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Abstract

The observed variability in drug response both between and within individuals
remains a challenge in the clinical setting, leading to variable therapeutic outcomes
of drug therapy, from lack of efficacy to adverse drug reactions. Probe drugs
may be utilized in phenotyping studies to characterize specific pharmacokinetic
processes, allowing for greater understanding of the underlying mechanisms behind
pharmacokinetic variability. Pharmacometrics provides a tool to describe and
predict drug disposition at the individual and population level. This thesis presents
the results from three clinical trials employing diagnostic probes.

In the first study, rosuvastatin was used as a probe for OATP1B1 activity in
patients with severe obesity scheduled for Roux-en-Y gastric bypass surgery
(RYGB) or very-low energy diet for weight loss, as well as a non-obese control
group. The overall aim was to disentangle the effect of obesity, RYGB, and weight
loss on OATP1B1 activity. The study concluded that neither gastric bypass
surgery nor diet-induced weight loss affects the activity of the hepatic uptake
transporter OATP1B1 as measured by rosuvastatin oral clearance.

Secondly, the magnetic resonance imaging contrast agent gadobutrol was
employed as a surrogate tracer to characterize human cerebrospinal fluid (CSF)
clearance to blood in patients with various neurological disorders. A population
pharmacokinetic model was developed, and revealed significant inter-individual
variability in CSF to blood clearance, both within and between the various
disorders. This work may contribute to the understanding of CSF dynamics and
the diagnostics of CSF disorders.

Determination of iohexol serum clearance may be used to accurately determine
the glomerular filtration rate (mGFR) for assessment of renal function. In the
third study, a general method for evaluating the robustness of limited sampling
strategies for clearance determination to deviations in sample time was developed.
Additionally, the method allows for the estimation of empirical sample windows,
providing a range of acceptable sampling times, for different degrees of renal
function. This advancement allows for more efficient and accurate monitoring
of kidney function in a clinical setting.

Collectively, these studies demonstrate the role of pharmacometrics and diagnostic
probes in the clinic. The research contributes to the field by providing population
pharmacokinetic models and strategies that aim to improve diagnostic capabilities
and therapeutic interventions through personalized dosing.

ix



Abstract

x



Sammendrag

En utfordring innen moderne legemiddelbehandling er den store variasjonen i
legemiddelrespons både blant og mellom individer. Dette kan føre til ulike utfall av
legemiddelbehandling, fra manglende effekt til bivirkninger. Probelegemidler kan
benyttes til å fenotype pasienter for å karakterisere spesifikke farmakokinetiske
prosesser, som kan bidra til økt forståelse av mekanismene for slik variasjon.
Farmakometri er et klinisk nyttig verktøy som lar oss beskrive og forutsi
omsetningen av legemidler i kroppen både for individer og populasjoner. Denne
avhandling presenterer resultatene fra tre kliniske studier som benytter seg av
probelegemidler.

I den første studien ble rosuvastatin benyttet som en probe for aktivitet i den
hepatiske opptakstransportøren OATP1B1 i pasienter med sykelig overvekt med
planlagt Roux-en-Y gastrisk bypass (RYGB) eller veldig lav-energi diett for
vektnedgang. Pasienter med normal- til overvektig kroppsevekt ble inkludert som
en kontrollgruppe. Studien konkluderte med at verken gastrisk bypass eller diett
påvirker aktiviteten i OATP1B1, ved å undersøke oral clearance av rosuvastatin.

Den andre studien benyttet seg av gadobutrol, et kontrastmiddel for magnetisk
resonans bildetaking, som en surrogat for å karakterisere utskillelsen av
cerebrospinalvæske til blod i pasienter med ulike nevrologiske tilstander. En
populasjonsfarmakokinetisk modell ble utviklet, og avdekket en betydelig mengde
variasjon i evnen til utskillelse av cerebrospinalvæske til blod, både innad og
mellom ulike diagnosegrupper.

Ved å måle deplesjon i plasma av røntgenkontrastmiddelet iohexol kan man
nøyaktig bestemme nyrefuksjon i pasienter. I den tredje studien ble det utviklet en
generell metode for å vurdere robustheten til feil i prøvetidspunkt for begrensede
prøvetakingsstrategier for dette formålet. Denne metoden muliggjør å definere
utvidede vinduer for prøvetaking, slik at bestemmelsen av nyerefunksjon kan bli
mer fleksibel, og kan derfor enklere gjennomføres i en klinisk hverdag.

Samlet demonstrerer disse tre studiene rollen til probelegemidler innen klinisk
farmakometri. Denne avhandlingen og tilhørende verk bidrar til et stadig mer
relevant felt gjennom bruk populasjonsfarmakokinetiske modeller, og strategier
som kan bedre den diagnostiske nytteverdien av prober. Disse resultatene
kan således bidra til mer nøyaktig persontilpasning av legemidler, og bedre
legemiddelbehandling.

xi



Sammendrag

xii



Glossary

CL Clearance

CL/F Oral clearance

C0 Pre-dose concentration, or trough

Cmax Maximum concentration

F Bioavailability

Ka Absorption rate constant

Ke Elimination rate constant

Ki,j Transfer rate coefficient from compartment i to j

Q Intercompartmental bloodflow

Tlag Lag time (of absorption)

Tmax Time to maximum concentration

ABCG ATP-binding cassette super-family G

AC Arachnoid cyst

ADME Absorption, Distribution, Metabolism and Elimination

ATP Adenosine triphosphate

AUC Area under the concentration-time curve

BBB Blood-brain barrier

BCRP Breast-cancer resistance protein

BMI Body mass index

CKD Chronic kidney disease

CNS Central nervous system

CSF Cerebrospinal fluid

CYP Cytochrome P450, a superfamily of drug metabolizing enzymes

EDTA Ethylenediamine tetraacetic acid
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Glossary

eGFR Estimated GFR

GCP Good clinical practice

GFR Glomerular filtration rate

HC Hydrocephalus

IIH Idiopathic intracranial hypertension

iNPH Idiophathic normal pressure hydrocephalus

LED Low energy diet

LSS Limited sampling strategy

mGFR Measured GFR

MLR Multiple linear regression

MRI Magnetic resonance imaging

MRP Multidrug resistance protein

MS Mass spectrometry

NADPH Nicotinamide adenine dinucleotide phosphate

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

NKCC Sodium-potassium-chloride co-transporter

NLME Non-linear mixed effects

NPAG Non parametric adaptive grid

NRIS Norwegian research infrastructure services

NTCP Sodium taurocholate co-transporter

OATP Organic anion-transporting polypeptide

ODE Ordinary differential equation

P-gp Permeability glycoprotein

PC Pineal cyst

popPK Population pharmacokinetics

RYGB Roux-en-Y gastric bypass

SIH Spontaneous intracranial hypotension

TDM Therapeutic drug monitoring

VLED Very low energy diet
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Introduction

Among the main challenges in modern drug therapy is the observed variability
in drug response. Following administration of a drug, a given response may vary
both between and within individuals, referred to as inter- and intra-individual
variability, respectively. Variability in drug response may be attributed to both
pharmacodynamic and pharmacokinetic processes. Pharmacodynamics is the
study of a drugs interaction with an organism, where the resulting effect is a
function of the drug exposure at the site of action, the affinity of the drug to the
target, and the properties of the target in question. Conversely, pharmacokinetics
is the study of an organism’s interaction with the drug, and the disposition of
said drug in the organism. In order to understand the underlying mechanisms of
pharmacokinetic variability, one must first understand the physiological processes
governing drug disposition. These processes may be abstracted to the mass transfer
of drug, for which pharmacometrics provides one of many tools for describing and
predicting such processes.

1.1 Pharmacokinetic variability

As stated, pharmacokinetic variability is recognized as one of the main challenges
in modern drug therapy. Following administration, the disposition of drugs is
determined by the interplay of pharmacokinetic processes. These processes may
be categorized into four distinct, but highly interconnected phases: absorption,
distribution, metabolism, and excretion, the four of which are referred to by their
abbreviation, ADME. A simple visualization is provided in Figure 1.1 below.

1



Chapter 1. Introduction

Oral 
administration

Absorption

Hepatic 
metabolism

Tissue 
distribution

Renal eliminationBiliary excretion

Bloodstream 

Enterohepatic 
recirculation

Intravenous 
administration

Figure 1.1: A simple visualization of pharmacokinetic processes following oral or
intravenous administration of a drug. Following oral administration, and possibly
dissolution, the drug is absorbed in the gastrointestinal tractus. Then, hepatic
metabolism may occur before the drug is distributed to and from the bloodstream,
from which it may further be subject to renal or hepatic elimination. Created with
BioRender.com

Absorption

When a drug is not injected intravenously, it must first be absorbed from the
site of administration. Following oral administration, drugs must pass multiple
barriers, both physical and chemical, in order to reach the systemic circulation
from which it can distribute to its pharmacodynamic target. The acidity of the
gastric juices poses a chemical barrier, and is known to affect the chemical stability
of drugs and bioavailability of drugs.1 Only few drugs are absorbed through the
epithelial lining of the stomach. Rather, the majority requires gastric emptying to
relay the contents to the small intestine, which boasts a greater surface area and
perfusion to facilitate uptake of drugs and nutrients alike. Gastric emptying has
been found to vary even in healthy individuals, and is thought to be affected by
factors such as age, sex, and obesity.2 Throughout absorption, various fractions
of the drug may be lost, and the fraction reaching systemic circulation is termed
bioavailability. This fraction, symbolically represented as F , is considered the
product of the fraction of drug absorbed in the lumen (FA), the fraction escaping
metabolism by the gut-wall (FG) and liver (FH), respectively. As drug exposure is
limited by bioavailability, interindividual differences in gastrointestinal physiology
is a significant contributor to overall pharmacokinetic variability.3

Distribution

Immediately after administration, drugs distribute from the site of administration.
While there is no clear distinction between absorption and distribution, the latter
usually refers to distribution of drugs to and from systemic circulation, while the
former relates to distribution from the site of administration. Overall distribution

2



1.1. Pharmacokinetic variability

is considered the sum of passive diffusion and active transportation. The degree
of passive diffusion across tissue barriers such as the intestinal wall is governed by
the physiochemical properties of the drug, the permeability of the membrane, and
tissue surface area. Active transportation, whether influx or efflux, requires energy,
either from energy sources such as adenosine triphosphate (ATP) or nicotinamide
adenine dinucleotide phosphate (NADPH), or from concentration gradients of e.g.
hydrogen ions.4 While influx transporters facilitate uptake of drugs and nutrients,
efflux transporters provide protection against xenobiotics, reducing exposure. The
intestine is rich in such transporters, such as permeability glycoprotein (P-gp),
multidrug resistance-associated proteins (MRPs), and more.5, 6 However, such
efflux transporters are also abundant in the liver, kidney, and the blood-brain
barrier.7, 8 Additionally, most drugs exhibit some affinity for plasma and interstitial
proteins, such as albumin or α-1 acid glycoprotein, forming a (usually) reversible
protein-drug complex. Such binding can greatly alter the disposition drugs, as
the complex constitutes a reservoir of drug, increasing the apparent volume of
distribution, and prolonging the biological half-life. Only the free fraction of the
drug, that which is unbound, is able to distribute freely. With some exceptions,
bound drug is sterically hindered from interaction with most targets. As such, as
a rule of thumb, only unbound drug may exert a pharmacologic effect.

Metabolism

In the context of pharmacokinetics, metabolism refers to the biotransformation
of drugs, and may be categorized into two distinct phasesI, I and II. During
phase I metabolism, drugs are subject to oxidation, reduction, or hydrolysis. In
contrast, phase II metabolism refers to processes where a hydrophilic group is
added to, or conjugated with, the drug, such as methylation, glucuronidation,
acetylation, sulfation, or conjugation.9 In both cases, drugs are made more
hydrophilic, reinforcing renal elimination. Of great interest is the cytochrome
P450 (CYP) superfamily of enzymes, which is known to metabolize approximately
75% of clinically used drugs.10 Due to the high abundance in human liver,
but also the small intestine, they limit drug bioavailability through first-pass
metabolism. However, inter-individual variability in both expression and function
of CYP enzymes, due to intrinsic and acquired factors, contribute to high
variability in drug bioavailability and clearance, and as such drug exposure.11

Age, disease, foodstuffs and drug-drug interactions are well known modulators of
CYP expression and activity. Furthermore, several microorganisms are capable of
similar drug biotransformation, and drug-microbiota interactions are considered
a potential source of interindividual variability.12 This is especially true in the
case of mycophenolic acid, an immunosuppressant commonly used in solid organ
transplantation, where the microbiome cleaves the biliary excreted glucuronide
metabolite, facilitating enterohepatic recirculation of the parent drug, accounting
for approximately 40% of total systemic exposure.13, 14, 15 In some cases, drugs
are administered in their less active or inactive form, and are activated by

IThis term is one of many misnomers in pharmacology as both phases may occur
simultaneously, or sequentially in any order. A more fitting description would be "category".
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Chapter 1. Introduction

biotransformation, so-called prodrugs. As such, metabolism is not synonymous
with inactivation.

Excretion

Several processes facilitate the removal of drug from the body, preventing buildup
of possibly toxic substances. Among the main organs responsible for excretion
are the kidney, liver, and lungs. The kidneys are essential for elimination of both
endogenous and exogenous substances, and many drugs and/or their metabolites
exhibits at least some renal elimination, especially following biotransformation.
The process of renal elimination is considered the sum of glomerular filtration,
tubular secretion, and reabsorption. The former is the result of filtration through
a capillary network in the glomerulus, where unbound small-molecular substances
such as water, salts, sugars, and creatinine diffuse to the lumen of the proximal
tubule. Tubular secretion and reabsorption are mostly active processes, mediated
by the many transporters found in the kidney.8 The resulting urine, and the
solutes not reabsorbed, are eliminated following their passage down the ureter
to the bladder, from which it is expelled. Renal elimination can vary greatly
between individuals, and is known to decrease with age. In contrast, hepatic
elimination is mediated by the hepatobiliary system. Following hepatic uptake of
drugs, by passive diffusion or hepatic uptake transporters such as the organic anion
transporting polypeptide 1B1 (OATP1B1) and more, drug may transfer to the
bile canaliculus.16 This transfer is mediated by several drug transporters, including
multidrug resistance-associated protein 2 (MRP2), breast-cancer resistance protein
(BCRP), and more.17 Bile is collected in the gallbladder, with a capacity of
approximately 40-70 mL, and emptied in the intestinal lumen.18 The concentration
of drug in bile may be much greater than that in plasma, as a result of selective
transport and subsequent enrichment.19 Drug in bile may further be repeat
absorbed in a process referred to as enterohepatic recirculation.18 On the other
hand, pulmonary excretion is primarily observed for volatile, small-molecular
substances, such as anesthetics. While such substances are able to diffuse across
lung epithelial cells, the lungs are also rich in efflux transporters such as P-gp,
BCRP, and MRPs.20, 21 Following entry into the alveolar space, they may be
exhaled and as such eliminated from the body. Reduced excretion of any kind
may lead to potentially toxic buildups of both endo- and exogenous substances,
and constitutes as such an important aspect of pharmacokinetics.

1.2 Pharmacokinetic challenges in select patient
populations

The aforementioned pharmacokinetic processes facilitate mass transfer, biotrans-
formation, or excretion of drugs. Several diseases and conditions are known to
affect such processes, and a select panel of such patient populations are intro-
duced below.

4



1.2. Pharmacokinetic challenges in select patient populations

1.2.1 Patients with severe obesity

The prevalence of obesity is of epidemic proportion — across more than 70
countries, the prevalence has more than doubled from 1980 to 2015.22 In Norway,
the prevalence of adult obesity is estimated to 25%.23, 24 Characterized by an
excessive accumulation of adipose tissue, it is most commonly categorized using
the body mass index (BMI), relating total body weight to height (Table 1.1).
However, BMI alone has been scrutinized as an imperfect classification aid, as it
does not assess body fat, among other reasons25, 26. This is substantiated by the
fact that all-cause mortality was found to be similar across a wide range of BMI
categories, but still greatly increased for BMI ≥ 30 kg m-2.27

Table 1.1: Classification of body mass index (BMI).

Classification BMI (kg m−2)
Underweight < 18.5

Normal weight 18.5-24.9
Overweight ≥ 25

Obesity ≥ 30
Severe obesity ≥ 40†

†Or BMI ≥ 35 kg m−2 with obesity-related complications.

Still, obesity has been identified as a risk factor for several detrimental
comorbidities, such as diabetes mellitus type II, cardiovascular disease, cancer,
and chronic kidney disease.22 Additionally, obesity is associated with increased
prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic
steatohepatitis (NASH).28, 29 Such disease of the liver is known to affect the
expression and activity of several drug metabolizing enzymes, further contributing
to inter-individual variability.30 Similar alteration has been shown for drug
transporters in both rodent models and humans.31 As such, physiological changes
associated with obesity are a source of pharmacokinetic variability. Compared to
a normal weight population, several aspects of drug disposition have been shown
to be altered in patients with obesity, and predicting these effects has proven
a difficult task.32 The volume of distribution, especially for lipophilic drugs, is
expected to increase proportionally with increased fatty mass. However, the
direction of change in volume of distribution, when adjusted for body weight,
is bidirectional.33 Additionally, activity in drug-metabolizing enzymes for a range
of substrates have been found to significantly vary between individuals with and
without obesity.34 Allometric scaling has been suggested as a method to predict
changes in drug disposition, where e.g. clearance is scaled with total body weight
(TBW), such as in Equation 1.1 below, demonstrated in Figure 1.2.35

CLobese = CLreference ·
(

TBW
70

)0.75

(1.1)

An example of the effect of allometric scaling is shown in Figure 1.2 below.
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Chapter 1. Introduction

Figure 1.2: An example of allometric scaling of clearance, where the reference value is 10
L h−1 for a 70 kg individual.

A typical value of P varies between 0.75 to 1, so-called fixed exponent scaling.
The value of P may also be fitted, e.g. using ordinary least-squares regression. For
a range of drugs with varying lipophilicity, fixed-exponent allometric scaling was
shown to be inferior for predicting clearance, but not volume of distribution, when
compared with a fitted exponent.35 Furthermore, body weight is often normalized
to 70 kg, or a “standard man”, the existence of which has been called into
question.36 Alternatively, the mean or median of the reference population may
be used.

The main treatment for obesity is weight loss, effectuated by a reduced caloric
intake, increased physical activity, pharmacological therapy, or bariatric surgery.
Of these, bariatric surgeries, such as the Roux-en-Y gastric bypass (RYGB)
procedure has shown superior long-term effects both in terms of sustained weight
loss and remission of type 2 diabetes.37, 38 During the procedure, the proximal
stomach is reduced to a small, gastric pouch of approximately 35-50 mL, directly
anastomosed to the distal jejunum, thus bypassing approximately one meter
of the distal small intestine, as shown in Figure 1.3.37, 39 This gastrointestinal
rearrangement leads to malabsorption and subsequent weight loss. However,
the extent to which RYGB and/or weight loss affect the disposition of drugs
remains to be fully characterized and is vital for safe and precise dosing of drugs
following RYGB and/or weight loss. While the impact of such intervention has
been somewhat studied for drug metabolizing enzymes, drug transporters has
received less focus.40 A transporter of interest is the hepatic uptake transporter
organic anion transporting polypeptide (OATP) 1B1, or OATP1B1 for short.41

The transporter is exclusively expressed in hepatocytes, and mediates uptake
of both exogenous and endogenous compounds from blood, such as bile acids,
statins, antibiotics, immunosuppressants, anti-cancer drugs and more.42, 41, 43

Several sequence variants have been identified in SLCO1B1, the gene coding for
OATP1B1, with clinical implications. One of the most prevalent and studied
is the c.521T>C (rs4149056) reduced function variant, which is associated with
increased risk of adverse drug reactions in patients treated with simvastatin and

6



1.2. Pharmacokinetic challenges in select patient populations

rosuvastatin.44

Figure 1.3: A simplified, anatomical overview of the gastrointestinal tractus following
Roux-en-Y gastric bypass surgery. Red arrow signifies flow of foodstuffs, while the green
arrow signifies flow of gastric juices. Created with BioRender.com

Rosuvastatin is an established and preferred probe for assessing OATP1B1
activity, owing to its sparse metabolism and low degree of diffusion into
tissue.45 In fact, OATP1B1 contributes to 49-86% of rosuvastatin hepatic uptake,
with some contribution from sodium taurocholate co-transporting polypeptide
(NTCP).46, 47, 45, 48 Approximately 70% of rosuvastatin total clearance is hepatic,
and predominantly through biliary excretion mediated by canalicular transporters
such as breast cancer resistance protein (BCRP) and permeability-glycoprotein
(P-gp).49, 50 The excreted drug may in turn be reabsorbed in a process referred
to as enterohepatic recirculation, which has been readily described in the case of
rosuvastatin.19, 50

1.2.2 Patients with cerebrospinal fluid disorders

The brain is the central organ of the nervous system (CNS), and is enveloped in
cerebrospinal fluid (CSF), providing necessary buoyancy and fluid homeostasis.
CSF is produced at the choroid plexuses, a vascularized structure which protrudes
into the four ventricles of the brain.51 For completeness, the general anatomy
of the brain is depicted in Figure 1.4. While previously thought to be an
ultrafiltrate of plasma, it is now known that CSF production is the result of active
fluid secretion, mediated by Na+/K+-ATP-ase, sodium-potassium-chloride co-
transporter-1 (NKCC1) and HCO3-transporters.52 However, despite its importance
in brain homeostasis and role in neurological disease, there is still much dispute
regarding both CSF production and turnover.53, 54

Drug access to the CNS and CSF is limited, due to the protective capabilities of
the blood-brain barrier (BBB). The BBB is not a physical barrier, but the result
of endothelial cells with tight junctions lining the cerebral capillaries and spinal
cord, limiting passive diffusion.55, 56 For drugs to passively cross the (healthy and

7
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Figure 1.4: An anatomical overview of the brain from the saggital (left) and coronal
(right) plane. The coronal plane is cut at the basal ganglia. Created with BioRender.com

intact) BBB, an upper limit in molecular mass of approximately 400-600 Daltons
has been suggested, in combination with a high degree of lipophilicity (log P <
5).57, 58 Additionally, the BBB is rich in efflux transporters such as P-gp, BCRP,
and other multidrug resistance-associated proteins (MRPs), further limiting the
CNS availability of orally and intravenously administered drugs.59, 60 When direct
access to the CNS is required, alternative strategies for administration must be
considered. Intrathecal injection provides direct access to CSF in the subarachnoid
space, which communicates with the CNS. While several drugs are administered
intrathecally, for example for treatment of chronic pain, there is limited knowledge
on CNS drug disposition, especially clearance, following such administration in
humans.61

Recent research provides evidence of a glia-lymphatic (glymphatic) system for CSF
egress, which was first considered in 2012, using a two-photon imaging approach
to investigate CSF flow in rodent brain.62 It is believed that impaired glymphatic
function plays an important role in the pathogenesis of neurological disorders such
as Alzheimer’s and Parkinson’s disease.63 Through increased formation or reduced
elimination, an abundance of CSF may increase the intracranial pressure, leading
to hydrocephalus, characterized by active distension of brain ventricles.64 Reduced
elimination may also lead to a build-up of possibly neurodegenerative metabolites
and byproducts. Thus, individual measurements of CSF clearance may provide
additional insight into the etiology and diagnostics of CSF disturbances.

A gold standard for the measurement of glymphatic clearance has not been
established. However, off-label intrathecal injection of the magnetic resonance
imaging (MRI) contrast agent gadobutrol has shown promise.65 Gadobutrol is
a macrocyclic, gadolinium-based contrast agent, and is considered a second-
generation tracer. The pharmacokinetics of intravenously administered gadobutrol
has been well researched — it exhibits no metabolism, but is excreted unchanged
in the kidneys, with no relevant extrarenal elimination.66 Deposition and retention
of gadolinium in the brain has been a concern. However, following intrathecal
administration of 0.5 mmol of gadobutrol, no retention was found in the brain
stem or cerebellum.67 As such, intrathecal injection of up to 0.5 mmol is considered
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safe.68 In contrast, when administered intravenously, a dose of 0.1 mmol kg−1 is
recommended. In a large single-center study, the rate of adverse events in patients
receiving gadobutrol was relatively low, approximately 20 per 10 000 injections, or
0.2%.69

In a pilot study evaluating the clinical applicability of intrathecally administered
gadobutrol, a preliminary population pharmacokinetic model was developed.65 In
brief, the predicted whole blood pharmacokinetic profiles of gadobutrol varied
significantly between disease groups, possibly providing additional insight into the
pathophysiology of CSF disorders. As such, additional research into the variability
and mechanisms of glymphatic clearance is warranted.

1.2.3 Patients with impaired renal function

Through injury, disease, or age-related decline, the kidneys’ ability to filter may
be compromised, either acutely or chronically.70 The kidneys are imperative for
the excretion of both endogenous and exogenous substances, including drugs.
Directly, renal impairment may lead to accumulation and potential toxicity of
drugs as a result of reduced elimination. This is especially challenging for drugs
exhibiting mostly renal elimination, and are associated with nephrotoxic effects,
such as the antibiotic vancomycin.71 Additionally, the accompanying buildup of
uremic toxins is known to indirectly affect several aspects of drug disposition,
including absorption, distribution, and metabolism.72, 73 The most common index
of kidney function is the glomerular filtration rate (GFR), which is used both for
dose adjustment of drugs and diagnostics alike. Based on the GFR, patients may
be categorized into various stages of chronic kidney disease (CKD). CKD is mainly
defined by a sustained (> 3 months) reduced filtration capacity of the kidneys, or
presence of kidney damage markers (Table 1.2).74 A global meta-analysis from
2016 estimated that the prevalence of CKD stage 1-5 was 13.4%, and 10.6% for
stages 3-5, and is expected to increase along an aging population.75

Table 1.2: Classification of chronic kidney disease (CKD) according to the 2012 KDIGO
guidelines.76

Stage Description GFR (mL min−1 1.73 m−2)
1 Normal or high ≥ 90†

2 Mildly decreased 60-89†

3a Mildly to moderately decreased 45-59
3b Moderately to severely decreased 30-44
4 Severely decreased 15-29
5 Kidney failure < 15

†Only in the presence of kidney damage markers.

Several methods have been suggested to determine either an estimated (eGFR)
or measured (mGFR) GFR. Methods for eGFR rely on multiple linear regression
(MLR) involving an endogenous biomarker, such as serum creatinine (SCR), and
demographic variables such as age, sex, body weight, and more. Examples of
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equations for eGFR using Cockroft & Gault (Equation 1.2) and the 2021 version
of CKD-EPI (Equation 1.3) is provided below, where age is in years, weight in
kilograms, and serum creatinine (SCR) is in mg dL−1.77, 78

eGFR = (140 − Age) · Weight
72 · SCR

· βsex

βsex =
0.85 if Female

1 if Male

(1.2)

eGFR = 142 · min
(

Scr
κ

, 1
)α

· max
(

Scr
κ

, 1
)−1.2

· 0.9938Age · 1.012

κ =
0.7 if Female

0.9 if Male
, α =

−0.241 if Female
−0.302 if Male

(1.3)

However, these represent only a fraction of the more than 70 equations previously
proposed to estimate eGFR.79 Despite the many variations of, and the increasingly
larger datasets they are developed on, MLR based approaches to estimate GFR
are still considered inaccurate.80, 79 This is unsurprising from a pharmacometric
perspective — population point estimates generally perform worse than individual
predictions. Still, such models are considered clinically useful for gauging renal
function.

When additional accuracy is desired, the measured GFR (mGFR) may be
determined, by measuring the renal clearance of an exogenous tracer, either
through urine collection (renal clearance) or by measuring plasma depletion
(plasma clearance). The ideal tracer should be freely filtered by the glomeruli,
exhibit no active secretion or reabsorption, and have little to no plasma protein
binding. Several tracers are commercially available, such as inulin, iohexol
and iothalamate, and the radioactive tracers 51Cr-EDTA, 99mTc-DTPA. Inulin
possesses all the properties of an ideal tracer, and its urinary clearance is considered
the gold standard for determination of GFR.81 However, its measurement is both
expensive and time-consuming, and is as such not ideal for routine use in the
clinical setting.82 The alternative choice of tracer is not arbitrary, but when
compared to inulin clearance measured under continuous infusion with urine
collection, renal clearance of 51Cr-EDTA and iothalamate, as well as plasma
clearance of 51Cr-EDTA and iohexol, were found to be accurate.83 Importantly,
when used for the determination of mGFR, iohexol demonstrates an excellent
safety profile.84 Additionally, it can be reliably and accurately measured at low
cost.85

Population pharmacokinetic methods provides a framework for measuring plasma
clearance of tracers, and several models for plasma iohexol clearance has been
developed.86, 87, 88 However, such methods usually rely on several blood samples
over an extended period of time for accurate parameter estimation. Limited
sampling strategies (LSS) aim to reduce the number of samples required, and
the time window during which they are collected. For iohexol plasma clearance,
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such strategies have been shown to accurately determine GFR using as few as four
samples within five hours.86

1.3 Fundamental principles of pharmacometrics

Pharmacometrics is a multidisciplinary field, integrating mathematical and sta-
tistical modelling with pharmacology, clinical pharmacokinetics, and pharmaco-
dynamics. The main objective is to quantitatively describe and/or predict drug
disposition at the population or individual level. This requires three components:
a structural model (M), description of dose input (D), and model parameters
(θ).89 For a given model, the response (Y) may be summarized as in Equation 1.4
below.

y(t)︸︷︷︸
Y

= f(x(t),
D︷︸︸︷

d(t), θ) + ϵ︸ ︷︷ ︸
M

(1.4)

In this example, the response of interest, y(t), is the predicted drug concentration
over time, which itself is a function of the current amount of drug over time,
x(t), the dosing input, d(t), and the model parameters, θ. An error term, ϵ, is
included to account for residual variability. These elements are elaborated on in
the following sections.

1.3.1 Pharmacokinetic models

In its essence, a model is a simplified representation of a system. In the context of
pharmacokinetics, such models aim to represent drug disposition in a finite number
of compartments, where a compartment is an abstraction of a bodily space, e.g.
plasma or peripheral tissue.90 In population pharmacokinetics (popPK), models
are typically restricted to a low number of compartments, usually three or less.
By employing ordinary differential equations (ODEs), it is possible to describe the
rate of change in each compartment. There is no inherent limitation on how these
rates are modelled, but such processes are often modelled as zero-order (constant),
first-order (proportional), or Michaelis-Menten kinetics (parameterized over Km

and Vmax).91 A simple example of a one-compartmentalII model is provided below
in Equation 1.5.

dA1

dt
= −Ka · A1

dA2

dt
= Ka · A1 − Ke · A2

(1.5)

IIIn this example, “one-compartmental” is a misnomer, as the model technically consist of
two compartments. However, the absorptive compartment is usually not included in the tally.
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Here, A1 and A2 represents the amount of drug in the absorptive compartment
and plasma, respectively. The model is visualized in Figure 1.5 below.

A1 A2
Ka

Ke

Figure 1.5: Visualization of a one-compartmental model, with first-order absorption from
A1 to A2, and first-order elimination from A2

Simple models such as the one in Equation 1.5 may be solved by integration to
provide an analytical solution. Assuming the initial conditions t = 0, A1 = D,
and A2 = 0, we obtain Equation 1.6 below.

X1(t) = D · e−Ka·t

X2(t) = D · Ka

Ke − Ka

· (e−Ka·t − e−Ke·t)
(1.6)

However, as the number of compartments grow, these analytical solutions may
become unwieldly or be undefined. More complex models may be solved by e.g.
Laplace transformations, but this will not be covered in this section.92 Note that we
model the amount of drug, and not the concentration. For this, another parameter,
the apparent volume of distributionIII, abbreviated Vd, is required. The output
equation thus becomes Equation 1.7.

Cplasma(t) = A2

Vd

(1.7)

For the example values of Ka = 1.2 h−1, Ke = 0.8 h−1, Vd = 10 L, and D = 100 mg,
the plasma concentration over time is shown in Figure 1.6.

IIIGiven its non-physiological properties, Vd may be considered a scaling parameter.
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Figure 1.6: Example output from a one-compartmental pharmacokinetic model, showing
plasma concentration over time.

It is important to reiterate that no model can fully and truly mirror a biological
system. Models are approximative in nature, and should first and foremost be
judged by their usefulness rather than correctness. Still, model development should
be guided by the underlying pharmacokinetic principles.

1.3.2 Pharmacokinetic data

The term “pharmacokinetic data” is appreciably ubiquitous but refers in this
context to data from which pharmacokinetic information may be derived. Over
the last couple of decades, major advances in the field of analytical chemistry
have increased the availability and cost-effectiveness of drug quantification,
allowing for richer sampling with greater precision and accuracy. Nevertheless,
there is an inherent error in all observations, which must be considered during
model development, and especially for parameter estimation.90 For further
argumentation, a formal definition of such observations is required. Let Y be the
vector of observed data, where yi is the ith observation at time ti. We assume that
the observations in Y are independently, but not necessarily identically, sampled.
When this distribution is Gaussian, the noisy measurement is considered as in
Equation 1.8 below.

yi = µi + σi · ni (1.8)

Here, ni is considered a zero-mean Gaussian distribution, i. e. ni ∼ N (0, 1),
and scaled by σi to the desired level of uncertainty. This is important, as the
measurement uncertainty is not necessarily the same across all ranges, especially
as the measurement approaches the upper or lower limit of quantification. One
approach to estimating σi is to model the measurement assay uncertainty, usually
at the level of the calibrators used, as the true concentration is known, and they are
repeatedly sampled across multiple batches. In the modelling software Pmetrics,
this is achieved by modelling the uncertainty as an error polynomial, outlined in
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Equation 1.9, where σ is the standard deviation of a given observation (yi).93 As
such, it is possible to weight each observation by their uncertainty, usually by the
reciprocal of the squared error (1/σ2).

σ = C0 + C1 · y + C2 · y2 + C3 · y3 (1.9)

The representation of data is a crucial element in pharmacokinetic modelling,
especially for repeated measurements, possibly at multiple occasions. There are
several methods for adjusting for, or estimating the effect of, intraindividual
variability, which in turn affect parameter estimation. While the methods
for parameter estimation will be introduced later, assume that the estimated
parameters for the ith individual is θ̂i, which is a function of the vector of
observations Y, where Yi,j represents the observations for the ith individual at
the jth occasion, and model M

θ̂i =
θi = f(M, Yi,1, Yi,2, . . . , Yi,n)

θi,j = f(M, Yi,j)
(1.10)

Evidently, θ̂i will depend on the choice of handling inter-occasion variability —
determining if all observations for that individual be considered, providing a
common estimate, or if the estimate be produced for the pseudo-individual, coded
by the occasion. Notably, occasion may also be modelled as a covariate effect,
which is considered in the following section.

1.3.3 Pharmacokinetic parameter estimation

Given a structural model M and a set of observations Y following input D, the task
of estimating the most likely parameters follows. Depending on the assumptions
regarding the distribution of parameters θ, two different, but similar approaches
are considered: parametric and non-parametric. An expert discussion on their
differences has been conducted by Goutelle, Woillard et al. (2022), and as such
their differences will be introduced, but not contrasted, in this section.94 Briefly,
parametric approaches assume that the distribution of parameters follows known
distributions, such as the normal or log-normal distribution.95 This assumption is
embodied in Equation 1.11 below for the normal and log-normal distribution.

θi = θ + ηi

ln θi = ln(θ + ηi) or θi = θ · eηi
(1.11)

Where the parameter value for the ith individual is considered the sum of a fixed
effect, i. e. θ, representing the population mean, and a random, individual effect,
ηi, representing the deviation from the mean. The element η is assumed Gaussian
with a mean of zero and variance equal to ω2. This approach to population
pharmacokinetic modelling is referred to as mixed effects modelling, and because
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the change in response is non-linear to changes in θ, it is referred to as non-linear
mixed effects (NLME).

In contrast to parametric approaches, non-parametric methods make no
assumptions regarding the underlying distribution of parameters. A common
motivation for the non-parametric approach is paraphrased as follows; assume
that by some method, the parameter value(s) for a population is precisely known
— then, the distribution which best describes the population is the empirical
distribution of the exact parameters.96 Rather than estimating a single mean
and variance for each parameter, the distribution consists of discrete, possibly
multidimensional, support points. The location and weight of the support points
themselves provide the joint parameter distribution. Importantly, this assumption
limits the maximum number of support points to the number of individuals. An
example of a parametric and non-parametric distribution for a one-compartment
model parameterized by Ke and Vd is provided in Figure 1.7 below.

Figure 1.7: Example of a parametric (left) and non-parametric (right) distribution of
parameters Ke and Vd.

Both approaches may also utilize information on covariates, demographic variables
providing information at the individual level. The covariate model depends on the
properties of the covariate in question. Continuous variables may be modelled
similar to the allometric scaling suggested in Equation 1.1. Categorical variables
may be one-hot encoded, as demonstrated in Equation 1.12 for modelling the
influence of biological sex on CL, where values are restricted to male or femaleIV.

CL = CLBASE + CLSEX · β

β =
1 if Male

0 if Female
(1.12)

IVSuch encoding is also possible for categorical variables with more than two levels, but
necessitates a coefficient for each level, increasing the dimensionality.
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This model implies a population average, CLBASE, and an additional, estimated
effect for sex, CLSEX, which is only present when the covariate codes for male.
Similar approaches may be used for modelling inter-occasion variability, either
through a continuous effect or one-hot encoding for each occasion, being aware
of the added dimensionality. It is important to be aware that the inclusion
of covariates will affect the distribution of the covariate-influenced parameter,
and possibly others. As such, covariates must be carefully selected in order
to avoid potential bias.97 Covariate inclusion should thus be considered only
after the structural model has been determined.98 Furthermore, decision rules for
covariate inclusion should primarily be based on domain knowledge, but may in
exploratory studies use methods such as forward and backwards selection.99 It has
been suggested, but ultimately not shown, that covariates may be more useful in
parametric approaches compared to non-parametric.94

Given the brief differentiation of parametric and non-parametric approaches, the
mathematical methods for parameter estimation itself will not be introduced
further, due to the vast heterogeneity in such methods, ranging from ordinary
least squares, expectation maximization, maximum likelihood estimation, and even
stochastic variants of those.100 However, due to its relevance in this work, the non-
parametric adaptive grid (NPAG) algorithm will be presented in the following
section.

1.3.4 The non-parametric adaptive grid (NPAG) algorithm

The NPAG algorithm was developed and is maintained by the Laboratory of
Applied Pharmacokinetics and Bioinformatics, Los Angeles, USA.93 As this work
relies heavily on this algorithm, it will be briefly introduced, based on the
description provided by Yamada, Neely et al. (2021).96 Given a structural model,
often defined as a set of ordinary differential equations, the set of bounded
parameters θ1, θ2, . . . , θn is assumed to be members of the compact subset Θ, and
have a common, but unknown distribution F . The objective is to find F , the
parameter distribution for all elements of Θ which best fits the observed data.
Here, F is expressed as a set of support points Φ = Φ1, Φ2, . . . , ΦK where K is
equal to or less than the number of subjects, N , with weights λ1, λ2, . . . , λK .

Estimation of F is performed using an iterative, two-stage approach; first, given
a set of support points, determine the optimal weights. This is achieved using
a primal-dual interior point method, which is common in convex optimization
theory. Second, given the updated weights, find a better set of support points.
This is done through an adaptive grid, where for each point in Φ, bounded by Θ,
up to twice the number of dimensions in Θ is produced, respecting the bounds of
θ and a minimum distance to the original point. An example is shown in Figure
1.8.

The distance at which expansion occurs is given by (θupper − θlower) · ϵ, with an
initial value ϵ = 20%. For each iteration, ϵ is reduced by a factor of two. Next, the
number of points is pruned to conform to K ≤ N, keeping the unique support points
with the overall greatest contribution with respect to describing the observed data.
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Figure 1.8: Example of a grid expansion in two dimensions. The left grid represents the
original grid, where the gray points are pruned, leaving the black points. The right grid
represents expansion from those points to the surrounding red points. This iteration is
then repeated.

This iteration is repeated until both the change in improvement is negligible, and
ϵ is below a given criterion.

In addition to the uncertainty in observations modelled by assay error, previously
outlined in Equation 1.9, the NPAG algorithm utilizes an additional element for
the total observation error, either additively (λ, Equation 1.13) or proportionally
(γ, Equation 1.14). The values of λ or γ may be estimated by the algorithm, or
fixated to a given value. The terms represent additional process noise, such as
misspecification of dose and observation times.

Error =
√

SD2 + λ2 (1.13)
Error = SD · γ (1.14)

A major limitation of this non-parametric approach is the imposed boundaries
on Θ. For an infinitely or sufficiently large parameter space, the probability
for a given support point, obtained by normalizing the likelihood, approaches
zero. While both the boundaries of, and the number of initial grid points in, the
parameter space, are likely to affect parameter estimation, NPAG has been shown
to be a consistent estimator when the number of subjects is large.101 As such, it
has been suggested to first employ a parametric approach for estimating initial
values or boundaries, followed by non-parametric analysis, to facilitate model
development.102

1.4 Clinical application of pharmacometrics

Pharmacometrics has been proven to be a valuable tool for describing and
predicting drug disposition. As such, it has been implemented in several areas
of clinical pharmacology and practice.
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1.4.1 Pharmacokinetic simulation

Through pharmacokinetic simulation it is possible to evaluate scenarios outside
the original dataset, such as different dose regimens, covariate effects, and
more.103 Simulation can also be used to evaluate drug-drug interactions.104

However, depending on the approach used for parameter estimation, methods
for simulation vary greatly. Simulating from a parametric parameter distribution
is straightforward, as the distribution itself is known. In the case of multiple
parameters, the covariance between parameters must be known, as some
parameters may be correlated. For a two-parameter, one-compartmental model
given by Equation 1.15 below

dA1

dt
= −A1 · Ke

C(t) = A1

Vd

(1.15)

The covariance matrix Σ is given by Equation 1.16.

Σ =
[

V ar(Ke) Cov(Ke, Vd)
Cov(Ke, Vd) V ar(Vd)

]
(1.16)

Where diagonal elements represent the variance of each parameter, and the off-
diagonal elements represent the covariance between them. As the probability
density function for the multivariate normal distribution is well described,
sampling is as mentioned straightforward. It is important to note that for
parametric approaches, the covariance matrix is itself estimated, as opposed to
non-parametric approaches where the support point location itself convey the
relationship between parameters.91

However, simulation from non-parametric distributions is more complex. In
their review of non-parametric methods in population pharmacokinetics, Goutelle,
Woillard et al. (2022) suggest three methods for simulation: 1) sampling the
support points directly, 2) sampling from the summary statistics, i. e. mean
and variance of the parameters, and 3) semi-parametrically, sampling from the
Gaussian distribution around each support point.105 However, the choice of method
will greatly impact the resulting parameter distributions, a discussion on which is
provided later.

1.4.2 Limited sampling strategies

Accurate estimation of pharmacokinetic parameters often relies on numerous
observations. From a practical perspective, this poses multiple challenges. First
and foremost, there is a cost associated with quantifying the concentration of a
drug. Secondly, there is temporal aspect to consider in order to sample during
the absorption, distribution, and elimination phases of the drug. This requires

18



1.4. Clinical application of pharmacometrics

that both the patient and health care personnel is available, inconveniencing the
patient and locking up health care personnel. The latter may be remedied by
patient-driven micro sampling, allowing the patient to perform the sampling. The
feasibility of such sampling has been readily demonstrated in the clinic.106, 107 In
order to reduce the burden associated with frequent sampling, limited sampling
strategies (LSS) may be developed to reduce the cost and/or time associated with
pharmacokinetic investigations. The aim is to reduce the number of samples
while maintaining accurate parameter estimates. This introduces the concepts
of information and optimality — some samples provide more information than
others. One such measure is the separation distance between two responses at
a given time. Still, strategies for LSS development vary, ranging from simple
methods such as multiple linear regression, to more complex methods based on the
Fisher information matrix or maximum a posteriori Bayesian estimation.108, 109

1.4.3 Therapeutic drug monitoring

Several classes of drugs, such as immunosuppressants, antibiotics, and anticancer
drugs demonstrate a narrow therapeutic window, and require monitoring for
safe and efficient therapy. A hallmark example is the immunosuppressive
drug tacrolimus, a calcineurin inhibitor used to prevent rejection in solid
organ transplantation. Its pharmacokinetic-pharmacodynamic relationship is well
described, but not fully understood.110 With insufficient exposure the patient
risks organ rejection, and conversely, when exposure is too great the risk of
adverse effects increases. This is especially challenging for drugs with known
interindividual pharmacokinetic variability. In the TDM setting, an additional
challenge is in the sparsity of available data, often limited to the pre-dose (trough;
C0) concentration. However, Bayesian statistics provides a framework for updating
the beliefs of the population parameter distribution (prior) when presented with
new data, allowing for accurate estimates of the individual, posterior distribution of
pharmacokinetic parameters. Pharmacometrics may thus be employed to optimize
individual drug therapy, by estimating and optimizing indices of exposure, such
as C0, dose-interval AUC, or their ratio.111 Several algorithms has been developed
for this use, and computerized dosing has previously been found to outperform
conventional dosing by experienced physicians.112, 113
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Aims of the present studies

This work aims to highlight the application of pharmacometrics and probe drugs
in order to predict and describe drug disposition at the individual and population
level. To achieve this, pharmacokinetic analyses has been performed on various
patient populations with different perspectives.

Paper I To evaluate and disentangle the effect of diet- and surgery
induced weight loss on the activity of hepatic uptake transporter
OATP1B1, using rosuvastatin as a probe drug.

Paper II To develop a population pharmacokinetic model in order to
estimate the individual cerebrospinal fluid (CSF) to blood
clearance of intrathecally administered gadobutrol, as a possible
diagnostic aid for CSF disorders by comparison of the group-
wise differences in clearance between patients with various CSF
disorders.

Paper III To evaluate the robustness of a limited sampling strategy using
Bayesian estimates based on a previously developed population
pharmacokinetic model, and quantify the effect of deviation in
sample time on the resulting estimate of measured glomerular
filtration rate using iohexol serum clearance.
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Methods

3.1 Study designs and patient populations

Paper I

This work was based on the COCKTAIL study, an open, non-randomized, three-
armed study performed at the Morbid Obesity Centre at Vestfold Hospital Trust,
Norway.114 The study included patients with severe obesity (BMI ≥ 35 kg m−2

in combination with comorbidity or BMI ≥ 40 kg m−2) scheduled for elective
weight-reducing intervention, either by Roux-en-Y gastric bypass (RYGB) or strict
diet. Additionally, a cross-sectional normal- to overweight (BMI 18.5 - 29.9 kg
m−2) control group of patients scheduled for cholecystectomy were included. A
complete list of inclusion and exclusion criteria is provided in the associated
protocol paper.114 The intervention groups first underwent a three-week low energy
diet (<1200 kcal day−1; LED), followed by either RYGB or very-low energy diet
(VLED), restricting energy intake to <800 kcal day−1. This continued until two
years following start of LED. A graphical overview of the study protocol is provided
in Figure 3.9 below.

Figure 3.9: A simplified graphical overview of the COCKTAIL study protocol. Created
with BioRender.com
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Pharmacokinetic investigations were conducted at baseline (week 0), after
LED (week 3), six weeks after RYGB and VLED (week 9), and at year
2. At each investigation, a cocktail of probe drugs consisting of rosuvastatin
(OATP1B1), midazolam (CYP3A), digoxin (P-gp), omeprazole (CYP2C19),
losartan (CYP2C9), and caffeine (CYP1A2) were investigated. All patients
were genotyped for, among others, SLCO1B1 c.521T>C (rs4149056) and ABCG2
variants V12M (rs2231137) and Q141K (rs2231142). During RYGB and
cholecystectomy, jejunal and hepatic biopsies were obtained, which were subject
to proteomic analysis using a total protein approach.115

Paper II

The present paper included patients referred to the Department of Neurosurgery,
Oslo University Hospital — Rikshospitalet, Oslo, Norway, in whom intrathecal
contrast enhanced MRI was indicated for clinical reasons as part of their diagnostic
workup. Exclusion criteria included previous hypersensitivity to contrast media
agents, severe allergic reactions in general, evidence of renal dysfunction (eGFR
< 30 mL min−1), below 18 or above 80 years of age, pregnancy, or breastfeeding.
Patients were categorized according to their tentative diagnosis prior to MRI.
Patients with no apparent evidence of CSF disturbances were denoted reference
(REF), but should not be considered healthy individuals. The following diagnoses
were included; spontaneous intracranial hypotension (SIH), idiopathic intracranial
hypertension (IIH), pineal cysts (PC), arachnoid cysts (AC), and idiopathic normal
pressure hydrocephalus (iNPH). For the latter, the Japanese guidelines for Definite
iNPH were used.116

The MRI contrast agent gadobutrol was administered intrathecally by an
experienced radiologist, and correct entrance to the subarachnoid space was
verified by CSF backflow. A 1 mmol mL−1 solution of gadobutrol was administered
in volumes of 0.10, 0.25, or 0.50 mL over 10 seconds, for a total dose of 0.10, 0.25,
or 0.50 mmol, respectively. The first 80 patients received 0.50 mmol only, and
later patients alternatingly received 0.10 or 0.25 mmol. Following administration,
venous blood samples were obtained at empirically determined regular time points
up to 48 hours. Additionally, MRI was performed regularly and in conjunction
with blood sampling. The protocol is briefly outlined in Figure 3.10 below.

Figure 3.10: A simplified graphical overview of the sampling protocol in Paper II. Created
with BioRender.com
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Paper III

This simulation-based study was based on a previously developed population
pharmacokinetic model for iohexol serum clearance.86 The purpose of the
model was to determine the measured glomerular filtration rate (mGFR)
following intravenous administration of iohexol by plasma depletion. The two-
compartmental model was parameterized in terms of clearance and volume of
distribution, and included body weight as a covariate on both clearance and
volume of distribution. A semi-parametric approach was used for simulating new
pharmacokinetic profiles from the discrete support points of the original model.
Conceptually, a Gaussian distribution is assumed around each support point,
where the standard deviation is optimized so that the resulting Gaussian mixing
distribution best fits the target parameter distribution. Parameter density overlap
was evaluated using the overlap index for empirical distributions.117

As stated in the aim, the chief objective was to estimate the robustness of
the limited sampling strategy. To this end, two methods were used to sample
around the prescribed sample schedule of 10 minutes, 30 minutes, 2 hours, and
5 hours. First, a zero-mean Gaussian error was assumed around each optimal
sample time, with incremental relative standard deviation. Sample times were
truncated to prevent overlap. This approach introduced deviation in all sample
point simultaneously, which can be expected in a clinical, real-life setting. The
second method evaluated an empirical amount, e.g. 5-, 10-, and 15-minutes error
for one sample point at a time. This allowed for evaluating which sample points are
most critical, in essence evaluating the optimality of the sampling schedule. These
metrics were further used to define optimal windows for sampling, both for the
overall population and stratified by CKD stage according to the true, simulated
GFR.

3.2 Bioanalytical methods

In Paper I, bioanalytical quantification of rosuvastatin was performed by a
third-party, Covance Laboratories.118 Buffered plasma samples were stored at
-80 °C, and were extracted by supported liquid extraction, and evaporated.
Following reconstitution, the samples were analyzed with liquid chromatography
(LC) tandem mass spectrometry (MS), using a C18-column. The mobile phase
consisted of acetonitrile and 0.1% formic acid using a gradient. Rosuvastatin was
detected by monitoring the m/z 482.2-258.2 transition. The standard curve ranged
from 0.04 to 40 ng/mL, using a human plasma sample volume of 0.1 mL. The assay
variation coefficients of the rosuvastatin analysis were 7.1%, 4.4% and 4.5% at 0.12
ng mL−1, 2 ng mL−1, and 20 ng mL−1 (n = 130), respectively.

In Paper II, venous whole blood and plasma samples were stored at -80 °C, and
quantified for the gadolinium-based contrast agent gadobutrol at the Norwegian
Institute for Air Research.65 Samples were homogenized and subjected to nitric
acid-based digestion with deionized water in a closed-vessel microwave technique
system. Digestion was performed according to a 60-minute stepwise heating
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program, reaching a maximum temperature of 250 °C, maintained for 15 minutes.
Following dilution, gadolinium was quantified by inductively coupled plasma mass
spectrometry using indium (0.1 µg L−1) as internal standard. Samples were
corrected for procedural blank values, with a detection limit of 0.009 µg L−1.
Assay coefficients of variation were 3.2%, 2.6%, 1.6%, 1.0%, and 0.01% at 0.01 ng
mL−1, 0.05 ng mL−1, 0.1 ng mL−1, 1.0 ng mL−1, and 10.0 ng mL−1, respectively.
Measured gadolinium was recalculated to concentrations of gadobutrol. Linear
regression was used to interpolate whole blood gadobutrol to plasma concentrations
for pharmacokinetic analysis.

The underlying population pharmacokinetic model used in Paper III was
developed on serum samples of iohexol. These concentrations were quantified
for iohexol using high-performance liquid chromatography using an ultraviolet
light detector at the respective hospital laboratories. The validated lower level
of detection and quantification was 20 mg/L, and the linear range was validated
between 20 and 1100 mg L−1, with a coefficient of variation of 6%.

3.3 Population pharmacokinetics

In Papers I-III, population pharmacokinetic modelling was performed using
Pmetrics, a software package for R.93 All models employed the previously
introduced NPAG-algorithm for parameter estimation. In general, model
development and selection were guided by comparison of the relative root mean
square predictive error (RMSE, %) calculated from the relative prediction error,
as well as the linear regression slope, R2-values of the observed versus predicted
plot, and to a lesser extent the Akaike and Bayesian information criteria. For all
evaluations, the individual predicted, mean posterior concentrations were used.
Transfer rate coefficients are provided on the form of Ki,j, denoting the transfer
from the ith to the jth compartment, where j = 0 implies elimination.

Paper I

The mammillary three-compartmental model used in Paper I included two
transit compartments for absorption, with individual lag-times (Tlag), in order to
accommodate the multiple peaks in concentration of rosuvastatin over time. These
transit compartments, as well as the direct absorption route, employed a modified
Heaviside equation as noted in Equation 3.1 for the absorption coefficients.
Elimination was modeled as a first-order process from the central compartment
only. The response surface for Ki,j for the example values of Ka = 5 and Tlag,i =
2 is dependent on the slope parameter lambda, L.

Ki,j(t) = Ka ·
[1
2 ·
(

1 + tan−1 (L · (t − Tlag,i)) · 2
π

)]
(3.1)

This is visualized below for various values of L in Figure 3.11.
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Figure 3.11: The response surface for the modified Heaviside equation for various values
of L.

The full, structural model, including a bioavailability term (F), is provided in
Equation 3.2 below.

dA1

dt
= −A1 · (K12 + K15 + K16)

dA2

dt
= K12 · A1 − (K20 + K23 + K24) · A2

+ K32 · A3 + K42 · A4 + K52 · A5 + K62 · A6

dA3

dt
= K23 · A2 − K32 · A3

dA4

dt
= K24 · A2 − K42 · A4

dA5

dt
= K15 · A1 − K52 · A5

dA6

dt
= K16 · A1 − K62 · A6

C(t) = A2

Vd

; A1(0) = F · Dose

(3.2)

The model is subsequently visualized in Figure 3.12.
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Figure 3.12: Visual representation of the pharmacokinetic model for rosuvastatin

The transfer rate coefficients K1,2, K5,2 and K6,2 are functions of the modified
Heaviside equation outlined in Equation 3.1. An additive error model, as
previously shown in Equation 1.13, was used. As a longitudinal study, Paper
I included up to four investigations for each patient. Rather than attempting
to model changes within and between intervention groups directly with the
pharmacokinetic model, a pseudo-individual approach was used, disconnecting the
individual from the repeated measurements. Longitudinal changes were evaluated
using the methods outlined in 3.4.

Due to memory limitations in the current implementation of NPAG, the Fortran
routines were modified to allow for 64-bit precision and memory allocations above
2 gigabytes. This effort was part of an Advanced User Support provided by the
Norwegian research infrastructure services (NRIS) through Sigma2.119

Paper II

In Paper II, the final population pharmacokinetic model comprised of a two-
compartmental model with first-order absorption to, and first-order elimination
from, the central compartment. Additionally, the model included a lag term to
account for individual differences in neuraxial flow of CSF. The model is provided
in Equation 3.3 below.

dA1

dt
= −A1 · K12

dA2

dt
= A1 · K12 + K32 · A3 − (K20 + K23) · A2

dA3

dt
= A2 · K23 − K32 · A3

C(t) = A2

Vd

; A1(0) = Dose

(3.3)
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The model is subsequently visualized in Figure 3.13.

A1 A2 A3
K12

Tlag

K23

K20

K32

Figure 3.13: Visual representation of the pharmacokinetic model for gadobutrol

An additive error model was used, as outlined in Equation 1.14.

Paper III

The population pharmacokinetic model employed in Paper III was based on a
previously published model.86 However, as the intended method for simulation was
not amenable to inclusion of covariates, a covariate-free version was developed on
the same data, and subsequently used. The model included two compartments, and
was parameterized in terms of clearance from the central volume (CL), volume of
central VCENT and peripheral VPERI compartments, and inter-compartmental blood
flow (Q). The structural model is provided in Equation 3.4.

dA1

dt
= −K12 · A1 + K21 · A2 − K10 · A1

dA2

dt
= K12 · A1 − K21 · A2

C(t) = A2

VCENT
; A1(0) = Dose

(3.4)

Parameterization was performed according to Equation 3.5 below.

K10 = CL

VCENT
; K12 = Q

VCENT
; K21 = Q

VPERI
(3.5)

The model is visualized in Figure 3.14.

A1 A2
K12

K10

K21

Figure 3.14: Visual representation of the pharmacokinetic model for iohexol

The model employed a multiplicative error model, as outlined in Equation 1.14.
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3.4 Statistics

In Paper I, statistical analysis was conducted using linear mixed effects models.
Such models excel in cases of repeated measurements and dependent data. By
treating intervention group and study visit, as well as their interaction, as fixed
effects, their respective mean effects were calculated. To allow for dependence
in the data, random effects on the intercept were considered for each individual.
Model residuals were evaluated for normality, and the dependent variable was
logarithmically transformed when appropriate. In such cases, the model was
adjusted for the (theoretically) introduced bias. Estimated marginal means and
corresponding contrasts were used for primary analysis. Cross-sectional analysis
comparing the control- and intervention groups were performed using Welch’s two-
sample t-test. Associations were evaluated using Pearson’s correlation coefficient
unless otherwise specified.

In Paper II, groupwise comparisons were performed using a two-tailed t-test for
continuous variables, and Fishers exact test for categorical variables. To account
for differences in the administered dose of gadobutrol, the exposure parameters
Cmax and AUC were normalized by dose prior to analysis.

The main objective in Paper III was to evaluate the robustness of a limited
sampling strategy. Deviation was evaluated by calculating the mean prediction
error in mGFR, and the proportion of individuals with relative prediction error
greater than 15% (P15), where a P15 less than 15% was considered acceptable.

All statistical analyses were performed in R.120

3.5 Ethics

In this work, whenever human research was conducted, prior independent review
board approval and informed consent was obtained. All studies followed good
clinical practice (GCP) and complied with the Helsinki declaration. Paper I was
approved by the Regional Committee for Medical and Health Research Ethics
(2013/2379), and pre-registered on ClinicalTrials.gov (NCT02386917). Paper II
was approved by the Regional Committee for Medical and Health Research Ethics
(2015/96), the Institutional Review Board of Oslo University Hospital (2015/1868)
and the National Medicines Agency of Norway (15/04932-7). Paper III did not
involve collection of new human data, but was based on a previously published
study, which was approved by the Regional Committee for Medical and Health
Research Ethics (2014/2180).
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Paper I

Neither Gastric Bypass Surgery Nor Diet-Induced Weight-Loss Affect OATP1B1
Activity as Measured by Rosuvastatin Oral Clearance

In this work, we aimed to disentangle the effect of Roux-en-Y gastric bypass
(RYGB) surgery and diet-induced weight loss on the activity of the hepatic uptake
transporter OATP1B1. A total of 80 patients with severe obesity were included,
and subjected to either RYGB (n = 40) or very-low energy diet (VLED; n = 40). A
normal-to-overweight control group of patients scheduled for cholecystectomy (n =
18) were also included, but did not receive dietary intervention. The intervention
groups first underwent a three-week low-energy diet (LED; <1200 kcal day−1),
followed by either RYGB or VLED, restricting energy intake to <800 kcal day−1.
Pharmacokinetic investigations were performed at baseline (week 0), after LED
(week 3), six weeks after RYGB or VLED (week 9) and at long-term follow-up
(year 2).

The initial low energy diet (LED; < 1200 kcal day-1) introduced a similar (mean
± standard deviation) weight loss in the RYGB (5±2%) and diet (5±2%) group.
Total weight loss at week 9 was 13±3% and 11±4%, respectively. While the
RYGB-group maintained a total weight loss of 29±9% at year 2, the diet group
mostly returned to their baseline weight, for a total weight loss of 3±6%. The
final population pharmacokinetic model included a total of 3630 samples, from
197 18-point and 111 9-point 24-hour pharmacokinetic profiles from 98 individuals,
and was used to describe individual changes in pharmacokinetics of rosuvastatin.
Following LED, oral clearance (CL/F) of rosuvastatin decreased in both the
RYGB- (16%) and diet- (23%) group. However, no additional change in CL/F was
observed 6 weeks after RYGB or VLED. At year 2, the RYGB-group demonstrated
a total increase in CL/F of 21% compared with baseline, while the diet group
returned to baseline values. There were no differences in short- or long-term
change in oral clearance in patients with reduced-function variants of SLCO1B1
when compared with wildtype.

In conclusion, while weight loss appeared to affect oral clearance of rosuvastatin,
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these effects were not mediated by change in activity of OATP1B1. This was
substantiated by the lack of differences in change in patients with wildtype and
reduced-function variants of OATP1B1. As rosuvastatin demonstrates a high
hepatic extraction ratio (0.63), it may be susceptible to altered hepatic blood
flow. It has previously been shown that LED may induce a decrease in liver
size in patients with severe obesity, and that hepatic blood flow is increased
following bariatric surgery.121, 122 A transient increase in portal vein blood flow
could thus lead to an increased bioavailability, effectively decreasing oral clearance.
Additional studies of hepatic hemodynamics following weight loss is warranted to
confirm this hypothesis. Overall, the changes in oral clearance of rosuvastatin
were clinically negligible, and as such, no dose adjustments of rosuvastatin appears
necessary following RYGB or weight loss in patients with severe obesity.

Paper II

Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer
study of 161 patients under work-up for CSF disorders

The primary objective of this work was to investigate the mechanisms of, and
variability in, the cerebrospinal fluid (CSF) to blood clearance between individuals.
The study included 161 patients under work-up for various disturbances of CSF,
such as pineal (PC, n = 13) and arachnoid cysts (AC, n = 14, spontaneous
intracranial hypotension (SIH, n = 14), idiopathic intracranial hypertension (IIH,
n = 15), communicating (cHC, n = 11) and non-communicating (ncHC, n = 3),
as well as idiopathic normal pressure hydrocephalus (iNPH, n = 63). Patients
without evidence of CSF disorders were retrospectively included as a reference
cohort (n = 28), but should not be considered healthy.

The magnetic resonance imaging (MRI) contrast agent gadobutrol was used as a
surrogate marker for clearance of e.g., brain metabolites or drugs from the CSF
to blood. Extensive clearance is thought to be due to CSF leakage or increased
intracranial pressure, while reduced clearance is hypothesized to contribute to
neurodegenerative disease. Following intrathecal administration of 0.10, 0.25 or
0.5 mmol gadobutrol, the patients underwent frequent venous blood sampling in
combination with MRI investigations over the course of 72 hours.

The population pharmacokinetic model was developed based on 1140 blood
samples from 161 individuals. The two-compartmental model included first-
order absorption from the subarachnoid space with first-order elimination from
the central compartment. The predicted plasma disposition of tracer revealed a
significant level of pharmacokinetic variability, both between and within disease
categories. This was also true for the primary parameter of interest, CSF to
blood clearance, which was associated with a coefficient of variation of more than
70% even in the reference cohort. Additionally, in this group, age was negatively
associated with Cmax (r = −0.5) , but positively so with Tmax (r = 0.42).

Overall, the observed variability suggests that measurements of CSF to blood
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clearance of gadobutrol may be useful in the assessment of CSF disorders as
a diagnostic aid. Disposition of intrathecal gadobutrol appeared linear with
increasing dose, and the predictive performance of the model was similar between
the different doses, and as such a low dose of 0.10 appears adequate for such
measurements.

Paper III

A Method for Evaluating Robustness of Limited Sampling Strategies — Exemplified
by Serum Iohexol Clearance for Determination of Measured Glomerular Filtration
Rate

This work was a simulation-based study, based on a previously developed
population pharmacokinetic model for determination of measured glomerular
filtration rate (mGFR) using serum iohexol clearance. A total of 400
pharmacokinetic profiles were simulated from a prior, discrete set of support
points representing the population parameter distribution by employing a semi-
parametric approach. Of these, 61 profiles were excluded as the simulated GFR was
outside the validated range of 15-115 mL min−1 However, this approach was not
amenable to inclusion of covariates, and as such a modified, covariate-free model
was used, developed on the original dataset. Semi-parametric simulation with
optimized variance terms yielded satisfactory overlap for all parameter densities,
with 91%, 92%, 90% and 86% overlap for the parameters CL, Q, V , and Vp,
respectively, when comparing the simulated to the original distribution.

The original limited sampling strategy demonstrated a mean absolute and relative
error of 1.5 ± 2.2 mL min−1 and 4.1 ± 5.5%, respectively. Overall, the limited
sampling strategy proved robust to errors in sampling time, for all empirical
deviations, mean and median absolute error was below 4 mL min−1 and 2.5 mL
min−1, respectively. However, it was evident that this effect differed based on
individual clearance, i. e. the strategy was less robust when the simulated clearance
was very low.

An estimate of appropriate sampling windows was obtained by defining a treshold
for acceptable error. In this, it was possible to (individually) perform the 10-minute
sample between 6-16 minutes, the 30-minute sample between 20-45 minutes, the 2-
hour sample between 1.5-3 hours, and the 5-hour sample between 4.75-12 hours, all
while maintaing a mean prediction error below 2 mL min−1. Conversely, a different
approach for estimating sampling windows was through the 90% confidence interval
around the sample time for a relative standard deviaton of 25%, which was
associated with a mean P15 of 8.3%. This approach suggested to perform the
10-minute sample between 6-12 minutes, the 30-minute sample between 18-42
minutes, the 2-hour sample between 1-3 hours, and the 5-hour sample between
2.5-7.4 hours. With either approach, sampling windows are likely to have great
practical value, as it provides additional insight into which patients groups require
additional diligence during sample collection.
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Discussion

Pharmacokinetic modelling and simulation have proven to be invaluable tools in
several areas, such as dose optimization, therapeutic drug monitoring (TDM),
predicting drug-drug interactions, and diagnostics. Each of Paper I-III
introduces or evaluates a concept in pharmacometrics, using a probe or tracer,
which may contribute to enhanced application of pharmacokinetic modelling and
simulation.

5.1 Time-varying parameters and alternative absorp-
tion strategies

As previously mentioned, the population pharmacokinetic model for rosuvastatin
employed in Paper I included a time-varying coefficient of absorption, modelled
by a modified Heaviside equation. Time-dependent model parameters allow for
increased flexibility in the response space, at the cost of additional dimensionality
in the parameter space. Such time-dependency is not new in pharmacometric
literature, but has been readily applied for a variety of drugs and parameters. In
one of the simpler cases, for the monoclonal antibody teclistamab, Miao, Wu et al.
(2023) modelled clearance as the sum of a fixed and exponential time-dependent
term.123 Similarly, Niazi (1976) suggests modelling the volume of distribution as
a linear function of time from an initial to its maximum value.124 The use of
statistical distributions for pharmacokinetic parameters have also been applied
previously, with the advantage of their well described moments, such as the mean,
variance, and skewness. The gamma function has been applied both to model
parameters, for example by Wesolowski, Wesolowski et al. (2016) for describing
the half-life and volume of distribution of 169Yb-DTPA, but also for the response
itself in the case of cyclosporin by Debord, Risco et al. (2001)125, 126. In the same
study population of patients with severe obesity in Paper I, a modified Weibull
distribution was applied to the absorption of digoxin, as first-order absorption
inadequately captured the absorption phase.127

The paradigm shifts from constant, first-order rate coefficients to more complex
functions for mass transfers introduces new possibilities in pharmacometrics, but

35



Chapter 5. Discussion

at a price, as interpretation of time-dependent parameters can be difficult. First-
order absorption models are easily summarized, but may not adequately model
the underlying processes. Implicitly, they assume that the maximum absorption
occurs immediately after administration, ignoring the requisite drug dissolution
and dispersion before absorption can take place.128 This is sometimes, but not
always, alleviated by a lag-term. In the case of the approach used in Paper I, one
could (erroneously) argue that the modified Heaviside equation models the varying
dissolution and absorption along the intestinal tract. However, such claims must
be backed by supporting data, such as in vitro dissolution assays. Still, in the
case of rosuvastatin in Paper I, traditional model approaches were unable to
adequately capture both the irregular absorption phase and multiple peaks due
to enterohepatic recirculation. The use of population pharmacokinetic models
to investigate rosuvastatin disposition is sparse in literature. Tzeng, Schneck et
al. (2008) employed a two-compartmental model with simultaneous zero- and
first-order absorption with separate lag terms for each absorption pathway.129

Park, Jang et al. (2016) built on this model, but replaced zero-order absorption
with an Erlang absorption model.130 Erlang models, which uses a fixed number
of linear transit compartments, provides a gamma-like, asymmetric absorption
profile.131 While statistical distributions such as the Gamma and Weibull has
been shown to improve model fit, as previously described, and the statistical
moments of such distributions are well known, they are not always amenable
to pharmacokinetic interpretation. As such, models incorporating statistical
distributions on parameters are to a greater extent reliant on the summary
statistics of the response, such as AUC, Cmax, and Tmax. In Paper I, oral clearance
was calculated by dividing the dose by AUC, which showed poor correlation
with model-estimated clearance (data not shown). Thus, further importance is
placed on the usefulness of the model, pertaining to its intended purpose, which
is expanded on below.

5.2 Impact of obesity and RYGB on rosuvastatin oral
clearance

In Paper I, the overall aim was to disentangle the effect of obesity, RYGB, and
weight loss on OATP1B1 activity, as measured by rosuvastatin oral clearance.
As previously mentioned, rosuvastatin is an established probe for OATP1B1
activity.46, 47, 45, 48 In the context of severe obesity, only one study has previously
evaluated the pharmacokinetics and -dynamics of rosuvastatin following gastric
bypass surgery.132 However, the work by El-Zailik, Cheung et al. (2019) reported
the (single) molar concentration normalized to dose per kilogram bodyweight,
sampled at a wide range of times post-dose.132 As such, the results are not
comparable to those in Paper I, which is the first to prospectively evaluate the
longitudinal pharmacokinetics of rosuvastatin in patients with severe obesity.

As the RYGB- and diet group achieved a similar weight loss during the initial
LED, but also following RYGB and VLED, it was possible to directly compare
change in oral clearance between the groups. However, a decrease of approximately
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20% was observed following LED only, with no additional change after RYGB or
VLED. As all patients were genotyped for mutations in SLCO1B1, we observed
that this reduction was evident also in patients with the reduced function variant,
suggesting that the observed change was not due to change in OATP1B1 activity
per se. Liver size has been found to decrease, and composition especially with
regards to sugars and fats has been found to change, following caloric restriction.133

Additionally, hepatic blood flow has previously been shown to increase following
bariatric surgery.121, 122 This is especially important for a drug like rosuvastatin,
which is associated with a high hepatic extration ratio of 0.63, for which an increase
in blood flow may lead to an increased bioavailability.49 While this may explain the
reduced oral clearance following LED, further research of hepatic hemodynamics
is warranted to confirm. With regards to hepatic composition, change in oral
clearance was not associated with predicted liver fat, nor different in patients with
predicted NAFLD-scores above and below diagnostic cut-offs, suggesting that liver
composition alone does not explain our findings. A similar result was found in a
cross-sectional analysis of patients with- and without MRI-confirmed NAFLD,
revealing no differences in rosuvastatin pharmacokinetics.134

At year 2, the diet group had mostly returned to their baseline weights, and
rosuvastatin pharmacokinetics were normalized as well. This is in contrast to the
RYGB-group, for which oral clearance increased by approximately 21%. While
there is no apparent explanation for this increase, it was postulated to be due
to a surgery-specific effect that was not evident in the short-term, possibly due
a reduced absorption due to anatomical alterations. While a semi-simultaneous
administration of intravenous and oral rosuvastatin, similar to that performed
for midazolam in the same patient population could illuminate the underlying
mechanisms, this was not available or feasibile to accomplish for rosuvastatin in
this study, and constitutes a weakness of the present work.135 Additionally, the
validity of the control group consisting of patients scheduled for cholecystectomy
is uncertain, given the dependence of bile transport on rosuvastatin disposition
and enterohepatic recirculation. The major strengths of this work is the large
number of patients, the matched weight loss between intervention groups, and
the accurate determination of oral clearance using population pharmacokinetic
methods. Overall, there were no differences in rosuvastatin pharmacokinetics in
patients with obesity when compared with a normal- to overweight control group,
and longitudinal change in oral clearance, both short- and long-term following
LED, RYGB or VLED. As such, no dose adjustments of rosuvastatin is warranted.

5.3 Gadobutrol as a tracer for estimating glymphatic
clearance

Paper II presents a population pharmacokinetic model approach to estimate the
clearance of intrathecally administered drugs using gadobutrol as a tracer. The
two-compartmental model utilized first-order absorption and elimination to and
from the central plasma compartment, respectively. In this context, the absorption
of tracer to blood from CSF, or conversely, the elimination of tracer from CSF to
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blood, was of primary interest. As such, the half-life of absorption was used as
a surrogate marker for CSF to blood clearance, which is defined by Equation 5.1
below

t1/2,absorption = ln(2)
Ka

(5.1)

However, the appropriateness of such an index should be discussed. First, while
half-life is proportional to, it does not equal clearance, which is defined as
CL = Ke · Vd. The apparent volume of distribution of tracer in CSF may be
affected by patient variables, such as ventricular volume, height (as an index for
spinal canal length), and total CSF volume. Some CSF disturbances, such as
iNPH, is characterized by increased ventricle size.136 While it was not included
in Paper II, it is possible to evaluate the volume of the ventricles using MRI,
which may provide additional information.137 Second, the model-estimated value
of Ka provides a measure of absorption to plasma only, which may not capture total
clearance. The current glymphatic theory considers CSF egress through lymphatic
vessels, from which absorption to blood may occur.54 This is perhaps the greatest
limitation of quantification in plasma only. However, the use of gadobutrol as
the tracer of choice allows for additional quantitative insight into the brain-wide
distribution of tracer. As a paramagnetic contrast agent, gadobutrol leads to a
shortened T1 and T2 relaxation time of surrounding water protons, enhancing MRI
signal intensity MRI.138 The contrast-enhanced signal intensity may be converted
to tracer concentration by measuring the T1 relaxation time prior to, and following,
intrathecal injection of gadobutrol.139 This allows for mathematical modelling of
not only global, but regional diffusion of tracer.140 In the work by Vinje, Zapf et al.
(2023), estimated half-life along paravascular pathways was numerically similar to
that reported in Paper II.140 Such methods may also be coupled with population
pharmacokinetic modelling, allowing for individual optimization of target-site
exposure. One such work is currently in development by our research group,
and preliminary results suggest significant interindividual variability in not only
regional exposure in various compartments of the brain (lateral ventricles, cisterna
magna, basal ganglia), but also the ratio of exposure between them (unpublished
data).

Nevertheless, the key finding in Paper II remains the significant inter-individual
variability in plasma disposition of gadobutrol, an index of glymphatic clearance,
which was evident not only between the different CSF disorders, but also
within. This is especially interesting for the iNPH-group, a disease with known
heterogeneity, but equally so for the reference group.136 In the reference group
however, no association with age, height, or weight was found for the half-
life of absorption. However, age correlated positively with time to maximum
concentration in blood, which may be an indicator of neuraxial movement of CSF.
Still, while no signs of CSF disturbances were found in the reference cohort, they
should not be considered healthy. Due to the excessive strain on the patient
in such investigations, glymphatic function has not been extensively studied in
healthy volunteers. Still, smaller cohorts of healthy has been studied in literature;
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Verma, Hesterman et al. (2020) employed a similar approach, using intrathecally
administered 99mTc-DTPA in a cohort of 15 healthy volunteers, providing rough
estimates of cranial CSF exposure.141

During the pilot study, samples collected and quantified for gadobutrol were in
whole blood.65 Later, and in Paper II, plasma samples were predominantly used.
To utilize the full amount of available data, whole blood concentrations were
interpolated to plasma concentrations using linear regression; a factor of 1.8 was
found to adequately describe the relationship between the two matrixes. This
factor indicates that gadobutrol has little to no association with red blood cells.
While hematocrit was not reported in this patient cohort, the factor numerically
aligns with its average value in healthy, adult individuals in the Nordic countries
(35-50%).142 This is further supported by the fact that gadobutrol has previously
been established as having a very low degree of plasma-protein binding.143, 144

This provides practical value, as venous sampling is considerably easier and
cheaper compared with MRI. Should CSF to blood clearance prove to be clinically
correlated in future works, limited sampling strategies may further alleviate the
sampling burden by requiring fewer samples. Interfaces to limited sampling
strategies have previously been developed for e.g. plasma iohexol clearance for
determining mGFR, providing additional clinical applicability without the need
for a professional trained in pharmacometrics.145

Further motivation is provided by the possibility of optimizing drug therapy of
intrathecally administered drugs, such as methotrexate, used prophylactically in
patients with acute lymphoblastic leukemia, which may induce severe myelopathy
and neurotoxicity.146, 147, 148 While some effort has been placed in monitoring
CSF concentration of methotrexate, model-guided dosing remains to be used
clinically.149 Overall, pharmacometric analysis of intrathecally administered
gadobutrol may provide clinically useful information in the diagnostics of CSF
disorders, possibly alleviating the current reliance on magnetic resonance imaging
techniques.

5.4 Semi-parametric simulation from discrete sup-
port points

For Paper III, simulation of new pharmacokinetic profiles played a crucial role.
However, the current simulation engine implemented in Pmetrics for R is limited
to a maximum of 30 support points, which was unable to capture the original
distribution. As such, a manual implementation was required, which is discussed
further. While simulation from parametric distributions is trivial, simulation
from non-parametric distributions is more complex. In their review of non-
parametric methods in population pharmacokinetics Goutelle, Woillard et al.
(2022), present three known methods for simulation; A) sampling from the support
points directly, B) sampling from the mean/median of the support points, and
lastly, C) considering a normal distribution around each support point.105 The
first method alone should not be considered in any case where the desired number
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of unique profiles per dose regimen extends beyond the number of support points.
The second method relies on summary statistics such as the mean and standard
deviation, which is not expected to fully capture a non-parametric distribution,
especially in the case of multimodality. The third method assumes a Gaussian
distribution around each support point, transforming the discrete distribution to a
continuous one, modelled by a Gaussian mixture distribution. By taking advantage
of this approach, it is possible to take advantage of parametric methods for
sampling from an otherwise non-parametric distribution. The method is roughly
visualized in Figure 5.15 below.

Figure 5.15: A three-support point example of semi-parametric simulation, where a
Gaussian distribution is drawn around each support point, shown as solid lines. The
resulting mixture distribution is represented as the dashed line. For comparison, the
dotted line represents the Gaussian distribution for the weighted mean.

The multivariate Gaussian mixing distribution is the weighted sum of the
probability density functions for each of the mixture components, with probability
density function as shown in Equation 5.2 below

f(x) =
K∑

k=1
ϕk · N (x; µk, Σk) subject to

K∑
k=1

ϕk = 1 (5.2)

Here, µk and Σk is the mean and the covariance matrix for the kth mixture,
respectively, with weighting (or probability) ϕk. While µk is readily obtained
from each support point, there is no obvious choice of Σk when simulating from
discrete support points. As previously mentioned, the diagonal elements of a
covariance matrix represent the variance of each parameter, while the off-diagonal
elements represent the covariances between parameters. Mechanistically, in the
non-parametric setting, an argument can be made for ignoring the covariance
terms in Σ, i. e. σi ̸=j = 0.

An argument for this will be presented for an example model parameterized over
Ke (with bimodal distribution) and V (with unimodal distribution), adapted from
Neely, van Guilder et al. (2012).93 In Figure 5.16 below, the (Pearson’s) correlation
coefficient, which may be considered a scaled version of covariance, is shown for
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different discrete regions of the joint parameter space. While the regions are
roughly divided, it is clear that the correlation between these two parameters
are non-constant throughout the parameter space, and not represented by the
overall (Pearson’s) correlation of r = 0.08. Improper off-diagonal elements in the
covariance matrix introduces the risk of improper sampling. As such, in Paper
III, they were set to zero, leaving the diagonal elements.

Figure 5.16: The two-dimensional density (left) and the windowed Pearson correlation
(right) for an example, discrete distribution of support points, adapted from Neely, van
Guilder et al. (2012).93

The choice of variance terms in Σ is not readily apparent, and several approaches
were evaluated during method development in Paper III, and a brief summary
of each is provided. First, the total variance was evaluated, but the magnitude
of this value proved too large, flattening the Gaussian. Secondly, a windowing
approach was used, where the local variance of the K-nearest neighboring support
points was used, but this too degenerated the distribution around each support
point. For both approaches, normalization by the support point probability
did not improve distribution similarity, further discussed below. Finally, the
variance was optimized to minimize the squared distance between the (unweighted)
kernel density estimates of the individual posterior parameter distribution and the
simulated. Still, a closed-form solution for the variance of multivariate mixing
distributions would be preferrable, but has so far eluded current efforts .

Independent of the method chosen for simulation, it is important to define a metric
for evaluating to which degree the simulated distribution represents the original
distribution. Summary statistics alone, such as mean, variance, median, and
interquartile range, are unlikely to adequately describe the possible multimodality
of non-parametric distributions. Rather, the distributions themselves may be
compared. One such measure is the overlap index, defined in Equation 5.3 below

Overlap ∈ [0, 1] =
∫ −∞

−∞
min(f(x), g(x))dx (5.3)

Where f(x) and g(x) are the probability density functions of the distributions to
be compared. However, in order to apply this to non-parametric distributions,
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a distribution-free overlapping index was used in Paper III.117 Ideally, this or
similar measures should be reported in all work relying on simulation. Other
measures of distribution similarity exist, such as the Bhattacharyya and Hellinger
distance, but remain to be evaluated in this context.150, 151

A major limitation of the method for simulation employed in Paper III was
the exclusion of covariates from simulation. Initial attempts at augmenting the
covariance matrix with the calculated variance and covariance between parameters
was unsuccessful, and a mechanistic relationship between the covariate values and
the support points could not be established. An interesting approach would be
to consider the individual covariates as random variables, and fit them along the
observed concentrations, and as such directly embed the covariates in the support
points. As such, this approach should be investigated in a future work. Overall,
the semi-parametric method for simulating from discrete support points proved
effective, when using an optimized variance term for each individual parameter.

5.5 Robustness of limited sampling strategies

In Paper III, the main aim was to evaluate the robustness of a previously
developed limited sampling strategy through simulation. This was accomplished
by introducing random or empirical deviation in sample time for a large set
of simulated pharmacokinetic profiles. Previous evaluations of robustness have
been performed for strategies based on multiple linear regression and parametric
pharmacokinetic models only.152, 153, 154, 155 As such, Paper III seems the first to
evaluate robustness in the non-parametric setting. Methodologically, evaluation
of robustness in Paper III was carried out similar to aforementioned works.
By introducing an empirical or random amount of deviation in sample time in
simulated profiles, where the true value of interest is known through simulation,
the resulting error can be evaluated, analogous to sensitivity analysis. As such,
the main difference between the parametric and non-parametric approaches lies in
the simulation, which was discussed previously.

A likely useful quantity that may be derived from robustness evaluation is an
empirical sample window, i. e. a range of times for which a sample may be
collected and still provide an average, acceptable error, or error rate. In Paper
III, such windows were calculated with a cutoff of 2 mL min−1, producing the
following truncated sample windows for (individual) deviation in sample time:
10 [6-16] minutes, 30 (20-45) minutes, 2 (1.5-3) hours, and 5 (4.75-12) hours.
However, this boldly assumes that the remaining samples were collected at their
optimal sample times. Bayard and Neely (2017) have previously introduced a
multiple model optimal experimental design approach for development of limited
sampling strategies, by minimizing Bayes risk.156 An advantage of this approach
is that it also considers the noise in each response, which could theoretically be
leveraged to estimate not only optimal sample times, but also sample windows, by
transformation of noisy measurement, yi = µi + N (0, σi), to noise in sample time,
by finding the coinciding time(s) t where y(t) ≈ yi However, the feasibility of such
a strategy must be confirmed in a future work.
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Another important observation in Paper III was the sensitivity to deviation
in sample time across simulated profiles with varying clearance. Patients with
(simulated) GFR between 15-29 mL min−1 (Stage 4 CKD) and 30-44 mL min−1

(Stage 3b CKD) were especially affected, demonstrating an overall increase in
median prediction error. In this clinical setting where mGFR is measured in
routine visits, it is possible to use the eGFR based on the last serum creatinine to
guide sample diligence. Possibly, separate limited sampling strategies should be
developed for each stratum, but this could be difficult to implement in the clinical
setting.

5.6 New tools for pharmacometric analyses

The work presented in this thesis relied heavily on Pmetrics for population
pharmacokinetic modelling and simulation.93 While the library and underlying
Fortran routines are well established, several limitations were uncovered during
method development. For large datasets with high-dimensional parameter spaces,
such as in Paper I, the Fortran routines required modification to allow for the
necessary memory allocations. Furthermore, in Paper III, it was revealed that
the simulation engine was limited to the 30 most probable support points, and
thus (possibly) unsuitable for simulation from 30 or more support points. While
Fortran is computationally efficient, it lacks modern features and memory safety
offered by newer programming languages.

As such, considerable efforts have been made to develop a new framework for
non-parametric pharmacometric modelling in Rust, a memory-safe programming
language boasting improved speed and concurrency. The library, PMcore,
aims to primarily implement both NPAG and new non-parametric algorithms
for pharmacokinetic modelling, such as simulated annealing, optimal design,
and more.157, 158 However, parametric algorithms will also be made available.
Currently, only NPAG is implemented, and preliminary results indicates an overall
10-fold reduction in computation time, without the previously mentioned memory
limitations (data not shown). Furthermore, the library aims to implement the
simulation method detailed in Paper III, not limited to the 30 most probable
support points. Already the library is implemented in, and available for use
through, the development branch of Pmetrics. The projectI, for which the author
is a maintainer and contributor, is publicly available and provided as open-source
software under the GPL 3-0 license.159

Overall, the library aims to facilitate the development of new non-parametric
algorithms, and provide Pmetrics and other software with a more powerful engine
for parameter estimation and simulation.

IAvailable at github.com/LAPKB/PMcore/
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Conclusion

The overall aim of this thesis was to apply pharmacometric analyses to diagnostic
probes, utilizing population pharmacokinetics with a non-parametric approach.
The utility of such analysis has been readily discussed, and the results from which
are summarized below.

In Paper I, a study including patients with severe obesity undergoing Roux-
en-Y gastric bypass surgery (RYGB) or strict diet, we found that neither body
weight, weight loss, nor RYGB itself seem to affect activity in the hepatic uptake
transporter OATP1B1 using rosuvastatin as a probe drug. Both the RYGB and
diet led to a matched weight loss between the study groups, and the accompanying
pharmacogenomic and proteomic analyses further illuminated determinants of
rosuvastatin pharmacokinetics in patients with severe obesity, compared to
a normal-to-overweight control group of patients undergoing cholecystectomy.
Overall, the observed changes in rosuvastatin pharmacokinetics, accurately
determined using a population pharmacokinetic model, following RYGB, diet, and
the subsequent weight loss does not appear to be clinically relevant.

Paper II focused on patients with cerebrospinal fluid (CSF) disorders receiving
intrathecally administered gadobutrol, a magnetic resonance imaging contrast
agent. Through population pharmacokinetic modelling of plasma gadobutrol, we
revealed significant variability in the CSF to blood clearance of gadobutrol, as an
index of CSF egress. The variability was evident not only within, but also between,
various CSF disorders. Pharmacometric analysis of intrathecal gadobutrol may
as such provide a clinically valuable tool in the workup of and research in such
disorders, given the role of CSF disposition in neurological disorders.

Finally, in Paper III, we evaluated the robustness of a previously published
limited sampling strategy based on Bayesian estimates, for the determination of
measured glomerular filtration rate (GFR) using iohexol serum clearance. Through
semi-parametric simulation from a discrete population parameter distribution,
two methods were used to evaluate robustness to deviation in sample time: by
introducing an empirical amount of deviation for each individual sample point,
or a normally distributed error across all sample points. Overall, the population
pharmacokinetic model and limited sampling strategy proved robust to errors in
sample time, which importantly with simulated GFR. For a given error threshold,
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optimal sampling windows were estimated, providing additional flexibility in a
clinical setting, possibly stratified by the stage of chronic kidney disease (CKD).
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Abstract
Introduction  Rosuvastatin pharmacokinetics is mainly dependent on the activity of hepatic uptake transporter OATP1B1. 
In this study, we aimed to investigate and disentangle the effect of Roux-en-Y gastric bypass (RYGB) and weight loss on 
oral clearance (CL/F) of rosuvastatin as a measure of OATP1B1-activity.
Methods  Patients with severe obesity preparing for RYGB (n = 40) or diet-induced weight loss (n = 40) were included and 
followed for 2 years, with four 24-hour pharmacokinetic investigations. Both groups underwent a 3-week low-energy diet 
(LED; < 1200 kcal/day), followed by RYGB or a 6-week very-low-energy diet (VLED; < 800 kcal/day).
Results  A total of 80 patients were included in the RYGB group (40 patients) and diet-group (40 patients). The weight loss 
was similar between the groups following LED and RYGB. The LED induced a similar (mean [95% CI]) decrease in CL/F in 
both intervention groups (RYGB: 16% [0, 31], diet: 23% [8, 38]), but neither induced VLED resulted in any further changes 
in CL/F. At Year 2, CL/F had increased by 21% from baseline in the RYGB group, while it was unaltered in the diet group. 
Patients expressing the reduced function SLCO1B1 variants (c.521TC/CC) showed similar changes in CL/F over time com-
pared with patients expressing the wild-type variant.
Conclusions  Neither body weight, weight loss nor RYGB per se seem to affect OATP1B1 activity to a clinically relevant 
degree. Overall, the observed changes in rosuvastatin pharmacokinetics were minor, and unlikely to be of clinical relevance.

Key Points 

Both surgery and diet intervention led to a matched 
weight loss between the study groups.

Roux-en-Y gastric bypass surgery does not affect 
OATP1B1 activity in patients with severe obesity.

No dose adjustments of rosuvastatin appear to be neces-
sary following weight loss induced by bariatric surgery 
and/or low-calorie diet.

1  Introduction

Obesity represents a global epidemic [1], and is associated 
with an increased risk of comorbidities including type 2 dia-
betes, cardiovascular disease and cancer that often requires 
pharmacological treatment [2, 3]. Severe obesity is classi-
fied as a body mass index (BMI) between 35.0 and 39.9 kg/
m2 in combination with comorbidity, or ≥ 40 kg/m2, for 
which weight loss is the primary treatment [4]. Bariatric 
surgery has shown superior effects with respect to achiev-
ing long-lasting weight loss and improvement of comorbidi-
ties compared to non-surgical interventions in patients with 
severe obesity [5, 6]. The Roux-en-Y gastric bypass (RYGB) 
procedure reduces the proximal stomach, and the duode-
num and proximal intestine are bypassed [7, 8]. Due to this 
gastrointestinal rearrangement, drug absorption and disposi-
tion may be altered. Altered gastric pH, reduced transit-time, 
and decreased surface area for passive and active absorp-
tion, as well as the bypassing of intestinal segments rich in 
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drug-metabolising enzymes and transporters, are among the 
suggested mechanisms leading to variable drug disposition 
following RYGB [9].

The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase inhibitor, rosuvastatin, is a commonly used 
lipid-lowering agent. Rosuvastatin is more hydrophilic com-
pared with most other statins, and it displays a low degree of 
passive diffusion into tissues [10]. The hepatic uptake trans-
porters organic-anion transporting polypeptides (OATP) 1B1 
(SLCO1B1), OATP1B3 (SLCO1B3), OATP2B1 (SLCO2B1), 
as well as the sodium taurocholate co-transporting poly-
peptide (NTCP; SLC10A1) transport rosuvastatin into the 
hepatocytes. Organic-anion transporting polypeptides 1B1 
contributes to 49–86% of rosuvastatin hepatic uptake, and 
rosuvastatin is thus considered an established and preferred 
probe drug to study OATP1B1 activity [11–13]. Rosuvasta-
tin is sparsely metabolised, and the majority of the absorbed 
dose is excreted unchanged in faeces (~ 76%). Hepatic elimi-
nation accounts for approximately 70% of total clearance of 
rosuvastatin, with biliary excretion, mediated by canalicular 
transporters such as breast cancer resistance protein (BCRP; 
ABCG2) and permeability-glycoprotein (P-gp; ABCB1), as 
the main clearance mechanism [14, 15]. Genetic polymor-
phisms of the key hepatic uptake transporter OATP1B1 have 
been shown to influence rosuvastatin disposition. The single-
nucleotide polymorphism (SNP) c.521T>C in SLCO1B1 
is associated with decreased membrane expression of 
OATP1B1 in vivo [16]. Consequently, systemic exposure 
of rosuvastatin is reported to be 19–68% higher in patients 
with c.521TC or c.521CC [17].

In patients with a wide range of body weight, using mida-
zolam as a probe drug, both the activity and protein expres-
sion of the quantitatively most important drug metabolising 
enzyme, cytochrome P450 (CYP) 3A, have been shown to 
be inversely associated with body weight. This was hypoth-
esised to be due to low-grade inflammation and/or non-alco-
holic fatty liver disease (NAFLD) [18–20]. Inflammatory 
cytokines such as interleukin (IL) 6 and tumour necrosis 
factor alpha (TNF-α), as well as NAFLD have been asso-
ciated with lower expression and activity of several CYP 
enzymes [18, 21]. However, there are limited data regarding 
the effect of weight loss, inflammation, and NAFLD on drug 
transporters. The primary aim of this work was to study the 
short- (6 weeks) and long-term (2 years) effects of weight 
loss induced by strict diet or RYGB on OATP1B1 activity 
by investigating the pharmacokinetics of rosuvastatin, and to 
secondary compare OATP1B1 activity in a control group of 
normal-to-overweight individuals with patients with severe 
obesity.

2 � Methods

2.1 � Study Design and Patients

The COCKTAIL study, a non-randomised, single-centre, 
3-armed study, was carried out at the Morbid Obesity Centre, 
Vestfold Hospital Trust, Norway [22]. Patients with severe 
obesity (BMI ≥ 35 kg/m2 in combination with comorbidity or 
BMI ≥ 40 kg/m2) scheduled for elective weight-reducing inter-
vention by either RYGB or strict diet were eligible for inclu-
sion. The inclusion and exclusion criteria are fully described 
in the protocol paper [22]. Additionally, normal-to-overweight 
(BMI 18.5–29.9 kg/m2) individuals scheduled for cholecys-
tectomy were included as a cross-sectional control group. The 
study was approved by the Regional Committee for Medical 
and Health Research Ethics (2013/2379/REK) and performed 
in accordance with Good Clinical Practice and the Declaration 
of Helsinki (NCT02386917). Written informed consent was 
obtained prior to study participation.

2.2 � Study Visits and Procedures

The patient flow in the study has been described previously 
[20], and is further detailed in Figure S1. Both the RYGB 
group and the diet group were prescribed an initial 3-week 
low-energy diet (LED; < 1200 kcal/day), followed by addi-
tional 6 weeks of strict caloric restriction (< 800 kcal/day) 
induced by surgery or a very-low energy diet (VLED), respec-
tively, in order to obtain a similar weight loss between the 
two groups [22]. All patients were prospectively followed for 
2 years. During the study period, four 24-h pharmacokinetic 
investigations were performed following single oral adminis-
tration of 20 mg rosuvastatin. Blood samples were obtained 
via a peripheral venous catheter before and 0.25, 0.5, 1, 1.5, 2, 
3, 4, 4.25, 4.5, 5, 5.5, 6, 8, 10, 12, 23, and 24 h post-dose. The 
investigations were performed at baseline (Week 0); after the 
3-week LED (Week 3); after additional 6-week strict calorie 
restriction (Week 9), and after 2 years (Year 2). For the RYGB 
group, the investigation at Week 3 was performed the day 
before surgery. The cross-sectional control group of normal-to-
overweight individuals underwent a single 24-h pharmacoki-
netic study the day before cholecystectomy (Week 0). Hepatic 
and jejunal biopsies were obtained at the day of surgery in 
the RYGB group, and hepatic biopsies were obtained in the 
normal-to-overweight control group at the day of surgery as 
previously described [23].

2.3 � Outcomes

The primary outcomes were short- (Week 3 to Week 9) and 
long-term (Week 3 to Year 2) changes in oral clearance of 
rosuvastatin, as a measure of OATP1B1 activity. Secondary 
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outcomes included changes in rosuvastatin pharmacokinet-
ics over time following RYGB or strict diet, assessed by 
oral clearance, maximum concentration (Cmax) and time to 
maximum concentration (Tmax), as well as hepatic concentra-
tion of OATP1B1.

2.4 � Analytical Assay

Plasma concentrations of rosuvastatin were determined by 
Covance Laboratories (Madison, Wisconsin, USA), as previ-
ously described [24]. In brief, buffered plasma samples were 
extracted by supported liquid extraction. After evaporation, 
the residue was reconstituted and analysed with liquid chro-
matography tandem mass spectrometry (LC-MS/MS). The 
analyte was separated on a C18-column (Aquasil) with a 
gradient mobile phase of acetonitrile and 0.1% formic acid, 
using a LC system from Thermo Electron Corporation. 
Rosuvastatin was detected by MS/MS using a Sciex API 
5500 with positive electrospray ionisation, monitoring the 
m/z 482.2–258.2 transition. The standard curve ranged from 
0.04 to 40 ng/mL, using a human plasma sample volume of 
0.1 mL. The assay variation coefficients of the rosuvastatin 
analysis were 7.1%, 4.4% and 4.5% at 0.12 ng/mL, 2 ng/mL, 
and 20 ng/mL (n = 130), respectively.

2.5 � Clinical Chemistry and Genotyping

Clinical chemistry analyses were performed at the Depart-
ment of Laboratory Medicine, Vestfold Hospital Trust, 
Tønsberg, Norway. Plasma concentrations of C-reactive pro-
tein (CRP) and high-sensitivity CRP (hsCRP) were meas-
ured using immunoturbidimetry (Advia Chemistry XPT sys-
tems, Siemens) at Fürst Medical Laboratory, Oslo, Norway. 
Genotyping of SLCO1B1 and ABCG2 variant alleles were 
performed using Taqman-based real-time polymerase chain 
reaction assays at the Center for Psychopharmacology, Dia-
konhjemmet Hospital, Oslo, Norway. The following variant 
alleles were assessed for SLCO1B1: c.521T>C (rs4149056); 
ABCG2: V12M variant (rs2231137) and reduced-function 
Q141K variant (rs2231142). Homozygote carriers of the 
V12M C/C and Q141K G/G were considered as the wild-
type haplotype. A TaqMan assay for rs2231137 genotyping 
was not readily available, and as such an assay for rs4148150 
was used, which is in complete disequilibrium (R2 = 1 in 
Europeans) with rs2231137 [25].

2.6 � Quantification of Hepatic and Intestinal Protein 
Concentration

Proteins were extracted from small intestinal and liver biop-
sies in an SDS-containing (2% w/v) lysis buffer and quan-
tified as previously described [26, 27]. In short, samples 
were processed with the multi-enzyme digestion filter-aided 

sample preparation protocol, using LysC and trypsin [28]. 
Proteomics analysis was performed with Q Exactive HF or 
Q Exactive HF-X MS in data-dependent mode. Mass spec-
trometry (MS) data were processed with MaxQuant (version 
1.6.10.43) [29] where proteins were identified by search-
ing MS and MS/MS data of peptides against the human 
UniProtKB (UP000005640). Spectral raw intensities were 
normalised with variance stabilisation [30] and were subse-
quently used to calculate the protein concentrations using the 
Total Protein Approach [31]. Batch effects were removed by 
geometric mean centring of proteins from samples analysed 
at different time points.

2.7 � Population Pharmacokinetic Modelling

A population pharmacokinetic model was developed to 
determine individual rosuvastatin pharmacokinetics at the 
different study visits. The purpose of the model was to pro-
vide accurate estimates of AUC, oral clearance, maximum 
concentration (Cmax) and time to maximum concentration 
(Tmax) in order to allow for a rational assessment of change 
over time and between groups. In short, a non-parametric 
adaptive grid approach implemented in a modified version of 
Pmetrics 1.9.4 [32] for R 3.6.0 was used. In total, 3630 rosu-
vastatin concentrations corresponding to 197 18-point and 
111 9-point 24-h pharmacokinetic profiles from 98 patients 
were included. Additional model information and metrics 
are available in the Supplementary file (Figs S2, S3).

2.8 � Pharmacokinetic Calculations

Posterior individual parameter values, as well as posterior 
individually predicted concentrations obtained from the final 
population pharmacokinetic model run with the complete 
dataset were used for all pharmacokinetic calculations. Pre-
dictions were made in 12-min intervals, and at each sample 
point. Area under the concentration-time curve from zero 
to infinity (AUC​0–∞) was calculated with the trapezoidal 
approximation from individual posterior-predicted con-
centrations using the ‘makeAUC’-function in the Pmetrics 
package for R. Cmax and Tmax were obtained directly from the 
individual predictions, while oral clearance was calculated 
by dividing the dose by the AUC​0–∞.

2.9 � Statistical Analyses and Calculations

Linear mixed effects models were used to evaluate changes 
over time with the parameter of choice as the dependent 
variable, while visit, intervention group, and their inter-
action were treated as fixed effects. Variant of OATP1B1 
was added as a fixed effect when evaluating differences in 
change over time between genotypes. The unique patient 
identifier was used as a random effect. Model residuals were 
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evaluated for normality, and if appropriate, the dependent 
variable was transformed using the natural logarithm. Mod-
els with a logarithmically transformed dependent variable 
were adjusted for the introduced bias. Estimated marginal 
means and contrasts were used for factor combinations (of 
visit and intervention group) for all parameters of interest. 
The cross-sectional analysis at baseline was performed using 
Welch’s two-sample t test comparing the control group with 
patients with severe obesity (RYGB group and diet group 
combined). Baseline rosuvastatin pharmacokinetics were 
used to assess differences between genotypes. To explore 
relationships between variables, Pearson’s product-moment 
correlation was applied. Variables with non-normal distribu-
tions (assessed visually) were logarithmically transformed. 
Predictions of NAFLD and liver fat were performed using 
metabolic and genetic factors, with NAFLD Liver Fat Score 
values greater than − 0.640 as a diagnostic of NAFLD [33]. 
Data are presented as mean ± standard deviation or mean 
[95% confidence interval (CI)] unless otherwise stated. With 
the predetermined α = 0.05, 95% CIs not including zero 
and p values < 0.05 were considered statistically significant. 
Confidence intervals from linear mixed effects models were 
adjusted using Tukey method. All statistical analyses were 
performed using R 4.0.2 [34].

3 � Results

3.1 � Patient Characteristics

A total of 108 patients (44, 44 and 20 in the RYGB, diet, and 
control groups, respectively) were included in the study. In 
the present analyses, 98 patients (40, 40 and 18 in the RYGB, 

diet, and control group, respectively) supplied at least one 
24-h pharmacokinetic profile during the study period.

Mean total body weight at baseline was 132 ± 24 kg, 
124 ± 23 kg, and 71 ± 11 kg in the RYGB, diet, and control 
groups, respectively (Table 1). There were no differences 
between the groups with respect to age, sex, or ethnicity. 
Routine clinical chemistry was similar in the three groups, 
except for higher value of ALT in the intervention groups 
compared with the control group (Table 1). At baseline, 71 
of 98 patients had a NAFLD-score above − 0.640, indica-
tive of NAFLD, in the RYGB (90%), diet (82%) and control 
groups (11%).

3.2 � Changes in Body Weight

The initial 3-week LED resulted in a mean weight loss of 5 
± 2% and 5 ± 2% in the RYGB and diet group, respectively. 
Total weight loss after the additional 6 weeks of VLED 
induced by RYGB or strict diet was 13 ± 3% and 11 ± 4%, 
respectively (Fig. 1). At Year 2, the RYGB group demon-
strated a total weight loss of 29 ± 9% from baseline. In con-
trast, several patients in the diet group had regained body 
weight at Year 2, resulting in a mean total weight loss from 
baseline of 3 ± 6% (Fig. 1). The hsCRP and predicted liver 
fat were similar between the RYGB and diet groups at Weeks 
0, 3, and 9, but lower in the RYGB group at Year 2 (Fig. 1).

3.3 � Baseline Rosuvastatin Pharmacokinetics, 
Pharmacogenetics, and Proteomics

Cross-sectional comparisons of rosuvastatin pharmacokinet-
ics in patients with severe obesity compared with the control 
group revealed a 0.9 [95% CI 0.4, 1.4] hour shorter Tmax in 
the normal-to-overweight individuals, with no differences 

Table 1   Demographic overview 
of patients at baseline

Values are presented as mean (± standard deviation) or count
ALT alanine aminotransferase, AST aspartate aminotransferase, BMI body mass index, hsCRP high-sensi-
tive C-reactive protein, RYGB Roux-en-Y gastric bypass
a For one individual in the control group, genotype could not be determined

RYGB (n = 40) Diet (n = 40) Controls (n = 18)

Male/female (n) 13/27 14/26 3/15
Age (years) 46 ± 9 49 ± 10 42 ± 15
Weight (kg) 132 ± 24 124 ± 23 71 ± 11
BMI (kg/m2) 45 ± 6 42 ± 5 25 ± 3
hsCRP (mg/L) 8.2 ± 6.2 7.1 ± 6.6 2.5 ± 3.8
ALT (IU/L) 34 ± 17 32 ± 19 22 ± 15
AST (IU/L) 28 ± 10 28 ± 15 25 ± 11
Creatinine (µmol/L) 58 ± 11 59 ± 14 60 ± 12
Ethnicity (Caucasian/other) 40 / 0 39/1 17/1
SLCO1B1 c.521
T/T | T/C | C/C 27 | 12 | 1 25 | 14 | 1 13 | 4 | 0a
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in Cmax or oral clearance (Fig. 2). At baseline, total body 
weight was not associated with oral clearance (r = 0.17 
[95% CI − 0.03, 0.36]). No difference in rosuvastatin oral 
clearance was observed in patients with NAFLD (n = 69) 
compared with those without (n = 27), and hsCRP was not 
associated with oral clearance of rosuvastatin (r = − 0.13 
[95% CI − 0.32, 0.07]).

The frequency distribution of SLCO1B1 genetic vari-
ants is presented in Table 1, and there were no differences 
in frequency distribution between the sexes (p = 0.0867). 
Frequency distribution for the ABCG2 variants are pre-
sented in Table S1. Allele frequencies for all sequence var-
iants investigated did not deviate from the Hardy–Wein-
berg equilibrium. At baseline, patients with SLCO1B1 
variant c.521TC (n = 30) or c.521CC (n = 2) demonstrated 

30% (p < 0.001) lower oral clearance compared to those 
with c.521TT. Absolute differences in rosuvastatin oral 
clearance and systemic exposure within the genetic vari-
ants of SLCO1B1 at baseline are presented in Supplemen-
tary Tables S2 and S3, respectively.

In the patients undergoing RYGB, hepatic concentration 
of OATP1B1 was positively associated with oral clearance 
the day before surgery (r = 0.36 [95% CI 0.04, 0.61]), but 
this was not the case for the control group (r = − 0.09 
[95% CI − 0.54, 0.39]) (Fig. S5). Furthermore, there were 
no differences in mean hepatic concentration of OATP1B1 
between the RYGB (2.7 ± 0.9 fmol/µg) and control groups 
(2.6 ± 0.9 fmol/µg; p = 0.630), nor were there any dif-
ferences between individuals in the combined RYGB and 
control groups with SLCO1B1 variant c.521TT (2.8 ± 0.9 
fmol/µg) or c.521TC/CC (2.5 ± 0.7 fmol/µg).

Fig. 1   Groupwise longitudinal overview of change in a total body 
weight, b high-sensitive C-reactive protein (hsCRP) and c predicted 
liver fat percentage. For the Roux-en-Y gastric bypass (RYGB) and 
diet groups, linear mixed model predicted marginal mean and 95% 
confidence intervals are presented. For the normal-to-overweight con-

trol group, observed mean and 95% confidence interval is presented. 
Comparisons are made between the RYGB and diet groups at each 
visit, and significant differences are denoted with asterisks. Non-
significant differences are not shown *p < 0.05; **p < 0.01; ***p < 
0.001

Fig. 2   Comparisons of rosuvastatin a oral clearance, b maximum concentration (Cmax) and c time to maximum concentration (Tmax) between 
patients with severe obesity and a normal- to overweight control group at baseline *p < 0.05; **p < 0.01; ***p < 0.001
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3.4 � Short‑ and Long‑Term Changes in Rosuvastatin 
Pharmacokinetics Following RYGB and Strict 
Diet

A total of 57 patients (RYGB = 29, diet = 28) participated 
in all four pharmacokinetic investigations. Mean predicted 
pharmacokinetic profiles of rosuvastatin are shown in sup-
plementary Figure S6, and an overview of pharmacokinetic 
parameters for all groups across time is provided in Table 2. 
There were no differences in pharmacokinetic parameters of 
rosuvastatin between the two intervention groups at baseline 
(Table 3).

Following the initial 3-week LED, oral clearance 
decreased by 16% [95% CI 0, 31) and 23% [95% CI 8, 38] 
in the RYGB and diet groups, respectively (Table 3), and 
the change was not different between the groups (Fig. 3). 
Furthermore, no changes in Cmax or Tmax were observed 
(Table 3). In the RYGB and diet groups combined, the 
change in oral clearance was positively associated with 
the weight loss (r = 0.25 [95% CI 0.03, 0.45]) in the same 
period, but not associated with change in liver fat (r = 0.05 
[95% CI − 0.18, 0.27]).

In the RYGB group, a more rapid rosuvastatin absorption, 
reflected by a 0.9 [95% CI 0.4, 1.7] hour reduction in Tmax 
was observed at Week 9, compared with baseline (Table 3). 
There were no additional changes in oral clearance or Cmax 
in either the RYGB or diet groups from Week 3 to Week 9. 
Still, the within group change in oral clearance during this 
time period was different between the two groups (Fig. 3).

At Year 2, the RYGB group demonstrated a total increase 
in oral clearance of 21% [95% CI 1, 41] and 57% [95% CI 
31, 83] compared to baseline and Week 9, respectively. The 
change in oral clearance from Week 9 to Year 2 was 8-fold 
greater in the RYGB- compared with the diet group (Fig. 3). 
At Year 2, oral clearance of rosuvastatin was 22% (95% CI 
0, 43) higher in the RYGB group than in the diet group 
(Table 3). Long-term change in oral clearance from baseline 
to Year 2 was not associated with change in hsCRP (RYGB: 
r = 0.13 [95% CI − 0.24, 0.46]; diet: r = − 0.13 [95% CI 

− 0.46, 0.25]) or estimated liver fat (RYGB: r = 0.16 [95% 
CI − 0.21, 0.48]; diet: r = 0.28 [95% CI − 0.09, 0.57]) in 
either group. The absorption was still faster at Year 2 in the 
RYGB group; Tmax was reduced by 1.1 [95% CI 0.4, 1.9] 
hour(s) compared with baseline (Table 3), and was 0.8 [95% 
CI 0.2, 1.4] hour(s) shorter in the RYGB group compared 
with the diet group. At Year 2, Cmax in the RYGB group was 
27% [95% CI 3, 51] lower compared with Week 9, but not 
different from Cmax at baseline or when compared with the 
diet group at Year 2. The diet group showed no difference 
from baseline in rosuvastatin pharmacokinetics at Year 2.

Neither short- nor long-term change in oral clearance 
was different in patients with the reduced-function variant 
(c.521TC or c.521CC) of SLCO1B1 from those with the 
homozygote wild-type variant (c.521TT) in either group 
(Fig. 4). While a statistically significant difference in change 
in oral clearance between individuals with the c.521TT and 
c.521TT/CC variants were found in the diet group only dur-
ing LED, no differences were found in the combined RYGB 
and diet groups in the same time period.

4 � Discussion

To the best of our knowledge, this is the first longitudinal, 
prospective pharmacokinetic study in patients with severe 
obesity, evaluating the effect of RYGB and strict diet on the 
activity of the hepatic uptake transporter OATP1B1, using 
rosuvastatin as a probe drug. The main finding was that nei-
ther body weight nor weight loss, induced by either RYGB 
or strict diet, seemed to substantially influence the activity 
of the hepatic uptake transporter OATP1B1. There were no 
systematic differences in short- or long-term change in oral 
clearance between patients with the reduced function variant 
of SLCO1B1 or wildtype, providing the main evidence for 
unchanged OATP1B1 activity following RYGB and weight 
loss observed in the present study. Also, no statistically 
significant differences in rosuvastatin pharmacokinetics 
were shown between patients with severe obesity and the 

Table 2   Summary of observed rosuvastatin pharmacokinetic parameters over time across groups

Values are presented as mean ± standard deviation, and from the final population pharmacokinetic model
Cmax maximum concentration, RYGB Roux-en-Y gastric bypass, Tmax time at maximum concentration

RYGB Diet Controls

Week 0  
(n = 38)

Week 3  
(n = 39)

Week 9  
(n = 35)

Year 2  
(n = 32)

Week 0  
(n = 40)

Week 3  
(n = 39)

Week 9  
(n = 37)

Year 2  
(n = 30)

Week 0  
(n = 18)

Oral clear-
ance (L/h)

374 ± 23 336 ± 23 306 ± 20 469 ± 18 360 ± 23 277 ± 22 329 ± 22 362 ± 27 337 ± 11

Cmax (ng/
mL)

9.1 ± 8.3 10.2 ± 8.3 14.1 ± 15.5 9.1 ± 9.1 9.0 ± 5.0 10.7 ± 6.6 9.5 ± 5.4 11.0 ± 8.3 12.9 ± 11.8

Tmax (h) 3.0 ± 1.4 2.5 ± 0.8 2.3 ± 1.1 2.2 ± 1.5 2.7 ± 0.7 2.7 ± 0.9 2.6 ± 1.0 2.7 ± 0.8 2.0 ± 0.7
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normal-to-overweight control group at baseline, suggesting 
no effect of body weight per se on OATP1B1 activity or 
rosuvastatin pharmacokinetics. This is supported by simi-
lar findings using a semi-mechanistic proteomics-informed 
model in a subset of the same patients [27].

Given that the changes in rosuvastatin oral clearance were 
also present in patients with genetically decreased OATP1B1 
transport ability, it seems plausible that physiological alter-
ations associated with caloric restriction and/or RYGB 
induced the observed alterations in oral clearance in the pre-
sent study. Following the 3-week LED with similar weight 
loss, oral clearance decreased by approximately 20% in both 
intervention groups. It is known that caloric restriction may 
affect both liver size and composition. In a systematic review 
of LEDs (800–1200 kcal/day) prior to bariatric surgery, liver 
size was found to be reduced by 12–27%, and approximately 
80% of total reduction in liver size was described to occur in 
the initial two weeks of diet [35]. As rosuvastatin displays 
a high hepatic extraction ratio (0.63), clearance and bio-
availability may be susceptible to changes in both portal 
and hepatic blood flow [14]. It is possible that hepatic blood 
flow could be altered following rapid reduction in liver size, 
as hepatic blood flow has been found to increase following 
bariatric surgery [36, 37]. A transient increase in portal vein 
blood flow could thus lead to an increased bioavailability of 
rosuvastatin, possibly explaining the reduced oral clearance 
following the initial LED. However, this hypothesis will 
require further investigation into hepatic haemodynamics 
following diet-induced weight loss. During the initial LED, 
change in oral clearance was not associated with change in 
predicted liver fat content, suggesting that liver composition 
may be less important with regard to rosuvastatin dispo-
sition. Additionally, oral clearance of rosuvastatin was not 
different in patients with NAFLD-score above the diagnos-
tic cut-off value compared with those with normal scores. 
This agrees with findings from Tirona and colleagues, who 
reported no differences in rosuvastatin pharmacokinetics 
in patients with obesity with magnetic resonance imaging 
(MRI)-confirmed NAFLD compared to a control group [38]. 
Furthermore, RYGB or 6 weeks of additional VLED did not 
induce additional changes in oral clearance despite further 
reduction in body weight, which indicates that weight loss 
is not the sole explanation for the observed effects. Nonethe-
less, a statistically significant between-group difference in 
the change in oral clearance following RYGB or six weeks 
of additional VLED was found. However, considering that 
no significant changes within either group were observed 
in this period, the observed between-group difference was 
considered to be less important in the overall interpretation 
of the results.

At Year 2, no changes in rosuvastatin pharmacokinetics 
from baseline were observed in the diet group, while the 
RYGB group demonstrated a net increase in oral clearance Ta
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Fig. 3   Between-group differences in within-group change for the 
Roux-en-Y gastric bypass (RYGB) and diet groups for a oral clear-
ance (CL/F), b maximum concentration (Cmax) and c time to maxi-
mum concentration (Tmax). Difference between groups are made with 

the RYGB group as reference (positive values indicate greater change 
in the RYGB group), and are presented as marginal mean with 95% 
confidence interval

Fig. 4   Longitudinal overview of linear mixed effects model predicted 
oral clearance for individuals expressing the reduced function variant 
SLCO1B1 c.521CC and TC compared with c.521TT in the a Roux-
en-Y gastric bypass (RYGB) and b diet groups, respectively. Data 
are presented as marginal mean with 95% confidence interval. The 
between-variant difference in within-variant change for the individu-

als with SLCO1B1 c.521TT or TC genotype compared with c.521TT 
are shown for the c RYGB and d diet group, presented as marginal 
mean with 95% confidence interval, with c.521TT as the refer-
ence group (positive values indicate greater change in patients with 
c.521TT)
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of approximately 21%. This increase in oral clearance long 
term seems to be a surgery-specific effect on rosuvastatin 
absorption, leading to a net reduced bioavailability that 
may not have been readily apparent or sufficiently devel-
oped six weeks post-surgery. Given the anatomical and 
physiological changes in the gastrointestinal tract following 
RYGB, and the fact that rosuvastatin is moderately absorbed  
(~ 50%) [39] and displays a complex, dissolution rate-lim-
ited absorption (BCS class II), a reduction in the absorption 
and thus oral bioavailability after surgery is not unexpected. 
Surprisingly, this effect was not observed shortly after sur-
gery. Moreover, it cannot be ruled out that other surgery-
specific effects, such as alteration in incretins, expression/
activity of other drug transporters such as NTCP or gut 
microbiota, may have contributed to the observed change in 
oral clearance in the long term. To date, only one study has 
evaluated the effect of RYGB on rosuvastatin pharmacoki-
netics. However, with only one dose- and weight-normalised 
blood sample, the data were not sufficient to draw conclu-
sions regarding the effect of RYGB on the pharmacokinetics 
of rosuvastatin [40].

At the time of surgery, hepatic expression of OATP1B1 
was positively associated with oral clearance in the RYGB 
group, but no such associations were shown in the control 
group, despite similar mean hepatic expression of OATP1B1 
in the two groups. In contrast to the controls, the RYGB 
group was subjected to an initial LED, and thus a subsequent 
weight loss prior to surgery in the present study. This may 
potentially explain some of these differences, as rosuvastatin 
oral clearance was already reduced in the RYGB group when 
biopsies for protein expression measurement were obtained.

A strength of the present study was that oral clearance of 
rosuvastatin was calculated using a precise measurement of 
AUC​0–∞, obtained from extensive blood-sampling in combi-
nation with an internally validated population pharmacoki-
netic model. Additionally, by including a dietary control 
group with matched short-term weight loss, we were able 
to differentiate the effects of surgery and weight loss on 
rosuvastatin pharmacokinetics. However, it is also impor-
tant to recognise the limitations of the presented work. Most 
importantly, without concomitant intravenous administration 
it is not possible to determine absolute bioavailability of 
rosuvastatin, which is likely to change following RYGB. As 
such, true clearance could provide additional mechanistic 
understanding of the underlying processes. Another weak-
ness was that NAFLD was not confirmed with biopsy or 
MRI, but predicted based on metabolic factors. It is also 
important to recognise that rosuvastatin has a reported half-
life of 20 h [14], but sampling was only performed up to 24 
h. As such, population pharmacokinetic modelling was used 
for parameter estimation over non-compartmental methods, 
as the former is not as reliant on rich sampling in the elimi-
nation phase. While additional samples may have improved 

the accuracy of parameter estimation, we could not justify 
the added patient inconvenience and logistical challenges 
for this probe drug.

5 � Conclusions

In conclusion, neither body weight, weight loss, nor RYGB 
per se seem to affect OATP1B1 activity. This is primarily 
substantiated by the fact that individuals with the reduced 
function variant of SLCO1B1 showed similar change in oral 
clearance of rosuvastatin over time. The short-term decrease 
in oral clearance following LED is reversible, as indicated 
by the return to baseline values following regained weight 
in the diet group while the long-term increase in oral clear-
ance observed in the RYGB group appears to be due to a 
surgery-specific alteration in rosuvastatin disposition lead-
ing to an increased oral clearance. Overall, the observed 
changes in rosuvastatin pharmacokinetics in the present 
study were small, and dose adjustments of rosuvastatin fol-
lowing RYGB- or diet-induced weight loss appears to be 
unnecessary.
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METHODS 

Pharmacokinetic investigations 

Patients abstained from food and drugs from 10 pm the evening before the investigations. Blood 

samples were obtained via a peripheral venous catheter at 0.25, 0.5, 1, 1.5, 2, 3, 4, 4.25, 4.5, 5, 5.5, 6, 

8, 10, 12, 23, and 24 hours following rosuvastatin administration. Blood samples were drawn in K2-

EDTA vacutainer tubes placed on ice and centrifuged for 10 minutes at 4 ºC (1800 g). Plasma was 

separated into Cryovials prefilled with 0.2 mL of 0.1 M sodium acetate buffer and frozen at -70ºC 

within one hour. 

Population pharmacokinetic modelling 

A population pharmacokinetic model was developed in order to determine rosuvastatin 

pharmacokinetics in the individual patients. The model was developed using the nonparametric adaptive 

grid approach, NPAG, [1] implemented in Pmetrics (version 1.9.4) for R (version 3.6.0). A total of 3630 

rosuvastatin concentrations corresponding to 197 18-point and 111 9-point 24-hr pharmacokinetic 

profiles from 98 patients were included. The complete dataset was split into a development- (75%) and 

validation (25%) set for the purpose of internal validation; 18-point pharmacokinetic profiles were 

allocated to the development set, with random allocation of 9-point profiles until the development set 

contained 75% of all pharmacokinetic profiles.  

At each pharmacokinetic investigation, a total of 18 blood samples for determination of rosuvastatin 

concentration were obtained from each individual. Rich pharmacokinetic profiles (all 18 samples) were 

obtained for analyses in the first 7 and 13 patients in the RYGB- and diet group at week 0, 3 and 9, as 

well as in the first 6 patients in both groups at year 2. Rich pharmacokinetic profiles were also obtained 

from the first 6 patients in the normal to overweight control group. Based on these rich profiles, a 

preliminary population pharmacokinetic model of rosuvastatin was developed. This model was further 

used to determine a 9-point bioanalysis strategy using the multiple model optimal sampling (MMopt) 

function included in Pmetrics. Based on the best agreement with reference model derived (18-point) 

rosuvastatin AUC0-24 the following nine time points were chosen: 0.5, 1, 1.5, 3, 4.25, 5, 6, 12 and 24 

hours post administration. Samples at these nine time points were analyzed for the remaining patients 

(n = 32, 30 and 12 in the RYGB, diet, and control group, respectively). 

The most appropriate pharmacokinetic structural model was assessed by testing 1-, 2-, and 3-

compartment models with different absorption pattern (zero and first order and with and without lag 

time and a Heaviside function) as well as the inclusion of enterohepatic recirculation. The error 

polynomial was based on the standard deviation of rosuvastatin calibration curves from 0.0400 ng/mL 

to 40.0 ng/mL with more than 60 replicates each. Both gamma (error = SD*γ) and lambda (error = [SD2 
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+ λ2]0.5) error models were tested, where SD is the standard deviation of the analytical method; SD = 

0.0005495041+ 0.0342807720*x + 0.0001165904*x2 where x is the observed rosuvastatin 

concentration. Covariates were not included in the model, since a linear mixed model approach including 

potential covariates was used for the between group and over time analysis. Additionally, the richness 

of the data assured proper individual predictions without inclusion of covariates. Individual predictions 

were used to calculate pharmacokinetic parameters for further analysis with linear mixed models. Model 

selection was primarily based on comparison of the relative root mean squared predictive error (RMSE, 

%) calculated from the relative predictive error (predicted concentration - observed 

concentration/observed concentration) (PE, %) of all rosuvastatin concentrations in the development 

dataset, bias and imprecision, and individual concentration versus time plots. Linear regression slope, 

R2-values of the observed versus predicted plots AIC, and BIC also guided model development to a 

lesser extent. 

The models were run on a high-performance computing (HPC) cluster utilizing a modified version of 

Pmetrics. The standard compute nodes are equipped with 40 CPU cores and 192 GiB memory each, 

with the full cluster boasting a theoretical performance (Rpeak) of 645 teraflops. The final developed 

model was validated using the validation dataset (without cycling). Subsequent to this was the validated 

model cycled until convergence with the complete dataset (combined development and validation 

datasets) and used to obtain individual parameter predictions to be used in the pharmacokinetic 

calculations presented below. 

 

RESULTS 

Patient flowchart 

The patient flow in the study has been described previously [2], and is further detailed in Figure S1. Due 

to technical difficulties, some patients were unable to supply evaluable rosuvastatin pharmacokinetic 

profiles at all four study visits, whereas one patient in the diet group did not supply any pharmacokinetic 

profiles.  
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Figure S1: Patient flow in the study, modified from Kvitne et. al [2]. 

Population pharmacokinetic modelling  

In literature, two-compartmental models have previously been used to assess rosuvastatin 

pharmacokinetics in pediatric patients and patients with renal impairment [3,4], both developed using 

non-linear mixed-effects modeling. Due to a resampling of the dataset following access to a high-

performance computing cluster, AIC values are not included for model comparisons, as this metric is 

not representative for comparing different datasets. Instead, representative RMSE-values are given 

indicatively. The one- (RMSE: 36%) and two-compartmental (RMSE: 24%) models tested showed poor 

predictive performance. Inclusion of enterohepatic recirculation moderately improved model fit (RMSE: 

17%). Three-compartment models including enterohepatic recirculation were also tested but did not 

improve the predictive performance with regard to the PE, RMSE, R2, bias, and imprecision. 

A three-compartment model with two intermediary absorption compartments with individual lag-times 

and time-dependent transport rates regulated by a modified Heaviside-function (Figure S2, Equation 

S1) described the data well. The modified Heaviside function describes how the transport rate from the 

ith to the jth compartment approximate Ka over time from time Tlag, at a rate adjusted by L (Equation 

S1). 
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𝐾𝑖,𝑗 = 𝐾𝑎 ∗ [
1

2
∗ (1 + tan−1(L ∗ (𝑇 − 𝑇𝑙𝑎𝑔𝑖)) ∗

2

𝜋
)]      Equation S1 

 

Figure S2: Structural outline of the final pharmacokinetic model. K12, K52 and K62 are described using 

a modified Heaviside-equation. Absorption from compartment 1 is both direct (K12) and indirect via 

intermediary compartments 5 and 6. All absorption pathways are associated with individual lag-times 

for absorption, with time-dependent transport rates adjusted by a modified Heaviside function. Two 

peripheral compartments (3 and 4) were included. Elimination is of the first-order from the central 

compartment (2) only. Compartment 2 corresponds to the observed plasma concentrations of 

rosuvastatin. 

The final model described the data well with low predictive error. Predictions mostly fall on or directly 

around the unity line (Figure S3 A), and model residuals appear evenly distributed across the range of 

concentrations (Figure S3 B). While a trend for underpredictions was present for predictions made at 

the 24-hour sample time (Figure S3 C), the residuals at earlier sample times appears evenly distributed. 
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Figure S3: Population pharmacokinetic performance plots and metrics. a) Observed rosuvastatin 

concentrations against posterior individual predicted concentrations. Line represents the identity line. b) 

Residual error against individual observed rosuvastatin concentrations. c) Residual error against time. 

d) Tabular presentation of key population model performance metrics for the development (75%), 

validation (25%) and complete dataset. 

The model proved especially efficient at predicting the multiple peaks in the absorption phase of 

rosuvastatin. Randomly sampled individual concentration-time profiles from each group at each visit 

are shown in Figure S3. Here, the atypical absorption patterns of rosuvastatin are demonstrated, with 

multiple peaks following absorption. 
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Figure S4: Individual posterior predicted rosuvastatin concentrations (lines) and observed rosuvastatin 

concentration (points) from one patient in each group at each visit, randomly sampled. 
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Rosuvastatin proteomics 

 

Figure S5: Scatterplot and associations between rosuvastatin oral clearance and hepatic concentration 

of OATP1B1 in the (a) RYGB (n = 37) and (b) normal to overweight control group (n = 18). 

Associations are reported using Pearson’s product-moment correlation coefficient. 

 

 

Figure S6: Mean predicted plasma concentration of rosuvastatin at each pharmacokinetic investigation 

for the normal to overweight control-, RYGB- and diet group. At week 0, the predicted concentration 

over time is almost completely overlapping in the RYGB- and diet group. Predictions were made in 12-

minute intervals.  
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Rosuvastatin pharmacogenomics 

Table S1: Distribution of ABCG2 variants at baseline. 

 RYGB (n = 40) DIET (n = 40) CONTROLS (n = 18) 
ABCG2 (BCRP) †    
Q141K G/G | G/T | T/T 35 | 4 | 1 34 | 6 | 0 15 | 1 | 1 

V12M C/C | C/T | T/T 36 | 4 | 0 37 | 3 | 0 17 | 0 | 0 
†   For one individual in the control group, genotype could not be determined. 

 

Table S2: Differences in oral clearance between pharmacogenetic variants of SLCO1B1 and ABCG2 at 

week 0 (baseline), as determined by Welch’s two-sample t-test. 

Gene Variant n 
Variant 

CL/F (L/h) 

Wildtype 

CL/F (L/h) 

Absolute 

difference 

% 

difference 

P-

value 

SLCO1B1 c.521TC/ CC 32 284 403† -119 [-59, -180] -30 < .001 

ABCG2 
V12M C/C 

Q141K G/T 
10 272 377 -105 [-1, -208] -28 0.047 

ABCG2 
V12M C/C 

Q141K T/T 
2 172 377 

-206 [593, -

1005] 
-55 0.212 

ABCG2 
V12M C/T 

Q141K G/G 
7 389 377 12 [139, -116] 3 0.837 

CL/F: Oral clearance.   

† SLCO1B1 c.521 TT considered wildtype 

 

Table S3: Differences in systemic exposure between pharmacogenetic variants of SLCO1B1 and 

ABCG2 at week 0 (baseline), as determined by Welch’s two-sample t-test. 

Gene Variant n 
Variant 

AUC0-∞ 

Wildtype 

AUC0-∞ 

Absolute 

difference 
% difference P-value 

SLCO1B1 c.521TC+ CC 32 89 56† 32 [49, 16] 57 < .001 

ABCG2 
V12M C/C 

Q141K G/T 
10 93 63 30 [64, -4] 47 0.079 

ABCG2 
V12M C/C 

Q141K T/T 
2 145 63 82 [893, -728] 131 0.422 

ABCG2 
V12M C/T 

Q141K G/G 
7 57 63 -6 [12, -24] -9 0.483 

AUC0-∞: Area under the curve from zero to infinity.  

† SLCO1B1 c.521 T/T considered wildtype  
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Population pharmacokinetic modeling 
of CSF to blood clearance: prospective tracer 
study of 161 patients under work‑up for CSF 
disorders
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Abstract 

Background:  Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been estab-
lished for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease 
process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this 
study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic 
resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population 
pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid 
diseases.

Methods:  Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites 
and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cer-
ebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial 
hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocepha-
lus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals 
with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references.

Results:  Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed 
marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 
50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maxi-
mum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In 
addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles.

Conclusions:  The present observations of considerable variation in cerebrospinal fluid to blood clearance between 
individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clear-
ance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may 
become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as 
measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.
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Background
While the renal glomerular filtration rate (GFR) is clini-
cally used as marker of clearance of drugs and solutes 
from blood [1], the cerebrospinal fluid (CSF) to blood 
clearance has not previously been defined in either 
healthy individuals nor in individuals with neurological 
diseases. Possibly, direct measurement of CSF to blood 
clearance might be useful for understanding diseases of 
the brain, and consequently lay ground for personalized 
intrathecal drug administration to the central nervous 
system (CNS).

Since the dual discoveries of the glymphatic sys-
tem in 2012 [2] and the meningeal lymphatic system in 
2015 [3], there have been renewed interest in how vari-
ous waste substances are cleared from the brain [4], and 
not at least the role of meningeal lymphatic vessels [5]. 
Impaired glymphatic clearance of toxic by-products from 
brain metabolism to CSF causing deposition of toxic sub-
stances in the brain, e.g. deposition of amyloid-β and tau 
in Alzheimer’s disease and α-synuclein in Parkinson’s 
disease, has been proposed as a common pathogenic 
pathway behind several neurodegenerative disorders 
[4]. Meningeal lymphatic function seems to be affected 
in a wide range of diseases, as indicated in animal mod-
els of traumatic brain injury [6], malignant brain dis-
ease [7–9], stroke [10, 11] and Alzheimer’s disease [12], 
and in patients with Parkinson’s disease[13]. Given that 
impaired molecular clearance from CSF to blood may 
have a pivotal role in the development of neurological 
disease; it might be desirable to obtain quantitative data 
about CSF to blood clearance on an individual basis. For 
years, levels of brain metabolites from single time points 
have been measured in CSF, as well as in blood, aiming 
at identifying the pre-symptomatic phase of dementia 
disease [14, 15]. On the other hand, direct assessment 
of clearance dynamics from CSF to blood has not been 
possible.

Assessment of CSF to blood clearance might as well 
be useful to tailor dosage of intrathecal drugs. Today, 
intrathecal drug administration seems promising in 
order to treat a wide range of diseases within the CNS, 
such as neuro-inflammatory, neuro-degenerative, neuro-
oncologic, and neuro-vascular diseases [16–20]. Many 
systemically administered drugs, which are supposed to 
function in CNS, remain to a considerable degree within 
the systemic circulation due to their inability to cross the 
blood–brain-barrier (BBB) [21]. Given previous observa-
tions of brain wide distribution of CSF tracer adminis-
tered to the lumbar subarachnoid space in humans [22], 

intrathecally administered drugs have potential to better 
target brain disease directly by their by-passing of the 
BBB, and assumedly in much lower doses than applied 
systemically, thereby reducing side effects.

Our group has used intrathecal administration of 
the magnetic resonance imaging (MRI) contrast agent 
gadobutrol (serving as a CSF tracer) to explore molecu-
lar passage from CSF to the brain [22, 23], meninges 
[24], calvarial bone [25], extra-cranial lymph nodes [26], 
as well as to the blood [27]. From this, we suggest that 
measurements of CSF to blood clearance of gadobutrol 
may provide an overall estimation of the ability of CSF to 
remove macromolecules. Since tracer levels in blood are 
highly correlated with levels of tracer in CSF at MRI [27], 
resource-demanding imaging may be omitted as part of 
CSF clearance assessment. Gadobutrol is a hydrophilic 
substance unable to cross the BBB, which after admin-
istration to CSF is excreted along the same pathways as 
other endogenous substances within CSF, such as the 
paravascular [4] and meningeal lymphatic pathways [28] 
suggested from animal studies. In the present work, we 
investigated the CSF to blood clearance of gadobutrol in 
patients under clinical work-up of various neurological 
diseases and CSF disturbances, employing a population 
pharmacokinetic model based on a large patient material 
spanning multiple disease categories. The hypothesis was 
that different CSF diseases present a characteristic profile 
of CSF to blood clearance.

Methods
Experimental design
A prospective and observational study design was uti-
lized; randomization or a priori sample size calculation 
was not relevant.

Patients
The study included patients referred to the Department 
of neurosurgery, Oslo University Hospital—Rikshospita-
let, Oslo, Norway, who were examined for tentative CSF 
disorders, and in whom intrathecal contrast enhanced 
MRI was considered indicated for clinical reasons. Indi-
viduals who were not eligible for inclusion included 
subjects with a history of hypersensitivity reactions to 
contrast media agents, severe allergic reactions in gen-
eral, evidence of renal dysfunction, i.e. glomerular filtra-
tion rate (GFR) < 30, age < 18 or > 80 years, or pregnant or 
breastfeeding women.

Patients were categorized according to tentative diag-
nosis prior to MRI, and underwent work-up, including 

Keywords:  Cerebrospinal fluid, Clearance, Gadobutrol, Brain metabolites, Intrathecal administration, Intrathecal drugs
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blood sampling, prior to any treatment. The category 
reference subjects (REF) includes individuals in whom 
we found no apparent evidence of CSF disturbance and 
no indication for surgery. The group with spontane-
ous intracranial hypotension (SIH) had an identified 
CSF leakage that required surgery to close the leakage. 
The present subjects in the category idiopathic intracra-
nial hypertension (IIH) were shunted and demonstrated 
clinical improvement thereafter. Patients with pineal 
cysts (PC) or arachnoid cysts (AC) underwent surgery 
with cyst removal and demonstrated post-operative 
clinical improvement. The category idiopathic normal 
pressure hydrocephalus (iNPH) included patients who 
based on clinical workup, imaging findings and results of 
intracranial pressure (ICP) monitoring [29, 30], under-
went shunting with a demonstrated clinical improve-
ment thereby qualifying for the diagnosis Definite iNPH 
according to the Japanese guidelines [31].

Intrathecal administration of gadobutrol
The MRI contrast agent gadobutrol (Gadovist™, Bayer 
Pharma AG, Berlin, Germany) was administered intrath-
ecally in volumes of 0.10, 0.25 or 0.5 mL (1.0 mmol/mL) 
at a speed of a few seconds. The intrathecal injection pro-
cedure was done at the lumbar level. Correct entrance 
to the subarachnoid space was verified by CSF backflow 
from the spinal needle.

The first 80 patients received intrathecal gadobutrol in 
a dose of 0.50 mmol only, and the latter patients received 
intrathecal gadobutrol in alternatig doses of 0.10 mmol, 
0.25 mmol or 0.5 mmol.

Quantification of gadolinium in blood
Venous blood samples were obtained at empirically 
determined regular time points up to about 48  h after 
intrathecal administration of gadobutrol, and were stored 
at -80 °C. Quantification of gadolinium to estimate con-
centrations of gadobutrol in blood and plasma was per-
formed as previously described [27]. In short, the whole 
blood samples were homogenized using an Ultra-Turrax 
homogenizer (IKA T18). Both plasma and the homog-
enized whole blood samples were subjected to diges-
tion with ultrapure distilled nitric acid and deionized 
Milli-Q water in a closed-vessel microwave technique 
system (UltraCLAVE, Milestone, Italy). The samples 
were digested according to a 60-min stepwise heating 
program, with a maximum temperature of 250  °C held 
for 15  min. Following dilution, samples were analyzed 
for gadolinium by inductively coupled plasma mass 
spectrometry (Agilent 7700x, Agilent Technologies), 
employing indium at 0.1 μg/L as an internal standard. A 
5-point standard curve (0.01–10 μg/L) was used. All ana-
lytical results were corrected for procedural blank values. 

Measured gadolinium concentrations were recalculated 
to gadobutrol concentrations.

In this work, both plasma and whole-blood gadobutrol 
were used. Linear regression through the origin was used 
to determine the plasma to whole blood ratio, and whole 
blood concentration of gadobutrol was interpolated to 
plasma concentrations for the purpose of pharmacoki-
netic modelling.

Gadobutrol population pharmacokinetic modelling
A population pharmacokinetic model was developed in 
order to determine individual pharmacokinetic param-
eters of intrathecally administered gadobutrol. A non-
parametric adaptive grid approach implemented in 
Pmetrics (version 1.9.7) for R (version 4.0.0) was used 
[32]. Based on available literature [33, 34] and previous 
work [27], both one- and two-compartment structural 
models were initially considered. The structural models 
provide the hypothesized framework for which transfer 
of gadobutrol occurs between compartments. Both the 
one- and two-compartmental models estimate the trans-
fer of gadobutrol from CSF to blood, and elimination 
from blood. However, in the two-compartmental model, 
a peripheral tissue compartment was implemented, 
allowing gadobutrol to distribute into and from tissue. 
For the purpose of internal model validation, the dataset 
was split into a development- (80%) and validation-set 
(20%). Patients with more than six samples were allo-
cated to the development set, with additional random 
allocation of profiles until 80% of total profiles. Model 
selection was primarily based on comparison of the rela-
tive root mean squared predictive error (RMSE, %) calcu-
lated from the relative predictive error of all gadobutrol 
concentrations in the development dataset. Additionally, 
the linear regression slope, R2-values of the observed ver-
sus predicted plots, Akaike’s information criteria (AIC) 
and the Bayesian information criteria (BIC) also guided 
model development to some extent. Covariates were not 
included, due to sole interest in individual predictions.

Pharmacokinetic calculations
Posterior individual parameter values, as well as poste-
rior individually predicted concentrations obtained from 
the final population pharmacokinetic model run with the 
complete dataset, were used for all pharmacokinetic cal-
culations. Predictions were made in one-minute intervals 
from time of administration and up to 72 h. The follow-
ing pharmacokinetic variables were evaluated:

The absorption half-life (T1/2, abs) is defined as the 
time for half the amount of gadobutrol in the CSF 
to be cleared to blood. This parameter was used as 
a surrogate marker for CSF to blood clearance of 
gadobutrol. T1/2, abs was calculated by dividing the 
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natural logarithm of 2 over the model-estimated coef-
ficient of absorption (Ka) from CSF to blood.

Time to maximum concentration (Tmax) in plasma 
and maximum concentration (Cmax) in plasma were 
obtained directly from the individual predictions.

Lag-time of absorption to blood (Tlag) is the model-
estimated time for the tracer to reach the site of clear-
ance in CSF. Longer Tlag thus implies that the molecule 
stays longer within CSF or that it takes longer before 
the clearance process to blood starts.

Area under the concentration–time curve from zero 
to infinity (AUC​0-∞) was calculated with the trapezoi-
dal approximation from individual posterior predicted 
concentrations using the ‘makeAUC’-function in the 
Pmetrics package for R. The AUC is a measure of sys-
temic exposure of gadobutrol.

In order to compare parameters across multiple 
doses, Cmax and AUC​0-∞ were normalized with respect 
to dose.

Statistical analysis
Comparisons between groups were performed using 
two-tailed individual samples t-test for continuous 
variables, and Fishers exact test for categorical vari-
ables. Values were visually assessed for normality prior 
to testing. Differences in parameters and normalized 
parameters between different doses were assessed 
using an analysis of variance. For the predefined 
α = 0.05, we considered 95% confidence intervals not 
including zero and P-values lower than 0.05 to be sta-
tistically significant.

Results
Patient material
The study included 161 patients, with a mean ± SD age 
of 54 ± 19 years (range 19 to 82 years), and with a mean 
body mass index (BMI) of 28 ± 5  kg/m2 (range 18 to 
41 kg/m2). Patients were under clinical work-up for pos-
sible CSF disorders, with diagnosis categories as indi-
cated in Table 1.

Several groups were statistically significantly different 
from the reference (REF) cohort, with respect to gender, 
age, height, body mass index (BMI), and kidney function. 
A total of 1,140 samples were analyzed for gadobutrol in 
plasma or whole blood; the mean number of samples was 
8 ± 2 in each subject (range 1 to 11 samples).

Gadobutrol blood‑to‑plasma ratio
In 24 patients, 204 samples were concomitantly analyzed 
for gadobutrol in both plasma and whole blood. Concen-
tration of gadobutrol in plasma was linearly associated 
(β = 1.795, R2

adjusted = 0.997; P < 0.001) with whole blood 
concentration of gadobutrol (Fig.  1), and whole blood 
concentration of gadobutrol was interpolated to plasma 
concentrations for the purpose of pharmacokinetic mod-
elling, using linear regression through the origin.

Population pharmacokinetic modeling
Both one- and two-compartment models were initially 
evaluated. Compared to the one-compartment structural 
model, a two-compartment model improved the good-
ness of fit. Furthermore, addition of an absorption lag-
time improved the individual predictions, especially in 
the absorption phase.

Table 1  Demographic overview

Data presented as mean ± SD. Differences from the reference group were determined by independent samples t-test for continuous variables and by Fishers exact 
test for categorical variables (aP < 0.05, bP < 0.01, cP < 0.001). Patient categories: AC Arachnoid cyst, Comm HC communicating hydrocephalus, IIH idiopathic intracranial 
hypertension, iNPH idiopathic normal pressure hydrocephalus, Non-comm HC non-communicating hydrocephalus, PC pineal cyst, REF reference cohort, SIH 
spontaneous intracranial hypotension

Patient category

REF PC AC SIH IIH iNPH Comm. HC Non-comm. HC

Number of subjects 28 13 14 14 15 63 11 3

Ith dose of gadobutrol

 0.10 mmol 0 0 0 0 0 13 0 0

 0.25 mmol 3 0 2 4 1 17 3 0

 0.50 mmol 25 13 12 10 14 33 8 3

Gender (male/female) 6/22 1/12 8/6a 5/9 2/13 37/26b 7/4a 2/1

Age (years) 39 ± 12 36 ± 13 52 ± 17a 50 ± 10b 33 ± 11 72 ± 6c 49 ± 13a 43 ± 29

Height (cm) 172 ± 8 170 ± 5 176 ± 10 172 ± 10 165 ± 7b 173 ± 9 178 ± 12 171 ± 7

Weight (kg) 82 ± 15 80 ± 15 82 ± 13 78 ± 23 88 ± 17 81 ± 16 84 ± 20 80 ± 24

BMI (kg/m2) 28 ± 5 28 ± 4 27 ± 3 26 ± 6 32 ± 5a 27 ± 4 26 ± 5 27 ± 6

GFR (ml/min) 103 ± 12 98 ± 12 86 ± 16b 95 ± 15 105 ± 13 77 ± 14c 92 ± 18 104 ± 15
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The final population pharmacokinetic model consisted 
of two compartments with first-order transfer from CSF 
to blood, and first-order elimination from the central 
compartment (blood) and absorption lag-time, and the 
model described the data well (Fig. 2A). The final model 
ran on the complete dataset achieved a mean prediction 
error of -0.032, a root mean squared error of 0.283, and 
a percentage root mean squared error of 18.5%. Akaike’s 
Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) were 667 and 702, respectively. When 
assessing residual error for different times, a trend for 
underprediction was shown during times between 5 and 
15  h (Fig.  2B). No systematic trends were found when 
comparing residual error to the observed concentration 
of gadobutrol (Fig. 2C). Individual predictions for a ran-
dom subset of patients are shown in Fig. 2D, demonstrat-
ing goodness of fit.

Dose linearity
Mean pharmacokinetic profiles across intrathecally-
administered doses of gadobutrol are shown in Fig. 3. No 
differences in neither absorption half-life, time to maxi-
mum concentration, nor dose-normalized maximum 
concentration were found across the administered doses 
of gadobutrol. However, a statistically significant differ-
ence in dose-normalized AUC​0-∞ between the dose levels 
of 0.1  mmol and 0.5  mmol was found (Δ = − 5.22 [95% 
CI: − 9.68, − 0.77] μM h). Additionally, mean predictive 

error of the population pharmacokinetic model was not 
different between dose levels.

Inter‑individual variability in gadobutrol CSF to blood 
clearance
Irrespective of diagnosis category, a large degree of 
inter-individual variability was observed with respect 
to the pharmacokinetic parameters of intrathecally 
administered gadobutrol. For the complete dataset, 
mean absorption half-life was 3.83 ± 2.50 h, with a coef-
ficient of variation (CV) of 65%, which did not vary 
with dose. Time to maximum concentration (Tmax) and 
dose-normalized maximum concentration (Cmax) were 
8.60 ± 4.58  h (CV 53%) and 0.69 ± 0.42  μM (CV 61%) 
respectively. The large inter-individual variability of 
pharmacokinetic parameters irrespective of diagnosis is 
shown in Fig. 4.

Disease categories show different profiles
A notable degree of variability in pharmacokinetic 
parameters was observed both within and between dis-
ease categories. Individual predicted profiles with group-
wise mean predicted profiles are shown in Fig.  5, and 
pharmacokinetic parameters at group level with com-
parisons are presented in Table  2. Variability in mean 
concentration profiles of gadobutrol for the different 
patient groups is further presented in Fig. 6, illustrating 
the between group differences.

When compared with the reference cohort, patients 
with pineal cysts demonstrated a 0.46 [95% CI: 0.03, 
0.88] hours longer absorption lag time (Table 2). In this 
group, several demographic factors were associated with 
the pharmacokinetic parameters (Fig. 7); Tmax and dose-
normalized AUC​0-Inf were positively associated with age, 
while dose-normalized Cmax was negatively associated 
with age, height and weight.

Neither patients with arachnoid cysts nor patients with 
spontaneous intracranial hypotension demonstrated any 
difference in pharmacokinetic parameters of intrathecally 
administered gadobutrol, compared with the reference 
cohort (Table 2).

In contrast, patients with idiopathic intracranial hyper-
tension showed a 2.25 [95% CI: 0.74, 3.77] hours shorter 
absorption half-life when compared with the reference 
group, indicating a greater CSF to blood clearance of 
gadobutrol. Additionally, a 3.09 [95% CI: − 5.74, − 0.43] 
μM h greater dose-normalized AUC​0-∞ was found com-
pared with the reference cohort (Table 2).

In iNPH patients, compared with the reference cohort, 
time to maximum concentration was 2.36 [95% CI: 0.30, 
4.41] hours longer, and showed a 5.91 [95% CI: 8.18, 3.63] 
μM h greater mean AUC​0-∞. Additionally, the lag-time 
was 0.42 [95% CI: 0.09, 0.74] hours longer compared with 

Fig. 1  Whole blood to plasma gadobutrol. Figure demonstrates 
linear regression through the origin of whole-blood to plasma 
gadobutrol (μM). The black line represents the linear curve with 
formula y = 1.795x 
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reference (Table 2); hence, in iNPH the CSF tracer stays 
longer within the CSF compartment prior to clearance to 
blood.

Patients with communicating hydrocephalus demon-
strated a 0.19 [95% CI: 0.02, 0.37] μM lower dose-nor-
malized maximum concentration of gadobutrol when 

compared with the reference group, which was the low-
est concentration measured in the included disease cat-
egories (Table 2). Even though no statistically significant 
differences between patients with non-communicating 
hydrocephalus and the reference cohort were found, 
most likely due to a low number of subjects in the 

Fig. 2  Population pharmacokinetic model diagnostic plots. A Observed gadobutrol concentrations against posterior individual predicted 
concentrations. Dashed and solid lines represent the unity and linear regression line, respectively. B Residual error against time, solid line represents 
the l. C Residual error against individual observed gadobutrol concentrations, dotted lines represent the treshold for 15% relative error. D Randomly 
selected patient profiles, with observations (dot) and individual predictions (solid line), demonstrating goodness of fit

Fig. 3  Dose linearity of intrathecally administered gadobutrol. Mean individual posterior predicted concentration of gadobutrol following 
intrathecal administration of A 0.1 mmol, B 0.25 mmol and C 0.5 mmol of gadobutrol; also shown is the D dose-normalized concentrations, 
demonstrating dose linearity
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aforementioned group, time to maximum concentration 
was numerically higher (12.33 ± 7.17 h), compared to the 
reference cohort (7.49 ± 4.09 h), as shown in Table 2.

Discussion
In this work, we present a population pharmacokinetic 
model applied to intrathecally administered gadobutrol 
that precisely estimates the clearance from CSF to blood 
in patients with various diseases. The included patients 
showed a high degree of inter-individual variability in 
pharmacokinetic parameters both within and between 
different disease categories of CSF disturbances.

Up to now, the literature on CSF to blood clearance has 
been scarce. The presently described model is derived 
from 1,140 blood samples in 161 patients, referring to 
plasma levels of gadobutrol measured subsequently to 
intrathecal injections of predefined quantities. Utilizing 
positron emission tomography (PET), others [35] pre-
viously examined clearance of intrathecal 99mTc-DPTA 
(technetium-99-diethylene-triamine-pentaacetate) to 
urine. It also has been demonstrated reduced clearance 

of a PET ligand from cerebral ventricles to the nasal tur-
binate in Alzheimer patients [36]. Furthermore, another 
recent PET study [37] showed reduced clearance of two 
PET tracers (18F-THK5351 and 11C-PiB) from ventricu-
lar CSF in patients with Alzheimer’s disease, provid-
ing support to the hypothesis that impaired clearance 
of amyloid-β from CSF underlies the amyloid cerebral 
deposition characterizing Alzheimer’s disease. However, 
with regard to PET, a drawback is that radioactive ligands 
provide a radiation dose to the individual [38], have short 
half-life (about 6 h for 99mTc-DPTA), and the diagnostic 
process is both expensive and time-consuming.

The most significant observation of the present study 
is the large inter-individual variation in CSF to blood 
clearance, as well as the differences between CSF dis-
ease. Compared to the reference cohort, patients diag-
nosed with pineal or arachnoid cysts, and to some degree 
patients with spontaneous intracranial hypotension, 
did not present any differences in pharmacokinetics of 
intrathecally administered gadobutrol. On the other 
hand, a statistically significant longer lag-time was found 

Fig. 4  Distribution of indivdual pharmacokinetic parameters for entire cohort. Histogram of parameter distribution for the A absorption half-life 
(T1/2, abs), B time to maximum concentration (Tmax), C maximum concentration (Cmax), D lag-time (Tlag), and E area under the curve (AUC) from zero 
to infinity for the entire cohort of patients (n = 161)
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in patients with pineal cysts, but no difference in CSF 
to blood clearance was found. We conclude that on the 
group level, these categories may possibly reflect the nor-
mal variation.

Patients with idiopathic intracranial hypertension, on 
the other hand, demonstrated a significantly reduced 
absorption-half life, possibly indicating faster egress 
of molecules from CSF to blood due to increased ICP. 

Fig. 5  Inter-individual variation in CSF to blood clearance within each diagnosis category. Individual posterior dose-normalized predicted 
concentrations of gadobutrol over time for the A reference (REF), B pineal cyst (PC), C arachnoid cyst (AC), D spontaneous intracranial hypotension 
(SIH), E idiopathic intracranial hypertension (IIH), F idiopathic normal pressure hydrocephalus (iNPH), G communicating hydrocephalus (Comm HC) 
and H non-communicating hydrocephalus (Non-comm HC) groups. Black lines represent the mean concentration for each group, averaged at each 
time-point
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Furthermore, in patients with iNPH, the time to maxi-
mum concentration was significantly longer compared 
to the reference group, and lag-time of absorption was 
significantly increased. Therefore, in patients with iNPH, 
the CSF tracer stays longer in the CSF compartment and 
it requires longer time to reach maximum concentration. 
The senior authors previously found evidence of reduced 
CSF turnover in iNPH [23, 39]. In iNPH patients, high 
grade ventricular reflux of tracer [40] may as well con-
tribute to the increased lag time in these individuals. 
The CSF to blood clearance of gadobutrol per se was not 
affected at group level since the absorption half-life or 
maximum concentration was not different.

We may not from the present data decipher which 
transport routes gadobutrol follow from the CSF to 
blood. Emerging evidence points at the role of menin-
geal lymphatic vessels for molecular egress from CSF to 
blood, which is supported by findings of reduced clear-
ance of neurotoxic metabolites from CSF when menin-
geal lymphatic clearance routes are impaired [5]. In 
humans, the parasagittal dura may be a direct passage 
route to the meningeal lymphatic structures [24], though 
molecular efflux from CSF via the cribriform plate seems 
to be minor [41]. Other possible efflux routes are the 
cranial and spinal nerve roots [42], and spinal lymphatic 
pathways [43]. The arachnoid membrane itself has tra-
ditionally been considered impermeable to larger mol-
ecules [44]. Hence, a CSF tracer study of mice found no 
signs of tracer propagation beyond the arachnoid layer 
[45]. Traditionally, it has been thought that CSF egresses 
via arachnoid granulations to veins, but this view is up 
to debate [46]. A microscopy study showed endothelial 

lined gaps and fissures in parasagittal dura of pigs, which 
might serve as a CSF drainage pathway [47]. In humans, 
a subset of arachnoid granulations might drain CSF via 
lymphatic vessels to the venous circulation [48]. Our 
group showed that the presently used intrathecal tracer 
gadobutrol enriched in parasagittal dura [24], bone mar-
row at the skull vertex adjacent or remote to intradiploic 
dural extensions [25], and in extracranial lymph nodes 
[49], and demonstrated the feasibility of measuring CSF 
to blood clearance [27]. The time course of CSF clear-
ance with peak in plasma after 8.60 ± 4.58 h may indicate 
a major role of the spinal canal given that tracer clearance 
from CSF peaks to blood occurred far earlier than peak 
enhancement at the skull vertex [27]. Differences in lag 
time (Tlag) might be related to passage capacity within the 
thecal sac, but we have previously not found differences 
between groups for time between lumbar injection and 
first appearance at the cranio-cervical junction, i.e. spi-
nal transit time [50]. We suggest that the meningeal lym-
phatic vessels are the main route for egress of molecules 
from CSF, and that meningeal lymphatic impairment may 
hamper CSF clearance. In this regard, it is of particular 
interest that evidence from animal and human studies 
suggest the meningeal lymphatic function deteriorates 
with increasing age [45, 51], and that impaired meningeal 
lymphatic function aggravates pathology seen in animal 
models of Parkinson’s [52] and Alzheimer’s [53] diseases. 
Experimentally, it was shown that impaired meningeal 
lymphatic function reduced paravascular influx of mac-
romolecules into the brain, and reduced efflux from 
the interstitial space [54]. In comparison, we previously 
found in humans that peak CSF tracer enhancement in 

Table 2  Model predicted pharmacokinetic parameters of gadobutrol in blood

Data presented as mean ± SD (coefficient of variation given in parenthesis). Abbreviations: T1/2, abs = Time to 50% of tracer dose absorbed to blood (absorption 
half-life), indicative of CSF tracer clearance to blood. Tmax = Time to maximum concentration. Cmax = Dose-normalized maximum concentration. Tlag = lag-time of 
absorption. AUC​0-∞ = Dose-normalized area under curve from zero to infinity. Significant difference from REF: aP < 0.05, bP < 0.01, cP < 0.001 (independent samples 
t-test). Patient categories: AC arachnoid cyst, Comm HC communicating hydrocephalus, IIH idiopathic intracranial hypertension, iNPH: idiopathic normal pressure 
hydrocephalus, Non-comm HC non-communicating hydrocephalus, PC pineal cyst, REF reference cohort, SIH spontaneous intracranial hypotension

Patient category

REF PC AC SIH IIH iNPH Comm. HC Non-comm. HC

Number of 
subjects

28 13 14 14 15 63 11 3

T1/2, abs (h) 4.57 ± 3.31 
(72%)

4.12 ± 2.14 
(52%)

4.86 ± 2.93 
(60%)

3.79 ± 2.91 
(77%)

2.32 ± 1.61b 
(69%)

4.15 ± 3.07 
(74%)

4.62 ± 3.86 
(84%)

4.92 ± 3.88
(79%)

Tmax (h) 7.49 ± 4.09 
(55%)

9.00 ± 4.27
(47%)

8.89 ± 2.98 
(34%)

7.09 ± 3.44 
(49%)

5.8 ± 2.01
(35%)

9.85 ± 5.4 a 
(55%)

8.14 ± 3.44 
(42%)

12.33 ± 7.17
(58%)

Cmax (μM) 0.70 ± 0.38 
(54%)

0.66 ± 0.31 
(47%)

0.55 ± 0.23 
(42%)

0.90 ± 0.58 
(64%)

0.83 ± 0.27 
(33%)

0.67 ± 0.48 
(72%)

0.50 ± 0.17 a 
(34%)

0.54 ± 0.49
(91%)

Tlag (h) 0.74 ± 0.67 
(91%)

1.20 ± 0.59 a 
(49%)

0.74 ± 0.42 
(57%)

1.03 ± 0.89
(86%)

0.88 ± 0.55 
(62%)

1.16 ± 0.77 a

(66%)
1.12 ± 0.87 
(78%)

0.96 ± 0.82
(85%)

AUC​0-∞ (μM h) 12.58 ± 2.55
(20%)

15.05 ± 3.96
(26%)

13.65 ± 6.13
(45%)

15.36 ± 5.92
(39%)

15.67 ± 4.54a

(29%)
18.49 ± 8.24c

(45%)
12.79 ± 4.68
(37%)

13.44 ± 3.6
(27%)
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human brain and cervical lymph nodes concurred in 
time, supporting a role of meningeal lymphatic vessels in 
molecular drainage from CSF [26].

While plasma levels of gadobutrol primarily reflect 
clearance from CSF along extra-vascular pathways, a 
minor leakage of tracer through the BBB may to a lim-
ited extent contribute to the clearance as ageing as well 
as neurodegenerative disease may be accompanied with 
impaired BBB integrity [55, 56]. Evidence of BBB dis-
ruption has also been reported for CSF disease such as 

IIH [57] and iNPH [58]. After entering to the blood, the 
plasma half-life of gadobutrol in blood is 1.5 h [59].

The present observations may have several clini-
cal implications; we would like to highlight three areas. 
First, the present observations suggest that assessing CSF 
to blood clearance adds to characterization of CSF dis-
eases on the individual level. One example is the identi-
fication of CSF leakage in individuals with spontaneous 
intracranial hypotension; it is well established that it may 
be very difficult to identify the site of CSF leakage [60]. 

Fig. 6  Mean concentration profiles of gadobutrol for the different patient groups. Individual posterior predicted dose-normalized blood 
concentrations of intrathecal gadobutrol from the population pharmacokinetic model, averaged at each time-point by group. The reference 
group is highlighted by a thick solid line. REF Reference, PC pineal cyst, AC arachnoid cyst, SIH Spontaneous intracranial hypotension (SIH), IIH 
idiopathic intracranial hypertension, iNPH idiopathic normal pressure hydrocephalus, Comm HC communicating hydrocephalus, Non-comm HC 
non-communicating hydrocephalus
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Currently, the visualization of CSF leakage utilizes MRI 
[60, 61], contrast enhanced computer tomography (CT) 
myelography [60] as well as intrathecal 99mTc-DPTA 
nuclear imaging [62], though the risk of not identifying 
any leakage site is high. A strategy to measure CSF to 
blood clearance might be expected to aid in identifying 
individuals with the most pronounced CSF leakage, even 
though signs of hyper-accelerated clearance could not be 
shown at group level for the CSF leakage sub-cohort in 
this study.

Second, direct measurements of CSF to blood clear-
ance might prove useful in preclinical stages of neuro-
degenerative and dementia disease. Measurements of 
circulating substances such as amyloid-β and tau may 
be used for screening purposes, providing an indicative 
risk of disease [14]. However, direct measures of CSF to 
blood clearance may be useful in a subset of individuals 
at risk. In this regard, it should be noted that about ¼ 

of amyloid-β is cleared via CSF in rodents [63, 64], and 
a significant amount of tau is excreted via CSF as the 
majority does not pass across the BBB. For example, mice 
without dural lymphatic drainage showed significantly 
reduced excretion of tau [28], and demonstrated a sig-
nificant association between blood and CSF levels of tau 
[28]. We here found that the dementia subtype iNPH was 
characterized with altered pharmacokinetic variables, 
including longer time to maximum concentration (Tmax), 
longer lag time (Tlag) and higher AUC, as compared with 
reference subjects. However, the difference in AUC may 
be attributed to the difference in age and renal function 
compared to the reference cohort.

Third, estimation of CSF to blood clearance may be 
useful preceding intrathecal drug administration for 
treatment of neurological disease. Even though it was 
traditionally thought that a substance within the CSF 
only passed a few millimeters into the cortical substance 

Fig. 7  Associations between demographic and pharmacokinetic variables in the reference cohort. Associations between time to maximum 
concentration (Tmax), lag-time of absorption (Tlag), half-life of absorption (T1/2, abs), dose-normalized maximum concentration (Cmax), dose-normalized 
area under the curve (AUC 0-Inf) and age, height, and weight in the reference cohort. Associations are presented as Pearson’s rho (r) [95% confidence 
interval]. * P < 0.05, ** P < 0.01. To aid the reader, values in bold are statistically significant to P < 0.05
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[65], intrathecally injected gadobutrol showed brain-
wide distribution in humans [22]. Therefore, intrathecal 
drugs may directly access the entire extra-vascular part 
of the CNS in contrast to systemically administered sub-
stances that are restricted by the BBB [21]. This, however, 
may depend on the physiochemical properties of drugs. 
Examples of intrathecal drugs are antisense oligonucleo-
tides [20, 66], such as Spinraza used for spinal muscular 
atrophy [17, 67], intrathecal chemotherapy, e.g. metho-
trexate, used for cancer [68, 69], and adeno-associated 
viral vector-mediated gene-delivery to CNS in amyo-
trophic lateral sclerosis, dementia disease and spinocere-
bellar ataxia [16, 70–73]. However, given the high degree 
of variation in CSF to blood clearance, there is risk of 
both over- and under-dosage.

Some limitations should be noted. Gadobutrol is 
administered off-label as it is not approved for intrathe-
cal use. However, here we used gadobutrol in intrathe-
cal doses of 0.10, 0.25 and 0.50  mmol, which have all 
been proven safe [50, 74]. Toxic effects have previously 
not been reported for intrathecal gadobutrol in doses 
of 1.0  mmol or below [75]. We established dose linear-
ity for the range of 0.10–0.50  mmol, and found no dif-
ference in the predictive performance of the population 
pharmacokinetic model between dose levels. As such, for 
estimating CSF to blood clearance with population phar-
macokinetic modelling, an intrathecal dose of 0.10 mmol 
appears sufficient. Intrathecal gadobutrol is detected 
in blood with high sensitivity and accuracy; the present 
detection threshold was about 1.35  nM, well below the 
observed concentrations, rendering for use of even lower 
doses. As gadobutrol shares many of the same molecular 
properties with radiopaque contrast agents, where many 
are approved for intrathecal use, utility of on-label con-
trast agents intrathecally for CSF clearance assessment 
could be explored in future studies.

In this work, the less tangible absorption half-life was 
used as a surrogate marker for CSF to blood clearance, 
instead of actual clearance, due to the lack of accurate 
determinations of individual CSF volume. However, 
this does not affect the interpretation or accuracy of 
the results. With regard to the possible normal CSF 
to blood clearance in healthy people, it may as well 
be considered a limitation that we included a range of 
patients spanning multiple defined CSF disturbances. 
It was, however, beyond the scope of this work to dis-
cuss in detail the underlying diagnoses and the clinical 
significance of each disease category. Additional work 
on the subject would benefit from the inclusion of indi-
viduals without evident neurological disorders, in order 
to establish a reference value and level of variability 
in a healthy population. Furthermore, it remains to be 

determined whether gadobutrol is a valid marker for 
clearance of other intrathecally administered drugs and 
endogenous metabolites of interest in disease such as 
amyloid-β, tau, and α-synuclein.

Conclusions
In conclusion, this work provides a population phar-
macokinetic model of CSF to blood clearance based 
on 1,140 blood samples from 161 subjects. Our data 
demonstrates a large degree of inter-individual variabil-
ity in CSF to blood clearance as well as different clear-
ance profiles across disease categories. CSF clearance 
function might both be a secondary feature of various 
neurological diseases, and a primary driver behind 
disease. As such, extensive clearance may characterize 
CSF leakage and spontaneous intracranial hypotension, 
while protracted clearance may be a contributing fac-
tor in neurodegenerative diseases. In the therapeutic 
setting, CSF to blood clearance may prove useful for 
tailoring dosage of intrathecal drugs, an administration 
route with prospects of increased utility in the near 
future.

Abbreviations
AC: Arachnoid cyst; AUC​: Area under the curve; AIC: Akaike’s Information 
Criteria; BBB: Blood brain barrier; BIC: Bayesian Information Criteria; BMI: Body 
mass index; Cmax: Maximum concentration; CNS: Central nervous system; CSF: 
Cerebrospinal fluid; Comm HC: Communicating hydrocephalus; CT: Computer 
tomography; CV: Coefficient of variations; GFR: Glomerular filtration rate; ICP: 
Intracranial pressure; IIH: Idiopathic intracranial hypertension; iNPH: Idiopathic 
normal pressure hydrocephalus; MRI: Magnetic resonance imaging; Non-
comm HC: Non-communicating hydrocephalus; PC: Pineal cyst; PET: Positron 
emission tomography; REF: Reference; RMSE: Root mean squared predictive 
error; SIH: Spontaneous intracranial hypotension; T1/2, abs: Absorption half life; 
Tlag: Lag-time (of absorption); Tmax: Time to maximum concentration.

Acknowledgements
The authors thank dr. Øivind Gjertsen, dr. Bård Nedregaard and dr. Ruth 
Sletteberg from the Department of Radiology, Oslo University Hospital – 
Rikshospitalet, who performed some of the intrathecal gadobutrol injection 
procedures. In addition, the authors thank Marit Vadset from NILU-Norwegian 
Institute for Air Research, who analyzed a large part of the blood samples.

Author contributions
Conceptualization and Design: GR, PKE. Handling blood samples: AL, PKE. 
Blood analysis: EM, HU. Pharmacokinetic model: MHH, HC. Statistical analysis: 
MHH. Supervision, Administration and Writing—Original Draft: MHH, PKE. 
Writing, Review and Editing: MHH, EM, HU, AL, HC, GR, PKE. All authors (MHH, 
EM, HU, AL, HC, GR, PKE) approved the final manuscript. Correspondence and 
material requests: PKE. All authors read and approved the final manuscript.

Funding
The work was supported by Department of Neurosurgery, Oslo university 
hospital, and Norwegian Institute for Air Research, Kjeller, Norway, and by the 
University of Oslo.

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding author, upon reasonable request.

106



Page 13 of 14Hovd et al. Fluids and Barriers of the CNS           (2022) 19:55 	

Declarations

Ethics approval and consent to participate
This present study was approved by The Regional Committee for Medical and 
Health Research Ethics (REK) of Health Region South-East, Norway (2015/96), 
the Institutional Review Board of Oslo university hospital (2015/1868), and 
the National Medicines Agency of Norway (15/04932–7). Participants were 
included after providing written and oral informed consent.

Consent for publication
Not applicable.

Competing interests
Geir Ringstad received a fee for speaking at the Bayer symposium at the 
European Congress of Radiology 2020 (Vienna, Austria). Geir Ringstad and 
Per Kristian Eide also have a patent pending. The other authors disclose no 
conflict of interests.

Author details
1 Section for Pharmacology and Pharmaceutical Biosciences, Department 
of Pharmacy, University of Oslo, Oslo, Norway. 2 Norwegian Institute for Air 
Research, Kjeller, Norway. 3 Department of Neurosurgery, Oslo University Hos-
pital—Rikshospitalet, Pb 4950 Nydalen, 0424 Oslo, Norway. 4 Institute of Clini-
cal Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 5 Division 
of Radiology and Nuclear Medicine, Department of Radiology, Oslo University 
Hospital—Rikshospitalet, Oslo, Norway. 6 Department of Geriatrics and Internal 
Medicine, Sorlandet Hospital, Arendal, Norway. 7 Department of Air Quality 
and Noise, Norwegian Institute of Public Health, Oslo, Norway. 

Received: 4 May 2022   Accepted: 22 June 2022

References
	1.	 Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone 

RD, Lau J, Eknoyan G. National Kidney Foundation practice guidelines for 
chronic kidney disease: evaluation, classification, and stratification. Ann 
Intern Med. 2003;139:137–47.

	2.	 Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, 
Vates GE, Deane R, Goldman SA, et al. A paravascular pathway facilitates 
CSF flow through the brain parenchyma and the clearance of interstitial 
solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.

	3.	 Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki 
NC, Castle D, Mandell JW, Lee KS, et al. Structural and functional features 
of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

	4.	 Nedergaard M, Goldman SA. Glymphatic failure as a final common path-
way to dementia. Science. 2020;370:50–6.

	5.	 Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Under-
standing the functions and relationships of the glymphatic system and 
meningeal lymphatics. J Clin Invest. 2017;127:3210–9.

	6.	 Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt 
HE, Shapiro D, Nguyen BH, Frost EL, et al. Meningeal lymphatic dysfunc-
tion exacerbates traumatic brain injury pathogenesis. Nat Commun. 
2020;11:4524.

	7.	 Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, 
Thomas JL, Iwasaki A. VEGF-C-driven lymphatic drainage enables immu-
nosurveillance of brain tumours. Nature. 2020;577:689–94.

	8.	 Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, Zhou F, Zhang C, Shao L, Feng 
J, et al. Meningeal lymphatic vessels regulate brain tumor drainage and 
immunity. Cell Res. 2020;30:229–43.

	9.	 Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, Rudin M, Weller M, 
Proulx ST, Detmar M. Lymphatic outflow of cerebrospinal fluid is reduced 
in glioma. Sci Rep. 2019;9:14815.

	10.	 Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, 
Plautz EJ, Dellinger MT, Stowe AM. Impaired meningeal lymphatic ves-
sel development worsens stroke outcome. J Cereb Blood Flow Metab. 
2020;40:263–75.

	11.	 Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, Li X, Wang C, Chen S, 
Guo Z, et al. Meningeal lymphatics clear erythrocytes that arise from 
subarachnoid hemorrhage. Nat Commun. 2020;11:3159.

	12.	 Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, Jiang 
H, Kodira CD, de Lima KA, Herz J, et al. Meningeal lymphatics affect micro-
glia responses and anti-Aβ immunotherapy. Nature. 2021;593:255–60.

	13.	 Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, 
Xiang Z, et al. Impaired meningeal lymphatic drainage in patients with 
idiopathic Parkinson’s disease. Nat Med. 2021;27:411–8.

	14.	 Rissman RA, Trojanowski JQ, Shaw LM, Aisen PS. Longitudinal plasma 
amyloid beta as a biomarker of Alzheimer’s disease. J Neural Transm 
(Vienna). 2012;119:843–50.

	15.	 Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and 
plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131–44.

	16.	 Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: 
advances, insights and prospects. Acta Pharm Sin B. 2020;10:1347–59.

	17.	 Wurster CD, Winter B, Wollinsky K, Ludolph AC, Uzelac Z, Witzel S, Schocke 
M, Schneider R, Kocak T. Intrathecal administration of nusinersen in ado-
lescent and adult SMA type 2 and 3 patients. J Neurol. 2019;266:183–94.

	18.	 Petrescu GED, Sabo AA, Torsin LI, Calin GA, Dragomir MP. MicroRNA based 
theranostics for brain cancer: basic principles. J Exp Clin Cancer Res. 
2019;38:231.

	19.	 Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, 
Kontsekova E, Malawska B, de Silva R, et al. A walk through tau therapeu-
tic strategies. Acta Neuropathol Commun. 2019;7:22.

	20.	 Chen Y, Mazur C, Luo Y, Sun L, Zhang M, McCampbell A, Tomassy GS. 
Intrathecal delivery of antisense oligonucleotides in the rat central nerv-
ous system. J Vis Exp. 2019. https://​doi.​org/​10.​3791/​60274.

	21.	 Pardridge WM. The blood-brain barrier: bottleneck in brain drug develop-
ment. NeuroRx J Am Soc Exp NeuroTher. 2005;2:3–14.

	22.	 Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SS, Emblem KE, 
Mardal KA, Eide PK. Brain-wide glymphatic enhancement and clearance 
in humans assessed with MRI. JCI Insight. 2018;3:1–16.

	23.	 Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal 
pressure hydrocephalus. Brain. 2017;140:2691–705.

	24.	 Ringstad G, Eide PK. Cerebrospinal fluid tracer efflux to parasagittal dura 
in humans. Nat Commun. 2020;11:1–9.

	25.	 Ringstad G, Eide PK. Molecular trans-dural efflux to skull bone marrow in 
humans with cerebrospinal fluid disorders. Brain. 2021;145(4):1464–72.

	26.	 Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance 
imaging provides evidence of glymphatic drainage from human brain to 
cervical lymph nodes. Sci Rep. 2018;8:7194.

	27.	 Eide PK, Mariussen E, Uggerud H, Pripp AH, Lashkarivand A, Hassel B, 
Christensen H, Hovd MH, Ringstad G. Clinical application of intrathecal 
gadobutrol for assessment of cerebrospinal fluid tracer clearance to 
blood. JCI insight. 2021;6:1–13.

	28.	 Patel TK, Habimana-Griffin L, Gao X, Xu B, Achilefu S, Alitalo K, mckee CA, 
Sheehan PW, Musiek ES, Xiong C, et al. Dural lymphatics regulate clear-
ance of extracellular tau from the CNS. Mol Neurodegener. 2019;14:11.

	29.	 Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and 
surgical management in idiopathic normal pressure hydrocephalus: a 
6-year review of 214 patients. Neurosurgery. 2010;66:80–91.

	30.	 Eide PK, Sorteberg W. Outcome of surgery for idiopathic normal pressure 
hydrocephalus: role of preoperative static and pulsatile intracranial pres-
sure. World Neurosurg. 2016;86:186–93.

	31.	 Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, Nakajima M, 
Hashimoto M, Kuriyama N, Tokuda T, et al. Guidelines for management of 
idiopathic normal pressure hydrocephalus: second edition. Neurol Med 
Chir (Tokyo). 2012;52:775–809.

	32.	 Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. 
Accurate detection of outliers and subpopulations with Pmetrics, a non-
parametric and parametric pharmacometric modeling and simulation 
package for R. Ther Drug Monit. 2012;34:467–76.

	33.	 Hahn G, Sorge I, Gruhn B, Glutig K, Hirsch W, Bhargava R, Furtner J, 
Born M, Schröder C, Ahlström H, et al. Pharmacokinetics and safety of 
gadobutrol-enhanced magnetic resonance imaging in pediatric patients. 
Invest Radiol. 2009;44:776–83.

	34.	 Kunze C, Mentzel HJ, Krishnamurthy R, Fleck R, Stenzel M, Bhargava R, Bur-
rowes D, Sutter G, Schultze-Mosgau M, Santiuste M, Hahn G. Pharmacoki-
netics and safety of macrocyclic gadobutrol in children aged younger than 

107



Page 14 of 14Hovd et al. Fluids and Barriers of the CNS           (2022) 19:55 

2 years including term newborns in comparison to older populations. Invest 
Radiol. 2016;51:50–7.

	35.	 Verma A, Hesterman JY, Chazen JL, Holt R, Connolly P, Horky L, Vallabhajosula 
S, Mozley PD. Intrathecal (99m)Tc-DTPA imaging of molecular passage from 
lumbar cerebrospinal fluid to brain and periphery in humans. Alzheimers 
Dement (Amst). 2020;12: e12030.

	36.	 de Leon MJ, Li Y, Okamura N, Tsui WH, Saint-Louis LA, Glodzik L, Osorio RS, 
Fortea J, Butler T, Pirraglia E, et al. cerebrospinal fluid clearance in Alzheimer 
disease measured with dynamic PET. J Nucl Med. 2017;58:1471–6.

	37.	 Li Y, Rusinek H, Butler T, Glodzik L, Pirraglia E, Babich J, Mozley PD, Nehmeh 
S, Pahlajani S, Wang X, et al. Decreased CSF clearance and increased brain 
amyloid in Alzheimer’s disease. Fluids Barriers CNS. 2022;19:21.

	38.	 Hesterman JY, Kost SD, Holt RW, Dobson H, Verma A, Mozley PD. Three-
dimensional dosimetry for radiation safety estimates from intrathecal 
administration. J Nucl Med. 2017;58:1672–8.

	39.	 Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer 
from entorhinal cortex in idiopathic normal pressure hydrocephalus: a 
glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 
2019;39:1355–68.

	40.	 Eide PK, Pripp AH, Ringstad G. Magnetic resonance imaging biomarkers of 
cerebrospinal fluid tracer dynamics in idiopathic normal pressure hydro-
cephalus. Brain Commun. 2020;2:1–16.

	41.	 Melin E, Eide PK, Ringstad G. In vivo assessment of cerebrospinal fluid efflux 
to nasal mucosa in humans. Sci Rep. 2020;10:1–10.

	42.	 Pollay M. The function and structure of the cerebrospinal fluid outflow 
system. Cerebrospinal Fluid Res. 2010;7:9.

	43.	 Jacob L, Boisserand LSB, Geraldo LHM, de Brito NJ, Mathivet T, Antila S, Barka 
B, Xu Y, Thomas JM, Pestel J, et al. Anatomy and function of the vertebral 
column lymphatic network in mice. Nat Commun. 2019;10:4594.

	44.	 Weller RO. Microscopic morphology and histology of the human meninges. 
Morphologie. 2005;89:22–34.

	45.	 Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is 
predominantly through lymphatic vessels and is reduced in aged mice. Nat 
Commun. 2017;8:1434.

	46.	 Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid 
circulation. Fluids Barriers CNS. 2014;11:10.

	47.	 Kutomi O, Takeda S. Identification of lymphatic endothelium in cranial 
arachnoid granulation-like dural gap. Microscopy (Oxf ). 2020;69(6):391–400.

	48.	 Yağmurlu K, Sokolowski J, Soldozy S, Norat P, Çırak M, Tvrdik P, Shaffrey ME, 
Kalani MYS: A subset of arachnoid granulations in humans drain to the 
venous circulation via intradural lymphatic vascular channels. J Neurosurg 
2021:1–10.

	49.	 Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imag-
ing provides evidence of glymphatic drainage from human brain to cervical 
lymph nodes. Sci Rep. 2018;8:1–10.

	50.	 Halvorsen M, Edeklev CS, Fraser-Green J, Lovland G, Vatnehol SAS, Gjertsen 
O, Nedregaard B, Sletteberg R, Ringstad G, Eide PK. Off-label intrathecal use 
of gadobutrol: safety study and comparison of administration protocols. 
Neuroradiology. 2021;63:51–61.

	51.	 Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, Luo Z, Sun J, Jiang Q, Lou M. 
Impairment of the Glymphatic pathway and putative meningeal lymphatic 
vessels in the aging human. Ann Neurol. 2020;87:357–69.

	52.	 Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, Xiao M, Hu G. Blocking meningeal 
lymphatic drainage aggravates Parkinson’s disease-like pathology in mice 
overexpressing mutated alpha-synuclein. Transl Neurodegeneration. 
2019;8:7.

	53.	 Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M. Deep cervical lymph 
node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol. 
2019;29:176–92.

	54.	 Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore 
KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, et al. Functional 
aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 
2018;560:185–91.

	55.	 Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga 
AW, Jacobs RE, Liu CY, Amezcua L, et al. Blood-brain barrier breakdown in 
the aging human hippocampus. Neuron. 2015;85:296–302.

	56.	 Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan 
A, Pachicano M, Joe E, Nelson AR, D’Orazio LM, et al. APOE4 leads to 
blood-brain barrier dysfunction predicting cognitive decline. Nature. 
2020;581:71–6.

	57.	 Hasan-Olive MM, Hansson HA, Enger R, Nagelhus EA, Eide PK. Blood-brain 
barrier dysfunction in idiopathic intracranial hypertension. J Neuropathol 
Exp Neurol. 2019;78:808–18.

	58.	 Eide PK, Hansson HA. Blood-brain barrier leakage of blood proteins in idi-
opathic normal pressure hydrocephalus. Brain Res. 2020;1727:1–13.

	59.	 Staks T, Schuhmann-Giampieri G, Frenzel T, Weinmann HJ, Lange L, Platzek 
J. Pharmacokinetics, dose proportionality, and tolerability of gadobutrol 
after single intravenous injection in healthy volunteers. Invest Radiol. 
1994;29:709–15.

	60.	 Farb RI, Nicholson PJ, Peng PW, Massicotte EM, Lay C, Krings T, terBrugge KG. 
Spontaneous intracranial hypotension: a systematic imaging approach for 
CSF leak localization and management based on mri and digital subtraction 
myelography. AJNR Am J Neuroradiol. 2019;40:745–53.

	61.	 Rahman M, Bidari SS, Quisling RG, Friedman WA. Spontaneous intracranial 
hypotension: dilemmas in diagnosis. Neurosurgery. 2011;69:4–14 (discus‑
sion 14).

	62.	 Novotny C, Pötzi C, Asenbaum S, Peloschek P, Suess E, Hoffmann M. SPECT/
CT fusion imaging in radionuclide cisternography for localization of liquor 
leakage sites. J Neuroimaging. 2009;19:227–34.

	63.	 Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, 
Ovod V, Munsell LY, Mawuenyega KG, Miller-Thomas MM, et al. Amyloid-β 
efflux from the central nervous system into the plasma. Ann Neurol. 
2014;76:837–44.

	64.	 Feng W, Zhang Y, Wang Z, Xu H, Wu T, Marshall C, Gao J, Xiao M. Microglia 
prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s 
disease mouse model with suppression of glymphatic clearance. Alzhei-
mer’s Res Ther. 2020;12:125.

	65.	 Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids 
Barriers CNS. 2011;8:7.

	66.	 Mazur C, Powers B, Zasadny K, Sullivan JM, Dimant H, Kamme F, Hesterman 
J, Matson J, Oestergaard M, Seaman M, et al. Brain pharmacology of intrath-
ecal antisense oligonucleotides revealed through multimodal imaging. JCI 
Insight. 2019. https://​doi.​org/​10.​1172/​jci.​insig​ht.​129240.

	67.	 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Yamashita 
M, Rigo F, Hung G, Schneider E, et al. Treatment of infantile-onset spinal 
muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation 
study. Lancet. 2016;388:3017–26.

	68.	 Byrnes DM, Vargas F, Dermarkarian C, Kahn R, Kwon D, Hurley J, Schatz JH. 
Complications of intrathecal chemotherapy in adults: single-institution 
experience in 109 consecutive patients. J Oncol. 2019;2019:4047617.

	69.	 Livshits Z, Rao RB, Smith SW. An approach to chemotherapy-associated 
toxicity. Emerg Med Clin North Am. 2014;32:167–203.

	70.	 Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM, Xu X, 
Miller BL, Rigo F, Ferguson SM, et al. Murine knockin model for progranulin-
deficient frontotemporal dementia with nonsense-mediated mRNA decay. 
Proc Natl Acad Sci U S A. 2018;115:E2849-e2858.

	71.	 McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, 
Schoch KM, Hoye ML, Shabsovich M, Sun L, et al. Antisense oligonucleotides 
extend survival and reverse decrement in muscle response in ALS models. J 
Clin Invest. 2018;128:3558–67.

	72.	 Niu C, Prakash TP, Kim A, Quach JL, Huryn LA, Yang Y, Lopez E, Jazayeri A, 
Hung G, Sopher BL, et al. Antisense oligonucleotides targeting mutant 
Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia 
type 7. Sci Transl Med. 2018. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​aap86​77.

	73.	 Hardcastle N, Boulis NM, Federici T. AAV gene delivery to the spinal cord: 
serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol 
Ther. 2018;18:293–307.

	74.	 Edeklev CS, Halvorsen M, Lovland G, Vatnehol SAS, Gjertsen O, Nedregaard 
B, Sletteberg R, Ringstad G, Eide PK. Intrathecal use of gadobutrol for 
glymphatic MR imaging: prospective safety study of 100 patients. AJNR Am 
J Neuroradiol. 2019;40:1257–64.

	75.	 Patel M, Atyani A, Salameh JP, McInnes M, Chakraborty S. Safety of intrathe-
cal administration of gadolinium-based contrast agents: a systematic review 
and meta-analysis. Radiology. 2020. https://​doi.​org/​10.​1148/​radiol.​20201​
91373.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

108



Paper III

109





Citation: Hovd, M.; Robertsen, I.;

Woillard, J.-B.; Åsberg, A. A Method

for Evaluating Robustness of Limited

Sampling Strategies—Exemplified by

Serum Iohexol Clearance for

Determination of Measured

Glomerular Filtration Rate.

Pharmaceutics 2023, 15, 1073.

https://doi.org/10.3390/

pharmaceutics15041073

Academic Editors: Barna Vasarhelyi,

Gellért Balázs Karvaly and

Paolo Magni

Received: 2 February 2023

Revised: 22 March 2023

Accepted: 25 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

A Method for Evaluating Robustness of Limited Sampling
Strategies—Exemplified by Serum Iohexol Clearance for
Determination of Measured Glomerular Filtration Rate
Markus Hovd 1,* , Ida Robertsen 1, Jean-Baptiste Woillard 2 and Anders Åsberg 1,3

1 Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo,
P.O. Box 1068 Blindern, 0316 Oslo, Norway; ida.robertsen@farmasi.uio.no (I.R.);
anders.asberg@farmasi.uio.no (A.Å.)

2 Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, U 1248, F-87000 Limoges, France;
jean-baptiste.woillard@unilim.fr

3 Department of Transplantation Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
* Correspondence: m.h.hovd@farmasi.uio.no

Abstract: In combination with Bayesian estimates based on a population pharmacokinetic model,
limited sampling strategies (LSS) may reduce the number of samples required for individual pharma-
cokinetic parameter estimations. Such strategies reduce the burden when assessing the area under
the concentration versus time curves (AUC) in therapeutic drug monitoring. However, it is not
uncommon for the actual sample time to deviate from the optimal one. In this work, we evaluate the
robustness of parameter estimations to such deviations in an LSS. A previously developed 4-point
LSS for estimation of serum iohexol clearance (i.e., dose/AUC) was used to exemplify the effect of
sample time deviations. Two parallel strategies were used: (a) shifting the exact sampling time by
an empirical amount of time for each of the four individual sample points, and (b) introducing a
random error across all sample points. The investigated iohexol LSS appeared robust to deviations
from optimal sample times, both across individual and multiple sample points. The proportion of
individuals with a relative error greater than 15% (P15) was 5.3% in the reference run with optimally
timed sampling, which increased to a maximum of 8.3% following the introduction of random error
in sample time across all four time points. We propose to apply the present method for the validation
of LSS developed for clinical use.

Keywords: limited sampling strategies; population pharmacokinetic modelling; semi-parametric
simulation; robustness; therapeutic drug monitoring; area under the curve; AUC; glomerular filtration
rate; GFR

1. Introduction

The area under the plasma concentration-time curve (AUC) is a clinically useful
variable for systemic drug exposure. Within several therapeutic fields, AUC-targeted thera-
peutic drug monitoring (TDM) is becoming more clinically acknowledged [1]. Accurate
estimation of AUC either requires multiple samples within a dose interval when applying
the trapezoidal method, or knowledge of the individuals’ pharmacokinetic parameters,
e.g., clearance. The use of the trapezoidal method in this aspect is time-consuming for both
patients and healthcare professionals and not feasible in a clinical setting. However, with
Bayesian estimates (BE) based on, for example, a population pharmacokinetic model or the
use of a linear regression model, accurate estimates of pharmacokinetic parameters and
AUC may be obtained by using a limited number of optimally timed samples [2]. Such
limited sampling strategies (LSS) may reduce the number of samples and limit the length
of the study visit to make AUC-targeted TDM clinically applicable [3].

In a real-life setting, it is not uncommon for actual sample times to deviate from the
optimal LSS sample times. In contrast to multiple linear regression (MLR) models where
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coefficients are determined for pre-defined or binned sample times, BE approaches are
generally considered more flexible with regard to the timing of the samples, as long as the
exact sample times are recorded [4].

According to pharmacokinetic theory, clearance of an intravenously administered drug
may be determined by dividing the dose by the AUC. The glomerular filtration rate (GFR)
is a clinically important marker for renal function and is typically estimated from blood
concentrations of endogenous markers (eGFR). However, the most accurate metric of renal
function is the measured GFR (mGFR) assessed by determining the AUC of an exogenous
substance subject to clearance via filtration in the kidney [5]. The gold standard of these
exogenous markers is inulin but it is difficult to obtain injection-quality inulin nowadays
and the analytical assay is also somewhat challenging. Due to this, the contrast agent
iohexol has become the new gold standard for mGFR as it shows high concordance with
inulin-derived mGFR given optimal sampling times in relation to absolute GFR level [6].
Iohexol exhibits a low degree of protein-binding, low toxicity for the needed doses, no
tubular secretion or reabsorption, and is generally stable in plasma/serum [7]. As iohexol
is fully excreted by the kidneys, mGFR may be determined by measuring the clearance
of iohexol. For this, both MLR- and BE-based LSS are available in the literature. Of these,
BE-based methods have been shown to be more flexible and accurate than MLR [8].

We have previously demonstrated the feasibility of a BE-based 4-point LSS to accu-
rately determine mGFR over the range of 14 to 149 mL/min using iohexol serum clear-
ance [9]. Our LSS includes four samples within 5 h following intravenous administration
of iohexol. Here, we accurately determine the iohexol serum clearance by dividing the
administered dose by the AUC. As such, this method is equally viable for evaluating the
effect of shifts in sample time on AUC, as well as mGFR. While the effect of a deviation in
time from LSS based on MLR has been evaluated previously [10], the effect of deviations in
sample time on parameter estimates in the BE-based methods has not been readily studied
and is rarely considered during LSS development or their clinical use. In this work, we
demonstrate a general method for evaluating the robustness of an LSS, using the iohexol
model for AUC-based mGFR determination as an example. The effect of deviations in time,
both across individual and multiple time points, on AUC and model estimated parameters
are evaluated.

2. Materials and Methods
2.1. Population Pharmacokinetics Model and Limited Sampling Strategy of Iohexol

The population pharmacokinetic model and associated LSS for iohexol serum clearance
have previously been described in detail [9]. In short, a non-parametric adaptive grid
(NPAG) approach implemented in Pmetrics [11] for R [12] was used. The model consisted
of two compartments, parameterized in clearance (CL) from the central compartment,
the volume of central (V) and peripheral (Vp) compartments, and inter-compartmental
blood flow (Q), allometrically scaled for body weight using power factors of 0.75 for CL
and Q and 1 for V and Vp. The model was developed on rich data from 176 patients
(1131 samples), and externally validated in a cohort of 43 patients (395 samples). The
4-point sampling strategy optimized for clinical use included samples at 10 min, 30 min,
2 h, and 5 h following intravenous administration of 3235 mg iohexol (Omnipaque 300 mg
I/mL, GE Healthcare AS, Oslo, Norway). A public, web-based interface to this model was
developed and is freely available at https://www.mgfr.no.

2.2. Semi-Parametric Simulation from Support Points

To evaluate the robustness of the previously developed LSS of iohexol, simulations
were performed to obtain pharmacokinetic profiles from a similar parameter distribution
(i.e., population) as the original dataset. Our simulation method did not include covariates,
and as such, a covariate-free version of the model was used. This model was developed
and evaluated using the original development and validation datasets. Model diagnostic
plots and performance metrics are available in Figure S1 and Table S1.
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Briefly, the NPAG algorithm estimates the joint population parameter distribution,
which is used as a Bayesian prior for individual parameter estimation. The algorithm has
recently been explained in detail by Yamada et al., 2020 [13]. The population parameter
distribution is a discrete distribution provided as a set of support points, each a vector
of length D with an associated probability, where D is the number of parameters. The
discrete distribution may be transformed to a continuous distribution for the purpose of
sampling a wider range of possible parameter combinations. To accomplish this, we assume
a Gaussian distribution over each support point, forming a Gaussian mixture distribution.
The probability density function for the multivariate Gaussian mixture is defined as

p(x | µ, Σ) = N(µ, Σ) (1)

where µ and Σ are the vector of means and the matrix of variances, respectively. Values of
µ are readily obtained from the individual support point vectors. In order to determine Σ,
the univariate Gaussian mixture was evaluated for each parameter, the density for which is

p(x) = ∑K
i=1 πi ∗ N(x | µi, σi) satisfying ∑K

i=1 πi = 1 (2)

where π is the weighting (or probability) for the Kth Gaussian distribution with mean µ
and variance σ. For each parameter, a common σ, and thus, the proposed element of Σ,
was determined by minimizing the sum of the squared distance between the simulated
and observed (individual posterior) parameter distribution. Minimization was performed
using the built-in optim-function in R, implementing Brent’s method. Sampling from
the mixture distribution is achieved by first sampling the mixture components, i.e., the
support points, with replacement, weighted by their probability. Then, multivariate normal
sampling of parameters was accomplished using the rtmvnorm function implemented
in the tmvtnorm (version 1.5) package for R (version 4.1.3) [14]. Rejection sampling was
used to respect the boundaries of the population pharmacokinetic model. A successful
simulation was evaluated by the overlapping index for empirical distributions [15], for
which values equal to or above 85% were considered acceptable, comparable to an error of
15%. In order to generate concentration-time profiles from the simulated parameter vectors,
the population pharmacokinetic model was rewritten to be used in the mrgsolve [16]
package for R (Supplementary Code S1). Simulated sampling was performed in 1 min
intervals from 0 to 24 h following a dose of 3235 mg of iohexol. No systematic or random
error was added to the measurements.

GFR was calculated by dividing dose by the AUC from zero to infinity (AUC0-∞).
Simulated profiles with GFR < 15 mL/min or GFR > 115 mL/min were excluded, as they
were outside the validated range of the LSS and will not be explored in this work. As such,
both AUC and GFR are conversely evaluated in this work.

2.3. Deviation from Optimal Sample Times

The robustness of the 4-point sampling strategy for iohexol serum clearance was
evaluated at each of the sample points with empirically selected deviations in time; 10 min
(±2, 4, 5, and 6 min), 30 min (±5, 10, and 15 min), 2 h (±5, 15, 30, and 60 min), and 5 h (±5,
15, 30, 60, 120 and +180, 420, and 1140 min), in addition to a reference run with the original
sample times. Each shift was run separately, with cycling, and using the support points of
the covariate-free model ran on the complete dataset as a Bayesian prior, as specified in the
original publication [9].

In order to evaluate the effect of deviation over multiple sample times, a random
normally distributed error, centered around each respective sample point, and with a
relative standard deviation (RSD) of 5, 10, 15, 20, and 25% was added to all sample points,
truncated (using rejection sampling) at each point to prevent overlap; 10 min (5–15 min),
30 min (15–60 min), 2 h (1–3 h), and 5 h (3–8 h). As a measure of robustness to the
aforementioned shifts in sample times, both the mean absolute prediction error in mGFR
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and the proportion of individuals with relative prediction error greater than 15% (P15)
were used. Here, a P15 less than 15% was considered acceptable.

2.4. Optimal Sample Windows

Based on the results of deviation in both individual and multiple sample points, two
approaches to empirical sample windows were used. For deviation in individual sample
time, assuming otherwise no deviation in the remaining sample points, the time intervals
for which the mean error was lower than 2 mL/min may be used. For deviation across
all sample times, the level of RSD associated with an acceptable P15 was used to calculate
empirical sample windows for all sample points by calculating the 90% confidence interval
for the normal distribution centered at each sample point, truncated to avoid overlap
between samples.

3. Results
3.1. Simulated Profiles

A total of 400 pharmacokinetic profiles were simulated, of which 58 and 3 were
excluded due to a simulated GFR of less than 15 mL/min or greater than 115 mL/min, re-
spectively, yielding a total of 339 profiles used in the analysis. The variances that minimized
the distance between observed and simulated parameter densities were 0.61, 2.2, 1.2, and
0.9 units, for CL, Q, V, and Vp, respectively. Simulated parameter densities demonstrated
satisfactory overlap with the observed posterior parameter densities from the original
population pharmacokinetic model (91, 92, 90, and 86% for CL, Q, V, and Vp, respectively)
(Figure 1). Compared to the posterior, none of the simulated parameters had a differ-
ence in weighted mean greater than 15% (Table 1). The simulated profiles (n = 339) were
further grouped based on the estimated mGFR in relation to the chronic kidney disease
(CKD) stages; stage 4:15–29 mL/min (n = 90), stage 3B: 30–44 mL/min (n = 100), stage 3A:
45–59 mL/min (n = 57), stage 2: 60–90 mL/min (n = 73), and stage 1: >90 mL/min (n = 19).
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Table 1. Weighted mean and weighted median (95% credibility interval) of the population pharma-
cokinetic model parameters support points for the original and simulated dataset.

Weighted Mean Weighted Median
(95% Credibility Interval)

Original Simulated Original Simulated

CL (L/h) 2.89 2.84 1.95 (1.54–2.60) 2.42 (2.16–2.72)
V (L) 10.36 9.32 10.11 (9.19–10.91) 8.98 (8.25–9.57)

Vp (L) 9.20 7.98 7.95 (7.23–8.60) 7.46 (7.06–7.81)
Q (L/h) 10.65 11.37 8.03 (6.53–9.23) 8.65 (7.50–9.72)

3.2. LSS Performance on Simulated Profiles

The LSS performance on the simulated profiles was evaluated by sampling at pre-
cisely 10 min, 30 min, 2 h, and 5 h. The mean absolute and relative error in GFR were
1.5 ± 2.2 mL/min and 4.1 ± 5.5%, respectively (Table 2). In total, 6.5% of the simulated
profiles demonstrated an absolute error greater than 5 mL/min, and 1.2% demonstrated an
error greater than 10 mL/min. The proportion of individuals with an error larger than 15%
(P15) was 5.3%, seemingly increasing with decreased GFR, as expected (Table 2).

Table 2. Limited sampling strategy performance on determining mGFR for the simulated profiles,
presented as the absolute and relative error from the simulated “true” GFR. Data are presented as
mean ± standard deviation.

Group Absolute Error (mL/min) Relative Error (%) P15 (%) n

All profiles 1.5 ± 2.2 4.1 ± 5.5 5.3 339
CKD Stage 4 (15–29 mL/min) 1.5 ± 1.3 6.3 ± 5.8 7.8 90

CKD Stage 3b (30–44 mL/min) 1.9 ± 2.2 5.4 ± 6.0 8.0 100
CKD Stage 3a (45–59 mL/min) 1.0 ± 1.6 2.2 ± 3.4 1.8 57
CKD Stage 2 (60–90 mL/min) 1.3 ± 3.0 1.9 ± 4.4 2.7 73
CKD Stage 1 (90–115 mL/min) 1.2 ± 2.2 1.2 ± 1.9 0.0 19

3.3. Effect of Shifts in Sample Times on Estimated GFR

A graphical representation of the effect of deviations in individual sample time on
estimated GFR is shown in Figure 2. In all cases, the mean absolute error was below
4 mL/min, and the median absolute error was below 2.5 mL/min. For the 10 min sample,
delays by up to 6 min increased P15 to a maximum of 9%. Sampling 5 and 6 min prior,
effectively at 4 and 5 min post-dose, was not evaluable by the model, and these times were
not included. In contrast, delaying the 30 min sample less than 15 min reduced P15 to
4%, while sampling up to 15 min earlier increased P15 to 16%. The 2 h sample exhibits a
similar pattern, with reduced P15 for delayed samples, down to 4% at 60 min delayed. The
5 h sample was mostly unaffected by up to 7 h delay in sampling. However, delaying the
sample to 24 h post iohexol administration drastically reduced the predictive performance
as expected; P15 increased to 18%, and the mean absolute error was 2.9 ± 3.5 mL/min. In
order to evaluate these trends for each CKD stage, the median error for each shift is shown
in Figure 3.

Applying random, normally distributed noise with an RSD equal to 5 and 10% across
all sample times led to a P15 of 7.7% in both cases, and a maximum P15 of 8.3% was
achieved in the case of an RSD of both 20% and 25% (Figure 4). For the simulated profiles
with CKD stage 1 (GFR 90–115 mL/min), P15 was 0% for all levels of RSD, and a maximum
of 4.1% at 5% RSD for profiles with GFR 60–90 mL/min. In contrast, simulated profiles
with GFR between 45–55 mL/min, 30–44 mL/min, and 15–15 mL/min incurred a P15 of
7%, 14%, and 10% at 25% RSD, respectively.
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Figure 4. The effect of shifts in time over multiple sample points, where the (A) reference run is
compared to when shifts in sample time are normally distributed around the optimal sample time
with a relative standard deviation (RSD) of (B) 5%, (C) 10%, (D) 15%, (E) 20%, and (F) 25%. Blue
and red fill indicates an individual error greater than or less than 15%, respectively. The label in the
upper-left corner denotes the proportion of individuals with a relative prediction error greater than
15% (P15) for each level of RSD.

3.4. Optimal Sample Windows

The intervals around the deviation in individual optimal sample times that provide
a mean error in predicted GFR less than 2 mL/min, and conversely a low error in AUC,
were 6–16 min (10 min), 20–45 min (30 min), 1.5–3 h (2 h), and 4.75–12 (5 h) (Figure 5A). A
careful estimate of the optimal sample window may be obtained by, e.g., the 90% confidence
interval for the normal distribution with optimal sample times as the mean, and an RSD
of 25%. As such, an estimate of optimal sample windows for the present LSS, without
considering the absolute renal function of the patient, are 6–12 min (10 min), 18–42 min
(30 min), 1–3 h (2 h), and 2.5–7.4 h (5 h) (Figure 5B), assuming no overlap.

3.5. Effect of Shifts in Sample Times on Model Parameters

Supplementary to the effect of a deviation from optimal sample time on predicted
GFR, and conversely, predicted AUC0-inf, changes in estimated model parameters were
also evaluated. A graphical representation of the model-estimated parameter densities
across all evaluated shifts is shown in Figure 6. When compared with the true parameter
densities of the simulated data, the reference run with optimally timed samples achieved a
relative error in mean population model parameter estimates in CL, V, Vp, and Q of 1.5%,
0.6%, 6.9%, and 3.8%, respectively. However, the mean individual relative errors in the
same estimates in CL, V, Vp, and Q were 7.4%, 7.6%, 22.7%, and 495%.
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4. Discussion

In this work, we demonstrate an intuitive approach to evaluating the robustness of
LSS, with direct clinical applications. The method was applied to a previously published
model for serum iohexol clearance used for the determination of mGFR based on accurate
estimates of AUC0-inf. To our knowledge, this is the first work evaluating the robustness
of LSS in such a setting. Overall, the 4-point LSS appears robust to shifts in both single
and multiple sample times, especially for profiles with medium to good GFR, i.e., above
45 mL/min. An interesting finding is that the robustness is affected by patient absolute
clearance or GFR, in this case, and that acceptable sample time deviations should be
adapted also based on this information. This is especially useful in scenarios when a rough
estimate of the patient clearance is known based on clinical history, but the exact mGFR is
desired, e.g., for dose-adjustment of drugs.

In the case of LSS employing MLR, Sarem and colleagues have previously evaluated
the effect of deviations in sample time on AUC only [10]. The present work applies this
methodology to BE-based LSS and evaluates not only the effect of such deviations on
AUC but also the effect on parameter estimates at the individual and population levels.
Additionally, BE-based methods have been shown to outperform LSS based on MLR in
the case of iohexol clearance for the determination of mGFR [8,9]. The BE-based method
was evaluated with a restriction of sampling within standard laboratory opening hours,
i.e., the whole procedure was finalized within 5 h, while the MLR-base method allowed
sampling up to 24 h after dosing. The BE-based model was not only more accurate but also
better adapted to clinical practice [9]. With the development of easily and freely accessible
interfaces to these otherwise complicated BE-based models, such as the one we provide at
https://www.mgfr.no, the barrier to implementation in a clinical setting is significantly
lowered, becoming similar to that of MLR.

When evaluating deviations in sample time for individual sample points, and assum-
ing otherwise optimal sampling, no clinically significant increase in either mean absolute
error or P15 was found across shifts in the 10 min sample, and the 30 min sample may
be delayed by 15 min, even favorably so. As for the 2 h and 5 h samples, either may be
accelerated by up to 30 min without increasing the P15 above 10%. This may potentially
save time for both the patient and healthcare personnel during AUC-guided TDM. In this
work, delaying individual samples improved the predictive performance of the LSS, likely
due to the abundance of simulated profiles with low GFR. Previous history or indication
of the patient’s AUC and/or mGFR, it is possible to make specific recommendations. For
example, parameter estimation in patients with high AUC, and conversely, low mGFR, may
benefit more from delayed sampling, and vice versa. A challenge is that individual pharma-
cokinetic parameters are subject to change over time, but a Bayesian framework compatible
with the present method has previously been described by Bayard and Jelliffe [17].

The introduction of random error with an RSD of 25% was associated with a P15 of
8.3%, compared to 5.3% in the reference run. The level of RSD yielding an acceptable P15
could be viewed as a surrogate marker for LSS robustness to shifts across multiple sample
times for implementation in the clinic. As demonstrated, this may be tailored to the study
population as a whole, or individual sub-groups of patients with, e.g., different stages of
CKD. The empirically determined optimal sample windows allow for added granularity
with regard to the diligence required for sample collection. However, this does not address
the minimum distance required between two given samples, which is likely to affect the
accuracy of parameter estimates.

With respect to the model estimated parameters, the effect of empirical deviations
in individual sample times on the population level was negligible, as indicated by a
low relative error in mean parameter values and the fact that the population parameter
densities mostly overlapped the simulated, true density. However, individual parameter
estimates varied significantly—especially the peripheral volume and inter-compartmental
clearance were often misidentified. This is not surprising, as these parameters are seldom
identifiable. This misidentification did not have any effect on the predictive performance of
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the model, i.e., estimates of individual AUC0-∞, here translated to mGFR. All runs exhibited
exceptionally low mean prediction errors and relative root-mean-squared errors. This was
observed during early method development and for this reason, iohexol serum clearance,
and thus GFR, was calculated by dividing dose by AUC0-∞. This further highlights the
need for a more robust evaluation of LSS, especially when model parameters are used
directly. Our results demonstrate the clinical application of evaluating the robustness of
BE-based LSS. Previously, the effect of a deviation in sample time was unknown but has
now been quantified for the present model and population. With this information, one may
look up the deviation in sample time for the relevant CKD stage and use this to decide
on whether to include an additional sample, for example, which is likely to improve the
accuracy of the parameter estimates. Such changes to the LSS are not possible in the case
of multiple linear regression-based methods, where one is restricted to a pre-defined or
binned sample space.

For simulation-based studies, it is imperative that the simulated population reflects the
underlying research question. While this is implicitly assumed, it is not usually confirmed in
simulation-based studies, despite its importance. In this work, we aimed to simulate profiles
from a similar population, which was confirmed by evaluating the overlap in parameter
densities, in addition to comparisons of weighted mean and median. A disadvantage
of the proposed method for semi-parametric simulation is the lack of covariates, given
that multiple model parameters were allometrically scaled in the original model. Our
strategy for simulation was based on the mechanistic interpretation of the support points
representing the discrete population parameter distribution from the NPAG algorithm.
However, there is no direct link between the support points and the covariates. For the
covariate to be included in the multivariate normal sampling, a sensible mean and variance
must be provided. An initial choice would be the observed mean and variance of the
covariate, which was attempted during method development, but led to poor overlap
between the posterior and simulated parameter densities. Alternate approaches to include
covariates in a semi-parametric simulation will be investigated in a future work. Even
though the present work utilized a covariate-free version of the original model, we still
believe that the proposed simulation method provides an accurate representation of the
effect of deviations in LSS sample times on individual pharmacokinetic estimates, as the
method for evaluating the robustness of LSS is agnostic to the process for which data
is generated.

5. Conclusions

By deviating from the optimally timed sample point(s) of an LSS either empirically
or randomly, the robustness of the LSS to such shifts can be approximated. Additionally,
empirical optimal sample windows may be obtained for a more flexible sampling schedule.
It was further revealed that despite model population parameter estimates being within
10% across all evaluated deviations, individual model parameter estimates were prone to
misidentification. These findings provide additional insight into the necessary diligence
required during sample collection of optimally timed samples and provide a method for
evaluating LSS robustness with respect to both pharmacokinetic (i.e., AUC) and model
estimated parameters. We propose the present method be applied during the development
and validation of LSS for clinical use.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15041073/s1. Figure S1: Population pharmacokinetic
model performance plots for the covariate-free model, including (A) observed-predicted plot, (B)
weighted error across observed concentrations, and (C) weighted error across sample time. Solid
black lines represent the unity line, and the solid blue lines in (B,C) indicate the loess line. Table S1:
Population pharmacokinetic performance metrics for the covariate-free model. Supplementary Code
S1: Implementation of the population pharmacokinetic model in mrgsolve for R.
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 Page 1

SUPPLEMENTARY MATERIAL 

Population pharmacokinetic model 

A covariate free version of the original model [9] was developed, as the present method for simulation 
does not allow for covariates. The model achieved a mean prediction error -0.28 mg/mL and a relative 
root mean squared error of 3.7%. 

 

Figure S1. Population pharmacokinetic model performance plots for the covariate-free model, including 
A) observed-predicted plot, B) weighted error across observed concentrations, and C) weighted error 
across sample time. Solid black lines represent the unity line, and the solid blue lines in B) and C) 
indicate the loess line. 
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 Page 2

Supplementary Table 1. Population pharmacokinetic performance metrics for the covariate-free 
model. 

Metric Value 

Mean prediction error -0.28 

Mean weighted prediction error 0.03 

Mean squared prediction error 30.67 

Root-mean squared error (RMSE) 5.54 

% RMSE 3.66 

Mean weighted squared prediction error 1.49 

Bias-adjusted mean squared prediction error 30.59 

Bias-adjusted mean weighted squared prediction error 1.49 
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 Page 3

Supplementary Code S1 

Implementation of the population pharmacokinetic model in mrgsolve for R. 

$PROB 

Population pharmacokinetic model of iohexol 

$SET 

delta = 0.1 

end = 24 

$PLUGIN Rcpp mrgx 

$PARAM @annotated 

TVCL : 2.89 : Typical value of clearance 

TVV1 : 10.36 : Volume of central compartment 

TVV2 : 9.2 : Volume of peripheral compartment 

TVQ : 10.65 : Inter‐compartment bloodflow 

$MAIN 

double WT = TVWT; 

double CL = TVCL; 

double V1 = TVV1; 

double V2 = TVV2; 

double Q = TVQ; 

double KCP = Q / V1; 

double KPC = Q / V2; 

$PKMODEL  

ncmt=2 

depot = FALSE 

$CMT @annotated 

CENT : Central compartment 

PERI : Peripheral compartment 

$TABLE 

capture CP = CENT/V1; 

capture CLi = CL; 

$SIGMA @annotated 

ADD : 0 : Additive residual 

PROP: 0 : Proportional residual error 
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