as well.

4.4.1. Short-scale order in the melt

Upon melting, long-scale order is lost, while some short-scale order remains. This can be
seen in the radial pair distribution function g(r), defined as the ratio of the average local
atomic (or molecular) density ρ(r) at a distance r from an arbitrary atom (or molecule),
to the bulk density ρ of the liquid;[87]

ρ(r) = g(r)ρ (4.1)

For any given atom in a simulation, the function can be found from counting the number
of atoms N(r, r+∆r) within surrounding shells of thickness ∆r, and average the numbers
over the timespan of the simulation. The shell thickness ∆r must be chosen thin enough
to capture the structure of the function, while thick enough to provide sufficiently large
sampling populations for statistically reliable results. A value near 1/40 the average
interatomic distance is often satisfactory.[75, p. 263] We have

g(r) = 〈N(r, r + ∆r)〉
ρV (r,∆r) (4.2)
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where V (r,∆r) = 4
3π[(r+∆r)3−r3)] is the volume of a shell with radius r and thickness

∆r. The function falls to zero for r → 0 due to repulsive forces between atoms, and
approaches unity for r →∞ quite quickly, since there is no long range order in liquids.
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Figure 4.5.: Si-Si radial pair distribution function for two simulations of a solid system
at different temperatures (upper), and comparison of the Si-Si and P-Si radial pair dis-
tribution functions for the same liquid system (lower), time-averaged over 10 ps in both
cases. The annotated peaks in the lower figure refer to the Si-Si function. Note also the
different scales on the ordinate axes in the upper and lower figure.

The upper part of fig. 4.5 shows g(r) for the crystalline system at the lowest and highest
temperatures simulated. In an ideal, homogeneous liquid, the radial pair distribution
function would be independent of the choice of atom, but the addition of phosphorus
gives rise to a slight inhomogeneity and dependence of selection. To avoid selection bias,
and improve statistics at the same time, the function was therefore averaged over all the
64 silicon atoms. At 700 K, the nearest neighbour peak is centred at 2.36Å, the second
nearest neighbour peak at 3.86Å, and the third-nearest neighbour peak at 4.55Å.1 At
1700 K, the distribution is more smoothed out due to larger vibrations, but otherwise
the same structure can be seen.

The lower part of the figure compares the P-Si and Si-Si radial pair distribution functions
for a system in the liquid state at 1700 K. The P-Si function is more jagged than the Si-Si
function, since the sampling population for the P-Si function is only 1/64 the sampling
population of the Si-Si-function. Apart from that, the functions are similar, with the
P-Si function shifted slightly to the left to the Si-Si function.

Table 4.1 compares the peaks in the Si-Si pair correlation function found here with values
found in the literature for pure silicon.

1 For simplicity, the function was only plotted to a radius 5.94Å, half the side length of the unit cell.
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Only the first two peaks are included, since the third peak is not fully resolved in this
work. While the first peak compares quite well with literature values, the discrepancy
in the second peak is considerable, much larger than what should be expected just from
the addition of a phosphorus atom. One possible reason for the discrepancy is that
the current work was carried out using the canonical (NVT) ensemble, not allowing for
volume change. Experimentally, melting of silicon is associated with a density increase
of about 10 %.[88] In their MD studies, Stich et al. used a density 2.59 g cm−3, about
10 % denser than the density of our system; 2.32 g cm−3.

Source Temp. [K] 1. peak [Å] 2. peak [Å] Coordination no.
This work 1700 2.43 4.00 5.5 or 6.1a

Waseda (1975)[89]b 1733 2.50 3.78 6.4
Stich (1991)[90]c 1800 2.46 3.70 6.5
Stich (1996)[91]d 1700 2.47 3.64 6.2
Ansell (1998)[92]b,e 1603 2.42 3.27 3.95 5.6± 0.5
Ansell (1998)[92]b 1829 2.46 3.45 6.4± 0.5
a See discussion in text
b X-ray diffraction study
c Ab initio Car-Parinello MD at LDA-level
d Ab initio Car-Parinello MD at spin-polarised GGA-level
e supercooled

Table 4.1.: Comparison of silicon radial pair distribution function features (units are Å)

Coordination numbers are found from g(r) by

n(r1, r2) = 4πρ
∫ r2

r1
g(r)r2 dr, (4.3)

In particular, the integration carried out from zero to the first minimum, gives what is
known as the number of nearest neighbours n1(r′) = n(0, r′).[88, p. 7] The integration
process is illustrated in fig. 4.6. As expected, this yields approximately four nearest
neighbours when integrating to the deep minimum found for a system in the crystalline
state. For the shallow minimum found in a liquid state, however, there is considerable
disambiguity in how to evaluate the integral. In fig. 4.6, it was evaluated to the first
minimum in g(r)r2, for which n1(3.04) = 5.5. Evaluated to the first minimum in g(r)
instead, we obtain n1(3.18) = 6.1. With this kind of sensitivity, it’s hard to make much
sense about the absolute numbers, but relatively, the numbers found here are lower than
other values found in the literature, table 4.1, which may again be due to the differing
density.

The radial pair distribution function is interesting in part because it’s readily obtainable
from experiment, using x-ray diffraction. A molecular dynamics simulation provides,
in addition, the microscopic data that makes up the function. In fig. 4.7, the distance
between a silicon atom and its 16 nearest neighbours (4 in ‘first shell’, 12 in ‘second shell’)
is plotted for each of the 64 silicon atoms, with each distance plotted as a small dot. The
data is from a 50 ps simulation at 1600 K, for which the system remained crystalline for
about 30 ps. It can be seen that the first ‘band’ (in black), arising from the four nearest
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Figure 4.6.: Coordination numbers n(r′) from integrating 4πρg(r)r2 for a Si64P system at
1600 K in solid (above) and liquid (below) phase. The parabolic function 4πr2ρ is shown
by dashed lines.

neighbours, is somewhat preserved upon melting. This is of course the first peak in the
radial pair distribution function. The disambuigity in defining the integration limit in
(4.3), discussed above, is also made clear here.

Figure 4.7.: Nearest neighbour distance for the 16 nearest neighbours, for each of the 64
silicon atoms, with black dots for the nearest 4 atoms, and blue dots for the next 12.
From a simulation at T = 1600K which melted at ∼ 30 ps. Average distances are drawn
as lines at the edges only.

4.5. Diffusion

Table 4.2 lists phosphorus and silicon mean displacements 〈∆r〉 =
〈√

∆r2
〉
and diffus-

ivities D =
〈
∆r2〉 /6t, for all the simulations carried out. The angle brackets indicate
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averages over atoms of the same type (1 for phoshorus, 64 for silicon), ∆r2 = [r(t)−r(0)]2
are mean square displacements, and t is either the end of the simulation, or the point at
which the system melted, whichever came first, since only diffusion in the solid state is
considered here.

Temp (K) t (ps) ∆rP (Å) 〈∆rSi〉 (Å) DP (10−6 cm2/s) DSi (10−6 cm2/s)
700 30.0 2.4 0.1 3.32 0.02
800 30.0 2.1 0.1 2.56 0.05
900 28.5 1.2 0.1 0.78 0.02

1000 30.0 4.6 0.2 11.55 0.07
1100 30.0 1.0 0.1 0.56 0.03
1200 30.0 1.3 0.1 0.95 0.05
1300 30.0 1.8 0.2 1.78 0.09
1300 90.0 10.5 0.3 20.38 0.04
1400 60.0 2.9 1.1 2.34 0.90
1400 51.6 3.4 0.5 3.78 0.46
1400 80.0 3.6 1.3 2.71 0.72
1400 90.0 1.9 1.3 0.70 0.81
1450 60.0 4.3 1.2 5.20 1.21
1500 60.0 8.3 0.8 19.15 0.79
1500 80.0 5.1 1.3 5.38 1.03
1500 60.0 6.6 0.8 11.92 0.63
1550 15.0 2.3 0.4 5.64 1.06
1550 60.0 4.3 1.0 5.23 0.77
1600 9.1* 5.1 1.4 46.64 5.15
1600 28.9* 7.1 1.9 29.36 3.63
1600 20.0 2.2 0.2 3.93 0.24
1600 28.4* 4.6 1.8 12.56 3.02
1650 8.5* 3.3 1.4 21.62 5.50
1700 6.2* 1.7 1.2 7.61 6.27
1700 19.8 1.3 0.6 1.32 1.03

Table 4.2.: Mean displacements and diffusion coefficients for phosphorus (P) and silicon
(Si) in the simulations carried out. The times t are the durations of each simulation, or
the duration the system remained crystalline (systems that melted are indicated by *).

There are several issues with calculating diffusivities from the simulation data shown in
the above table. One is the small magnitudes of the displacements. With phosphorus
starting in an interstitial site, a displacement of ∼ 2.3Å constitutes only a movement
from the interstitial site to the neighbouring lattice site (see fig. 4.1). Such a displace-
ment, which was the largest displacement that took place in many of the simulations,
cannot by itself be related to macroscopic diffusion.

Related to this issue, is the issue that the relation D = ∆r2/6t requires r2(t) to be linear,
but with few jumps taking place, r2(t) is generally not very linear. Fig. 4.8a illustrates
this, showing a quite representative simulation, where phosphorus first jumps from the
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initial interstitial site to the neighbouring lattice site, and then later to another lattice
site. While a linear fit can be made, the slope depends quite strongly on the (random)
choice of endpoint. If the simulation for instance had ended after 50 ps, not after 60 ps,
the slope would have been steeper. Several more jumps would be needed to reliably
assign D from 〈r2(t)〉.

As seen in fig. 4.8b, the statistics for silicon is better, since the diffusion accumulates
over all the 64 atoms. This is why calculating the self-diffusion coefficient is a more
tractable problem than calculating the diffusion coefficient of a dopant.
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Figure 4.8.: Mean square displacement 〈∆r2〉 of phosphorus and silicon from a simulation
at 1450K. Please note the different scales of the ordinate axes.

Figure 4.9 is an Arrhenius plot with the diffusivities from table 4.2 plotted on a log scale
as a function of the inverse temperature. The least square fit for the silicon diffusivities is
better than the fit for the phosphorus diffusivities, due to the better statistics. From the
fits, an activation energy of 0.17 eV was found for phosphorus, and 0.58 eV for silicon.
The values are not terribly far off values reported in the literature, but the fits are not
particularly good, and it is clear that longer simulations, or more simulations at each
temperature, would be needed to somehow reliably determine migration energies.
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Figure 4.9.: Arrhenius plot of diffusivities of phosphorus and silicon, with attempted least
square fits. Pearson’s correlation coefficient is −0.36 for phosphorus and −0.79 for silicon.
From the slopes of the fitted lines, the activation energy is 0.17 eV for phosphorus and
0.58 eV for silicon.
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4.6. Jump analysis

Molecular dynamics provides very detailed information about the movements of the
simulated atoms, but the quite chaotic motion that results, especially at temperatures
close to the melting point, can be hard to interpret directly. An attempt was therefore
made to analyse the data in terms of atomic jumps between lattice sites. To do this, we
must first define what is meant by an atom sitting at a lattice site.

In the lattice site distance plots 4.3a and 4.2a for the example trajectories in section 4.3,
we calculated the distance between an atom and its nearest lattice site, and the nearest
site was identified by an index. In doing this, we calculated the distance between the
given atom and all the 64 sites in the ideal silicon lattice, and corrected for drift using
the method described in section 3.4.1.

Having obtained the distance to the nearest lattice site, we must define some threshold
for what it means for an atom to sit on a lattice site. Figure 4.10 shows an example result
from an automated procedure for identifying when the atom sits at a lattice site with
threshold 0.5Å, and also for identifying melting using the translational order parameter.
Using this procedure, figure 4.11 shows the time the P atom spends at lattice sites in all
the simulations using the given threshold.
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Figure 4.10.: Distance to the nearest lattice site for the P atom in a simulation at T =
1400K, with shaded (yellow) regions indicating a distance less than the threshold distance
(0.5 Å). The nearest lattice site is identified by an index. The shaded (red) region to the
right indicates melting, and should be excluded from analysis.

More interesting perhaps, we can find the amount of time τ the P atom remains in an
interstitial position, before moving to a substitutional site, kicking out a Si atom. This
has been tabulated in table 4.3. At the lowest temperatures, phosphorus remains in
interstitial positions for the whole simulation, but at temperatures of 900 K and higher,
phosphorus almost always enters a lattice site during the timespan of the simulation. This
is an activated process, so an attempt was made to determine the activation energy from
the slope of 1/〈τ〉 as a function of 1/kBT , shown in fig. 4.12, leaving out the simulations
where the P atom remained in interstitial positions during the entire simulation, and also
the simulation at 1450 K, since only one simulation was carried out at this temperature.
The slope of the fitted line corresponds to an activation energy of 0.26 eV, but since
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Figure 4.11.: Average percentage of the simulation time the P atom spends at lattice sites
(threshold 0.5 Å).

simulations started from different initial configurations, its possible that the value is a
mean value for slightly different mechanisms.

If a reliable value could be obtained, using data from more simulations with the same
initial configuration, an interesting next question would be how the value compares to
the corresponding time for a silicon atom.

T [K] τ [ps] T [K] τ [ps] T [K] τ [ps] T [K] τ [ps]
700 > 30 1300 > 30 1500 13.25 1600 6.35
800 > 30 1400 3.75 1500 4.60 1600 6.70
900 22.65 1400 37.90 1500 7.90 1650 4.35
1000 19.35 1400 4.50 1550 6.00 1700 1.15
1100 > 30 1400 6.10 1550 6.85 1700 10.30
1200 14.35 1400 9.60 1600 2.45
1300 12.75 1450 2.30 1600 5.80

Table 4.3.: Time τ in ps before the P atom jumps from the initial interstitial site to a
substitutional site.

Finally, it was attempted to quantify the total number of jumps in the simulations. This
turned out not to be very straightforward though.

Here, an atom A is defined to sit on a lattice site X when (a) X has been the nearest
lattice site to A for more than tmin ps, and (b) the distance between X and A has been
less than xmax (not necessarily for any long time). Having defined what it means to
sit on a lattice site, an atom jumps simply when it changes from sitting at one site to
another.

Two different attempts were carried out for calculating the number of jumps for the
single phosphorus atom. In the first “liberal” attempt, the distance criterion is ignored
altogether, but the time criterion is set to 0.3 ps. This should suffice to avoid counting
particularly long vibrations as jumps, but still be short enough to avoid missing jumps
if multiple jumps are made in series. In the second “conservative” attempt, a distance
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Figure 4.12.: Arrhenius plot for interstitial to lattice site jump The Pearson correlation
coefficient is −0.92.

criterion of 0.3 Å is imposed. This should filter out most cases where the atom jumps
from one interstitial position to another.

Table 4.4 shows the results of applying the two attempts for all the runs, illustrating
that very different results are obtained with different jump definitions.



4.6. Jump analysis 65

Temp. Duration Liberal estimate a Conservative estimate b

[K] [ps] Jumps Jump frequency [/ps] Jumps Jump frequency [/ps]
700 30 23 0.767 0 0.000
800 30 20 0.667 0 0.000
900 28 19 0.668 2 0.070
1000 30 19 0.633 1 0.033
1100 30 24 0.800 0 0.000
1200 30 13 0.433 2 0.067
1300 90 43 0.478 12 0.133
1300 30 19 0.633 0 0.000
1400 90 10 0.111 3 0.033
1400 80 4 0.050 1 0.013
1400 160c 27 0.169 5 0.031
1400 60 11 0.183 4 0.067
1400 51 34 0.659 0 0.000
1450 60 5 0.083 2 0.033
1500 60 20 0.333 4 0.067
1500 80 15 0.188 1 0.013
1500 60 26 0.433 5 0.083
1550 15 5 0.333 0 0.000
1550 60 19 0.317 5 0.083
1600 47 35 0.734 5 0.105
1600 20 4 0.200 1 0.050
1600 30 10 0.333 3 0.100
1600 49 42 0.852 5 0.101
1650 15 9 0.600 1 0.067
1700 19 9 0.454 1 0.050

a In the liberal estimate, tmin = 0.3 ps and xmax =∞
b In the conservative estimate, tmin = 0.5 ps and xmax = 0.3 Å
c This run was carried out using a timestep three times larger than the other runs (3 fs vs. 1 fs). It
may not be directly comparable to the other runs.

Table 4.4.: Jumps and jump frequencies of phosphorus in the simulations carried out.
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4.7. Final discussion

The use of ab initio molecular dynamics for studying systems in the solid state is still
quite rare, due to the high computational cost involved. This work was started without
knowing a priori how long time spans could be simulated, nor how long time spans
would be needed to provide reliable statistical results. Use of new PAW potentials and
parameter optimisation showed that only 13 CPU-seconds was needed per ionic step for
a 65-atom system. This led to the generation of about one nanosecond of simulation
data using a quite modest amount of computation time.

Yet a good estimate of the migration energy could not be obtained. This might be due
to simulation times being too short, but perhaps equally well because it’s not really
possible to sample just one mechanism in molecular dynamics. Once the P atom makes
a move to a substitutional site, we are generally not sampling the migration mechanism
anymore.

Molecular dynamics is therefore best suited for finding the overall diffusion parameters,
the same found from experiment, but an activation energy of > 3 eV is out of reach when
using an ab initio potential, at least for diffusion of dopants, where a large number of
atoms needs to be simulated, while only data from a single atom (the dopant) can be
used for analysis.

Simulating the overall diffusion process should, however, be perfectly possible using
an empirical potential. A parametrisation for phosphorus in silicon does probably not
exist, but once such a parametrisation is developed (or found), for instance on the Tersoff
form, the simulation data obtained in this work could be used to test many aspects of
the potential.

Considered the difficulty of isolating a single mechanism in a molecular dynamics, the
analysis of the initial interstitial-to-substitutional time τ appeared to be quite successful.
With a more carefully designed setup (equal initial structures) and more, but shorter
simulations per temperature, it is possible that similar analyses could provide reliable
jump frequencies or activation energies for some jump mechanisms. This could in turn
be useful as input to Kinetic Monte Carlo simulations.
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A. Code

A.1. VMD plugins

For visualisation purposes, the two programs VESTA (Visualization for Electronic and
STructural Analysis) and VMD (Visual Molecular Dynamics) have been used, both free for
non-commercial use. As the name suggest, VMD was developed for visualising trajectories,
while VESTA only supports still structures. But there are other major differences between
the programs. While VMD originates from the biophysics community, VESTA comes from
the crystallographic community. VESTA is therefore better suited for viewing crystals,
and I found that I especially missed a visualisation of, and alignment to, crystal vectors
in VMD. VMD comes with embedded Tcl, so I wrote a plugin first mimicking VESTA’s
Orientation dialogue, and then adding display of crystal vectors, view vectors and some
extras. The plugin is about 2000 codelines, includes a GUI and is quite usable.

In addition, two small plugins were developed, for introducing a cubic clipbox, which
can later be rotated with the molecule, and a progressbar like the one shown in fig. 4.2
and 4.3, which can be useful when producing movies.

The plugins can be downloaded from

https://github.com/danmichaelo/crystallography
https://github.com/danmichaelo/statusindicator
https://github.com/danmichaelo/clipbox

A.2. Python package for working with trajectory data

For analysing trajectory data, a python package of about 5000 code lines was developed
to parse and work with trajectory information from the vasprun.xml files generated
by VASP. Trajectory data is stored internally as NumPy-arrays, making it easy to work
with. Motion across periodic boundaries can be unwrapped, and trajectories can then
be exported as vtf-files, which can be read by newer versions of VMD’s vtfplugin. This
solves the slightly irritating issue with atoms jumping from one side to the other of the
unit cell when viewing trajectories. Parts of the python package are far from complete
however, and may not work at all, but other parts should work very well. It can be
downloaded from

https://github.com/danmichaelo/oppvasp
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