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Abstract

Collective resonance phenomena in atomic nuclei are historically one of the first and most
plentiful sources of unique information on the intricate nuclear structure and properties of
nuclear matter. One of them, the pygmy dipole resonance, still remains one of the least un-
derstood features of the nuclear response to an external excitation, despite great experimental
efforts to study its properties in the past two decades. Within numerous theoretical frame-
works, it is recognized as a potential key to the description of dense neutron-rich matter, thus
bridging the gap between the neutron skin in heavy nuclei and massive astrophysical objects,
such as neutron stars. In this regard, systematic experimental studies of the pygmy dipole
resonance in different chains of isotopes are highly desired to guide future improvements in
the theoretical description of its underlying mechanisms.

This dissertation sheds new light on the evolution of the low-lying electric dipole strength
in Sn isotopes, commonly interpreted as the pygmy dipole resonance, based on a systematic
analysis of particle-γ coincidence data for eleven nuclei, from unstable 111Sn to the heaviest
stable 124Sn, using the Oslo method. Three central questions form the basis for this study.
Firstly, how do the bulk properties of the low-lying electric dipole strength evolve with increas-
ing proton-neutron asymmetry and whether this information can aid with the interpretation of
the observed features as the pygmy dipole resonance? Secondly, can the Brink-Axel hypothesis
be considered a reliable assumption in the energy range of the pygmy dipole resonance? And,
finally, what impact do the extracted results have on statistical-model calculations of radiative
neutron-capture rates of interest for the heavy-element nucleosynthesis in the universe?
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Sammendrag

Resonansfenomener i atomkjerner er historisk sett en av hovedkildene til kunnskap om deres
struktur og egenskaper. Pygme-dipolresonansen er et slikt fenomen, som fortsatt vekker en
rekke spørsm̊al om dens opprinnelse og egenskaper, til tross for stor eksperimentell oppmerk-
somhet i de siste to ti̊arene. En større forst̊aelse av oppførelsen til pygme-dipolresonansen ville
gitt bedre innsikt i egenskapene til nøytronrik materie, som er funnet b̊ade i tunge kjerners
ytre nøytronlag og nøytronstjerner. Et systematisk eksperimentelt studie av pygme-dipol-
esonans i forskjellige isotoper er defor nødvendig for å forbedre den teoretiske beskrivelsen av
de underliggende mekanismer i atomkjerner.

Denne avhandlingen kaster et nytt lys p̊a utviklingen av lavenergi-dipol-styrke i tinniso-
toper, ofte betraktet som en pygme-dipolresonans. Resultatene er baset p̊a en systematisk
analyse av partikkel-γ-koinsidensdata for elleve kjerner, fra ustabil 111Sn til den tyngste sta-
bile 124Sn, ved å anvende Oslo-metoden. Tre sentrale spørsmål danner grunnlaget for denne
avhandlingen: Hvordan utvikler lavenergi-dipol-styrkens egenskaper seg under økende proton-
nøytron asymmetri, og hvordan kan denne informasjonen brukes for å betrakte den observerte
styrken som en pygme-dipolresonans? Er Brink-Axel hypothesen en god antakelse i energire-
gionen relevant for pygme-dipolresonansen? Og til slutt, hvordan kan disse resultatene p̊avirke
statistiskmodellberegningene av nøytroninnfagningsratene viktige for studiet om dannelsen av
de tunge grunnstoffene i universet?
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

After more than a century of elaborate theoretical and experimental investigations, atomic
nuclei remain a wellspring of exciting new questions on the structure of nuclear matter and its
properties. How do the bound constituents, namely protons and neutrons, of these complex
many-body systems interact? What processes are induced in a nucleus through interactions
with other nuclei and particles under different conditions? What are the properties of nuclei
in different excited states? How does the complexity of a nucleus increase with increasing
number of nucleons and excitation energy? These are just a few of the many questions that
keep inciting the development of new experimental techniques and more advanced theories to
seek answers to even more fundamental questions, such as, for example, the origin of isotopes
of different chemical elements in the universe.

Naturally, the experimental way to approach the structural properties and different ex-
citation mechanisms inside the nucleus is to study its response to an external perturbation.
Early on, at the dawn of experimental and theoretical nuclear physics, the probabilities, or
the cross sections, of induced reactions as functions of transferred energy and angular momen-
tum were realized to be a unique source of information on nuclear properties. In particular,
the first experimental observation of an enhanced photodissociation cross section for 63Cu by
Bothe and Gentner in 1937 [1] suggested the presence of a resonance effect in the nuclear
response. The first theoretical description of this phenomenon in terms of quantum collective
modes of excitation was suggested by Migdal in 1944 [2]. The potential resonance excitation
was suggested to be due to the dipole oscillation of interpenetrating compressible proton and
neutron “liquids”. A large, Lorentzian-shaped resonance was indeed observed soon after by
Baldwin and Klaiber in photofission cross sections for several heavy nuclei [3] and photodis-
sociation cross section of lighter nuclei [4]. This groundbreaking work started a new era of
giant resonance studies in nuclei across the whole nuclear chart.

The collectivity, i.e. the degree of involvement of nucleons in such oscillations, inspired
a rather simple classification of these giant resonance phenomena according to the type of
collective motion and attributed changes in the multipolarity (L), spin S, and isospin T
induced by an external perturbation. In particular, the large resonance observed by Baldwin
and Klaiber corresponds to the mode with ∆S = 0 (electric, no spin flip involved), ∆T = 1
(isovector, out-of-phase oscillations of protons against neutrons), ∆L = 1 (dipole), and in
the following it will be referred to as the isovector (IV) giant dipole resonance (IVGDR). By
analogy, an excitation accompanied by the spin flip (∆S = 1) is of magnetic type, and in-phase
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CHAPTER 1. INTRODUCTION

oscillations of protons and neutrons are characteristic for the so-called isoscalar (IS) modes
with ∆T = 0.

The conceptual approach of Migdal to the description of the IVGDR appeared to be quite
successful and provided the foundation for the future development of macroscopic models
for the resonance phenomena. In particular, the macroscopic frameworks of Goldhaber and
Teller [5] and Steinwedel and Jensen [6] contributed to the interpretation of the IVGDR in
terms of a bulk out-of-phase motion of protons and neutrons in the nucleus. In the literature,
it is commonly viewed as a high-frequency, nearly harmonic, damped vibration of nuclear
density/shape, manifested as a broad peak in photoabsorption cross sections of nuclei [7].

In the early 1960s, a series of thermal neutron-capture experiments by Bartholomew et al.
revealed the first hints of a new feature in the electric dipole response besides the IVGDR:
an additional enhancement in the reduced transition probability, commonly referred to as the
transition strength distribution at relatively low energies (5 − 7 MeV) in several neutron-rich
nuclei with mass numbers A ≈ 130 − 200 [8]. Subsequent statistical-model calculations of
neutron-capture cross sections between neutron energies of 1 and 8 MeV were found to under-
estimate the experimental values considerably, unless a newly observed bump in experimental
γ-ray spectra was accounted for [9]. The potential importance of this feature, named the
pygmy dipole resonance (PDR) in the work of Brzosko et al. [10], was one of the reasons for a
gradually increased interest in experimental studies in the vicinity of the neutron separation
energy (Sn) in the past several decades.

The collectivity of the giant resonance modes is commonly expressed in terms of the sum
rules, quantifying the transition strength between the ground state and the collective state,
and estimated using the corresponding multipole transition operator. It can also be viewed
as a certain limit for the excitation probability of a resonance mode, distributed over many
nuclear states. Most of the strength of the IVGDR is known be concentrated in the vicinity
of its peak, where it exhausts nearly 100% of the energy-weighted sum rule (EWSR) for
isovector electric dipole transitions [7]. This limit is also commonly referred to as the classical
Thomas-Reiche-Kuhn (TRK) sum rule, expressed as [7, 11–13]:

∫

∞

0
σabs
γ (Eγ)dEγ ≈ 60

NZ

A
(1 + κ) MeV⋅mb, (1.1)

where σabs
γ is the photoabsorption cross section, Eγ is the energy of the absorbed photon,

N , Z, A are the neutron, proton, and mass numbers, respectively. A correction κ is due
to meson-exchange effects and usually considered negligible. From the early experiments
of Bartholomew et al., it was clear that the PDR exhausts at most a few percent of the
TRK rule [14], thus raising further questions regarding its collectivity [15]. The present-day
understanding of the origin and properties of the PDR remains quite limited, leaving plenty
of room for new studies, including the one presented in this thesis.

1.1 Brief introduction to the pygmy dipole resonance

The observations of the PDR in the vicinity of the neutron separation energy, or threshold,
in neutron-rich nuclei naturally suggested that its emergence might be linked to the neutron
excess in these nuclei. The macroscopic pictures of the IVGDR, quite successful in describing
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Figure 18. The calculated PDR peak and centroid energies, and the one-neutron separation energies
for the sequence of Sn isotopes, as functions of the mass number. The DD-ME2 effective interaction
has been used in the RHB + RQRPA calculations. The RHB results for the neutron separation
energies are compared with the experimental and extrapolated values [161].

one-neutron separation energies, in comparison with the data and the extrapolated value [161].
The self-consistent RHB calculation, with the DD-ME2 mean-field effective interaction in the
ph channel and the D1S Gogny force in the pairing channel, reproduces in detail the one-
neutron separation energies in Sn nuclei. We notice that the separation energies decrease
faster than the calculated PDR excitation energies. At the doubly closed-shell nucleus 132Sn a
sharp reduction of the one-neutron separation energy is observed and reproduced by the RHB
calculation, whereas the shell closure produces only a much weaker effect on the PDR peak
energies. The increased fragmentation of the low-lying strength in heavier Sn isotopes results
in larger differences between the PDR peak and centroid energies. The important result here
is that for A < 122 the PDR excitation energies are below the corresponding one-neutron
separation energies, whereas for A ! 122 the pygmy resonance is located above the neutron-
emission threshold. This means, of course, that in the latter case the observation of the PDR
in (γ , γ ′) experiments will be strongly hindered [130, 144].

The presently missing data on dipole strength above the neutron threshold could be
obtained in the near future by using tagged photons at S-DALINAC [123]. In addition,
photon scattering with high intensity beams at energies below and above the neutron separation
threshold are planned at the superconducting electron accelerator ELBE [162, 163]. The first
studies at ELBE include photon-scattering on 92,98,100Mo [164]. It is interesting to note that the
data show an enhancement of the dipole transition strength around 9 MeV: in 92Mo the pygmy
strength is located below the neutron separation energy, whereas in 100Mo it shifts above the
neutron threshold.

In figure 19 we display the isotopic dependence (112Sn–140Sn) of the energy-weighted
dipole strength in the low-energy region, integrated up to the cut-off energy Ec = 10, 11 and
12 MeV, respectively, and plotted in per cents of the classical TRK sum rule. Model calculations
are performed in the RHB + RQRPA with the DD-ME2 plus Gogny D1S interactions, and the
results are compared with the available data from photon scattering [143, 144], and Coulomb
dissociation of secondary Sn beams from in-flight fission [152]. The calculated low-lying
E1 strength is in excellent agreement with the recent experimental data for 112Sn [143] and
130,132Sn [152], whereas it overestimates the (γ , γ ′) data for 116,124Sn [144]. When considering
the evolution of low-lying dipole strength along an isotopic chain, in a first approximation one
could expect that the relative strength of the PDR increases monotonically with the number of
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neutrons, at least within a major shell. In the case of Sn isotopes the RHB+RQRPA calculations
predict, however, that the PDR peak is most pronounced around 124Sn (depending on the cut-
off, see figure 19) [37]. A combination of shell effects and reduced pairing correlations, leads
to a reduction in the strength of the PDR in heavier Sn nuclei below N = 82. The local
minimum in the low-lying E1 strength is calculated for 132Sn, whereas in the neighbouring
isotopes the transition strength increases because of enhanced collectivity, i.e. the increase
in the number of two-quasiparticle pairs contributing to the RQRPA configuration space. We
also notice the pronounced difference in the pygmy strength between nuclei close to the valley
of β-stability and exotic nuclei: while below the N = 82 shell closure the integrated transition
strength is at most ≈4% of the TRK sum rule value (for Ec = 10 MeV), beyond 132Sn the
PDR strength exhibits a strong enhancement.

It is, of course, interesting to explore other isotopic chains of spherical nuclei where one
expects the occurrence of the PDR in the E1 excitation spectrum. In figures 20 and 21 we

(a) (b)

Figure 1.1: (a) Calculated peak and centroid energies of the PDR in Sn isotopes as functions
of the mass number calculated within the RHB+RQRPA approach with the DD-ME2 type
of effective interaction. (b) The RHB+RQRPA energy-weighted dipole strength, integrated
up to the cutoff energies Ec = 10,11,12 MeV and shown as fractions of the TRK sum rule.
Figures are taken from Ref. [19].

its bulk properties, formed the basis for a macroscopic description of the PDR as well. In
particular, the hydrodynamical model of Steinwedel and Jensen [6], combining two types of
compressible irrotational liquids (protons and neutrons) in an incompressible total liquid,
was expanded by Mohan et al. [16] to include three types of liquid: the liquids of protons
and neutrons occupying the same orbitals in the core and the neutron excess liquid. Within
this approach, both the IVGDR and the PDR can be reproduced. To further reduce the
number of parameters required for the description of a vibrational motion between these
three components, nucleons in the core were suggested to be combined into the corresponding
core liquid [17]. This model, its adaptation according to the Goldhaber-Teller picture of
the IVGDR, and a comparatively new elastodynamic model [18] share the same idea of the
mechanism for the PDR generation; it is described as emerging due to the oscillations of
the neutron excess (skin) versus the isospin-saturated core. Despite its quite poor predictive
power, this picture of the PDR is an excellent tool for a crude, approximate description of
this mode, which partly makes it the most commonly appearing in the literature.

A more detailed description of the electric dipole strength distribution in medium- and
heavy-mass nuclei is provided within the microscopic self-consistent mean field (MF) ap-
proaches, relying on different types of effective interactions. The earliest attempts to approach
the PDR region with microscopic calculations were performed using the Hartree-Fock (HF)
plus Random Phase Approximation (RPA) with Skyrme interactions, further expanded by
taking the pairing correlations into account within the Hartree–Fock–Bogoliubov (HFB) plus
Quasiparticle RPA (QRPA) [15]. A fairly good description of the low-lying electric dipole (E1)
strength in open-shell nuclei was achieved using the Relativistic QRPA (RQRPA), where the
interaction between nucleons is mediated by virtual mesons and photons [15]. An example of
relativistic Hartree–Bogoliubov (RHB) plus RQRPA calculations for Sn isotopes by Paar [19]
is shown in Fig. 1.1. Approaches beyond the RPA allow for a more accurate description of
the spreading width in the strength distribution by taking into account the coupling of one-
particle–one-hole (1p–1h) configurations to more complex ones. The Quasi-particle Phonon
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Model (QPM) (see [15] and references therein) is one of the approaches of this kind, exploiting
the solutions of the QRPA to span a one-phonon basis and build up more complex two- and
three-phonon states. A self-consistent alternative of the QPM is the Relativistic Quasi-particle
Time Blocking Approximation (RQTBA), which also includes the quasi-particle–phonon cou-
pling for the description of the strength. Among other methods, solving the Vlasov equation
in the semi-classical limit of the Time Dependent Hartree Fock (TDHF) approach has also
been actively and quite successfully used for the description of the PDR (see e.g. [20, 21]). A
comprehensive overview of these and other existing microscopic models with their advantages
and drawbacks has been previously presented in Ref. [19] and recently recapped and updated
in Ref. [15].

Considering the characteristics of the PDR (or, rather, the low-lying E1 strength), the
vast majority of these microscopic approaches reveal several common trends [14, 19]. Firstly,
its energy centroid shifts gradually towards lower energies with increasing neutron number.
Secondly, there is a net increase of the total integrated strength below the neutron threshold
with increasing proton-neutron asymmetry, often expressed as α = (N −Z)/A, also accompa-
nied by abrupt changes in the close proximity to a shell closure. Some of these observations
have indeed been confirmed in experimental studies. Photonuclear reactions and, specifically,
high-resolution photon scattering (γ, γ′) or Nuclear Resonance Fluorescence (NRF) experi-
ments are one of the most plentiful sources of systematic information on the low-lying E1
strength strength below the neutron threshold [14, 22]. The photon probe is fully absorbed
by a target nucleus and interacts with it as a whole, thus being highly selective with re-
spect to dipole excitations of the isovector type. High-purity Ge detectors employed in such
analyses allow for a high-energy resolution spectroscopic study of various fine structures and
the fragmentation of the strength within the PDR region. The state-to-state analysis of re-
solved transitions can be used to extract the reduced transition probabilities B(E1) in a
completely model-independent way (see e.g. [23]). For example, the NRF experiments on
several Ca isotopes have revealed a somewhat non-linear evolution of the E1 strength with
neutron number, rather than an intuitively expected monotonous increase according to the
neutron-skin oscillation picture [24].

The NRF method, however, suffers from some limitations, which might be critical for
the PDR studies. Most importantly, certain assumptions need to be made to account for
unresolved transitions due to the experimental sensitivity limit and branching ratios of high-
lying states. In NRF experiments using bremsstrahlung beams, e.g. at the γELBE facility
at the Helmholtz-Zentrum Dresden-Rossendorf [25], the latter problem can be solved with
a statistical-model analysis of the continuous spectrum (see e.g. [23]). Alternatively, in-
formation on final populated states can be extracted provided a priori known energies of
incident bremsstrahlung photons in tagged-photon experiments. In this case, the energy of
the electrons coincident with the absorbed photons is also measured (see e.g. the NEPTUN
setup at TU Darmstadt [26]). Moreover, NRF with high-intensity quasi-monoenergetic pho-
ton beams from the High Intensity γ-ray Source (HIγS) facility [27] produced via Compton
back-scattering at the Duke Free Electron Laser Laboratory is the most recent modification
of this method, which is specifically designed to avoid the above-mentioned problems of NRF
studies with bremsstrahlung beams.

The need for introducing additional corrections to the state-to-state NRF results is espe-
cially evident from their comparison with the strength distributions from relativistic proton
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scattering in extreme forward angles. The Coulomb excitation in such kinematic conditions
is the dominant interaction mechanism, and both the E1 and M1 components of the strength
can be obtained with a multipole decomposition analysis (MDA) (see e.g. [28]). Extrac-
tion of the total strength over a wide energy range is an advantage of this method, despite
some model dependence introduced through the MDA. Such experiments on relatively light-
to heavy-mass nuclei have been successfully performed at the Research Center for Nuclear
Physics (RCNP) [29] and iThemba LABS [30]. Coulomb excitation is also employed in exper-
iments in inverse kinematics using radioactive ion beams, produced through fragmentation of
a primary beam (e.g. 238U [31]) in a collision with a light-nucleus target. These experiments
allow for the study of unstable, neutron-rich nuclei away from the valley of stability, thus
providing unique constraints for theoretical calculations. However, a certain fraction of the
PDR strength below the neutron threshold remains unobserved, which makes a comparison
with e.g. NRF results on stable targets quite challenging.

Another way to approach the E1 strength below the neutron threshold in stable nuclei
and nuclei close to the valley of stability is the Oslo method [33–35], which is the main
method applied in this thesis. The statistical properties, such as the nuclear level density
and γ-ray strength function introduced in the following chapter, are extracted from particle-γ
coincidence data and normalized to auxiliary experimental data. The details of this technique
in application to Sn isotopes are presented in Sec. 3.3. A certain advantage of the Oslo method
is the ability to extract to the dipole strength distribution down to low γ energies; this part of
the dipole response includes not only the main concentration of the PDR strength, but also
the so-called scissors M1 mode (see e.g. [36]) and an additional low-energy enhancement (at
≈ 1 − 2 MeV), presumably of M1 nature (see e.g.[37]), commonly referred to as an upbend.
Due to the dependence of the Oslo method on additional experimental and theoretical inputs
for the normalization of the data, any additional experimental constraints below the neutron
threshold are highly desired to benchmark the Oslo method results.

An important property of the E1 strength in the PDR region has been discovered using
complementary (α,α′), (17O, 17O′γ), and (p, p′γ) hadron probes in addition to the NRF
results. Such multi-messenger experiments on 140Ce, 138Ba, 124Sn, 90,94Zr [38–41] revealed a
mixed isoscalar-isovector nature of the low-lying strength. The observed distributions of 1−

states can be split into two groups: lower-lying states of mixed nature populated through both
isoscalar ((α,α′), (17O, 17O′γ), (p, p′γ) in [32]) and isovector ((γ, γ′), (p, p′) in [42]) probes
and a higher-lying group of states suppressed in the isoscalar response. Two distinct groups
of 1− states are clearly seen in the (α,α′), (p, p′), and (γ, γ′) results for 140Ce in Fig. 1.2. This
splitting is also a well-known feature from theoretical calculations (see e.g. [21]), predicting
a considerable neutron contribution in transition densities close to the nuclear surface. The
suppression of the isoscalar and the presence of the isovector response at higher energies
is interpreted as a predominant contribution of the tail of the IVGDR. These experimental
observations and the accompanying theoretical descriptions are well in line with the neutron-
skin picture of the PDR. The isoscalar-isovector splitting can be viewed as one of the key
criteria for the theoretical definition of the PDR [15].

This splitting is closely related to a still unanswered question on the collectivity of the
low-lying E1 strength, i.e. whether it stems from a coherent nucleon motion or consists of
uncorrelated 1p–1h contributions. No consensus has been reached within theory so far; some
of the approaches, such as, e.g., RQRPA and RQTBA [19, 40], strongly suggest a certain
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Fig. 2. The experimental results for the present (p, p′γ ) experiment are shown in 
panel b) together with the results for the previous experiments using the (α, α′γ )

[36] and the NRF reaction [52,53]. The solid lines in panel a) and b) represent the 
sensitivity limit of the experiments. The lowest panel shows the measured averaged 
branching ratio to the first excited state as published in [28]. In the right column, 
the corresponding calculations within the QPM model are shown. For more details 
see text.

Calculations have been performed with the QPM wave func-
tions from [21]. They have been obtained by diagonalization of 
the model Hamiltonian on the basis of interactive one-, two-, and 
three-phonon configurations. Two- and three-phonon configura-
tions were built up from the phonons with the multipolarities 
from 1± to 9± and were cut above 8.5 MeV. In total we have 1157 
1− states below this energy cut. The 140Ce(p, p′) and 140Ce(α, α′)
cross sections have been calculated for all of them.

The (p, p′) cross sections have been computed within the 
DWBA (distorted-wave Born approximation) employing the
DWBA07 code [54]. The effective N N-interaction of Love–Franey 
[55,56] has been used as input to calculate both the optical po-
tential and transition amplitudes. The cross sections have been 
averaged over the scattering angle θ = 3.3◦–7.9◦ in accordance 
with the acceptance angle of the BBS. They exhibit a smooth de-
pendence on θ and drop by 35% from the smaller to the larger 
angle.

The (α, α′) cross section have been calculated within a semi-
classical coupled-channel model described in [57–59]. The radial 
form factors were calculated by a double folding procedure with 
the transition densities provided by the QPM and using a M3Y 
nucleon–nucleon (N N) interaction [60]. For the real part of the 
optical potential the double-folding procedure has been used with 
the QPM ground-state density for 140Ce and the one given in [61]
for the alpha particle. The imaginary part is taken with the same 
geometry of the real part with half of the strength. The cross 
sections are then obtained by integrating the inelastic probability 
amplitude for each dipole state over the range of impact parame-
ters that lead to the scattered projectile in the measured angular 
range.

The mechanism of the electromagnetic excitation in the photo-
absorption reaction is well known. For the excitation of 1− states 
it is of isovector nature. Protons and α-particles interact with the 
target nuclei by means of the Coulomb- and N N-terms. The for-

Fig. 3. Decomposition of the calculated cross sections for (p, p′) and (α, α′) into 
pure nuclear interaction, pure Coulomb interaction and total cross section including 
nuclear-Coulomb interference.

mer is proportional to the electromagnetic transition. The latter 
is predominantly of isoscalar nature at the present kinematics in 
both (p, p′) and (α, α′) reactions, although some admixture of the 
isovector part is also present.

To investigate the role of the above-mentioned terms for the 
hadronic projectiles, the cross section calculations for both reac-
tions have been repeated for each term separately. Corresponding 
results are presented in the upper two rows of Fig. 3 as “Nuclear” 
and “Coulomb” in comparison to the complete calculation “Total”.

For both, proton as well as α scattering, the nuclear part is 
dominant for the excitation of the low-energy part of the PDR 
and yields large cross sections. This signature is related to tran-
sition densities with a strong neutron contribution on the surface 
whereas in the inner regions protons and neutrons are in phase, a 
structure that is usually associated with the isoscalar nature of the 
PDR. While this combination of transition densities leads to large 
cross sections in the nuclear component, it results in rather small 
B(E1) values and consequently small Coulomb excitation cross sec-
tions.

At higher energies the common structure changes towards more 
isovector components and, thus, larger Coulomb contributions. The 
amplitudes due to the Coulomb- and N N-terms become rather 
close in value and the interference effects between them begin to 
play an important role. It is interesting to note that even though 
the transition densities of individual states partly seem to look 
very different, they share the above-described common underlying 
features, which result in similar cross sections and this common 
energy dependence in the response function.

Fig. 2 summarizes the results of all experiments (left column) 
and the QPM calculation (right column) for 140Ce. Besides the total 
cross sections for α, proton and photon scattering mentioned so 
far also the averaged decay branching ratio to the first-excited 2+

1
state is shown in Fig. 2d as presented in [28]. Each row in Fig. 2
represents the comparison of experimental results with the QPM 
calculation with respect to a different observable, each of which 
is sensitive to different aspects of the wave function. The α scat-
tering cross section is sensitive to the isoscalar component of the 
excited states and is enhanced by surface contributions. Therefore, 
the large (α, α′) cross section for the lower lying group of 1−

states can be identified as a signature of oscillating excess neu-
trons at the surface of the nucleus [42]. For protons this selectivity 
is less distinct as inelastic proton scattering is also sensitive to 

Figure 1.2: The experimental strength distributions extracted in (a) (α,α′), (b) (p, p′γ), and
(c) (γ, γ′) reactions on 140Ce. The right column shows the corresponding QPM calculations.
In (d) the averaged branching ratio to the first excited state is shown. Figures are taken from
Ref. [32].

degree of collectivity, while in other works it has not been confirmed (as in e.g. [43]). The
present status of the theoretical and experimental studies suggests, however, the collective
nature of the isoscalar component of the PDR and a non-collective nature of the isovector
part [15]. Experiments using the one-nucleon transfer reaction (d, p) have recently been shown
to yield new information on the microscopic 1p–1h structure of the strength in the PDR region
[44].

Among the unsolved questions, first formulated in Ref. [45] and recently summarized in
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CHAPTER 1. INTRODUCTION

Ref. [15], a further investigation of the collectivity and isospin properties of the low-lying E1
strength comprise only a small fraction of possible avenues of the PDR studies. Characteris-
tics of the PDR in deformed nuclei and its coexistence with other “pygmy” modes of other
multipolarities are currently two completely open questions. The neutron-skin picture of this
strength has also been questioned in several earlier works, suggesting that it might rather
be a manifestation of the dipole toroidal mode [46, 47]. Despite the fact that experimental
studies have already been performed for some neutron-rich, unstable nuclei, the evolution of
the PDR in stable isotopes of different elements is far from being completely understood and
remains a subject for further investigations. In this regard, the Oslo method is our technique
of choice to extract the full dipole strength below the neutron threshold.

1.2 Implications of the PDR: neutron skins, equation

of state, nucleosynthesis

The potential connection of the PDR to the neutron excess within the macroscopic picture,
combined with the first experimental observations of the enhanced low-lying E1 strength in
neutron-rich nuclei, inspired a series of exciting studies on several far-reaching implications of
this puzzling mode. In particular, correlations between the low-lying E1 strength, the neutron
skin thickness1, and the symmetry energy in the equation of state (EoS) of neutron-rich matter
have been the focus of a large number of publications since the early 2000s. Besides a general
interest for the nuclear structure studies and benchmarking of theoretical approaches, the
neutron skin thickness in heavy nuclei, specifically in 208Pb, has been identified as a perfect
observable to place a stringent experimental constraint on the density dependence of the EoS
[48]. Experimental information on neutron radii remains rather scarce, and the most accurate
estimates so far have been extracted in the parity radius experiment (PREX) at the Jefferson
Laboratory for 208Pb in parity violating electron scattering [49] (despite some technical issues
affecting the statistical accuracy) and, quite recently, in the updated experiment PREX-2
[50]. The far-reaching objective of these studies was to exploit similarities of the composition
(neutron-rich matter) and conditions (density, pressure) established in the neutron skin and
the crust of a neutron star to determine the properties of the latter, such as radii and transition
density from a solid crust to a liquid mantle [49]. The thicker the neutron skin, the higher
the pressure analogous to the one counteracting gravitational forces in neutron stars, leading
to larger neutron star radii. Correspondingly, the thicker the neutron skin, the thinner the
solid neutron star crust. Further attempts to optimize the theoretical apparatus, including
the error and correlation analyses, for such studies have been performed in Refs. [52, 53]. On
the other hand, the first observation of gravitational waves from a binary neutron star merger
GW170817 with the Advanced LIGO and Virgo detectors [54] in 2017 has been recently
discussed in view of its potential to provide a new puzzle piece in the complex interplay
between nuclei and neutron stars based on the mass-radius relation for the observed neutron
star merger [55].

Assuming that a measurement of the neutron radius in a single heavy nucleus can provide

1The neutron skin thickness is commonly defined as the difference of the root-mean-square neutron and
proton radii in a nucleus.
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derstood that the formation of the neutron skin is governed by
the density dependence of the nuclear symmetry energy [5–7].
Using the lowest terms in a Taylor expansion of the energy per
nucleon in asymmetric nuclear matter in terms of the density
ρ and the asymmetry parameter α = (N − Z)/A we obtain

E(ρ,α) = E(ρ, 0) + S2(ρ)α2 + · · · (1)

with the symmetry energy term S2 parametrized by

S2(ρ) = a4 + po

ρ2
o

(ρ − ρo) + · · · , (2)

where ρo denotes the saturation density. Evidently, a4 is
equivalent to the symmetry energy in pure neutron matter
and po to the symmetry energy pressure, both at saturation
density. In various relativistic and nonrelativistic mean-field
model parametrizations, the neutron-skin thickness for a given
nucleus is practically linearly correlated with both a4 and
po [6,25]; thus the two parameters are strongly correlated with
each other. The various mean-field calculations nevertheless
may result in very different neutron skins for a particular
nucleus, e.g., 208Pb. In the following we will show that
a given class of mean-field calculations reveal as well a
practically linear correlation between the pygmy strength and
the neutron-skin thickness in a given nucleus, and thus, also
with the symmetry energy parameters.

For this purpose, we have carried out a series of fully
self-consistent RHB model [26] plus RQRPA [14] calculations
of ground-state properties and dipole strength distributions. A
set of density-dependent meson-exchange (DD-ME) effective
interactions [27] has been used, for which the parameter
a4 is systematically varied in the interval 30 MeV ! a4 !
38 MeV in steps of 2 MeV, while the remaining parameters
are adjusted to accurately reproduce nuclear matter properties
(the binding energy, the saturation density, the compression
modulus, and the volume asymmetry) and the binding energies
and charge radii of a standard set of spherical nuclei [27]. For
open-shell nuclei, pairing correlations are also included in the
RHB+RQRPA framework and described by the pairing part
of the Gogny force. The consistent calculation of ground-
state properties and dipole strength distributions, using the
same effective interaction, provides a direct relation between
symmetry energy parameters and the predicted size of the
neutron skin and the pygmy strength such as shown for
130,132Sn in Fig. 3.

In a first step, we inspected the correlation of the neutron-
skin thickness in 208Pb with the a4 and po parameters, the
latter extracted from the density dependence of the symmetry
energy around saturation density. We observe an almost linear
correlation in both cases and, moreover, these correlations
perfectly match the systematics from other mean-field calcu-
lations shown in Figs. 7 and 11 of [6].

In a second step, the calculated B(E1) distributions for
130,132Sn resulting from the different DD-ME parametrizations
were analyzed. In all cases, strength accumulations are found
below and clearly separated from the GDR spanning up to
11 MeV excitation energy. The structure of the low-lying
states exhibits quite a substantial degree of collectivity due to
transitions which involve mainly neutrons from weakly bound
orbits. In particular, from the RQRPA calculations for 132Sn we
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FIG. 3. Upper panels: Ratio of PDR to GDR strength for 130,132Sn
versus the symmetry-energy parameter a4 as resulting from RQRPA
calculations (solid lines). The dot-dashed and dashed lines indicate
the experimental PDR/GDR strength ratios with their errors and the
range of a4 values deduced from them. Bottom panels: Neutron-skin
thickness Rn − Rp versus a4 from RQRPA calculations. The dot-
dashed and dashed lines indicate the average a4 value and its errors
and the neutron-skin thicknesses deduced from it.

observe for the two largest states at 7.75 MeV and 8.59 MeV
that 10 and 13 neutron transitions contribute with more than
0.1% to the total RQRPA amplitudes, respectively. In the case
of 130Sn, the collectivity of the low-energy states becomes
enhanced further more due to the opening of the neutron shell
and the increased number of two-quasiparticle configurations
which contribute to the low-lying states. For the relevant
states at 7.97 MeV and 8.79 MeV, in total 15 and 32 neutron
two-quasiparticle configurations participate, respectively, with
more than 0.1% in the RQRPA amplitudes. In the case of both
Sn isotopes, for each low-energy state the share of neutron
transitions amounts to at least 90% of the RQRPA amplitudes
while proton transitions contribute to 3–10% only.

In Fig. 1, the B(E1) strength calculated with the particular
choice of a4 = 32 MeV is convoluted with the detector
response function and then compared with the experimental
data. The centroid of the calculated distribution is shifted by
about one MeV compared to the measured one. In Fig. 3 (upper
panels), the calculated B(E1) strength is integrated up to
11 MeV and, divided by that of the GDR, is shown as a function
of a4. By comparing the experimental values of the B(E1) ratio
with that of the RQRPA calculations, the symmetry energy
parameters were fixed. An average value of ā4 = 32.0 ±
1.8 MeV was obtained from the 130,132Sn analysis, which is in
good agreement with considerations presented in [27]. From
the a4 versus po correlation revealed in the RQRPA calculation,
see above, we deduced p̄o = 2.3 ± 0.8 MeV/fm3. The results
for ā4 and p̄o can be confirmed by performing similar RQRPA
calculations for 208Pb and comparing them with the ratio of
PDR strength measured in [19] to the GDR strength from [28];
the value a4 = 31 MeV deduced from these 208Pb data is
consistent with the one obtained for the Sn isotopes.
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FIG. 2. (Color online) In panels (a) and (b), the correlation between L and the percentage of TRK sum rule exhausted by the PDR in 68Ni
and 132Sn, respectively, is displayed. The computed data points are labeled, here and in what follows, by numbers. The correspondence with
the parameter sets used is: 1 = v090, 2 = MSk3, 3 = BSk1, 4 = v110, 5 = v100, 6 = SkT6, 7 = SkT9, 8 = SGII, 9 = SkM∗, 10 = SLy4,
11 = SLy5, 12 = SLy230a, 13 = LNS, 14 = SkMP, 15 = SkRs, 16 = SkGs, 17 = SK255, 18 = SkI3, 19 = SkI2, 20 = NLC, 21 = TM1,
22 = PK1, 23 = NL3, 24 = NLBA, 25 = NL3+, and 26 = NLE. The straight lines correspond to the results of the fits. In panel (c) we show
the same straight lines displayed in (a) and (b), together with the correlation coefficient r and the constraints from the experiments [6,14]. In
panel (d) the correlation between L and J is shown. The box corresponds to the value of L deduced from the weighted average of the two
values extracted from 68Ni and 132Sn.

related to the quantities used to deduce the number from
the measurement. It should be noted that the dominating
uncertainty (still within 30% of the average value) is that
related to the choice of the level density value entering the
evaluation of the branching for γ emission. We used different
level densities obtained by means of either a shell-model
Monte Carlo (SMMC) calculation for this nucleus [22], or
global Hartree-Fock-Bogoliubov (HFB) calculations [23,24]:
the largest span goes from 3.5% obtained using Ref. [23] to
6.5% using Ref. [24].

Our result is that the slope parameter L is constrained to
be in the interval 50.3–89.4 MeV or 29.0–82.0 MeV, if we use
either the 68Ni results or the 132Sn results (cf. the lower left
panel of Fig. 2). The weighted average, L = 64.8 ± 15.7 MeV,
is displayed in the lower right panel of Fig. 2 (it corresponds
to the shaded box). In this panel, the correlation of J and
L is provided so that we can deduce our best value of J ,
which is 32.3 ± 1.3 MeV. This value is in very good agreement
with the value 32.0 ± 1.8 MeV, which is reported in Ref. [6].

The parametrizations of S(ρ) found in Refs. [8,10] lead to
J = 31.6 MeV. Moreover, our result for J overlaps well with
the ranges obtained in Ref. [9] (30.2–33.8 MeV) and Ref. [25]
(31.5–33.5 MeV) (cf. also Ref. [26]). From the theoretical
point of view, we can consider it very satisfactory that our result
for L coincides almost exactly with the value of 66.5 MeV
extracted from Bruckner-Hartree-Fock (BHF) calculations in
uniform matter that employ realistic two-body and three-body
forces [27].

The next step is to use the L value obtained from the
PDR computed data points in 68Ni and 132Sn to deduce
the neutron skin thickness #R. First, one can note that
the correlation between L and #R, when the two quantities
are calculated using the models already described, is quite
good (cf. Fig. 3). If one imposes the value of L to be in the
interval 64.8 ± 15.7 MeV, one obtains for the skin thickness
#R = 0.200 ± 0.015 fm for 68Ni, #R = 0.258 ± 0.024 fm
for 132Sn, and #R = 0.194 ± 0.024 fm for 208Pb. These
numbers are stable if one tries to constrain them by using the

041301-3

(a) (b)

Figure 1.3: (a) Ratio of the PDR and IVGDR strength and the neutron skin thickness
Rn−Rp for 130,132Sn versus the symmetry energy parameter J (a4) extracted within the QRPA
approach. The dot-dashed and dashed lines correspond to the experimental values and the
respective uncertainties [61]. (b) The correlation between the fraction of the EWSR exhausted
by the PDR in 68Ni and 132Sn and the symmetry energy parameter L shown together with
the experimental constraints (dotted boxes) and the correlation coefficients r [62].

a constraint on neutron radii in other nuclei, the correlation between the neutron skin in Sn
isotopes and the fraction of the EWSR within the PDR region (5-10 MeV) relative to that
in the IVGDR region (10-25 MeV) has been studied by Piekarewicz [56] using MF plus RPA
calculations. This correlation was indeed found, at least up to 120Sn, where a strong correlation
turns abruptly into an anti-correlation attributed to the filling of the neutron 1h11/2 orbital.
Based on the subsequent correlation analysis of different observables using the self-consistent
energy density functional of the Skyrme type, Reinhard and Nazarewicz suggested that an
alternative, more robust constraint for the neutron skin thickness is provided by the dipole
polarizability [43, 57], corresponding to the inverse energy-weighted photoabsorption cross
section σγ [58]:

αD =
h̵c

2π2e2 ∫
σγ
E2
γ

dEγ. (1.2)

This quantity weighs the PDR contribution to the total strength more than the strength
in the IVGDR region, thus being potentially more sensitive to the variations of the neutron
skin. Even though one of the main claims in this study, namely a weak correlation of the skin
thickness and the low-lying E1 strength, was confronted in the follow-up work by Piekarewicz
[59], the dipole polarizability is still considered to be a more promising candidate for the
extraction of the EoS parameters (see e. g.[60]).

In asymmetric nuclear matter, the EoS is commonly approached by considering the lowest
terms in a Taylor expansion of the energy of a nuclear system as a function of its total density
and the proton-neutron asymmetry δ = (ρn−ρp)/ρ (ρp,n are the proton and neutron densities)
[63]:

E(ρ, δ) = E(ρ, δ = 0) + S(ρ)δ2 +O(δ4), (1.3)
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Ž .The DC rates are calculated with Eq. 5 for all
the nuclei involved in the r-process nucleosynthesis
and added incoherently to the damped CN contribu-

Ž Ž ..tion Eq. 4 obtained in Section 2. Fig. 5 compares
Ž .the resulting total n,g rate to the standard rate

commonly used in r-process calculations, i.e. de-
duced from a GDR strength function only. Devia-
tions within a factor of 1000 from the standard GDR
predictions can be observed for nuclei relevant to the

w xr-process, i.e such that 1QS MeV Q3. Althoughn
for most of the nuclei, the DC and PR effects tend to
enhance the neutron capture, the reduced number of

Ž .available excited states above and below S in then
residual nucleus not only drastically decreases the
CN component, but also makes the DC mechanism
quite inefficient. For many neutron-rich nuclei, no
allowed direct transitions are found, and the direct

w xchannel is consequently inhibited 11 . These effects

are relatively significant close to the neutron shell
Ž .closures especially Ns82 , and are therefore ex-

pected to have an impact on the r-process nucleosyn-
thesis.

4. Impact of the PR and DC on the r-abundance
distribution

To illustrate the impact of the PR contribution and
DC mechanism on the r-process nucleosynthesis, we
consider the simple non-equilibrium canonical model
in which a full reaction network is solved for a given
set of parameters defining the temperature T of the
astrophysical site, its neutron density N and the timen
during which the neutron irradiation takes place t .irr
More details of the r-process model can be found in
w x15 . The r-process calculations are performed with 3

. 9 20 y3Fig. 6. a r-abundance distributions for Ts10 K, N s10 cm and t s2.4 s with 3 different estimates of the neutron capture rates:n irr
Ž .the standard GDR component, the GDRqPR strength and the damped statistical CN plus DC contribution. The top curve corresponds to

. . 9 28 y3the solar r-abundances arbitrarily normalized. b same as a for Ts1.5=10 K, N s10 cm and t s0.3 s.n irr

24 A.P. Tonchev et al. / Physics Letters B 773 (2017) 20–25

Table 2
Summary of a few moments of the photoabsorption cross section of 206Pb and 208Pb.

Nucleus Emax (MeV) 60NZ/A (mb MeV) σ0 (mb MeV) σ−1 (mb) σ−2 (mb/MeV) Ref.
206Pb 26 2962 3544±294 241±17 18±1 Present+[46,49]

3437 240 18 [ENDF]

208Pb 25 2980 3981±331 287±18 20±1 [50]
3404 239 18 [ENDF]

Table 3
Moments of the photoabsorption cross section of 206Pb as in Table 2, but now as predicted by a series of accurately calibrated relativistic EDFs [51,52] and the non-relativistic 
EDF (GiEDF) underlying the QPM approach. Also shown is the neutron-skin thickness of 206Pb (and 208Pb displayed in square brackets) as well as values of the symmetry 
energy ( J ) its slope (L) and its curvature (Ksym) at saturation density [see Eq. (2)]. The large negative GiEDF value for Ksym is typical for non-relativistic approaches, see e.g. 
[29].

Model σ0 (mb MeV) σ−1 (mb) σ−2 (mb/MeV) Rskin (fm) J (MeV) L (MeV) Ksym (MeV)

RMF012 3653 237 17 0.12 [0.13] 29.8 48.3 98.7
FSUGarnet 3689 243 18 0.15 [0.16] 30.9 51.0 59.5
FSUGold 3638 251 19 0.19 [0.21] 32.6 60.5 −51.3
RMF028 3711 265 21 0.26 [0.29] 37.5 112.6 26.2
RMF032 3812 262 21 0.30 [0.32] 41.3 125.6 28.6
GiEDF 3060 230 18 0.15 [0.16] 33.4 53.9 −188.4

Fig. 4. (Color online.) Radiative capture cross section 205Pb(n, γ )206Pb using as in-
put the experimental E1 and M1 dipole strength (red curve) or the three-phonon 
EDF+QPM plus EDF+QRPA predictions (blue curve). The dotted line is obtained 
with the EDF+QRPA strength excluding the PDR contribution.

tric in character and mainly due to a PDR skin oscillation. However, 
a substantial contribution from both the low-energy tail of the GDR 
and multi-phonon states to the total E1 strength is also observed 
that is responsible for the fragmentation pattern of low-energy 
dipole states. Moreover, the EDF+QPM theory successfully repro-
duces the low-energy M1 spectral distribution, suggesting that it is 
mostly due to spin-flip excitations. In combination with relativis-
tic EDFs that are accurately calibrated to ground-state properties 
of finite nuclei, estimates for the neutron-skin thickness in both 
206Pb and 208Pb are provided, with the latter consistent with some 
recent analyses [7]. In turn, these estimates suggest a relatively 
soft symmetry energy. In the context of stellar nucleosynthesis, 
an updated—experimentally constrained—Maxwellian-averaged ra-
diative capture cross section for 205Pb(n,γ )206Pb is obtained. The 
work reported here illustrates the vital and ever increasing role 
that measurements of exotic modes of excitation in neutron-rich 
nuclei are playing in the determination of observables of critical 
astrophysical importance.
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Figure 1.4: (a) Calculated r-process abundances for the temperature T = 109 K, irradiation
time τirr = 2.4 s, and neutron density 1020 cm−3 using the standard IVGDR component,
the combined IVGDR and the PDR response, and the damped statistical (CN) plus direct
capture contribution. (b) Same as (a) for T = 1.5 × 109 K, irradiation time τirr = 2.4 s, and
neutron density 1028 cm−3 [64]. (c) Radiative neutron-capture cross section 205Pb(n, γ)206Pb
obtained using the experimental (γ⃗, γ⃗′) data from the HIγS facility shown together with the
calculations based on the energy density functional (EDF) plus QPM with and without the
PDR contribution [65].

where the first term represents the energy of symmetric matter, and the second is commonly
referred to as the symmetry energy. The latter can be approximated by the first two terms
of the expansion as:

S(ρ) = J +L
ρ − ρ0

3ρ0

(ρ − ρ0) +O(δ
2). (1.4)

Here, ρ0 is the saturation density, J (or a4) is the symmetry energy in pure neutron matter
(at saturation ρ = ρ0), and the slope L can be linked to the symmetry energy pressure. The
first attempt to constrain the symmetry energy parameter J using the experimental low-lying
E1 strength distributions was done by Klimkiewicz et al. for 130,132Sn [61]. The analysis
employed the relativistic Hartree-Bogoliubov (RHB) plus RQRPA model in order to set the
correspondence between the experimental B(E1) strength integrated up to 11 MeV relative
to the IVGDR strength, J , and the neutron skin thickness. Analogously, the PDR data on
68Ni and 132Sn were used in the work of Carbone et al., where almost linear relations between
the PDR EWSR and J and between J and L were extracted based on different RPA models
[62]. The most relevant results of the above-mentioned publications are shown in Fig. 1.3.

The presence of the PDR in the nuclear response in the vicinity of the neutron thresh-
old, especially in neutron-rich nuclei, has also been shown to have a potential impact on
the radiative neutron-capture rates relevant for the astrophysical rapid (r) neutron-capture
process, responsible for about 50% of the elements heavier than Fe produced in the universe
[64, 66, 67]. These rates are commonly calculated within the statistical model approach of
Hauser and Feshbach2 [68, 69], assuming that the reaction proceeds through the formation of

2In some works it is also referred to as the Wolfenstein-Hauser-Feshbach formaliam.
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CHAPTER 1. INTRODUCTION

a compound nucleus. This matter will be discussed in more detail in the following chapters.
Using a rather simplistic non-equilibrium canonical model, Goriely demonstrated in Ref. [64]
an “accelerating” effect of the PDR on the neutron-capture process, leading to an increased
production and abundances of elements with mass numbers of A ∼ 130 (see Fig. 1.4). A direct
impact of the PDR on the neutron-capture cross sections has been studied in, e.g., Ref. [70]
using the experimental Oslo data on 195,196Pt. Excluding the features identified as the PDR
on top of the tail of the IVGDR from the E1 response reduced the neutron-capture rates by a
factor of ≈ 2 for incident neutron energies up to ≈ 1 MeV. A much larger impact was observed
in the work by Tonchev et al. [65] using experimental E1 and M1 data on 206Pb and the
energy density functional plus QPM, as shown in Fig. 1.4. In this case, an increase of up to
five times was observed in the calculations using the total low-lying E1 strength as compared
to those using the strength without the PDR contribution. The question of how the PDR
might affect the r-process abundances from astrophysical large-scale network calculations is
far from being settled, partly due to the lack of experimental constraints for the theoretical
approaches used to model the low-lying E1 response. In terms of the amount of strength
and its distribution with respect to the neutron threshold, the theoretical predictions (for
example, the RQTBA calculations from Ref. [67]) are still far from reproducing the exper-
imentally observed results, leading to a potential underestimation or overestimation of the
neutron-capture rates for more neutron-rich nuclei.

1.3 PDR in Sn isotopes: current status

Throughout the history of the PDR studies, the Sn isotopic chain has always been considered
an ideal candidate for a systematic investigation of the PDR evolution with gradually increas-
ing neutron excess. Indeed, it offers the largest number of stable isotopes (10 nuclei) with
the closed proton shell Z = 50 and little structural change between the neighboring nuclei, in
addition to a perfect opportunity to study potential structural effects when approaching the
N = 82 neutron shell closure in doubly-magic 132Sn. Currently, the Sn isotopes can be con-
sidered one of the best studied chains of isotopes, from both the experimental and theoretical
points of view. With experimental data available up to 132Sn [31], it provides an excellent case
for benchmarking various theoretical approaches. Systematic studies of the PDR strength are
currently available within a large variety of theoretical frameworks, such as, for example, the
relativistic RPA by Piekarewicz [56], RQRPA by Paar [19], QRPA and QTBA by Avdeenkov
et al. [71], RQRPA and RQTBA by Litvinova et al.[72], QPM by Tsoneva and Lenske [73],
reviewed in detail in Refs. [15, 19].

The first experimental attempts to approach the PDR region in 116,124Sn have been per-
formed with NRF measurements using bremsstrahlung by Govaert et al. [74], following the
earlier tagged-photon scattering experiments on a natural Sn sample (with the most abun-
dant isotopes 116,118,120Sn) [75]. A pronounced maximum of the elastic photon scattering
cross section at ≈ 6.5 MeV was observed in all the measurements and identified as the PDR.
Later bremsstrahlung experiments at the Darmstadt High-Intensity Photon Setup (DHIPS)
on 112,120Sn [76] also revealed signs of resonance-like structures in both nuclei at 6 − 7 MeV,
although quite fragmented for 120Sn. The summed B(E1) strength for this isotope was found
to fall out of the trend of increasing summed strength with increasing neutron number, set by

18



CHAPTER 1. INTRODUCTION

112,116,124Sn. However, a large number of previously unobserved dipole transitions were iden-
tified in a recent high-sensitivity bremsstrahlung experiment on 120Sn at the γELBE facility,
yielding a value of the summed strength enhanced by a factor of ≈ 2 − 3 as compared to the
previous result [23]. Based on these and other NRF data alone, the total E1 strength indeed
appears to increase with increasing neutron number.

The same isotope, 120Sn, has been studied through relativistic Coulomb excitation in
inelastic proton scattering at extreme forward angles at the RCNP [77]. The comparison
of the summed E1 strength in the resolved states from the recent (γ, γ′) experiment with
that from the (p, p′) measurements clearly demonstrated the need for an additional correction
for the unknown ground state branching ratios using the statistical model analysis, which is
especially relevant for transitions above ≈ 6.5 MeV. The latter brought the results of these two
experiments into a much more reasonable comparison, as was shown in Ref. [23]. Moreover, a
new NRF experiment on 120Sn using a quasi-monoenergetic photon beam at HIγS is currently
being analyzed3 and is expected to resolve the inherent problem of the missing strength in the
above-mentioned bremsstrahlung experiments. A series of similar Coulomb excitation (p, p′)
experiments on even-even 112,114,116,118,120,124Sn at the RCNP provided unique experimental
information for a systematic study of the E1 and M1 strength distributions (and, thus, the
dipole polarizability) below and above the neutron threshold, including the PDR region down
to excitation energies of ≈ 6 MeV and the IVGDR region up to ≈ 20 − 22 MeV [42]. In all of
the studied cases, a bump-like concentration of the E1 strength at ≈ 8−10 MeV was observed.

The first experimental evidence of the potential PDR strength in neutron-rich, unstable
nuclei was obtained in Coulomb dissociation of secondary Sn beams at the LAND-FRS facility
at GSI [31]. In this pioneering work, a resonance-like feature was identified at excitation
energies of ≈ 10 MeV in both 130Sn and doubly-magic 132Sn and was found to exhaust 7(3)%
and 4(3)% of the TRK sum rule in these nuclei, respectively. The extracted strengths were
limited to energies above the neutron threshold in these nuclei, which somewhat complicates
a direct comparison with experimental data obtained with different techniques (e. g. the NRF
data below and photoabsorption (γ,n) data above the neutron separation energy in stable Sn
isotopes).

In the past decade, the heaviest stable 124Sn isotope has been in particular focus of com-
plementary studies of the low-lying E1 strength with probes of different isospin nature. The
first study of this kind involved a direct comparison of the E1 strength distribution from the
NRF measurements (Ref. [74] and an additional NRF experiment at the Superconducting
Darmstadt Linear Accelerator (S-DALINAC)) with the strength from the α-γ coincidence
experiment (α,α′γ) with a 136-MeV α beam using the Big-Bite Spectrometer at the Kernfy-
sisch Versneller Instituut in Groningen [39, 40]. An abrupt change of the E1 response with
the α probe was observed: at excitation energies below ≈ 6.8 MeV, the strength is present in
both the (γ, γ′) and (α,α′γ) data, whereas at higher energies the latter is practically absent
(considering the sensitivity limit). This effect is clearly seen in Fig. 1.5. The interpretation of
transition densities for protons and neutrons within the RQTBA approach suggested a consid-
erable contribution of neutrons close to the nuclear surface for the lower-lying states, similar
to the one expected within the neutron-skin oscillation picture of the PDR (see Fig. 1.5).
The higher-lying states, on the contrary, demonstrate an out-of-phase distribution of neu-

3J. Isaak, private communication.
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S. BASSAUER et al. PHYSICAL REVIEW C 102, 034327 (2020)

FIG. 19. Electric dipole strength distributions for 124Sn in
200-keV bins from different experiments. Top: B(E1) strength dis-
tributions for 124Sn from the present work (blue) in comparison
with NRF results [98] (orange). Bottom: Isoscalar E1 strength dis-
tributions deduced from (17O, 17O′ γ ) experiment [103] (red) and
differential cross sections from an (α,α′γ ) experiment [104] (green).

experiments [29,98]. These contributions are small (<0.5 %
of the total dipole polarizability) and were neglected for
consistency with the other isotopes, where no such data are
available.

In Ref. [105], it was pointed out that the quasideuteron
mechanism [106] dominates the photoabsorption for high ex-
citation energies (above 30 MeV in the present case). Such a
nonresonant process is not included in the EDF calculations
and should thus be excluded from the integration of Eq. (11)
for a comparison with the theoretical results. Rather, we em-
ploy a theory-assisted estimate of strength in the region above
20 MeV based on quasiparticle phonon model (QPM) calcu-
lations known to account well for properties of the IVGDR
in heavy nuclei [1,6,7,107,108]. The QPM cross sections
used to calculate the dipole polarizability in the energy re-
gion above 20 MeV were convoluted with Lorentzians whose
widths were tuned to reproduce the present IVGDR data. In
order to estimate the model dependence of this procedure, the
analysis was repeated with other EDF parametrizations and
the predicted contributions were found to be all similar. The
upper limit of the integration was chosen as 50 MeV, which
roughly corresponds to the single-particle model space of the
theoretical results. For further details, see Ref. [58]. Figure 20
displays the evolution of αD as a function of excitation en-
ergy (the running sum) for the investigated tin isotopes. The
error bands comprise statistical and systematic uncertainties,
the latter including contributions from experiment and from

FIG. 20. Running sums of the dipole polarizability deduced from
the present (p, p′) data. Red: Contribution from 6 MeV to Sn. Blue:
Contribution from Sn to 20 MeV. Orange: Contribution above 20
MeV from QPM calculations; see text for details.
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relativistic Hartree equations for the ground state, or in the
momentum-channel representation. The approach is fully
consistent: the same set of coupling constants generates the
Dirac-Hartree single-quasiparticle spectrum, the static part of
the residual two-quasiparticle interaction, phonon spectra, and
the quasiparticle-phonon coupling amplitudes. The solution
of the BSE generates excitation spectra with a multitude of
2qp ⊗ phonon (two quasiparticles ⊗ phonon) states, providing
a fragmentation of the giant resonances and of the soft modes
obtained in the RQRPA. The special time-projection technique
blocks configurations where two quasiparticles exchange more
than one phonon at the same time. The nuclear response
function can then explicitly be calculated on the 2qp ⊗ phonon
level by summation of an infinite series of Feynman diagrams.
A special subtraction technique guarantees that there is no
double counting of the correlations introduced by the particle-
vibration coupling and the ground-state correlations already
taken into account in the nuclear density functional. The
same subtraction procedure guarantees that the spurious state,
originating from translational symmetry breaking, is kept at
zero energy.

The two above-mentioned tools are essential for the success
of the RQTBA method. The time blocking introduces a
consistent and physically justified truncation scheme into the
BSE that makes it possible to solve the equations explicitly.
The subtraction method is an essential tool to connect density
functional theory, conventionally used only on the mean field
and RPA levels, with the extended Landau-Migdal theory for
the Fermi liquid, where complex configurations are included
through particle-vibration coupling.

Thus, within the RQTBA the excited states are built of
the (2qp ⊗ phonon) configurations, so that the model space
is constructed with the quasiparticles calculated within the
relativistic mean field and the phonons computed within the
self-consistent relativistic QRPA. The quasiparticle space is
complete up to 100 MeV. Phonons with natural parities and
angular momenta up to J = 6 with energies below 10 MeV
are included in the model space.

C. Discussion

Both models have been applied to study the low-lying
electric dipole transitions in the nucleus 124Sn. The electro-
magnetic response to the external dipole rY1 field has been
calculated with effective charges eeff

p = N/A and eeff
n = Z/A.

The isoscalar dipole r3Y1 operator, which is related to the α
particles in the present experiment, has been corrected in the
self-consistent RQTBA calculations by the − 5

3 〈r2〉r term [54]
to remove the spurious center-of-mass motion. The results are
presented in Fig. 11.

In general, the QPM calculation shows a good agreement
with the experimental electromagnetic strength, which is
strongly fragmented into two pronounced regions at about 6.3
and 7.5 MeV. Furthermore, the calculated isoscalar strength
is suppressed with increasing excitation energy, which is also
in qualitative agreement with the experiment. Compared to
this, the RQTBA strength is shifted by about 600 keV toward
higher energies in the electromagnetic case. However, the
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FIG. 11. (Color online) The transition probabilities in 124Sn for
the isoscalar (upper panels) and for the electromagnetic (lower panels)
dipole operators obtained within the QPM (left) and within the
RQTBA (right).

suppression of isoscalar dipole strength at higher energies is
clearly visible. In order to investigate the structural difference
of lower-lying and higher-lying states, the transition densities
can be considered. For demonstration, two RQTBA states at
7.133 and 8.580 MeV have been studied which show similar
Bem(E1) values but differ in the Bis(E1) case by a factor of 4.
The corresponding transition densities are depicted separately
for protons and neutrons in Fig. 12.

For the 7.133-MeV state, the neutron and proton contribu-
tions are in phase with a basically pure neutron contribution
outside the nuclear surface, as expected for a typical state
of the PDR. This can be associated with the macroscopic
pictures describing the PDR as a neutron-skin oscillation
against a proton-neutron core. On the other hand, a relative
enhancement of the proton contribution in the nuclear medium
and a reduction of the neutron component on the surface is
visible for the state at 8.580 MeV. Furthermore, the neutron
and proton distributions are slightly out of phase in this case.
This behavior is expected for a transitional region on the tail of
the IVGDR and results in a reduction of the isoscalar strength.
In conclusion, this analysis shows that the energetically higher-
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FIG. 12. Transition densities for two RQTBA states in 124Sn at
(a) 7.133 MeV and (b) 8.580 MeV. The contributions from neutrons
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Figure 1.5: Left panel: (a) Electric dipole strength distributions for 124Sn extracted with the
NRF and (p, p′) experiments and (b) the isoscalar E1 strength distributions from the (α,α′γ)
and (17O,17O′γ) experiments [42]. Right panel: RQTBA transition densities for protons and
neutrons for two states at (c) 7.133 MeV and (d) 8.580 MeV in 124Sn [40].

trons and protons, more typical for the IVGDR. Combined with the earlier observations for
140Ce and 138Ba [38, 39], this study was the next step towards confirming the mixed isospin
nature of the low-lying E1 response, accessible through both isovector (γ) and isoscalar (α)
probes. An important further confirmation of this splitting was provided by the isoscalar
strength extracted in the (17O,17O′γ) experiment [78], which was found to be concentrated at
≈ 5.5−7 MeV, well in agreement with the (α,α′γ) data. Finally, the recent (p, p′) experiment,
inducing predominantly isovector transitions by analogy with (γ, γ′), pointed at the presence
of the isovector response below and above ≈ 7 MeV. The differential cross sections from the
(17O,17O′γ) experiment and the B(E1) strength distribution from (p, p′) are also shown in
Fig. 1.5.

A combined analysis of the E1 strength distribution from the 119Sn(d, pγ)120Sn experiment
and the energy density functional plus QPM calculations has been recently used to provide
a deeper insight into the particle-hole composition of the low-lying E1 strength in 120Sn [79].
Several 1p–1h configurations strongly contributing between 6 and 7 MeV have been identified.
On the other hand, the role of more complex complex 2-phonon+3-phonon configurations was
shown to increase towards higher energies.

Finally, a series of Oslo method particle-γ coincidence experiments on Sn isotopes have
been performed in order to investigate the low-lying dipole (E1 +M1) strength below the
neutron threshold. The 117,119,122Sn and 116,118,121Sn isotopes were studied in (3He, 3He′γ) and
(3He, α′γ) reactions, respectively, at the Oslo Cyclotron Laboratory (OCL) with the results
published in Refs. [80–83]. A peak-like structure associated with the PDR was identified in
all the studied isotopes, and its bulk characteristics (energy centroid, fraction of the TRK
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sum rule) were reported in Ref. [83]. In contrast to the microscopic QPM [73], RQRPA,
and RQTBA [72] calculations and macroscopic estimates by Van Isacker [84], the strength of
the identified feature appeared to remain essentially constant with increasing proton-neutron
asymmetry. Moreover, the position of the energy centroid was shown to shift towards higher
energies with increasing asymmetry at variance with the theoretical predictions [72, 73]. It
is important to note that no experimental information on the low-lying strength in these
isotopes, except for the NRF data on 116Sn, was available to provide benchmarks for the
normalization of the Oslo data at the time of this publication.

1.4 Main objectives of the work

This work is to a large extent inspired by the previous measurements on 116−119,121,122Sn at the
OCL [80–83] and the recent series of (p, p′) experiments on even-even 112,114,116,118,120,124Sn by
Bassauer et al. [42]. The principal goal is to shed more light on the low-lying electric dipole
response and, potentially, the PDR in Sn isotopes through a consistent analysis. Due to the
wide range of covered energies, the new (p, p′) data can serve as an excellent benchmark for
the normalization of the Oslo method γ-ray strength functions close to the neutron threshold.
Moreover, the combined Oslo and (p, p′) data provide the total dipole strength from ≈ 2 MeV
up to ≈ 20 MeV, which can further be used for a model-based extraction of the bulk charac-
teristics of the low-lying electric dipole strength and observing their evolution with gradually
increasing proton-neutron asymmetry. This study involves several recently performed experi-
ments on 117,119,120,124Sn, analyses of the earlier collected and previously unpublished data on
111−113Sn, and a complete re-analysis of the earlier published results on 116−119,121,122Sn using
updated experimental inputs for the normalization of the data.

Two additional objectives relevant for the overarching subject of this work, the evolution
of the low-lying electric dipole strength in the Sn isotopes from 111Sn to 124Sn, are considered
here: the test of the validity of the generalized Brink-Axel hypothesis [85, 86] in the PDR
region and the extraction of new constraints for radiative neutron-capture cross sections of
relevance for astrophysical neutron-capture processes. The Brink-Axel hypothesis, introduced
in more detail in Sec. 2.2.2, is one of the key assumptions underlying the Oslo method and
is also commonly adopted in statistical-model calculations. Moreover, the related question
on the excitation-energy dependence of the observed strength below the neutron threshold
remains a matter of ongoing debates (see Sec. 2.2.2). Finally, the statistical properties of
excited nuclei obtained with the Oslo method are often found to be useful for providing
indirect experimental constraints on radiative neutron-capture cross sections and rates, used
as input for reaction-network simulations of heavy-element nucleosynthesis. The studied Sn
isotopes are no exception in this regard, especially given that some of the heaviest stable Sn
isotopes have been recently shown to be of potential interest for the so-called intermediate
neutron-capture process [87].

This thesis is organized as follows. Chapter 2 provides an introduction to the statistical
properties of excited nuclei studied with the Oslo method, theoretical models for their descrip-
tion, experimental techniques for their extraction, the Brink-Axel hypothesis, Porter-Thomas
fluctuations, and statistical-model calculations. In Chapter 3 all the details regarding the
performed experiments and the application of the Oslo method are presented. Chapter 4 pro-
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vides the most relevant results of testing the Brink-Axel hypothesis in 120,124Sn, which form
the basis for Papers I and II. The evolution of the low-lying dipole strength and astrophysical
implications are discussed in Chapters 5 and 6, which also include some of the discussions
relevant for Papers III, IV, and V. The main findings and perspectives for future studies are
summarized in Chapter 7.
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CHAPTER 2. STATISTICAL APPROACH TO THE γ DECAY WITHIN THE
QUASI-CONTINUUM REGIME

Chapter 2

Statistical approach to the γ decay
within the quasi-continuum regime

In this thesis, the low-lying dipole strength is studied using the γ-ray strength function (GSF),
which describes the average photoexcitation and γ-decay properties of nuclei in a similar way
as the average cross sections. Together with the nuclear level density (NLD), the GSF is
one of the key statistical nuclear characteristics employed in the statistical model approach,
formulated by Hauser and Feshbach in 1952 [68] in an attempt to estimate cross sections of
inelastic neutron scattering proceeding through the formation of a compound nucleus.

The latter is the central concept of the statistical model, introduced by Bohr in his seminal
work on the nuclear structure and the neutron-capture process in 1936 [88]. It applies to the
description of binary reactions of type:

a +X → C → b + Y, (2.1)

where C denotes a compound system of a projectile a plus a target nucleus X. Depending
on the reaction time scale, one can distinguish between different reaction mechanisms. If it is
comparable with the time needed for a projectile particle to pass through the nucleus without
any interactions, a direct reaction takes place. On the other hand, the interaction of a particle
with many nucleons within the nucleus, and thus the redistribution of its energy among a large
number of degrees of freedom, takes a longer time and leads to the formation of a complex
system, which is commonly referred to as the compound nucleus. This process is accompanied
by strong configuration mixing, in the sense that different possible configurations are strongly
coupled with each other and their properties are distributed over excited states lying within
the same energy region. This picture implies that the decay channel of the compound nucleus
into the particle b and the residual nucleus Y is no longer coupled to its initial formation
channel, or, in other words, the compound nucleus “forgets” the way it was formed. In this
case, the cross-section of the above-mentioned reaction can be written as [89, 90]:

σ(α,β) = σC(α)GC(β), (2.2)

where σC(α) is a cross section of forming the compound nucleus through a certain entrance
channel α in the a+X process, and GC(β) is the decay probability of the compound nucleus
through an exit channel β, leaving the residual nucleus Y and the emitted particle b. For an
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intermediate, pre-equilibrium process, the exit channel remains somewhat correlated with the
entrance channel, but not as strongly as under the direct reaction mechanism.

The formation of a compound nucleus happens at relatively high excitation energies, where
different excited states are closely spaced. Within a rather crude semi-classical picture [90],
the level spacing D can be associated with the period of nucleon motion (P ∼ 1/D), resulting
in a repetition of “the same” configuration. For a compound state to exist, it is essential that
this period is significantly smaller than its decay lifetime1. This is one of the key assumptions
underlying the particle evaporation studies and the Oslo method, discussed in the following
sections.

In this work, the analysis is limited to the excited states below the neutron threshold,
for which γ decay is the only decay channel we are going to consider. Here, the average
level spacing D and the average γ-decay width Γγ, related to the lifetime τγ of excited states
through Γγ = h̵/τγ, can be used to separate between the so-called discrete (D ≫ Γγ), quasi-
continuum (D ≥ Γγ), and continuum (D ≤ Γγ) regimes. The Oslo method, employed in this
work, operates within the quasi-continuum energy range with decays of closely spaced excited
states. Here, the experimental energy resolution, even in high-resolution studies, becomes
too large to distinguish between individual states, which should rather be treated in terms of
average quantities.

Two of them, the NLD and the GSF, will be introduced in the following sections, which
also include a discussion of various theoretical approaches and experimental techniques used
to extract them. Furthermore, the connection between these two functions and the radiative
neutron-capture cross sections within the Hauser-Feshbach approach is discussed at the end
of this chapter.

2.1 The nuclear level density

Besides the connection in the classical sense to the period of the intranuclear motion, the
average level spacing D also determines one more characteristic of the nuclear structure: the
nuclear level density (NLD)

ρ =
1

D(E,J, π)
=

∆N(E,J, π)

∆E
, (2.3)

defined as a number of levels ∆N(E,J, π) of a certain spin J and parity π per excitation
energy unit ∆E. At sufficiently high excitation energies, equal positive and negative parity
contributions are often assumed, and the parity dependence is reduced to a factor of 1/2 in
Eq. (2.3). The NLD dependent on spin and excitation energy is often referred to as the partial
NLD, whereas the total NLD is obtained by summing over all possible contributing spins and
both parities. It is also important to emphasize that the nuclear state density is determined
by all possible magnetic substates for each level of spin J :

ρst(Ex) =∑
J

(2J + 1)ρ(Ex, J). (2.4)

1It is important to note that this simplistic consideration implies the average spacing between levels of
equal spin and parity [90].
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On par with the optical model potential, the NLD is a key ingredient for modeling scatter-
ing reactions [91]. In general, it enters any statistical-model calculations, and thus appropriate
theoretical models with wide applicability ranges, preferably over the whole nuclear chart, are
required in addition to available experimental data for isotopes close to and within the valley
of stability.

2.1.1 Theoretical NLD models

The first pivotal theoretical expression for the NLD was derived in 1936 by Bethe [92] by
treating a nucleus as a group of A = N + Z non-interacting fermions (ideal Fermi gas) with
an equally spaced single-particle spectrum. The state density within this approach can be
written as [93, 94]:

ρstFG(Ex) =

√
π21/4eã

√
2Ex

12
√
ãE

5/4
x

, (2.5)

where Ex denotes the excitation energy above the zero point energy of the Fermi gas, and ã
is determined by the average Fermi energy of protons and neutrons εf as ã = π

√
A/2εf . Using

this relation as a starting point, the Gaussian distribution of different projections of the total
angular momentum at a given Ex can be further considered to derive the partial density of
nuclear levels as [95–97]:

ρFG(Ex, J) ≃

√
πe2

√
aEx

12
√

2πσa1/4E
5/4
x

(2J + 1)

2σ2
exp
⎛

⎝
−
(J + 1/2)2

2σ2

⎞

⎠
. (2.6)

Here, a = 1
6π

2(gp + gn) is commonly referred to as the level density parameter and determined
by the sum g of proton and neutron single-particle level densities gp and gn, respectively.
The parameter σ, or the spin-cutoff parameter, corresponds to the dispersion of the above-
mentioned Gaussian distribution and can be expressed through the mean-square magnetic
quantum number for single-particle states ⟨m2⟩ and thermodynamic temperature T :

σ2 = g⟨m2⟩T. (2.7)

Moreover, this parameter explicitly enters what can be considered a definition of the moment
of inertia of a heated nucleus I = h̵2g⟨m2⟩ [98] (in some sources h̵ = 1 is assumed [91]). It
should also be noted that σ is a parameter dependent on the excitation energy through T .

Finally, the temperature within the Fermi gas approach is linked to the excitation energy
Ex through a rather simple relation:

Ex = aT
2. (2.8)

This NLD model, established in the pioneering work of Bethe and commonly referred to as
the Fermi gas (FG) model, provides an overall correct energy dependence of the level density
over a wide energy range below and above the neutron separation energy. However, due to
the inherent simplicity of the Fermi gas approach, it does not account for several important
nuclear structure effects. Most notably, it disregards shell and collective effects and does not
include any treatment of pairing correlations. The latter issue can be explicitly revealed in
a comparison of observed NLDs of even-even, even-odd, and odd-odd nuclei with different
mass numbers when attempting to describe them with the FG model. These nuclei appear
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to fall into three different groups with respect to the level density parameter a [99]. To
effectively account for the extra energy required to break Cooper pairs of coupled nucleons,
the excitation energy in Eq. (2.6) should be redefined by correcting for proton and/or neutron
pairing energies ∆, as was first suggested in Ref. [100]:

E′
x =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ex −∆n −∆p, for even-even nuclei

Ex −∆p or Ex −∆n, for odd nuclei

Ex, for odd-odd nuclei.

(2.9)

The pairing energies can be estimated based on mass differences of neighboring nuclei or, e.g.,
adopted to be 12/

√
A as suggested in Ref. [91]. This “backshift” assumes that all corrections

due to shell and collective effects should be then introduced in a. In an attempt to redistribute
these corrections between both of these parameters, an additional correction δ is usually
subtracted from the corrected energies E′

x in Eq. (2.9) [101].
Several phenomenological models for the level density parameter have been proposed in

the literature to effectively introduce the damping of shell and collective effects with excitation
energy [102]. In general, it is quite challenging to disentangle corrections due to both of these
effects in the level density parameter and the energy backshift. Therefore, for the majority of
practical applications, both of these parameters are determined from the fit to experimental
data. In this thesis, we are going to exploit the back-shifted Fermi gas (BSFG) as presented
in Ref. [103]:

ρBSFG(Ex) =
e2
√
a(Ex−E1)

12
√

2σa1/4(Ex −E1)
5/4
, (2.10)

where the level density and the backshift parameters a and E1 (E′
x = Ex −E1) are found from

fitting low-lying discrete states and ρ(Sn) values obtained from s-wave neutron resonance
spacings in 310 nuclei between 18F and 251Cf.

The spin-cutoff parameter σ is an additional source of uncertainty of NLD values obtained
with the BSFG model, which may differ significantly depending on the approach used to
estimate σ. Among the commonly used expressions is the one proposed in Refs. [97, 104] and
based on the mean-square magnetic quantum number ⟨m2⟩ by Jensen and Luttinger [105]:

σ2(E′
x) = 0.0888aTA2/3 = 0.0888a

√
E′
x/aA

2/3, (2.11)

which suggests a rather slow variation of σ2 with excitation energy. By treating a nucleus as
a sphere having a rigid body moment of inertia, the spin-cutoff parameter takes the following
form [106]:

σ2(E′
x) = 0.0145

√
E′
x/aA

5/3, (2.12)

The rigid-body approach is also commonly used with a slightly modified expression for
the temperature, E′

x = aT
2 −T , as suggested by Dilg et al. [107], which was found to be quite

reasonable at relatively low energies [103]:

σ2(E′
x) = 0.0146

1 +
√

1 + 4aE′
x

2a
A5/3. (2.13)

Several other parametrizations have also been proposed in Refs. [104, 108] as possible
alternatives to the above-mentioned expressions.

26



CHAPTER 2. STATISTICAL APPROACH TO THE γ DECAY WITHIN THE
QUASI-CONTINUUM REGIME

Another frequently used model for the NLD was first suggested by Ericson in 1959 [96],
who observed that the logarithm of a cumulative number of levels logN(Ex) in medium-
mass nuclei is a linear function of excitation energy up to ≈ 10 MeV, and the slope can be
associated with the constant nuclear temperature T . The NLD in this constant-temperature
(CT) approach is thus given by:

ρCT (Ex) =
dN(Ex)

dEx
=
N(Ex)

T
=

1

T
e
Ex−E0
T , (2.14)

where T and E0 are commonly treated as free parameters when fitting experimental data.
The constant-temperature regime can often be observed in Oslo method NLDs to be valid

up to the neutron separation energy [109]. It can be interpreted in terms of a first-order
phase transition at a certain constant temperature, characterized by a gradual breaking of
Cooper pairs of nucleons, which become available for forming new configurations. This process
continues up to energies around or above the neutron threshold, where the temperature starts
to increase, and the Fermi gas description becomes more appropriate (see [109] and references
therein). To combine both of these models for a description of NLDs over large energy ranges,
a composite formula was suggested by Gilbert and Cameron in Ref. [97]. Within this approach,
a continuous NLD is presented by the CT model up to a point of tangency with the BSFG
trend at relatively high excitation energies.

A more rigorous attempt to incorporate shell effects as well as superfluid and collective
effects driven by the residual interaction was suggested by Ignatyuk within the so-called
generalized superfluid model (GSM) [110]. It accounts for these complex effects almost as
efficiently as microscopic approaches, while still being a relatively simple phenomenological
model. The NLD is factorized into a contribution due to quasi-particle excitations, treated
within the superconductivity theory, and enhancement factors due to vibrations and rotations.
This model is somewhat similar to the composite formula by Gilbert and Cameron in the sense
that it describes a phase transition between the superfluid state with a strong influence of
pairing correlations on creation of possible nucleon configurations at relatively low energies
and a more Fermi-gas-like behavior at higher energies. Even though this model provides the
next step towards more realistic microscopic calculations, there is still a set of parameters to
be adjusted to achieve a better fit to experimental data.

The microscopic approaches to the NLD are expected to have an improved predictive
power away from the valley of stability as compared to the above-mentioned phenomeno-
logical models, generally based on numerous simplifications and adjustments to available
experimental data for stable nuclei. One of two most commonly used statistical methods is
the microscopic version of the generalized superfluid model (see [91] and references therein),
which estimates the NLD from realistic single-particle level schemes and accounts for collec-
tive effects similarly to how it is done within the phenomenological version of this model.
Statistical calculations by Goriely from Ref. [118] employed ground-state properties based on
the extended Thomas–Fermi plus Strutinsky integral (ETFSI) and provided the first global
microscopic NLD with shell and pairing effects included explicitly. The latter modification
of this approach used HF plus Bardeen–Cooper–Schrieffer (BCS) predictions of the ground-
state properties and also included deformation effects in single-particle spectra and vibrational
collective excitations [111, 119].
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Figure 2.1: Comparison of the experimental NLDs extracted with the Oslo method with
the microscopic HF+BCS [111], Skyrme+HFB+combinatorial (Comb.) [112], temperature-
dependent Gogny+HFB+combinatorial [113], and QRPA+boson expansion (BE) [114] calcu-
lations for (a) 74Ge, (b) 96Mo, (c) 164Dy. The Oslo data were taken from Refs. [115–117].

On the other hand, combinatorial approaches provide access to the low-energy NLD by ef-
fectively including non-statistical effects, which can not be treated within statistical methods.
In calculations by Hilaire et al. [120], the combinatorial approach was implemented based
on single-particle level schemes obtained within the HFB approach with the D1S Gogny ef-
fective interaction to extract spin- and parity-dependent NLDs in nuclei with 26 ≤ A ≤ 250.
Later on, vibrational effects due to phonon excitations were included to improve the per-
formance of this model, but this time using a Skyrme-type effective interaction [112]. The
refined calculations with single-particle levels and collective properties described with the up-
dated D1M-type of the Gogny interaction were presented in Ref. [113]. A conceptually new
approach to global calculations of NLDs has recently been proposed by Hilaire et al. [114]
based on the boson expansion of QRPA excitations, significantly improving the reproduction
of experimental results compared to all present statistical and combinatorial approaches. In
particular, it demonstrates an excellent agreement with Oslo method results as well as s-wave
resonance spacings for medium to heavy nuclei. A comparison of some of the above-mentioned
microscopic calculations with the Oslo method data is shown in Figure 2.1.

Finally, the configuration interaction shell model approach to level densities can provide
access to correlations beyond the mean field theory. It is known to be quite computationally
demanding for the majority of medium-mass and all heavy nuclei due to increasingly large
model spaces required to solve the eigenvalue problem of the shell-model Hamiltonian matrix.
For example, the application of quantum Monte Carlo methods [121] in such cases allows
to work with significantly larger model spaces than the conventional Lanczos diagonalization
method can handle. Recent advances in this shell model Monte-Carlo (SMMC) approach
allowed to estimate NLDs of odd nuclei and achieve an excellent agreement with discrete
low-lying tabulated levels and neutron resonance data in spherical and deformed nuclei up
to relatively heavy Sm, Nd, and Dy isotopes [122, 123]. Furthermore, numerous codes have
been recently developed to exploit the power of massively parallel computation and perform
shell-model calculations with the conventional Lanczos method (e.g. KSHELL [124]).
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2.1.2 Experimental approaches to the extraction of the NLD

The parameters in phenomenological approaches are derived from available experimental data,
which are also used to test microscopic models. Several methods have been proposed to extract
total and, in some cases, partial NLDs as function of excitation energy up to several tens of
MeV. The most straightforward approach to obtaining NLDs at low excitation energies, well
below the particle threshold, is to rely on spectroscopic data from, e.g., inelastic proton,
neutron, alpha scattering, and various transfer reactions and simply count tabulated levels
collected in, e.g., the Evaluated Nuclear Structure Data Files (ENSDF) [125]. The main
advantages of this approach are its absolute model independence and access to information
on spins and parities, which can further be used to estimate the spin-cutoff value. Moreover,
these data are available for a large number of exotic nuclei, and they thus become the only
available source of experimental information away from the stability. The NLDs obtained in
this manner are, however, limited to low excitation energies (1−3 MeV). Above these energies,
the level spacing decreases, the experimental resolution is no longer sufficient to distinguish
between individual states, and the level schemes can no longer be considered complete.

At higher excitation energies, resonance capture of low-energy s- or p-wave neutrons yields
information on the NLD in the immediate vicinity of the neutron threshold. For example,
capture of thermal neutrons with angular momentum l = 0 populates only resonance states
with spins Jt+1/2 and Jt−1/2 in the compound nucleus, determined by the ground state spin
of the target Jt. Even though this method allows for resolving states with certain parity and
spin among all closely overlapping states, some assumptions need to be made regarding the
parity ratio and the spin distribution at these energies to estimate the total NLD. Moreover,
the low energies of incident neutrons limit the extracted information to only one NLD data
point close to Sn. Despite these limitations, a wealth of neutron resonance data collected in
the Reference Input Parameter Library (RIPL-3) [91] or the Atlas of Neutron Resonances by
Mughabghab [126] provides crucial benchmarks for NLD values at relatively high excitation
energies.

Historically, the first method used to access the NLD over a relatively wide energy range,
well above and below the particle threshold, was particle evaporation studies in compound-
nucleus reactions (see e.g. [127]). This method exploits the fact that the energy spectrum of
emitted (evaporated) particles from a compound nucleus is expected to be proportional to
the level density in the residual nucleus [89]. The spectra of evaporated protons, neutrons,
and alpha particles are usually studied in light-ion-induced reactions (p and α) or in reactions
with relatively heavy ions (11B, 12C, 16O, 19F, 28Si) [102]. Using heavier ions ensures that
the reaction proceeds through a compound nucleus formation and that the contribution due
to pre-equilibrium mechanisms is negligible [128]. The latter is crucial for statistical-model
calculations used for the extraction of the total NLD. Such reactions also enable the population
of wide excitation energy and spin ranges, which can further be used to extract information
on the spin dependence of the NLD. In such studies, one should take into account that
evaporation spectra are, in general, due to multi-step decays, which might complicate the
analysis. Moreover, the method is essentially model-dependent and relies on adopted optical
model parameters used to calculate particle transmission coefficients [102] and some model
calculations and/or experimental data to normalize the total NLD.

At even higher energies, where multi-step decays complicate the analysis of evaporation
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the GSF results between 5 MeV and the neutron threshold
Sn ¼ 9.154 MeV is displayed in Fig. 3(b). The (p, p0) and
(3He, 3He0γ) results agree within error bars except for the
two lowest excitation energies analyzed in the present data.
However, these two data points suffer from limited sta-
tistics. The (γ, γ0) results [24] agree in the 7–8 MeV
excitation energy region 7–8 MeV but, clearly, under-
estimate the present results at higher Ex. At lower Ex, they
are systematically at the upper limit of the present results
(and sometimes exceed it) and are significantly larger than
the Oslo results. The deviations from the present results
may arise from the modeling of the large atomic back-
ground in the spectra and/or the specific choice of level
densities for the simulation of the γ decay cascades [50].
Level density.—Since only the product of GSF and LD is

measured by the Oslo method [14], it relies on external data
for their decomposition. Thus, an independent check of the
LD results for 96Mo is of high importance. The good energy
resolution of the present data permits an extraction of the
LD of Jπ ¼ 1− states applying a fluctuation analysis to the
fine structure of the IVGDR. Details of the method can be
found in Refs. [36,51,52]. We note that the method is based
on the assumption of a single class of excited states in the
spectrum. This presently limits the application to the energy
region of the IVGDRwhile, at lower excitation energies, 1−

and 1þ states coexist, since the PDR and the spin M1
strength overlap. The LD of Jπ ¼ 1− states between 11 and
16 MeV is displayed in the inset of Fig. 4 in comparison
with three widely used systematic parametrizations
[44,53,54] of the phenomenological backshifted Fermi
gas (BSFG) model (see Table I). The BSFG parameters
deduced from the RIPL-3 data base [44] provide a good
description, while absolute values from the other models
are too high [53] or too low [54].

In order to compare with the Oslo results, the 1− LD is
converted to a total LD using a spin distribution function

fðJÞ≃ 2J þ 1

2σ2
exp

!
−
ðJ þ 1

2Þ
2

2σ2

"
; ð3Þ

where σ denotes the spin cutoff parameter. Note that
slightly different definitions of fðJÞ are used in
Refs. [44,53,54]. A parity dependence is neglected in
accordance with the results of Ref. [55]. Values of σ for
the experimental energy range using the respective defi-
nitions are given in Table I. The model dependence of the
conversion to total LD is taken into account by averaging
over the results from the three BSFG parameter sets and
taking their variance as a measure of the model uncertainty.
The resulting LD (red diamonds) is presented in Fig. 4
together with the Oslo results at lower excitation energies
(blue squares) and s-wave neutron capture (black circle)
[49]. The BSFG models are normalized to the value at Sn.
In particular, the RIPL-3 parameters [44] provide a good
description of all data over a large excitation energy range,
consistent with a similar analysis for 208Pb [37].
Conclusions.—A new approach to test the Brink-Axel

hypothesis is presented based on a study of the (p⃗, p⃗0)
reaction at 295 MeV and extreme forward angles. The
extracted gamma strength function for the test case, 96Mo,
agrees with results of compound nucleus γ decay experi-
ments [22,23] indicating that the BA hypothesis holds in
the energy region of the PDR, in contrast to results from the
(γ, γ0) reaction [24] and the claims of Ref. [27]. This is an
important finding since the BA hypothesis constitutes a
general presupposition for astrophysical reaction network
calculations. The high energy resolution and selectivity of
the data permits an extraction of the LD at excitation
energies above the neutron threshold hardly accessible by
other means. A consistent description of the LD with those
of the γ decay experiments can be achieved within BSFG
models providing independent confirmation of the methods
used to separate GSF and LD in Oslo-type experiments.
While the present results support a use of the BA

hypothesis for statistical model calculations of reaction
cross sections in finite temperature environments, a general
statement requires a systematic comparison of GSFs
derived from γ absorption and emission experiments in
the energy range of the PDR over a broad range of nuclei.
For example, the role of deformation needs to be explored
by comparing spherical and well-deformed cases with the

TABLE I. Level density (a), backshift (Δ) and spin cutoff (σ)
parameters of the BSFG model predictions for 96Mo shown in
Fig. 4.

a Δ σð11.5 MeVÞ σð15.5 MeVÞ
References (MeV−1) (MeV) (ℏ) (ℏ)

[44] 11.25 1.14 5.32 5.77
[53] 12.45 1.48 5.01 5.45
[54] 9.56 0.82 4.20 4.42

FIG. 4. Total LD in 96Mo deduced from the fine structure of the
(p, p0) data in the energy region of the IVGDR (red diamonds)
compared with the results from the (3He, 3He0γ) Oslo experiment
(blue squares) [22,23]. The black circle point stems from s-wave
resonance neutron capture [49]. BSFG models normalized to the
value at Sn are shown as green solid [44], cyan dashed [53], and
purple dashed-dotted [54] lines. The inlet shows the LD of 1−
states in comparison with absolute predictions of the models.

PRL 119, 182503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

182503-4

Figure 2.2: Total NLD of 96Mo deduced from the fine structure of the (p, p′) data in the
IVGDR region (red diamonds). The Oslo method results are shown as blue squares together
with several parametrizations of the BSFG model [91, 108, 129]. The Inlet shows the density
of 1− states. Figure is reprinted with permission from Ref. [130].

spectra, another method involving the compound-nucleus mechanism is the Ericson fluctu-
ation analysis. Within the statistical theory, Ericson demonstrated that not only average
cross-sections but also variances in the energy dependence of cross sections can be estimated
for reactions proceeding through a compound nucleus [131]. The latter can be used to extract
the NLD. Alternatively, the NLD can be obtained from exit channel transmission coefficients
and partial decay widths. These methods have been successfully applied to total and partial
neutron cross sections of light- and medium-mass nuclei in Refs. [132–134]. As the NLD in-
creases, Ericson fluctuations become smaller and can no longer be used to produce reliable
results. For this reason, the applicability of this analysis was limited up to ≈ 25 MeV in the
above-mentioned works.

A somewhat similar technique was proposed by Kalmykov et al. in Ref. [135] to extract
the density of 1+ states based on the fine structure of the Gamow-Teller resonance in 90Nb,
studied in the high-energy (3He, t) reaction under scattering angles close to 0○. It has also
been applied to extract the density of 2± states from fluctuations of cross sections in the
energy ranges corresponding to the M2 and E2 giant resonances in 58Ni and 90Zr, studied in
the (e, e′) and (p, p′) reactions [136]. Moreover, the density of 1− states in 208Pb and 96Mo
has been obtained from fluctuations of the cross section in the IVGDR region from the (p, p′)
reaction under extreme forward angles [130, 137]. In the latter two cases, the deduced total
NLDs were combined with the corresponding Oslo method results in Refs. [130, 138], where
both experiments were shown to agree quite well with respect to the same BSFG model. An
example of such a comparison for the 96Mo isotope is shown in Fig. 2.2.
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Finally, the Oslo method is currently the most plentiful source of NLDs below the neutron
threshold in numerous medium- to heavy-mass nuclei [109]. In general, the Oslo data repro-
duce the low-lying states quite well and agree fairly well with available particle evaporation
NLDs (see e.g. [139]). The Oslo NLDs rely on several assumptions, models, and auxiliary
experimental data for the normalization. This matter will be discussed in more detail in
Sec. 3.3.4. In particular, the NLDs at the neutron threshold obtained from neutron resonance
studies are crucial for constraining the slopes of the exponentially growing Oslo method level
densities above excitation energies, where level schemes are no longer complete. Moreover, the
Oslo results provide important input for Hauser-Feshbach calculations of radiative neutron-
capture cross sections (see e.g. [140]). In this regard, the modifications of the Oslo method,
such as the β-Oslo method [141] and the Oslo method in inverse kinematics [142], are a
promising step forward in estimating neutron-capture rates relevant for the astrophysical r
process, involving unstable nuclei.

2.2 The γ-ray strength function

At relatively high excitation energies, where it becomes more convenient to refer to ensembles
of closely grouped states in terms of the NLD rather than individual states, the concept of
individual transition widths is commonly substituted by the γ-ray strength function (GSF).
It characterizes the average γ-decay pattern and can be defined as the average reduced partial
radiative width per unit energy interval. Historically, there has been no unified approach to
the definition of the GSF up until the 1970s. In this thesis, we are going to adopt the definition
as suggested by Bartholomew in Ref. [143], most commonly used in modern publications and
nuclear reaction codes (e.g. TALYS). For photon emissions from a group of initial excited
states with spin Ji in the vicinity of Ei to a lower-lying state (or states) f , the GSF can can
be defined as:

←Ð
f XL(i→ f) =

⟨ΓγXL(i→ f)⟩ρ(Ji,Ei, πi)

E2L+1
γ

, (2.15)

where the partial radiative widths ⟨ΓγXL(i → f)⟩ are assumed to be averaged in the vicinity
of Ei, ρ(Ji,Ei, πi) is the level density at the initial excitation energy, and Eγ = Ei −Ef is the
energy of the emitted photon. Equation (2.15) does not imply any a priori adopted model
to characterize the γ-decay pattern. The type X (E for electric and M for magnetic) and
multipolarity are also specified. By analogy, a similar definition can be written for the inverse
process, namely the photoabsorption on an initial state i (usually the ground state) leading
to the population of a group of final states f , by swapping the corresponding indices in the
level density in Eq. (2.15). As was shown by Axel in Ref. [144], it can further be linked to
the average ground-state photoabsorption cross section ⟨σXL(g.s.→ f)⟩ as:

Ð→
f XL(Eγ) =

1

(2L + 1)(πh̵c)2
⟨σXL(Eγ)⟩

E2L−1
γ

. (2.16)

Here, the dependence on initial and final excitation energies, spin, and parity has been omitted
in line with the so-called Brink-Axel hypothesis [85, 86], discussed in more detail in Sec. 2.2.2.

In the literature, the photoabsorption
Ð→
f and the γ-decay

←Ð
f strengths are often referred to

as the upward and downward GSFs, respectively [145].
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It is also convenient to establish a link between the γ-ray transmission coefficient T ,
commonly used to express the γ-emission rate of a multipole type XL in compound-nucleus
calculations, and the GSF as functions of γ-ray energy [146]:

TXL(Eγ) = 2πE2L+1
γ fXL(Eγ). (2.17)

Experimental and theoretical information on these functions in stable and exotic nuclei
is a crucial ingredient for any calculations involving electromagnetic emission and absorption
processes, e.g., for calculations of photon production spectra, radiative neutron-capture cross
sections, evaluating the relative contribution of the photon decay in comparison to the com-
peting particle emission channels, and many more. To further understand the structure of the
GSF and adapt it to statistical-model calculations, it is important to introduce the concept
of Porter-Thomas fluctuations of individual partial widths, entering its definition, and the
Brink-Axel hypothesis, generalizing the definition of the GSF and setting the correspondence
between strength distributions from photoabsorption and decay experiments.

2.2.1 Porter-Thomas fluctuations

The averages and deviations from averages of GSFs and cross sections from reactions involving
formation of a compound nucleus are closely related to the distribution of nuclear reaction
widths and their fluctuations. The latter can be especially prominent in strength functions for
the decay from states within the quasi-continuum down to a limited number of final states or a
single isolated final state. Compilations of data from the earlier works suggest the distribution
of partial γ-decay widths to follow a χ2 distribution with ν = 1 degree of freedom, commonly
referred to as the Porter-Thomas distribution.

In their original work from 1956 [147], Porter and Thomas performed a maximum-likelihood
analysis of reduced neutron widths2 Γ0

n from the resonance region of total neutron cross sec-
tions in medium and heavy nuclei in an attempt to find the shape of their distribution. Two
alternative exponential-like distribution forms, x−1/2 exp(−x/2) and exp(−x) with x = Γ0

n/⟨Γ
0
n⟩,

have been revealed based on the earlier data in the study by Hughes and Harvey [148]. The
former distribution with ν = 1 for the neutron reduced widths and ν ≈ 2.5 for fission widths
has been indeed confirmed in Ref. [147]; moreover, Porter and Thomas were the first to sug-
gest a theoretical explanation of this fact within the compound nuclear picture. The strong
nuclear interaction and the configuration mixing leading to the formation of complex wave
functions of compound nuclear states result in an approximately Gaussian distribution with a
zero mean of reduced width amplitudes (∝ x1/2) when sampling many states, according to the
central limit theorem. For the same reason, the distribution of amplitudes determining partial
radiative capture widths can also be expected to follow the same Gaussian distribution. On
the other hand, the total radiative capture width for a state with a certain spin should be
assumed to follow a rather narrow χ2 distribution, with the number of degrees of freedom ν
and the variance inversely proportional to the number of independently contributing partial
widths.

2The velocity-independent reduced neutron width Γ0
n is related to the width as Γ0

n = Γn/E
1/2
0 , where E0 is

the resonance energy.
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The work of Porter and Thomas was mainly focused on the distribution of neutron widths
of s-wave resonances and was followed by a series of studies of widths in elastic scattering,
fission, and radiative capture. An experimental confirmation of the χ2 distribution with ν = 1
of the partial widths for γ transitions from compound states of certain spins and parities
following resonance neutron capture was presented in an extensive work by Bollinger et al.
[149]. By the 1970s, sufficient experimental evidence was collected, confirming that the Porter-
Thomas (PT) distribution can also be applied to the partial radiative widths Γγi [150]:

P(
Γγi

Γγi
) = (

2πΓγi

Γγi
)

−1/2

exp(−Γγi/2Γγi). (2.18)

With the Oslo method, such fluctuations are clearly manifested in dipole GSFs extracted
for different narrow initial and final excitation energy ranges, resulting in the following devi-
ations from the GSF averaged over a large number of involved transitions [143]:

∆f(Eγ) ≈ f(Eγ)
√

2/N, (2.19)

where N is a sufficiently large number of sample states. The standard Oslo method implies
averaging over a large number of states and transitions, mainly due to relatively high densities
of initial states within the quasi-continuum and final states in the quasi-continuum and the
discrete region. The contribution of PT fluctuations to the total uncertainty band of the Oslo
method GSF is expected to be smaller than typical statistical uncertainties, especially for
heavy nuclei with high NLDs.

2.2.2 Important simplification: the Brink-Axel hypothesis

At excitation energies where the statistical treatment of γ-decay properties is justified, the
dependence of the GSF on the properties of initial and final states introduces an additional
degree of complexity in any calculations involving excited nuclei and thus needs to be tackled.
This is especially relevant for reactions on excited nuclei within different astrophysical scenar-
ios involving finite temperatures. For example, by analogy with the NLD, the GSF is one of
main ingredients for Hauser-Feshbach calculations of astrophysical radiative neutron-capture
rates and modeling of s- and r-process nucleosynthesis beyond the Fe abundance peak (see
e.g. [64, 152]).

An important simplification in such calculations is provided by the Brink-Axel hypothesis,
suggesting that the GSF (or the photoabsorption cross section) is independent of the detailed
structure of initial and final states and depends only on the energy of the emitted (or absorbed)
photons. In the original form formulated and introduced by Brink in 1955 in his doctoral
thesis [85], the energy dependence of the photoabsorption cross section was assumed to be
independent of the detailed structure of the initial state, and thus the IVGDR built on an
excited state would have the same Lorentzian shape as the one observed in the ground-state
photoabsorption process. This is in accordance with the macroscopic picture of the IVGDR,
implying a collective vibrational movement of all protons and neutrons in a nucleus, which
would be essentially insensitive to the initial state it was excited from. This assumption can
be further generalized by applying the principle of the detailed balance to include the photon
emission process on an equal footing [143] and allowing independence3 of spins of initial and

3Selection rules for multipole transitions still apply in this case.
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final states. An important conclusion from this formulation is the equivalence of the upward
and downward GSFs:

Ð→
f XL ≈

←Ð
f XL. (2.20)

In the literature, it is sometimes referred to as the generalized Brink-Axel (BA) hypothesis
(see e.g. [153]). It is commonly used in statistical-model calculations, for example, with
nuclear reaction codes TALYS [154] and EMPIRE [155]. Moreover, this hypothesis plays an
important role in the Oslo method, being one of the key assumptions for the decomposition
of photon emission spectra at different excitation energies into the NLD and the GSF. It has
also been tested and used for estimating Gamow-Teller transition strengths of interest for
stellar electron capture rates in Refs. [156, 157].

Even though this hypothesis was initially formulated for the IVGDR and not too high tem-
peratures and spins [158], it is often applied to low-lying M1 and E1 strengths distributions
in the PDR region. Whether the applicability range of the BA hypothesis can be extended
down to such low energies is a question still far from being completely settled. The major-
ity of experimental studies explicitly testing this hypothesis are either inconclusive, indicate
some deviations from it, or suggest further modifications for it to be applicable. Among some
works supporting its validity below the neutron threshold, the experimental results by Martin
et al. demonstrate a good correspondence between photoabsorption and emission strengths
through a comparison of Coulomb excitation (p, p′) and Oslo data for 96Mo, already mentioned
in Sec. 2.1.2. A similar comparison for 208Pb by Bassauer et al. [138] was, however, found
to be less informative due to large fluctuations of the (p, p′) GSFs, related to the compara-
tively low NLD in this nucleus. Strength functions of 64,66Zn from radiative proton capture
on 64,66Cu have recently been shown to be approximately the same at different excitation
energies in Ref. [159]. Moreover, the BA hypothesis appears to hold relatively well for the
M1 scissors mode in deformed 163Dy [160].

Numerous tests have been performed by the Oslo group to reveal any dependence of the
extracted strengths on the initial and final excitation energies and thus test the BA hypothesis
as one of the underlying assumptions of the Oslo method. An excellent agreement of GSFs
extracted by gating on different initial and final excitation energy bins with each other and the
“averaged” standard Oslo method strength was found in the case of 238Np [153] (see Fig. 2.3).
Similar tests have been performed for the lighter 46Ti [161], 64,65Ni [162], and 92Zr [163] nuclei.
In all these cases, a fairly good agreement between GSFs for different initial excitation energy
bins was found; they tend to fluctuate in the vicinity of the standard Oslo method results
within the uncertainty bands. For the cases including transitions to a few isolated final states,
the GSFs demonstrate quite large fluctuations as a consequence of significantly increased PT
fluctuations. The contribution of quadrupole transitions has also been considered as one of
potential reasons for the observed deviations. In general, the independence of initial and
final excitation energies in these nuclei is more difficult to conclude as compared to the 238Np
case, chiefly due to significantly lower NLDs below the neutron threshold. The validity of
the BA hypothesis in these cases can only be established approximately, within the expected
systematic uncertainty bands, which is sufficient for the Oslo method to produce reliable
NLDs and GSFs. However, for isotopes of heavy elements with sufficiently high NLDs, the
BA hypothesis is expected to be a reliable approximation due to the smearing of potential
individual variations of transition strengths over numerous contributing excited states (see
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Fig. 6. Again, we find an excellent agreement between
the various γSFs with γ transitions into specific final
excitation-energy bins. However, there are discrepancies
for Eγ < 1 MeV, which feed the final states below
≈1 MeV. At these energies, fðEγ; EfÞ shows an increase
compared to the average fðEγÞ. These γ transitions could
possibly be due to vibrational modes built on the ground
state and, if this is true, are not part of a general γSF
extracted in the quasicontinuum with the standard
Oslo method. Vibrational levels are strongly populated
in inelastic scattering, such as the reactions
237;239Npðd; d0Þ237;239Np performed by Thompson et al.
[34]. In that work, levels built on vibration modes were seen
for excitation energies in the ≈0.9- and ≈1.6-MeV regions.

A similar population of vibrational states has been observed
in the 238Uð16O; 16O0Þ238U and 238Uðα; α0Þ238U reactions
[35]. By means of αγ coincidences, a concentration of
Eγ ≈ 1 MeV transitions depopulating β, γ, and octupole
vibrational bands has been seen. Thus, the enhanced γSF
found in our data at low excitation energies with Eγ ≈
1 MeV is likely due to the deexcitation of vibrational
structures. Such structures might show up at higher excita-
tions, but they are strongly fragmented and therefore difficult
to observe.
The excellent agreement between the excitation energy

dependent and independent γSFs indicates that PT fluctua-
tions are small compared to the experimental errors for the
system studied. For the χ2ν distribution, which governs the
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FIG. 6. The γSFs as functions of the final excitation energies (data points), see Eq. (5). See the text of Fig. 5.
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FIG. 5. The γSFs as functions of initial excitation energies (data points), see Eq. (4). The blue curve is obtained by the standard Oslo
method, see Eq. (2). The excitation energy bins are 121 keV broad.

PRL 116, 012502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

012502-4

Figure 2.3: The GSFs of 238Np as functions of the initial excitation energies below the neutron
threshold. The blue solid line corresponds to the standard Oslo method result. The excitation
energy bin width is 121 keV. Figure is reprinted with permission from Ref. [153].

also [143] and references therein).
On the other hand, experimental evidence suggesting deviations from the BA hypothesis is

far more plentiful. One of the first observations of its violation was provided by a comparison of
experimental average ground-state branching ratios from NRF data on 142Nd with statistical-
model calculations [164]. Similar subsequent studies on 94Mo [165] and 130Te [166] revealed
that ground-state decay branching ratios in these nuclei can no longer be reproduced within
the statistical model below certain excitation energies, but can rather be explained by a strong
preferential decay to the ground state. Furthermore, disagreements between photoabsorption
strengths and a decay strength obtained within the Hauser-Feshbach model from partial cross
sections of the 89Y(p, γ)90Zr reaction have been observed in Ref. [167]. A recent result on
128Te from the combined NRF and γ-γ coincidence spectroscopy [168], shown in Fig. 2.4(a),
also demonstrates deviations of the GSF from the photoabsorption data (blue triangles) from
the downward decay strength (red band), which can not be explained by PT fluctuations.
This and other above-mentioned observations are in contradiction with the equivalence of the
upward and downward strengths, following from the BA hypothesis.

Similarly, the majority of theoretical attempts to test the BA hypothesis reveal its viola-
tions. For example, thermally unblocked QRPA [170] and the phonon damping model [171]
calculations point at an explicit dependence of the low-lying E1 strength (as well as M1 and
E2 in [171]) on the nuclear temperature. Shell-model calculations for 44Sc also suggest a
strongly varying shape of the low-energy part of the E1 strength distribution, depending on
the initial excitation energy window [172]. In this work, the observed non-zero Eγ → 0 limit
in the E1 and M1 downward strengths, similar to the upbend seen in the Oslo method data,
points towards at a violation of the equivalence of the upward and downward strengths at
very low γ-ray energies. Indeed, no counterpart of the upbend can be observed in ground-
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Fig. 2. Experimental results for 128Te. a) All observed f p(Eγ ) values extracted from 
primary transitions (black dots) from different excitation energies to different final 
states. The red shaded area corresponds to the external uncertainty of the Gaussian-
weighted moving average of the data points. Inset of a) Single data sets from four 
different beam energies. b) Comparison of the two independently derived photon 
strength functions f p(Eγ ) (from Fig. 2.a) and f σ (Eγ ) (from photoabsorption cross 
section data). c) χ2 analysis comparing both derived PSFs. For a detailed discussion 
see text.

of the combined data set. The inset of Fig. 2.a) exemplarily il-
lustrates overlapping data points below Eγ = 5.4 MeV extracted 
from four different measurements with beam energies ranging 
from 6.19 MeV to 6.9 MeV. It is evident that the experimental 
data sets for different beam energies are not consistent with each 
other, i.e., they do not provide a unique shape for the derived PSF. 
The deviations between data sets with overlapping data points for 
f p
exp(Eγ ) are as large as a factor of 2–3 and, thus, larger than can 

be explained by Porter–Thomas (PT) fluctuations [50] as discussed 
below. Therefore, it has to be concluded that for the given case 
of 128Te the decay properties of the photo-excited states cannot 
be described by a single excitation-energy independent PSF, which 
contradicts the applicability of the BA hypothesis to the excitation 
energy range studied here.

The role of PT fluctuations is studied with a modified version 
of the Monte-Carlo-method based DICEBOX code [51] which sim-
ulates γ -ray cascades in NRF reactions. Based on the main input 
quantities such as the NLD and PSFs, random level schemes of an 
artificial nucleus are created taking PT fluctuations for the indi-
vidual transition widths of each nuclear level into account. Then, 
several so-called nuclear realizations (in the present case 30) are 
generated. Each of these realizations has a different nuclear level 
schemes that, however, follows the same statistical properties de-
fined by the NLD and PSFs. In the present case, the Back-Shifted 
Fermi Gas model is used for the NLD with the parameters a =
13.04 MeV−1 and E1 = 0.68 MeV [52]. The PSF for the E1 con-
tribution is determined from the measured photoabsorption cross 
section, while the parametrizations for the M1 and E2 contribu-
tions are taken from Ref. [53].

Fig. 3. Comparison of f p extracted from DICEBOX simulations (a) to the experi-
mental results (b). A χ2 analysis is performed for each individual primary transition 
(red triangle) versus the moving average (blue dots) computed from all primary 
transitions for the simulation (c) and the experiment (d). The total error is defined 
as $2 = ($ f p)2 + ($P T )2 taking the statistical uncertainties ($ f p ) and PT fluctua-
tions ($P T ) into account.

The γ -ray cascades for each realization generated with DICE-
BOX are analyzed in the same way as the experimental data to 
extract f p

sim(Eγ ). Fig. 3.a) displays f p
sim(Eγ ) values (red triangles) 

from one realization together with a moving average 〈 f p〉sim of 
the data points (blue dots) weighted by a Gaussian distribution 
of FWHM = 300 keV, which corresponds roughly to the spectral 
width of the photon beams produced at HIγ S. Investigating the 
variation of the f p

sim(Eγ ) values for all 30 realizations the effect of 
the PT fluctuations can be quantified by determining the standard 
deviation $P T for each energy bin. In general for both, simula-
tion and experiment, the deviations between individual f p

sim/exp
and 〈 f p〉sim/exp can be expressed by

χ2
i =

( f p
sim/exp, i − 〈 f p〉sim/exp)2

$2
i

, (2)

with $2
i = ($ f p

sim/exp, i)
2 + ($P T )2 (see Fig. 3.c). Here, $ f p

sim/exp, i

is the statistical uncertainty of each data point. Since 105 cascades 
were simulated with DICEBOX the statistical uncertainties $ f p

sim, i
are negligible in comparison to $P T . Except for a few cases the 
deviations are small and result in an overall

χ2
red = 1

N − 1
·
∑

i

χ2
i = 0.97 (3)

As expected for the simulations the fluctuations of the f p
sim

values in Fig. 3.a) are in excellent statistical agreement with the 
computed moving average 〈 f p〉sim and originate from PT fluctua-
tions.

Figs. 3.b) and d) show the corresponding results for the ex-
perimental data. In contrast to the DICEBOX simulations large 
fluctuations of the individual f p

exp values in comparison to its mov-
ing average 〈 f p〉exp are observed in Fig. 3.b). These deviations are 
quantified in Fig. 3.d). The fluctuations of the experimental f p

exp
results are much more pronounced than observed in the simu-
lation (see Fig. 3.c) despite taking statistical uncertainties $ f p

exp
as well as the simulated PT fluctuations $P T into account. More-
over, the overall χ2

red = 2.82 indicates that the deviations cannot 
be explained by the statistical uncertainties and the expected PT 
fluctuations alone. The PT fluctuations would have to be a factor of 
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Fig. 3 E1 dipole strength distributions computed on ground and
excited states in selected Ne nuclei. In brackets indicated are excita-
tion energies of initial states in MeV

observed in the g.s. distribution in Fig. 3. In spite of varia-
tions noted in the energy-weighted sums, the summed low-
energy strength remains similar for various initial states. This
is caused by the availability of many opposite parity states
in the Eγ =0–10 MeV interval when increasing excitation
energy of the initial state: taking 26Ne as example, there are
14 1− states up to 10 MeV above the g.s. but 49 states up
to 10 MeV above the 0+2 . However, the strongest transition
from the g.s. reaches 0.1e2 f m2 while from the 0+2 maxi-
mally 0.04e2 f m2. Transitions connecting 0+2 with 1− states
around 8-10 MeV excitation energy are weak, leading to the
summed strength of only 0.068e2 f m2, one order of magni-
tude lower than for the g.s. This difference in magnitude has
to be related to the particular structure of initial states: The
major component in 0+1 in 26Ne is 53% of ν(s1/2)

2 config-
uration while in 0+2 43% of ν(d3/2)

2. In 28Ne, the first 0+

is composed of 78% of ν(s1/2)
2(d3/2)

2 configuration while
the second 0+ has only 31% of the dominant component

of the same type. Large contributions to the pygmy peaks
related e.g. to ν2s1/2 → 2p transitions are thus smaller in
excited states with respect to the g.s. As building of subse-
quent excited states requires more and more configuration
mixing, the decrease of the PDR strength on excited states
obtained here could be expected in other regions of nuclei
as well: In [41] a reduction of the PDR strength with tem-
perature was noted in open-shell Ni isotopes in QRPA cal-
culations with Skyrme forces in the temperature range T <

1 MeV and this due to decreasing pairing correlations.
To evaluate the importance of the above-found deviations

from the BAH, different microscopicγ -SF were used as input
to calculations of NCCS. In Fig. 4 E1 γ -SF of 26Ne (panel
(a)) and the NCCS (panel (b)) of the 25Ne(n, γ )26Ne reac-
tion are shown. First, CI photoabsorption γ -SF on g.s. and a
few excited states are used in calculations: the lowest NCCS
is obtained with the g.s. γ -SF and is connected to the lack
of the low-energy γ -ray transitions when compared to the
γ -SF of excited states. The PDR present in the g.s. γ -SF
appears to have no influence in the NCCS calculation as the
transition energies related to PDR of the order of 7–9 MeV
are located above neutron thresholds of nuclei studied here:
5.56 MeV in 26Ne, 1.5 MeV in 27Ne and 3.89 MeV in 28Ne.
On the contrary, shifting of the γ -strength to lower energies
observed for the excited states appears of substantial impact:
At incident neutron energy En = 100 keV the differences
between theoretical NCCS using the γ -SF of the g.s. and of
excited states range from factor 3 for 21Ne and 25Ne targets
up to 8 for 26Ne target. Using the QRPA γ -SF from [36]
underestimates up to a factor 60 the CI results due to the
absence of any transitions below 10MeV, see Fig. 1.

One should note that computing (n, γ ) reaction rates using
the microscopic photoabsorption γ -SF requires that photoab-
sorption and deexcitation strengths are the same. This was
shown incorrect in CI calculations [21,39] which inspired
low-energy corrections of QRPA γ -SF in [22]. The deexci-
tation CI γ -SF from Eq. 3 is shown in Fig. 4 as well as the
resulting NCCS (results denoted as CI, decay): the differ-
ence between deexcitation γ -SF and photoabsorption on the
g.s. gives a factor 2 deviation in NCCS at En = 100 keV
in the case shown in Fig. 4 and up to a factor 10 difference
for the NCCS of the 26Ne(n, γ )27Ne reaction. Empirically
modified QRPA γ -SF from Ref. [22] is also displayed: The
corresponding NCCS appears to be in fair agreement with
the CI contrary to the case of using “bare” QRPA photoab-
sorption γ -SF from [36].

Once converted to the same units, photoabsorption M1
γ -SF are an order of magnitude lower than those for E1 and
do not influence the computed NCCS. This is however not
true for the deexcitation strengths at low γ energies where
strong M1 transitions compete with E1, enhancing further
the cross sections with respect to those based on the g.s. pho-
toabsorption γ -SF (see Refs. [21,25–28] for the low-energy

123

(a) (b)

Figure 2.4: (a) Comparison of the GSF derived independently from the photoabsorption
cross section data (fσ) and the γ-ray emission with the ratio method (⟨fp⟩) for 128Te from
Ref. [168]. (b) E1 dipole strength distributions computed within the shell model on the ground
and several excited states with different excitation energies and spins. Figure is reprinted with
permission from Ref. [169].

state photobabsorption experiments due to an energy gap determined by excitation energies
of the first accessible states. The potential importance of this violation for Hauser-Feshbach
calculations for r-process nuclei has been studied on the basis of M1 transitions in Fe isotopes
in Ref. [173]. The cross-sections of radiative neutron-capture reactions can be significantly af-
fected by using the ground-state upward strength in such calculations due to underestimating
the contribution of the non-zero low-energy tail. Recent shell-model calculations also revealed
deviations from the BA hypothesis for light nuclei. An example of the E1 strengths for states
with different excitation energies and spins in 26Ne [169] is shown in Fig. 2.4(b). The B(E1)
distributions for different excited states are somewhat similar, whereas the ground-state dis-
tribution demonstrates a larger concentration of the strength at ≈ 7 − 9 MeV, typical for the
PDR. The latter, however, does not contribute to the radiative neutron-capture cross section
on 25Ne due to the low neutron separation energy in 26Ne. On the other hand, non-energy-
weighted isovector E1 sum rules for other light isotopes obtained within the shell model by
Johnson in Ref. [174] seem to be relatively constant up to quite high initial excitation energies
of ≈ 20 MeV.

Even though the observations made regarding the E1 and M1 strengths in the PDR region
within the shell model approach are exceptionally relevant for astrophysical calculations, they
apply to relatively light nuclei, and it is not quite clear how they can further be extrapolated
to heavier s- and r-process nuclei. The Oslo strengths relying on the BA hypothesis are often
used in such calculations, and it is thus advisable to verify at least an approximate validity
of the hypothesis in the mass range where the Oslo method is applied.

2.2.3 Theoretical approach to the dipole GSF

The first indirect attempts to provide a model for the GSF were performed in 1951 by Weis-
skopf [175] and later on by Blatt and Weisskopf [90] in “Theoretical Nuclear Physics” by
deriving single-particle estimates of electric and magnetic multipole transition rates. Cal-
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culations were performed assuming independent particles interacting only through a mean
field, and the transition being caused by a single independently moving proton. Within this
approach, reduced widths are distributed randomly, and the GSF appears to be energy inde-
pendent. Even though the single-particle model was soon shown to be overly simplified (see
e.g. [176]), it has been used in numerous later publications for modeling the M2, E3, and M3
radiation contributions [146].

The link between the strength function and photoabsorption data [85, 144] suggested a
more realistic energy dependence of the GSF, determined by the dominant feature in the
observed experimental cross sections, namely the IVGDR. This model, commonly referred
to as the Standard Lorentzian (SLO), adopts the Lorentzian shape of the IVGDR under the
Brink-Axel hypothesis assumption, allowing to exclude the excitation energy, spin, and parity
dependence from consideration:

fSLO(Eγ) =
1

3π2h̵2c2

σ0Γ2
0Eγ

(E2
γ −E

2
0)

2 + Γ2
0E

2
γ

. (2.21)

Here, σ0, Γ0, and E0 are the peak cross section, energy independent damping width, and
centroid of the resonance, respectively. The constant width is consistent with the fragmen-
tation of the strength, assuming that no nucleon-nucleon collisions take place, and nucleons
interact only with the nuclear surface. A single or several Lorentzian peaks indeed reproduce
the general shape of photoabsorption cross sections in the immediate vicinity of the IVGDR
peak quite well for the majority of medium to heavy spherical and deformed nuclei [91]. How-
ever, it fails to simultaneously fit the IVGDR peak and reproduce the experimental (n, γ)
cross sections close to the neutron threshold, which also affects calculations of capture cross
sections and γ-ray spectra [145, 146]. Moreover, it tends to underestimate the experimental
strength distribution below ≈ 1-2 MeV ([91] and references therein). Despite these limitations
in its application to the E1 strength, the SLO is commonly used for the description of the
M1 and E2 components of the total decay strength (see e.g.[91, 154]).

These shortcomings were further mitigated within the Fermi-liquid theory in the work
by Kadmenskij, Markushev, and Furman (KMF)[177], who suggested the following energy-
dependent form of the resonance width:

ΓKMF(Eγ, Tf) =
Γ0

E2
0

(E2
γ + 4π2T 2

f ), (2.22)

which also depends on the temperature of the final states Tf . Here, Γ0 is the IVGDR width
for cold nuclei (T = 0 MeV). The last term in Eq. (2.22) is thus related to collisions between
quasi-particles, while the first one is determined by the spreading of particle-hole excitations
over more complex configurations. The final derived GSF takes the following form within the
KMF approach:

fKMF(Eγ, Tf) =
1

3π2h̵2c2

0.7σ0Γ2
0(E

2
γ + 4π2T 2

f )

E0(E2
γ −E

2
0)

2
. (2.23)

Including the γ energy and temperature dependence of the width, and therefore a non-zero
strength at the Eγ → 0 limit, allowed for a more accurate description of experimental strength
functions at relatively low energies. However, the main drawback of the original KMF formula
[91, 177] limiting the energy range of its applicability is a singularity at the resonance energy
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E0. To take advantage of both the KMF model and the SLO, a new formula, the so-called
Generalized Lorentzian (GLO), was proposed by Kopecky and Chrien, who combined the
standard Lorentzian shape with the KMF energy-dependent width and the Eγ = 0 limit of
the KMF strength [178]:

fGLO(Eγ, Tf) =
σ0Γ0

3π2h̵2c2
(

EγΓKMF(Eγ, Tf)

(E2
γ −E

2
0)

2 +E2
γΓ

2
KMF(Eγ, Tf)

+
0.7ΓKMF (Eγ = 0, Tf)

E3
0

) . (2.24)

As was shown in Refs. [146], a more reasonable simultaneous description of E1 strengths
from average resonance capture data and (n, γ) cross sections in spherical and several transi-
tional nuclei was finally achieved with this approach. To adjust the GLO for the application
to a wider range of nuclei, including deformed ones, an empirical correction to the KMF width
was introduced [179]:

Γ(Eγ, Tf)
EGLO = (κ + (1 − κ)

Eγ − ε0
E0 − ε0

)
Γ0

E2
0

(E2
γ + 4π2T 2

f ), (2.25)

where ε0 = 4.5 MeV, and κ is an empirical factor, dependent on the mass number and the
adopted NLD model. The GLO strength with the enhanced width from Eq. (2.25) presents
the Enhanced Generalized Lorentzian model (EGLO).

Despite a reasonable reproduction of the strength distribution with GLO and EGLO,
the width employed in these models accounts for the two-body collisional damping mech-
anism within the Fermi liquid approach and disregards completely an almost temperature-
independent fragmentation (one-body) damping, identified with the width in the SLO model.
Moreover, the shapes of the above-mentioned strengths are in contradiction with the imaginary
part of the nuclear response function in the electromagnetic field in the form of a Lorentzian
shape with an energy-dependent width (see [180] and references therein). These shortcom-
ings called for further improvements of these models. One of them, the thermodynamic pole
approach formulated in [181–184], accounts for a temperature-dependent enhancement of the
standard Lorentzian shape due to the average number of excited particle-hole states in a
heated system in an external electromagnetic field. The energy- and temperature-dependent
width within this model effectively accounts for both the fragmentation and collisional contri-
butions and can be determined with different semi-empirical expressions [91]. Similarly, the
so-called Generalized Fermi Liquid (GFL) model [185] preserves the Lorentzian shape and
allows for combining the collisional and fragmentation damping due to the dipole-quadrupole
interaction.

Finally, another noteworthy approach, the so-called hybrid formula providing a good si-
multaneous description of the low-energy tail and the peak of the IVGDR, was suggested by
Goriely in Ref. [64]:

fHyb(Eγ, Tf) =
σ0Γ0

3π2h̵2c2
(

EγΓh(Eγ, Tf)

(E2
γ −E

2
0)

2 +E2
γΓh(Eγ, Tf)Γ0

) . (2.26)

with the width defined as:

ΓHyb(Eγ, Tf) =KHyb
Γ0

E0Eγ
(E2

γ + 4π2T 2
f ), (2.27)
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where KHyb is determined by Migdal constants in the Fermi liquid theory and adopted to
be 0.63 within this approach. It combines some features of the KMF and the SLO models,
avoiding the singularity at the IVGDR peak and preserving the non-zero Eγ = 0 limit. The
strength distribution predicted by this model closely resembles the one obtained with the
(E)GLO. Both of these models have been previously shown to provide good alternatives for
the description of the Oslo method strengths [186, 187].

All of the above-mentioned models (except for the SLO) share a certain dependence on
the temperature of the final states, which evidently leads to the breakdown of the Brink-Axel
hypothesis. As was mentioned earlier, the Eγ → 0 limit predicted by these models is tailored
to the description of the non-zero low-energy tail in the decay strength, which is not observed
in the photoabsorption data. Despite that, the Lorentzian functions are widely implemented
in different databases (e.g. RIPL-3 [91], JENDL-5 [188], IAEA Evaluated Photonuclear Data
Library [145]) and astrophysical calculations [154] and provide quite flexible alternatives for
the description of photonuclear data. The parameters in these models to a large extent
rely on fits to existing experimental data for stable isotopes and/or droplet-model estimates.
Similarly to the phenomenological NLD models, the predictive power of these approaches is
thus limited to nuclei not too far from the stability valley. Moreover, the need to account for
such low-lying dipole features as the PDR, scissors mode, and upbend calls for alternative
ways to estimate GSFs.

At relatively low energies4, the microscopic shell model approach provides an excellent
framework to extract strength functions by averaging over a large number of electromagnetic
transitions. It has first been applied to Mo and Zr isotopes with A ∼ 90 by Schwengner et
al. [190] to study the M1 strength function below the neutron threshold. The calculations
confirmed a steep increase of the strength (upbend) towards the zero transition energy, ob-
served also with the Oslo method. Similar shell-model calculations for the E1 strength are,
however, more computationally demanding due to the need to include sufficiently large model
spaces. Up until recently, no consistent calculations of both the M1 and the E1 components
within the same theoretical framework have been performed. The first calculations of this
kind for 44Sc have been presented by Sieja in Ref. [172], revealing an upbend of M1 nature
and a non-vanishing tail of the E1 strength, in accordance with experimental observations
and the majority of empirical models. Calculations of this kind have also been presented for
the case of 51Ti in Ref. [191].

At present, large scale shell-model calculations are still limited to light- and medium-mass
nuclei and predominantly M1 strength distributions. Large scale (Q)RPA calculations remain
the only microscopic (or rather semi-microscopic5) approach with a predictive power sufficient
to provide E1 strength distributions over the whole nuclear chart. Such calculations have been
performed by Goriely and Khan for nuclei with 8 ≤ Z ≤ 110 in [192]. The calculations were
restricted to excited states calculated with QRPA on top of HF plus BCS ground states for
different Skyrme-types of effective nucleon interaction. The obtained strengths, broadened by
folding with the Lorentzian function, provide a reasonable description of the IVGDR region

4There are, however, several examples of photoabsorption cross section calculations in the IVGDR region
using an extension of the Monte Carlo shell model [189].

5For a practical use in statistical model codes, calculations of (Q)RPA type are usually adjusted to be more
compatible with experimental results by an additional broadening, energy shift, and scaling. Corrections are
also introduced in deformed nuclei to account for the splitting of the IVGDR.
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for the vast majority of stable nuclei [145]. The reliability of the HF plus BCS and QRPA
calculations was further improved by treating the pairing correlations in the ground state
within the HFB approach in [66] and introducing finite-range Gogny forces [193, 194]. Taking
into account more complex configurations in the form of coupling of single-particle degrees
of freedom with phonon degrees within QPM [195] and QTBA [196] has been the next step
towards a more realistic description of both the IVGDR and the PDR.

Despite an improved predictive power of microscopic approaches, there are still no means
to test them far from the valley of stability (except for very few cases, see e.g. [71]). Ev-
idently, microscopic and semi-microscopic calculations, as well as the empirical models de-
scribed above, need to be verified against available experimental strength functions.

2.2.4 GSFs from experiments

Considering the importance of assessing the quality of theoretical approaches and the ex-
tensive use of GSFs as inputs for reaction modeling, a coordinated effort supported by the
International Atomic Energy Agency (IAEA) has been recently made to collect all avail-
able sources of experimental information on GSFs of different types and multipolarities and
within different energy ranges in a reference data library in 2019 [197]. Even though all of
the included experimental techniques have been presented in the review paper by Goriely et.
al. [145], it is still instructive to provide a brief overview here.

Below the neutron threshold, one of the main sources of upward strength functions deduced
from absolute measurements of photoabsorption cross sections is NRF studies, introduced in
the previous chapter. In these experiments, ground-state decay widths are extracted from
measured ground-state transition intensities by assuming that no branching transitions take
place and all excited states decay directly to the ground state. To account for the missing
strength and be able to compare NRF results with other experimental strengths closer to
the neutron threshold, corrections for weak unresolved transitions and branching ratios are
usually performed. In experiments at the γELBE facility [25] and the S-DALINAC elec-
tron accelerator facility at TU Darmstadt [198] with broad ranges of bremsstrahlung photons
up to certain end-point energies, one should also account for the feeding of excited states
from higher-lying states, contributing to the total measured decay intensities. This is partly
resolved by performing experiments with different bremsstrahlung end-point energies. Inten-
sities of branching transitions and ground-state branching ratios for populated states can be
obtained from statistical model simulations (see e.g. [23]), which inevitably introduce a model
dependence in the analysis. In the experiments with quasi-monoenergetic, fully polarized
photons at the HIγS facility [27], this is overcome by studying intensities of both ground state
transitions and transitions cascading via certain low-lying states, which serve as collectors
of inelastic transitions. The angular distribution study and the use of polarized beams or
Compton polarimeters in such experiments allows to determine spins of excited states and
discriminate between M1 and E1 transitions.

Within the PDR region, the Oslo method applied to particle-γ coincidence spectra from
light-ion-induced reactions is an alternative approach to extract GSFs, which can be explicitly
compared with available NRF data. The details of the extraction of the GSF with this method
will be outlined in Sec. 3.3.5. In a large number of cases where both types of experiments have
been performed, some disagreements in both shape and absolute values between the extracted
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Fig. 5. Schematic outline of the experimental method using quasi-monochromatic photon beams at HIγS for the extraction of
photoabsorption cross sections (a) and for the determination of the shape of the PSF from primary γ-ray transitions to low-lying
excited states (b & c). A detailed description of the method can be found in the text and ref. [47].

fig. 5(b) and (c) and was introduced for particle-induced
reactions using proton-γ-γ correlations in 94Mo(d, p)95Mo
reactions [60]. Primary γ-ray transitions from excited
states at Ex1

to low-lying excited levels yield informa-
tion on the PSF at the corresponding transition energies:
f(Eγ = Ex1

− E2+
1
) ∝ σx1→2+

1
, with σx1→2+

1
being the

associated transition intensity. The observation of several
direct transitions to different low-lying states for a par-
ticular excitation energy, allows to reconstruct the PSF
over a broad γ-ray energy range, which is schematically
shown in fig. 5(c) by generic data points. Varying the ex-
citation energy and measuring the decay intensity to the
same low-lying excited states, it is possible to derive the
PSF at slightly different Eγ . The obtained large data set
allows to determine the shape of the PSF for the decay
channel and can be compared to the one determined from
the photoabsorption measurements. It is emphasized, that
the two outlined approaches allow to model-independently
study the PSF in the excitation and the decay channel, re-
spectively.

4.1 The case of 128Te

The outlined approach is applied to photo-induced reac-
tions with the γ-γ coicidence setup γ3 [70] at HIγS, where
both methods are used for the first time in (−→γ , γ′γ′′) re-
actions for the case of 128Te [47]. Exemplarily γ-γ co-
incidence spectra (black histogram) are shown in fig. 6
for two different photon beam energies, namely Ebeam =
6.19MeV and Ebeam = 8.0MeV, applying the energy con-
dition on the 2+

1 → 0+
1 transition with Eγ = 743 keV.

After a detector response deconvolution procedure, the
resulting spectrum (red histogram) contains full-energy
events, only, including unresolved transitions. The bump
at the high-energy end of the spectrum corresponds to
the accumulated primary γ-ray transitions from the exci-
tation energy to the 2+

1 state. The remaining intensity in
the low-energy part of the deconvoluted spectra, in partic-
ular for the case at Ebeam = 8.0MeV (lower panel of fig. 6)
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Fig. 6. The γ-γ coincidence spectra with energy condition on
the 2+

1 → 0+
1 transition with Eγ = 743 keV using Ebeam =

6.19 MeV (upper panel) and Ebeam = 8.0 MeV (lower panel).
For details see text.

is attributed to target-related background radiation from
atomic scattering of the γ-ray beam off the 128Te target
and to transitions to other low-lying levels that are mea-
sured in coincidence to the 2+

1 → 0+
1 transition.

The results for 128Te are given in fig. 7. The top panel
shows the individual PSF values (orange triangles) deter-
mined in this way from all observed primary γ-ray transi-
tions for excitation energies up to the neutron separation
threshold of Sn = 8.78MeV. A comparison of the PSF
extracted from primary γ-ray transitions to the one de-
termined from the photoabsorption cross section (black
squares) is shown in the lower panel of fig. 7. Since the
PSF from primary transitions cannot be determined on
an absolute scale, it can be scaled freely as indicated by
the double-sided arrow in fig. 7(b). However, independent

Figure 2.5: Schematic representation of the experimental method using quasi-monochromatic
photon beams at the HIγS facility. (a) Extraction of photoabsorption cross sections, (b)-(c)
extraction of the shape of the GSF from primary γ transitions to low-lying excited states.
Figure is reprinted with permission from Ref. [198].

GSFs have been observed [145]. Prior to testing the applicability of the BA hypothesis
based on the comparison of such strengths, one should consider relatively large systematic
uncertainties of the Oslo method, as well as systematic uncertainties due to statistical model
corrections and the atomic background subtraction and statistical uncertainties in the NRF
data. Despite some disagreements in shapes, the GSFs overlap within rather broad uncertainty
bands in some cases [145], and no clear conclusions on potential violations of the BA hypothesis
can be drawn.

A more promising test of the correspondence between the downward and upward strengths
can be performed with the ratio method developed by Wiedeking et al. and presented in
Ref [199]. In this work, the shape of the downward GSF was extracted in a model-independent
way using this method. In general, it can further be compared with both an upward NRF
strength and a model-dependent downward Oslo method strength. One of such tests, men-
tioned in the previous section and shown in Fig. 2.4(a), was done using a quasi-monochromatic
photon beam and a high-efficiency γ-ray detection setup at HIγS, allowing to perform both
a standard NRF analysis and γ-γ coincidence spectroscopy for 128Te [168]. Both the upward
NRF and the downward decay strengths have been extracted from the same data set. A
schematic outline of this procedure is shown in Fig. 2.5. The ratio method is based on es-
timating relative intensities of primary transitions from the same excitation energy window
to low-lying excited states of the same spin and parity. The latter condition allows to avoid
introducing a model dependence through assuming a certain form of the spin distribution.
This method is, however, limited to extracting only the shape of the GSF, and an absolute
normalization of the strength has to rely on some auxiliary experimental data.

The GSF over wide energy ranges above the neutron threshold are available from a plethora
of photoneutron cross sections, currently collected in the EXFOR database [200]. The exper-
iments usually employ bremsstrahlung beams, mono-energetic beams from in-flight annihila-
tion of positrons, and laser-induced Compton backscattering. The cross-sections are extracted
from either high-efficiency neutron counting or offline γ-ray spectroscopy. In the same energy
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range and even below the neutron threshold, the GSFs can also be extracted with inelastic
proton scattering experiments with polarized and unpolarized relativistic proton beams at the
the Research Center for Nuclear Physics (RCNP), yielding both the M1 and E1 components
via the multipole decomposition analysis or studying polarization of scattered particles with
a polarimeter. For the cases of 208Pb [138] and 96Mo [130], where a comparison of (p, p′) data
with the Oslo method results has been performed (see also Sec. 2.2.2), the strengths agree
quite well within the uncertainties.

The GSF within rather narrow energy ranges below the neutron threshold can be extracted
from intensities of primary γ transitions following resonant neutron capture [176, 201, 202].
The partial radiative widths can be obtained for capture on individual resonances by means
of the Time-of-Flight (TOF) spectroscopy (Discrete Resonance Capture (DRC)). The effect
of PT fluctuations in such data is quite strong, and averaging over measured resonances is
required in the analysis to reduce their impact. Alternatively, the average resonance capture
(ARC) exploits filtered neutrons with broader incident energy ranges. The dipole GSF from
such experiments is obtained in arbitrary units and needs to be normalized to DRC data.
Knowledge of spins of initial and final states for individual resonances allows for discrimina-
tion between the E1 and M1 components of the total strength. Relative intensities of primary
photons following thermal neutron capture can serve as one more source of information on
the GSF [203]. This method is similar to the DRC, with the exception of larger PT fluctu-
ations due to averaging over only the final states but not the initial resonances. Radiative
proton capture experiments have also been included in the database [145], even though their
applicability is limited to medium-mass nuclei with relatively low proton separation ener-
gies of product nuclei. Moreover, average total radiative widths obtained for resolved s and
p neutron resonances are important ingredients for the absolute normalization of the Oslo
method strength. In general, the systematics of available DRC data for GSF values between
≈ 4 − 6MeV are in fairly good agreement with those based on the Oslo data for nuclei with
A > 130. For the lighter nuclei, the Oslo method tends to provide lower values than the
DRC [204].

Several methods have also been proposed to test various GSF models. For example, a
reproduction of unfolded singles photon spectra from thermal neutron capture (n, γ) reactions
with a statistical model code can be used to verify the γ-decay pattern predicted by a chosen
GSF model, as was shown in Ref. [205]. Furthermore, a similar test can be performed by
measuring spectra of the so-called two-step cascades (TSC) following thermal neutron capture
with high-resolution Ge detectors (see [206] and references therein). Such cascades proceed
between populated compound states and fixed low-lying states of certain spins and parities
and can be measured by selecting pairs of coincident events yielding a fixed sum energy equal
to the energy difference between the initial and final states. The measured spectra for all
possible cascades have been shown to be quite sensitive to the expressions for the E1 and
M1 components of the GSF and the NLD model in Monte-Carlo simulations in [206]. In
the work by Krtička et al. [160], this method was used to confirm the presence of scissors
resonances built on excited states in 163Dy, in line with the Brink-Axel hypothesis. Moreover,
the TSC method with the NLD extracted independently from neutron evaporation data has
been applied to spectra from the (p,2γ) reaction on 59Co [207], which allowed to suppress PT
fluctuations and achieve better precision than in neutron-capture reactions. This experiment
has revealed a presence of an M1 upbend, also observed in the corresponding Oslo data.
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A later modification of this method, developed at Los Alamos National Laboratory, ex-
panded the TSC method to measurements of multi-step γ cascades (MSC) for different mul-
tiplicities following neutron capture on isolated resonances with the highly-segmented, high-
efficiency detector array DANCE [208]. These studies continued the investigation of the M1
scissors mode and the upbend in Dy isotopes [209] and were recently used test the HFB
plus QRPA with the D1M Gogny interaction [210], inciting further theoretical attempts to
reproduce and include the upbend in semi-microscopic models.

2.3 Statistical calculations of radiative neutron-capture

cross sections

Astrophysical radiative neutron capture on the nuclei studied in this thesis is expected to pro-
ceed through the compound-nucleus mechanism, and can thus be treated within the statistical
model, sometimes referred to as the Hauser-Feshbach formalism [68]. In their pioneering work,
Hauser and Feshbach used the compound nucleus as initially defined by Bohr as a starting
point to derive the reaction cross section through statistical nuclear characteristics by taking
into account the conservation of angular momentum and parity in the reaction6. Following
their derivation, Eq. (2.2) from the beginning of this chapter can be rewritten as:

σ(α,β) = σαCGC(β) =∑
Jπ

σJπαC
P Jπ(β)

∑β P
Jπ(β)

=∑
Jπ

σJπαC
⟨ΓJπ(β)⟩

∑β⟨Γ
Jπ(β)⟩

. (2.28)

Here, we introduced the spin J and parity π of the compound state. The decay probability of
the compound nucleus GC(β) through the channel β can be written explicitly using a normal-
ized decay probability P Jπ(β), which is proportional to the average decay width ⟨ΓJπ(β)⟩.
The cross section for the formation of the compound state with energy EC and spin-parity
Jπ can be expressed in terms of the transmission coefficient for an incident particle T (α) and
the wave number of its relative motion k as [211]:

σαC =∑
Jπ

σJπαC =
π

k2
α

∑
Jπ

2J + 1

(2Jt + 1)(2Jp + 1)
∑
sl

Tl(α). (2.29)

In this relation, the transmission coefficients have been weighted with probabilities that un-
polarized projectiles with spin Jp and orbital angular momentum l and target nuclei with spin
Jt form the compound nucleus with spin J , as well as the number of projections of the angular
momentum l. The transmission coefficients are summed over spins s of the entrance channels
(s⃗ = J⃗p + J⃗t) and the angular momentum l (l⃗ + s⃗ = J⃗). Taking further into account that the
average decay widths can be linked to the transmission coefficients for the exit channel β, the
total cross section of the reaction can be written as:

σ(α,β) =
π

k2
α

∑
Jπ

2J + 1

(2Jt + 1)(2Jp + 1)

∑sl Tl(α)∑s′l′ Tl′(β)

∑β∑s′′l′′ Tl′′(β)
. (2.30)

6This publication continues the work by Wolfenstein [69], who was the first one to introduce the conservation
of total angular momentum, z-component of angular momentum, and parity into the description of a compound
nucleus decay.
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This is, however, a general expression for the unspecified entrance and exit channels α
and β. In the radiative capture process in astrophysical environments, the entrance channel
becomes neutron capture, whereas the exit channel corresponds to photon emission, allowing
us to introduce the corresponding transmission coefficients Tn and Tγ in the previous relation.
Provided that the maximum energy of captured neutrons in astrophysical scenarios should
not exceed ∼ 1 MeV, the decay channels of the compound nucleus in the denominator of
Eq. (2.30) are usually dominated by neutron and γ emission, so that:

σ(n, γ) =
π

k2
n

∑
Jπ

2J + 1

(2Jt + 1)(2Jp + 1)

Tn(EC , J, π)Tγ(EC , J, π)

Tn(EC , J, π) + Tγ(EC , J, π)
. (2.31)

The neutron transmission coefficient can be estimated with the optical model potential
of the target nucleus. The γ-ray transmission coefficient includes decays with photons of all
possible types XL to the final states J

πf
f accessible from the initial state of the compound

nucleus Jπ after applying all appropriate selection rules:

Tγ(EC , J, π) =∑
XL

J+L
∑

Jf=∣J−L∣
∑
πf
∫

EC

0
TγXL(Eγ)ρ(EC −Eγ, Jf , πf)dEγ. (2.32)

Thus, the experimental γ-ray transmission coefficient TγXL(Eγ) and the NLD ρ(Ex, J, π)
of the compound nucleus can be combined with an appropriate optical model potential to cal-
culate the radiative neutron-capture cross section. This provides an additional experimental
alternative to direct (n, γ) measurements and the surrogate method using the (d, pγ) reaction
to provide reaction cross sections and rates of interest for astrophysical simulations.
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Chapter 3

Experiments at the OCL and the Oslo
method

To lay the foundation for a systematic study of the low-lying E1 strength in the Sn isotopic
chain, experimental data on eleven Sn nuclei were collected at the Oclo Cyclotron Laboratory
(OCL) of the University of Oslo. The following chapter provides the most important experi-
mental details and procedures applied to extract their NLDs and GSFs. As mentioned earlier,
the Oslo method, yielding simultaneously both of these statistical characteristics of excited
nuclei, is the central method exploited in this thesis. It is a complex procedure involving
such steps as unfolding of experimental spectra for selected particle-γ events, extraction of
primary photons for excitation energies below the neutron threshold, decomposition of two-
dimensional primary spectra into the NLDs and GSFs, and, finally, their normalization to
auxiliary experimental data. These steps are outlined in detail in Sec. 3.3. Furthermore, the
120,124Sn isotopes have been analyzed with the shape method (Sec. 3.4), providing additional
information on downward GSFs from a selective decay into the ground and the first excited
states in these nuclei. These two methods, combined with the results of other experimental
techniques, allow for a thorough test of the assumptions underlying the Oslo method and
benchmarking the obtained strength distributions. In this chapter, we are going to use the
120Sn case to illustrate some of the key steps of the analysis.

3.1 Experimental setup

Since the first experimental setup was put into use at the OCL in the 1990s, the Oslo group
has been actively involved in experimental nuclear structure research with the main focus on
statistical properties of nuclei within the quasi-continuum excitation regime. The latter is
attained in studied nuclei via light-ion-induced transfer or inelastic scattering reactions. All
experiments were carried out with the MC-35 Scanditronix cyclotron, providing pulsed beams
of protons, deuterons, 3He, and α with energies up to several tens MeV (up to ≈ 47 MeV for
a 3He beam). On the way through the experimental hall, the beam can be delivered with two
switching magnets to several stations for the production of medical isotopes, irradiation of
cancer cells, and radiation hardness testing of electronics. The beam is bent by an analyzing
magnet by 90○ and redirected from the cyclotron vault towards the experimental hall. The
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(a) (b)

Figure 3.1: (a) The CACTUS NaI(Tl) scintillator detector array used to perform experiments
to study 111−113,116−119,121,122Sn. The photograph supplied courtesy of Prof. M. Guttormsen.
(b) The OSCAR LaBr3(Ce) scintillator detector array, installed in 2018 to replace CACTUS.
The array was used to study the 117,119,120,124Sn isotopes. The target chamber can be seen in
the center of the open frame of OSCAR.

principal experimental station comprises the target chamber with target holders on a wheel,
surrounded by an array of scintillator detectors, and a particle telescope system placed inside
the chamber. This configuration ensures efficient detection of particle and photon events
following an excitation of a studied nucleus with an impinging beam of light ions.

Before 2018, the CACTUS array [212] (see Fig. 3.1(a)), consisting of 28 spherically dis-
tributed 5′′×5′′ NaI(Tl) γ detectors, was used in all experiments. Placed at a distance of 22
cm from the target center, the detectors covered a solid angle of ≈ 18% of 4π, considering
additional lead collimators (thickness of 10 cm, �7 cm) and 2 mm copper absorbers, used
to suppress the crosstalk between the detectors and X-rays, respectively. The total efficiency
and energy resolution at Eγ = 1332 keV were estimated to be 15.2(1)% and ≈ 6.8% with
a 60Co source. In some of the earliest experiments, CACTUS was combined with one (see
e.g. Ref. [80]) or two 60% Ge detectors to estimate the populated spin range and to monitor
potential contaminants in the spectra. In 2018, this system was replaced by the new Oslo
SCintillator ARray (OSCAR) [213], consisting of 30 large volume �3.5′′×8′′ LaBr3(Ce) de-
tectors mounted in a truncated icosahedron-shaped frame. Figure 3.1(b) shows OSCAR with
the open frame and the target chamber located in the center. All detectors are confined in
aluminium housings and coupled to Hamamatsu R10233-100 photomultiplier tubes (PMT)
combined with LABRVD active voltage dividers [214]. The latter were specifically designed
for large volume LaBr3(Ce) detectors to ensure PMT gain stability in case of high event count
rates. Overall, the new scintillator array provided a number of significant advancements as
compared to CACTUS, such as improved energy resolution, efficiency, stability of the emitted
light with temperature, and excellent intrinsic time under 1 ns [215]. The latter is especially
crucial for the selection of particle-γ coincidence events for the further analysis with the Oslo
method. The time resolution was reduced to ≈ 4−5 ns Full Width at Half Maximum (FWHM)
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(a) (b)

Figure 3.2: (a) The layout of the front ∆E pads of the particle telescope SiRi. The illustration
is reprinted with permission from Ref. [216]. (b) The photograph of SiRi placed inside the
target chamber (supplied courtesy of Prof. A.-C. Larsen).

of the prompt peak for such events, compared to ≈ 10− 15 ns FWHM for CACTUS, and it is
mainly limited by the timing properties of the particle detection system and electronics. With
OSCAR placed at a distance of ≈16 cm from the chamber center, the solid angle coverage was
increased to ≈ 57% of 4π (no additional collimators are used). The total efficiency and energy
resolution with the 60Co source for the Eγ = 1332 keV transition were estimated to be ≈ 40%
and 2.2%, respectively.

An accurate estimation of the excitation energy of a nucleus prior to γ-ray emission relies
on an accurate measurement of scattering angles and energies of ejectiles, provided a known
beam energy and a Q-value of the reaction. The currently used particle detection system is
presented by a custom-designed silicon ring (SiRi) [216], consisting of 8 trapezoidal-shaped
1550-µm-thick E detector pads and the corresponding 130-µm-thick ∆E layers. The center of
each pad is placed at a distance of 5 cm from the target. The implemented E-∆E technique
allows for an efficient separation between reaction channels with ejectiles of different mass
and charge. This can be easily understood based on the energy loss mechanism for charged
particles traveling though a medium. Provided charged particles move at higher speed (β =

v/c) than typical velocities of orbital electrons, the energy loss per unit path length (stopping
power) for ions can be expressed by a simplified Bethe-Bloch formula [92, 217]:

∆E = ∣−
dE

dx
∣ ∼

z2

β2
∼
mz2

E
, (3.1)

where z, m and E are the charge, mass, and energy of the charged particles, respectively. The
energy loss of a particle along its trajectory and, thus, in the ∆E and E layers as a function
of energy depends also on its charge and mass. Experimentally measured two-dimensional
spectra of registered ejectiles, plotted as functions of energies deposited in the thin ∆E Si layer
versus the thick E detector, reveal several (if kinematically allowed and if recorded statistics
are sufficient) clearly separated reaction channels, which can be easily separated by applying
energy-dependent graphical gates.
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The range of covered particle scattering angles is either from 40○ to 54○ or from 126○ to 140○,
depending on whether SiRi is placed in a backward or a forward position with respect to the
beam direction. The ∆E layers are additionally segmented into 8 curved pads (see Fig. 3.2(a)),
corresponding to 2○ polar angles each, to provide more accurate estimation of the excitation
energy prior to γ-ray emission and to avoid pile-up events. In total, this segmentation provides
64 combinations of E-∆E detectors. The SiRi array placed in the backward position in the
target chamber with the target holder wheel is shown in Fig. 3.2(b). To moderate a high-
voltage operation required for a complete depletion of the thick Si E wafers, the ∆E and E
detectors share the same system of 18 guard rings, covering the edges of active areas in all
detector segments. With an approximately 6% of 4π solid angle coverage, SiRi has significantly
improved detection efficiency (≈ 10 times) compared to the telescope system in use before its
installation in 2011. The previous detector was presented by 8 standard, commercial E-∆E Si
telescopes, with E and ∆E counters of 1500 µm and ∼ 140−150 µm thickness. The detectors
were not segmented and thus had to be collimated to reduce the scattering angle uncertainty,
at the expense of detection efficiency. In all experiments before 2011, the telescopes were
placed at ≈ 45○ with respect to the beam direction, covering a 5○ window of scattering angles.
In addition, a 10.5-µm- or a 15-µm-thick Al foil was used to cover the ∆E counters in these
experiments to stop high-energy δ electrons produced in the target material.

With the present configuration of the setup (OSCAR and SiRi), signals are processed with
Digital Gamma Finder (DGF) Pixie-16 modules manufactured by XiA [218]. Each module is a
16-channel all-digital waveform acquisition and spectrometer card, digitizing signals with a 14-
bit analog-to-digital converter, running at 500 MHz for signals from the 30 OSCAR channels
and at 250 MHz for signals from the 72 ∆E and E detector channels after passing through the
SiRi preamplifiers. Continuously sampled signals are written in list mode and available both in
real time for an online monitoring, diagnostics, control of triggering, energy and time filtering,
and for an offline analysis after writing to disc. Since some particles might be stopped by the
∆E layer without being registered in the backward E detector, such events are rejected at
the online in-beam data collection stage. To single out particle-γ coincidence events, signals
(time stamps) from E detectors are considered the time start point, while the stop points
are attributed individually to each LaBr3(Ce) or NaI(Tl) detector signal. In contrast to
the constant fraction discrimination in Pixie-16, the leading-edge timing implemented in the
earlier used (before 2018) Mesytec STM-16 modules [216] required an amplitude-dependent
time “walk” correction. This correction was performed in all experiments carried out before
the installation of XiA electronics in 2018. Finally, all recorded and saved data are grouped
into larger events within a 1 µs time frame with respect to recorded ∆E signals, chosen as
reference points in the offline analysis due to an overall better time resolution.

3.2 Experiments on Sn isotopes

Eleven Sn isotopes, 111−113,116−122,124Sn, were studied in nine experimental campaigns at the
OCL in the period of time from 2003 to 2022. The first experiments were aiming at studying
the pair breaking process in NLDs and enhancement in GSFs of 116,117Sn with a 38-MeV
beam of 3He in the 117Sn(3He,αγ)116Sn and 117Sn(3He,3He′γ)117Sn reactions. The used 117Sn
target was self-supporting and had a thickness of 2.1 mg/cm2 and an enrichment of 92%.
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These experiments were followed by the investigation of 118,119Sn with the same beam energy
in the 119Sn(3He,αγ)118Sn and 119Sn(3He,3He′γ)119Sn reactions on a 1.6-mg/cm2-thick 119Sn
target with a 93.2% enrichment. All of the above-mentioned experiments were performed
with the older configuration of the setup, including CACTUS and eight standard, commercial
Si telescopes. To reduce the uncertainty in the scattering angle, the latter were equipped
with collimators with either a circular (117Sn) or a squared (119Sn) opening, limiting the solid
angle coverage to ≈ 0.72% and ≈ 1.5% of 4π, respectively. The Si detectors were placed at 45○

with respect to the beam direction to provide sufficiently high cross sections of the reactions
of interest, while still having reasonably low relative contribution of elastic events.

After installation of SiRi, the 122Sn(3He,αγ)121Sn and 122Sn(3He,3He′γ)122Sn reactions with
a 38-MeV 3He beam impinging on 122Sn (1.43-mg/cm2-thick, 94% enrichment) were per-
formed. With SiRi, the excitation energy resolution was significantly improved as compared
to the earlier experiments. Further, the 112Sn target (4-mg/cm2-thick, 99.8% enrichment)
was used to collect the data in the 112Sn(p, dγ)111Sn, 112Sn(p, p′γ)112Sn, and 112Sn(d, pγ)112Sn
reactions with a proton beam of 25 MeV and 16 MeV and a 11.5-MeV beam of deuterons,
respectively. In all of the first experiments with SiRi, the telescope was placed in the forward
position, covering polar angles between 40○ and 54○.

The most recent experiments on 120,124Sn were carried out with OSCAR and SiRi, with the
latter placed in backward angles to suppress the contribution of elastic scattering events. They
were among the first in the series of experiments with OSCAR performed after 2018. Both
nuclei were studied in the (p, p′γ) reactions with 16 MeV protons impinging on 120,124Sn targets
(thicknesses of 2.0 mg/cm2 and 0.47 mg/cm2, enrichments of 99.6% and 95.3%, respectively).
Moreover, the 117,119Sn isotopes were recently remeasured with inelastically scattered protons
to make use of the improved excitation and γ-ray energy resolutions with OSCAR and SiRi.
The most relevant information on all of the performed experiments is summarised in Table 3.1.

The typical energy resolution achieved in the experiments with 3He with the older setup
is ≈ 250 − 350 keV FWHM, estimated from the fit to the elastic peaks in the (3He,3He′) and
(3He,α) reaction channels. For the same experimental conditions, SiRi allowed to reduce it to
≈ 150 − 200 keV in the experiments on 121,122Sn. With the 11.5 MeV d and 20 MeV p beams,
it was limited to ≈ 300 keV, chiefly due to the large thickness of the 112Sn target. The best
resolution ≈ 100 keV was achieved in all the experiments with 16 MeV protons. In addition
to such factors as the intrinsic resolution of Si detectors, target thickness, and beam energy,
the beam energy resolution also contributed to these values.

The E and ∆E spectra were calibrated with linear functions applied to centroids of elastic
peaks, first excited states within the channels of inelastically scattered particles, ground-state
and first-excited-state peaks observed in transfer reaction channels, combined with known
energies deposited in each of the 64 ∆E-E telescope combinations. An example of the observed
(p, p′), (p, d), and (p, t) reaction channels for the 120Sn target is presented in Fig. 3.3(a). Here,
the red solid line shows a graphical cut applied to single out the (p, p′) reaction channel
of interest. Additionally, an energy-dependent gate on the time difference (after alignment)
between the front and back detectors was applied to ensure the exclusion of coincidence events
from the neighboring beam pulses. With the known reaction kinematics, the energy deposited
to the E and ∆E layers by ejectiles was converted into the initial excitation energy of the
nuclei of interest prior to γ-ray emission.

The linear calibration of Nal(Tl) detectors of CACTUS was performed with 12C and 28Si
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Figure 3.3: (a) Experimental ∆E −E spectrum measured for the 120Sn isotope. The proton
channel used for the data analysis is marked with the red solid line. The ground and first
excited states of 120Sn in the proton channel and the ground state of 118Sn in the triton channel,
used for the linear calibration of the particle telescope, are marked with yellow circles. (b)
Raw p-γ coincidence matrix for 120Sn. The data below the neutron threshold (yellow dashed
line) are shown.

calibration targets. Even though the large-volume �3.5′′×8′′ LaBr3(Ce) were shown to provide
good linearity of the energy response in tests with the same type of PMT and voltage divider
up to 17-18 MeV [215], a minor non-linearity of the 30 OSCAR detectors was accounted
for by applying a second-order polynomial fit to centroids of peaks of calibration transitions
using the same 12C (≈1 mg/cm2) and 28Si (≈4 mg/cm2) targets. Graphical cuts (similar
to the one shown in Fig. 3.3(a)) are applied to the energy and time spectra of ∆E and E
detectors to limit the analysis to the reaction channel of interest. Further, the data within
the gate on the prompt peak in the spectrum of time differences between the signals in the
reference E and scintillator detectors are selected. The events obtained by gating on one of
the off-prompt peaks, which correspond to random particle-γ coincidences for events from
different beam pulses, were subtracted from the selected data to extract the true coincidences
for the further analysis. For example, in the most recent experiments on 120Sn and 124Sn,
approximately 5.3×107 and 1.3×107 p-γ coincidence events, respectively, remained below the
neutron threshold for the further analysis after the background subtraction.

Selected particle-γ coincidence data were grouped in form of a two-dimensional Eγ-Ei
raw coincidence matrix, combining γ-ray spectra resulting from γ decays of states with ini-
tial excitation energies Ei. An example of such a matrix for the 120Sn isotope is presented
in Fig. 3.3(b). The diagonal line with Eγ = Ei and other visible neighboring parallel lines
correspond to the direct decay to the ground and the first excited states. The experimen-
tal resolution allows for a clear separation of the ground state and the first vibrational 2+

state in all the studied even-even isotopes, while at higher energies or in odd-even isotopes
the separation is strongly hindered by a narrow spacing of the low-lying states. The yrast
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transitions are usually clearly seen in form of strong vertical lines (e.g. a vertical red line at
1.2 MeV in 120Sn in Fig. 3.3(b)), covering a large range of initial excitation energies up to
the neutron threshold. Above Sn, the number of counts is significantly reduced due to the
formation of a Z

N−1A nucleus and the population of its first excited states. Since the used setup
is not optimized for the discrimination of neutrons in coincidence with other particles and
photons, the whole subsequent analysis is usually limited to the maximum initial excitation
energy Ei = Sn. The low-lying transitions between the states within the discrete region were
used to check the Eγ and Ei calibrations in each case. The 16O and 12C (6.1 MeV and 7.1
MeV transitions in 16O and a 4.4 MeV transition in 12C in Fig. 3.3(b)) contaminants were
present in all data sets and, unless the data within the chosen energy limits were unaffected,
were removed at the later stages of the analysis by interpolating the counts from the bins in
the immediate vicinity. In most of the cases, the contaminants were successfully removed,
leaving a smooth region at relatively high excitation energies below Sn largely unaffected.
Any remaining leftover counts have little to no impact on the final results.

3.3 The Oslo method

The information stored in a two-dimensional excitation and γ-ray energy distribution of pri-
mary transitions might provide an access to the density of nuclear levels and the distribution
of γ-decay probabilities. This was the initial idea behind the first attempts to extract pri-
mary transition distributions and NLDs in light-particle-induced reactions by the Oslo group
in 1990s, described in the earliest works by Guttormsen et al. [33] and Henden et al. [219].
This research was to a large extent inspired by particle evaporation experiments, being the
main source of information on the NLD as a function of excitation energy outside the discrete
region at the time. Attaining a compound-like structure by a nucleus prior to particle or γ
emission is the core prerequisite of the analysis. This condition, however, is expected to be
better fulfilled for a much slower deexcitation via photon emission.

The idea behind the Oslo method, formulated at the beginning of the 2000s, remains the
same. It generalizes and expands the first attempts to access the statistical characteristics of
excited nuclei, presenting a rather robust technique to extract the NLD and the GSF from the
primary matrix in four key steps: unfolding of experimental spectra, extraction of primary
transitions, extraction of functional forms of the NLD and the GSF, and normalization. All
these steps applied to the studied Sn isotopes are discussed in detail in the following sections.

3.3.1 Unfolding

As the first step of the analysis with the Oslo method, the measured γ-ray spectra collected
at each Ei bin below Sn have to be corrected for the CACTUS or OSCAR detector response
in the deconvolution, or unfolding, procedure to reconstruct the true emitted γ-ray spectrum.
It relies on the knowledge of a response function of the detecting system, accounting for any
interactions of photons within the detector volume or any surrounding materials, and thus a
detailed geometry and type of materials used in the array, as well as the statistical nature
of scintillation photon emission, the non-uniformity of their collection, and the impact of the
PMT and processing electronics, contributing to the final energy resolution. Since Rayleigh
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Figure 3.4: (a) Response of CACTUS (blue line) and OSCAR (red line) at Eγ = 5 MeV.
The used relative resolution at Eγ = 1.33 MeV is 6% for CACTUS and 3% for OSCAR. (b)
Unfolded matrix for 120Sn obtained in the (p, p′γ) experiment. All contaminants have been
removed. Yellow dashed line indicates the neutron separation energy. The bin size is 64
keV×64 keV.

scattering of very low-energy photons does not result in any measurable effect in the scintil-
lators, the main interaction mechanisms forming the shape of the detector response are the
photoelectric effect, Compton scattering, and pair production. The full deposition of a photon
energy in the detector volume results in a full energy peak in the spectrum, while any partial
energy loss due to Compton scattered photons forms a broad band of the Compton back-
ground. Moreover, photons scattered though large angles in the surrounding (e.g. shielding)
elements and picked up in the closest scintillator contribute to a broad backscatter peak in
the low-energy part of the spectrum (∼ 200 keV). For photons with energies Eγ > 1.022 MeV,
the pair production process becomes one more mechanism of energy redistribution through
a formed electron-positron pair. On its trajectory though the detector (or surrounding) ma-
terial, a positron annihilates with an atomic electron, forming two 511-keV photons. Both
or only one of them may leave the crystal, resulting in the so-called single and double es-
cape peaks, respectively. Alternatively, they might be registered in one of the scintillators,
producing a sharp annihilation peak at 511 keV in the spectrum.

In a general case, the response of the detector is presented by a function (or a matrix in a
discrete case) R(E,Eγ) determining the probability to detect an incident photon of Eγ energy
as a signal with energy E. For CACTUS, the response function was determined based on 10
monoenergetic spectra for γ-ray energies from ≈ 100 keV to ≈ 15 MeV from several radioactive
sources and for in-beam experiments [34]. This, however, provides a response limited to these
monoenergetic transitions only, whereas a more fine grid of γ energies is generally required.
To interpolate between the measured spectra, the full-energy, single and double escape, and
annihilation peaks were removed, and the Compton background was interpolated along the
channels corresponding to the same scattering angles, forming a fan of interpolation curves.
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Hence, for an arbitrary γ energy, the total response is provided by a Compton background
reconstructed in this manner and all the peaks added at their corresponding energies, scaled
and smoothed with the corresponding intensities and resolutions. For the OSCAR array, the
response function [220] was modeled with the GEometry ANd Tracking 4 (GEANT4) library
[221–223] for a large grid of incident photon energies, considering the complete geometry of
the setup (the OSCAR detectors, support frame, target chamber, SiRi, beam line, target
holders, and frame). The simulations were performed for isotropic mono-energetic sources
with multiplicity 1. The detailed modeling of the scintillation process was omitted to keep
the optimal computation time. To account for this and the response of the signal processing
electronics, all peaks were corrected for the experimental resolution. The simulations were
verified against measured 60Co, 133Ba, 137Cs, 152Eu source spectra and in-beam spectra and
were found to provide a reliable response matrix down to Eγ ≲ 200 keV, well below the energies
considered in the analysis and the experimental energy threshold. An example of responses
of CACTUS and OSCAR at Eγ = 5 MeV are shown Fig. 3.4(a).

With the response function R(E,Eγ), the observed experimental spectrum is provided by
the convolution transform of the “true” (unfolded) γ spectrum:

R(E) = ∫ R(E,Eγ)U(Eγ)dEγ. (3.2)

For the recorded spectra discretized by binning, this relation can be rewritten in a matrix
form:

f = Ru, (3.3)

with R representing the discrete probability distribution, replacing the conditional probability
density in the previous equation. The vectors f and u represent the measured and the true
spectra, respectively.

The most straightforward way to restore the unfolded spectrum u would be solving an
inverted matrix equation. However, the response matrix might be ill-conditioned, and any
small changes in the measured spectrum might result in large artificial oscillations of the
unfolded solution. To avoid such instabilities, an easily performed and not computationally
demanding direct folding procedure can be used instead to approximate the unfolded spectrum
in an iterative procedure. This technique, called the folding iteration method, is used (see e.g.
[34, 35]) to deconvolute the measured data from experiments as a part of the analysis with
the Oslo method an can be summarized in the following steps:

1. The measured spectrum f is chosen as a zeroth-order approximation (trial function) of
the unfolded spectrum f:

u0 = f. (3.4)

2. The trial spectrum is folded:
f0 = Ru0. (3.5)

3. The next approximation to the unfolded spectrum is constructed from the previous trial
function and the difference between the observed and the first folded trial function as:

u1 = u0 + (f − f0). (3.6)
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4. This process continues until the difference f−fi becomes comparable with the fluctuations
in the i-th trial function ui, i.e. fi and f are comparable within the uncertainties.

Large numbers of iterations might result in strong oscillations making the the obtained
unfolded spectrum similar to the solution with the response matrix inversion. In most of
the Oslo method works performed with the CACTUS array, the recommended number of
iterations was limited to 10−50 iterations. However, with the response matrix of OSCAR, this
number of iterations was found to be insufficient when handling strong artificial oscillations
in the spectrum linked to the present contaminants. Larger numbers (up to several hundreds)
are recommended to reduce such artifacts without creating any strong additional fluctuations.
Moreover, as noted in Ref. [224], the quality of the obtained unfolded spectra are also affected
by the widths (smoothing) of all structures in the response matrix. Applying the experimental
resolution of 1 FWHM might potentially lead to large oscillations around observed peaks.
The optimal widths were suggested to be reduced to 50% of the experimental FWHM values.
This was confirmed in Ref. [34] for the response matrix of CACTUS and implemented in the
unfolding procedure of the Oslo method software. For OSCAR, the response FWHM was
further reduced to 10% of the experimental value.

Further refinement of the unfolded spectrum u obtained in the previous procedure is
provided with the so-called Compton subtraction method [34]. The core idea of this last
step is to obtain the final unfolded solution having experimental fluctuations of the observed
spectrum f, rather than preserving fluctuations introduced with the folding iteration method.
Using the unfolded spectrum u as a starting point, the procedure can be outlined as follows:

1. Provided that the probabilities of counts to be attributed to the full-energy (pfe), single
escape (pse), double escape (pde), and annihilation peaks (pa) were estimated when
creating the response matrix, a new spectrum comprising the peak structures only is
defined:

v = ufe +w, (3.7)

where w = use + ude + ua, ufe(i) = pfe(i)u(i), use(i − i511) = pse(i)u(i), ude(i − i1022) =

pde(i)u(i), ua(i511) = ∑i pa(i)u(i), and i indicates a bin number (i511, i1022 are the bins
for the energies of 511 keV and 1022 keV, respectively).

2. Each peak is smoothed to match the experimental energy resolution of 1 FWHM.

3. The Compton background is extracted from the folded (raw) spectrum:

c = f − v, (3.8)

inherently containing strong fluctuations of the unfolded spectrum. The latter can
removed by applying a 1 FWHM smoothing to c, since the Compton background is
expected to be a slowly varying function of energy.

4. Finally, the final unfolded spectrum preserving the experimentally observed fluctuations
is obtained by subtracting the smoothed components from the observed spectrum f :

ũ = f −w − c. (3.9)

Further, this spectrum is corrected for the full-energy peak probability and the total
detector efficiency.
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The combination of the folding iteration and the Compton subtraction methods has been
repeatedly shown to be quite robust and provide reliable results in numerous previous works
(see Ref. [35] and references therein). An example of the unfolded matrix produced for 120Sn
is shown in Fig. 3.4(b).

3.3.2 Extraction of primary γ-rays

Accessing both the GSF and the NLD from the statistical decay of states in the quasi-
continuum requires information on the distribution of branching ratios for the γ decay of states
within each initial excitation energy bin. It can be obtained by singling out first-generation, or
primary, transitions, by separating them from any secondary, tertiary, and other generations
of transitions in all cascades of γ decays contained in the emitted spectra. Within the Oslo
method framework, this is done with the so-called first-generation method [33], an iterative
subtraction technique applied to γ spectra of the unfolded matrix (Fig. 3.4(b)).

To provide an overview of this procedure, let us consider an unfolded spectrum ui for
an initial excitation energy bin i, which contains all possible cascades of photons produced
in the deexcitation of a nucleus in excited states within the i-th bin. Naturally, in the
statistical region, the level spacing limits us to the analysis of ensembles of excited states
within excitation energy bins rather than separate states. If the acquired statistics allow,
typical bin widths are usually chosen to be 10 − 100 keV. Assuming that the decay pattern
of these states is independent of the mechanism of their formation (via direct population in
a reaction or decay of higher-lying states), the spectra in the lower-lying bins j are expected
to include the same γ transitions as in the bin i, excluding all primary transitions stemming
directly from the bin i. This is the core assumption of the method, and it is expected to
hold well within the chosen Ei and Eγ energy limits [33, 35, 219]. Considering that a typical
γ-decay lifetime within the quasi-continuum region is of order ∼ 10−15 s, comparatively longer
than ∼ 10−18 s required to reach an equilibrium, a nucleus might indeed be expected to attain
a compound-like state prior to the observed γ decays. This allows us to express the primary
spectrum pi as a difference of the unfolded spectrum for the bin i and a weighted sum of
contributions from the lower-lying bins j:

pi = ui −∑
j<i
nijwijuj. (3.10)

Here, the weighting coefficients wij are normalized (∑j wij = 1) and present the distribution
of decay probabilities from the states i to the states j, or branching ratios. The coefficients
nij are introduced to account for the difference in cross sections of populating states in the
bins i and j.

The correction for the cross-section nij is determined so that the area of nijuj for each j
corresponds to the same number of cascades as in the initial spectrum ui. It can be obtained
by comparing numbers of counts N s in the singles spectra for the bins i and j (singles nor-
malization). Due to the proportionality of the singles-particle cross sections to the numbers
of eventual cascades, the coefficients nij can be written as:

nij =
N s
i

N s
j

. (3.11)
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Alternatively, they can be deduced through an average γ-ray multiplicity ⟨M⟩ for the
cascades in the bins i and j (multiplicity normalization). Denoting the numbers of counts in
the spectra ui and uj as Nu

i and Nu
j , respectively, the coefficients take the following form:

nij =
Nu
i

⟨Mi⟩

⟨Mj⟩

Nu
j

, (3.12)

where the average multiplicity can be extracted from the average γ-ray energy corresponding
to the deexcitation of a nucleus at excitation energy Ex:

⟨M⟩ =
Ex
⟨Eγ⟩

. (3.13)

Considering the weighting coefficients wij are introduced to account for the branching
ratio distribution, they correspond directly to the primary spectrum pi after providing the
latter with the same energy calibration as in wij and normalizing its area to unity. This
relation suggests an iterative procedure to obtain the primary spectrum through the series of
consecutive approximations of the unknown wij weights for the considered bins i and j < i.
As the first step, an arbitrary trial function wij is adopted. It is used to approximate the
primary spectrum pi from Eq. (3.10), which can be further normalized to 1 and recalibrated
to match the energy calibration of wij in order provide a new, updated function wij. This
process is repeated until the updated coefficients wij are approximately equal to those from
the previous iteration.

To have a better control over this procedure, an area consistency check can be performed
at each iteration for the cases with well-determined average multiplicities. Let us denote the
subtracted sum in Eq. (3.10) as gi and multiply the number of counts in it by an additional
factor α, so that the areas under the spectra pi, gi, and ui provided by the corresponding
numbers of counts Np

i , N g
i , and Nu

i are related by

Np
i = N

u
i − αN

g
i . (3.14)

The correction α is assumed to be close to 1. The number of primary photons in the spectrum
pi is supposed to be equal to the number of possible cascades, and thus the number of counts
in the primary spectrum Np

i can be linked to the number of counts in the original spectrum
ui and the average γ-ray multiplicity as:

Np
i =

Nu
i

⟨Mi⟩
, (3.15)

and the correction α from Eq. 3.14 becomes then

α = (1 −
1

⟨Mi⟩
)
Nu
i

N g
i

. (3.16)

Such correction is performed for each excitation energy bin at each iteration and, as a rule
of thumb, should not exceed ≈ 15%. For larger deviations, a new trial function wij should be
considered. However, in most of the cases analyzed with the Oslo method, including all the
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Figure 3.5: Primary matrix for 120Sn obtained in the (p, p′γ) experiment. Yellow dashed line
indicates the neutron separation energy, and blue solid lines indicate the areas of the primary
matrices used further in the Oslo method. The bin size is 64 keV×64 keV . (b) Schematic
representation of the decomposition of the primary matrix into the NLD and the GSF.

studied Sn isotopes, α is approximately equal to 1 at relatively high excitation energies be-
low the neutron threshold and only moderately deviates from this value towards the discrete
excitation energy region. The procedure has been shown to be essentially insensitive to the
initial choice of the trial function wij (the unfolded spectrum is taken by default), and the
choice between the singles and the multiplicity (chosen here) normalizations, providing results
well in agreement within the uncertainties. The procedure converges quite well already after
a few iterations for simulated spectra, as was shown in Ref. [33]. However, for experimental
spectra, including those for all the studied Sn isotopes, ≈ 10 − 20 iterations are usually per-
formed to ensure a good convergence. An example of a primary matrix obtained with the
first-generation method is shown in Fig. 3.5(a).

The area correction check can be used as one of the benchmarks limiting the range of initial
excitation energies to a certain Emin

i . Moreover, the reliability of the first-generation method
is limited at low excitation energies and low γ-ray energies due to the reduced configuration
mixing and thus an apparent failure of the adopted hypothesis regarding the independence
of decay patterns of a population mechanism. This hypothesis has been discussed in detail
in Ref. [35] and put into test in calculations [225]. As mentioned earlier, thermalization of a
nucleus at higher excitation energies is justified by the typical time frame required to form a
compound nucleus versus that required for a de-excitation via γ decay. The typical spectra
of such thermalized states can be expected to be rather smooth and similar in shape, which
is indeed the case for the experimental unfolded and primary spectra in the quasi-continuum.
The deviations form this pattern tend to occur closer to the discrete state region. Here,
it might be observed that some of the states are more likely to be populated directly in a
reaction rather than fed via γ decay of above-lying states, or vice versa. This results in a
strong over-subtraction or an under-subtraction of counts, respectively, at the same γ-ray
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Table 3.2: Minimum and maximum limits for the initial excitation energy (Emin
i and

Emax
i ≈ Sn) and minimum γ-ray energy Emin

γ limits applied to the primary matrices of
111−113,116−122,124Sn. All energies are provided in MeV.

Isotope 111Sn 112Sn 113Sn 116Sn 117Sn 118Sn 119Sn 120Sn 121Sn 122Sn 124Sn

Emin
γ 1.0 1.5 1.5 1.6 1.4 1.5 1.8 1.3 1.7 1.8 1.6

Emin
i 3.0 4.0 5.5 4.0 3.4 4.9 4.0 4.5 3.5 4.5 5.0

Emax
i 8.2 10.8 7.7 9.6 6.9 9.2 6.5 9.1 6.2 8.8 8.5

energy in the higher-lying excitation energy bins. An example of such an over-subtraction is
clearly seen in Fig. 3.5(a) below ≈ 1.2 MeV. This effect commonly limits the γ-ray energy to
a certain Emin

γ in each case. For this reason, the extracted GSFs in the studied Sn isotopes
reach only down to ≈ 1 − 2 MeV.

Another factor that might distort decay patterns towards higher excitation energies is a
gradual change of the spin distribution with population of higher-spin states1. The experi-
mental spin distribution as a function of excitation energy has been previously addressed in
Refs. [219, 226] for the case of 162Dy by studying the ground band side-feeding probability at
different excitation energies. The results suggest the spin distribution to be almost constant
within the quasi-continuum region. An overall similarity of the populated (unfolded) spectra
throughout the quasi-continuum region in the Sn isotopes also support this conclusion.

To test the influence of different reaction mechanisms and thus potentially different pop-
ulated spin ranges, decay patterns of the same nucleus produced in the pick-up and inelastic
scattering reactions have been studied in Refs. [227–229]. A similar test can be provided by
a comparison of the results from inelastic scattering of protons, 3He, and α particles on the
same target (e.g. 117Sn in the present work). A good agreement of NLDs and GSFs obtained
with different reactions within the uncertainty bands supports the assumptions behind the
first-generation method.

Based on all the above-mentioned limitations, the Emin
γ and Emin

x were chosen to limit the
statistical excitation energy region of the primary matrix used for the subsequent extraction
of the NLDs and GSFs. The limits for all the eleven Sn isotopes are listed in Table 3.2. In
principle, with the primary matrix at hand, one might follow two alternative ways to extract
the GSF. The first one is a part of the standard Oslo method and presents a decomposition of
the distributions of primary transitions from the states in the quasi-continuum to determine
both the NLD and the GSF as functions of excitation and γ-ray energies, respectively (see
Fig. 3.5(b)). On the other hand, the shape method provides an alternative approach to
extracting the slope of the GSF by considering intensities of primary decays to the ground
and the first excited discrete states. The application of this method to the studied Sn isotopes
will be outlined in detail in Sec 3.4.

1Another factor might also be a disproportionate contribution of states with positive and negative parities
in the quasi-continuum. According to HFB plus combinatorial method calculations by Goriely et al. [112] and
their further improvement by Hilaire et al. [113], this should not not have any significant effect at sufficiently
high excitation energies below the neutron threshold.
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3.3.3 Decomposition of the primary matrix

As mentioned earlier, the extraction of the statistical characteristics of excited nuclei with the
Oslo method is largely based on the compound-nucleus picture. Here, we take as a starting
point a nucleus in a thermalized state, γ decaying through a certain final channel f , which
is fully decoupled from an initial channel c of the compound state formation. The energy
distribution Nf of emitted particles would then be determined by the cross section σ(c → f)
of going from the channel c to to the final channel f and the density of final states in the
residual nucleus f as [89]:

dNf = σ(c→ f)ρfdEf . (3.17)

Applied to the distribution of primary transitions P(Ei,Eγ) extracted with the first-generation
method, this relation can be further modified within the Hauser–Feshbach theory of statis-
tical reactions to obtain the following relation between the γ-ray transmission coefficient for
transitions from the states i in the quasi-continuum to the final states f and the density ρf :

P(Eγ,Ei)∝ Ti→f ⋅ ρf . (3.18)

A detailed derivation of this relation is presented in Ref. [230] and in Appendix A. One can
arrive at the same factorization with somewhat more illustrative Fermi’s golden rule [231, 232]
taken as a starting point instead [233]:

λi→f =
2π

h̵
∣ ⟨f ∣Ĥint∣i⟩ ∣

2ρf , (3.19)

where λi→f is the transition rate between the states i and f , and Ĥint is the interaction
Hamiltonian between the external field and the nucleus. Here, the transition rate can be
directly related to the first-generation spectra of the primary matrix, after averaging over
numerous initial states within excitation energy bins of P(Eγ,Ei). The γ-ray transmission
coefficient in Eq. (3.18) characterizes the average decay properties of such states. Similarly
to the matrix element in Eq. (3.19), it depends on both initial and final states, or rather
ensembles of states in initial and final excitation energy bins. This makes the simultaneous
extraction of Ti→f and ρf from the experimental primary matrix impossible. At this point,
to resolve this issue, the Brink-Axel hypothesis is introduced in the analysis, reducing the
dependence of the γ-ray transmission coefficient on the initial and final states to Eγ as the
only argument, i.e. Ti→f → T (Eγ). The Brink-Axel hypothesis is one of the key assumptions
adopted in the Oslo method, and its applicability in the case of the studied Sn isotopes will
be discussed in detail in the next chapter. With this simplification, Eq. (3.18) can be further
modified to obtain the principal relation of the Oslo method:

P(Eγ,Ei)∝ T (Eγ) ⋅ ρ(Ei −Eγ). (3.20)

With this factorization, functional forms of the NLD and the GSF are obtained by applying
an iterative minimization procedure. Here, we present only the key steps leading from the
primary matrix to ρ(Ex) and T (Eγ), while the rest of the intermediate derivations can be
found in Ref. [234].
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As a first step, the primary matrix P(Ei,Eγ) is normalized to unity for each excitation
energy bin Ei and γ-ray energies running from the minimum value defined in Sec. 3.3.2 to the
value of Ei:

Ei

∑
Eγ=Emin

γ

P(Ei,Eγ) = 1. (3.21)

The principal idea of the procedure is to approximate the experimental matrix P(Ei,Eγ)
with a theoretical matrix Ptheor(Ei,Eγ), normalized according to Eq. (3.21) and having the
following form:

Ptheor(Ei,Eγ) =
T (Eγ)ρ(Ei −Eγ)

∑
Ei
Eγ=Emin

γ
T (Eγ)ρ(Ei −Eγ)

, (3.22)

with T (Eγ) and ρ(Ei −Eγ) corresponding to the desired solutions for the γ-ray transmission
coefficient and the NLD. The approximation is done by minimizing χ2 in the following form:

χ2 =
1

Nfree

Emax
i

∑
Ei=Emin

i

Ei

∑
Eγ=Emin

γ

(
Ptheor(Ei,Eγ) −P(Ei,Eγ)

∆P(Ei,Eγ)
)

2

(3.23)

with Nfree = NP−NT −Nρ corresponding to the number of degrees of freedom. NP , NT , and Nρ

are the numbers of data points in P(Ei,Eγ), T (Eγ), and ρ(Ei−Eγ), respectively. ∆P(Ei,Eγ)
is an uncertainty of each bin (Ei,Eγ) in the experimental primary matrix. Strictly speaking,
it is defined by the Poisson statistics, but the Gaussian distribution implied by the use of the
χ2 minimization is a sufficiently good approximation.

It can be shown that the form of the theoretical primary matrix provided by Eq. 3.22
implies that one can construct an infinite set of analytical solutions with the following trans-
formations of the original solutions ρ(Ei − Eγ) and T (Eγ) from the least χ2 method (see
Ref. [234] for a detailed derivation):

ρ̃(Ei −Eγ) =Aρ(Ei −Eγ) exp(α(Ei −Eγ)),

T̃ (Eγ) =BT (Eγ) exp(αEγ),
(3.24)

with A and B being the scaling parameters, and α being a slope parameter, shared by both
the NLD and the γ-ray transmission coefficient.

Considering this, one can start the procedure by obtaining the first-order estimate of
P(Ei,Eγ) by setting the corresponding first-order estimate of ρ0(Ei − Eγ) to 1. Summing
over the initial excitation energies and taking into account that Eγ ≤ Ei provides the first-
order estimate of the γ-ray transmission coefficient:

T0(Eγ) =
Emax
i

∑
Ei=max(Emin

i ,Eγ)
P(Ei,Eγ). (3.25)

Further, we minimize the χ2 function with respect to ρ(Ei −Eγ) and T (Eγ) by letting

∂χ2

∂ρ(Ei −Eγ)
= 0,

∂χ2

∂T (Eγ)
= 0 (3.26)
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Figure 3.6: Experimental primary spectra of 120Sn at approximately 4.5 MeV (a), 5.0 MeV
(b), 5.5 MeV (c), and 6.0 MeV (d), 6.5 MeV (e), 7.0 MeV (f) excitation energy bins compared
to the spectra predicted with the derived level density and γ-transmission coefficient (from
Eq. (3.22)). The excitation energy bins are 128-keV wide.

for all arguments Ei−Eγ and Eγ of these functions. This provides two equations to determine
the next-order estimates ρ1(Ei −Eγ) and T1(Eγ) through the zero-order functions.

In general, this procedure converges fast (within ≈ 30 − 40 iterations) and well, which was
also the case for all the studied Sn isotopes. Some examples of the experimental spectra fitted
with the optimized Ptheor(Ei,Eγ) for several initial excitation energy bins in 120Sn are shown
in Fig. 3.6. The theoretical fitted spectra reproduce all the observed experimental features
quite well. To avoid any potential failures due to a too shallow χ2 minimum, a restriction
is imposed on the changes in the NLD and the γ-ray transmission coefficient, obtained in
each subsequent iteration. The restricting conditions depend on a parameter varied with
the iteration number and chosen to provide a compromise between achieving the minimum
possible χ2 value and maintaining a reasonable execution time.

3.3.4 Normalization of the NLD

As mentioned previously, the χ2 minimization procedure provides only the functional forms
of the NLD and the γ-ray transmission coefficient, which have to be further normalized to
available external experimental data to constrain the physical solutions for ρ(Sn) and T (Eγ).
The principal goal here is to find the optimal normalization parameters and models based on
the most recent experimental and theoretical information available for a consistent description
of all the eleven Sn isotopes. The Coulomb excitation (p, p′) data serve as an excellent
benchmark for both the slope and the absolute values of the GSF, while also indirectly testing
the choice of the slope parameter for the NLD.
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Figure 3.7: (a) Spin distributions at the neutron separation energy in 120Sn modeled within
the rigid moment of interta (RMI) [103], Gilbert and Cameron (G&C) [97], Egidy et al. (1988)
[104] and (2009) [108], and Hartree-Fock-Bogoliubov plus combinatorial (HFB+Comb.) [112]
approaches. For the latter, the spin-cutoff fit value obtained by using Eq. (3.28) is shown in
the legend. (b) The NLD normalized with different spin cutoff values. The fit ranges at low
and high excitation energies are marked with vertical shaded areas.

In the first step, the normalization of the NLD is performed by determining the absolute
normalization (scaling) A and the slope α. To do so, the NLD in the form of Eq. 3.24 is
fitted to the low-lying discrete states available from the most recent compilation in Ref. [125].
The fit range at low excitation energies is usually chosen from the first closely-spaced discrete
states up to the highest energy where the level scheme can still be considered complete (the
vertical shaded area in Fig. 3.7). In the present analysis it was chosen to achieve the best
match between the experimental NLD, integrated over excitation energy bins within this
energy range, and the corresponding NLD provided by the tabulated discrete states. However,
in general, the final result for the majority of the studied isotopes does not change in any
significant way with the exact choice of low-energy fit limits.

The slope of the NLD and its absolute value at the neutron threshold energy can be deter-
mined from the corresponding value of ρ(Sn). The resonance spacings D0 and D1 obtained in
s-wave and p-wave neutron resonance experiments, respectively, are commonly used to esti-
mate this value. In case of s-wave neutrons incident on a target nucleus with the ground state
spin Jt, the partial NLD at the neutron separation energy can be linked to the experimental
D0 value as:

1

D0

=
1

2
(ρ(Sn, Jt + 1/2) + ρ(Sn, Jt − 1/2)), (3.27)

where the 1/2 factor is due to an assumption of the parity equipartition, i.e. levels with positive
and negative parities contributing equally to the total NLD. This assumption is expected to
hold well at sufficiently high excitation energies (in the vicinity of Sn values in the Sn isotopes),
which is also confirmed by microscopic NLD calculations within the Hartree-Fock-Bogoliubov
plus combinatorial (HFB+Comb.) framework [112].
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To access the total NLD at the Sn energy, we exploit the fact that the partial NLD ρ(Ex, J)
can be expressed as a fraction of the total NLD ρ(Ex) by applying a certain spin-distribution
model g(Ex, J). Here, we adopt the approach of Refs. [95, 97], suggesting the following form
of the spin distribution:

g(Ex, J) =
1

2σ2(Ex)
exp(−

J2

2σ2(Ex)
) −

1

2σ2(Ex)
exp(−

(J + 1)2

2σ2(Ex)
)

≃
2J + 1

2σ2(Ex)
exp(−

(J + 1/2)2

2σ2(Ex)
),

(3.28)

where σ(Ex) is an energy-dependent spin-cutoff parameter. Depending on the choice of the
model for the latter, the slope of the NLD might change significantly, thus making it an
important source of potential uncertainties in α. Some of the earlier analyses (see e.g. [187])
employed the rigid-body form of σ2(Sn) [98, 103] provided by Eq. (2.13), Eq. (2.11) taken
from Refs. [97, 235] (see e.g. [83]), an averaged value from several models [139], or by varying
the σ2(Sn) value between several model predictions [36]. Examples of the spin distribution
at the neutron threshold in 120Sn obtained with some of the spin cutoffs used in the earlier
works are shown in Fig. 3.7(a).

The microscopic calculations by Urenholt et al. [236] and Hilaire et al. [120] suggest
that the pairing correlations might still be sufficiently strong up to relatively high excitation
energies in the vicinity of the neutron separation energy to prevent a nucleus from attaining
the rigid-body moment of inertia. The recent QRPA plus boson expansion calculations by
Hilaire et al. [114] also suggest narrower spin distributions (lower σ2) at energies of 8−12 MeV
in the spherical 136Ba nucleus than those obtained with HFB+Comb. approach [112]. The
latter usually provides spin-cutoff values close or slightly larger than the rigid-body estimates
in Sn isotopes (see Fig. 3.7(a)). Moreover, a recent experimental study of the spin cutoff
in 59Ni provided a reduced estimate for this nucleus as compared to the rigid-body value,
highlighting the role of the pairing correlations at relatively high energies. The need for such
a reduction is also evident from the Sn Oslo data. For all the studied isotopes, the rigid-
body model approach results in systematically steeper slopes of the NLDs and, therefore,
the corresponding slopes of the GSFs as compared to the Coulomb excitation data. On
the contrary, the slopes of the NLDs obtained with the models proposed in Refs [104, 108]
tend to be milder. The search for an optimal spin-cutoff parameter can, for example, be
facilitated by the use of the shape method (Sec. 3.4). Unfortunately, experimental limitations
(e.g. insufficient statistics) prevent us from obtaining reliable results with the shape method
for some of the studied Sn isotopes. Here, instead of introducing an unknown reduction factor
applied to the rigid-body estimate, which provides an additional degree of uncertainty, the
following form of the spin-cutoff was chosen:

σ2(Sn) = 0.0888a

√
Sn −E1

a
A2/3, (3.29)

with the level density and the back-shift parameters a and E1 obtained from the global
parameterization of Ref. [103]. The spin-cutoff values provided by this model amount to
≈ 80% of the values based on the rigid-body approach. This choice is additionally supported
by an excellent agreement in slopes with the Coulomb excitation data. In cases where no
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Figure 3.8: (a) Systematics for the ρ(Sn) values extracted from the experimental s-wave
neutron resonance spacing D0 parameters [126]. The even-even and even-odd isotopes are
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and the extrapolated and interpolated values for 111,112,122,124Sn as shown as cyan starts. (b)
Systematics for the ⟨Γγ⟩ values extracted from the experimental s-wave neutron resonance
average total radiative widths [126]. All notations are the same as in (a).

experimental data below the threshold are available, one should consider including the spread
of the NLD at higher excitation energies due to different spin-cutoff models (Fig. 3.7(b))
into the total final uncertainty. Luckily, the Coulomb excitation data for the Sn isotopes
and the shape method allow us to reject some of the models and choose only one approach,
consistently used for all nuclei throughout the whole analysis.

Combining Eq. (3.27) and Eq. (3.28), the NLD at the neutron separation energy can be
expressed as:

ρ(Sn) =
2σ2

D0

1

(Jt + 1) exp(− (Jt+1)2
2σ2 ) + Jt exp(−

J2
t

2σ2)
. (3.30)

The D0 values available from the compilation in Ref. [126] were used to extract ρ(Sn) in
113−121,123,125Sn. No experimental data are available for unstable targets 110,111,121,123Sn. To
fill these gaps, the systematics of the ρ(Sn) values as a function of Sn were constructed for
the Sn isotopes (see Fig. 3.8). The even-odd and even-even nuclei form two separate groups
of data points which were combined by shifting the values of ρ(Sn) for the even-even isotopes
by the value of a neutron pairing gap ∆n [237]. The combined data were fitted with a log-
linear function to extract the missing ρ(Sn) for 111,112,122,124Sn. The similarity of the slopes
of the NLDs in these nuclei with those of their immediate even-even and even-odd neighbors,
expected from nuclei with similar structural properties, supports this approach.

Considering the low γ-energy boundary imposed by the first-generation method, extracted
NLD data points are usually limited to energies 1.5 − 2.0 MeV below the neutron threshold.
The data thus have to be interpolated between the extracted NLD and the ρ(Sn) value. For
this purpose, the constant-temperature (CT) model was employed [96, 97]:
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ρCT(Ex) =
1

TCT

exp(
Ex −E0

TCT

), (3.31)

where the temperature TCT and the energy shift E0 were treated as free fit parameters. In the
earlier Oslo method analyses the back-shifted Fermi gas (BSFG) model was often employed
instead (see e.g. [80]). With a relatively small energy gap between the extracted data and the
ρ(Sn) value, a particular choice of the interpolation model is of little importance for the final
results. In the case of the Sn isotopes, the CT model was chosen over the BSFG approach
due to the better χ2 scores obtained for the fits to the extracted data points at relatively high
excitation energies. For the larger energy gaps, a BSFG fit might lead to an additional boost
of the NLD values below the neutron threshold, providing a slightly steeper slope of the NLD
as compared to the one obtained with the CT approach.

The total uncertainty bands of the extracted NLDs of all the Sn isotopes include the
statistical uncertainties of the data propagated through the unfolding and the first-generation
procedure as outlined in Ref [234] and the systematic errors due to the input normalization
parameters, added in quadrature. Parameter uncertainties were estimated analogously to how
it was done in Refs. [186, 238]; the experimental uncertainties of D0 values were propagated
together with an additional assumed 10% error of the spin-cutoff parameter. For the values of
ρ(Sn) extracted from the systematics, a 30% symmetrical error was assumed for the extracted
D0 values, corresponding to the doubled maximum uncertainty of the experimentally available
D0 values. The choice of the assumed uncertainty limits is supported by a good comparison
with the Coulomb excitation data. The NLDs obtained with some alternative spin-cutoff
models fall within this total uncertainty band, as shown in Fig. 3.7(b). All input parameters
and the corresponding uncertainties used for the normalization of the NLDs in the studied
Sn isotopes are presented in Table C.1.

3.3.5 Normalization of the GSF

The slope parameter α obtained from the normalization of the NLD also determines the slope
of the γ-ray transmission coefficient (Eq. (3.24)), and the only unknown to be constrained
is the absolute normalization of the GSF, denoted by B in Eq. (3.24). Within the Oslo
method, it is done by employing the information on γ decay of neutron resonances. For stable
target nuclei, the average total radiative widths ⟨Γγ⟩ are available from the compilation in
Ref. [126]. The average total radiative width ⟨Γγ(Ex, J, π)⟩ for decaying resonance states with
spin-parities Jπ at energies Ex can be expressed in terms of the γ-ray transmission coefficient
and the NLD [146]:

⟨Γ(Ex, J, π)⟩ =
1

2πρ(Ex, J, π)
∑
XL

∑
Jf ,πf

∫

Ex

Eγ=0
dEγ×

TXL(Eγ)ρ(Ex −Eγ, Jf , πf).

(3.32)

Here, XL denotes the radiation type and multipolarity. The γ-ray transmission coefficient
entering this relation is considered to be normalized and would correspond to BTXL(Eγ)
in the notations of Eq. (3.24) (the correct slope exp(αEγ) is already included in TXL(Eγ)).
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Since the transitions of the dipole type (M1+E1) are expected to dominate within the quasi-
continuum, the transmission coefficient can be further substituted with the GSF using the
following relation [146]:

BTXL(Eγ) = 2πE2L+1
γ fXL(Eγ) ≈ 2πE3

γ(fE1(Eγ) + fM1(Eγ)). (3.33)

Neutron resonance experiments provide the ⟨Γγ⟩ values at the neutron threshold, corre-
sponding to the decay of sates with spin-parity determined by the target ground state spin
and parity Jπtt . In case of s-wave neutrons, Eq. (3.32) can be rewritten as:

⟨Γγ⟩ =⟨Γ(Sn, Jt ± 1/2, πt)⟩ =
1

2ρ(Sn, Jt ± 1/2, πt)
×

∫

Sn

Eγ=0
dEγE

3
γf(Eγ)ρ(Sn −Eγ)×

1

∑
J=−1

g(Sn −Eγ, Jt ± 1/2 + J). (3.34)

Here, we once again assume the parity equpartition and the spin distribution in the form of
Eq. (3.28), allowing to account for the final states accessed via dipole radiation. One can easily
note that the NLD in the denominator of the first factor is directly related to the resonance
spacing value D0. To account for the lack of extracted data points at very low γ-ray energies
due to the imposed Emin

γ limit, the γ-ray transmission coefficient is extrapolated to Eγ = 0
MeV with an exponential function. The contribution of the extrapolated function to the total
integral from Eγ = 0 MeV to Sn does not exceed 10% in the majority of the studied cases,
and variations in the fit due to different choices of anchor points for the extrapolation have
little to no impact for the Sn isotopes.

The spin distribution g(Ex, J) under the integral sign in Eq. (3.34) runs though a range
of excitation energies up to Sn. To account for its energy dependence, the following relation
is adopted from Ref. [91]:

f(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ2(Ed), Ex ≤ Ed,

σ2
d +

Ex−Ed
Sn−Ed

(σ2(Sn) − σ2
d), Ed ≤ Ex ≤ Sn,

σ2(Sn), Ex ≥ Sn,

(3.35)

where σd is a spin-cutoff parameter determined for several levels with a well-defined spin-
parity attribution at low excitation energy Ed in the discrete region, where the level scheme
can be considered complete. The σd and Ed values used for the normalization of the GSF in
the Sn isotopes are listed in Table C.1 together with the average total radiative widths ⟨Γγ⟩
from s-wave neutron resonance studies.

For 111,112,122,124Sn, no experimental resonance data are available, and the average total
radiative widths were extracted from a linear fit to the available values for other Sn isotopes
(see Fig. 3.8(b)). A large scatter of the data points in the systematics complicates revealing a
certain trend in the ⟨Γγ⟩ values. The linear fit, implying the minimum number of assumptions
and fit parameters, was found to provide quite reasonable values for the 111,122,124Sn isotopes
based on the comparison with the Coulomb excitation data and the Oslo method results for
the neighboring nuclei. The uncertainty bands for the extracted values were determined from
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Figure 3.9: (a) γ-ray transmission coefficient for 120Sn obtained with the rigid moment of
interta (RMI) [103], Gilbert and Cameron (G&C) [97], and Egidy et al. (1988) [104] and
(2009) [108] spin-cutoff parameters. The parameter uncertainty component of the total error
bands includes only uncertainties due to σ(Sn) and D0. (b) Same for the normalized GSF.
The parameter uncertainty component of the total error bands includes also the uncertainty
due to ⟨Γγ⟩.

the fit. The radiative width extracted from the systematics for 112Sn (shown in Fig. 3.8(b))
was found to result in too large absolute values compared to the Oslo GSFs for 111,113Sn and
the Coulomb excitation (p, p′) data for 112,114Sn. It was therefore reduced with an additional
factor found through a χ2 minimization of differences between the Oslo and (p, p′) strengths
for 112Sn in the energy range where the data overlap. The difference between the reduced
value and the one obtained from the systematics was assumed to span a symmetric uncertainty
for the reduced ⟨Γγ⟩ value used in the analysis. Similarly, the ⟨Γγ⟩ value for 120Sn from the
compilation was additionally revised and modified. The value used for the normalization of the
GSF in this isotope was estimated from three s-wave resonances in the energy range between
≈ 455 − 828 eV [126], while other resonances were excluded either due to being of p nature
or having too low resonance width values as compared to the confirmed s-wave resonances in
the neighboring Sn isotopes. Substituting the reported ⟨Γγ⟩ value for 120Sn with the modified
one does not change the χ2 fit in Fig. 3.8(b) in any significant way. The GSF normalized with
the modified value was found to be in excellent agreement with the Coulomb excitation data
for the same nucleus. The γ-ray transmission coefficient and the normalized GSF obtained
with different spin-cutoff models are shown in Fig. 3.9.

The uncertainty of the average total radiative width is the largest contributor to the total
uncertainty band of the GSF, including also the statistical errors propagated through the
unfolding and the first generation method and systematic uncertainties from determining the
slope parameter α (due to D0 and σ(Sn)). Similarly to how it was done for the NLDs, the
uncertainties from the unfolding and the primary γ-ray extraction were determined according
to Ref [234], and the systematic error due to all the normalization parameters was estimated
by varying these parameters by analogy with the earlier works [186, 238]. As it can be seen
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in Fig. 3.9(b), the GSFs extracted with different spin-cutoff parameter models fall well within
the total uncertainty band of the GSF of 120Sn, presented also in the following chapters.

3.4 The Shape method

For a large number of cases studied with the Oslo method, especially those of interest for
astrophysical calculations related to the s and i processes, and all cases studied with the
β-Oslo method, no normalization data from neutron resonance experiments are available.
One must thus rely on systematics for the isotopes of interest (or the neighboring chains of
isotopes). The chain of Z = 50 isotopes is one of very few examples, where the number of
stable nuclei is sufficient to reveal some trends in the ρ(Sn) and ⟨Γγ⟩ values and extrapolate
(or interpolate) them to the lighter and heavier isotopes. However, regardless of how complete
the systematics are, they yield quite large uncertainties of normalization parameters, further
propagated into the NLD and GSF uncertainties. In an endeavor to provide an alternative
way to perform the normalization, the shape method has been recently developed [239]. It
shares some similar traits with the average resonance [150, 240], ratio [199], and χ2 [199]
methods applied to primary transitions to low-lying states in order to reconstruct the energy
dependence of the GSF. The previous studies employing the latter three approaches made use
of high-resolution germanium detectors for a more accurate gating on transitions of interest.
The shape method, less sensitive to the γ-energy resolution, is an excellent alternative to
the above-mentioned techniques to reconstruct the shape of the GSF from Oslo and β-Oslo
data, considering a comparatively worse energy resolution of detectors employed to collect
them (compared to high-purity Ge detectors). A detailed description of the method and its
application to several medium- to heavy-mass nuclei is presented in Ref. [239] and recapped
here to provide a better understanding of its application to the Sn data.

The core idea of the shape method is the reconstruction of the shape (slope) of the GSF
based on relative intensities of primary transitions to several low-lying discrete states, corre-
sponding to clearly distinguished diagonals in primary matrices from Oslo-type experiments.
Depending on a nucleus, such diagonals may contain transitions to only one well-separated
discrete state or several closely spaced states clustered together. The number of counts within
a diagonal at excitation energy Ei can be written as:

ND ∝∑
Jf

Ji=Jf+1

∑
Ji=Jf−1

σ(Ei, Ji)g(Ei, Ji)G(Ei,Eγ, Ji, Jf), (3.36)

where σ(Ei, Ji) is a population cross section for the initial states Ji within the excitation
energy bin Ei, g(Ei, Ji) is the spin distribution in the form of Eq. (3.28), playing the role of a
weighting factor, and G(Ei,Eγ, Ji, Jf) is a term including the γ-decay widths for the Ei → Ef
transitions. The first sum accounts for the fact that the diagonal may contain several final
states, while the second sum excludes transitions of other types than dipole. The γ-decay
probability factor can be expressed through the γ-ray transmission coefficient as:

G(Ei,Eγ, Ji, Jf)∝ ∫
Eγ+∆/2

Eγ−∆/2
T (Ei,E

′
γ, Ji, Jf)δ(Ei −E

′
γ, Jf)dE

′
γ, (3.37)
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Figure 3.10: (a) Primary matrix for 120Sn. Yellow dashed lines indicate the neutron separation
energies, and blue solid lines indicate the areas of the primary matrices used further in the
Oslo method. The part of the primary matrix used for the Oslo method is confined within
the solid blue lines. The gates on the ground state and the first excited 2+ state are marked
with red and green dashed lines, respectively. Projections of 128-keV wide bins at ≈ 6,7,8
MeV with gates on the ground and the 2+ states are shown on the left side of the primary
matrix. (b) Schematic description of the sewing technique.

where ∆ denotes the γ-energy resolution, and δ controls that only one final state with Jf and
Ef = Ei −Eγ is included. Assuming that the transmission coefficient does not vary within ∆
in the vicinity of Eγ = Ei−Ef , it can be considered a factor outside the integral sign. Further,
assuming the BA hypothesis, its excitation-energy and spin dependence is removed, leaving
dependence on Eγ only. Taking the relation from Eq. (3.33) between the γ-ray transmission
coefficient and the GSF into account, the initial Eq. (3.36) can be rewritten as:

ND ∝ E3
γf(Eγ)∑

Jf

Ji=Jf+1

∑
Ji=Jf−1

σ(Ei, Ji)g(Ei, Ji). (3.38)

The population cross section σ(Ei, Ji) is essentially unknown, and it is henceforth assumed
to be independent of spin. This assumption has been tested for the cases of 56Fe and 92Zr
in Ref. [239]. For the former nucleus, two well-separated diagonals corresponding to the
same final spins Jf = 2 can be distinguished, reducing Eq. (3.38) to solely the proportionality
to the GSF corrected for the γ-ray energy. The resulting GSF is in good agreement with
the Oslo method strength. However, the GSFs obtained for different diagonals containing
spins Jf = 0,2,3,4,5 in 92Zr are also in quite good agreement with the corresponding Oslo
method strength, suggesting that the initial assumption regarding σ(Ei, Ji) is not the largest
contributor to the uncertainty of the result.

In this thesis, the shape method has been applied only to the even-even 120,124Sn isotopes
with well-separated transitions to the ground and the first 2+ states, while transitions to the
higher-lying 0+,2+ and 4+ states can no longer be distinguished with the energy resolution of
OSCAR. The ranges of initial excitation energies in the primary matrices of both isotopes
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were chosen to coincide with those used for the Oslo method. For the two diagonals with
Jf = 0 (D1) and Jf = 2 (D2), two values of the GSF can be extracted at excitation energy Ei:

f(Eγ1)∝
ND1

E3
γ1g(Ei,1)

f(Eγ2)∝
ND2

E3
γ2(g(Ei,1) + g(Ei,2) + g(Ei,3))

.
(3.39)

The intensities (number of counts) in the diagonals for each excitation energy bin are ob-
tained by applying graphical cuts in a similar way as shown for the ground state (red dashed
line) and the 2+ state (green dashed line) in 120Sn in Fig. 3.10(a). To reconstruct the full
slope of the GSF, the pairs of GSF values at consecutive Ei are normalized internally to each
other with a so-called sewing technique [199]. To do so, a linear or logarithmic interpolation
is applied to fill the data between two values in each pair of extracted points. Further, an
average matching point Eγ between the lowest and the highest Eγ of two consecutive pairs
is determined. Finally, the interpolated data points for both pairs are scaled to match at
the average γ-ray energy. The full shape is obtained by scanning through different excita-
tion energies and scaling each subsequent pair of GSF values to the previous one as shown
schematically in Fig. 3.10(b). In such a way, the GSFs corresponding to both the decay to the
ground state and the first excited state can be determined and compared with the standard
Oslo method result.

This method provides the general shape of the GSF, which has been shown to match well
with the shape of the Oslo method strength for most of the cases studied so far [239, 241, 242],
but not the absolute normalization. External experimental data below the neutron threshold
(e.g. Coulomb excitation or Oslo data) are required to provide the absolute values of the shape
method GSF. Despite this limitation, the shape method is an excellent tool to constrain
the slope parameter of the GSF and hence the NLD and/or minimize its uncertainty as
compared to a value provided by systematics. This might be especially useful for the cases
with limited ranges of populated spins as compared to theoretically expected intrinsic spin
distributions. A reduced range of populated spins in the Oslo data has been previously
addressed in Refs. [35, 243] and thoroughly studied for the (d, p) reaction on 239Pu in Ref. [244].
In such cases, the primary matrix should be fitted with a product of a reduced NLD and the
γ-ray transmission coefficient to provide a correct slope of the GSF. The reduction can be
performed by normalizing the NLD to a reduced value βρ(Sn), instead of the total NLD ρ(Sn)
from the neutron resonance data or systematics. The reduction β is unknown, but it can be
constrained with the shape method by varying this factor until the slopes of the Oslo method
and the shape method strengths match. It can also be obtained as a fraction of populated
spins provided by the spin distribution from Eq. (3.28), which results in the matching slopes.

Several successful attempts to constrain the slope of the NLDs with the shape method have
been performed for 76Ge and 88Kr by Müsher et al. [242] and 112Cd by Goriely et al. [241]. The
GSFs and NLDs available from the β-Oslo and the standard Oslo method for the stable 76Ge
and 112Cd nuclei were used to benchmark the shape method results. With all three methods
providing results in fairly good agreement with each other, the shape method was further
applied to the primary matrix for unstable 88Kr, populated via β-decay of excited 88Br. In
this case, the normalization of the partial absolute NLD was performed in essentially a model-
independent way, based on the available low-lying discrete states and a slope constrained with
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the shape method. Moreover, the uncertainties obtained with the combination of the β-Oslo
and the shape method were shown to be comparable with the typical uncertainties of the Oslo
method applied to stable nuclei. This result demonstrated a promising potential of the shape
method to aid the normalization of GSFs and NLDs far from stability, where systematics can
no longer be expected to be reliable.

3.5 The inelastic proton scattering experiment at RCNP

The systematic analysis of the low-lying E1 strength in Sn isotopes in this thesis is based on
a combined analysis of the Oslo method results and the (p, p′) experiments. The idea of the
latter was to study the electric and magnetic dipole strength distributions in stable even-even
112,114,116,118,120,124Sn isotopes with a relativistic proton beam via Coulomb excitation, domi-
nating under considered extreme forward angles. The data were obtained in several campaigns
in 2015 and 2017 at the Research Center for Nuclear Physics (RCNP), and the results were
published in Refs. [42, 77]. All experiments were performed with the high energy resolution
magnetic Grand Raiden (GR) Spectrometer and the Large Acceptance Spectrometer (LAS)
[29], shown in Fig. 3.11(a). The former includes a series of quadrupole (Q), sextupole (S),
multipole (M) magnets (Q-S-Q-D-M-D), combined with a dipole magnet for spin rotation for
polarized beam experiments, while LAS consists of a quadrupole and a dipole magnets.

The primary unpolarized beam of protons, produced by a NEOMAFIOS ECR ion source, is
accelerated with the Azimuthally Varying Field Cyclotron (AVF) to 54 MeV and injected into
the Ring cyclotron to be accelerated to 295 MeV. Further, the beam of relativistic protons
is directed towards a target in the scattering chamber (Fig. 3.11(a)). The typical beam
intensities were within the 2 − 20 nA range, depending on the spectrometer angle. The
scattered protons were measured at central GR spectrometer angles of 0○, 2.5○, and 4.5○.

forward scattering angles including 0! at RCNP. The developments
were done for slits and monitoring systems of the injector
cyclotron, optimization procedure of the magnetic field and the
radio-frequency field of the injector and main cyclotrons, experi-
mental equipment for realizing measurements at 0! and at very
forward angles, optimization procedure for minimizing instru-
mental background, and analysis procedure for high energy
resolution data with good scattering-angle resolution and back-
ground subtraction. Measurements have been realized with the
highest quality, viz. a high energy resolution of even less than
20 keV (FWHM) at a beam energy of 295 MeV, measurements
continuous from 0! to large scattering angles, a scattering angle
resolution of "0:6!, low instrumental background, and a reliable
background subtraction technique. Polarization transfer coeffi-
cients can also be measured. Up to now measurements on several
targets have been done. The same technique can be applied in the
beam energy range 100–400 MeV. This experimental technique is
very useful for the high energy resolution spectroscopy of nuclear
structures especially for M1 and other DL ¼ 0 transitions, as well
as E1 transitions by the Coulomb excitation.

In Section 2 the experimental setup is described. In Section 3
the beam tuning technique, which is one of the key points of the
experiment, is described. The analysis procedures are given in
Section 4, followed by samples of data in Section 5. A summary is
presented in Section 6.

2. Experimental method

2.1. Beam

An overview of the RCNP cyclotron facility is illustrated in
Fig. 1. A polarized proton beam was produced by the High
Intensity Polarized Ion Source (HIPIS) [23]. For an unpolarized
proton beam a NEOMAFIOS ECR ion source was used. The proton
beam was injected into an Azimuthally Varying Field (AVF)
cyclotron and was accelerated to 54 MeV. The AVF cyclotron had
an extraction radius of 1 m and its magnetic field had three hills

and three valleys. The beam was injected to the Ring cyclotron and
was accelerated up to 295 MeV. Two superconducting solenoids
were equipped in the injection line to the Ring cyclotron to control
the spin axis of the polarized proton beam.

The accelerated beam was transported to the target position
through the high-resolution West–South (WS) beam line [24]. An
achromatic transportation mode was used to measure the beam
energy spread. Then a dispersive transportation mode together
with lateral and angular dispersion matching techniques was used
to acquire high energy resolution physics data [25].

The WS beam line was equipped with two sets of beam line
polarimeters (BLPs). Two protons from pp elastic scattering on a
thin polyethylene (CH2) target, typically with an areal density of
3 mg=cm2, were detected in coincidence by plastic scintillators.
All of the three-dimensional components of the beam polarization
were measured by using the two BLPs. The polyethylene targets
were inserted into the beam line only for beam polarization
measurement as not to produce additional beam halo during
measurements of spectra. As an illustration, 10 s out of 100 s were
used for the polarization measurement. The analyzing power of
the BLP reaction was 0:40" 0:01 at Ep ¼ 295 MeV. Typical beam
polarization was 0.7.

2.2. Spectrometer setup

2.2.1. Setting at 0!

Spectrometers and detectors, as setup for the 0! experiment,
are shown in Fig. 2. The proton beam bombarded a target placed
at the center of the scattering chamber. Typical beam intensity
was 3–8 nA and typical target areal densities were 125 mg=cm2.
For measurements at 0!, the primary beam was transported inside
the GR spectrometer [26], passed through the focal plane
detectors, and stopped by a Faraday cup (FC) placed 12 m
downstream from the focal plane [18,19]. A quadrupole doublet
was used to achieve a good transmission of the beam. The FC of
the 0! beam dump was shielded by iron and concrete. A steering
magnet was placed in front of the 0! FC to sweep away electrons
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Fig. 2. (Color online) Experimental setup of inelastic proton scattering at 0! . The GR spectrometer consisted of two quadrupoles (Q1 and Q2), two dipoles (D1 and D2), a
sextupole (SX) and a multipole (MX), followed by a dipole for spin rotation (DSR). The Large Acceptance Spectrometer (LAS) was used as a monitor of the vertical beam
position on the target. The Q1 Faraday cup (Q1-FC) was used for the measurements at 2:5! and 4:5! .
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FIG. 12. Typical results of the MDA for the example of 120Sn and three different excitation energy bins at 8, 15, and 23 MeV. Top: Spectra
and energy bins indicated by the vertical dashed lines. Bottom: Experimental angular distributions and results of Eq. (5) for different multipoles
and their sum.
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In Fig. 12, a typical result of the MDA is displayed for
the example of 120Sn and three different energy bins at 8, 15,
and 23 MeV. The upper part shows the 120Sn spectra and the
energy bins indicated by vertical dashed lines. In the lower
part, the corresponding experimental angular distributions and
the results of Eq. (5) for different multipoles and their sums
are given. E1 cross sections are largest in the PDR region
(8 MeV), but the M1 contribution at angles close to 0◦ is
non-negligible. At larger angles, some higher multipole com-
ponent is needed to account for the data. The energy bin near
the maximum of the IVGDR (15 MeV) exhibits the expected
dominance of E1 cross sections at forward angles. The only
other relevant contribution is the continuum background. Fi-
nally, at the high excitation energy (23 MeV), all multipole
contributions are at least more than an order of magnitude
weaker than the continuum cross sections.

The results of the MDA for all isotopes are summarized
in Fig. 13, presenting the full acceptance spectra measured at
0◦ (cf. Fig. 6). The orange data show the experimental cross

sections after subtraction of the ISGMR and ISGQR contribu-
tions. The error bars include statistical, systematic, and MDA
uncertainties added in quadrature. The E1 (blue) contribution
is similar in all isotopes. All other multipoles (red) except
M1 (green) contribute very little. The continuum background
(purple) shows the expected increase from the neutron thresh-
old up to the region of approximately constant cross sections
above the IVGDR. However, in the region near threshold, one
finds an abrupt onset at slightly different excitation energies in
the different isotopes. Because of the similarity of the theoreti-
cal M1 and the continuum background angular distributions, it
is difficult to distinguish these two contributions in an energy
region of 1–2 MeV above the neutron threshold leading to a
larger uncertainty of the M1 component not included in the
error bars shown (see also Sec. V C).

IV. PHOTOABSORPTION CROSS SECTIONS

A. Virtual photon method

The conversion of Coulomb-excitation to photoabsorption
cross sections is based on the virtual photon method de-
scribed, e.g., in Ref. [2]. In contrast to the previous results
published for 120Sn [8,28], which were based on the semi-
classical approximation, here the virtual photon spectrum was
calculated in the eikonal approximation [83]. It allows for
a proper treatment of relativistic and retardation effects and
provides more realistic angular distributions due to taking into
account absorption on a diffuse nuclear surface. Examples
of virtual photon spectra for the case of 120Sn and of the

034327-9

(a) (b)

Figure 3.11: (a) Scheme of the Grand Raiden and Large Acceptance spectrometers in the
0○ set-up [29]. (b) Double differential cross sections and differential cross sections obtained
for excitation energy bins at 8, 15, and 23 MeV (dashed vertical lines in the upper figure),
extracted with the MDA for the 120Sn isotope. The figure is taken from Ref. [42].
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For 0○ measurements, the primary beam is directed through the focal plane detectors to be
collected in a Faraday cup downstream, while inelastically scattered protons are deflected
more and detected by the focal plane detectors. For other GR spectrometer angles, the whole
spectrometer is rotated, and the primary beam is collected in a Faraday cup placed after the
first quadrupole magnet. The LAS was used to monitor the vertical beam position, required
to achieve a good vertical scattering-angle resolution for the GR and a more precise scattering
angle calibration with a 58Ni target. The detector systems of GR and LAS are composed of
several vertical drift chambers and plastic scintillators used as trigger detectors. The scattered
particles are discriminated with the time of flight (ToF) technique, based on trigger signals
generated by the scintillator detectors and the radio frequency of the AVF cyclotron. The
typical energy resolution achieved for the Sn isotopes after applying all necessary kinematical
and aberration corrections was 30 − 40 keV FWHM.

After performing the tracking efficiency, scattering angle, energy, and Faraday cup cali-
bration, as well as the background subtraction, the cross sections of interest were obtained.
The double differential cross sections were extracted from the collected counts per excita-
tion energy bin, information on the used targets, charge collected in the scattering chamber
Faraday cup after correction for a beam loss, its efficiency, tracking efficiency of the drift
chambers, live time ratio of the data acquisition system, and the spectrometer solid angle.
To determine the electric and magnetic dipole cross sections, the data were processed with
the multipole decomposition analysis (MDA). Prior to this, the contributions due to the IS-
GMR and ISGQR in the studied nuclei from (α,α′) experiments [245] were subtracted from
the experimental spectra. The background due to the quasi-free scattering (QFS) of incident
particles off singe nucleons in the target nuclei was also subtracted. The experimental angular
distributions were fitted with a linear combination of DWBA-based angular cross sections for
different multipolarities at different scattering angles. At each GR spectrometer angle, data
for 5 scattering angles were determined by applying gates on different vertical and horizontal
angles in the drift chambers. Thus, 15 data points are available per each excitation energy bin
for the MDA. An example of the results obtained with the MDA is shown in Fig. 3.11(b). In
general, the dipole electric and magnetic contributions dominate the differential cross section
at the studied forward scattering angles.

The Coulomb excitation taking place in these experiments can be understood as being due
to the absorption of virtual photons, which have the same effect as the same number of real
absorbed photons. The virtual photon method (see e.g. [246]) exploits this idea to link the
extracted double differential cross section of Coulomb excitation to the E1 photoabsorption
cross-sections. In Ref. [42], this was done by estimating the differential number of virtual
photons within the eikonal approximation [246]. The M1 strength distributions B(M1) were
obtained with the unit cross-section method [247], linking the differential M1 cross section
from the MDA to the dominating isovector spin M1 strength. The resulting E1 and M1
strengths will be compared with the Oslo method results and discussed in the following
chapter.
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Chapter 4

Testing the Brink-Axel hypothesis for
Sn isotopes

In the following chapter, we will consider the main results from Paper I and Paper II, which
are relevant for the test of the validity of the BA hypothesis in Sn isotopes. In these articles,
similar results were obtained for both 120Sn and 124Sn, as indeed expected for nuclei with
similar structural properties. Therefore, in the following, only the results for 120Sn will be
presented to illustrate the main points. It is important to note that different spin-cutoff models
were adopted in Paper II and Papers I, III, and IV. To avoid any potential confusions between
the results presented here and in Paper II, we will follow the results from the latter and discuss
the consequences of choosing different spin-cutoff models at the end of this chapter.

4.1 Techniques used for the test

The BA hypothesis, as was already mentioned in the previous chapters, is one of the core
assumptions of the Oslo method, and assessing its validity is therefore essential for producing
reliable results. In particular, the study of the dependence of the GSF on the initial and final
excitation energy windows used in the Oslo method analysis is important for a check of whether
this assumption is justified in each particular case. Moreover, the correspondence between the
downward Oslo strength and upward strengths, obtained either in NRF or Coulomb excitation
experiments, is crucial for the systematic study of the low-lying electric dipole strength and
answering the question of to what extent these data can be treated as complementary for
extracting its bulk properties.

Oslo method results can not be used alone to provide a comprehensive test of the BA
hypothesis. Therefore, several other techniques shown schematically in Fig. 4.1 have been
exploited in this thesis. As was mentioned earlier, the Oslo method (Fig. 4.1(a)) combines
dipole γ transitions from initial states within a rather broad excitation energy window in the
quasi-continuum to lower-lying final states within the quasi-continuum and the discrete region.
This implies averaging over a large range of excitation energies, and thus the excitation-energy
dependence of the extracted strength might be significantly obscured. To obtain GSFs for
different initial and final excitation energy bins, one can use the primary matrix and the Oslo
method NLD and limit the analysis to transitions from or to individual excitation energy
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Figure 4.1: Transitions included in the GSF to test the Brink-Axel hypothesis in (a) the Oslo
method, (b) the Oslo method limited to specific initial (and, by analogy, final) excitation
energy bins, (c) ground-state Coulomb excitation in the (p, p′) reaction, (d) the shape method
for transitions to the ground state, (e) the shape method for transitions to the first excited
2+ state.

bins (Fig. 4.1(b)). The Coulomb excitation mechanism in forward-angle inelastic scattering
of relativistic protons, from quantum electrodynamical considerations, is equivalent to the
ground-state absorption of virtual photons and thus yields an upward GSF, covering both
the PDR and the IVGDR energy regions (Fig. 4.1(c)). Moreover, the shape method provides
the functional forms of the strengths from a selective decay to the well-resolved ground state
and the first excited 2+ state in even-even Sn isotopes without relying on the NLD from the
Oslo method, as shown in Fig. 4.1(d) and (e). An explicit test of the spin dependence of the
GSF is generally complicated by the close spacing of states with different spins already in the
discrete region. In the case of the even-even Sn isotopes studied in this thesis, this test is
possible with the shape method, but limited only to the first J = 0 and J = 2 states.
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4.2 Porter-Thomas fluctuations in 120Sn

Before addressing the excitation-energy dependence of GSFs extracted from primary transi-
tions in Oslo-type experiments, it is useful to provide an estimate of PT fluctuations in each
considered case. GSFs for different initial and final excitation energy gates have been demon-
strated to be subject to relatively strong fluctuations in medium-mass 64,65Ni [162] and 92Zr
[163] and particularly strong fluctuations in the lighter 46Ti isotope [161], as compared to the
heavy-mass 238Np case [153]. In the context of studying the applicability of the BA hypothe-
sis, the questions are then the following: How strongly would PT fluctuations be suppressed
in the “intermediate” case of Sn isotopes in comparison with the lighter nuclei? How strongly
do the individual strengths fluctuate with respect to an “averaged” Oslo method result? And
how reliable is the assumption on the excitation energy independence of the GSF in this mass
region?

To answer these questions, a prescription from Refs. [162, 163] to estimate the relative
deviations from the averaged (or “true”) GSF due to PT fluctuations was adopted. Let
us assume that they follow the χ2

ν distribution with the number of degrees of freedom ν
determined by the number of contributing transitions between the chosen initial and final
excitation energy bins. The relative fluctuations in this case can then be estimated from the
fraction of the standard deviation and the mean value, expressed in terms of the number of
transitions n(Eγ,Ei,f) as [162, 163]:

r(Eγ,Ei,f) =

√
2

n(Eγ,Ei,f)
. (4.1)

The value of n(Eγ,Ei,f) can be estimated from the information on the discrete low-lying
states up to the energy where the level scheme can no longer be considered complete and the
experimental Oslo method NLD at higher energies. As a minimum excitation energy above
which the smooth Oslo NLD will be used and the spin-distribution function from Eq. (3.28)
can be assumed to be applicable, the energy corresponding to ≈ 10 levels per excitation energy
bin was chosen. In the case of 120Sn, this minimum energy is Emin

x ≈ 3.2 MeV (ρ ≈ 80 MeV−1),
which coincides with the energy range where the Oslo method NLD starts to diverge from
the discrete states from the compilation in Ref. [125]. Furthermore, only the dipole type of
transitions within the quasi-continuum and from the quasi-continuum to the discrete states
is considered. In terms of the NLD, the number of transitions can then be written as:

n(Eγ,Ei) = ∆E2
∑
Jπ

1

∑
L=−1

∑
π′
ρ(Ei, J, π)ρ(Ei −Eγ, J +L,π

′), (4.2)

A similar relation for n(Eγ,Ef) is obtained by swapping the corresponding indices in the
equation above.

Relative fluctuations in 120Sn as a function of γ-ray energy for different initial and final
excitation energy bins are shown in Fig. 4.2. In the left panel (Fig. 4.2(a)), the calculations
are limited to transitions within the quasi-continuum from several fixed initial states, i.e.
Ei ≥ Ef ≥ Emin

x = 3.2 MeV. The right panel (Fig. 4.2(b)) shows the fluctuations for transitions
to several fixed final states within the quasi-continuum (Ei > Ef ≥ Emin

x ) as well as transitions
from the quasi-continuum (Ei ≥ Emin

x ) to the low-lying excitation energy bins, including only
the ground state, only the first excited 2+ state, and a group of different spin-parity states.
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Figure 4.2: Relative fluctuations of the GSF r(Eγ,Ei) for different initial (a) and final (b)
excitation energies for 120Sn. All initial Ei and final Ef = Ei − Eγ energies lie within the
quasi-continuum region in (a). The same applies to fluctuations in (b) shown by solid lines of
different shades of blue. Here, the red dashed, green dashed, and yellow solid lines correspond
to transitions from the quasi-continuum to the ground state, the first 2+ state, and a group
of several low-lying discrete states, respectively. The excitation energy bin is 128 keV. This
figure combines results from Figs. 7 and 8 in Paper II.

The relative fluctuations tend to increase exponentially with γ-ray energy for a given Ei
bin and decrease with the increasing initial excitation energy. This is evident considering
the exponentially increasing NLD with excitation energy and, thus, the increasing number of
transitions over which partial radiative widths are averaged in the GSF. For initial energies
at the neutron threshold and down to ≈ Sn − 2 MeV, the fluctuations within the quasi-
continuum are significantly suppressed and do not exceed ≈ 1%. Moreover, the fluctuations
are consistently smaller than for the case of e.g. 64Ni [162], as would indeed be expected
provided the higher NLD in 120Sn. For the lower initial excitation energies (6.1 MeV and 5.1
MeV), the fluctuations range from ≈ 0.1−0.3% up to several percent, which is comparable with
statistical uncertainties propagated through the unfolding and the first-generation method. It
is important to note that including transitions down to the lower-lying discrete states below
Emin
x , as done in the Oslo method, would further reduce r(Eγ,Ei). This effect is, however,

quite small due to the lower NLD values in the discrete region as compared to the quasi-
continuum.

Similarly, the relative fluctuations r(Eγ,Ef) decrease rapidly with increasing Eγ, since
more states become available for feeding the selected final states. For the transitions within
the quasi-continuum, they are of the same order as in the case of r(Eγ,Ei) (up to several
percent). However, for individual low-lying states, including the ground state, the fluctuations
become especially strong and reach up to several tens of percent, thus exceeding not only
the statistical but also the total systematic uncertainties. In the Oslo method GSF, such
transitions at a given γ-ray energy are included together with transitions between higher-

78



CHAPTER 4. TESTING THE BRINK-AXEL HYPOTHESIS FOR SN ISOTOPES

lying excited states with the same Eγ, and the ground-state decay strength is thus “blended
into” the Oslo method strength. As a consequence, the role of PT fluctuations in the Oslo
method is usually negligible, even for light nuclei and relatively narrow excitation energy
ranges used for the analysis.

4.3 The GSF as a function of initial and final excitation

energies in 120Sn

To investigate a potential excitation-energy dependence of the GSF, a somewhat modified Oslo
method analysis can be applied to primary transition distributions, as was first suggested in
Ref. [153]. It relies on the same decomposition relation as provided in Eq. (3.18), where an
additional normalization factor N(Ei)1 is introduced so that

P (Eγ,Ei)N(Ei) = T (Eγ)ρ(Ei −Eγ). (4.3)

The normalization for each excitation energy bin can thus be obtained by integrating the
relation above over the whole spectrum, in the range of γ-ray energies from 0 to Ei:

N(Ei) =
∫
Ei

0 T (Eγ)ρ(Ei −Eγ)dEγ

∫
Ei

0 P (Eγ,Ei)dEγ
. (4.4)

The idea of the approach from Ref. [153] is to study the γ-ray transmission coefficient,
and therefore the GSF, as a function of initial and final excitation energy bins by relying on
the experimental primary matrix and the NLD extracted with the Oslo method as:

T (Eγ,Ei) =
P (Eγ,Ei)N(Ei)

ρ(Ei −Eγ)
(4.5)

for initial excitation energy bins and

T (Eγ,Ef) =
P (Eγ,Ef +Eγ)N(Ef +Eγ)

ρ(Ef)
(4.6)

for final excitation energies. Any deviations of f(Eγ,Ei) and f(Eγ,Ef) from the correspond-
ing average values over all studied initial and final excitation energy bins or the Oslo method
strength that cannot be explained by PT fluctuations can be a signature for the violation of
the BA hypothesis. The averages of f(Eγ,Ei) and f(Eγ,Ef) agree well within the estimated
uncertainties with the Oslo method strength, and therefore all of the individual strength
functions will be compared only with the Oslo method strength.

1As shown in [230, 233] and Appendix A, this factor might have a rather complex dependence on both
Ei and Eγ , which complicates this analysis significantly. However, assuming only the excitation-energy de-
pendence seems to be reasonable based on the previous analyses [153, 162, 163]. If there were any strong
γ-energy dependence in the normalization factor, it would be manifested, similarly to the violations of the BA
hypothesis, in the form of noticeable variations of not only the shape but also the absolute values (scaling) of
the GSF, which does not seem to be the case.
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Figure 4.3: GSFs for different excitation energy bins at (a) 5.82 MeV, (b) 6.46 MeV, (c)
7.10 MeV, (d) 7.74 MeV, and final excitation energy bins at (e) the ground state, (f) the first
excited 2+ state, (g) 2.50 MeV, and (h) 3.26 MeV compared with the Oslo method strength.
Expected deviations from the latter due to PT fluctuations are shown as blue vertical bars.
Light-grey areas correspond to energies where individual strengths or PT fluctuations are not
defined, dark-grey areas correspond to the excluded data points (see the text). The excitation
energy bin is 128-keV-wide. The figure is taken from Ref. [248].

The GSFs for four different initial and final excitation energy bins are shown in Fig. 4.3.
The results are presented with the corresponding statistical uncertainties propagated through
the above-mentioned method and the Oslo method strength with the full uncertainty band due
to the statistical and systematic errors. Expected deviations due to PT fluctuations from the
Oslo method GSF are shown in each case by vertical blue bars. Light-grey shaded areas in the
upper panels correspond to energies where the individual strengths are not defined due to the
Eγ ≤ Ei condition and excitation energy bins where PT fluctuations can not be determined due
uncertain spin assignments of some of the final states in the discrete region. Here, in contrast
to Fig. 4.2(a), transitions to all possible final states in both the quasi-continuum and the
discrete region are included when estimating the effect of PT fluctuations. Dark-grey shaded
areas correspond to physically impossible transitions to the energy gap between the ground
state and the first excited state (with the experimental resolution of 1 FWHM taken into
account) and should be excluded from consideration. Extraction of the GSF at these energies
is possible due to the leftover counts between the diagonals of the primary matrix and the
finite excitation energy resolution, hence the especially large observed fluctuations. Similarly,
the light-grey areas in the bottom panels correspond to Eγ < Emin

i −Ef and Eγ > Sn −Ef .
For all the fixed initial excitation energies, the individual strengths agree well within

the uncertainties with the Oslo method strength. PT fluctuations are of the same order
as the propagated statistical uncertainties of individual strengths at relatively high γ-ray
energies and gradually become more suppressed towards low Eγ. For example, for the lowest
Ei = 5.82 MeV, PT fluctuations are ≈ 6 times larger than the statistical uncertainties at the
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highest γ-ray energy, corresponding to the ground-state transition, and drop to ≈ 10% of
the statistical uncertainty at the lowest γ-ray energies. For the higher-lying Ei bins, the PT
fluctuations are sufficiently suppressed and range from less than 1% to several tens percent
of the statistical uncertainties.

In case of the fixed final excitation energies, PT fluctuations become more considerable.
At the highest final excitation and γ-ray energies they are negligible and, on average, similar
to the estimates for the fixed initial excitation energies. For the ground-state transitions and
transitions to the first excited 2+ state, uncertainties due to PT fluctuations are up to ≈10
times larger than the statistical Oslo method uncertainty. All extracted strengths are in good
agreement with the Oslo method strength within the above-mentioned errors.

Overall, in all of the considered cases, there are only minor local deviations from the Oslo
method strength that can not be explained by PT fluctuations. They still lie within the total
uncertainty band of the Oslo method result, except for very few individual Eγ bins. Thus,
the assumption regarding the excitation-energy-independent GSF throughout a rather wide
excitation energy window below the neutron threshold seems to be well justified in the case
of 120Sn and 124Sn, as shown in Ref. [248].

4.3.1 Comparing upward and downward strengths

The procedure described in the previous section provides an internal check of the applicability
of the BA hypothesis, and combining these results with other experimental data allows for a
more comprehensive test. In addition to the Oslo method GSF, the strengths corresponding
to the direct decays to the ground state and the first excited state were extracted with the
shape method from the same primary matrix. Both of these strengths are shown separately
in Fig. 4.4(a) and (b) with the statistical errors propagated through the unfolding, first-
generation method, and the shape method. The 120Sn isotope has previously been studied in
two NRF [23, 76] and two Coulomb excitation [42, 77] experiments. A large number of new
transitions were observed in the recent NRF experiment [23], whereas both analyses of (p, p′)
data, despite some differences in the extraction of the photoabsorption cross sections, yield
essentially equivalent results. For this reason, only the most recent results from Refs. [23, 42]
are shown in Fig. 4.4.

As mentioned in Sec. 3.4, the shape method strengths can only be extracted in arbitrary
units and require a normalization. They were therefore scaled to the (p, p′) data between 6
MeV and Sn ≈ 9.1 MeV. Following the analysis in Paper II, the slope of the Oslo method
strength was additionally constrained with the shape method. Provided this, we can judge on
the agreement (or disagreement) in shapes between the downward and the upward strengths
based only on the shape method strength, the (p, p′), and the NRF data. On the other hand,
an agreement or disagreement in absolute values can be stated based on the comparison of
the Oslo method data with the (p, p′) and the NRF strengths.

Overall, the Oslo and the shape method strengths are in excellent agreement with the (p, p′)
data from the neutron threshold down to 6 MeV. In particular, the shape of the ground-
and first-excited-state strengths follows nicely the shape of the (p, p′) strength within its
uncertainty band. Moreover, the latter agrees quite well with the Oslo method strength in
absolute values. The GSF deduced from the continuous spectrum analysis of the NRF data
is also shown in Fig. 4.4. Despite a disagreement with the Coulomb excitation data between
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Figure 4.4: Comparison of the Oslo method, (p, p′) [42], and NRF [23] GSFs with the shape
method strength for transitions to the ground state (a) and the first excited 2+ state (b).
Deviations from the Oslo method strength due to Porter-Thomas fluctuations are shown as
vertical blue bars.

≈ 6 − 8 MeV, these data still fall within a rather broad uncertainty band of the Oslo strength
down to ≈ 5 MeV (except for energies in the immediate vicinity of 6 MeV). Even though the
NRF data yield, on average, higher GSF values, the general shape of the strength is quite
similar to that of other GSFs. The continuous analysis in Ref. [23] was performed with the
CT NLD model, and it was noted to provide by about 6% higher cross-sections as compared
to the BSFG model. Altogether, the extraction of this strength is sensitive to the choice of
parameters and models used in statistical-model calculations, which might have affected both
the absolute values and the shape of the strength. Taking this into account, it is possible to
conclude that there is a rather good correspondence between the downward Oslo and shape
method strengths and the upward (p, p′) and, partly, NRF strengths from about 6 MeV up
to the neutron separation energy.

Similarly to the GSFs in Fig. 4.3(e) and (f), the effect of PT fluctuations is expected to
be quite strong as compared to the estimated uncertainties of the Oslo and shape method
strengths. Expected deviations of the ground-state and the first-excited-state strengths from
the Oslo method result due to PT fluctuations are shown in both Fig. 4.4(a) and (b). It
can be clearly seen that the upward trend in the shape method strengths, forming a bump-
like structure starting from ≈ 5.0 − 5.5 MeV, cannot be explained by PT fluctuations. No
clear structures are present on the diagonals of the primary matrix to cause such artifacts.
Most probably, they can be attributed to the violations of the main assumptions in the
shape method, namely the symmetric parity distribution of the initial nuclear levels, the pure
dipole nature of the involved transitions, and the spin-independent excitation probability
in the studied (p, p′γ) reaction. Moreover, the PT fluctuations reach up to several tens of
percent below ≈ 5.5 MeV, which might impose a lower limit on the initial excitation energy
in terms of the appropriate level density for the application of the shape method. Indeed,
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Figure 4.5: Same as in Fig. 4.4, but with the Oslo method and the shape method strengths
extracted with the Gilbert and Cameron spin-cutoff model from Eq. (2.11).

the ground-state and the first-excited-state strengths are related by the internal normalization
(sewing technique [239]), and large PT fluctuations might affect the reliability of the extracted
strengths. Once the density of initial states reaches ∼ 1000 MeV−1 in 120Sn, deviations of these
strengths due to PT fluctuations are reduced to the order of the Oslo method uncertainties.
This seems to be an appropriate limit in case of even-even Sn isotopes, but should be estimated
in each particular case when the shape method is applied.

Finally, let us discuss the consequences of using different approaches to the spin cutoff in
the analysis. In Paper II and all of the results shown in this chapter, the model provided by
Eq. (2.13) based on the rigid body moment of inertia (RMI) was used for 120,124Sn, whereas
Eq. (2.11) by Gilbert and Cameron (G&C) was exploited in all other articles. The former
provides somewhat steeper slopes of NLDs, and the PT fluctuations would thus be larger
towards the neutron threshold with the G&C approach. For example, for the highest initial
excitation energies in Fig. 4.2, the fluctuations would be about 20-40% larger, while at the
lowest initial excitation energies only about 10-20% larger with the G&C spin cutoff used
for the normalization of the NLD as compared to the RMI value. In the context of testing
the validity of the BA hypothesis and the applicability of the shape method, an approximate
order of PT fluctuations is of interest, and, therefore, the spin-cutoff model does not play any
critical role.
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When it comes to the GSFs obtained with different spin-cutoff models, the results provided
by the G&C and the RMI models for both 120Sn and 124Sn are in excellent agreement. The
only factor affected in these two cases would be the reduction applied to the slope of the NLD
to achieve the matching slope of the GSF with the one from the shape method. With the
G&C approach used in Papers I and IV, no additional reduction is required for 120Sn and a
smaller reduction is used for 124Sn. In other words, the slope of the Oslo method GSF for
120Sn agrees well with the slopes of the shape method, (p, p′), and NRF strengths without
any additional manipulations. Figure 4.5 presents the Oslo method and the shape method
strengths extracted using the G&C spin-cutoff mode compared to the other experimental data
to illustrate this point.

Based on all of the observations presented in this and the previous section, an assumption
on the GSF independent of excitation energy seems to be justified for the analysis of Sn
isotopes with the Oslo method. Moreover, the GSF appears to be independent of the studied
final spins J = 0 and J = 2 within the estimated uncertainties, in line with the generalized BA
hypothesis. Finally, the upward and downward GSFs obtained with different experimental
techniques are in good agreement below the neutron threshold, at least down to ≈ 5− 6 MeV.
All of them point at a PDR-like enhancement of the strength at 8 − 9 MeV, which might be
of importance for further astrophysical statistical-model calculations.
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Chapter 5

Systematics of the low-lying electric
dipole strength in Sn isotopes

The GSFs of Sn isotopes extracted with the Oslo method complement the (p, p′) and (γ,n)
data below the neutron separation energy and can be used to simultaneously constrain the
bulk properties of such resonant features as the IVGDR, the PDR, and the scissors mode.
Given an ambiguity in the interpretation of the observed features as the PDR, we are going
to refer to both the excess E1 strength on top of the IVGDR and the total E1 strength up to
a certain threshold in the vicinity of the neutron separation energy as the low-lying electric
dipole response (LEDR). The following chapter provides the main results of the study on the
LEDR in the Sn isotopic chain presented in Papers III, IV, and V.

5.1 Nuclear level densities and γ-ray strength functions

in Sn isotopes

The NLDs and GSFs of eleven Sn isotopes, 111−113,116−122,124Sn, were extracted with the Oslo
method in accordance with the procedures outlined in Secs. 3.3, 3.3.4, and 3.3.5. The obtained
NLDs are shown in Fig. 5.1(a). In general, all of them are quite similar for even-even and even-
odd nuclei, which is expected for isotopes with similar structural properties. As was shown in
Fig. 2 in Paper IV, the NLDs of even-even isotopes reproduce the low-lying tabulated states
quite well up to Ex ≈ 3.0 − 3.5 MeV and, in case of even-odd isotopes, up to Ex ≈ 2 MeV.
At higher energies, all of the results demonstrate a clear constant-temperature trend, which
might be expected to hold up to the neutron thresholds based on the performed fits. They
overlap closely within the uncertainty bands, making it difficult to draw any conclusions on a
systematic change with increasing neutron number. The NLDs of the lightest 111,113Sn appear
to agree well with the results of the neutron evaporation experiment at ≈ 3−6 MeV (Fig. 4 in
Paper III). Moreover, the partial density of 1− states extracted from the total NLD in 124Sn
using the spin distribution from Eq. (3.28) agrees well with the results of the fluctuation
analysis of (p, p′) data (Fig. 6 in Paper II and Fig. 2 in Paper IV).

In the same manner, the GSFs are quite similar in absolute values and shapes for all the
studied isotopes. All of them are in good agreement with the (p, p′) data for even-even Sn
nuclei down to Eγ ≈ 6 MeV and in reasonable agreement with available (γ,n) data in the
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Figure 5.1: The NLDs (a) and GSFs (b) of 111−113,116−122,124Sn extracted with the Oslo method.
The latter are scaled by a factor of 3 with respect to each other (starting from 111Sn) for a
more clear visualization.

immediate vicinity of the neutron threshold. As shown in Fig. 5.1(b), the slope of the GSF
changes gradually throughout the isotopic chain and becomes steeper towards 124Sn. For the
heaviest studied nuclei, a bulk peak-like structure at 6 − 9 MeV, which might potentially be
interpreted as the PDR, becomes more prominent, whereas the lowest part of the strength
remains rather flat and does not demonstrate any clear upbend as was previously seen in
some other Oslo data (see e.g. [187]). It is important to note that the observed increase of
the slope from 111Sn to 124Sn is small. Based on these data alone, it is already possible to
conclude that even if any dependence on the neutron number is present, it should not be
expected to be as strong as predicted by theoretical approaches. It is, nevertheless, crucial to
extract the LEDR in these nuclei in a model-consistent way prior to comparing it with other
experimental estimates and theoretical predictions.

5.2 Decomposition of the dipole strength

As was mentioned in the previous chapters, the Oslo method assumes the dominance of
dipole transitions from the quasi-continuum and does not distinguish between the electric
and magnetic types of radiation. In an attempt to constrain the LEDR component of the
total GSF below the neutron threshold, the latter should be decomposed in terms of the most
prominent individual components expected in nearly spherical Sn isotopes, such as the tail of
the IVGDR, the LEDR, and the spin-flip M1 contribution. In some cases, the upbend feature
should also be introduced to account for a flat, as in case of the Sn isotopes, or an increasing
trend in the strength at low γ-ray energies.

Since the Oslo data reach only up to the neutron threshold or lower in the studied iso-

86



CHAPTER 5. SYSTEMATICS OF THE LOW-LYING ELECTRIC DIPOLE STRENGTH
IN SN ISOTOPES

topes, they should be complemented by other experimental strengths at higher energies for a
more accurate reconstruction of the full LEDR and the IVGDR tail contributions. The total
GSFs from the Coulomb excitation (p, p′) experiments on even-even 112,114,116,118,120,124Sn nu-
clei cover the energy range of both the PDR and the IVGDR, from 6 MeV up to 20 MeV. The
information on the IVGDR in these and odd-mass stable targets can also be deduced from
photoabsorption experiments performed in Saclay [249], Livermore [250], and Moscow [251].
In contrast to these data, typically having quite large errors closer to the neutron threshold,
photoabsorption experiments with quasi-monochromatic laser-Compton scattering γ rays on
116−120,122,124Sn [252, 253] provide the GSFs in the immediate vicinity of Sn in these nuclei
with much smaller uncertainties. In general, the (p, p′) and (γ,n) strengths agree fairly well
within the uncertainties around the peak of the IVGDR [42]. At the left flank of the IVGDR,
the strength by Varlamov et al. [251] appears to be on average larger than in all other exper-
iments, and all of the (γ,n) data tend to deviate from each other and the (p, p′) results closer
to the neutron threshold. On the contrary, the GSFs by Utsunomiya et al. [252, 253] are in
excellent agreement with the (p, p′) strengths in all the studied even-even isotopes. Provided
a general agreement in the IVGDR region with other experimental results and a significant
overlap with the available Oslo method strengths, the LEDR in Sn isotopes in this thesis will
be extracted based on the combined Oslo and (p, p′) total GSFs.

The Oslo method results for all the eleven studied isotopes are shown together with the
(p, p′) and (γ,n) strengths in Fig. 5.2. For the cases of the odd nuclei, the Coulomb excitation
data for the closest or two neighboring even-even isotopes are shown. The GSFs of 111Sn
and 121Sn agree well with the (p, p′) strengths of 112Sn and 120Sn, respectively. Similarly,
the GSFs of 113Sn, 117Sn, 119Sn are in good agreement with the (p, p′) results for both even-
even neighboring nuclei in each case. Furthermore, the Oslo method and (p, p′) strengths
of the even-even 112,116,120,124Sn are in excellent agreement below the threshold within the
estimated uncertainties. Due to quite low statistics of the (3He,αγ) experiment on 119Sn,
the Oslo method GSF of 118Sn is shown only up to ≈ 6 MeV, being complementary to the
corresponding (p, p′) strength. Finally, even though no Coulomb excitation data are available
for 122Sn, it is in good agreement with the Oslo method strength for the neighboring even-even
and odd nuclei and (p, p′) data for 120Sn and 124Sn.

In this thesis, two approaches to the extraction of the LEDR in the Sn isotopes will be
applied. The first method is commonly used for the interpretation of experimental strength
distributions from Oslo-type and Coulomb excitation experiments with radioactive beams
[31, 254] and implies the decomposition of the total GSF in terms of the adopted models for
the LEDR and IVGDR. Alternatively, a straightforward integration of the total strength up
to a certain energy threshold, without introducing any model-dependent tail of the IVGDR,
allows for a more explicit comparison with the theoretical strength distributions in terms of
the TRK values.

For the parametrization of the IVGDR (fE1) in Sn isotopes, the GLO model in the form of
Eq. (2.24) was chosen. Among other considered approaches, the GFL and hybrid models are
not fully able to simultaneously capture the relatively flat low-energy tail of the Oslo strength
function and reproduce the left flank of the IVGDR, being more appropriate in cases of less
steep GSFs (see e.g. [186]). Despite a great improvement in reproducing the GSF below the
neutron threshold as compared to the SLO, the SMLO approach still fails at capturing the
relatively steep slope between 3 − 6 MeV in the studied Sn isotopes. The microscopic calcu-
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lations provided by Skyrme-HF BCS [192], Skyrme-HFB [66] and its temperature-dependent
extension [255], and Gogny-HFB [256] with QRPA can, in principle, be used to model the
IVGDR. However, in the case of Sn isotopes, they require certain modifications (scaling and
shift) to be adjusted to fit the IVGDR, which complicates the consistent analysis throughout
the whole chain of isotopes. Among all of the above-mentioned approaches, the GLO is suf-
ficiently flexible to reproduce both the IVGDR and the low-energy tail of the GSF and was
found to be the most appropriate choice.

The LEDR component on top of the IVGDR was found to be best described by a simple
Gaussian function as:

f low
E1 (Eγ) = C

low
E1

1
√

2πσlow
E1

exp
⎛

⎝
−
(Eγ −Elow

E1 )
2

2(σlow
E1 )

2

⎞

⎠
, (5.1)

with centroid Elow
E1 , width σlow

E1 , and absolute value normalization constant C low
E1 . A single

Lorentzian peak and combinations of several peaks have also been tested in an attempt to re-
produce the bump-like structure at 6−9 MeV in the GSFs and were found to yield significantly
worse fit scores.

The experimental information on the M1 component in even-even Sn isotopes is available
from the MDA of the (p, p′) data. It was used to build the systematics for the M1 strength
in those nuclei where no experimental data are available (see also Appendix C.2). To do so,
the M1 strength in 112,114,116,118,120,124Sn was fitted with a simple Lorentzian function as:

fM1(Eγ) =
1

3π2h̵2c2

σM1Γ2
M1Eγ

(E2
γ −E

2
M1)

2 +E2
γΓ

2
M1

(5.2)

with centroid energy EM1, maximum cross section σM1, and width ΓM1. The systematics of
these three parameters were used to reconstruct the M1 contribution in the other studied
isotopes. It is important to note that the experimental M1 strength distribution is somewhat
fragmented in all the cases, and the Lorentzian function reproduces only its overall shape and
the integrated total M1 strength. The detailed fit of the M1 strength distribution was found
to have a negligible effect on the final results within the estimated uncertainties.

Finally, to account for the flat low-energy tail of the GSF, an upbend should be introduced
in some of the cases in accordance with the prescription of Ref. [190]:

fup(Eγ) = Cup exp(−ηupEγ), (5.3)

with scaling and slope parameters Cup and ηup. In general, the GSFs of the Sn isotopes do
not demonstrate any clear upbends and are limited to γ-ray energies above about 2 MeV.
Thus, the upbend fup(Eγ) should be treated solely as an additional feature improving the fit
at very low γ-ray energies, which has little to no impact on the extracted LEDR.

To disentangle all of the above-mentioned components in the total GSF provided by the
Oslo method and (p, p′) data in each case, the strengths were fitted with the combined func-
tion ftot = fE1 + f low

E1 + fM1 + fup, while keeping the parameters of the M1 strength fixed. The
parameters of the GLO, the Gaussian peak(s), and the upbend were treated as free fit param-
eters. For the odd isotopes and 122Sn, the (p, p′) data of the neighboring even-even isotopes
were used for the fit (112Sn for 111Sn, 112,114Sn for 113Sn, 116,118Sn for 117Sn, 118,120Sn for 119Sn,
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Figure 5.2: Experimental GSFs of 111Sn (a), 112Sn (b), 113Sn (c), 116Sn (d), 117Sn (e), 118Sn
(f), 119Sn (g), 120Sn (h), 121Sn (i), 122Sn (j), and 124Sn (k) shown together with the (p, p′) data
from Ref. [42] (Bass2020) and the (γ,n) experimental data by Varlamov et al. [251] (Var2009),
Fultz et al. [249] (Ful1969), Leprêtre et al. [250] (Lep1974), Utsunomiya et al. [252, 253]
(Uts2009, Uts2011), and Govaert et al. [74] (Gov1998). The total fits of the experimental
data are shown as solid magenta lines and the fits of the IVGDR as solid blue lines. The low-
lying E1 components are shown as shaded light-blue areas. The M1 data from the Coulomb
excitation experiment [42] are shown for 112,116,118,120,124Sn with corresponding Lorentzian fits
(dashed red lines).
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120Sn for 121Sn, and 120,124Sn for 122Sn). Provided that the IVGDR parameters extracted using
the Coulomb excitation data demonstrate the same smooth evolution as those from the (γ,n)
experiments [42], the sole consequence of preferring the former over the latter for the fit is
maintaining a more consistent fit in the vicinity of the neutron threshold. Similarly to the
GSFs of the even-even and even-odd isotopes extracted with the Oslo method, the IVGDR is
also expected to evolve rather smoothly throughout the isotopic chain.

As was first reported in Refs. [28, 42], the (p, p′) data reveal a peak-like structure at
≈ 6.4−6.5 MeV in all the studied even-even isotopes, which appears to become more prominent
towards 124Sn. A hint of a similar structure appears also in the Oslo method strength for
124Sn. Even though observing such structures in the Oslo data might be complicated due to
an overall worse energy resolution, it is still possible to constrain this component based on
the combined total Oslo method and (p, p′) strength by introducing an additional Gaussian
peak in the total fit for isotopes starting from 118Sn. In this isotope, the peak at 6.4−6.5 MeV
becomes sufficiently prominent, and the slope of the Oslo strength becomes sufficiently steep
for the additional Gaussian peak to improve an overall fit to the experimental data below the
threshold. Different components of the performed fits, including both Gaussian peaks of the
LEDR, are shown in Fig. 5.2. All the fit parameters of the IVGDR, the M1 response, the
LEDR peaks, and the upbend (if included) are collected in Tables C.2 and C.3.

5.3 Discussion of the systematics

To quantify the evolution of the LEDR in the studied Sn isotopes, the energy centroid and the
energy-weighted sum of the E1 strength in terms of the classical TRK sum rule concentrated
in the extracted Gaussian peaks have been estimated. The results obtained for all the studied
isotopes are shown in Fig. 5.3. For the isotopes with A ≥ 118, the centroids of both the larger,
higher-lying and the smaller, lower-lying components are shown in Fig. 5.3(a) together with
the strength-weighted average centroid of the total LEDR. Similarly, the strengths of both
LEDR components are shown together with the total strength in Fig. 5.3(b).

The LEDR in the Sn isotopes is concentrated in the vicinity of ≈ 7.8 − 8.3 MeV, and its
energy centroid appears to remain essentially unchanged throughout the isotopic chain and
demonstrates only a mild decrease towards 124Sn. The higher-lying and the lower-lying com-
ponents for 118−122,124Sn are centered around ≈ 8.2 MeV and 6.4 − 6.5 MeV, respectively. The
slight decrease of the average centroid is correlated with the gradual increase of the strength
in the lower-lying peak with increasing neutron number. This trend is preserved (within the
uncertainties) when using a single-peak for the LEDR fit in 118−122,124Sn. It is, however, in
contradiction with the increase of the centroid in 116−119,121,122Sn presented in Ref. [83], which
is most likely due to large uncertainties in the fits close to the neutron threshold in the latter.
The decrease of the centroid has previously been predicted in calculations within the RQRPA
and RQTBA [19, 72] and QPM [73] approaches for Sn isotopes and other isotopic chains
[19, 257].

As shown in Fig. 5.3(b), the LEDR in the studied Sn isotopes exhausts ≈ 2 − 3% of the
TRK sum rule. Except for a local peak in the strength around 120Sn, no clear increase in the
TRK values towards more neutron rich 124Sn has been observed. The GSFs extracted with
the Oslo method are quite similar for the neighboring 118−122,124Sn isotopes, whereas the (p, p′)
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Figure 5.3: TRK values (a) and energy centroids (b) for the total extracted LEDR in Sn
isotopes, its lower-lying, and higher-lying components. Open squares correspond to a single-
Gaussian peak fit, filled squares correspond to the sum (a) and strength-averaged centroids
(b) of two Gaussian peaks.

strength is somewhat larger for 120Sn between 8 − 10 MeV than in the neighboring even-even
nuclei, hence the local increase of the TRK value at A = 120. A somewhat similar trend
has been obtained with the RPA [56] and RHB plus RQRPA [19] calculations. In the latter
work, the total sum of the energy-weighted dipole strength up to a certain threshold was
shown to have a local maximum around 120−124Sn, depending on the threshold, and decrease
towards the closed N = 82 shell, attributed to the interplay of shell effects and the reduction
of the pairing correlations. On the other hand, the recent study of the isovector and isoscalar
response in Sn isotopes using the TDHF approach [21] suggests that an enhanced isoscalar
and isovector response in the open-shell nucleus 120Sn as compared to doubly-magic 100,132Sn
might be related to a relatively more diffuse isoscalar density profile in the former. It is
important to note that the local increase of the experimental TRK values in the vicinity of
120Sn in Fig. 5.3(b) is quite subtle considering the estimated uncertainties, and a potential
link between its presence in the experimental data and microscopic calculations needs to be
further investigated.

The low-lying component of the LEDR at 6.4 − 6.5 MeV exhausts only up to ≈ 0.5% of
the TRK sum rule. Moreover, it appears to increase almost linearly with increasing neutron
number, becoming more prominent in 124Sn. As was mentioned in Sec. 1.3, a concentration
of the isoscalar strength in approximately the same energy range (5.5 − 7 MeV) has been
observed in the (α,α′γ) [39, 40] and (17O,17O′γ) [78] experiments. The comparison with the
isovector response obtained with the (γ, γ′) and (p, p′) experiments suggests that the extracted
lower-lying E1 peak can be potentially associated with the isovector component of the PDR.

The majority of the microscopic frameworks, including the RQRPA and RQTBA calcula-
tions of Ref. [72], HFB plus QPM calculations of Ref. [73], and the study based on the Vlasov
equation approach of Ref. [20], suggest a somewhat steady increase of the PDR, or rather
LEDR, strength towards more neutron-rich nuclei in the Sn isotopic chain. A more explicit
comparison of the experimental and theoretical TRK values can be provided by considering
an energy-weighted sum of the E1 strength up to a certain threshold. The total experimental
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Figure 5.4: Evolution of the energy-weighted electric dipole strength extracted from the
RQRPA and RQTBA calculations and the combined experimental Oslo and (p, p′) data,
integrated from 4 MeV up to 10 MeV.

E1 strength (the Lorentzian M1 component has been subtracted) including both the IVGDR
tail and the LEDR has been integrated from 4 MeV up to 10 MeV. The corresponding TRK
values are shown in Fig 5.4 together with the strength concentrated only in the tails of the
IVGDR, using the GLO model and the parameters from Table C.2. The latter exhaust an
approximately constant fraction of the TRK sum rule (≈ 1.5%) throughout the whole iso-
topic chain, while the total strength corresponds to ≈ 3 − 4%, with a maximum at 120Sn.
For comparison, the energy-weighted sums have also been extracted in the range between
4 MeV and 10 MeV for the even-even stable Sn isotopes using the RQRPA and RQTBA
calculations introduced in more detail in Paper IV. The results are shown in Fig 5.4. Both
approaches demonstrate a monotonic increase in strength from ≈ 1.5−2.5 % to ≈ 6.8−7.5 % of
the TRK sum rule. In comparison with the theoretical predictions, the experimental LEDR
is essentially constant throughout the isotopic chain, at least up to 124Sn. Despite a great
improvement in reproducing the overall shape of the IVGDR and the strength in the PDR
region with the RQTBA approach, it still predicts comparatively large concentrations of E1
strength in peaks between 6 MeV and 10 MeV, which are not observed experimentally. Future
advances in numerical calculations at the next level of complexity, employing 2q ⊗ 2phonon
or correlated six-quasiparticle configurations, might be a key to a better reproduction of the
experimental results within the valley of stability.

An explicit comparison of TRK values for different nuclei extracted with different experi-
mental techniques (in particular, the Oslo method, NRF, and Coulomb excitation studies) is
complicated greatly by the inconsistency in either energy ranges or methods chosen to extract
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Figure 5.5: TRK values of the low-lying E1 response interpreted as the PDR and obtained
using the Oslo data versus (a) mass number A, (b) asymmetry parameter (N − Z)/A. The
values and the parameters used to estimate these values are taken from Refs. [187, 228, 258–
269] and the present work.
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these values. To put the systematics of the TRK values for the Sn isotopes into a broader con-
text, the TRK values for 111−113,116−122,124Sn can be compared with the TRK values for other
nuclei studied with the Oslo method. These data have been obtained in different experimental
campaigns starting from 2001, and the decomposition of the total dipole strength based on
the combined Oslo and (γ,n) strengths in an attempt to constrain low-energy features in the
GSF (most commonly the scissors mode and the PDR) has been done for the majority of the
studied nuclei. Even though these analyses employ different normalization procedures and fit
models, the feature interpreted as the PDR has been extracted quite consistently with the
cases of the Sn isotopes presented in this thesis. The TRK values reported in these works
or estimated based on the reported model parameters are shown for nuclei from Ni to Pu in
Fig. 5.5. The TRK value of ≈ 5.5% for the presumable PDR in 238Np [270] was not included
in the figure to demonstrate any potential trends in the lighter nuclei more clearly. The up-
per panel (Fig. 5.5(a)) shows the distribution of the TRK values over the studied mass range
A = 64−243. Currently, the systematics (more than two values) of the TRK sum rule fractions
are available for the isotopic chains of Pd [260], Cd [261], Sn, Nd [187], Dy [264], and Yb [228].
It is clearly seen that different isotopes and nuclei with similar masses are clustered together
with respect to the TRK fractions they exhaust. The PDR/LEDR in the studied Pd and Cd
isotopes exhausts from ≈ 0.5% to 2% of the TRK sum rule, similarly to ≈ 2% exhausted in the
majority of the studied Sn isotopes. The total PDR/LEDR in the lightest Nd isotopes is quite
similar to that in the Sn isotopes, whereas for the heaviest 150,151,152Nd it does not exceed the
lower-lying LEDR component at ≈ 6.4 − 6.5 MeV in Sn, similarly to the studied Dy and Ho
isotopes. For a comparison, the PDR/LEDR in Sm, Er, and Yb is vanishingly small, which
might be partly related to the used extraction techniques. Finally, for the heaviest nuclei up
to Pu, the PDR/LEDR exhausts almost consistently 1 − 1.5% of the TRK sum rule. When
comparing the above-mentioned nuclei, it is important to keep in mind that the majority of
the fits have been performed using the (γ,n) data in the vicinity of the neutron threshold,
which might have affected the extracted features. If disregarding some individual deviations,
there is some trend characterized by the increasing PDR/LEDR strength towards A ∼ 150,
an abrupt drop after A ∼ 150, and a gradual increase towards A ∼ 250.

Representing these TRK values as a function of the proton-neutron asymmetry parameter
(N −Z)/A, as shown in Fig. 5.5(b), might potentially reveal some dependency on the neutron
excess in the studied nuclei. Indeed, despite quite large uncertainties, there are some hints
of such a dependence in the Pd and Cd isotopic chains and a group of nuclei from Dy to
Pu. In the Sn isotopic chain, the gradual increase of the TRK values is interrupted at 120Sn,
as was mentioned earlier. Surprisingly, the Nd isotopes demonstrate a sharp decrease of the
PDR/LEDR strength towards more neutron-rich isotopes. The fit in this case is significantly
complicated by the double-humped IVGDR and the lack of any experimental data in this
energy region for 147,150,152Nd.
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Chapter 6

Implications for the astrophysical
neutron-capture processes

The NLDs and GSFs are two essential input characteristics for Hauser-Feshbach calculations
using, for example, the reaction code TALYS. The following chapter is focused on implications
of the experimentally extracted NLDs and GSFs of the Sn isotopes for the astrophysical
neutron-capture processes. In this thesis, the radiative neutron-capture cross sections and
reaction rates have been estimated for 113,116−122,124Sn using the experimental data as the
input in TALYS and compared with the available experimental data and model predictions.
The choice of different inputs for the calculations and, in particular, the impact of the LEDR
on the estimated cross sections will be addressed for 120Sn in the following sections. Moreover,
the importance of the newly constrained 121Sn(n, γ)122Sn and 123Sn(n, γ)124Sn reaction rates
for the astrophysical i process will be discussed at the end of the chapter.

6.1 Neutron-capture processes in the Sn region

The main formation mechanism of trans-iron nuclides in the universe, including Sn isotopes, is
neutron-capture reactions in various astrophysical scenarios. After the seminal works by Bur-
bidge et al. [271] and Cameron [272] presenting the first phenomenological formulation of the
nucleosynthesis processes in the domain of heavy nuclei, it became common to treat the Solar
System abundances in terms of the main contributions of the slow (s) and rapid (r) neutron-
capture processes and the so-called p process. Schematically, this allows for splitting the
nuclear chart beyond Fe/Ni into nuclei along the bottom part of the stability valley produced
in the s process, neutron-rich r-process nuclei, and neutron-deficient nuclei from the p-process.
The latter involves a complex interplay of photodisintegrations ((γ, p),(γ,n),(γ,α)), radiative
proton captures (p, γ), and, presumably, some neutron captures and β decays transforming
preceding s and r nuclei in the deep O–Ne shells of massive stars exploding as supernovae or
while still being in the pre-supernova phase [273]. In comparison with the widely dominating
s and r processes, its contribution to the total Solar System abundances is rather humble and
does not exceed 0.1−1% of that provided through consecutive neutron captures and β decays
in the other two mechanisms [274].

The s process operates under comparatively low neutron densities of ∼ 106 − 1010 cm−3
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and requires iron-peak seed nuclei to initiate a chain of neutron captures and β decays [275].
Consecutive neutron captures proceed along the chains of stable isotopes until the first β-
unstable nucleus is produced. With the above-mentioned neutron densities, the typical β-
decay lifetime is considerably shorter than the time required to capture one more neutron, and
thus the s process proceeds along the stable isotopic chains up to 208Pb and 209Bi. The nuclei
with competing neutron-capture and β-decay rates correspond to the so-called branching
points, whereas those with comparatively low neutron-capture rates act as bottlenecks for the
capture flow and lead to a build-up of stable isotopes with certain mass numbers. Within
the modern picture, the s process is further split into the weak and the main components,
responsible for producing nuclei with A ≲ 90 and A ≳ 90, respectively. The former is expected
to be mainly powered by the 22Ne(α,n)25Mg reaction in the convective core He-burning and,
partly, in C-burning shells in massive stars [276], while the latter is predominantly driven
by the 13C(α,n)16O neutron source in intermediate- and low-mass asymptotic giant branch
(AGB) stars [277].

In contrast to the typical time span of thousands of years for the s process, much shorter
timescales are required for the r process (a few seconds) to produce neutron-rich nuclei far
from the valley of stability, provided high neutron densities of ∼ 1020 cm−3 [278]. After
such intense neutron fluxes are exhausted, the produced neutron-rich, unstable nuclei decay
back towards the valley of stability, forming heavy nuclei up to actinides (e. g. U and Th
isotopes). Potential sites able to host neutron captures under such extreme conditions have
for a long time been a matter of numerous debates. In the past two decades, the attention
in these discussions has been shifted from the core collapse supernova scenario to neutron
star mergers as promising hosts of the r process. A recent observation of gravitational wave
signals from the binary neutron star inspiral [54] and its electromagnetic counterpart powered
by the decay of isotopes of heavy elements [279] provided the first observational confirmation
of such an r process site and inspired further large-scale network calculations and simulations
requiring experimental nuclear inputs.

Both the s and r processes are believed to have a contribution of about 50% each to
abundances of elements beyond the Fe peak. Other processes have also been suggested to
contribute to the heavy element nucleosynthesis, in particular the so-called intermediate i
process [275]. The need to introduce an additional neutron-capture process operating under
the neutron densities of ∼ 1012 − 1016 cm−3, somewhat in between the s and r processes, is
related to the discovery of carbon-rich, metal-poor r/s-stars with abundances which can not
be reproduced by the combination of the other two mechanisms (see e.g. [280]). The main
neutron source in this case is expected to be ignited by the ingestion of protons in He-rich
layers, powering the 13C(α,n)16O reaction [275]. Numerous sites have been proposed to be
the host of such events, among which the early AGB phase of metal-poor low-mass stars has
been studied thoroughly in the series of recent model calculations in Refs. [87, 275, 281, 282].

Studying isotopic abundances in the Cd-In-Sn-Sb-Te region requires considering an in-
tricate interplay of all the above-mentioned nucleosynthesis processes, as shown in Fig. 6.1.
Both the s- and r-process flows are especially complicated due to the presence of relatively
long-lived, β-decaying isomers, associated with low-energy high-spin proton g9/2 and neutron
h11/2 orbitals [285]. In particular, a complex branching takes place in 113,115Cd, 115In, and
121Sn. There are several s-only isotopes in the Te isotopic chain (122,123,124Te, with the latter
experiencing the total s-process flow), “shielded” from the series of β decays following the r
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Figure 6.1: Paths of the astrophysical s, r, and i processes in the vicinity of the stable Sn
isotopes. The flow of the s process is depicted as solid blue arrows, and the contribution due
to the r process through β decays is shown by dashed orange arrows [283, 284]. The i-process
path is modeled for a 1 M⊙, [Fe/H]= −2.5 star (see also Sec. 6.4) with the highest neutron
density of 5 × 1014 cm−3 in Ref. [87]. The s-only and p-only isotopes are shown with the
surrounding dashed blue and green boxes, respectively. Stable isotopes correspond to solid
blue boxes.

process by stable Sn and Sb isotopes. Accurate measurements of neutron-capture rates over a
wide temperature range for these nuclei and the s-only 116Sn isotope are crucial for a correct
normalization of the s-process models in this mass region [283]. In contrast to the considered
p-only 112Sn isotope, the contribution of different processes to abundances of 114,115Sn has
been a highly debated topic in the past few decades [286]. For example, the galactic chem-
ical evolution model computation for low-mass AGB stars by Bisterzo et al. [287] suggests
the s-process contribution to the origin of these nuclei to be negligible, whereas the r pro-
cess was found to be a significant contributor to the production of 115Sn together with the p
process, which is also the main mechanism of producing 114Sn (see Ref. [288] and references
therein). The stable Sn isotopes from 117Sn to 120Sn are produced in the series of s-process
neutron captures with a minor feeding through β decays following the r process. The latter
is considered the main contributor to the production of the 122Sn and 124Sn (r-only) isotopes
[289]. However, the recent low-mass low-metallicity AGB model calculations by Goriely et al.
[87] demonstrated that the most neutron-rich stable Sn isotopes (120,122,124Sn) might also be
involved in the flow of the i process in this mass region. A wealth of experimental data is
currently available to provide constraints for the neutron-capture rates on stable Sn isotopes,
while the calculations involving 121,123Sn(n, γ)122,124Sn still have to rely on theoretical model
calculations, spanning a wide range of model uncertainties. In light of this, the 124Sn and the
newly re-analyzed 122Sn Oslo method data are of particular interest in the i-process modeling
in large-scale network calculations, similar to those presented in [87, 275, 281, 282].
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6.2 Calculations of radiative neutron-capture cross sec-

tions with TALYS

In this thesis, the Oslo method NLDs and GSFs have been used to constrain the radiative
neutron-capture cross sections (NCCS or just CS) with the TALYS reaction code of the
latest 1.96 version [154, 290]. To do so, the experimental Oslo GSFs have been combined
with the (p, p′) data at high energies where the Oslo data are not available. The combined
total dipole GSF was used to extract the tabulated E1 GSF by subtracting the Lorentzian-
fitted experimental M1 response. The latter was also used to produce the tabulated M1
GSFs applied together with the E1 strength as inputs for the calculations. In all cases, the
phenomenological model of Koning and Delaroche was chosen for the optical model potential
[291]. Another alternative available in TALYS is the semi-microscopic Jeukenne-Lejeune-
Mahaux (JLM) model renormalized by the Bruyères-le-Châtel group [292]. In case of the Sn
isotopes, both of these optical model potentials yield cross sections overlapping closely within
the uncertainty bands, and thus the former one was chosen in all the calculations. This,
however, is not the case for heavier nuclei, as was shown for 185W in Ref. [186] and 165,166Ho
in Ref. [140]. In these cases, the JLM model results in significantly lower cross sections and
rates towards lower energies and temperatures, respectively, and should also be included in
the total uncertainty band.

The current version of the TALYS code offers several alternative NLD and GSF models
for the calculations, which are especially relevant for the nuclei where the Oslo data or some
other experimental data below the neutron threshold are not available. The six NLD options
in TALYS are the following:

1. The constant-temperature plus Fermi gas model (CT) [97].

2. Back-shifted Fermi gas model (BSFG) [107].

3. Generalized superfluid model (GSM) [293, 294].

4. Hartree–Fock plus Bardeen–Cooper–Schrieffer (HF-BCS) calculations based on the MSk7
Skyrme force [111].

5. Hartree-Fock-Bogoluybov (HFB) plus combinatorial model calculations based on the
BSk14 Skyrme force [112].

6. Temperature-dependent HFB plus combinatorial model calculations based on the D1M
Gogny force [113].

All of these models are shown in Fig. 6.2(a) for 120Sn together with the Oslo method NLD.
Similarly, the comparison of TALYS E1 GSF options with the Oslo method total GSF is

shown in Fig. 6.2(b). The nine TALYS models are the following:

1. The Kopecky-Uhl generalized Lorentzian (GLO) [146].

2. The standard Lorentzian (SLO) [85].

3. The HF-BCS plus QRPA calculations using the SLy4 Skyrme force [192].
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Figure 6.2: (a) Comparison of the experimental NLD for 120Sn with the models available
in TALYS [154]: constant-temperature model (CT), back-shifted Fermi gas model (BSFG),
generalized superfluid model (GSM), HF plus BCS, Skyrme-HFB plus combinatorial, and
temperature-dependent Gogny-HFB plus combinatorial model calculations. (b) Comparison
of the experimental GSF for 120Sn with the E1 andM1 models available in TALYS [154]: GLO,
SLO, HF-BCS plus QRPA, Skyrme-HFB plus QRPA, hybrid model, temperature-dependent
Skyrme-HFB plus QRPA, RMF plus QRPA, Gogny-HFB plus QRPA, SMLO.

4. The HFB plus QRPA calculations using the BSk7 Skyrme force [66].

5. The hybrid model [64].

6. Skyrme (BSk7) HFB plus QRPA with the temperature-dependent width [66].

7. The temperature-dependent relativistic mean field (RMF) plus QRPA calculations [255].

8. HFB plus QRPA calculations using the D1M Gogny force [256].

9. The simplified modified Lorentzian (SMLO) [145].

The latter is also employed for the M1 resonance in combination with the parametrized
scissors mode and the upbend as a default option in TALYS 1.96 [154]. In the Sn isotopes,
the modeled upbend tends to overestimate the experimental data at low γ-ray energies. For
this reason, the default M1 option of TALYS 1.95 (the SLO M1 with the parametrization
according to Ref. [290]) was used in the calculations. The corresponding M1 GSF is shown in
Fig. 6.2(b) together with the experimental (p, p′) strength. With the exception of the artificial
upbend, all M1 options are quite similar for the studied Sn isotopes, and a particular choice
of the model has little to no impact on the final calculated results.

As shown in Fig. 6.2(a), the BSFG and GSM NLDs agree quite well with the Oslo method
values from ≈ 3 MeV up to the neutron separation energy. The slope of the CT model is
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somewhat steeper than the one from the normalization of the experimental data and pre-
dicts lower NLD values on average. Among the microscopic calculations, the Gogny-HFB
plus combinatorial approach reproduces the experimental NLD best, whereas the HF-BCS
and Skyrme-HFB plus combinatorial models tend to overestimate the experimental values
quite notably, by a factor of 2 − 3 on average. On the other hand, none of the available
E1 GSF options are able to reproduce the experimentally observed LEDR at 6 − 10 MeV.
The temperature-dependent relativistic mean field model predicts a bump-like structure at
≈ 9 MeV resembling the experimental LEDR, which, however, appears to be shifted towards
higher energies as compared to the experimental data. Except for the GLO and the hy-
brid models, the rest of the approaches either overestimate or underestimate the Oslo method
GSF significantly at lower energies. Finally, the modeled M1 response corresponds to approx-
imately the same amount of strength and peak cross section as provided by the experimental
data, but has a centroid shifted towards lower energies by about 2 MeV as compared to the
experiment. The same applies to all other M1 options in TALYS. The neutron capture pro-
ceeding through a compound nucleus formation leaves the compound nucleus at excitation
energy Sn +En determined by the energy of an incident neutron. In the astrophysical s and
r processes, these energies can reach up to several hundred keV, and, therefore, the decay
pattern of the compound nucleus in the vicinity of the neutron threshold and several MeV
below it can be expected to have the largest impact on calculations of radiative NCCSs. In a
recent sensitivity study by Wang et al. [295], the radiative neutron-capture rates for stable Sn
isotopes have been found to be most sensitive to variations of the E1 GSFs in the vicinity of
4 MeV. At these relatively low energies, the spread of the TALYS models, and thus the model
uncertainty, reaches its maximum, and constraining the GSF with experimental techniques is
especially important.

The NCCSs extracted with the Oslo method inputs are shown in Fig. 6.3 together with
the available experimental data and TALYS model uncertainty ranges (beige bands). The
TALYS default lines in these figures are extracted using the constant temperature plus Fermi
gas NLD model, the SMLO form of the E1 strength, and the Koning and Delaroche global
optical model potential. A comparison of these NNCSs with other experimental data even for
the case of the lightest 113Sn provides an indirect check of the Oslo data and, in particular,
their normalization. Among the shown cases, the reactions on 115−122Sn nuclei are involved
in the s-process flow in the Sn isotopic chain [283], and, as was shown in the recent work
by Goriely et al. [87], the neutron capture on 120,121,123Sn might also be on the the i process
path. No experimental data are available for the unstable targets 121Sn and 123Sn. As shown
in Fig. 6.3(g), the Oslo CS for the neutron capture on 120Sn is in excellent agreement with
other experimental data, at least above neutron energies of ≈ 20 keV. Similarly, the results
for the 112,115,118,119Sn targets were found to agree well within the uncertainty bands with all
other available data, as shown in Figs. 6.3(a), (b), (e), (f). This agreement for the 116Sn case
(Fig. 6.3(c)) is somewhat worse, and the majority of experimental data points lie closer to the
upper part of the uncertainty band of the Oslo result. An opposite situation is observed for
117Sn. Provided a good agreement of the input NLDs and GSFs of the neighboring isotopes, it
might be hard to state an exact reason for the observed deviations and whether they are due
to the Oslo data alone. In general, different data sets tend to deviate from the Oslo NCCS
and each other at low neutron energies (20 − 30 keV). It is interesting to note that all the
experimental results, including the NCCSs obtained with the Oslo method, lie closer to the
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Figure 6.3: Cross sections (CS) for the 112Sn(n, γ)113Sn (a), 115Sn(n, γ)116Sn (b),
116Sn(n, γ)117Sn (c), 117Sn(n, γ)118Sn (d), 118Sn(n, γ)119Sn (e), 119Sn(n, γ)120Sn (f),
120Sn(n, γ)121Sn (g), 121Sn(n, γ)122Sn (h), and 123Sn(n, γ)124Sn (i) reactions. The predictions
with the Oslo method inputs (blue bands) are compared with experimental data by Macklin
et al. [289], Timokhov et al. [296], Wisshak et al. [284], Koehler et al. [283], Nishiyama et
al. [297], and the TALYS uncertainty range obtained with different available GSFs, NLDs,
and optical model potentials (beige band).
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bottom part of the TALYS model uncertainty band for the majority of the considered cases.
As shown in Fig. 6.2(b), the SLO, SMLO, and Gogny-HFB plus QRPA approaces result in
approximately the same or larger amount of strength as compared to the Oslo method GSF,
while the rest of the models correspond to much lower amounts of strength. The majority of
the NLD models, on the other hand, tend to overestimate the Oslo method values, and the
disagreement becomes gradually larger towards more neutron-rich isotopes. Provided that
the calculations are essentially insensitive to the choice of the optical model potential, the
NLD and the GSF are the main sources of the model uncertainties, and the NLD models are
the major reason for the overall larger NCCS estimates with TALYS. It is also important to
note that the default M1 component (light blue line in Fig. 6.2(b)), despite being by about a
factor of 10 suppressed as compared to the E1 response, is shifted towards lower energies and
tends to increase the calculated cross sections. In the lightest Sn isotopes, the experimental
M1 component is slightly broader than for the heavier ones and has a larger overlap with the
modeled TALYS M1 strength. Partly for this reason, the NCCSs for the 121,123Sn targets lie
closer to the bottom of the TALYS uncertainty band than those for the lighter targets.

6.3 Maxwellian-averaged cross sections of Sn isotopes

The energy spectra of thermalized neutrons (as well as target nuclei) in the stellar plasma of
typical s-process and potential i- and r-process sites can be well described by the Maxwell-
Boltzmann distribution. To account for this over a relatively wide range of temperatures for,
e.g., a realistic s-process scenario (kBT ≈ 8− 90 keV) involving the majority of the studied Sn
isotopes, the radiative NCCS are folded with the Maxwell-Boltzmann distribution to produce
the neutron-capture rates [273]:

NA⟨σv⟩(T ) = (
8

πm̃
)

1/2
NA

(kBT )3/2G(T )
∫

∞

0
∑
µ

2Jµt + 1

2J0
t + 1

σµ(E)Ee
−
E+ε

µ
t

kBT dE. (6.1)

Here, m̃ is the reduced target mass, and NA and kB are the Avogadro and Boltzmann con-
stants, respectively. This relation takes into account that the target nucleus in a thermody-
namic equilibrium can be present not only in its ground state with spin J0

t , but also excited
states with spins Jµt at energies εµt , and the population of these states also obeys the Maxwell-
Boltzmann distribution. This is reflected in the sum over the individual cross sections of
the neutron capture on the ground and excited states σµ(E) and the temperature-dependent
normalized partition function G(T ) [273]:

G(T ) =∑
µ

2Jµt + 1

2J0
t + 1

e
−

ε
µ
t

kBT . (6.2)

In case of radiative neutron capture, NA⟨σv⟩(T ) is also commonly expressed in terms of the
Maxwellian-averaged cross section (MACS):

NA⟨σ⟩(T ) =
NA⟨σv⟩(T )

vT
, (6.3)

where vT =
√

2kBT /m̃ is the thermal velocity at temperature T .
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Figure 6.4: Maxwellian-averaged cross sections (MACS) for the 112Sn(n, γ)113Sn
(a), 115Sn(n, γ)116Sn (b), 116Sn(n, γ)117Sn (c), 117Sn(n, γ)118Sn (d), 118Sn(n, γ)119Sn (e),
119Sn(n, γ)120Sn (f), 120Sn(n, γ)121Sn (g), 121Sn(n, γ)122Sn (h), and 123Sn(n, γ)124Sn (i) reac-
tions. The predictions with the Oslo method inputs (blue bands) are compared with recom-
mended values from JINA REACLIB [298], BRUSLIB [299], KADoNiS [300], and the TALYS
uncertainty range obtained with different available GSFs, NLDs, and optical model potentials
(beige band).
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The MACSs extracted with the Oslo method inputs are shown in Fig. 6.4 together with
the TALYS uncertainty bands and recommended cross-sections from JINA REACLIB [298]
and BRUSLIB [299] libraries. The data points from the KADoNiS database [300] are also
available for the 112,115−120Sn target nuclei. All of the MACSs shown in this figure are stellar
cross sections, i.e. they take the target thermalization effect into account. In general, all the
MACSs agree well within the Oslo uncertainty band up to kBT values of about 100 keV. There
are systematic shifts of the Oslo data towards lower cross sections in 116Sn and higher cross
sections in 117Sn, similar to those observed in Fig. 6.3. Indeed, the recommended KADoNiS
values at 30 keV are based on the cross sections of Macklin et al. [289], Timokhov et al. [296],
Wisshak et al. [284], Koehler et al. [283], Nishiyama et al. [297] for the stable-target cases. The
values at other energies are presented by the average of evaluations from the ENDF/B-VII.1
[301] and JENDL-4.0 [302] libraries, whereas the uncertainties are often determined by the
deviations between these two evaluations. This approach might potentially result in somewhat
underestimated uncertainties of KADoNiS values as compared to the Oslo uncertainty bands.
The BRUSLIB MACSs are in very good agreement with the Oslo estimates for all the targets
up to 119Sn. For the heavier isotopes, these cross sections begin to deviate significantly from
the JINA REACLIB and Oslo data. This deviation is primarily due to the Skyrme-HFB
plus combinatorial NLD model used for the calculations in BRUSLIB, which reproduces the
experimental NLD values quite well for the lighter stable isotopes and tends to overestimate
them towards more neutron-rich nuclei.

It is also interesting to note that the LEDR in the studied Sn isotopes extracted as an
excess strength on top of the tail of the IVGDR has a noticeable impact on the calculated
NCCSs and MACSs. For example, in case of the 120Sn isotope with the LEDR exhausting
about 3% of the TRK sum rule, it contributes with ≈ 20% of the total MACS shown in
Fig. 6.4(f) at kBT ≈ 30 keV. The uncertainty band is relatively large in this case, and a 20%
decrease of the MACS still falls within it. Nevertheless, the contribution of the LEDR is
notable and becomes even larger when using e.g. RQRPA or RQTBA E1 calculations for the
input GSF. In cases of neutron-rich 130,132Sn, the structure identified as the PDR exhausts
≈ 4 − 7% of the TRK sum rule [31], but lies above the neutron threshold and thus cannot
contribute significantly to the MACSs. It is, however, not clear how the part of the LEDR
remaining below the neutron threshold might impact the MACSs in these cases as compared
to the stable targets.

6.4 Impact of the 121,123Sn(n,γ)122,124Sn rates on abun-

dances in the i process

To assess the role of the newly constrained radiative neutron-capture rates (or rather MACSs)
in i-process nucleosynthesis, network calculations have been performed by computing a 1 M⊙
low-metallicity ([Fe/H] = −2.5) Asymptotic Giant Branch model with the STAREVOL code
[87, 303, 304]. The used network comprises 1160 nuclei, linked through 2123 nuclear reactions
(n-, p-, α-captures and α-decays) and weak interactions (electron captures, β-decays). All
rates were extracted from the BRUSLIB database, the Nuclear Astrophysics Library of the
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Figure 6.5: Uncertainty bands for the neutron-capture rates in the 121Sn(n, γ)122Sn (a) and
123Sn(n, γ)124Sn reaction (b) reactions. The blue band corresponds to the span of experi-
mentally constrained reaction rates due to uncertainties of the input Oslo NLD and GSF.
The hatched band denotes the span of TALYS rates for all available GSF, NLD, and optical
model potential combinations (model uncertainty). The purple band is due to the variation
of the Skyrme-HFB plus combinatorial NLD and D1M Gogny-HFB plus QRPA GSF model
parameters according to the procedure of Ref. [282] (parameter uncertainty).

Université Libre de Bruxelles1[305] and the updated experimental and theoretical rates from
the NETGEN interface [299]. All information on the stellar physics inputs, modeling, and
nuclear physics involved can be found in Refs. [87, 275, 281]. As was mentioned earlier, among
the studied isotopes, the neutron capture on 120,121,123Sn using the Oslo NLD and GSF inputs
for 121,122,124Sn might be of potential interest for such calculations. Provided relatively accurate
MACSs available for the Sn isotopes up to 120Sn, including the Oslo results for these nuclei
in the network calculations would not lead to any significant changes and reduction of the
eventual uncertainties. However, for the 121,123Sn isotopes (121,122Sn(n, γ)122,124Sn reactions)
the Oslo method results might potentially help to reduce the model uncertainties.

The radiative neutron-capture rates extracted with the Oslo method for these two cases
are shown in Fig. 6.5. For these nuclei, the network calculations can be performed with the
rates obtained by varying all available TALYS NLD and GSF models as it was done in the
previous sections (beige bands in Fig. 6.3 and Fig. 6.4). The reaction rates obtained in this
manner are shown in Fig. 6.5 as pale hatched bands. An alternative source of uncertainties,
which should also be considered in large-scale network calculations, is due to the variations
of individual parameters entering the used NLD and GSF models (e.g. the temperature and
E0 parameter in the CT model). This type of uncertainty was studied thoroughly in the
recent work by Martinet et al. [282]. In this thesis, it was addressed in a similar way by
adopting a combination of the Skyrme-HFB plus combinatorial and D1M Gogny-HFB plus
QRPA models for the NLD and GSF (model A in [282]), respectively, and varying artificially
introduced parameters modulating the energy shift and temperature in the NLD and the

1Available at http://www.astro.ulb.ac.be/bruslib/
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Figure 6.6: Final surface elemental abundances (after decays) of multi-zone AGB stel-
lar models undergoing i-process nucleosynthesis, computed with different combinations of
121,123Sn(n, γ) rates. Shown are the [X/Fe] ratios. The first and second log10 terms refer to
the abundances of the model and the Sun, respectively. (a) Eight theoretical rates combina-
tions are considered. These are theoretical estimates of parameter and model uncertainties
affecting TALYS predictions of 121Sn(n, γ) and 123Sn(n, γ) reaction rates. (c) Same but with
the new experimentally constrained rates from this work. (b) and (d) same as (a) and (b), but
for the isotopic mass fraction X as a function of the mass number A, around the Sn region.

width and centroid energy in the GSF as prescribed in Ref [282]. The resulting uncertainty is
referred to as the parameter uncertainty and shown in Fig. 6.5. In the calculations presented
here and in Ref [282], they are assumed to be uncorrelated.

The impact of the above-mentioned sources of uncertainties as compared to the experimen-
tal ones was studied using the combinations of the TALYS NLD and GSF models resulting
in the minimum rates for the neutron capture on 121,123Sn (case 1), maximum rates for these
targets (case 2), minimum rates for 121Sn and maximum rates for 122Sn (case 3), and vice versa
(case 4). Similarly, the calculations have been performed with the combinations of parameter
modifications in model A resulting in minimum (case 5) and maximum (case 6) rates for 121Sn
and unmodified rates for 123Sn, as well as minimum (case 7) and maximum (case 8) rates for
123Sn, combined with unmodified rates for 121Sn. By analogy, the minimum and maximum
rates corresponding to the bottom and the top of experimental uncertainty bands were used
in different combinations (case 9 is min(121Sn)/min(123Sn), case 10 is max(121Sn)/max(123Sn),
case 11 is min(121Sn)/max(123Sn), case 12 is max(121Sn)/min(123Sn)). The resulting final sur-
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face elemental abundances (after decays) are shown in terms of [X/Fe]2 in Fig. 6.6(a) and
(c). It can be clearly seen that the effect is local and affects predominantly Sb isotopes.
Similar figures Fig. 6.6(b) and (d), showing the isotopic mass fraction versus the mass num-
ber A, demonstrate clearly that the affected isotopes are 121,123Sb (to a much lesser extent
122,124Te). Naturally, the lower neutron-capture rates on 121,123Sn result in a larger production
of 121,123Sb through β decay (blue line) and vice versa (red line). Moreover, the experimen-
tally constrained rates allowed to reduce the uncertainty in abundances by a factor of ≈ 2− 3,
down to 0.27 dex from 0.65 dex for parameter and 0.84 dex for model uncertainties. Similar
calculations involving Cd isotopes might be one of potential future objectives in the i-process
studies employing the Oslo method.

2The value of [X/Fe] is defined as [X/Fe] = log10(NX/NFe)⋆−log10(NX/NFe)⊙ with NX the number density
of an element X. The first and second log10 terms refer to the abundances of the model and the Sun.
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Chapter 7

Summary, conclusions, and outlook

7.1 Summary of the main results and conclusions

This thesis presents a systematic study on the low-lying electric dipole response (LEDR) in
the chain of Sn isotopes, ranging from 111Sn to 124Sn, based on the combined analysis of the
Oslo-type and Coulomb excitation experiments [42]. The LEDR below the neutron separa-
tion energy in these nuclei was extracted in terms of the dipole γ-ray strength function (GSF)
with the Oslo method applied to particle-γ coincidence data collected in proton-, deuteron-,
and 3He-induced reactions at the Oslo Cyclotron Laboratory. The overarching objective of
this study was to assess the evolution of the LEDR, commonly associated with the pygmy
dipole resonance, in stable 112,113,116−120,122,124Sn and unstable 111,121Sn isotopes with gradually
increasing neutron number and compare it with other experimental data and theoretical pre-
dictions. This task is closely linked to two other additional objectives covered here: addressing
the validity of the generalized Brink-Axel (BA) hypothesis below the neutron threshold and
providing the nuclear inputs for statistical-model calculations of radiative neutron-capture
cross sections relevant for astrophysical processes.

The validity of the Brink-Axel hypothesis, essential for establishing the correspondence
between the NRF, Coulomb excitation, and Oslo method strength distributions and simpli-
fying calculations in statistical-model-based reaction codes, was tested for 120,124Sn isotopes
using the Oslo and the shape [239] methods combined with the (p, p′) Coulomb excitation
data. The shape of the GSFs extracted from the decay to the ground state and the first
excited 2+ state with the shape method was found to be in excellent agreement with that of
the (p, p′) strength function, at least down to Eγ ≈ 6 MeV, and the results of the continuous
spectrum analysis of the NRF data on 120Sn [23] at even lower energies. Moreover, the Oslo
method GSF was found to be essentially independent of initial and final excitation energies
within the uncertainty bands based on the analysis of primary decays from and to different ex-
citation energy bins. The observed deviations of GSFs for different initial and final excitation
energies from the Oslo method strength, especially for transitions to low-lying discrete states,
were found to be commensurate with potential deviations due to Porter-Thomas fluctuations
and/or systematic uncertainties in each case.

The Oslo method nuclear level densities (NLDs) of 111−113,116−122,124Sn extracted in a model-
consistent way reproduce the low-lying discrete states well and demonstrate a clear constant-
temperature behavior below the neutron separation energy. The NLDs of even-even isotopes
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are in good agreement with each other, the same is true for the NLDs of even-odd isotopes.
An indirect check of the correspondence between the results of the Oslo-type and (p, p′)
experiments revealed a fair agreement between the Oslo method NLD and results of the
fluctuation analysis of the (p, p′) data for 124Sn, shown in Ref. [248]. The GSFs of the studied
isotopes are in excellent agreement within the uncertainty bands with the (p, p′) data for even-
even 112,114,116,118,120,124Sn and demonstrate a rather smooth evolution towards more neutron-
rich isotopes. These strengths combined reveal a bump-like structure at ≈ 8 MeV in all the
studied cases, interpreted as the LEDR. The latter was parametrized in terms of a single
or two Gaussian peaks on top of the tail of the modeled IVGDR and extracted through the
decomposition of the total dipole strength into different E1 and M1 components. It was
found to exhaust ≈ 2 − 3% of the classical Thomas-Reiche-Kuhn (TRK) sum rule for electric
dipole transitions in all the studied isotopes. In contradiction with the majority of theoretical
predictions (e.g., RQRPA and RQTBA), the LEDR in the Sn isotopic chain remains relatively
constant, with the exception of a local peak in the TRK values close to 120Sn.

Combining the Oslo and the (p, p′) strengths allowed for an additional extraction of a
peak-like structure at ≈ 6.4 − 6.5 MeV, clearly seen in the (p, p′) data. This lower-lying com-
ponent of the LEDR was identified for isotopes starting from 118Sn. It appears to become
more prominent towards 124Sn, exhausting the TRK values up to ≈ 0.5%, and be approxi-
mately linearly dependent on the neutron number. Provided the comparison with the strength
distributions from experiments with isoscalar (α and 17O) and isovector (γ) probes [40, 78],
it is possible to assume that this lower-lying peak in the LEDR can be associated with the
isovector component of the PDR. Thus, the interpretation of the total extracted LEDR as
the PDR might be unfounded. Moreover, the small fraction of the TRK sum rule exhausted
by this feature, in principle, challenges the neutron-skin oscillation picture of the PDR, which
implies a certain degree of collectivity. This matter, however, requires further theoretical and
experimental investigations.

Finally, the extracted Oslo method NLDs and GSFs were used as the input for Hauser-
Feshbach calculations of radiative neutron-capture cross sections with the reaction code TALYS
[154]. The cross sections were found to be in good agreement with other experimental data
for the target nuclei 112,115−120Sn and for incident neutron energies above ≈ 20 − 30 keV. The
corresponding Maxwellian-averaged cross sections are also in fair agreement with the recom-
mended cross sections from the JINA REACLIB [298], BRUSLIB [299], and KADoNiS [300]
libraries. For the unstable 121,123Sn targets, where no other experimental results are available,
the newly constrained cross sections allowed to considerably reduce the TALYS input model
uncertainty, by at least a factor of 7 at kBT = 30 keV. Moreover, as was shown in the calcula-
tions of the multi-zone AGB stellar models experiencing i-process nucleosynthesis using the
STAREVOL code [87, 303, 304], the neutron-capture rates for the 121,123Sn(n, γ)122,124Sn reac-
tions have a local impact on the i-process flow and affect the production of 121,123Sb isotopes.
The first experimental constraints of these reaction rates using the Oslo method presented in
this thesis provide the new estimates for the produced abundances of 121,123Sb and notably
reduce their model and parameter uncertainties.
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7.2 Outlook

In the past decade, a large number of new experimental techniques have been introduced and
exploited to unravel the nature of the PDR in nuclei within different mass regions. The task of
collecting consistent systematics of its experimental characteristics in different isotopic chains
is far from being completed even in the best studied cases. As shown in the present work, the
combination of the Oslo method data with the strengths from relativistic Coulomb excitation
experiments in forward-angle inelastic proton scattering provides a useful insight into the
distribution of the excess low-lying E1 strength on top of the IVGDR. Future systematic
(p, p′) studies, similar to the one presented in Ref. [42], in different isotopic chains are highly
desired. The Oslo-type experiments on 128,130Te and some Cd and Sb isotopes of potential
interest for the i process are planned to be performed at the OCL in the upcoming years,
continuing the effort of studying the LEDR in the A ≈ 110 − 130 mass region. Recently
performed (p, p′γ) experiments on 112,114Sn at the Horia Hulubei Institute for Physics and
Nuclear Engineering (IFIN-HH) are currently being analyzed, and the preliminary results on
114Sn, provided in Appendix B, fall nicely within the systematics presented in this work.

Another unique source of information on the dipole strength distribution in the PDR
energy region is offered by NRF measurements using linearly polarized quasi-monochromatic
photon beams at HIγS. Results of a preliminary analysis of such data for 120Sn were recently
found to be in excellent agreement with the (p, p′) strength distribution1. Moreover, this type
of data can be used for an ultimate test of the Brink-Axel hypothesis, revealing any potential
excitation-energy dependence of the LEDR, and thus complementing the findings for 120,124Sn
from this thesis. The ratio method employed in these tests can, in some cases, also be applied
to the Oslo particle-γ coincidence data. Such an analysis is currently being performed for
120Sn. For the Oslo-type experiments, the ratio method might provide an alternative, model-
independent way to constrain the slope of the GSF, by analogy with the shape method.

Finally, the combination of the shape and β-Oslo methods is another promising direction
of future studies, allowing to expand our knowledge on the LEDR towards more neutron-rich
nuclei. Here, reliable theoretical approaches for the description of the NLDs and GSFs in
both the PDR and IVGDR energy regions are highly desired. The recently developed QRPA
plus boson expansion method is a promising step forward towards a more realistic description
of NLDs, not only within but also away from the valley of stability [114]. Current efforts
on optimizing the numerical 2q ⊗ 2phonon calculations and including the temperature effects
in microscopic calculations may enable an improved description of the strength distribution,
especially below the neutron threshold, in the near future.

1J. Isaak, private communication.
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Brief introduction to the papers

In the following, all articles forming the basis of this dissertation will be outlined in brief.

Paper I: Comprehensive Test of the Brink-Axel Hypothesis in the
Energy Region of the Pygmy Dipole Resonance

The applicability of the Brink-Axel hypothesis in the pygmy dipole resonance energy range
for nuclei with different mass numbers is a matter of great importance for statistical-model
calculations. So far, the theoretical and experimental effort directed towards addressing this
matter has yielded contradictory or simply inconclusive results. Paper I presents a consoli-
dated attempt to test the validity of the Brink-Axel hypothesis in the immediate vicinity of
the neutron threshold in 116,120,124Sn based on the comparison of the GSFs from the analysis
of particle-γ coincidence data with the Oslo and shape methods and the multipole decom-
position analysis of Coulomb excitation data from forward-angle inelastic proton scattering.
The dipole strength functions obtained with all these methods were demonstrated to be in
excellent agreement with each other down to ≈ 5.5 − 6.0 MeV. Moreover, the GSF was shown
to be essentially independent of initial excitation energies within the quasi-continuum re-
gion as well as of the final excitation energies and spins of the states accessible through the
shape method. These observations have an important consequence for subsequent astrophys-
ical Hauser-Feshbach calculations in the Sn mass region, where the downward and upward
strength functions can be used interchangeably close to the neutron separation energy, and
the Oslo method and (p, p′) strengths complement each other to cover a rather wide energy
range of the IVGDR and the PDR.

The author of this dissertation was responsible for preparing, planning, and performing
the (p, p′γ) experiment on 120,124Sn at the OCL in 2019, performing all analyses involving the
Oslo data, including the re-analysis of the 116Sn data. The author wrote the manuscript as
the sole corresponding author in close collaboration with Prof. A.-C. Larsen, Prof. P. von
Neumann-Cosel, and Prof. A. Richter and with input from all other co-authors.

Paper II: Nuclear level densities and γ-ray strength functions in
120,124Sn isotopes: Impact of Porter-Thomas fluctuations

The principal idea of Paper II was to provide a detailed description of the analysis of the
particle-γ coincidence data for 120,124Sn, first presented in Paper I, with the main focus on the
GSF and the NLD in these nuclei. This work continues the effort to address the Brink-Axel
hypothesis in Sn nuclei in more depth and presents one of the first tests of the novel shape
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method applied to the Oslo data. The role of Porter-Thomas fluctuations in both of these
matters has been investigated using the experimental NLD obtained with the Oslo method.
The main questions to be answered were how these fluctuations might affect the comparison
of GSFs extracted within limited initial and final excitation energy windows and whether the
fluctuations impose any limitations on the applicability of the shape method.

The total extracted NLDs were found to be in good agreement with the earlier published
results on other even-even Sn isotopes, and the partial density of 1− states in 124Sn appears
to be in fair agreement with the result of the fluctuation analysis of the Coulomb excitation
data. The GSFs of 120,124Sn were shown to be independent within the uncertainties of initial
and final excitation energies below the neutron threshold. Moreover, all strong deviations of
GSFs extracted for different low-lying final excitation energy bins fall within the expected
uncertainties due to strong Porter-Thomas fluctuations. The shape method was tested in
application to both 120Sn and 124Sn and was shown to be an excellent tool to constrain the
slope of the GSF in the combined analysis with the Oslo method. The shapes of the GSFs from
the decay to the ground state and the first excited state were reproduced with this method
down to γ-ray energies of ≈ 5 MeV. At even lower energies, the basic assumptions underlying
the shape method might be no longer valid, and Porter-Thomas fluctuations become too large
to yield reliable results.

The author of this dissertation was responsible for performing all analyses involving the
Oslo data. The author wrote the manuscript as the sole corresponding author in close col-
laboration with Prof. A.-C. Larsen, Prof. P. von Neumann-Cosel, and Dr. J. Isaak and with
input from all other coauthors.

Paper III: Nuclear level densities and γ-ray strength functions of
111,112,113Sn isotopes studied with the Oslo method

In this work, the NLDs and the GSFs of the lightest studied at the OCL Sn isotopes,
111,112,113Sn, have been presented for the first time. Particle-γ coincidence data obtained
in (p, dγ), (p, p′γ), and (d, pγ) reactions have been analyzed with the Oslo method, and the
extracted NLDs and GSFs have been compared with all available Oslo data for other Sn
isotopes, the results of the neutron evaporation and the Coulomb excitation experiments.
It has also been confirmed that the thermodynamic properties of these nuclei, such as the
microcanonical entropy and temperature, are in line with those of the heavier neighboring
isotopes, studied earlier. The GSFs of all three isotopes were found to be in excellent agree-
ment in absolute values and slopes with each other. The first assessment of the low-lying
electric dipole strength based on the combined Oslo and Coulomb excitation (p, p′) data has
been performed. The presumable pygmy dipole resonance was found to exhaust ≈ 1.8% of the
classical Thomas-Reiche-Kuhn sum rule for electric dipole transitions. This way, the article
lays the foundation for a more consistent analysis of the whole isotopic chain in order to study
the evolution of the low-lying dipole strength and highlights the need to provide an updated
re-analysis of the earlier published data with the newly available auxiliary experimental data
for the normalization of the Oslo method results.

The author of this dissertation was responsible for the analysis of all three experiments
on 112Sn performed in 2013-2014 to study 111,112,113Sn and writing the manuscript as the sole
corresponding author in close collaboration with Prof. A.-C. Larsen and with input from all
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other co-authors.

Paper IV: Systematic study of the low-lying electric dipole strength
in Sn isotopes and its astrophysical implications

This article presents an attempt to consistently assess the evolution of the low-lying electric
dipole strength below the neutron threshold in eleven tin isotopes, 111−113,116−122,124Sn, studied
in various light-ion-induced reactions with the Oslo method. The experiments on 117,119Sn
with the newest configuration of the setup at the OCL have been presented for the first time.
The objective of the study was twofold: to address the evolution of the low-lying E1 strength
on top of the IVGDR by combining the Oslo method and (p, p′) data, while also putting
it into a broader context of other experimental and theoretical studies, and to provide the
new constraints for the neutron-capture cross sections and rates of potential interest for the
astrophysical i process. The Oslo method and (p, p′) strengths have also been compared with
the updated RQRPA and RQTBA calculations in terms of the Thomas-Reiche-Kuhn sum
rule fraction exhausted by the E1 strength below the neutron threshold. Furthermore, the
radiative neutron-capture cross sections and Maxwellian-averaged cross sections have been ex-
tracted using the reaction code TALYS with the Oslo data as input and compared with cross
sections from other experiments and astrophysical rates from different libraries (JINA REA-
CLIB, BRUSLIB, KADoNiS). The Oslo data allowed us to significantly reduce the TALYS
model uncertainty, which is especially important for the heaviest studied 122,124Sn, where no
other experimental data are available. Moreover, the extracted 121,123Sn(n, γ)122,124Sn reaction
rates were found to impact the production of Sb in the i-process nucleosynthesis in AGB stars
based on STAREVOL code calculations.

The author of the dissertation was responsible for a complete re-analysis of all eleven
Sn data sets, the analysis of the low-lying E1 strength, TALYS calculations and writing
the corresponding parts of the manuscript. The RQRPA and RQTBA calculations were
performed and provided by Prof. E. Litvinova. STAREVOL calculations were performed by
Dr. A. Choplin and S. Martinet. The corresponding parts of the manuscript were prepared in
close collaboration with Prof. A.-C. Larsen, Prof. P. von Neumann-Cosel, Prof. E. Litvinova,
Dr. A. Choplin, and Prof. S. Goriely and with the contribution of other co-authors.

Paper V: Systematics of the low-energy electric dipole strength in
the Sn isotopic chain

This work presents an excerpt from Paper IV with the main focus shifted towards the nuclear
structure aspect of the analysis of the low-lying E1 strength and a more in-depth discussion
of its consequences for the interpretation of the PDR in Sn isotopes.

The manuscript is prepared in close collaboration with Prof. P. von Neumann-Cosel and
Prof. E. Litvinova.

All articles included in the following sections are reprinted with permissions as requred by the
American Physics Society. Copyright by the American Physical Society (2021, 2022, 2023).
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The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical
calculations, is addressed for 116;120;124Sn below the neutron separation energy by means of three
independent experimental methods. The γ-ray strength functions (GSFs) extracted from primary γ-decay
spectra following charged-particle reactions with the Oslo method and with the shape method demonstrate
excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam
energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial
and final states. The results provide a critical test of the generalized Brink-Axel hypothesis in heavy nuclei,
demonstrating its applicability in the energy region of the pygmy dipole resonance.

DOI: 10.1103/PhysRevLett.127.182501

Introduction.—Gamma-ray strength functions (GSFs)
describe the average γ decay and absorption probability
of nuclei as a function of γ energy. Besides their genuine
interest and importance for basic nuclear physics, they are
required for applications in astrophysics [1], reactor design
[2], and waste transmutation [3] based on the application
of the statistical nuclear reaction theory. A particular
example is large-scale reaction network calculations of
neutron capture reactions in the r-process nucleosynthesis.
Accordingly, there are considerable efforts to collect data
on the GSF in many nuclei [4] and extract systematic
parametrizations [5], which allow extrapolation to
unknown, exotic cases.
Although all electromagnetic multipoles can, in princi-

ple, contribute, the GSF is dominated by E1 radiation with
smaller contributions from M1 strength. Above particle
threshold it is dominated by the isovector giant dipole
resonance (IVGDR), but at lower excitation energies the
situation is complex. In nuclei with neutron excess, one
observes the formation of the pygmy dipole resonance
(PDR) [6,7] located on the low-energy tail of the IVGDR.
Although the detailed structure of the PDR is under debate,
it is commonly believed that its strength is related to the
magnitude of neutron excess. As the r process involves
nuclei with extreme neutron-to-proton ratios, the impact of
low-energy E1 strength on the ðn; γÞ reaction rates and the
resulting r-process abundances can be significant [8–11].

The GSFs used in large-scale astrophysical network
calculations of the r process [12] are based on model
calculations of ground-state photoabsorption. Their appli-
cation requires the validity of the Brink-Axel (BA) hypoth-
esis [13,14], which in its generalized form states that the
GSF is independent of the energies, spins, and parities of
the initial and final states and depends on the γ energy only.
However, recent theoretical studies [15–17] put that into
question, demonstrating that strength functions of collec-
tive modes built on excited states generally do show
dependence on the excitation energy. Shell-model calcu-
lations in light nuclei [16] found E1 strength functions
approximately independent of excitation energy consistent
with the BA hypothesis, but it remains an open question
whether this can be generalized for heavier nuclei.
Because of the importance for astrophysical applications,

there aremany recent experimental studies in the low-energy
regime with controversial results, claiming either confirma-
tion [18–21] or violation [22–25] of the BA hypothesis.
Possible nonstatistical γ-width distributions observed in
s- and p-wave neutron capture experiments [26] would
also represent proof against the BA hypothesis [27].
There are two major sources of GSF data [4]. One class

of experiments determines the ground-state photoabsorp-
tion by measuring the subsequent γ [28] or neutron [29]
decay. Alternatively, the primary γ-decay distribution is
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extracted in light-ion-induced compound reactions (the
so-called Oslo method [30–33]). Experiments measuring
particle or γ decay are limited to the excitation-energy
region above or below the neutron threshold, respectively.
In principle, a comparison of ðγ; γ0Þ and Oslo experiments
for the same nucleus should provide a test of the validity of
the BA hypothesis [34], but is complicated by the assump-
tions necessary to extract the GSF. For ðγ; γ0Þ experiments
with broad bremsstrahlung beams, one needs to model the
experimentally inaccessible ground-state branching ratios
and the significant contributions to the spectra due to
atomic scattering. The analysis of Oslo-type data is based
on the validity of the BA hypothesis, and assumptions have
to be made about the intrinsic spin distribution and the
reaction-dependent spin population.
In such comparisons, possible violations of the BA

hypothesis have been observed. In heavy deformed nuclei
at excitation energies of 2–3 MeV, the GSF is dominated by
the orbital M1 scissors mode [35]. Larger strengths have
been reported in most γ-decay experiments (see, e.g.,
Refs. [36,37]) than found in the ðγ; γ0Þ experiments [38],
but the results strongly depend on the assumed form of the
E1 strength function in this energy range [39]. At even lower
energies (< 2 MeV), a general increase of the GSF (called
upbend) is seen in Oslo-type experiments [40,41]. No
corresponding strength can be present in ground-state
absorption experiments on even-even nuclei due to the
pairing properties of the nuclear force, which lead to the
absence of levels at low excitation energies. In the energy
region near neutron threshold, a nonstatistical decay behav-
ior of the PDR has been reported [42,43]. The possible
impact of the PDR on the GSF extraction is expected to be
largest in magic and semimagic nuclei because of the
reduced level density and a shift of part of the IVGDR
strength toward lower energies due to K splitting in
deformed nuclei.
Here we present a benchmark study allowing a test of the

BA hypothesis in the energy region of the PDR taking
advantage of recent experimental progress, which over-
comes most of the problems discussed above. First, a
method for the measurement of E1 strength distributions—
and thereby the E1 part of the GSFs—in nuclei from about
5 to 25MeV has been developed using relativistic Coulomb
excitation in inelastic proton scattering at energies of a few
hundred MeV and scattering angles close to 0° [44]. Such
data also permit extraction of theM1 part of the GSF due to
spin-flip excitations [45], which energetically overlaps with
the PDR strength. Second, a new system for the measure-
ment of γ emission in Oslo experiments based on large-
volume LaBr3ðCeÞ detectors allows qualitatively new tests
of the BA hypothesis, as described below, including
resolved coincidence studies of decay to the ground-state
and low-lying excited states.
Combining data from the two methods allows for testing

the generalized BA hypothesis with respect to the energy

and spin independence of initial and final states in the PDR
region. Here we present a case study for 116;120;124Sn. The
choice is based on the following considerations. (i) Data for
E1 and M1 strength distributions in the stable Sn isotopes
from ðp; p0Þ experiments at 295 MeV have recently become
available [46,47] and found to agree well with the GSF
above threshold deduced from the latest ðγ; nÞ experiments
by Utsunomiya et al. [48]. (ii) The isotopes have high
neutron threshold energies, providing a large overlap region
between the GSFs deduced from the ðp; p0Þ and the Oslo
experiments. (iii) While their low-energy structure is very
similar, the GSFs of the Sn isotopes show a distinct
dependence on neutron excess in the PDR region [49].
Experimental details and data analysis.—The inelastic

proton scattering experiments and the methods to extract
the E1 and M1 contributions to the GSF are described in
detail in Ref. [47]. The 116Sn experiment at the Oslo
Cyclotron Laboratory (OCL) has previously been reported
in Refs. [50,51]. A 38 MeV 3He beam was used to produce
116Sn nuclei via the 117Snð3He; αγÞ reaction, where the
charged particles were measured with eight collimated Si
detectors at 45° and the γ rays with the NaI(Tl) array
CACTUS [52].
We provide here a brief description of the new 120;124Sn

experiments at OCL. A 16-MeV proton beam of intensity
I ¼ 3–4 nA provided by theMC-35 Scanditronix cyclotron
impinged on self-supporting targets of 120;124Sn. The target
thicknesses and enrichments were 2.0 mg=cm2, 99.6%
(120Sn) and 0.47 mg=cm2, 95.3% (124Sn). The reactions
of interest were 120;124Snðp; p0γÞ. The targets were placed in
the center of the Oslo SCintillator ARray (OSCAR) [53,54],
consisting of 30 cylindrical LaBr3ðCeÞ γ-ray detectors
of size 3.5 × 8.5 in: mounted on a truncated icosahedron
frame. Charged particles were registered with 64 Si
particle ΔE − E telescopes (SiRi) [55], covering angles
126° − 140°. The energy resolution of OSCAR is ≈2.7% at
Eγ ¼ 662 keV. The front ends of the LaBr3ðCeÞ crystals
were placed 16 cm from the center of the target. Particle-γ
coincidences were recorded using XIA digital electronics
[56]. Approximately 5.3 × 107 and 1.3 × 107 proton-γ
coincidences were measured in the excitation-energy range
up to the neutron thresholds for 120Sn and 124Sn, respectively.
The proton energy deposited in the SiRi telescopes was

transformed to initial excitation energy Ex in the residual
nucleus using the reaction kinematics, and the data were
arranged in an Ex vs γ-ray energy matrix. The γ-ray spectra
for each Ex bin were unfolded with the technique described
in Ref. [30] using the response function of the OSCAR
detectors [57]. The distribution of primary γ rays (the first
emitted γ rays in the decay cascades) for each Ex bin was
obtained through an iterative subtraction method [31]. The
resulting primary γ-ray matrix for the example of 120Sn is
displayed in Fig. 1.
With the primary γ-ray matrix PðEγ; ExÞ at hand, we can

use the ansatz [32]
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PðEγ; ExÞ ∝ ρðEfÞT ðEγÞ ð1Þ

to simultaneously extract the level density ρðEfÞ at the final
excitation energy Ef ¼ Ex − Eγ and the γ-ray transmission

coefficient T ðEγÞ. For dipole decay, the γ-ray transmis-
sion coefficient is connected to the γ-ray strength function
fðEγÞ through the expression T ðEγÞ ¼ 2πE3

γfðEγÞ. The
application of Eq. (1) assumes that the generalized form of
the BA hypothesis holds. Both ρ and T can be extracted
from a χ2 minimization of a chosen area of the primary
γ-ray matrix [32]. For 120Sn, the area confined by the blue
lines (area 3) in Fig. 1 was chosen for the decomposition.
The minimization yields the functional forms of both the
ρðEfÞ and fðEγÞ, except for the absolute value and the
slope (see the Supplemental Material for details [58]).
The level density at low excitation energies is normalized
using available information on low-lying discrete levels,
while the value ρðSnÞ, obtained from the s-wave neutron
resonance spacing D0 or from systematics, is used to
further constrain the normalization. Finally, the GSF is
normalized to the value of the average total radiative width
from s-wave neutron resonance experiments. Details of
the normalization procedure and a presentation of all
parameters, as well as the choice of the primary γ-ray
matrix area for 116;120;124Sn can be found in the
Supplemental Material [58].
Results and discussion.—Figure 2 compares the GSFs

for 116;120;124Sn extracted using the Oslo method (blue) and
from inelastic proton scattering [47] (orange). In the energy
regions where both results overlap, the two fundamentally
different methods yield agreement of the γ-ray energy
dependence as well as absolute values within the estimated
uncertainty bands for all three nuclei in support of the BA
hypothesis.

0 2 4 6 8 10
 (MeV)γE

0

2

4

6

8

10
 (

M
eV

)
x

E

1

10

210

310

410

510

610

N
um

be
r 

of
 c

ou
nt

s

Sn120

nS

+0+2

12
3

FIG. 1. Experimental primary γ-ray matrix PðEγ ; ExÞ for 120Sn.
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to the ground state and the first excited Jπ ¼ 2þ state at
Ex ¼ 1.171 MeV. The solid blue lines (region 3) mark the
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method analysis.
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Peaklike structures at Eγ ≈ 6.5 MeV with a width of
about 200 keV (FWHM) are systematically observed in the
ðp; p0Þ data [47,59] as highlighted in the lower part of
Fig. 2. The strength at the peak shows an increase from
1 × 10−7 to 2.2 × 10−7 MeV−3 with the increasing neutron
number from 116Sn to 124Sn. While the present as well
as ðγ; γ0Þ data discussed below represent the isovector
response, a concentration of isoscalar E1 strength has
also been found in 124Sn between 6 and 7 MeV [60,61].
The mutual observation in reactions probing the isoscalar
and isovector response is considered a signature of the
PDR [6,7].
The ðγ; γ0Þ data on 116;120;124Sn [62,63] show correspond-

ing peaks at about 6.5 MeV with comparable strength but a
rather dramatic suppression at higher excitation energies,
reaching an order of magnitude at 8.5 MeV. The differences
have been attributed to an increasing complexity of the
wave functions of the excited states (as expected for the
IVGDR), resulting in small branching ratios to the ground
state. Such an interpretation is corroborated by a recent
ðγ; γ0Þ experiment on 120Sn with improved sensitivity [64].
Applying statistical model corrections of the branching
ratios, the deduced photoabsorption cross sections agree
within the considerable model dependence of such a
procedure discussed above. We note that the recent reali-
zation of ðγ; γ0γ00Þ experiments in combination with
quasimonoenergetic photon beams from laser Compton
backscattering promises a competitive extraction of photo-
absorption cross sections below threshold in the future [65].
The possible observation of a peak around 6.5 MeV in

the Oslo data is unclear. No such structure is visible for
116Sn. However, the statistics in the high-Eγ range for this
older experiment were insufficient to track its existence. A
peak at 6.5 MeV can be seen in the GSF of 120Sn, but the
fluctuations of data points below and above are of similar
size. In 124Sn, where the peak is most pronounced in the
ground-state photoabsorption experiments, a potential
structure with respect to the uncertainties from the extrac-
tion of primary γ-rays is observed. We note that, although
systematic uncertainties are large for 124Sn due to the
absence of level density information from neutron capture
reactions, variations within the total error bars may shift
the GSF up or down, but the peak around 6.5 MeV
remains.
An alternative way to test the BA hypothesis with

Oslo-type data is to study the GSF as a function of the
initial and final excitation energy as outlined in Ref. [18].
From the primary γ-ray matrix, we extract the GSF for
256-keV wide excitation-energy bins. This way, we can
investigate the possible variation of the GSF as a function
of initial excitation energy. The results of applying this
procedure to the 120Sn data are illustrated in Fig. 3, where
the GSFs for three narrow initial excitation energies are
compared to the Oslo-method data extracted from the full
Ex range. Each GSF was scaled to the Oslo-method results

by a χ2 fit. There is overall good agreement, but the GSFs
for the selected initial energy bins exhibit stronger fluctua-
tions compared to the standard Oslo method strength. This
can be traced back to the reduced number of levels in the
initial-state bins, which lead to an increase of fluctuations
of the Porter-Thomas intensity distribution expected for
statistical decay [66]. An analog analysis of the final-state
energy dependence shows comparable agreement.
Finally, we test the spin independence of the present

results by applying a novel approach to extract the energy
dependence of the GSF in a largely model-independent
way (the so-called “shape method” [67]). Here, we use the
capability of the OSCAR array to resolve the decay to the
ground state and to the first excited 2þ state studying again
the case of the 120Sn isotope (regions 1 and 2 in Fig. 1).
Compared to the much broader spin range contributing
to the full Oslo dataset, this defines initial spin windows
J ¼ 1–3 and J ¼ 1 for levels directly feeding the 2þ state
and 0þ ground state, respectively. As the dipole GSF is
given by [68]
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FIG. 3. GSF of 120Sn for narrow initial excitation-energy bins at
(a) 5.6 MeV, (b) 6.3 MeV, and (c) 7.4 MeV with a width of
256 keV (red data points) compared to the Oslo method result for
the full excitation-energy range 4.5 ≤ Ex ≤ 9.1 MeV (blue). For
the Oslo method, the total error band is shown. For both
approaches, an Eγ bin width of 128 keV is used.
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fðEi; Ef; Eγ; Jπi Þ ¼
hΓγðEi; Ef; Eγ; Jπi ÞiρðEi; Jπi Þ

E3
γ

;

one can extract information on the shape of the γ strength
from the intensities ND [defined in Eq. (13) of Ref. [67] ]
proportional to the average, partial radiative width
hΓγðEi; Ef; Eγ; Jπi Þi in the diagonals.
The GSF deduced from the shape method is shown in

Fig. 4 together with those extracted from the Oslo method
and from the ðp; p0Þ data. Data points from decay to the 0þ

and 2þ state are shown by red and green triangles,
respectively. The error bars include only statistical errors,
which are typically smaller than the symbol sizes. Since the
shape method does not provide an absolute normalization
of the strength, the results were scaled to the ðp; p0Þ data by
a least-squares fit. The shapes of all three GSFs agree
within their uncertainties, demonstrating independence
from the particular spin distribution of the initial and final
states. The comparison of the GSF from inelastic proton
scattering with the shape-method data points from ground-
state decay illustrates the direct correspondence between
“upward” and “downward” strengths.
Summary and conclusions.—We present a critical test of

the generalized BA hypothesis in heavy nuclei in the energy
region below the neutron threshold. It is based on a
comparison of the GSFs in 116;120;124Sn deduced from
relativistic Coulomb excitation in forward-angle inelastic
proton scattering [44] and from Oslo-type experiments.
The two sets of GSFs agree within experimental uncer-
tainties in the energy region between 6 MeV and the
neutron threshold, demonstrating that the generalized BA
hypothesis holds for the studied cases in this energy region,
and experiments based on ground-state photoabsorption
indeed provide the same information on GSFs in nuclei as

Oslo-type experiments. The presence of peaks around
6.5 MeVattributed to the PDR remains unclear in the Oslo
data. However, their overall contribution to the GSF—if
present—is small. Thus, the assumptions made in the
calculations of ðn; γÞ reactions relevant to r-process nucleo-
synthesis are verified. Further tests of the BA hypothesis
include a demonstration of the independence of the GSFs
from the energies and spins of initial and final states. The
latter utilizes the novel shape method [67], which allows a
largely model-independent extraction of the energy
dependence of the GSF from the selective decay to specific
final states.
It remains an open question to what extent these results

can be generalized. Since we are discussing averaged
properties, the most critical parameter is a sufficiently
large level density. The examples studied here are
semimagic nuclei with correspondingly low-level density
values. Thus, we expect that our conclusion on the BA
hypothesis may hold, in general, for heavy nuclei with
ground-state deformation (and thus higher level densities)
[19], except for doubly magic cases [69]. Future compar-
isons should explore the limits of ground-state photo-
absorption experiments to extract the GSF as a function
of γ energy, level density, and mass number.
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Nuclear level densities and γ-ray strength functions in 120,124Sn isotopes: Impact
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Nuclear level densities (NLDs) and γ -ray strength functions (GSFs) of 120,124Sn have been extracted with
the Oslo method from proton-γ coincidences in the (p, p′γ ) reaction. The functional forms of the GSFs and
NLDs have been further constrained with the Shape method by studying primary γ -transitions to the ground and
first excited states. The NLDs demonstrate good agreement with the NLDs of 116,118,122Sn isotopes measured
previously. Moreover, the extracted partial NLD of 1− levels in 124Sn is shown to be in fair agreement with
those deduced from spectra of relativistic Coulomb excitation in forward-angle inelastic proton scattering.
The experimental NLDs have been applied to estimate the magnitude of the Porter-Thomas (PT) fluctuations.
Within the PT fluctuations, we conclude that the GSFs for both isotopes can be considered to be independent of
initial and final excitation energies, in accordance with the generalized Brink-Axel hypothesis. Particularly large
fluctuations observed in the Shape-method GSFs present a considerable contribution to the uncertainty of the
method and may be one of the reasons for deviations from the Oslo-method strength at low γ -ray energies and
low values of the NLD (below ≈1 × 103–2 × 103 MeV−1).

DOI: 10.1103/PhysRevC.106.034322

I. INTRODUCTION

Numerous experimental and theoretical efforts have been
dedicated to the study of γ -decay processes in atomic nuclei.
The decay properties of excited nuclei are not only pivotal
for the basic nuclear physics research, but also are the core
ingredients for large-scale calculations of nucleosynthesis and
element abundances in the universe [1,2].

While gradually moving from the lowest to higher exci-
tation energies of a nucleus, the spacing between individual
excited states becomes smaller, and the sensitivity of exper-
imental techniques might be no longer sufficient to resolve
them separately. Here, the nucleus enters the quasicontinuum
regime and the concept of the nuclear level density (NLD),
i.e., the number of nuclear states per excitation energy unit,
becomes an indispensable tool for a statistical description of
nuclei. By analogy, the γ -ray strength function (GSF), or
the average, reduced γ -transition probability, becomes more
suitable to describe the numerous γ transitions. The statistical
model as formulated by Hauser and Feshbach [3] with ingre-

*maria.markova@fys.uio.no
†a.c.larsen@fys.uio.no

dients such as the NLD and GSF provides the main framework
for modeling nuclear reactions and calculating their cross sec-
tions for astrophysical purposes (see, e.g., Ref. [2]), the design
of nuclear reactors [4], and the transmutation of nuclear waste
[5].

Among all experimental techniques used for the extraction
of GSFs [6], the Oslo method has been widely used to obtain
the dipole strength below the neutron threshold by studying
the γ decay of residual nuclei formed in light-ion-induced
reactions [7–9]. The main advantage of the method is a si-
multaneous extraction of the NLD and GSF from primary
γ -decay spectra at excitation energies below the neutron sep-
aration energy Sn. The GSFs for many nuclei obtained by
employing different experimental techniques have previously
been reported to provide a rather good agreement in absolute
values and/or general shapes with the Oslo method strengths
[10–12]. A few cases of large discrepancies have also been
reported (e.g., the comparison of the Oslo and (γ , γ ′) data for
89Y and 139La presented in Ref. [6]).

A large fraction of theoretical and experimental techniques
focusing on calculating or measuring the GSF, including the
Oslo method, rely on the validity of the generalized Brink-
Axel (gBA) hypothesis [13,14]. In its most general form, the
hypothesis states that the GSF is independent of excitation
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energies, spins and parities of initial and final states and de-
pends solely on the γ -ray energy of involved transitions. This
is often used as a necessary approximation and simplification
in many methods and allows us to set a direct correspondence
between strengths extracted from the γ decay and photoex-
citation processes [13,15]. Even though this hypothesis is
experimentally established at high energies, i.e., in the vicinity
of the giant dipole resonance, its validity below the neutron
threshold still triggers quite some debate. For example, several
theoretical studies suggest the need of a modification of the
hypothesis [16–20], while experimental studies range from
claims of a violation [21–24] to a validity [12,15,25–27].
The question regarding the validity is a rather difficult one,
partially depending on what degree of violation is considered
acceptable in different experimental and theoretical applica-
tions.

A crucial point to be considered when addressing the appli-
cability of the gBA hypothesis is the presence of fluctuations
of partial radiative widths, or the so-called Porter-Thomas
(PT) fluctuations [28]. The partial radiative widths are pro-
portional to the corresponding reduced transition strengths
[B(XL) values where X is the electromagnetic character and
L the angular momentum of the γ ray]. At sufficiently high
excitation energies and high NLD values, the nuclear wave
functions are quite complex with many components. In this
region, according to random-matrix theory [29], the partial
widths follow a χ2

ν behavior with ν = 1 degree of freedom,
while the total widths are more narrowly distributed with the
variance inversely proportional to the number of indepen-
dently contributing partial widths.

Such a variation of partial widths is directly reflected in the
variation of the GSF, which may mask the excitation energy
independence of the strength, and thus a test of the gBA
hypothesis might become especially difficult. Indeed, for rel-
atively light nuclei, e.g., 64,65Ni [26] and 46Ti [30], the NLDs
are rather low, and tests of the gBA hypothesis are limited. On
the other hand, the 238Np nucleus [25] with a particularly high
NLD makes a perfect case for studying the GSF as a function
of initial and final excitation energies, as fluctuations of the
strength are strongly suppressed. The Sn isotopes investigated
here present an intermediate case for studying to what degree
the PT fluctuations are expected to distort excitation energy
dependence of the GSF.

Moving away from the valley of stability opens up new
perspectives for studying exotic, neutron-rich nuclei, with ap-
plications to heavy-element nucleosynthesis [31], using for
example, the β-Oslo method [32] and the Oslo method in
inverse kinematics [33]. However, this leads to additional
complications, such as the lack of neutron-resonance data for
normalizing the NLD and GSF from the Oslo-method data.
Moreover, some of the light-ion-induced reactions may lead
to a population of a limited spin range, which might introduce
additional assumptions and uncertainties when extracting the
shapes of the NLD and GSF.

A novel technique, the Shape method [34], has recently
been proposed to mend this problem. Applied to the primary
γ transitions to several low-lying discrete states at consecutive
excitation energy bins, it allows for an independent deter-
mination of the shape of the GSF. Thus, the shape of the

strength and the interlinked slope of the NLD extracted with
the Oslo method can be additionally constrained by the Shape
method. However, as the latter is using data on direct decays
to low-lying discrete states only, the PT fluctuations of the
involved partial widths are expected to be significantly larger
than for the Oslo-method GSF.

In this work, the potential role of PT fluctuations in es-
tablishing the validity of the gBA hypothesis as well as the
application of the Shape method are addressed for 120Sn and
124Sn. Both the Oslo method and the Shape method have
been applied to the same data sets. Experimental NLDs have
been used to estimate fluctuations of the strengths for different
specific initial and final excitation energies and compared with
previous Oslo-method NLDs for even-even isotopes [35–37].
In Sec. II the details of the experimental procedure, the appli-
cation of the Oslo method (Sec. II A) and the Shape method
(Sec. II B) are presented. Section III focuses on the NLDs
for 120,124Sn and the comparison with other experimental and
theoretical results. In Sec. IV the procedure of estimating
fluctuations of the strengths is presented together with the
Shape method results, and the study of fluctuations and GSFs
as functions of initial and final excitation energies. Finally, the
main conclusions are summarized in Sec. V.

II. DETAILS OF THE EXPERIMENT AND DATA ANALYSIS

Experiments on both 120Sn and 124Sn were performed
in February 2019 at the Oslo Cyclotron Laboratory (OCL).
The isotopes were studied through the inelastic scattering
reactions 120,124Sn(p, p′γ ) with a proton beam of energy
16 MeV and intensity I ≈ 3–4 nA provided by the MC-35
Scanditronix cyclotron. Both targets used in the experiment
were self-supporting with thicknesses and enrichments of
2.0 mg/cm2, 99.6% for 120Sn and 0.47 mg/cm2, 95.3% for
124Sn, respectively. The 120Sn target was placed in the beam
for approximately 24 hours, while the whole run on 124Sn
lasted approximately 17 hours. A self-supporting 28Si target
(natural Si, 92.2% 28Si) with thickness of 4 mg/cm2 was
placed in the same proton beam for ≈1.5 hours at the end of
the experiment for the energy calibration of the γ detectors.

The experimental setup at the OCL comprises of the
target chamber surrounded by 30 cylindrical large-volume
LaBr3(Ce) detectors (Oslo Scintillator Array, OSCAR for
short) [33,38], and 64 Si particle �E -E telescopes (SiRi) [39].
The LaBr3(Ce) scintillator detectors with φ3.5′′ × 8′′ crystals
were mounted on a truncated icosahedron frame with all front-
ends fixed at a distance of 16.3 cm from the center of the target
chamber, thus covering ≈57% of the total solid angle. The
full-energy peak efficiency and energy resolution of OSCAR
have been measured to be ≈20% and ≈2.7%, respectively, at
Eγ = 662 keV for the 137Cs calibration source placed at the
same distance from the front-ends of the detectors.

The (p, p′γ ) reaction on 120,124Sn was one of the first in
the series of experiments performed with OSCAR, installed
in 2018 at the OCL. As compared with the previously used
array CACTUS, consisting of 28 5′′ × 5′′ NaI(Tl) detectors
[40], OSCAR provides greatly improved timing and γ -energy
resolution. All the scintillator crystals in the OSCAR array
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FIG. 1. Experimental E -�E spectrum measured for the 124Sn
isotope. The proton channel used for the data analysis is marked with
the red solid line. The ground and first excited states of 124Sn in the
proton channel and the ground state of 122Sn in the triton channel,
used for the calibration of the particle telescope, are marked with
yellow circles.

are coupled to Hamamatsu R10233-100 photomultiplier tubes
with active voltage dividers (LABRVD) [41].

In these experiments, the SiRi particle-telescope array was
placed in backward angles with respect to the beam direction,
covering a rather narrow range of angles from 126◦ to 140◦

and making up ≈6% of the total solid-angle coverage. SiRi
consists of eight trapezoidal-shaped �E -E telescopes with a
thick E detector and a thinner �E detector with thicknesses
of 1550 and 130 μm, respectively. Each of the eight �E
detectors is segmented into eight curved pads, amounting to
2◦ of particle scattering angle per pad, yielding an angular
resolution of 2◦. For the 120,124Sn(p, p′γ ) experiment, the full
width at half maximum (FWHM) for SiRi was estimated to be
≈100–120 keV from a Gaussian fit to the elastically scattered
protons. All particle-γ coincidences in the experiment were
recorded using XIA digital electronics [42].

SiRi enables the exploitation of the �E -E technique to
differentiate between the various observed reaction channels,
as shown in Fig. 1. The elastic peak in the proton channel and
the ground-state peak in the triton channel, combined with
the known energy deposition in each of the 64 �E -E pads,
were used to perform a linear calibration of the SiRi detectors
for both targets. The kinematics of the reactions were used to
convert the proton energies deposited in the SiRi detectors into
the corresponding excitation energies of the target nucleus.

As previously shown for φ3.5′′ × 8′′ LaBr3(Ce) detectors
coupled to the same type of photomultiplier and voltage di-
vider, the energy response of the detector remains rather linear
up to ≈17–18 MeV [43]. However, to account for minor
nonlinearity effects, a quadratic calibration was applied to all
30 OSCAR detectors. Prominent γ transitions in 28Si ranging
from 1.78 to 7.93 MeV were used for this purpose. Further-

more, by applying graphical energy (see Fig. 1) and timing
cuts on the studied proton channel, putting gates on the prompt
timing peak and subtracting background for particle and γ

detection in SiRi and OSCAR, a so-called raw coincidence
matrix was constructed for both studied nuclei. The raw ma-
trices are shown in Figs. 2(a) and 2(d) for 120Sn and 124Sn,
respectively. Consecutive diagonals indicate direct transitions
to the ground and first excited states. For excitation energies
between 7 and 9 MeV, peaks that are due to minor 12C and 16O
contaminants in the targets are observed. At further stages of
the analysis these peaks were removed1 to minimize the effect
of these contaminants and any related artifacts on the final
results. Approximately 5.3 × 107 and 1.3 × 107 p-γ events
in the excitation-energy range up to the neutron separation
energy were collected for 120Sn and 124Sn, respectively.

The γ spectra for each excitation-energy bin of the co-
incidence matrices were further unfolded according to the
procedure outlined in Ref. [7], using the most recent re-
sponse function of the OSCAR detectors [44] simulated with
the GEANT4 simulation tool [45–47]. This procedure has
been applied to a large number of Oslo-type data published
throughout the past two decades and has been repeatedly
shown to provide valuable results. A great advantage of the
method is the preservation of statistical fluctuations of the raw
coincidence spectrum into the unfolded one by using the
so-called Compton subtraction method [7]. This technique
strongly suppresses additional, artificial fluctuations. The un-
folded matrices for 120Sn and 124Sn are shown in Figs. 2(b)
and 2(e).

The main objective of the analysis is to extract the sta-
tistical nuclear properties, namely, the NLD and GSF, by
exploiting their proportionality to the decay probability at
each specific excitation energy and γ energy. Information
regarding this decay probability can be obtained by isolat-
ing the first γ rays in a cascade emitted by the nucleus at
a certain excitation energy, i.e., primary γ rays originating
directly from the nucleus decaying from this excited state,
or the so-called first-generation γ rays. The unfolded matrix
contains all possible generations of γ rays emitted in every
cascade from all excitation energies up to the neutron separa-
tion energy. The γ -ray spectra for each excitation-energy bin
in the unfolded matrix are expected to contain the same γ rays
as in the lower-lying bins, in addition to the γ rays originating
from the excited states confined by this energy bin. This fact
is the key for the iterative subtraction technique, the so-called
first-generation method, applied to both unfolded matrices
for 120Sn and 124Sn. This technique relies on the assumption
that γ decay is independent of whether states were populated
directly in a reaction or via decays from higher-lying states.
The details of the procedure are outlined in Ref. [8]. The
primary matrices obtained after 23 iterations for both nuclei
are shown in Figs. 2(c) and 2(f).

1The contaminants were removed after unfolding of the γ spectra.
A narrow graphical gate is put on each Gaussian-like contaminant
peak in the unfolded matrix, and the parts of the spectra within the
gate are obtained by interpolating the neighboring regions of the
matrix.
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FIG. 2. (a), (d) Experimental raw p-γ coincidence, (b), (e) unfolded and (c), (f) primary matrices for 120,124Sn obtained in the (p, p′γ )
experiments. Yellow dashed lines indicate the neutron separation energies. Red and green dashed lines in panels (c) and (f) confine transitions
to the ground (region 1) and the first excited Jπ = 2+ (region 2) states. Blue solid lines (region 3) indicate the areas of the primary matrices
used further in the Oslo method. Bin sizes are 64 keV × 64 keV and 80 keV × 80 keV for 120Sn and 124Sn, respectively. Blue arrows mark the
sequence of the analysis steps.

At this stage, two alternative methods can be used in order
to extract the GSF from the primary matrix, namely the Oslo
method and the Shape method. The former is a well-developed
procedure primarily used to extract nuclear properties from
the OCL data and it has been in use for more than two decades
(see, e.g., Ref. [48]). In addition to the GSF, it provides the
simultaneous extraction of the NLD, which are the main char-
acteristics of interest in this article. The latter procedure, the
Shape method, has been recently presented and published in
Ref. [34]. The two methods are expected to complement each
other and a combined analysis yields an improved normaliza-
tion of the GSF and, therefore, the NLD. All details of these
procedures applied to the 120,124Sn isotopes are provided in
the subsequent sections.

A. Analysis with the Oslo method

As already mentioned, the primary matrix is proportional
to the decay probability from a set of initial excited states i
within a chosen bin Ei to final states f confined within a bin
E f of the same size with γ rays of energy Eγ = Ei − E f . The
first step of the Oslo-type of analysis is the decomposition of
the primary matrix into the density of final states ρ f and the
γ -ray transmission coefficient Ti→ f :

P(Eγ , Ei ) ∝ Ti→ f ρ f . (1)

Here, Ti→ f , the transmission coefficient, is a function of
γ -ray energy depending on both the initial and final state.
The thorough derivations of this decomposition using Fermi’s
golden rule and the Hauser-Feshbach theory of statistical
reactions as starting points can be found in Refs. [49] and
[50], correspondingly. This relation is expected to hold for
relatively high excitation energies below the neutron thresh-
old, corresponding to the compound states and their decay
[48]. This energy range essentially coincides with the range
of applicability of the first-generation method.

This form of dependence on Ei, E f , and Eγ , however,
does not allow a simultaneous extraction of the transmis-
sion coefficient and NLD. To enable such an extraction, the
gBA hypothesis is adopted as one of the central assumptions
in the Oslo method [13,14]. As mentioned previously, the
gBA hypothesis suggests an independence of the GSF (and,
therefore, the transmission coefficient) of spins, parities, and
energies of initial and final states, leading to a dependence on
γ -ray energy only. This significantly simplifies the form of the
relation given in Eq. (1): Ti→ f → T (Eγ ) and ρ f = ρ(E f ) =
ρ(Ei − Eγ ).

In earlier applications of the Oslo method, the gBA hy-
pothesis has been found to be adequate for the relatively
low-temperature regimes studied (T ≈ 0.7–1.5 MeV) [30].
However, as the Oslo method relies on the gBA hypothesis,
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it cannot be used alone to test its validity. To investigate the
validity of the hypothesis, either comparisons of independent
experimental methods [15] or additional tests suggested in,
e.g., Refs. [25,26] are required. This matter is of particular
importance and will be discussed in more detail in Sec. IV.

The next step of the Oslo method includes an iterative
χ2-minimization procedure between the experimental first-
generation matrix P(Eγ , Ei ) normalized to unity for each Ei

bin and the theoretical Pth(Eγ , Ei ) given by the following
expression [9]:

Pth(Eγ , Ei ) = T (Eγ )ρ(Ei − Eγ )
∑Ei

Eγ =Emin
γ

T (Eγ )ρ(Ei − Eγ )
. (2)

This χ2 fit of the transmission coefficient and NLD normally
gives a very good agreement with the experimental matrix
P(Eγ , Ei ) when applied to the statistical region of excitation
energies. The step-by-step description of the minimization
procedure is provided in Ref. [9]. To ensure the applicability
of the statistical assumptions, minimum excitation energies
of Emin

i = 4.5 MeV for 120Sn and 5.0 MeV for 124Sn were
chosen. Sufficient statistics at higher energies allows us to
set Emax

i to the neutron separation energy for each isotope,
Sn = 9.1 and 8.5 MeV for 120Sn and 124Sn, respectively. To
exclude regions where counts have been over-subtracted in the
first-generation procedure, minimum γ -ray energies Emin

γ =
1.3 and 1.6 MeV were set accordingly for 120Sn and 124Sn.
The resulting areas where the Oslo method was applied in this
work are marked by the blue lines in Figs. 2(c) and 2(f).

The global χ2 fit yields only functional forms of the trans-
mission coefficient T (Eγ ) and NLD ρ(Ei − Eγ ). It can be
shown mathematically that one can construct an infinite set
of T (Eγ ) and ρ(Ei − Eγ ) combinations corresponding to the
obtained fit and given by the forms [9]

ρ̃(Ei − Eγ ) =Aρ(Ei − Eγ ) exp [α(Ei − Eγ )],

T̃ (Eγ ) =BT (Eγ ) exp (αEγ ),
(3)

where ρ and T are two fixed solutions, A and B are the
scaling parameters, and α is the slope parameter shared by
both the transmission coefficient and NLD. For each stud-
ied nucleus this ambiguity must be removed via determining
unique normalization parameters A, B, and α from exter-
nal experimental data. If available, low-lying discrete states
and neutron-resonance data are the main input parameters,
combined with models for the spin distribution and for ex-
trapolations where there is a lack of experimental data.

The first step of the normalization procedure is to deter-
mine the unique NLD solution ρ(Ei − Eγ ). The parameters
A and α can be constrained by fitting the NLD to low-lying
discrete states [51] in the excitation-energy range where the
level scheme can be considered complete. At the neutron
separation energy, the NLD can be normalized to the total
NLD calculated from neutron-resonance spacings [52]. These
data also provide the average, total radiative width 〈�γ 〉 used
to determine the scaling parameter B for the transmission co-
efficient. All details of the normalization procedure for 120Sn
and 124Sn have been presented in the Supplemental Material
of Ref. [15]. However, some minor changes were introduced

in this work to improve the normalization and the estimated
uncertainties. We would like to stress that these changes do
not affect the results presented in Ref. [15] in any significant
way and do not undermine any of the presented conclusions.
To avoid any confusion regarding the normalization parame-
ters, we provide the updated and complete description of this
procedure in the following.

The most recent compilation of the discrete states [51]
was used to anchor the NLD for 120,124Sn at low excitation
energies. As compared with the compilation from 2003 used
in the previous analysis, some changes in the number and
the excitation energies of low-lying states appear and give a
slightly different slope of the NLD. The anchor point at the
neutron separation energy, ρ(Sn), is usually extracted from
the neutron resonance spacing D0 for s-wave neutrons or D1

for p-wave neutrons. As 123Sn is an unstable target nucleus
(T1/2 = 129.2 d [51]), no neutron resonance data are available,
and we used other means to estimate ρ(Sn) and 〈�γ 〉 for 124Sn.

The normalization procedure for 120Sn is rather straightfor-
ward, in accordance with the steps outlined in Ref. [48], due to
the available s-wave neutron capture data. The target spin of
119Sn is Iπ

t = 1/2+, thus spins 0+ and 1+ of the compound
nucleus 120Sn are populated in s-wave capture. Assuming
that both positive and negative parities contribute equally to
ρ(Sn), the average s-wave neutron resonance spacing D0 can
be written as [48]

1

D0
= 1

2
[ρ(Sn, It + 1/2) + ρ(Sn, It − 1/2)]. (4)

A transformation of the partial NLD for specific spins
into the total NLD can be performed by adopting the back-
shifted Fermi gas model (BSFG) for the NLD ρ(Ex, J ) =
ρ(Ex )g(Ex, J ) (Ex here stands for the excitation energy vari-
able) with the spin distribution function given by [53,54]

g(Ex, J ) 	 2J + 1

2σ 2
exp

[
−

(J + 1/2)2

2σ 2

]
, (5)

where σ is the spin-cutoff parameter. Given this distribution
function, Eq. (5) can be rewritten for the total NLD at the
neutron separation energy as a function of the experimental
resonance spacing D0 (taken from Ref. [52]) and the target
nucleus spin [48]:

ρ(Sn) = 2σ 2

D0

1

(It + 1) exp
(
− (It +1)2

2σ 2

)
+ It exp

(
− I2

t
2σ 2

) . (6)

Note that the spin-cutoff parameter is an excitation-energy-
dependent function. The form of the spin-cutoff parameter at
Sn of Ref. [55] was chosen for 120,124Sn

σ 2(Sn) = 0.0146A5/3 1 +
√

1 + 4a(Sn − E1)

2a
. (7)

Here, a and E1 are the level-density parameter and the back-
shift parameter for the BSFG model taken from Ref. [55].

In the Oslo method, the measured level densities do not
reach up to Ex = Sn due to the nonzero minimum γ -ray en-
ergy limit in the extraction of ρ(Ei − Eγ ). To use the ρ(Sn)
value as an anchor point for the normalization, the experimen-
tal Oslo data were extrapolated using the constant temperature
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FIG. 3. (a) Experimental systematics for the average total radia-
tive width for Sn isotopes. (b) Experimental systematics for the NLD
at the neutron separation energy. The estimated values of 〈�γ 〉 and
ρ(Sn) for 124Sn are marked with stars, the experimental 〈�γ 〉 values
are taken from Ref. [52], and the level densities are obtained from
the D0 values given in Ref. [52]. Arrows mark ρ(Sn) values shifted
by the neutron pair-gap values for the χ 2 fit.

(CT) level density model [54–56]:

ρCT (Ex ) = 1

TCT
exp

(Ex − E0

TCT

)
, (8)

characterized by the temperature (TCT ) and shift energy (E0)
parameters. Earlier Oslo-method analyses exploited the BSFG
model as an alternative for the interpolation procedure [48],
however, the choice between these two alternatives is defined
by the fit quality in each particular case (see Sec. III).

As the experimental information on the s-wave neutron-
resonance spacing is available for 120Sn, Eq. (6) was used
directly to transform the D0 value into ρ(Sn). For 124Sn, this
value was estimated from the systematics for even-even and
even-odd Sn isotopes in the following way: The ρ(Sn) values
were estimated for each Sn isotope with available neutron-
resonance spacing D0 using Eq. (6). The resulting systematics
for the ρ(Sn) values are shown in the lower panel of Fig. 3.
The values of ρ(Sn) for even-even isotopes were shifted by the
corresponding values of the neutron pairing gaps calculated
from the AME 2003 mass evaluation [57] using Eq. (1) of
Ref. [58]. Finally, the value of ρ(Sn) for 124Sn was calculated
from a log-linear fit through the data points for even-odd and

shifted even-even isotopes as shown by the red dashed line in
Fig. 3(b).

The second step after constraining the A and α parameters
for the NLD is to normalize the transmission coefficient (and
thus the GSF). As the slope α is already determined by the
NLD normalization, the scaling parameter B is the only pa-
rameter that remains to be estimated. The starting point for
normalizing the γ -transmission coefficient is the following
relation [59]:

〈�(Ex, J, π )〉 = 1

2πρ(Ex, J, π )

∑

XL

∑

Jf ,π f

∫ Ex

Eγ =0
dEγ

× TXL(Eγ )ρ(Ex − Eγ , J, π ),

(9)

where 〈�(Ex, J, π )〉 is the average radiative width for states
with spin J , parity π at excitation energy Ex, and X and
L indicate the electromagnetic character and multipolarity,
respectively. The GSF, fXL(Eγ ), is connected to the transmis-
sion coefficient by [60]

TXL(Eγ ) = 2πE (2L+1)
γ fXL(Eγ ). (10)

At high excitation energies, there is experimental evi-
dence that the dipole radiation is dominant (L = 1) (see e.g.,
Ref. [59]). The Oslo-type of experiments and analysis does
not allow for distinguishing between different types of radia-
tion, and, thus, the strength extracted with the Oslo method
is presented by the total contribution of both electric and
magnetic types of dipole transitions, E1 and M1.

Insertion into Eq. (9) links the experimental dipole GSF
f (Eγ ) to the value of the total average radiative width 〈�γ 〉
obtained from s-wave neutron capture [52]. For a target nu-
cleus with ground state spin It and parity πt , Eq. (9) can be
rewritten as

〈�γ 〉 = 〈�(Sn, It ± 1/2, πt )〉 = 1

2ρ(Sn, It ± 1/2, πt )

×
∫ Sn

Eγ =0
dEγ E3

γ f (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

g(Sn − Eγ , It ± 1/2 + J ). (11)

Here, we adopt again the assumption on an equal contribution
of states with positive and negative parities and apply the spin
distribution function of Eq. (5). It can be easily seen that
the 1/ρ(Sn, It ± 1/2, πt ) term equals the D0 value. For the
spin-cutoff parameter dependence on the excitation energy,
we follow the procedure outlined in Ref. [61]:

σ 2(Ex ) = σ 2
d + Ex − Ed

Sn − Ed

[
σ 2(Sn) − σ 2

d

]
, (12)

where σd is estimated from the discrete lower-lying states at
Ex ≈ Ed [51] (see Table I).

In the case of 120Sn, the average total radiative width
〈�γ 〉 was estimated as an average of three s-wave neutron
resonances with energies in the range of ≈455–828 eV [52].
The remaining two resonances presented in Ref. [52] were
excluded due to either being possibly of p-wave nature, or
having a significantly lower value as compared with values for
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TABLE I. Parameters used for the normalization of the nuclear LD and GSF for 120,124Sn

Nucleus Sn D0 a E1 Ed σd σ (Sn) ρ(Sn) T E0 β 〈�γ 〉
(MeV) (eV) (MeV−1) (MeV) (MeV) (105 MeV −1) (MeV) (MeV) (meV)

120Sn 9.105 95(14) 13.92 1.12 2.53(4) 3.4(5) 5.82 3.66(54) 0.72+1
−2 0.19+9

−4 0.70 121(25)b

124Sn 8.489 12.92 1.03 2.77(3) 3.3(5) 6.00 1.38(30)a 0.75+2
−2 −0.11+11

−6 0.20 82(19)a

aFrom systematics.
bModified with respect to the value published in Ref. [52].

confirmed s-wave resonances found in the neighboring Sn iso-
topes. In the case of 124Sn, we performed a linear fit through
all values of 〈�γ 〉 available for other Sn isotopes as shown in
Fig. 3(a) to estimate the 〈�γ 〉 value for 124Sn. Ideally, the fit of
the NLD to the low-lying discrete levels and the ρ(Sn) value
are sufficient to constrain the slope parameter α for the GSF
and NLD. However, the latter can be influenced by the range
of experimentally populated spins, which might be narrower
than the intrinsic2 spin distribution. This issue was previously
discussed in Refs. [62,63]. An analysis of the observed transi-
tions in the unfolded matrices below Ei ≈ 4–5 MeV and their
relative intensities can aid to reveal the populated spins of the
120,124Sn nuclei populated in the (p, p′γ ) reaction. However,
this method has a large uncertainty in the determination of
the exact maximum spin populated in the reaction. Alterna-
tively, one can make use of the new Shape method [34] to
obtain the NLD slope that corresponds to the experimental
spin range. This is of particular importance for 124Sn with
no available neutron-resonance parameters. The application
of the Shape method will be discussed in detail in Sec. II B.
From the Shape method we obtained a reduction factor β

for ρ(Sn), representing a certain fraction of the total spin
distribution from Eq. (5), corresponding to the reduced spin
range from J = 0 to a certain maximum spin. This was done
by requesting optimally matching slopes of the Oslo method
and the Shape method GSFs above Eγ ≈ 5 MeV. A rather
strong reduction of the level density in 124Sn at the neutron
separation energy might reflect some maximum limit of the
experimental spin range. However, it is important to note that
using experimental systematics of the ρ(Sn) and 〈�γ 〉 might
have large uncertainties. In the case of 124Sn, it is quite prob-
able that such a large reduction factor is needed due to, e.g.,
an overestimated ρ(Sn) from the χ2 fit of the systematics. The
simultaneous use of the Oslo and Shape methods can therefore
significantly reduce systematic uncertainties for the slopes of
extracted strengths and level densities. All parameters used in
the normalization procedure for 120,124Sn are listed in Table I.
The resulting NLDs for 120Sn and 124Sn with their estimated
error bands are shown in Fig. 4.

We note that the errors in Table I and the resulting error
bands for the NLD and the GSF presented in Secs. III and
IV combine statistical and systematic components. The latter
includes uncertainties introduced by the unfolding and the
first-generation procedures for both 120,124Sn isotopes. These
are propagated through the Oslo method according to the

2All existing spins possible for a given nucleus at a given excitation
energy.

procedure outlined in Ref. [9]. In addition, systematic uncer-
tainties due to the normalization parameters are included. For
the 120Sn isotope, the experimental uncertainty (1 standard
deviation) of the D0 value was propagated to estimate the error
for the NLD at the neutron separation energy. The experimen-
tal uncertainties of the radiative widths in 120Sn [52] were used
to estimate the error of the average, total radiative width 〈�γ 〉,
contributing to the uncertainty of the scaling factor B. In the
case of the 124Sn isotope, the errors of the ρ(Sn) and 〈�γ 〉
were calculated from the uncertainties of the χ2 fit parameters
and propagated into the total uncertainties of the NLD and
GSF. In the previously published result on 124Sn [15], a 50%

FIG. 4. Experimental nuclear level densities for (a) 120Sn and
(b) 124Sn. The NLDs at Sn are marked with crosses, discrete states
are shown as shaded areas. For the 124Sn isotope both the total and
reduced NLDs are shown. The first two vertical arrows at lower
Ex energies on each figure constrain the lower excitation energy fit
region, while the last two arrows at higher Ex energies mark the lower
and upper limits for the higher excitation energy fit region.
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uncertainty of ρ(Sn) was assumed to account for presumably
underestimated errors from the χ2 fit. However, the excellent
agreement within the estimated error bands of the slopes of
the GSFs obtained with the Oslo and Shape method allows us
to apply a more modest error band as presented in this work.
All errors of the normalization parameters described above are
summarized in Table I.

B. Analysis with the Shape method

Quite often, nuclei with no available neutron resonance
data and/or a restricted experimental spin range are encoun-
tered. One possible way to overcome this is the use of isotopic
systematics comprising of nuclei with stable neighboring A −
1 isotopes as applied in the present case for 124Sn. However,
this is often not possible in other isotopic chains due to the
lack of data (e.g., 127Sb [64]). Moreover, the question on
whether systematics from neighboring isotopic chains can be
used for a given nucleus, and to what extent one can rely on
these systematics, is still open. Hence, an alternative way to
constrain the normalization parameters is required. The novel
Shape method [34] provides a way to determine the slope
parameter α for the NLD and the GSF without making use
of neutron resonance data.

The starting point for the method is extracting experimental
intensities of first generation γ transitions to specific final
states with spins and parities Jπ at final excitation energies
E f , represented by diagonals in the primary matrix. The in-
tensities (related to the branching ratios) of these γ transitions
are proportional to the number of counts ND in the diagonals.
The selection of which diagonals are to be used depends on
a particular nucleus, the spacing between the final states, and
whether the resolution is sufficient to distinguish between dif-
ferent diagonals. The main concept behind the Shape method
is that the intensities of the γ transitions are proportional to the
partial widths and hence to the GSF. By taking intensities of
transitions in successive excitation energy bins, the functional
form of the GSF can be obtained.

In the case of 120,124Sn, the only two diagonals clearly
seen in the primary matrices are the ground state diagonal D1

and the diagonal D2 corresponding to the first excited state
[marked accordingly as regions 1 and 2 in Figs. 2(c) and 2(f)].
For given initial excitation-energy bins Ei (horizontal line)
they define the direct decay to the final excitation energy E f at
the ground state with Jπ = 0+ and the first excited state with
Jπ = 2+ with γ -ray energies Eγ = Ei − E f .

The Shape method adopts the same form of the spin dis-
tribution, given by Eq. (5), as used in the Oslo method, and
assumes γ transitions to be of predominantly dipole nature
(this has been confirmed by measuring angular distributions).
According to Eq. (13) in Ref. [34], the number of counts
in a chosen diagonal ND corresponding to the final energy
E f is proportional to the population cross-section of initial
states Ei with Ji = Jf − 1, Jf , Jf + 1, spin distribution func-
tion g(Ei, Ji ) and the partial γ -decay width. For the case of
120,124Sn with the ground and first-excited-state diagonals D1

and D2, the following relations can be written:

f (Eγ 1) ∝ ND1

E3
γ 1g(Ei, 1)

,

f (Eγ 2) ∝ ND2

E3
γ 2[g(Ei, 1) + g(Ei, 2) + g(Ei, 3)]

. (13)

By varying Ei, one obtains corresponding pairs of values
f (Eγ = Ei ) and f (Eγ = Ei − Ex(2+)). As Eqs. (13) only give
the proportionality with the GSF, these pairs are not normal-
ized in absolute value.

First, the consecutive pairs of values are normalized in-
ternally, as shown and described in Fig. 2 of Ref. [34], to
reconstruct the functional shape of the GSF. Thus, one can
extract two GSFs, corresponding to decays to the ground
state and decays to the first excited state. Second, the general
shape of both GSF must be scaled to match any available
strength below the neutron separation energy, i.e., normalizing
to external experimental data. This is the main limitation of
the method because it provides only a slope or a shape of
the strength but not the absolute GSF and therefore requires
some additional experimental information. For the 120,124Sn
isotopes, the GSFs extracted from relativistic Coulomb exci-
tation in forward-angle inelastic proton scattering below the
neutron separation energy [65] were used to scale the GSF
points obtained for both diagonals separately [15].

The upper excitation energy limit for the application of
the Shape method can, in principle, be extended to Sn, while
the definition of the lower limit is rather arbitrary. The appli-
cability of Eqs. (13) is restricted to the statistical excitation
energy region where the spin distribution function g(Ex, J )
can be trusted. There is no clear criterion for the minimum
level density which can be considered high enough to assume
this is fulfilled. In this work, we require that the level density
must be at least 10 levels per excitation energy bin for the spin
distribution g(Ex, J ) to be applied.

III. NUCLEAR LEVEL DENSITIES

The experimental NLDs of 120,124Sn displayed in Fig. 4
follow nicely the discrete low-lying states up to ≈3 MeV
for 120Sn and ≈2.7 MeV for 124Sn. At higher energies, the
NLDs increase rapidly and reach an exponential, constant-
temperature behavior. This suggests that the level schemes
used for the normalization of the NLDs can be considered
complete up to ≈3 and 2.7 MeV for 120Sn and 124Sn, re-
spectively. The energy resolution is sufficient to distinguish
the ground state and the first excited states, presented by two
bumps at 0 and ≈1.1–1.2 MeV for both nuclei. The presence
of the data points between the ground and first excited states
can be explained by the finite excitation energy resolution of
order 100 keV and the presence of the leftover counts between
the diagonals in the primary matrices after the background
subtraction procedure. At higher excitation energies, the ex-
perimental points are following the CT model prediction,
starting from ≈4 MeV. The normalization of the NLDs was
found to be rather insensitive to the exact choice of the two
upper normalization limits (the two arrows at higher excitation
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FIG. 5. Experimental total nuclear level densities for 116Sn [35],
117Sn [35], 118Sn [36], 118Sn [36], 120Sn, 121Sn [37], 122Sn [37], 124Sn.

energies in Fig. 4), due to the smooth behavior of the NLDs at
higher excitation energies.

In Fig. 5 we show a comparison of the total NLDs for Sn
isotopes extracted with the Oslo method, including the present
results for 120,124Sn. The 116,117,118,119,121,122Sn isotopes were
previously studied with a 38-MeV beam of 3He using the
(3He, αγ ) and (3He, 3He γ ) reaction channels and reported in
Refs. [35–37]. The slopes of the NLDs for 120,124Sn are quite
similar to each other (T = 0.72 and 0.75 MeV, see Table I)
and those of other even-mass isotopes. All NLDs of even-
mass nuclei agree quite well within the estimated error bands
below the neutron separation energy. However, it is important
to note some differences in the normalization procedures in
the newest analysis of 120,124Sn and the older analyses of
even-mass isotopes. First, all previous analyses exploited the
BSFG for the extrapolation of the highest experimental NLD
points to the ρ(Sn) values instead of the CT model. As was
previously shown in Ref. [66] and confirmed for 120,124Sn,
the CT model results in a better χ2 fit value. For example,
between ≈4.8 and 6.8 MeV in 124Sn, the reduced χ2 value is
a factor of four smaller for the CT model than for the BSFG
model. This factor becomes larger and might exceed 10 if
lower excitation energy points above ≈3 MeV are included.
Second, the different form of the spin-cutoff parameter taken
from Ref. [54] was used in the older analyses. The immediate
consequence of this choice is slightly less steep slopes of the
NLDs if the CT extrapolation is used. However, in combina-
tion with the BSFG extrapolation model, the resulting slopes
of the NLDs in 116,118,122Sn are expected to be close to those
obtained for 120,124Sn, as can also be observed in Fig. 5.

In general, the NLDs of odd-mass Sn isotopes are by a
factor of seven to eight higher than for the even-mass iso-
topes, primarily due to the unpaired valence neutron [69]. As

FIG. 6. Experimental nuclear level densities for 1± states for
124Sn obtained with the Oslo method (blue data points) and the
(p, p′) data [65] (orange data points). The prediction of the CT model
used for the normalization of the Oslo method data is shown by the
dashed blue line. A fit with the BSFG through all data and with the
composite formula [54] are shown by the dashed magenta and solid
cyan lines. Predictions of the microscopic Hartree-Fock-BCS method
[67] and Hartree-Fock-Bogolyubov + Gogny force calculations [68]
are marked by the dashed light and dark-gray lines, respectively.

compared with other even-mass isotopes, 120,124Sn demon-
strate essentially the same features, such as the well-defined
bumps at the ground and the first excited state and a step-
like structure right below 3 MeV excitation energy. Earlier
studies exploiting microscopic calculations based on the se-
niority model link the latter feature to breaking of consecutive
nucleon Cooper pairs [70]. Due to the closed proton shell,
Z = 50, the breaking of proton Cooper pairs is suppressed
until higher excitation energies are reached. Thus, these step-
like structures are likely to be correlated with the breaking of
neutron pairs at energies exceeding 2�n = 2.6 and 2.5 MeV
[58] for 120Sn and 124Sn, respectively. For higher excitation
energies, where a continuous “melting” of Cooper pairs sets
in, the NLDs follow a smooth trend with no distinctive struc-
tures, as previously observed for 116,118,122Sn [35–37].

The inelastic proton scattering data [65], used for the ab-
solute normalization of the Shape method GSFs, can also
provide information on the partial NLD. The NLD of 1−

states in 124Sn was extracted for the excitation-energy range
≈4.5–14.5 MeV by means of the fluctuation analysis [71],
applying procedures analog to those used in Refs. [11,72]. All
details of the extraction procedure can be found in Ref. [73].
To compare with the Oslo data, we apply the spin distri-
bution function in Eq. (5) to the total NLD of 124Sn to
reduce it to the density of J = 1 levels for excitation energies
above ≈3.2 MeV, where this function can be assumed to be
applicable. Furthermore, applying the assumption on equal

034322-9



M. MARKOVA et al. PHYSICAL REVIEW C 106, 034322 (2022)

contribution of positive- and negative-parity states [74,75],
the density of J = 1 states was obtained. In contrast with the
previously published results on 96Mo [12] and 208Pb [11],
there is in fact a region of overlap between the two data
sets, as shown in Fig. 6. The Oslo data, as well as the CT
model used in the normalization procedure (blue dashed line),
lie within, but closer to the lower edge of the error band
for the inelastic proton scattering data up to ≈10.5 MeV.
This provides support of the spin-cutoff model adopted in
the Oslo-method normalization. A model predicting a higher
spin-cutoff value than presented in Table I would imply a
wider spin distribution and, therefore, a significantly lower
fraction of J = 1 states leading to a larger discrepancy be-
tween the Oslo and the (p, p′) data in the overlapping area.
Thus, we can conclude that the spin-cutoff estimate provided
by Eq. (7) is reasonable, and probably lies closer to the upper
limit in the range of acceptable spin-cutoff values that would
make the two experimental NLDs agree with each other.

The constant-temperature regime, characterized by the
pair-breaking process, continues at least up to the neutron
separation energy or higher, where the temperature begins to
rise and the Fermi gas behavior of nucleons sets in. As shown
in Fig. 6, the CT model begins to deviate quite drastically
from the (p, p′) data at higher excitation energies, well above
the Sn value. For this reason, the BSFG model is expected
to provide a more accurate description of the NLD at high
excitation energies, although it is not an appropriate model
at lower excitation energies. The global fit of all data with
the BSFG model only indeed fails to reproduce the regime
of increasing nuclear temperature between ≈6.5–14 MeV,
especially in the vicinity of the neutron separation energy and
slightly above. The composite NLD formula, introduced by
Gilbert and Cameron in Ref. [54] (denoted G&C), combines
the CT model at lower excitation energies and the BSFG
model at higher energies and appears to be more suitable
for the simultaneous description of the Oslo and (p, p′) data.
From the result of the fit with the composite NLD formula,
the constant-temperature regime holds up to ≈8.5 MeV, i.e.,
in the vicinity of the neutron separation energy. Even though
this formula reproduces the general trend and performs better
than the BSFG, it is still not able to completely describe the
NLD above the neutron separation limit.

Microscopic spin-dependent NLD calculations based on
the Hartree-Fock-BCS method [67] deviate from both the
Oslo and the (p, p′) data at low and high excitation en-
ergies correspondingly (up to ≈6.5 and from 12.5 MeV),
being higher by a factor of 2–2.5 on average. Between ≈6.5
and 12.5 MeV it agrees quite well with the (p, p′) data.
Similarly, the spin- and parity-dependent NLD calculated
within the temperature-dependent Hartree-Fock-Bogolyubov
approach with the Gogny force [68] follows the (p, p′) data
and the composite formula prediction nicely from ≈6.5 MeV
excitation energy and above, while still being about a factor of
3 higher than the Oslo-method NLD. For the case of the total
NLD, this deviation might reach up to one order of magnitude.
We conclude that although microscopic models are appealing,
as they should in principle grasp the underlying physics in
contrast to simple analytical formulae, they are at this point

not able to describe experimental data well enough over a
wide excitation-energy range.

IV. PORTER-THOMAS FLUCTUATIONS AND γ-RAY
STRENGTH FUNCTIONS

The experimental GSFs extracted with the Oslo method
result from averaging γ transitions over relatively wide
excitation-energy windows, ≈4.6 for 120Sn and 3.5 MeV for
124Sn [region 3 in Fig. 2(c) and 2(f)]. Therefore, any varia-
tions of the strength due to PT fluctuations are expected to
be strongly suppressed, lying well within the estimated error
bands. As such, PT fluctuations play a minor role and have
little influence on the overall shapes of the GSFs. However,
to test the gBA hypothesis, it is necessary to investigate how
the GSF varies as a function of excitation energy (and also, in
principle, spin and parity of the initial and final states). Then,
a complication arises because the action of narrowing down
the averaging interval to study the GSF for different specific
initial and final excitation energies will inevitably introduce
larger uncertainties due to increased PT fluctuations of the
partial radiative widths.

Oslo-method data have previously been used to study the
shapes of the GSFs as functions of initial and final excitation
energies to address the question on the validity of the gBA
hypothesis [25,26,30,76]. With the exception of Ref. [26],
which presents a detailed discussion and estimates of the PT
fluctuations for the case of 64,65Ni, the role of these fluctua-
tions are approached mostly in a qualitative way. Due to the
particularly high density of initial and accessible final states in
238Np, studied in Ref. [25], reaching up to ≈4.3 × 106 states
at Sn = 5.488 MeV, the PT fluctuations are expected to be
negligible for the comparison of individual GSFs for differ-
ent individual initial and final excitation energies with the
Oslo-method strength. An excellent agreement of all strengths
was found, and this indeed serves as a strong argument for
the validity of the gBA hypothesis [25]. Such a compari-
son, however, is much more difficult in the case of lighter
nuclei such as 46Ti [30], 64,65Ni [26], and 92Zr [34]. For
example, the density of levels at Sn = 9.658 MeV in 64Ni is
only ≈2.6 × 103 MeV−1, and variations on the strengths for
specific excitation energies might reach some tens of percent
of the absolute value [26]. In this regard, the nuclei studied
in this work present an intermediate case between the heavy
238Np and relatively light 64,65Ni nuclei, with the total NLDs
of ≈2.5 × 105 MeV−1 at Sn = 9.104 MeV for 120Sn and
≈8.8 × 104 MeV−1 at Sn = 8.489 MeV for 124Sn.

To study the variation in the GSFs of 120,124Sn, we follow
the procedure outlined in Refs. [26,76], assuming that the
fluctuations of the GSF follow a χ2

ν distribution with the
number of degrees of freedom corresponding to the number
of γ -ray transitions n(Eγ ) at a given transition energy Eγ .
Relative fluctuations of the GSF are given by the ratio between
the deviation σPT and average μ, or r = σPT /μ =

√
2/ν, of

the χ2
ν distribution [28].

The number of transitions (i.e., the number of partial
widths, or primary transitions) n can be calculated for each
Eγ for specific initial and final excitation energies, allowing
to study how the fluctuations evolve with γ -ray and excitation
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FIG. 7. Relative fluctuations of the GSF r(Eγ , Ei ) for different
initial excitation energies for (a) 120Sn and (b) 124Sn. All initial Ei

and final energies Ei − Eγ lie within the quasicontinuum region. The
excitation and γ -ray energy bins are 128 keV for 120Sn and 160 keV
for 124Sn.

energy. We adopt the following relation from Refs. [26,76] to
estimate the number of transitions n(Eγ , Ei ):

n(Eγ , Ei ) = �E2
∑

Jπ

1∑

L=−1

∑

π ′

ρ(Ei, J, π )

× ρ(Ei − Eγ , J + L, π ′), (14)

where we consider dipole transitions only, and �E is the
excitation-energy bin width. By substituting Ei with E f and
Ei − Eγ with E f + Eγ , it is also possible to obtain the number
of transitions as a function of Eγ and final excitation energy.

We limit ourselves to two types of cases in estimating the
GSF fluctuations. First, we study the case when the initial Ei

and final E f excitation energies both lie within the quasicon-
tinuum region, for which the spin distribution of Eq. (5) is
considered applicable. This allows us to apply this distribution
to account for the spin dependence of the NLDs in Eq. (14).
Furthermore, it is assumed again an equal contribution of
positive- and negative-parity states within the quasicontin-
uum. We also require a minimum level density of 10 levels
per bin, corresponding to E f ≈ 3.2 MeV in 120Sn and E f ≈
3.0 MeV in 124Sn. Note that this is a rather crude estimate that
should be taken with some caution. However, since we want

FIG. 8. Relative fluctuations of the GSF r(Eγ , Ef ) for different
final excitation energies for (a) 120Sn and (b) 124Sn. All initial ener-
gies Ei − Eγ lie within the quasicontinuum region. The same applies
to the different final energies Ef represented by blue lines. The red
dashed line corresponds to the ground state as the final state, the
green one corresponds to the first excited 2+ state as the final state,
and the yellow one corresponds to several discrete final low-lying
states. The excitation-energy bins and γ -ray energy bins are 128 keV
for 120Sn and 160 keV for 124Sn.

to obtain an approximate magnitude of the fluctuations, small
deviations from the spin distribution formula are not expected
to impact the results. Second, we consider initial excited states
within the quasicontinuum and final states with known parities
and spins within the discrete region. Here, the level density at
the final excitation energy can be calculated directly using the
known states from Ref. [51].

Figure 7 shows the relative GSF fluctuations r(Eγ , Ei ) =√
2/n(Eγ , Ei ) as functions of Eγ for transitions from differ-

ent initial excitation-energy bins within the quasicontinuum
for 120Sn and 124Sn. The data are shown for E f � 3.2 MeV
for 120Sn and E f � 3.0 MeV for 124Sn, so that the final
excitation energies of the included transitions lie within the
quasicontinuum. The experimental level densities were used
for the calculation. Similar to the results for 64,65Ni [26], the
fluctuations increase exponentially with γ -ray energy for a
given Ei, as well as from the lowest to the highest initial
excitation energy at a given Eγ . This behavior can easily be
explained by the decreasing number of possible transitions for
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consecutively lower excitation energies, given the exponen-
tially decreasing density of accessible levels.

The magnitudes of the fluctuations in both nuclei are quite
similar due to the similar values of the total NLDs, and all
minor differences stem primarily from a slight difference in
the bin width. At the neutron separation energy, fluctuations
in both nuclei range from ≈10−2 to 4–5 × 10−1%, while for
the lower excitation energy they reach up to ≈3–6%. Fluctu-
ations of these orders of magnitude are indeed expected for
the relatively heavy 120,124Sn nuclei. For example, based on
the NLD of 64Ni [26] and 120Sn, the number of transitions
at Ei ≈ 7.7 MeV at Eγ ≈ 2.3 MeV in 120Sn is roughly a
factor of 1000 larger than in 64Ni, which indeed yields larger
fluctuations in 64Ni by approximately a factor of 30.

The relative GSF fluctuations calculated from the tran-
sitions to specific final excitation energies demonstrate the
opposite trend, exponentially decreasing with γ -ray energies,
as shown in Fig. 8. These trends are displayed with an ap-
proximately equal spacing for several final excitation energy
bins within the quasicontinuum, as well as the bins containing
the ground state, the first excited state, and several known
low-lying excited states. In contrast with the lowest initial
excitation energies, fluctuations at final excitation energies
below E f ≈ 3 MeV reach up to tens of percent and might
become a considerable contribution to the total uncertainty of
the GSF.

The estimates of the PT fluctuations can be further put
into the context of testing the gBA hypothesis for 120,124Sn.
By analogy with the 238Np results from Ref. [25], the ex-
perimental data obtained for 120,124Sn can be readily used
to test whether the transmission coefficients, and, therefore,
the GSFs, are dependent on the initial and final excitation
energies. Equation (1) can be rewritten in the form [25]

P(Eγ , Ei )N (Ei ) = T (Eγ )ρ(Ei − Eγ ), (15)

where we introduce an additional energy-dependent factor
N (Ei ) given by

N (Ei ) =
∫ Ei

0 T (Eγ )ρ(Ei − Eγ )dEγ
∫ Ei

0 P(Eγ , Ei )dEγ

. (16)

Here, we make use of the transmission coefficient extracted
from the Oslo method, and hence averaged over a wide range
of excitation energies. We can deduce the transmission coeffi-
cient as a function of excitation energy and γ energy through

T (Eγ , Ei ) = P(Eγ , Ei )N (Ei )

ρ(Ei − Eγ )
. (17)

A similar relation can be obtained for the final excitation
energy by substituting Ei with E f + Eγ .

The GSFs for several initial excitation energies in the
case of 120Sn were previously published in Ref. [15], where
they were compared with the strength extracted with the
Oslo method. In this work, we present the comparison of
the individual GSFs for different initial and final excitation
energy bins for both 120Sn and 124Sn with the corresponding
Oslo-method results. Individual strengths are shown together
with the error band due to the statistical uncertainty propa-

gated through the method, denoted by statistical for short. As
the Oslo-method GSF is an averaged strength with heavily
suppressed PT fluctuations, it is shown with the total error
band as well as additional error bars, denoting the expected
PT fluctuations, or rather expected deviations of the individ-
ual strengths due to PT fluctuations. The latter is essential
to assess whether there is an agreement or not between the
strengths extracted for various excitation-energy bins and the
Oslo-method strengths.

The results for 120Sn at four initial excitation energies are
shown in the upper row of Fig. 9. The dark-gray shaded
areas indicate regions of potential infinite fluctuations due to
the expected zero values of the NLD at the final excitation
energies in the energy gaps between the first few discrete
states. As can be seen from Fig. 4, the experimental NLD
has small nonzero values between the ground state and the
first and second excited states at ≈1.171 and 1.875 MeV
due to the experimental resolution and the presence of some
residual counts in the raw matrix after the background sub-
traction. The analysis applied to each individual excitation
energy Ei generates a continuous data set for the GSF from the
highest possible γ -ray energy at Eγ = Ei downward to γ -ray
energies below 2 MeV shown for 120Sn in Figs. 9(a)–(d).
The GSF values in the dark-gray region at higher gamma
energies belong to hypothetical primary γ -ray transitions in
the energy range between the ground state and 1.171 MeV,
while the dark-gray region at lower energies belongs to decays
into the energy range from 1.171 to 1.875 MeV. However, it
should be mentioned that direct gamma decays to those final
excitation energy regions are physically not possible and that
the corresponding data points are artifacts of the continuous
analysis. It is, however, interesting to observe that the PT fluc-
tuation analysis reveals those regions by unusually large PT
fluctuations

In case of fixed initial excitation energies, light-gray
shaded areas correspond to energy bins where the fluctuations
cannot be estimated, either due to Eγ > Ei or unambiguous
spins of some final excited states. In the latter case it is no
longer possible to define what spins of initial states within the
quasicontinuum yielding dipole transitions must be included
to the sum in Eq. (14). For the rest of the experimental points,
the fluctuations were estimated and shown in Fig. 9 as vertical
error bars. The values of these errors exceed or are of the same
magnitude as the statistical uncertainties for high Eγ for all of
the presented cases. For the highest initial excitation energies
in Fig. 9, Ei = 7.74 and 7.10 MeV, they become increasingly
suppressed, as compared with the statistical errors, by roughly
a factor of 10 at Eγ ≈ 4.5 MeV, gradually increasing to ≈102

toward Eγ ≈ 1 MeV. For lower initial excitation energies, this
factors are of order 1 and 10. Except for the strong devia-
tions in the areas with expected large fluctuations (dark-gray
areas), all strengths are in fairly good agreement with the
Oslo-method result within its error band.

Similar results with an excitation energy bin width of 160
keV are shown for 124Sn in the upper row of Fig. 10. Since the
range of populated spins might be limited in this case, using
the total NLD provides a lower estimate of the PT fluctuations,
and they might be slightly larger than shown in the figure. By
analogy with the case of 120Sn, the GSFs for different initial
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FIG. 9. GSFs for 120Sn at initial excitation energies (a) 5.82 MeV, (b) 6.46 MeV, (c) 7.10 MeV, (d) 7.74 MeV and final excitation energies
(e) ground state, (f) first excited state, (g) 2.50 MeV, (h) 3.26 MeV compared with the Oslo method strength (blue shaded band). For each
strength the statistical error band is shown together with the error due to the PT fluctuations. Dark gray regions correspond to the areas of
expected infinite PT fluctuations, light gray area marks energies for which the fluctuations of the strength were not determined. The γ -ray and
excitation energy bin widths are both 128 keV.

excitation energies are in rather good agreement with the
Oslo-method strength within the shown error bands and areas
of expected finite PT fluctuations. These results for both the
120,124Sn isotopes further support the GSF being independent
of the initial excitation energy, in accordance with the gBA
hypothesis. At lower excitation energies, the uncertainty due
to PT fluctuations is expected to gradually outweigh the sta-

tistical error bar. This effect becomes especially apparent for
the GSFs extracted for specific final excitation-energy bins.
The GSF for the ground state and the first excited state at
1.171 MeV in 120Sn are demonstrated in comparison with
the Oslo-method GSF in Figs. 9(e) and 9(f). The data are
shown for E f + Eγ � 3.2 MeV. The area below this energy
and the area corresponding to E f + Eγ > Sn are shaded. The

FIG. 10. GSFs for 124Sn at initial excitation energies (a) 5.52 MeV, (b) 6.16 MeV, (c) 6.96 MeV, (d) 7.76 MeV and final excitation energies
(e) ground state, (f) first excited state, (g) 2.80 MeV, (h) 3.44 MeV compared with the Oslo method strength (blue shaded band). For each
strength the statistical error band is shown together with the error due to the PT fluctuations. Dark gray regions correspond to the areas of
expected infinite PT fluctuations, light gray area marks energies for which the fluctuations of the strength were not determined. The γ -ray and
excitation energy bin widths are both 160 keV.
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FIG. 11. Shape-method GSFs of 120Sn for γ rays (a) feeding the
ground state and (b) the first excited state compared with the Oslo
method result (blue band). The Shape method results are shown
together with the statistical error propagated through the method,
shown as a band (significantly smaller in width than the size of the
data points), and the error bars due to the PT fluctuations. The Oslo
method GSF is shown with the total (stat.+syst.) error band.

fluctuations of the ground-state strength are large below
≈5 MeV, where they reach ≈40% of the absolute value.
Between Eγ ≈ 3.3 and 5 MeV, the fluctuations of the strength
are ≈60% on average and reach up to 90% toward the lowest
γ energy. The latter case corresponds to only 1–3 possible
dipole transitions at this Eγ . Applying the χ2

ν distribution
for fluctuations of so few transition widths is not justified
because it is valid solely in the statistical regime. Thus, the
estimation procedure should be taken with great care when
r(Eγ ) approaches values of 1.

Below ≈5 MeV, some strong deviations of the ground-
state strength from the Oslo-method result are observed.
Besides the strong PT fluctuations at these γ -ray energies,
there might be some quadrupole transitions that cause me-
thodical problems in this region. As the extraction of the
GSF relies on dipole radiation being dominant, quadrupole
transitions from numerous low-lying 2+ states to the ground
state could distort the strength as the factor of E5

γ should be
used instead of E3

γ . At higher γ -ray energies, the ground-state
strength reproduces the slope of the Oslo method strength,
lying well within the Oslo-method error band. Similar effects
can be seen for the 124Sn [in Fig. 10(e), E f + Eγ � 3.0 MeV],
where the fluctuations were again estimated with the total

FIG. 12. Same as Fig. 11, but for 124Sn.

NLD and, therefore, should be considered lower-limit esti-
mates.

High PT fluctuations of 10%–60% are observed also for
the GSF to the first excited states in both isotopes, as shown in
Figs. 9(f) and 10(f). For both nuclei these strengths reproduce
the slopes of the Oslo method GSF in the region between 5 and
6.5 MeV quite well. For the higher final excitation energies,
the fluctuations of the strengths are at most by one order of
magnitude larger than the statistical uncertainties at low γ -ray
energies, while at higher γ -ray energies they are by one order
of magnitude smaller. For these strengths it is challenging to
argue for an exact agreement with the Oslo method result. If
taking a general agreement of the strengths within the error
bars as a criterion, it can be possible to claim an overall
independence of the strengths of final excitation energy for
120,124Sn.

As the PT fluctuations become more significant at lower
final excitation energies, they are expected to make a consid-
erable contribution to the total error band of the Shape-method
results. In Figs. 11 and 12, the GSFs for γ rays feeding
the ground state and the first excited 2+ state are shown
for 120Sn and 124Sn, respectively, together with the corre-
sponding Oslo-method strengths. To test what a reasonable
minimum excitation-energy limit would be for the appli-
cation of the Shape method, we choose Ei = 4 MeV in
both nuclei as a starting point. The Shape method results
are presented with their statistical uncertainties, propagated
through the unfolding and the first generation method. The
Oslo-method strength is shown with the total error band and
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the expected variations of the corresponding ground-state
or first-excited-state strengths due to the PT fluctuations.
Both of these strengths for 120Sn follow the shape of the
Oslo-method strength quite well from the neutron separation
energy and down to ≈5.5–6 MeV. Here, they start deviating
gradually for lower γ -ray energies. In 124Sn, the agreement
between the GSFs is quite good from Eγ ≈ 5 MeV and
higher.

Remarkably, the ground-state strengths and the first-
excited-state strengths for 120,124Sn demonstrate quite signif-
icant enhancements between 3 and 5 MeV, which cannot be
attributed to any real features of the strength. Moreover, there
are no noticeable structures on the diagonals at 4 < Ei <

5 MeV that might have induced these features. No similar
effect was previously reported for even-even isotopes [34].
The appearance of these bumps might partly arise from the
failure of the internal normalization technique at relatively
low γ -ray energies where large fluctuations of the strengths
are observed. The fluctuations of the ground-state strength
in 120,124Sn range from ≈30% to 70% below 5.5 MeV, and
from ≈15%–35% below 4.3 MeV for the GSF corresponding
to the first excited state. Since the pairs of data points for
the two diagonals at each excitation energy are normalized
internally to each other (see Ref. [34]), large variations of
the strengths could lead to an erratic internal normalization
at relatively low γ -ray energies. When reaching densities of
1 × 103–2 × 103 levels per MeV, the distorting effect due to
the PT fluctuations becomes smaller, and the Shape-method
results follow nicely the Oslo-method strength in both cases.
This potential problem should be considered in future studies
performed with the Shape method. When approaching the
neutron separation energies in 120,124Sn, fluctuations of the
strengths do not exceed a few percent, which is comparable
to the statistical error bands shown in Figs. 11 and 12, while
for the rest of the energy range, the PT fluctuations make a
noticeable contribution to the uncertainties.

Additional explanations for the smooth bump-like struc-
tures observed in the GSF might come from the failure of
some basic assumptions in the Shape method such as a sym-
metric parity distribution of the initial nuclear levels, pure
dipole transitions of the involved γ -ray decays, and a spin-
independent excitation probability in the (p, p′γ ) reaction at
16 MeV. The lower the excitation energy, the less the as-
sumption of a symmetric parity distribution might be justified,
especially in the magic Sn isotopes, so this may lead to de-
viations when using the Shape method at excitation energies
below 5–6 MeV. Furthermore, similar to the discussion of the
Oslo method, potential contributions of quadrupole transitions
can distort the analysis procedure due to the different energy
factor of E5

γ as compared with E3
γ for dipole transitions. In

particular, the excited 2+ states will most likely decay (on
average) preferably to the first 2+ instead to the ground state.
Within the Shape method, this can lead to the fact that the
value of the GSF for the ground state γ decay is (on average)
smaller than for the decay into the first 2+ state. Thus the value
pair in the Shape method has an increasing course towards low
γ energies due to fto 2+ [Ei − Ex(2+)] > fto g.s.[Ei − Ex(g.s.)]
and might explain the increasing bump-like trend of the GSF.
It remains an open question as to why the deviation of the

strengths is systematically upward (always an increase) and
whether the PT fluctuations, asymmetric parity distributions
or the specific decay behavior of 2+ states at low excitation
energies are the main cause of the observed deviation

V. CONCLUSIONS

The nuclear level densities and γ -ray strength functions
of 120,124Sn were extracted using the Oslo method, and the
slopes of the strengths were additionally constrained with the
Shape method. The NLDs were found to be in good agreement
with previously deduced NLDs for 116,118,122Sn, with slight
deviations primarily due to some differences in the normal-
ization procedures. The Oslo-method NLD for 1− states in
124Sn is in fairly good agreement within the estimated error
bands with the result obtained from the fluctuation analysis
of high-resolution inelastic proton scattering spectra above
6 MeV. Given the model-independence of the (p, p′) result,
this agreement supports the choice of the spin distribution
function and the spin-cutoff parameter employed in the Oslo
method. The combined results covering excitation energies
up to 14 MeV clearly demonstrate the transition between the
constant temperature and the Fermi gas regimes at ≈8.5 MeV.

The experimental NLDs were used to estimate the role of
the Porter-Thomas fluctuations in assessing the generalized
Brink-Axel hypothesis below the neutron separation energy
in 120,124Sn, as well as the applicability of the Shape method.
Most of the deviations of the GSFs for different initial and
final excitation energies from the Oslo-method strength can
be explained by strong PT fluctuations due to very few γ

transitions. For the ground-state and the first excited state
strengths, this effect is especially apparent, with the PT fluc-
tuations reaching up to 90%–100% at low γ -ray energies.
Despite some local discrepancies, the individual GSFs are in
overall good agreement with the Oslo-method strength within
the error bands, suggesting an independence of initial and final
excitation energies in support of the generalized Brink-Axel
hypothesis within uncertainties of the Oslo method.

Strong PT fluctuations were found to play a noticeable
role in the extraction of the GSFs with the Shape method,
as they might contribute to considerable deviations from the
Oslo-method result at low γ -ray energies. The reliability of
the Shape method applied to 120,124Sn is under question for
values of the NLDs below 1 × 103–2 × 103 levels per MeV,
but quite satisfactory above this limit in both nuclei. Fur-
ther investigations are needed to understand why the Shape
method seemingly leads to an overestimate of the low-energy
strength in the region where the PT fluctuations are large.
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The 111,112,113Sn isotopes have been studied with (p, dγ ), (p, p′γ ), and (d, pγ ) reactions to extract the nuclear
level densities (NLDs) and γ -ray strength functions (GSFs) of these nuclei below the neutron separation energy
by means of the Oslo method. The experimental NLDs for all three nuclei demonstrate a trend compatible
with the constant-temperature model below the neutron separation energy while also being in good agreement
with the NLDs of neighboring Sn isotopes, obtained previously with the Oslo-type and neutron evaporation
experiments. The extracted microcanonical entropies yield ≈1.5 kB entropy of a valence neutron in both 111Sn
and 113Sn. Moreover, the deduced microcanonical temperatures indeed suggest a clear constant-temperature
behavior above ≈3 MeV in 111,113Sn and above ≈4.5 MeV in 112Sn. We observe signatures for the first broken
neutron pairs between 2 and 4 MeV in all three nuclei. The GSFs obtained with the Oslo method are found to be
in good agreement below the neutron threshold with the strengths of 112,114Sn extracted in the (p, p′) Coulomb
excitation experiments.

DOI: 10.1103/PhysRevC.108.014315

I. INTRODUCTION

The statistical approach to the description of excited nuclei
has always been an integral part of reaction theory since its
first introduction and application in 1952 by Hauser and Fes-
hbach [1]. This remains true today, and the statistical model
has grown into an indispensable tool for modeling nuclear
reactions for astrophysics [2], reactor design and waste trans-
mutation [3,4], and medical isotope production [5]. Two key
inputs needed for the statistical-model calculations are the
nuclear level density (NLD) and, in the case of reactions
involving photons, the γ -ray strength function (GSF). The
NLD ρ(Ex ) provides a measure of a number of quantum-
mechanical levels available at a given excitation energy Ex,
whereas the GSF f (Eγ ) characterizes an average, reduced
γ -transition probability as a function of the γ -ray energy
Eγ . Besides their importance for reaction cross sections and
rate estimations, both of these average nuclear characteristics
provide a critical insight into nuclei as complex many-body
systems and into their structure and decay properties in the
quasicontinuum and continuum excitation energy regimes.

At relatively low excitation energies, within the discrete
region, the NLD can be straightforwardly found through

*maria.markova@fys.uio.no
†a.c.larsen@fys.uio.no

counting known discrete levels (e.g., available in compila-
tions such as those provided in Ref. [6]) with conventional
spectroscopy. After the onset of Cooper pair breaking at
higher excitation energies, the NLD increases exponentially,
and experimental spectroscopic data tend to underestimate
its values drastically. In this energy range, the experimental
information on NLDs can be obtained from, for example,
particle evaporation spectra [7] or by a fluctuation analysis
of fine structures of giant resonances studied in high-energy
light-ion reactions at extreme forward angles [8,9]. Nuclear
resonance fluorescence, inelastic relativistic proton scattering,
discrete resonance capture, and other experimental techniques
reviewed in detail in Ref. [10] provide an access to the GSFs
below and above the neutron separation energy. In this work,
we make use of the Oslo method [11–13], an experimental
technique where the NLD and the GSF are simultaneously
extracted for excitation energies below the neutron threshold.
This method has been used for addressing numerous key
questions, such as the validity of the Brink-Axel hypothesis
[14,15], study of thermal properties of excited nuclei [16,17],
constraining the radiative neutron capture cross sections rele-
vant for astrophysical s and r processes [18,19],1 and more.

1Ref. [19] exploits the Oslo method combined with β-decay mea-
surements, or the so-called β-Oslo method.
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From the perspective of investigating statistical properties,
Sn isotopes provide us with excellent study cases, where the
Oslo-method NLDs and GSFs can be directly compared to
numerous experimental results and theoretical predictions.
Moreover, it becomes possible to combine these cases in a
broader systematic study of statistical properties of nuclei
with an increasing neutron number performed with the same
method. At the moment, the NLDs and GSFs have been re-
ported for the Oslo-type studies of 116,117Sn [16,20], 118,119Sn
[21], 121,122Sn [22], and 120,124Sn [23]. The measurements for
the latter two isotopes were performed with the new scintilla-
tor detector array OSCAR [24,25], currently available at the
Oslo Cyclotron Laboratory (OCL).

Additional studies with the Oslo method on lighter Sn
isotopes are highly desired to complete this sort of a system-
atic review. Constraining the statistical properties and putting
them into the context of systematics for neutron-deficient Sn
isotopes might also be of further interest to shed new light
on the rapid proton-capture process that can take place on
accreting neutron stars (e.g., Ref. [26]). This work presents
the NLDs and GSFs for 111,112,113Sn nuclei obtained from
particle-γ coincidence data by means of the Oslo method.
In Sec. II we present the details regarding the experimen-
tal setup at the OCL and some of the most important steps
of the data processing. Section III covers the details of
the Oslo-method implementation for the extraction of NLDs
(Sec. III A) and GSFs (Sec. III B). The main results on the
NLDs in 111,112,113Sn and their thermal properties as well
as the GSFs are presented in Secs. IV and V, respectively.
Finally, the main conclusions are outlined in Sec. VI.

II. EXPERIMENTAL SETUP AND DATA PROCESSING

The 111,112,113Sn isotopes were studied at the
OCL in 112Sn(p, p′γ ) 112Sn, 112Sn(p, dγ ) 111Sn, and
112Sn(d, pγ ) 113Sn reactions performed on a self-supporting
99.8% enriched 112Sn foil target of 4 mg/cm2 in thickness.
Proton beams with energies of 25 and 16 MeV provided by
the MC-35 Scanditronix cyclotron were used to investigate
111Sn and 112Sn in (p, p′γ ) and (p, dγ ) reactions, respectively.
Beam intensities were kept at I ≈ 1.0–1.5 nA in both cases.
The 113Sn nucleus was studied with a 11.5-MeV deuteron
beam with intensities of I ≈ 0.5–0.7 nA.

The energies and angles (relative to the beam direction)
of emitted particles were recorded by the silicon parti-
cle telescope SiRi [27], consisting of eight 1550-µm-thick
trapezoidal-shaped back E detectors and 130-µm-thick front
�E detectors. Each front part is additionally segmented into
eight strips with ≈2◦ angular coverage, thus making up 64
�E−E combinations in total. SiRi was placed in a backward
position with respect to the beam direction, covering angles
from 126◦ to 140◦. This was primarily done to enhance the
contribution from compound reactions relative to direct trans-
fer reactions while also ensuring a larger transfer of angular
momentum. Each SiRi detector had an ≈10.5−µm Al foil
in front to reduce the number of δ electrons. The energy
resolution of the particle spectra depends primarily on the
reaction channel, the beam-spot size, the target thickness, and
the intrinsic energy resolution of SiRi. For the (p, p′) channel,

the full width at half maximum resolution was estimated from
a Gaussian fit to elastically scattered protons to be ≈200 keV,
while using the first excited and ground states of 111Sn and
113Sn in the (p, d) and (d, p) channels yields the resolutions
of ≈320 and 300 keV, respectively.

To record γ events, the target chamber was surrounded
by the scintillator detector array CACTUS [28], consisting
of 28 spherically distributed 5′′ × 5′′ NaI(Tl) scintillator γ -
ray detectors. All of them were shielded with conical lead
collimators to reduce the Compton contribution to the γ -ray
spectra and to improve the peak-to-total ratio. The total effi-
ciency of CACTUS was measured with a 60Co source to be
15.2(1)% (Eγ = 1332 keV). The energy resolution of the NaI
detectors at this γ -ray energy was ≈6.8%. The signals from
the back detectors of SiRi were used as triggers for the data
acquisition, and the times of the NaI signals were recorded
relative to the particle signals within a time window of ≈1 µs.

The particle spectra were calibrated to known levels in the
Sn isotopes populated in all three runs, whereas the spectra
obtained for a 4-mg/cm2-thick natural Si target were used
to calibrate γ spectra. The reaction channels of interest were
further selected with the �E−E technique. The kinematics
of the studied reactions were used to convert particle energies
within the selected channels into the corresponding excitation
energies of 111,112,113Sn. By gating on the prompt time peak
and subtracting background, we selected the desired particle-
γ events for the further analysis. These events are presented in
the form of a raw-data coincidence matrix shown in Fig. 1(a)
for the case of 112Sn.

The γ -ray spectra were further corrected for the response
functions of the CACTUS array [12]. The Compton subtrac-
tion method incorporated in the unfolding procedure allows
for preserving the statistical fluctuations of the raw spectra in
the resulting unfolded spectra without introducing any artifi-
cial features. Details of the procedure are outlined in Ref. [12].
The unfolded matrix for 112Sn is shown in Fig. 1(b).

To extract the NLD and the GSF from the coincidence data,
the first-generation γ rays from all possible cascades, i.e.,
stemming directly from each given initial excitation energy
bin, were singled out to form a so-called primary matrix [see
Fig. 1(c)]. This was done by means of the first-generation
method described in detail in Ref. [11]. This method exploits
the assumption that γ -decay patterns of excited levels are
independent of the way of their formation, either through a
direct population in a reaction or via decays of higher-lying
excited states. It is expected to hold well for comparatively
high excitation energy bins below the neutron threshold [11].
The distribution of primary γ rays for each excitation energy
bin is, thus, determined by subtracting a weighted sum of
the spectra corresponding to the lower-lying excitation energy
bins. This procedure has been shown to be quite robust and to
provide reliable results [29]. The primary matrix obtained in
this way serves as the main input for the Oslo method.

Prior to extracting the NLD and the GSF from the
first-generation spectra, we set a minimum limit, Emin

i , for
excitation energies to ensure including the region of statistical
decay only, while the upper limit is provided by the neutron
separation energy Sn (the outgoing neutrons were not mea-
sured). To exclude the low γ -ray energy regions affected by
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FIG. 1. Experimental raw p−γ coincidence (a), unfolded (b), and primary (c) matrices for 112Sn obtained in the (p, p′γ ) reaction. Yellow
lines indicate the neutron separation energy of 112Sn. Red solid lines indicate the area of the primary matrix used in the Oslo method. The bin
width is 124 keV for both axes. Blue arrows mark the sequence of the analysis steps.

over- and undersubtraction of counts in the first-generation
procedure, we also introduce an Emin

γ limit. The regions used
in this work for the further processing are given by 3.0 � Ei �
8.2 MeV and Eγ � 1.0 MeV for 111Sn, 4.0 � Ei � 10.8 MeV
and Eγ � 1.5 MeV for 112Sn, and 5.5 � Ei � 7.7 MeV and
Eγ � 1.5 MeV for 113Sn.

III. ANALYSIS WITH THE OSLO METHOD

The core idea of the Oslo method lies in the decomposition
of the primary matrix P(Eγ , Ei ) into the NLD ρ f = ρ(Ei −
Eγ ) and the γ -transmission coefficient Ti→ f :

P(Eγ , Ei ) ∝ ρ f Ti→ f . (1)

This relation is based on the fact that the primary matrix is
proportional to the probability of γ decay of states within
each initial excitation energy bin Ei to the states of a final
bin E f with γ -ray energies of Eγ = Ei − E f . Both Fermi’s
golden rule and the Hauser-Feshbach theory of statistical
reactions can be used to provide the derivation of Eq. (1)
(Refs. [30,31], respectively). This decomposition holds in the
same range of compound states as the first generation method.
The dependence of the transmission coefficient on Ei, E f , and
Eγ in Eq. (1) significantly complicates factorization of two
functions, ρ f and T . To proceed with the decomposition, va-
lidity of the Brink-Axel hypothesis must be assumed [32,33].
The generalized, most frequently used form of this hypothesis
suggests the GSF to be solely a function of γ -ray energy, i.e.,
to be independent of spins, parities, and excitation energies
of initial and final states. This effectively removes the ex-
citation energy dependence of the γ -transmission coefficient
Ti→ f → T (Eγ ). The applicability of this hypothesis has been
previously discussed, e.g., in Refs. [14,15,29,34].

The NLDs and the γ -transmission coefficients are obtained
through an iterative χ2 procedure of fitting the experimental
primary matrix (normalized to unity for each Ei) with a theo-
retical primary matrix given by

Pth(Eγ , Ei ) = T (Eγ )ρ(Ei − Eγ )
∑Ei

Eγ =Emin
γ

T (Eγ )ρ(Ei − Eγ )
. (2)

All the details of this procedure and the error propagation
are described in Ref. [13]. The obtained fit provides a very
good agreement with the experimental primary matrix, as
demonstrated for a few selected excitation energies in the
case of 112Sn in Fig. 2. The theoretical function Pth(Eγ , Ei )
reproduces all experimental features quite well within a large
interval of excitation energies below the neutron threshold.

The fit given by Eq. (2) yields the functional forms of the
NLD and the γ -transmission coefficient, i.e., their excitation
energy and γ -ray energy dependencies, respectively. The gen-
eral solutions ρ̃(Ei − Eγ ) and T̃ (Eγ ) for both functions have
the following forms [13]:

ρ̃(Ei − Eγ ) = Aρ(Ei − Eγ ) exp[α(Ei − Eγ )],

T̃ (Eγ ) = BT (Eγ ) exp(αEγ ), (3)

where ρ(Ei − Eγ ) and T (Eγ ) are two fixed solutions, A and
B denote scaling coefficients, and α is a slope shared by
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FIG. 2. Experimental primary spectra for 5.2 MeV (a), 6.4 MeV
(b), 7.6 MeV (c), and 8.9 MeV (d) excitation energy bins com-
pared to the spectra predicted with the derived level density and
γ -transmission coefficient [from Eq. (1)]. The excitation energy bins
are 124 keV wide.
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ρ(Ei − Eγ ) and T (Eγ ). To determine the physical solutions
of the NLDs and γ -transmission coefficients, one must apply
external experimental information and model assumptions, as
discussed in the following sections.

A. Normalization of the level densities

The key ingredients to determine the absolute value and
the slope of the NLD are the discrete low-lying levels and
the value of the NLD at the neutron threshold, ρ(Sn). The
most recent compilation of discrete levels [6] was used for all
three isotopes. The neutron resonance spacings D0 for s-wave
neutrons or D1 for p-wave neutrons from neutron resonance
experiments are commonly used to estimate the ρ(Sn) values.
Among three isotopes studied in this work, only 112Sn is a
stable nucleus with ground-state spin and parity Jπt

t = 0+ and
can be used as a target in neutron resonance studies. For this
reason, only 113Sn has readily available data on the resonance
spacings [35]. For the case of s-wave neutrons, levels of spin
and parity 1/2+ of the residual 113Sn nucleus are populated,
with the partial level density

1

D0
= 1

2
ρ(Sn, Jt + 1/2). (4)

Here, we utilize the procedure described in detail in Ref. [29].
Equal positive- and negative-parity contributions at Sn are
assumed, which is shown to be a reliable assumption at suffi-
ciently high excitation energies (see, e.g., Refs. [21,29]). The
spin and excitation energy dependencies (denoted by J and
Ex, respectively) of the NLD are introduced through adopting
the back-shifted Fermi gas (BSFG) form of the NLD from
Ref. [36], ρ(Ex, J ) = ρ(Ex )g(Ex, J ). The spin distribution
g(Ex, J ) is expressed as a function of the energy-dependent
spin-cutoff parameter σ (Ex ) [36,37]:

g(Ex, J ) � 2J + 1

2σ 2(Ex )
exp

[
− (J + 1/2)2

2σ 2(Ex )

]
. (5)

This allows for transforming Eq. (4) into the relation for
ρ(Sn):

ρ(Sn) = 2σ 2

D0

1

(Jt + 1) exp
(
− (Jt +1)2

2σ 2(Ex )

) . (6)

We chose the form of the spin-cutoff parameter at Sn as given
by Ref. [36]:

σ 2(Sn) = 0.0888a

√
Sn − E1

a
A2/3, (7)

where a and E1 are the level-density and back-shift parameters
for the BSFG model taken from global parametrizations of
Ref. [38]. This choice of the spin-cutoff parameter is primarily
motivated by observations made for the previously studied
tin isotopes. Namely, the rigid-body form of the spin-cutoff
parameter provides somewhat larger, overestimated values
of ρ(Sn) and, thus, the slopes of the experimental NLDs
[relative to Eq. (7)]. Indeed, the effect of pairing correla-
tions is expected to effectively reduce the moment of inertia
as compared to the rigid-body model [39]. The abovemen-
tioned overestimation can be accounted for by using the shape

method [40] to constrain the true slope of the NLDs (see, e.g.,
Ref. [23]). The limited experimental resolution of CACTUS
for 111,113Sn and a too narrow range of useful shape method
data for 112Sn, however, prevent us from extracting reliable
results with this method in these cases. Alternatively, a re-
duction factor can be applied to the rigid-body spin-cutoff
parameter. To avoid introducing any additional parameters,
we chose the form of σ (Sn) given by Eq. (7), corresponding
to ≈80% of the rigid-body estimate. This choice is addition-
ally supported by the previous analysis of 116,120,124Sn (see
Ref. [34]), where the slopes of NLDs were obtained in a
similar way and the respective slopes of GSFs were found
to be in excellent agreement with the Coulomb excitation
data [41]. This is also accounted for by an additional 10%
uncertainty we introduce for σ (Sn) in this work.

Due to the lower limit of γ -ray energies mentioned in
the previous section, the experimental NLDs do not reach
the neutron threshold, but rather stop at energies ≈1–2 MeV
below Sn. To constrain the slope of the NLD, the experimental
values have to be extrapolated to ρ(Sn). Here, we use the
constant-temperature model [36,38,42]:

ρCT(Ex ) = 1

TCT
exp

(
Ex − E0

TCT

)
, (8)

with the temperature (TCT) and shift energy (E0) treated as
free parameters. This model was favored over the BSFG trend
in the present cases based on the observed excitation energy
dependencies and the quality of the χ2 fit to the experimental
data. When the energy gap is relatively small (≈1–2 MeV),
the choice of the extrapolation model is not expected to play
any significant role as compared to other sources of uncertain-
ties.

As mentioned previously, both 110Sn and 111Sn are un-
stable isotopes, and no experimental information on neutron
resonance spacings is available for 111Sn and 112Sn. Hence,
the values of the NLD at Sn were obtained from the sys-
tematics available for stable Sn isotopes in the same way as
described in Ref. [23] with the spin-cutoff parameter given
by Eq. (7). We additionally include the abovementioned 10%
error for σ (Ex ) in the total errors of ρ(Sn) for each isotope in
the systematics together with the experimental uncertainties
of D0.

The obtained error bands of the NLDs include statistical
errors combined with the systematic errors from the unfolding
and the first-generation method, and are calculated according
to the procedure from Ref. [13]. For 113Sn, the 10% error
of the spin-cutoff parameter is propagated together with the
experimental error of D0 into the NLD uncertainty at the
neutron separation energy and also included in the systematic
error band as was done previously in Ref. [18]. We note that if
we would use the predictions from systematics for 113Sn rather
than the neutron resonance data, the normalization parameters
would be slightly lower but well within the error bars reported
here. The D0 values for 111,112Sn were estimated from the
ρ(Sn) values extracted from the systematics. We assume a
30% error of D0 in both cases, which is approximately twice
as large as the largest experimental error of D0 available
for other Sn isotopes. A good agreement, well within the
estimated error bands, between the slopes of the obtained
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TABLE I. Parameters used for the normalization of the NLDs and GSFs for 111,112,113Sn.

Sn D0 a E1 Ed ρ(Sn) T E0 〈�γ 〉
Nucleus (MeV) (eV) (MeV−1) (MeV) (MeV) σd σ (Sn) (105 MeV −1) (MeV) (MeV) (meV)

111Sn 8.169 120(36)a 12.05 −0.29 1.08(7) 2.7(4) 4.6(5) 3.5(13)a 0.67+0.03
−0.02 −0.06+0.04

−0.11 76(18)a

112Sn 10.788 3(1)a 12.53 1.12 2.83(4) 2.8(4) 4.8(5) 24.6(8)a 0.71+0.02
−0.02 0.66+0.09

−0.08 87(34)b

113Sn 7.744 172(10) 12.77 −0.27 1.88(2) 3.5(7) 4.6(5) 2.5(5) 0.63+0.01
−0.01 0.20+0.04

−0.04 73(8)

aFrom systematics.
bModified (see text).

GSFs with the (p, p′) Coulomb excitation data (see Sec. V)
also supports this choice. These errors were combined with
the σ (Ex ) uncertainties and propagated in the total systematic
error bands for the NLDs of 111,112Sn. All parameters for the
NLD normalization used in this work are presented in Table I.

B. Normalization of the γ-ray strength functions

The slope of the γ -transmission coefficient, also defined
by the parameter α (see previous sections), is automatically
determined through normalizing the NLD. The only param-
eter left to be constrained is B, i.e., the absolute value of
T (Eγ ). To extract this parameter, we utilize the expression
for the average radiative width 〈�(Ex, J, π )〉 for the levels of
spin-parity Jπ at the excitation energy Ex [43]:

〈�(Ex, J, π )〉 = 1

2πρ(Ex, J, π )

∑

XL

∑

Jf ,π f

∫ Ex

Eγ =0
dEγ

× TXL(Eγ )ρ(Ex − Eγ , J, π ), (9)

with X and L being the electromagnetic character and multi-
polarity of the γ radiation. The latter can be safely assumed
to be of dipole nature in our case (E1 + M1; see, e.g.,
Ref. [43]). The GSF f (Eγ ) is then directly obtained from
the γ -transmission coefficient by the relation BT (Eγ ) =
2πE3 f (Eγ ) [44].

The total average radiative width 〈�γ 〉 obtained from
s-wave neutron capture experiments [corresponds to
〈�(Sn, Jt , πt )〉 in Eq. (9)] can be used to find the scaling
parameter B. We adopt the prescription of Ref. [45] and use
the following excitation energy dependence of the spin-cutoff
parameter:

σ 2(Ex ) = σ 2
d + Ex − Ed

Sn − Ed

[
σ 2(Sn) − σ 2

d

]
, (10)

with σd estimated from the discrete lower-lying levels at Ex ≈
Ed [6].

For 113Sn, the 〈�γ 〉 value at Sn is available from s-wave
neutron resonance studies [35]. For 111Sn and 112Sn, how-
ever, these values have to be constrained from the systematics
for other Sn isotopes as it was done for 124Sn in Ref. [23].
The value of 〈�γ 〉 = 76(18) meV obtained in this way for
111Sn seems to be quite satisfactory based on the comparison
with the (p, p′) Coulomb excitation data, while the 〈�γ 〉 =
121(22) meV value for 112Sn yields a significantly overesti-
mated GSF. Given the good agreement of the Oslo data with
the (p, p′) Coulomb excitation strengths for other even-even

Sn isotopes (see Ref. [34]), we chose to apply an additional
reduction factor to the 〈�γ 〉 value for 112Sn extracted from the
systematics. This factor is obtained through a χ2 minimization
with our GSF and the (p, p′) data below the neutron threshold.
The 〈�γ 〉 value from the systematics is set to be the maximum
value, spanning a symmetrical error bar for 〈�γ 〉 in 112Sn. For
the 111Sn nucleus this error is provided by the fit error from
the systematics.

The error bands shown for the GSFs in Sec. V comprise
the statistical errors, systematic errors of the unfolding and
the first-generation procedure, and the propagated errors due
to the D0, 〈�γ 〉, σ (Sn), σd , and Ed values. All parameters and
their uncertainties used in the normalization of the GSFs are
listed in Table I.

IV. NUCLEAR LEVEL DENSITIES AND THERMAL
PROPERTIES

The NLDs of 111,112,113Sn extracted with the Oslo method
are presented in Fig. 3. All NLDs follow nicely a number of
low-lying excited states up to ≈2.2 MeV for 111Sn, 3.5 MeV
for 112Sn, and 2.7 MeV for 113Sn. Up to these energies the
level schemes can be, thus, considered complete. As com-
pared to 113Sn, the result for 111Sn slightly underestimates
the experimental NLD below ≈1 MeV, most likely due to
the difference in the reaction mechanism and energy, favoring
higher momentum transfer in the (p, d) reaction [46]. With
the typical resolution of ≈200–300 keV, only the ground state
and the first excited state of 112Sn are clearly separated. The
nonzero values of the NLD between these states are due to
the abovementioned experimental resolution and some left-
over counts remaining between the diagonals of the primary
matrix after the background subtraction and unfolding. The
lowest-lying levels in odd-even isotopes are seen as a single
bump below Ex ≈ 500 keV in 111Sn and 700 keV in 113Sn.
At energies above Ex ≈ 4 MeV, all nuclei demonstrate a steep
exponential increase toward the neutron threshold, following
a constant-temperature trend. For this reason, the normaliza-
tion fit needed to constrain the CT model parameters for the
extrapolation of the NLDs was found to be quite insensitive to
the exact choice of the normalization limits (marked as shaded
gray areas in Fig. 3).

The comparison of the experimental results for 111,112,113Sn
with other neighboring Sn isotopes is shown in Fig. 4. Here,
we include the NLDs of 115Sn, studied in a neutron evapo-
ration experiment [47], and 116,117Sn, studied with the Oslo
method in (3He, 3He γ ) and (3He, 4He γ ) experiments [16].
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FIG. 3. Experimental NLDs of 111Sn (a), 112Sn (b), and 113Sn
(c). The ρ(Sn) values are marked as crosses, and discrete levels are
presented as hatched histograms. The gray-shaded areas mark the
lower and higher excitation energy normalization regions.

The level densities of all shown odd-even isotopes are by a
factor of 5–9 higher than those of the even-even isotopes, as
expected due to the presence of an uncoupled valence neutron
in the odd-even nuclei. The NLDs of 111Sn and 113Sn agree
quite well within the estimated error bands with each other
above ≈2 MeV. Moreover, their slopes and absolute values
agree above ≈3.5 MeV with those of the NLD in 115Sn [47].
Similarly, the corresponding ρ(Sn) estimates lie well within
the error band of the neutron evaporation experiment. The
same is true for the ρ(Sn) value of 117Sn, which, however,
appears to be higher in absolute values below the neutron
threshold than all other odd-even isotopes. As no considerable
structural changes in these odd-even isotopes are predicted,
we do not expect any significant change in the observed
slopes. The NLD of 117Sn being slightly higher might be
indeed due some minor systematic evolution of the NLD with
an increasing neutron number. However, it is important to
mention that the BSFG model was used for the extrapolation
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FIG. 4. Comparison of the experimental nuclear level densities
for 115Sn [47], 116Sn [16], and 117Sn [16], shown together with the
ρ(Sn) values, and the present data for 111,112,113Sn.

in the case of 117Sn. It usually tends to slightly increase the
NLD values when approaching the neutron threshold (see
Ref. [16] and Fig. 8 in Ref. [48]). In many studied cases,
including 111,112,113Sn, the BSFG yields a poorer χ2 score
for the fit at high excitation energies, while the CT model
provides a rather good fit in the same energy range and repro-
duces the NLD quite well below these energies. For example,
within an energy range between 8 and 9 MeV in 112Sn, the fit
provided by the BSFG results in a χ2 score that is a factor of 6
worse than the one obtained with the CT model. The different
approach for the extrapolation of the NLD to ρ(Sn) might
also be the main explanation for the difference in absolute
values of the NLDs in 116Sn and 112Sn. This is additionally
supported by the ρ(Sn) value from Ref. [16], which seems to
agree well with the CT slope predicted for 112Sn. Otherwise,
the two NLDs follow the same trend below ≈3.5 MeV. As
an older version of the particle telescope with a worse energy
resolution was used in the earlier experiments (see Ref. [16]),
the ground state and the first excited state at 1.293 MeV of
116Sn are rather seen as two consecutive bumps around the
ground state and the 1.256-MeV state of 112Sn. Overall, the
NLDs of 111,112,113Sn are considerably smoother and more
featureless than those of 116,117Sn at relatively high excitation
energies, which is most likely due to the better statistics of the
newer experiments.

To study possible structural features present in the NLDs,
we extract the entropies S and the temperatures T , similar to
how it was done in Refs. [16,17,47]. Here, we have chosen to
assume that these nuclei, given the experimental conditions,
can be described within the microcanonical approach. By
definition, the microcanonical entropy S(Ex ) is defined by the
number of different ways a system can be arranged and, thus,
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can be derived through the corresponding partition function,
namely, the multiplicity of the populated states �s:

S(Ex ) = kB ln �s(Ex ), (11)

where kB is the Boltzmann constant. To link this to the exper-
imental NLD, one has to have an access to the distribution
of the populated spins at each excitation energy or, as in
Ref. [16,17], introduce an averaged factor so that

�s(Ex ) = [2〈J (Ex )〉 + 1]�l , (12)

where 〈J〉 is the average populated spin and �l is the mul-
tiplicity of levels. As the exact spin distribution is quite
uncertain and because we are interested in the excitation en-
ergy dependence of S(Ex ) rather than its absolute values, we
omit the spin-dependent factor. Additionally, we introduce a
parameter ρ0 so that

�l (Ex ) = ρ(Ex )

ρ0
(13)

and the entropy of the even-even 112Sn at the ground state
equates to zero, as expected. In the earlier works, the ρ0 value
was chosen such that the entropy at the excitation energy bin
around 0 MeV yields S ≈ 0 kB [16,17]. As the experimental
NLD underestimates the theoretical one at the ground state,
we chose ρ0 to be the average of the ground state and the
first 2+ state densities, ρ0 = 1.431 MeV−1. The same value
was taken for the odd-even isotopes as well. This choice does
not affect the main trends of interest in the excitation energy
dependence of S(Ex ) [16,17,47].

The experimental entropies of 111,112,113Sn are shown in
Fig. 5(a). As S(Ex ) is not defined for excitation energy bins
with no discrete states, we disregard the excitation energy
ranges below 1 MeV for 111,113Sn (dark-gray area) and below
2 MeV for 112Sn (light-gray area), including all such bins.
Following Ref. [49], we apply an assumption that the change
in entropy between systems with an unpaired valence neutron
(111,113Sn) and a system with only paired neutrons (112Sn)
can be described with a constant shift as a function of ex-
citation energy. The entropy differences �S = S(111,113Sn) −
S(112Sn) above 2 MeV are shown in Fig. 5(b). Both differ-
ences are quite similar, except for a slight increase closer to
6 MeV in case of 113Sn. Between ≈2.7 and 5.5–6.0 MeV
both differences can be considered almost constant within
the estimated error bands, with the average values of �S =
1.48+0.04

−0.02 kB and 1.47+0.02
−0.02 kB for 111Sn and 113Sn, respec-

tively. These values are slightly lower than those obtained
for 116,117Sn (≈1.6 kB) [16] and 118,119Sn [1.7(2) kB] [21].
The estimate presented in the latter study should be treated
with care due to quite poor statistics of the experiments. Both
works compare the �S values with the semiempirical study on
entropies of midshell nuclei in the rare-earth region, providing
an averaged value of �S ≈ 1.7 kB [49]. This study, however,
does not include such light isotopes of Sn as 111,112Sn. Overall,
the entropy differences of nuclei in the vicinity of Z = 50
demonstrate quite a large spread in values, from ≈1 to 2 kB,
and, therefore, the estimates we obtained for 111,112,113Sn are
in accordance with this study as well as with the earlier works
on 116−119Sn.

0

2

4

6

8

10

12

) B
En

tro
py

 S
 (k

(a)

Sn)111 S(
Sn)112 S(
Sn)113 S(

0 1 2 3 4 5 6 7 8 9
 (MeV)

x
Excitation energy E

0.5
1

1.5
2

2.5
3

3.5
4

4.5) B
En

tro
py

 d
iff

er
en

ce
 S

 (k
(b)

Sn)112Sn,111S(Δ
Sn)112Sn,113S(Δ
Sn), fit112Sn,111S(Δ
Sn), fit112Sn,113S(Δ

FIG. 5. Experimental entropies for 111,112,113Sn (a) and entropy
differences �S(111Sn–112Sn) and �S(113Sn–112Sn) (b). Light and
darker gray-shaded areas below 2 and 1 MeV indicate the ar-
eas where the entropies for 112Sn and 111,113Sn, respectively, are
disregarded. Horizontal lines correspond to χ2 fits with constant
functions.

The experimental entropies might potentially be used to
shed some light on the process of Cooper pair breaking,
contributing to the formation of levels in the NLD. Accord-
ing to the microscopic calculations with seniority-conserving
and nonconserving interactions, this process is seen as step-
like structures of the NLDs, experimentally observed for
56,57Fe and 96,97Mo [50]. Similar structures are clearly seen
in 116−119Sn [16,21], where the features at relatively high
excitation energies should be considered with care due to very
large experimental error bars. A few quite clear features are
seen in the entropy of 115Sn at ≈2–3 and 4–5 MeV [47].

To amplify and study all subtle variations of the entropy,
it is convenient to extract the microcanonical temperature
T (Ex ):

T (Ex ) =
(

∂S(Ex )

∂Ex

)−1

. (14)

The resulting temperatures for all three isotopes are displayed
in Fig. 6. The gray-shaded areas below 1 MeV in 111,113Sn
and 2 MeV in 112Sn correspond to the disregarded ranges
of entropies, similarly to those presented in Fig. 5. For all
cases, the first bumps at ≈1.0–1.8 MeV in the temperatures
reflect the change of the NLD and entropy slope with the
onset of a large amount of states above 1 MeV. These states
are expected to be of a predominantly single-particle (also
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FIG. 6. Experimental temperatures for 111Sn (a), 112Sn (b), and
113Sn (c). The gray-shaded areas below 2 in 112Sn and below 1 MeV
in 111,113Sn indicate the areas where temperatures are not defined.
Red solid lines denote the constant-temperature fits in each case.

featuring an uncoupled neutron) nature and a collective na-
ture. A similar effect of the collective states can be seen as a
bump between 2 and 3 MeV in 112Sn. The next clear feature
in 113Sn is at ≈2.6–3.0 MeV. This energy is quite close to the
double-neutron pair-gap energy of ≈2.6 MeV, and this bump
can be a candidate for the first broken neutron Cooper pair. An
analogous peak in the same energy range of 111Sn is somewhat
less prominent, primarily due to the poorer statistics of the
(p, dγ ) experiment. Similarly, in 115Sn this feature is quite
clear in the temperature profile [47]. However, the peak at
4–5 MeV in 115Sn is seen neither in 111Sn nor in 113Sn.
Instead, these nuclei demonstrate almost constant-temperature
regimes already above ≈3 MeV with the average temperature
of T = 0.67+0.06

−0.04 MeV for 111Sn and T = 0.66+0.03
−0.03 MeV for

113Sn, well in agreement with the corresponding temperatures
from the CT extrapolation in Table I. This might be partly due
to the experimental resolution, which smears subtle features
of the NLD, no longer visible in the temperature profile.
In addition, the process of Cooper pair breaking becomes
more continuous at higher excitation energies, resulting in the
constant-temperature behavior. As the proton Z = 50 shell is
closed, the contribution of breaking proton pairs is expected
to begin at higher energies, above ≈4 MeV.

For the case of 112Sn, the temperature profile is quite
similar to the odd nuclei. The most prominent feature is a
peak at 3.6–4.0 MeV, which might again correspond to the
first broken neutron pair (2�n ≈ 3.0 MeV), given an extra
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FIG. 7. The experimental GSFs for 111,112,113Sn, shown together
with the (p, p′) Coulomb excitation data for 112,114Sn [41].

energy needed to form a new configuration with the unpaired
neutrons. The constant-temperature regime sets in above
≈4.5 MeV with the average value T = 0.71+0.04

−0.03, which is in
accordance with the fit temperature from Table I. In general,
all of the abovementioned trends are quite consistent with
the previously published works on 115−119Sn, supporting the
interpretation of the most-prominent features of the NLDs in
111−113Sn.

V. γ-RAY STRENGTH FUNCTIONS

The experimental dipole GSFs of 111,112,113Sn extracted
with the Oslo method are displayed in Fig. 7. The GSF of
112Sn above 8.3 MeV is not shown due to very poor statistics
in the primary matrix at high γ -ray energies. All strengths
agree well within the estimated error bands not only in slopes
but also in absolute values, demonstrating similar trends for
the shown energy range. Even though the data points of 111Sn
suffer from relatively low statistics above ≈6 MeV, they still
remain in good agreement with the GSFs of 112,113Sn up to the
neutron threshold. This behavior is expected due to the similar
structural properties of the studied isotopes.

The earlier published cases [20–22] have been primarily
compared to each other and various (γ , n) data above the
neutron separation energy. The recent series of Coulomb exci-
tation experiments through the (p, p′) reaction performed on
even-even 112,114,116,118,120,124Sn [41] provide us with GSFs
below and above the neutron threshold and, thus, an excel-
lent opportunity to compare and benchmark the slopes and
absolute values of our GSFs below Sn. Figure 7 displays the
comparison of our results with the GSFs extracted from the
(p, p′) spectra for 112,114Sn. The peaklike feature at ≈6.4 MeV
in the (p, p′) data is not seen in the Oslo strengths, likely due
to the significantly worse experimental resolution.
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An excellent agreement within the error bars of the Oslo-
method GSF for 113Sn with those for 112,114Sn above 6 MeV
supports the assumptions made to normalize this strength. A
similar agreement for 111Sn further supports the approach to
assess the missing normalization parameters ρ(Sn) and 〈�γ 〉
from the systematics. As previously mentioned, the latter pa-
rameter for 112Sn was estimated by scaling the Oslo-method
GSF to the (p, p′) data. A good agreement of all strengths
in slopes suggests that such scaling is needed due to, most
probably, the systematics failing to reproduce a reasonable
value of 〈�γ 〉 for 112Sn.

Due to the overlap with the (p, p′) data, covering also
the energy range above the neutron threshold including the
isovector giant dipole resonance (IVGDR), we are able to
quantify the low-lying E1 strength in 111,112,113Sn, similarly
to how it was done in Refs. [20,22]. In the earlier publications
this strength was referred to as the pygmy dipole resonance.
However, due to the lack of experimental information on the
isovector or/and the isoscalar nature of this strength in the
present cases we prefer to use a more general term of a low-
lying E1 strength.

Given the similarities in nuclear structure of 111−114Sn,
we choose the (p, p′) data on 112Sn to represent the region
above the neutron threshold for all three isotopes, 111,112,113Sn.
Following Refs. [20,22], the IVGDR part of the GSF is
parametrized with the generalized Lorentzian function (we
exploit the same notations for all parameters):

fE1(Eγ ) = 1

3π2h̄2c2
σE1�E1

×
[

Eγ

�KMF(Eγ , Tf )
(
E2

γ − E2
E1

)2 + E2
γ �2

KMF(Eγ , Tf )

+ 0.7
�KMF(Eγ = 0, Tf )

E3
E1

]
, (15)

where EE1, �E1, and σE1 are the IVGDR centroid energy,
width, and cross section, respectively. The �KMF parameter
denotes a temperature-dependent (Tf ) width, proposed within
the Kadmenskii-Markushev-Furman approach [51]:

�KMF(Eγ , Tf ) = �E1

E2
γ

(
E2

γ + 4π2T 2
f

)
. (16)

The low-lying excess E1 strength superimposed on the low-
energy tail of the IVGDR was found to be best described by a
Gaussian-like peak:

flow(Eγ ) = Clow
1√

2πσlow

exp

[
− (Eγ − Elow)2

2σlow

]
, (17)

with Clow, σlow, and Elow representing the absolute value,
width, and centroid parameters, correspondingly. The exper-
imental Oslo and Coulomb excitation data are shown together
with the fitted IVGDR and the low-lying dipole strength in
Fig. 8 for all three isotopes.

Because the Oslo method yields the combined E1 + M1
dipole strength, a parametrization of the M1 spin-flip reso-
nance is needed to constrain the low-lying E1 component.
Previously, no experimental data on the M1 strength were
available, and the model of Ref. [44] was used in the earlier
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FIG. 8. The experimental GSFs for 111Sn (a), 112Sn (b), and 113Sn
(c) shown together with the (p, p′) [41] and (γ , n) [53] data for 112Sn.
The total fits of the experimental data are shown as solid magenta
lines and the fits of the IVGDR are marked as solid blue lines. The
low-lying E1 and M1 components are shown as dashed black and
red lines, respectively.

works [21,22]. However, the new (p, p′) Coulomb excitation
data provide both the E1 and M1 cross sections through a
multipole decomposition analysis [41]. The M1 cross sec-
tions can be converted to B(M1) strengths with the method
described in Ref. [52]. The M1 strength appears to be quite
fragmented in all of the cases [41]. For 111,112,113Sn, we use
the M1 component provided by Ref. [41] for 112Sn and fit it
with a Lorentzian function to reproduce its overall shape:

fM1(Eγ ) = 1

3π2h̄2c2

σM1�
2
M1Eγ

(
E2

γ − E2
M1

)2 + E2
γ �2

M1

, (18)
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TABLE II. Parameters used for the description of the IVGDR
and the M1 strength in 112Sn.

EE1 �E1 σE1 Tf EM1 �M1 σM1

Nucl. (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb)

112Sn 16.1(1) 5.5(3) 266.9(95) 0.70(5) 10.5(4) 4.8(5) 1.8(2)

with the maximum cross section σM1, width �M1, and centroid
EM1. The experimental M1 data points are shown together
with the corresponding Lorentzian fits in Fig. 8.

The fitting approach to disentangle the M1 and E1
strengths in 111,112,113Sn is similar to that in Ref. [22]. First,
the M1 strength of 112Sn was fitted with Eq. (18). The ob-
tained fit parameters are listed in Table II. Further, they were
kept constant while fitting the total E1 + M1 strength of
112Sn with the combined fE1 + flow + fM1 function. All of
the IVGDR and the low-lying E1 strength parameters were
kept free. Finally, the parametrization of the IVGDR for
112Sn (see Table II) was applied to constrain the low-lying
E1 strengths in 111Sn and 113Sn. The characteristics of all
low-lying E1 strengths listed in Table III were also used
to estimate the integrated low-lying E1 strengths and the
corresponding exhausted fractions of the classical Thomas-
Reiche-Kuhn (TRK) sum rule for each isotope. By using
the IVGDR and the M1 strength of 112Sn for the fit in the
cases of 111,113Sn, the integrated low-lying strengths of all
three isotopes yield almost the same amount of ≈1.8% of the
TRK sum rule. This estimate as well as the centroids Elow are
quite close to those obtained for 116−119,121,122Sn in Ref. [22],
despite a slightly different approach to extract the low-lying
E1 strength and the normalization.

The new experimental information on the GSFs of Sn
isotopes below the neutron separation energy as well as the
M1 strengths [41] calls for a systematic revision of all Sn
isotopes studied at the OCL with a more uniform approach to
the normalization of NLDs and GSFs. This might potentially
affect the previously published parameters of the low-lying
E1 strengths [22] and reveal new trends in the evolution of
the low-lying strength from the lightest studied 111Sn to the
heaviest 124Sn.

The need for a systematic reanalysis of the earlier
published experiments is clearly demonstrated in Fig. 9, pre-
senting a comparison of the GSFs for even-even Sn isotopes,
namely, 112Sn from the present work and already published
results on 116,118,120,122,124Sn. The low-energy part of the
strength is quite similar for 112Sn and the most recent results
on 120,124Sn, while a clear change of the slope suggests some
evolution of the strength with an increasing neutron number.
The GSFs of 116,118,122Sn seem to be lower in absolute val-
ues than those of 112,120,124Sn at relatively low Eγ energies.
Renormalizing these isotopes using the same models as for
112,120,124Sn and the most updated normalization information
would further reveal whether this trend is due to the difference
in the normalization procedures or some structural effects.
For example, the spin-cutoff excitation energy dependence
provided by Eq. (10), supported by studies from Ref. [54],
was chosen over other alternatives in this work as well as

TABLE III. Parameters used for the description of the low-lying
E1 strengths in 111,112,113Sn, the integrated low-lying E1 strengths,
and the corresponding exhausted fractions of the TRK sum rule.

Elow �low Clow Integrated TRK
Nucl. (MeV) (MeV) (10−7 MeV−2) (MeV mb) (%)

111Sn 8.24(8) 1.19(6) 3.12(23) 29.6(15) 1.80(10)
112Sn 8.24(9) 1.22(8) 3.17(24) 30.1(22) 1.81(15)
113Sn 8.23(8) 1.25(7) 3.21(17) 30.5(16) 1.82(9)

many other recent OCL publications (e.g., Refs. [55,56]).
This model might potentially affect the low-energy part of
the GSF, lifting it slightly up as compared to the model
used in Refs. [21,22]. Since the time of the earlier publica-
tions (Refs. [16,20–22]) the new experimental information
on s-wave neutron resonances became available for 116Sn.
Even though it yields values of ρ(Sn) and 〈�γ 〉 quite simi-
lar to those obtained from the systematics in Ref. [21], the
systematic uncertainty band of the updated result would be
considerably reduced. In addition, some issues in the nor-
malization code that might have affected the GSF of 118Sn
have been detected and fixed in the subsequent years. This
appears to lead to a slightly higher GSF of 118Sn throughout
the whole shown energy range. With the new neutron reso-
nance data on 116Sn the systematics become more complete
and yield new normalization parameters for 122Sn. These val-
ues are quite similar within estimated uncertainties to those
in Ref. [22] and are not expected to change the GSF in
any considerable way. However, revisiting the energy cal-
ibration of this data set seems to yield a better fit of the
NLD to the low-lying discrete states, which further shifts the
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FIG. 9. Comparison of experimental GSFs for 112Sn, 116Sn [21],
118Sn [21], 120Sn [23], 122Sn [22], and 124Sn [23]. All uncertainty
bands are omitted for clarity of the figure.
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updated GSF up, reaching a good agreement with the 120,124Sn
GSFs as well the Coulomb excitation data. Overall, such re-
vision of not only the even-even 116,118,122Sn but also the odd
117,119,121Sn isotopes appears to result in a better agreement in
shapes and absolute values with the recently obtained Oslo-
method results on 111−113,120,124Sn, the Coulomb excitation
experiments [41], and available (γ , n) data for all studied
nuclei.

VI. CONCLUSIONS AND OUTLOOK

In this work, the Oslo method was used to extract the
NLDs and GSFs of 111,112,113Sn from particle-γ coinci-
dence events obtained in the (p, p′γ ), (p, dγ ), and (d, pγ )
reactions, respectively. The resulting NLDs of 111Sn and
113Sn are in good agreement with each other and the
neutron evaporation data for 115Sn. The NLDs were used
to estimate the microcanonical entropies of all three nu-
clei, and the entropy differences suggest an entropy of
≈1.5 kB carried by valence neutrons in 111Sn and 113Sn.
All three nuclei demonstrate a clear constant-temperature
trend above 3 MeV in 111,113Sn and above 4.5 MeV
in 112Sn, supported by the extracted microcanonical tem-
peratures. Signatures of the first neutron pair breaking
can be seen at ≈2.6–3 MeV in 111,113Sn and ≈3.6–4
MeV in 112Sn. Overall, the temperatures of these nuclei
are quite similar to those of the neighboring 115,116,117Sn
isotopes.

The GSFs extracted with the Oslo method demonstrate
similar slopes for 111,112,113Sn, well in agreement within the

estimated error bands with the (p, p′) strengths for 112,114Sn
above 6 MeV. The total low-lying E1 strengths in these nuclei
amount to ≈1.8% of the TRK sum rule, similar to previously
published results on 116,117Sn. The comparison with the new
experimental information on the electric and magnetic dipole
strengths from the Coulomb excitation experiments calls for
a systematic revision of the earlier published 116−119,121,122Sn
information. This further suggests a consistent study of the
evolution of the low-lying electric dipole strength with an
increasing neutron number in these isotopes. A work along
these lines is in progress.
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The γ-ray strength functions (GSF) and nuclear level densities (NLD) below the neutron threshold
have been extracted for 111−113,116−122,124Sn from particle-γ coincidence data with the Oslo method.
The evolution of bulk properties of the low-lying electric dipole response has been investigated on the
basis of the Oslo GSF data and results of a recent systematic study of electric and magnetic dipole
strengths in even-even Sn isotopes with relativistic Coulomb excitation. The obtained GSFs reveal
a resonance-like peak on top of the tail of the isovector giant dipole resonance, centered at ≈8 MeV
and exhausting ≈2% of the classical Thomas-Reiche-Kuhn (TRK) sum. For mass numbers ≥118 the
data suggest also a second peak centered at ≈6.5 MeV. It corresponds to 0.1-0.5% of the TRK sum
rule and shows an approximate linear increase with the mass number. In contrast to predictions of
the relativistic quasiparticle random-phase and time-blocking approximation calculations (RQRPA
and RQTBA), no monotonous increase in the total low-lying E1 strength was observed in the
experimental data from 111Sn to 124Sn, demonstrating rather similar strength distributions in these
nuclei. The Oslo GSFs and NLDs were further used as inputs to constrain the cross sections and
Maxwellian-averaged cross sections of (n, γ) reactions in the Sn isotopic chain using TALYS. The
obtained results agree well with other available experimental data and the recommended values
from the JINA REACLIB, BRUSLIB, and KADoNiS libraries. Despite relatively small exhausted
fractions of the TRK sum rule, the low-lying electric dipole strength makes a noticeable impact
on the radiative neutron-capture cross sections in stable Sn isotopes. Moreover, the experimental
Oslo inputs for the 121,123Sn(n, γ)122,124Sn reactions were found to affect the production of Sb in
the astrophysical i-process, providing new constraints on the uncertainties of the resulting chemical
abundances from multi-zone low-metallicity Asymptotic Giant Branch stellar models.

I. INTRODUCTION

The study of the multipole electromagnetic response of
atomic nuclei has always been an ultimate testing ground
for unraveling a plethora of complex collective and single-
particle excitation modes, their interplay, and driving
physical mechanisms of nuclear interaction. Historically,
one of the most well-studied modes of collective motion
is the isovector giant dipole resonance (IVGDR), and the
experimental and theoretical systematics on the IVGDR
and its bulk properties are currently available for a wide
range of mass numbers [1–3]. Within a macroscopic pic-
ture, this prominent feature is interpreted as a signature
of out-of-phase dipole oscillations of all protons against
all neutrons in the nucleus [4].

In contrast to the IVGDR located at 10 − 20 MeV in
heavy nuclei, the concentration of a weaker electric dipole
strength in the vicinity of the neutron threshold, often re-
ferred to as the pygmy dipole resonance (PDR), is far less
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understood and keeps posing new questions regarding its
origin and properties [5–8]. A macroscopic interpretation
of the PDR emerging from oscillations of excess neutrons,
or a neutron skin, versus an isospin-saturated core [9] has
been frequently adopted in publications since the 1970s,
shifting the main focus of the experimental efforts in the
past few decades to heavier, more neutron rich nuclei to
test this interpretation [10–12]. However, this collective
surface-motion picture and the degree of collectivity of in-
volved transitions have been a matter of intense debates
[5, 7, 8, 13–15]. Some studies suggest the physical mech-
anism behind the PDR to be a toroidal electric dipole
mode instead of a neutron-skin oscillation[16–19].

Another intensively discussed matter related to the
PDR energy region is the isovector and/or isoscalar na-
ture of observed structures [14, 20]. The isospin split-
ting of the low-lying electric dipole response (LEDR)
was, indeed, experimentally confirmed in complemen-
tary studies with isoscalar and isovector probes in 124Sn,
138Ba, and 140Ce [21–25]. Combined with self-consistent
relativistic quasiparticle time-blocking approximation
(RQTBA) and quasiparticle-phonon model (QPM) cal-
culations, these experiments point towards the presence
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of two groups of transitions below the neutron threshold
[22, 25]. The lower-lying group of states reveals a sig-
nature of a strong neutron contribution on the surface,
whereas the higher-lying states are of more isovector na-
ture, corresponding rather to the tail of the IVGDR. Fur-
thermore, recent experiments on 208Pb [26] and 120Sn [27]
with a deuteron probe combined with a QPM analysis
provided insight into the one-particle-one-hole structure
of the LEDR in these nuclei, revealing a similar structural
splitting based on the contributing particle-hole config-
urations. In general, an extensive investigation of the
PDR region with complementary isoscalar and isovector
probes in various inelastic scattering reactions as well as
single-nucleon transfer reactions is pivotal to break down
the complex LEDR structure of nuclei within different
mass regions.

The tin isotopic chain is probably one of the best stud-
ied cases both experimentally and theoretically (see, e.g.,
the review articles in [6, 8]). For the tin isotopes, the
LEDR is available from nuclear resonance fluorescence
(NRF) studies [28–30], experiments with α [22], 17O [23],
and deuteron [27] probes, Coulomb dissociation [10, 31]
and Coulomb excitation [32, 33] experiments. A first at-
tempt to extract the systematics of the PDR observed
in the GSFs of 116−119,121,122Sn measured with the Oslo
method was presented in Ref. [34]. With new exper-
imental information available on 120,124Sn [35, 36] and
111−113Sn [37], a combination of the Oslo data and the re-
cently published strengths for even-even Sn isotopes from
Coulomb excitation experiments [33] permits a consistent
extensive study on the evolution of the LEDR, covering
eleven Sn isotopes from 111Sn to 124Sn.

The connection of the PDR strength to the neutron-
skin thickness in neutron-rich nuclei, suggested by the
neutron oscillation picture, triggered attempts to pro-
vide experimental constraints on the symmetry-energy
term in the equation of state [31, 38–40], with impli-
cations for the characteristics of neutron stars [41, 42].
While this connection is under debate [15, 43], influence
of the enhanced E1 strength close to neutron threshold
on the astrophysical radiative neutron-capture rates is
less ambiguous [13, 44]. An increased probability of ra-
diative neutron capture due to the boosted GSF within
the PDR region might impact the element production in
the rapid neutron-capture process (r process), responsi-
ble for creating ≈ 50% of elements heavier than Fe in the
universe. However, assessing the importance of the PDR
in the r-process nucleosynthesis is difficult due to a lack
of experimental constraints for very neutron-rich nuclei
and a large spread in theoretical predictions of the PDR
strength. To provide radiative neutron-capture rates for
r-process reaction network calculations, the statistical
Hauser–Feshbach model is employed [45–47]. This model
calls for consistently extracted experimental data on the
nuclear level densities (NLD) and γ-ray strength func-
tions (GSF), or average reduced γ-transition probability,
for experimentally accessible cases to constrain the avail-
able theoretical models.

In addition to investigating the impact of the PDR
on the r process, dipole strength distributions below the
neutron threshold in stable isotopes are of general in-
terest for the slow (s) neutron-capture process. The
majority of the stable Sn isotopes originate predomi-
nantly from the s process [48–50], with 121Sn and 123Sn
being potential candidates for the s-process branching
point nuclei (see Refs. [51, 52], respectively). More-
over, isotopes heavier than 120Sn might be involved in
the main flow of the intermediate (i) neutron-capture
process, as discussed by Goriely et al. [53]. The Oslo
method enables the extraction of both key nuclear in-
puts, the NLDs and GSFs, for statistical calculations
within the Hauser–Feshbach framework. Therefore, the
method provides experimental constraints on the radia-
tive neutron-capture reaction rates of interest for all the
three above-mentioned nucleosynthesis processes.
The paper is outlined as follows. Section II describes

the details of experiments on the Sn isotopes performed
at the Oslo Cyclotron Laboratory (IIA) and the Oslo
method (II B). In Sec. III, the extracted NLDs (IIIA),
GSFs, and the systematics of the bulk properties of the
low-lying E1 strength (III B) are presented. Sec. IV fo-
cuses on the comparison of this systematics with model
predictions. The neutron-capture cross sections and
Maxwellian-averaged cross sections are presented and
discussed together with the potential role of the LEDR in
Sec. V. In Sec. VI, i-process calculations in Asymptotic
Giant Branch (AGB) stars are presented, and the im-
pact of the new experimentally constrained rates on the
production of the elements in the Sn region is discussed.
Finally, the main findings of this work are summarized
in Sec. VII.

II. DATA AND METHODOLOGY

A. Setup and experimental details

Eleven tin isotopes, 111−113,116−122,124Sn, were studied
in nine experimental campaigns taking place at the Oslo
Cyclotron Laboratory (OCL) in the period from 2003 to
2022. All nuclei were studied in light-particle-induced
reactions with p, d, and 3He beams delivered by the
MC-35 Scanditronix cyclotron with the main objective
of extracting particle-γ coincidence events for a further
analysis with the Oslo method. In all cases, the configu-
ration of the setup involved a scintillator γ-ray detector
array surrounding the target chamber and a Si particle-
telescope system placed either in forward or backward
angles with respect to the beam direction.
The first experiments on 117Sn and 119Sn, aiming at

studying 116,117Sn and 118,119Sn, respectively, utilized the
(3He,αγ) and (3He,3He′γ) reactions. These experiments
were performed with 38-MeV 3He beams and exploited
eight standard ∆E−E Si telescopes with ≈140-µm-thick
∆E and 1500-µm-thick E counters. The telescopes were
placed within the target chamber at 45◦ with respect to
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TABLE I. Characteristics of the experiments on Sn isotopes performed at the OCL. The given angles refer to the particle
scattering angles with respect to the beam direction.

Target Thickness Enrichment Reaction Beam energy Beam intensity Angles Year Setup
(mg/cm2) (%) (MeV) (nA) (◦)

112Sn 4.0 99.8 (p, dγ) 25.0 ≈ 1.0–1.5 126-140 2013 SiRi+CACTUS
(p, p′γ) 16.0 ≈ 1.0–1.5 126-140 2013 SiRi+CACTUS
(d, pγ) 11.5 ≈ 0.5–0.7 126-140 2014 SiRi+CACTUS

117Sn 2.1 92.0 (3He,αγ) 38 ≈ 1.5 ≈ 42.5− 47.5 2003 Stand. Si + CACTUS
(3He,3Heγ)a 38 ≈ 1.5 ≈ 42.5− 47.5 2003 Stand. Si + CACTUS
(p, p′γ)b 16 ≈ 2.8 126-140 2019 SiRi + OSCAR

119Sn 1.6 93.2 (3He,αγ) 38 ≈ 1.5 ≈ 42.5− 47.5 2008 Stand. Si + CACTUS
(3He,3Heγ)a 38 ≈ 1.5 ≈ 42.5− 47.5 2008 Stand. Si + CACTUS
(p, p′γ)b 16 ≈ 0.6− 0.8 126-140 2022 SiRi + OSCAR

120Sn 2.0 99.6 (p, p′γ) 16 ≈ 3.0− 4.0 126-140 2019 SiRi + OSCAR

122Sn 1.43 94 (3He,αγ) 38 ≈ 0.2 40-54 2010 SiRi+CACTUS
(3He,3Heγ) 38 ≈ 0.2 40-54 2010 SiRi+CACTUS

124Sn 0.47 95.3 (p, p′γ) 16 ≈ 3.0− 4.0 126-140 2019 SiRi + OSCAR

a Not used in the present work.
b Remeasured.

the beam direction, as a compromise between reducing
the contribution from elastic scattering and still having
sufficiently large cross sections for the reactions of inter-
est. Collimators were placed in front of the Si detectors
to reduce the uncertainty in the scattering angle. This
collimation led to a significantly reduced solid-angle cov-
erage of ≈0.72% of 4π and ≈1.5% of 4π for the collima-
tors with circular (117Sn) and squared openings (119Sn),
respectively.

To improve the solid-angle coverage while maintain-
ing a reasonable angular resolution, a custom-designed
Si telescope ring (SiRi) was installed in 2011 [54]. The
SiRi system was used in the experimental campaigns to
study 120−122,124Sn as well as remeasuring 117,119Sn in
2019 − 2022 in the (p, p′γ) and 121,122Sn in (3He,αγ)
and (3He,3He′γ) reactions. SiRi is comprised of eight
trapezoidal-shaped ∆E-E modules with 130-µm-thick
∆E layers and 1550-µm-thick E layers. The former are
additionally segmented into eight curved pads. The cov-
erage of scattering angles in SiRi is either 40−54◦ in the
forward or 126−140◦ in the backward position of the de-
tector array, with a 2◦ polar angle window per each pad.
With SiRi, the solid-angle coverage increased approxi-
mately 10 times as compared to the previous telescope
system, while keeping a sufficient energy resolution.

Both the older Si detector system and SiRi make use
of the ∆E-E technique to differentiate between the ob-
served reaction channels. The typical energy resolution
for the experiments with the 38-MeV 3He beam per-
formed with the older setup was ≈ 250 − 350 keV Full
Width at Half Maximum (FWHM), determined from the
fit to the elastic peaks in the (3He,3He′) and (3He,α)
channels. With SiRi, the energy resolution is ≈ 150−200

keV for the same experimental conditions, and ≈ 300 keV
for the 11.5-MeV deuteron and 20-MeV proton beams in
the (d, p) and (p, d) channels, respectively (due to the
large thickness of the 112Sn target). The best resolution
of ≈ 100 keV was achieved in the experiments using 16-
MeV protons with SiRi. Besides the reaction channel, the
beam energy, and intrinsic resolution of the E−∆E mod-
ules, the excitation-energy resolution was also affected by
the beam-energy resolution (the beam-spot size varied
significantly in the experiments).

All the (3He,3He′γ) and (3He,αγ) experiments on
117,119,122Sn as well as the (p, p′γ), (p, dγ), and (d, pγ) ex-
periments on 112Sn were performed with the detector ar-
ray CACTUS [55]. CACTUS consisted of 28 spherically
distributed cylindrical 5′′× 5′′ NaI(Tl) detectors, where
each detector was additionally collimated with conical Pb
collimators. Using a 60Co source, the total efficiency of
CACTUS and its energy resolution at Eγ = 1332 keV
were estimated to be 15.2(1)% and ≈ 6.8%, respectively.

In 2019, the CACTUS detectors were replaced by OS-
CAR (Oslo SCintillator ARray), a γ-ray detector array
of 30 cylindrical large-volume 3.5′′× 8′′ LaBr3(Ce) crys-
tals [56, 57]. OSCAR provides a significantly improved
energy resolution and excellent timing properties for se-
lecting particle-γ events. The total efficiency in the most
recent experiments is ≈ 40%, with the energy resolution
of ≈ 2.2% at Eγ = 1332 keV.

In the period between 2003 and 2022, 117Sn and 119Sn
were measured twice; first, with the (3He,3He′γ) reaction
using the old setup configuration (standard Si telescopes
+ CACTUS), and later with SiRi and OSCAR using the
(p, p′γ) reactions. Due to a fairly good agreement be-
tween the new and the old data sets, and considering



4

the improved energy resolution and timing with the new
setup, we choose to show only the (p, p′γ) data for 117Sn
and 119Sn in the present work. The data processing be-
fore the application of the Oslo method for these two
experiments is identical to the one described in detail for
120,124Sn in Ref. [36]. All relevant parameters for the
above-mentioned experiments are outlined in Table I.

Using the known kinematics of the studied reactions,
the energy deposited in the particle Si detectors was con-
verted into the initial excitation energy Ei of the resid-
ual nucleus. By applying proper gates on the outgoing
particle species and the time spectra, the background-
subtracted particle-γ coincidence events were extracted.
A more in-depth discussion of the experimental details,
calibration, and event selection in each case is presented
in Refs. [37] for 111−113Sn, Refs. [58, 59] for 116Sn,
Ref. [60] for 118Sn, Ref. [36] for 120,124Sn, and Ref. [34] for
121,122Sn. Calibrations of the excitation and γ-ray ener-
gies for the 121,122Sn data sets were revised and improved
compared to the earlier published results [34].

In the next step, the recorded γ-ray spectra are cor-
rected using the detector response functions of either
CACTUS or OSCAR to obtain the unfolded spectra. For
all cases, the unfolding was done with the same iterative
technique described in detail in Ref. [61]. The method
is based on a consecutive correction of the trial function
for the unfolded spectra, until they match with the orig-
inal raw spectra within the experimental uncertainties.
To avoid introducing any strong artificial fluctuations
while still preserving the original statistical fluctuations,
the Compton subtraction technique was also applied in
each case. The details of this procedure are presented in
Refs. [61, 62].

The last step prior to the extraction of the NLD and
GSF is to determine the distribution of first-generation
γ rays for each excitation-energy bin, i.e., γ rays stem-
ming directly from a nucleus decaying with an initial ex-
citation energy Ei. The distribution P (Eγ , Ei) of such
first-generation – or primary – γ rays, is proportional to
the probability of γ decay from initial excitation energies
Ei to the final levels Ef = Ei − Eγ , i.e., to the corre-
sponding average branching ratios of the levels within the
excitation-energy bin Ei. An important assumption for
the extraction of the primary γ rays is that the decay pat-
tern of the excited levels within the Ei bin is independent
of the way they were populated (either directly through
the reactions or via the decay of higher-lying states).
Then, the γ cascades at each initial excitation-energy
bin Ei are expected to contain the same transitions as
those in the bins below, except for the primary γ transi-
tions. By use of the iterative first-generation method (see
Ref. [63] for details), the non-primary γ transitions are
successively removed from each initial excitation-energy
bin below the neutron threshold. The above-mentioned
assumption is expected to hold for relatively high exci-
tation energies where the spin distribution is approxi-
mately equal for neighboring Ei bins. This imposes a
lower limit on the initial excitation energy for the fur-
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FIG. 1. The first-generation matrix for 117Sn extracted in
the (p, p′γ) experiment. The yellow dashed line corresponds
to the neutron separation energy, while the blue solid lines
confine the area used for the Oslo method. The bin size is 64
keV×64 keV.

ther data analysis with the Oslo method, while an upper
limit is set by the neutron separation energy Sn in each
case. In addition, an over-subtraction of γ transitions at
low γ energies seen in all data sets limits γ-ray energy to
Eγ ≳ 1−2 MeV. A thorough discussion of the application
of the first-generation method and its limitations is pre-
sented in Ref. [62]. For the most recent experiments on
117Sn and 119Sn, these limits were set to 3.4 ≲ Ei ≲ 6.9
MeV, Eγ ≳ 1.4 MeV and 4.0 ≲ Ei ≲ 6.5 MeV, Eγ ≳ 1.8
MeV, respectively. Discussions of the chosen Ei and Eγ

limits for the subsequent Oslo method analysis of other
Sn isotopes can be found in Refs. [34, 36, 37, 58–60].

B. Extraction of NLDs and GSFs

As mentioned in the previous section, the first-
generation matrix reflects a distribution of decay prob-
abilities from the levels within each initial excitation-
energy bin Ei to the final levels Ef via γ transitions with
energies Eγ = Ei − Ef . The Oslo method exploits this
fact to perform a decomposition of the primary matrix
P (Eγ , Ei) into the γ transmission coefficient Ti→f and
the density of final levels ρf :

P (Eγ , Ei) ∝ Ti→f · ρf . (1)

This decomposition is supported by both Fermi’s
golden rule and the Hauser-Feshbach theory of statisti-
cal reactions (see Ref. [64] and Ref. [65], respectively, for
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detailed derivations). Being valid only for the compound
excited states, this relation is expected to hold well for
the chosen excitation-energy ranges.

The transmission coefficient in Eq. (1) depends on both
the initial and the final excitation energy, making it prac-
tically impossible to disentangle Ti→f and ρf in the fac-
torized first-generation matrix. For this reason, the gen-
eralized Brink-Axel hypothesis [66, 67] needs to be em-
ployed in the Oslo method to reduce the dependence of
the transmission coefficient on the initial and final excita-
tion energy to a dependence on Eγ only (Ti→f → T (Eγ)).
In its most commonly used, generalized form, this hy-
pothesis states that the GSF (and, thus, the γ trans-
mission coefficient proportional to it) is independent of
excitation energy, spin, and parity of the initial and final
levels. Even though the Brink-Axel hypothesis was orig-
inally formulated for the IVGDR region, it is commonly
applied also in the PDR region at lower excitation ener-
gies, as it significantly simplifies any calculations involv-
ing photon absorption and emission [68]. Even though
the discussion around the applicability of the Brink-Axel
hypothesis in this region involves cases where it holds
well (e.g. [69, 70]) as well as cases where it seems ques-
tionable (e.g., Refs. [71, 72]), it has been shown that for
the Oslo method analysis of nuclei in different mass re-
gions (including Sn isotopes) it is a reasonable assump-
tion [35, 36, 62, 69, 73].

To extract the NLD ρf = ρ(Ei − Eγ) and the γ
transmission coefficient T (Eγ), the first-generation ma-
trix P (Eγ , Ei) is approximated in an iterative χ2-fit pro-
cedure with the following “theoretical” matrix [74]:

Pth(Eγ , Ei) =
T (Eγ)ρ(Ei − Eγ)∑Ei

Eγ=Emin
γ

T (Eγ)ρ(Ei − Eγ)
. (2)

Prior to this step, the first-generation spectra are nor-
malized to unity for each Ei bin. The details of this
procedure and the propagation of statistical, unfolding,
and first-generation method uncertainties are outlined
in Ref. [74]. It has been repeatedly shown to converge
well in each case [37, 75, 76], and the resulting matrix
Pth(Eγ , Ei) reproduces the experimental spectrum quite
well for each excitation-energy bin within the chosen lim-
its.

The obtained functions ρ(Ei − Eγ) and T (Eγ) of
Pth(Eγ , Ei) provide the best fit of the experimental spec-
tra and represent the solutions for the experimental NLD
and the γ transmission coefficient. However, as shown in
Ref. [74], although the variation of individual data points
with respect to their neighboring points is uniquely de-
termined by the fit, the solutions can be modified with
arbitrary chosen scaling parameters A and B and a slope
parameter α, providing an equally good fit to the exper-
imental primary spectra through the following transfor-
mations:

ρ̃(Ei − Eγ) =Aρ(Ei − Eγ) exp[α(Ei − Eγ)],

T̃ (Eγ) =BT (Eγ) exp[αEγ ].
(3)

To extract the “true” physical NLD and the γ trans-
mission coefficient, the parameters A, B, and α must be
constrained with external experimental data by following
normalization procedures as presented in the two subse-
quent sections.

To ensure a fully consistent normalization procedure,
all the Sn nuclei considered here were revisited and renor-
malized using the most updated experimental informa-
tion and the same model approaches for the normaliza-
tion. The main objective of this part of the analysis
was not only to make use of the updated external data,
but also to apply a consistent model approach for the
spin distribution, supported by the most recent exper-
imental and theoretical works [77, 78]. As was shown
in the earlier publications, the latter yields a reasonable
agreement of the Oslo method NLDs and GSFs with
other experimental results [35, 37]. Also, a compari-
son with the inelastic relativistic proton scattering data
[(p,p′) for short] [33] providing the GSFs for the even-
even 112,114,116,118,120,124Sn isotopes serves as a bench-
mark for the slope parameter α shared by the NLD and
GSF as well as the absolute normalization of the strength.

1. Normalization of the NLDs

To determine the slope α and the absolute value A,
the NLD solutions from Eq. (3) are anchored to known
low-lying excited states and the NLD at the neutron sep-
aration energy ρ(Sn). We follow the same normaliza-
tion procedure as presented in the latest publication on
111−113Sn [37]. The most recent compilation of discrete
states [79] was used for all isotopes. To estimate the total
NLD at the neutron separation energy, ρ(Sn), the average
neutron-resonance spacing D0 (s-wave neutrons) or D1

(p-wave neutrons) from neutron resonance experiments
can be used. For seven out of eleven studied isotopes,
namely 113,116−121Sn, such data on neutron resonances
are available [80]. For s-wave resonances, the D0 value
for a target with non-zero spin can be written as:

1

D0
= ρ(Sn, Jt + 1/2, πt) + ρ(Sn, Jt − 1/2, πt), (4)

where Jt and πt are the ground-state spin and parity
of the target (sample) in the neutron resonance exper-
iments, respectively. A similar relation for a zero-spin
target includes only the first term of this equation. The
parity dependence in Eq. (4) is further reduced to the
factor of 1/2 applied to the energy- and spin-dependent
level densities due to the assumption that levels with pos-
itive and negative parities contribute equally to the NLD
in the vicinity of Sn [62, 74]. This assumption was shown
to hold well for this excitation-energy region [60, 62]. To
calculate the total NLD ρ(Sn), we exploit that the par-
tial NLD for a given spin J can be found through the
relation ρ(Ex, J) = g(Ex, J)ρ(Ex), where g(Ex, J) is the
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spin distribution from Refs. [81, 82]:

g(Ex, J) ≃
2J + 1

2σ2(Ex)
exp

[
− (J + 1/2)2

2σ2(Ex)

]
. (5)

Here, σ(Ex) is the excitation-energy dependent spin-
cutoff parameter. Following the same line of arguments
as in Ref. [36], we choose the form of σ(Ex) provided by
Ref. [82]:

σ2(Sn) = 0.0888a

√
Sn − E1

a
A2/3, (6)

with the level density and back-shift parameters a
and E1 obtained from the global parameterization of
Ref. [83]. In line with the previously published results
on 111−113,116,120,124Sn [35, 37], the slopes of the NLDs
and, therefore, the slopes of the GSFs obtained with this
spin-cutoff parameter are in good agreement with the
Coulomb excitation data for all isotopes [33]. Moreover,
recent calculations by Hilaire et al. [78] within the quasi-
particle random-phase approximation plus boson expan-
sion reveal a smaller spin cutoff parameter than obtained,
e.g., in the rigid-body moment of inertia approximation
[83], which further supports the use of σ(Ex) in Eq. (6).

Combining Eq. (4) and Eq. (5), ρ(Sn) takes the follow-
ing form:

ρ(Sn) =
2σ2

D0

1

(Jt + 1) exp
(
− (Jt+1)2

2σ2

)
+ Jt exp

(
− J2

t

2σ2

) .

(7)
For 111,112,122,124Sn no neutron resonance data are

available, and the ρ(Sn) values were estimated from sys-
tematics in the same way as it was done in Ref. [37].
The slopes of the NLDs in 120,124Sn were additionally
constrained with the shape method [84] as described in
Refs. [35, 36].

The low Eγ boundary employed in the Oslo method
analysis limits the experimental NLDs to energies ≈ 1−2
MeV below the neutron threshold. To be able to connect
the experimental NLD fixed to low-lying discrete states
and the ρ(Sn) data point, the experimental data were
extrapolated with the constant-temperature model [81,
82, 85]:

ρCT (Ex) =
1

TCT
exp

(
Ex − E0

TCT

)
, (8)

with the temperature T and excitation-energy shift E0

used as free fit parameters. As discussed earlier in
Ref. [86], as well as in Refs. [36, 37] specifically for the
Sn isotopes, this model provides the best χ2 fit to the
experimental data above ≈ 3 MeV in the odd nuclei and
≈ 4 MeV in the even-even nuclei.

The uncertainty bands for the experimental NLDs
comprise the statistical errors and systematic uncertain-
ties due to the unfolding and the first-generation method,
as outlined in Ref. [74]. Analogous to the analysis of

111−113Sn [37], the experimental errors of D0 were prop-
agated together with the assumed additional 10% errors
for the σ(Sn) parameter and added to the total uncer-
tainty band in each case as described in Refs. [76, 87].
Following Ref. [37], for the cases where the normaliza-
tion input parameters are obtained from the systemat-
ics, a symmetric 30% error for the extracted D0 param-
eters was assumed and propagated in the total uncer-
tainty bands. The choices of the errors for σ(Sn) and
D0 extracted from the systematics are supported in all
the studied cases by a good agreement of the slopes of
the Oslo method GSFs with those extracted from the
Coulomb excitation data [33]. All input values used for
the normalization of the NLDs for 111−113,116−122,124Sn
are provided in Table II.

2. Normalization of the GSFs

The only remaining normalization parameter to be de-
termined after the NLD normalization is the scaling B
of the experimental GSF. It can be obtained from the
average total radiative width ⟨Γγ⟩ extracted in neutron-
resonance studies [80]. In general, the average total ra-
diative width for excited states with spin J and parity π
at excitation energy Ex can be written as [88]:

⟨Γ(Ex, J, π)⟩ =
1

2πρ(Ex, J, π)

∑

XL

∑

Jf ,πf

∫ Ex

Eγ=0

dEγ×

× TXL(Eγ)ρ(Ex − Eγ , Jf , πf ),

(9)

where the γ-ray transmission coefficient TXL(Eγ) gov-
erns γ decays of these states to final states with spins and
parities J

πf

f with photons of type X (E and M for the

electric and magnetic character, respectively) and multi-
polarity L. Further, the transmission coefficient is linked
to the GSF, fXL(Eγ), by the relation [88]

TXL(Eγ) = 2πE2L+1
γ fXL(Eγ). (10)

Within the limits of excitation and γ-ray energies chosen
for the Oslo method analysis, the γ decay is expected
to be dominated by dipole transitions of mixed E1+M1
nature (see e.g. [88, 89]). Specifically, for the case of
s-wave neutron capture on a target nucleus with ground-
state spin-parity Jπt

t (where Jt ̸= 0), Eq. (9) takes the
following form:

⟨Γγ⟩ =⟨Γ(Sn, Jt ± 1/2, πt)⟩ =
1

2ρ(Sn, Jt ± 1/2, πt)
×

×
∫ Sn

Eγ=0

dEγE
3
γf(Eγ)ρ(Sn − Eγ)×

×
1∑

J=−1

g(Sn − Eγ , Jt ± 1/2 + J) (11)

with 1/ρ(Sn, Jt ± 1/2, πt) = D0 and g(Ex, J) is given
by Eq. (5). By analogy with Refs. [35–37], the
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TABLE II. Parameters used for the normalization of the NLDs and GSFs for 111−113,116−122,124Sn.

Nucleus Sn D0 a E1 Ed σd σ(Sn) ρ(Sn) T E0 ⟨Γγ⟩
(MeV) (eV) (MeV−1) (MeV) (MeV) (105 MeV −1) (MeV) (MeV) (meV)

111Sn 8.169 120(36)a 12.05 -0.29 1.08(7) 2.7(4) 4.6(5) 3.54(127)a 0.67+0.03
−0.02 -0.06+0.04

−0.11 76(18)a

112Sn 10.788 3(1)a 12.53 1.12 2.83(4) 2.8(4) 4.8(5) 24.61(80)a 0.71+0.02
−0.02 0.66+0.09

−0.08 87(34)b

113Sn 7.744 172(10) 12.77 -0.27 1.88(2) 3.5(7) 4.6(5) 2.50(51) 0.63+0.01
−0.01 0.20+0.04

−0.04 73(8)
116Sn 9.563 55(5) 13.66 1.13 2.27(6) 2.7(5) 4.8(5) 4.28(91) 0.79+0.02

−0.02 -0.50+0.09
−0.04 118(10)

117Sn 6.943 507(60) 13.62 -0.21 1.11(11) 2.5(2) 4.6(5) 0.85(19) 0.69+0.02
−0.02 -0.57+0.07

−0.05 53(3)
118Sn 9.326 61(7) 13.94 1.14 2.48(4) 2.7(5) 4.8(5) 3.89(87) 0.76+0.02

−0.02 -0.18+0.08
−0.13 117(20)

119Sn 6.483 700(100) 13.80 -0.30 1.32(2) 3.7(10) 4.6(5) 0.61(15) 0.69+0.02
−0.02 -0.80+0.05

−0.12 45(7)
120Sn 9.105 95(14) 13.92 1.12 2.53(4) 3.7(5) 4.8(5) 2.49(60) 0.75+0.02

−0.02 0.07+0.10
−0.05 121(25)c

121Sn 6.170 1485(130) 13.63 -0.39 1.26(5) 4.0(8) 4.5(5) 0.28(6) 0.70+0.02
−0.02 -0.70+0.10

−0.09 36(3)
122Sn 8.815 95(28)a 13.58 1.07 2.75(2) 4.2(8) 4.7(5) 1.31(46)a 0.76+0.03

−0.04 0.07+0.19
−0.06 87(19)a

124Sn 8.489 96(27)a 12.92 1.03 2.77(3) 3.3(5) 4.7(5) 0.87(26)a 0.79+0.02
−0.04 -0.31+0.16

−0.09 82(19)a

a From systematics.
b Modified (see Ref. [37]).
c Modified (see Ref. [36]).

excitation-energy dependence of the spin-cutoff param-
eter is adopted from Ref. [68]:

σ2(Ex) = σ2
d +

Ex − Ed

Sn − Ed
[σ2(Sn)− σ2

d], (12)

which is additionally supported by microscopic calcula-
tions (see e.g. [90]). Here, σd is the spin-cutoff deter-
mined at excitation energy Ed from low-lying discrete
states with definite spin and parity assignment, within
the energy range where the level scheme can be consid-
ered complete.

The average total radiative widths are available from
neutron resonance experiments for most of the studied
nuclei. For the lightest 111,112Sn isotopes, the values of
⟨Γγ⟩ and the corresponding uncertainties were extracted
from the systematics in the same way as in Ref. [37]. For
124Sn and 122Sn, the ⟨Γγ⟩ values and their uncertainties
were extracted from the same systematics according to
the procedure described in Refs. [35, 36].

The total experimental uncertainty bands for the GSFs
in all the studied Sn isotopes include the statistical er-
rors, systematic uncertainties of the unfolding and the
first-generation method combined with the propagated
uncertainties due to the normalization input parameters
D0, σ(Sn), σd, Ed, and ⟨Γγ⟩. All of the discussed param-
eters and uncertainties are presented in Table II.

III. EXPERIMENTAL RESULTS

A. Nuclear level densities of Sn isotopes

The experimental NLDs of 111−113,116−122,124Sn ex-
tracted with the Oslo method are shown in Fig. 2
together with the corresponding constant-temperature

model fits and the ρ(Sn) values. In all cases, the low-lying
discrete states are well reproduced by the experimental
results up to ≈ 2.5−3.5 MeV in even-even and ≈ 1.5−2.5
MeV in even-odd isotopes. Above these energies, the
level schemes can no longer be considered complete, fail-
ing to follow the exponential increase observed in the
Oslo data. For the experiments performed with the old-
est configuration of the setup (116,118Sn) the excitation-
energy resolution is noticeably worse than in the most
recent experiments with SiRi, and the ground and the
first excited states are seen as broad bumps rather than
well defined peaks as in, e.g., 120,124Sn. The ground state
is somewhat underestimated in most of the cases as com-
pared to the first excited state(s), which appears to be
a commonly observed feature in OCL experiments (see
e.g. the case of 46Ti [54]). This might be linked to the
reaction mechanism favoring slightly higher spins of pop-
ulated states [37] or the structure of the states involved,
hindering direct transitions from the quasi-continuum to
the ground state.This issue will be addressed in more de-
tail in a forthcoming publication on 64Zn.

At higher excitation energies, all NLDs are well
described by the constant-temperature model. Even
though the data are available only up to excitation en-
ergies ≈ 1 − 2 MeV below Sn in each case due to the
limitations of the first-generation method (see Secs. IIA
and IIB 1), this trend may be assumed to continue up to
the neutron threshold. The new (p, p′γ) data on 117Sn
perfectly reproduce the earlier published result using a
3He beam [58], while the new (p, p′γ) data on 119Sn do
not seem to reveal the same step-like structures below
≈ 4 MeV as seen in the previous experiment [60]. The
present result is more consistent with the NLDs of the
neighboring 117,121Sn and reveals only one clear step-
like structure in the vicinity of ≈ 2.6 MeV. This fea-
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FIG. 2. Experimental NLDs for 111−113,116−122,124Sn obtained with the Oslo method shown together with the ρ(Sn) values and
the constant-temperature fits. The orange band indicates the NLD of for 124Sn from the fluctuation analysis of the Coulomb
excitation data [33].

ture is also seen in 117Sn (present work and Ref. [58])
and 113Sn (Ref. [37]) and might be potentially linked to
the first broken neutron pair. The features reported in
the older experiment should be treated with care, consid-
ering the poor statistics of the 119Sn(3He,αγ)118Sn and
119Sn(3He,3He′γ)119Sn experiments.

A comparison of the NLDs for 111,113Sn with the NLD
for 115Sn from neutron-evaporation experiments [91] has
already been discussed in Ref. [37]. The density of
1− states for 124Sn from a fluctuation analysis of the
Coulomb excitation data on 124Sn [33] was compared to
the corresponding density from the Oslo data in Ref. [36].
In contrast to the present work, the latter publication
presents the data normalized using a spin-cutoff param-
eter based on the rigid-body moment of inertia [83], pro-
viding slightly steeper slopes of the NLDs (lower temper-
atures). When applied to all the studied isotopes, the

slopes of the corresponding GSFs appear to be steeper
than those from the Coulomb excitation data, unless cor-
rected with the shape method [36, 75]. Due to difficulties
with the application of the shape method (such as insuf-
ficient statistics to provide reliable results at relatively
high γ-ray energies), a consistent correction of the NLD
slopes in the studied Sn nuclei is complicated. The spin-
cutoff parameter from Eq. (6) was found to provide the
most consistent description of the NLDs and GSFs in
all isotopes, supported by the good agreement with the
Coulomb excitation data.

It is important to check if the agreement of the
fluctuation-analysis result and the Oslo data for 124Sn
presented in Ref. [37] still holds for the new normaliza-
tion approach. The spin distribution from Eq. (9) was
applied to the density of 1− states obtained with the
fluctuation analysis, assuming an equal contribution of
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FIG. 3. Experimental NLDs for 111−113,116−122,124Sn ob-
tained with the Oslo method. The uncertainty bands are
omitted for enhancing the clarity of the figure.

states with negative and positive parities above the lower
limit of the analysis at Ex ≈ 6.5 MeV. The resulting to-
tal NLD for the 124Sn isotope is shown together with
the Oslo data in Fig. 2(k). This comparison of the total
NLDs is almost identical to that for the 1− states from
Ref. [36]. Indeed, the rigid-body spin-cutoff parameter
provides a broader spin distribution, predicting slightly
steeper slopes of the total NLDs and, accordingly, smaller
fractions of 1− states. These two effects compensate each
other as seen in the analogous figure of Ref. [36]. With
the normalization approach of the present work, the to-
tal NLD obtained with the Oslo data lies closer to the
bottom of the error band of the fluctuation-analysis data,
staying within the band together with the ρ(Sn) value.
Hence, when applying the normalization procedure from
Sec. II B 1 for a consistent description of all isotopes in
the present work, the main conclusions of Ref. [36] still
hold.

The NLDs of all the studied isotopes are shown to-
gether in Fig. 3. With the same approach to the normal-
ization, the slopes of all NLDs appear to be very similar,
corresponding to temperatures of T ≈ 0.6−0.8 MeV. For
the even-even nuclei, the NLDs show a good agreement in
absolute values, well within the uncertainty bands from
≈ 2 MeV up to the neutron separation energies. This is
expected for the even-even Sn isotopes considering their
similar structural properties. A much better agreement
between the NLDs of the even-odd nuclei from ≈ 1.5
MeV to ≈ 4 MeV is achieved with the present consistent
normalization approach, in contrast to the comparison
with the earlier published data presented in Ref. [36]. As
expected, the level densities of the odd nuclei are system-

atically higher than those of the even-even ones due to the
unpaired neutron. The NLDs of the lightest 112Sn and
111,113Sn are slightly lower when compared to the heav-
ier even-even and even-odd isotopes, respectively. This is
similar to a pattern observed for the lightest Ni isotopes
in Ref. [92]. However, the NLDs of the heavier Sn iso-
topes display a smaller spread than the heaviest studied
Ni isotopes in [92], and the trend of the NLD increasing
with neutron number as discussed in [92] is not apparent
in the Sn data.

B. Experimental low-lying electric dipole strength
in Sn isotopes and its evolution

The GSFs normalized as described in section II B 2 are
shown together with the (p, p′) and (γ, n) data in Fig. 4.
The Coulomb excitation strengths are available only for
the even-even 112,114,116,118,120,124Sn isotopes, while pho-
toabsorption data from experiments performed in Saclay
[93], Livermore [94], and Moscow [95] are also available
for the even-odd stable Sn targets. The photoabsorption
cross sections provided by these experiments cover a wide
range above the neutron threshold. Overall, these data
agree quite well with the (p, p′) data in the vicinity of the
IVGDR peak at ≈ 15 MeV (for a more detailed discus-
sion see Ref. [33]). The largest deviations of the (γ, n)
data from each other and the (p, p′) experiments occur in
the vicinity of the neutron threshold, which makes a con-
sistent comparison with the Oslo data difficult. Because
the Coulomb excitation strengths are available for lower
energies (down to ≈ 6 MeV), there is a sufficient overlap
with the Oslo method GSFs in most cases. Therefore, we
put greater emphasis on the (p, p′) data when compar-
ing with the Oslo method results than the (γ, n) data.
In contrast to the above-mentioned (γ, n) experiments
with quite large uncertainties close to the Sn energy, the
most recent (γ, n) experiments on 116−120,122,124Sn using
quasi-monoenergetic photon beams from laser Compton
backscattering demonstrate a very good agreement with
the (p, p′) strengths where the data overlap (≈ 6 − 12
MeV).
In Fig. 4(a,b,c), the extracted GSFs for 112−113Sn

are shown together with the (p, p′) strength of 112Sn.
In all three cases, the strengths agree well within the
uncertainty bands as previously discussed in Ref. [37].
The (p, p′) strength of 114Sn is in good agreement in
slope and absolute value with both the Oslo method
GSF of 113Sn and the (p, p′) strength of 112Sn. This is
also the case for 117Sn and 119Sn, shown together with
the (p, p′) strengths of the closest neighboring even-even
116,118Sn and 118,120Sn, respectively. The Oslo strengths
of 116,120,124Sn agree exceptionally well within the un-
certainty bands with the corresponding (p, p′) strengths,
as reported in Ref. [35]. Due to some minor updates in
the response functions used for the unfolding since the
time of the latter publication, the slope of the 124Sn is
slightly steeper than the one reported in [35], while still
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FIG. 4. Experimental GSFs of 111Sn (a), 112Sn (b), 113Sn (c), 116Sn (d), 117Sn (e), 118Sn (f), 119Sn (g), 120Sn (h), 121Sn (i),
122Sn (j), and 124Sn (k) shown together with the (p, p′) data from Ref. [33] (Bass2020) and the (γ, n) experimental data by
Varlamov et al. [95] (Var2009), Fultz et al. [93] (Ful1969), Leprêtre et al. [94] (Lep1974), Utsunomiya et al. [96, 97] (Uts2009
and Uts2011), and Govaert et al. [28] (Gov1998). The total fits of the experimental data are shown as solid magenta lines and
the fits of the IVGDR as solid blue lines. The low-lying E1 components (LEDR), obtained from fits with Eq. (17), are shown
as shaded light-blue areas. The M1 data from the Coulomb excitation experiment [33] are shown for 112,116,118,120,124Sn with
corresponding Lorentzian fits (dashed red lines).
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being well within both systematic and statistical uncer-
tainty bands of the earlier published strength. Thus, the
conclusions of [35] remain unchanged with the updated
version of the GSF for 124Sn.

Above ≈ 6 MeV, the statistics of the older experiment
on 118Sn are insufficient to draw any reliable conclusions
on the low-lying dipole strength at these energies based
on the Oslo data alone. For this reason, the Oslo method
GSF of 118Sn is shown only up to ≈ 6 MeV with the
(p, p′) strength being complementary at higher energies.
The Oslo strength in this case agrees fairly well with the
strengths of the neighboring even-even isotopes. Simi-
larly, the 122Sn strength is shown up to ≈ 8 MeV, being
in good agreement with the (p, p′) GSFs of 120Sn and
124Sn. No experimental data on 121Sn above the neutron
threshold are available. Assuming a smooth evolution of
the IVGDR strength with increasing neutron number as
demonstrated by the Coulomb excitation results and the
(γ, n) data, the Oslo strength was compared with the
(p, p′) GSF of the closest even-even 120Sn in Fig. 4(i).
Similarly to 118Sn, both GSFs are in fair agreement in
absolute values. Overall, the Oslo data reveal a smooth
evolution of the low-lying dipole strength below the neu-
tron threshold, with neighboring isotopes having similar
shapes of the GSF, consistent with the observed strength
in the IVGDR region.

C. Empirical model fits to the data

To address the evolution of the low-lying E1 strength
with neutron number, it should be consistently extracted
from the total dipole response in the studied nuclei. As
mentioned earlier, the Oslo method does not distinguish
between E1 and M1 components. Therefore, other ex-
perimental constraints on the M1 spin-flip resonance are
highly desired. In the case of the Sn isotopes, the exper-
imental magnetic dipole strengths are available from the
multipole decomposition analysis of the Coulomb excita-
tion data for even-even Sn isotopes [33]. These data pro-
vide sufficient information to extract systematics, which
allow us to estimate the M1 component in the neighbor-
ing nuclei. To determine the contribution of the LEDR
(or PDR in other works, e.g. [34]), the low-energy tail
of the IVGDR has to be subtracted from the remaining
total E1 response. Unfortunately, there is no common
approach to predict the PDR strength distribution in nu-
clei, nor any consensus on how to separate it from the
IVGDR strength. The experimental strength distribu-
tions obtained with complementary probes for the same
nucleus, albeit being insightful from a nuclear-structure
perspective, do not suggest any consistent, quantitative
answer to this problem. One of the frequently adopted
approaches to extract the LEDR is to assume a model for
the IVGDR and estimate the remaining LEDR by sub-
tracting the tail of the modeled IVGDR from the total
E1 response. Alternatively, a model is assumed to repro-
duce the general shape of the LEDR yielding the best fit

to the experimental data. This technique is often used
for the interpretation of experimental strength distribu-
tions in neutron-rich nuclei [10, 98] or analyses featur-
ing Oslo-type experiments (see e.g. [75, 76]). Further-
more, the total theoretical or experimental E1 strength
can be summed up to a chosen threshold, or within a
certain energy range with no assumptions made regard-
ing the tail of the IVGDR and its contribution (see, e.g.,
[5, 28, 30, 32]).
In this section, we exploit the first of the two above-

mentioned methods, with as few assumptions as possible,
to quantify the evolution of the LEDR in the Sn isotopes
from the Oslo results and Coulomb excitation data within
the ≃ 2 − 18 MeV γ energy range. In accordance with
Ref. [37], we choose the enhanced Generalized Lorentzian
model (GLO) to describe the IVGDR data [68]:

fE1(Eγ) =
1

3π2ℏ2c2
σE1ΓE1×

×
[
Eγ

ΓKMF(Eγ , Tf )

(E2
γ − E2

E1)
2 + E2

γΓ
2
KMF(Eγ , Tf )

+

+ 0.7
ΓKMF(Eγ = 0, Tf )

E3
E1

]
,

(13)

with EE1, ΓE1, σE1 being the IVGDR centroid energy,
width, and cross section, respectively. The ΓKMF width
corresponds to a temperature-dependent width in the
Kadmenskii-Markushev-Furman model [99]:

ΓKMF(Eγ , Tf ) =
ΓE1

E2
E1

(E2
γ + 4π2T 2

f ), (14)

where Tf is the temperature of the final states.
The standard Lorentzian function, commonly used to

fit the photo-neutron cross section above the neutron
threshold (see e.g. [32]), is known to overshoot the low-
energy flank of the strength and is, therefore, excluded
from consideration here. Among other phenomenolog-
ical models, the Generalized Fermi Liquid model by
Mughabghab [100] and the Hybrid model by Goriely [101]
are either able to capture the strength distribution at
low energies (≈ 2 − 4 MeV) and fail to follow the left
flank of the IVGDR or vice versa, being more appropri-
ate in cases with a less steep GSF below Sn (e.g. [76]).
The Simplified Modified Lorentzian function (SMLO)
[102] results in a milder overshoot below the threshold
energy as compared to the standard Lorentzian, while
still failing to reproduce the low-energy tail of the Oslo
data. Microscopic strength distributions provided by
calculations within Skyrme-Hartree-Fock with Bardeen-
Cooper-Schrieffer pairing [103], Skyrme-Hartree-Fock-
Bogoliubov [44], its temperature-dependent extension
[104], and Gogny-Hartree-Fock-Bogoliubov [105] with the
quasiparticle random-phase approximation (QRPA) re-
quire certain modifications (scaling of the absolute value
or width, and often an energy shift) to be able to re-
produce the IVGDR part. Even with these modifica-
tions, the microscopic calculations still can not be used
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TABLE III. Parameters used for the description of the IVGDR and the M1 strength in the studied Sn isotopes.

Nucl. EE1 ΓE1 σE1 Tf EM1 ΓM1 σM1 Cup ηup
(MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (10−8 MeV−3) (MeV−1)

111Sn 16.15(9) 5.49(31) 264.5(93) 0.67(4) 11.22(24)a 5.15(39)a 1.73(15)a – –
112Sn 16.14(9) 5.46(31) 265.9(95) 0.70(5) 10.45(43) 4.77(53) 1.77(21) – –
113Sn 16.14(6) 5.25(23) 274.4(74) 0.75(3) 10.99(20)a 4.72(32)a 1.84(11)a – –
116Sn 16.09(10) 6.03(35) 251.3(91) 0.43(2) 10.79(41) 6.28(96) 1.70(13) – –
117Sn 15.98(7) 5.84(26) 257.1(74) 0.38(6) 10.54(12)a 3.86(20)a 2.05(7)a 0.38(10) 0.59(9)
118Sn 15.78(10) 5.50(47) 270.0(153) 0.35(7) 10.26(19) 3.21(34) 2.90(24) 1.84(56) 0.63(8)
119Sn 15.82(6) 5.77(22) 264.0(69) 0.45(9) 10.31(9)a 3.44(16)a 2.16(8)a 1.29(15) 1.20(31)
120Sn 15.82(9) 5.79(39) 262.8(111) 0.48(14) 10.45(18) 3.13(33) 1.97(16) 0.45(7) 0.27(8)
121Sn 15.72(6) 5.86(24) 255.3(66) 0.22(12) 10.08(9)a 3.01(14)a 2.27(11)a 1.27(63) 0.58(22)
122Sn 15.67(3) 5.85(11) 258.7(24) 0.52(3) 9.97(10)a 2.79(15)a 2.32(13)a – –
124Sn 15.59(7) 5.37(28) 266.8(90) 0.49(4) 9.66(14) 2.42(20) 2.61(16) 3.52(115) 1.67(40)

a From systematics.

to extract the LEDR consistently in all the studied Sn
isotopes due to an overshoot at low γ energies in some
cases. However, the GLO model is sufficiently flexible
within a relatively wide energy range to obtain simulta-
neously a satisfactory fit of the IVGDR peak and the tail
of the strength at ≈ 2− 4 MeV.

For a consistent modeling of the M1 part in all Sn
isotopes, we assume a simple Lorentzian shape of the
spin-flip resonance:

fM1(Eγ) =
1

3π2ℏ2c2
σM1Γ

2
M1Eγ

(E2
γ − E2

M1)
2 + E2

γΓ
2
M1

(15)

with centroid energy EM1, maximum cross section σM1,
and width ΓM1. The experimental M1 strengths from
the (p, p′) experiments on even-even Sn isotopes are
quite fragmented, and the Lorentzian function merely
reproduces the overall shapes and total integrated M1
strengths. As the contribution of this component to the
total GSF is less than 10% at the maximum, the details
of this fit are of little influence on the final results.

The LEDR component was parameterized with Gaus-
sian peaks:

f lowE1 (Eγ) = C low
E1

1√
2πσlow

E1

exp

[
− (Eγ − Elow

E1 )
2

2(σlow
E1 )

2

]
, (16)

with centroid Elow
E1 , width σ

low
E1 , and absolute value C low

E1 .
The choice of this fit function is not immediately obvious,
and for more moderate slopes of the GSFs, the LEDR is
also well reproduced by one or a combination of several
Lorentzian peaks [75]. For the Sn isotopes having steep
slopes at Eγ ≈ 4 − 6 MeV and relatively flat strength
distributions at lower energies, the best fits to the exper-
imental data in the energy range up to Sn are achieved
using Gaussian peaks. The Gaussian model was also ap-
plied to reproduce the LEDR in very neutron-rich nuclei
[10, 98].

To account for the flat low-energy tails of the GSF, we
follow the prescription of Ref. [106] suggesting an expo-
nential form of the upbend feature based on the compari-
son of shell-model calculations and experimental data on
Zr and Mo isotopes:

fup(Eγ) = Cup exp(−ηupEγ), (17)

with scaling and slope parameters Cup and ηup. The
Oslo data on the Sn isotopes reveal no clear sign of a
strong upbend at low Eγ , but show rather flat strength
distributions. Since the data are restricted to Eγ ≳ 2
MeV, we do not have sufficient information to reveal any
reliable systematics on the upbend as was done recently
for the Nd isotopes [75]. In the present work, the upbend
is treated solely as a fit component at low γ-ray energies,
having negligible impact on the extracted LEDR.
To disentangle the E1 and M1 components of the to-

tal GSF, we first fit the M1 strength distributions for
112,114,116,118,120,124Sn and build the systematics for the
parameters of the Lorentzian functions to reconstruct
the M1 part in the even-odd isotopes and 122Sn. The
strength distribution in the neighboring even-odd nuclei
can be expected to be even more fragmented, but the
total amount of the M1 strength should still be close
to that in the even-even neighbors. Further, the total
E1 +M1 strength is fitted with the combined function
ftot = fE1+f

low
E1 +fM1+fup, where the parameters of fM1

are kept constant. This corresponds to a simultaneous fit
of all E1 features of the total strength. Alternatively, the
IVGDR region can be fitted first with the fE1 function
(e.g. see Refs. [37, 107]), then keeping its parameters
constant while constraining the remaining LEDR compo-
nent. The latter method yields slightly larger χ2 values
than the simultaneous fit. Since both methods provide
integrated strengths well in agreement within the error
bars, we are limiting the analysis to the simultaneous fit
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TABLE IV. Parameters used for the description of the low-lying E1 strengths, integrated low-lying E1 strengths, and the
corresponding exhausted fractions of the TRK sum rule in the studied Sn isotopes.

Nucl. Peak 1 Peak 2

Elow
E1 σlow

E1 C low
E1 Elow

E1 σlow
E1 C low

E1 Integrated strength TRK
(MeV) (MeV) (10−7 MeV−2) (MeV) (MeV) (10−7 MeV−2) (MeV mb) (%)

111Sn – – – 8.26(9) 1.23(7) 3.32(23) 31.6(25) 1.92(14)
112Sn – – – 8.24(9) 1.22(8) 3.17(24) 30.1(25) 1.81(14)
113Sn – – – 8.23(6) 1.23(6) 3.27(17) 31.1(18) 1.86(10)
116Sn – – – 8.33(8) 1.29(6) 4.08(25) 39.2(28) 2.29(14)
117Sn – – – 8.18(6) 1.26(5) 4.15(19) 39.2(20) 2.28(11)
118Sn 6.27(18) 0.33(10) 0.40(15) 8.04(21) 1.00(20) 3.71(65) 37.3(55) 2.16(36)
119Sn 6.44(13) 0.56(11) 0.67(35) 8.23(11) 1.06(11) 3.97(41) 42.7(40) 2.45(27)
120Sn 6.59(11) 0.50(9) 0.71(22) 8.42(12) 1.19(10) 4.60(43) 50.1(47) 2.86(26)
121Sn 6.62(9) 0.48(7) 0.77(20) 8.25(9) 1.11(7) 4.20(31) 45.9(33) 2.61(19)
122Sn 6.45(5) 0.43(5) 0.82(16) 8.17(7) 1.00(7) 3.40(20) 38.1(21) 2.15(13)
124Sn 6.49(5) 0.43(5) 1.20(22) 8.20(7) 0.83(12) 2.99(34) 37.3(36) 2.08(20)

of the total E1 strength with ftot. The data to be fitted
are the Oslo method GSFs and the corresponding (p, p′)
strengths for even-even 112,116,118,120,124Sn. For 122Sn
and the odd isotopes 111,113,117,119,121Sn, the Coulomb
excitation data for the closest even-even isotopes were
used (120,124Sn, 112Sn, 112,114Sn, 116,118Sn, 118,120Sn, and
120Sn, respectively). As the (p, p′) data demonstrate the
same smooth evolution of the IVGDR with increasing
neutron number as the (γ, n) data, while also being more
consistent in the vicinity of Sn, they were preferred over
the (γ, n) strengths for all the considered odd isotopes.

The (p, p′) data have been reported to reveal a peak-
like structure at ≈ 6.4−6.5 MeV in all studied even-even
isotopes [33]. This feature becomes especially prominent
in 124Sn. The lack of data points at energies below ≈ 6
MeV did not allow to perform a fit of this feature by us-
ing the Coulomb excitation data alone. In general, the
energy resolution in Oslo-type of experiments and rela-
tively large systematic uncertainties make it difficult to
observe such features in the Oslo data. However, there
are some hints of a peak-like feature at ≈ 6.4− 6.5 MeV
in the 124Sn Oslo strength. Also, the Oslo method GSFs
become gradually steeper for heavier Sn isotopes, allow-
ing for introducing an additional Gaussian peak to the fit
of the LEDR of the heavier isotopes starting from 118Sn.
Indeed, a double-peaked LEDR yields an improved fit of
the experimental data between ≈ 5 and 11 MeV for these
isotopes as compared to a single Gaussian peak. For the
lighter Sn isotopes, the second peak is not well defined
and, therefore, was not included in the total fit. All the
above-mentioned fit parameters of the IVGDR, the M1,
and the upbend functions are presented in Table III. The
characteristics of the extracted LEDR components are
shown in Table IV.

The systematics of the total integrated strength of
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FIG. 5. TRK values (a) and energy centroids (b) for the
total extracted LEDR in Sn isotopes, its lower-lying, and
higher-lying components. Hollow squares correspond to a sin-
gle Gaussian peak fit, filled squares correspond to the sum (a)
and strength-averaged centroids (b) of two Gaussian peaks.

the LEDR in the studied Sn isotopes in terms of the
exhausted fraction of the TRK sum rule [108–110] are
shown in Fig. 5(a). For the isotopes fitted with double
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peaks, this fraction is also shown for the smaller, low-
lying and the larger, higher-lying components separately.
The LEDR extracted according to the above-mentioned
procedure appears to correspond to ≈ 2−3% of the TRK
sum rule for all the Sn nuclei considered here. No clear
systematic increase of the total strength with increasing
neutron number is observed. On the contrary, the energy-
weighted integrated strengths are quite similar for all the
studied nuclei within the uncertainties, peaking around
120Sn (≈ 3% of the TRK sum rule). The Oslo GSF for
120Sn (normalized independently of the Coulomb excita-
tion data) is quite close within the uncertainty bands to
the GSFs of the neighboring isotopes. The appearance
of the local maximum is mainly driven by the (p, p′) data
which show slightly larger absolute values in the energy
range from 8 to 10 MeV than in the other isotopes.

Considering that the GSFs of the even-even isotopes
were used for constraining the LEDR in the even-odd
isotopes, all of them, as expected, reveal a somewhat av-
eraged behavior with respect to the even-even neighbors.
This is additionally supported by the Oslo GSFs, demon-
strating no clear odd-even effects and showing a smooth
trend from the lightest to the heaviest nuclei.

D. Discussion and comparison with theoretical
predictions in the literature

Most of the theoretical approaches predict that the
low-lying E1 strength should increase with the proton-
neutron asymmetry parameter, while also not be-
ing a function of the neutron excess alone. How
steep and monotonous this trend is strongly depends
on the theoretical framework and the criteria ap-
plied to identify the potential PDR (or LEDR in
general) strength. Specifically for the Sn isotopes,
the microscopic relativistic quasiparticle random-phase
approximation (RQRPA) and relativistic quasiparticle
time-blocking approximation (RQTBA) calculations of
Ref. [13], Hartree–Fock–Bogoliubov plus quasiparticle
phonon model (QPM) calculations of Ref. [111], and the
study based on the Vlasov equation approach of Ref. [112]
demonstrate a smooth general increase of the LEDR
strength with increasing neutron excess. Provided the
experimental constraints shown in Fig. 5(a), no claims
on any strong dependence of the integrated strength on
increasing neutron number between 111Sn and 124Sn can
be made. A weak dependence, if present, is obscured by a
local peak in strength around 120Sn. Exploiting a single-
peak fit for 118−122,124Sn affects neither the general trend
nor the absolute values of the integrated strength within
the limits of the estimated uncertainties. The choice of
the fit for the M1 component was also found to have
negligible impact on the obtained values. For example, a
more detailed fit of the M1 strength with three and two
Lorentzian functions for 120Sn and 124Sn, respectively,
results only in ≈ 1% reduction of the values shown in
Fig. 5(a).

A similar local maximum of the integrated strength in
the vicinity of 120Sn has previously been observed within
the random-phase approximation (RPA) approach [38],
interrupting an almost linear correlation of the integrated
PDR strength and the neutron skin thickness. This ef-
fect was related to a gradual filling of the 1h11/2 neutron
orbital in the heavier isotopes, suppressing transitions
of low multipolarity within the PDR region. Further-
more, pairing correlation effects were included in rela-
tivistic Hartree–Bogoliubov (RHB) plus RQRPA calcula-
tions [5], which revealed a somewhat similar local peak at
120−124Sn in the strength evolution. This was attributed
to an interplay between reduced pairing correlations and
shell effects when approaching the N = 82 shell clo-
sure. A similar pattern emerges in calculations from a
relatively recent study on the isovector and isoscalar re-
sponse in Sn nuclei within the time-dependent Hartree-
Fock (TDHF) approach [113]. The open-shell nucleus
120Sn was shown to have a larger fraction of the energy-
weighted sum rule exhausted within the PDR region in
both the isoscalar and isovector channels, as compared
to the doubly magic 100Sn and 132Sn. Among the stud-
ied TDHF density profiles, 120Sn appears to exhibit a
slightly more diffuse surface, potentially correlated with
the enhancement of the strength in this nucleus. All of
these studies employ an upper limit for the extraction of
the total integrated strength, which complicates a direct
quantitative comparison with the present experimental
results. We note that the local maximum of the strength
at 120Sn is a subtle feature considering the uncertainties
in the data. However, a theoretical interpretation would
still be important, in particular whether it presents a
local feature based on shell structure or a general phe-
nomenon in nuclei with sufficient neutron excess. A pos-
sible link to the explanations offered in Refs. [5, 113] re-
quires further investigations.

It is interesting to note that the energy-weighted in-
tegrated strength of the smaller, low-lying component
in 118−122,124Sn increases approximately linear with neu-
tron number [see Fig. 5(a)]. As mentioned earlier, the
feature at ≈ 6.5 MeV appearing in the (p, p′) strength
in all the studied Sn isotopes has, indeed, been noted to
become more prominent toward 124Sn [114]. Neverthe-
less, this trend is quite subtle, and the total exhausted
strength of this peak-like structure is limited to only 0.1-
0.5% of the TRK sum rule. A similar concentration of
the isoscalar strength between 5.5 and 7 MeV has been
observed earlier in the studies of 124Sn with the (α, α′γ)
[22] and (17O,17O′γ) reactions [23]. Combined with the
(p, p′) and (γ, γ′) data, they provide experimental evi-
dence of a structural splitting of the LEDR in this nu-
cleus into a group of lower-lying states of mixed isovector-
isoscalar nature, observed in all the mentioned probes,
and higher-lying states of isovector nature, seen only in
the (p, p′) and (γ, γ′) experiments. The correspondence
with the isoscalar probes and large ground state branch-
ing ratios observed in (γ, γ′) experiments suggest that
the lower-energy peak represents the isovector response
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of the PDR. The implications of this result will be further
discussed in Ref. [115].

The employed Gaussian fit allows to easily access
the evolution of the centroid of the LEDR with in-
creasing neutron number, presented in Fig. 5(b). For
118−122,124Sn, the centroids of both components are
shown together with the strength-weighted average cen-
troid for the total LEDR. The strength in all the stud-
ied isotopes is concentrated at ≈ 7.8 − 8.3 MeV, while
the lower and the higher peaks in 118−122,124Sn show al-
most constant centroid energies of ≈ 6.4− 6.5 and ≈ 8.2
MeV, respectively. Provided that the centroids of the
lower and higher components are almost unchanged, a
mild decrease of the total LEDR centroid reflects the
same strength redistribution as in Fig. 5(a), with gradu-
ally more strength grouped at ≈ 6.4 − 6.5 MeV toward
124Sn. The decrease of the LEDR/PDR centroid is re-
produced in RQRPA [5, 13] and QPM [111] calculations
for Sn isotopes, appearing also in isotopic chains of other
elements [5, 116]. The observed experimental trend of
Fig. 5(b) contradicts the previously extracted Oslo sys-
tematics of the LEDR centroids in Ref. [34]. This is
mainly due to the great inconsistency of the photoab-
sorption data close to the neutron threshold, which the
previous fits in Ref. [34] heavily relied on.

IV. COMPARISON WITH AB INITIO-BASED
MODEL CALCULATIONS

Nuclear response theory is the most practical tool to
quantify the nuclear strength functions for a wide en-
ergy range. At the simplest level, the response theory is
confined by the RPA or its superfluid extension, QRPA.
Using Feynman diagrams, (Q)RPA is represented by a
one-loop diagram of the two-fermion in-medium propaga-
tor, while in the most fundamental ab initio equation-of-
motion (EOM) framework [117, 118], QRPA is obtained
by neglecting two-particle-two-hole (2p2h) and higher-
rank correlations in the interaction kernel. In the EOM
of Rowe [119], (Q)RPA is associated with the simplest
one-particle-one-hole (two-quasiparticle) 1p1h (2q) exci-
tation operator, which generates the excited states by
its action on a Hartree-Fock (Hartree-Fock-Bogoliubov)
ground state. (Q)RPA is known to reproduce the basic
properties of giant resonances and soft modes; however,
it fails at describing fine spectral details. More accurate
solutions involve higher complexity (npnh) correlations
in both the excited states and the ground state of the
nucleus.

All approximations beyond (Q)RPA are derivable from
the ab initio EOM for the two-fermion response func-
tion [120, 121] by retaining more complex correlations,
in particular, in the dynamical kernel. The leading ap-
proximation beyond (Q)RPA contains the quasiparticle-
vibration coupling (qPVC) in the minimal coupling
scheme, which includes 2q ⊗ phonon configurations in
the intermediate two-fermion propagator. The vibrations

(phonons) emerge naturally as correlated 2q pairs, with
the qPVC vertices as the new order parameters. This
approach admits realistic implementations that employ
effective interactions adjusted in the framework of den-
sity functional theory. With such interactions, reason-
able phonons can be obtained already within (Q)RPA,
and the qPVC can then be combined with subtraction
restoring the self-consistency of the ab initio framework
[122].

The first self-consistent microscopic approach, which
includes qPVC in terms of 2q ⊗ phonon configurations,
was presented in Ref. [123] and applied to the dipole re-
sponse of medium-heavy nuclei. This implementation
was a major step toward as a universal theory of nu-
clear structure rooted in particle physics, named rela-
tivistic nuclear field theory, and used the effective meson-
exchange interaction [124, 125]. The approach [123] to
the response function was based on a phenomenological
assumption about the leading role of 2q ⊗ phonon con-
figurations and the time-blocking technique [126]; thus
identified as the relativistic quasiparticle time-blocking
approximation (RQTBA). In Refs. [120, 121] the com-
plete response theory was obtained via ab initio EOMs,
where both the phenomenological qPVC and time block-
ing are ruled out as unnecessary ingredients. The rel-
ativistic EOM confined by the 2q ⊗ phonon (REOM2)
configurations with the QRPA phonons was shown to be
essentially equivalent to RQTBA. However, in contrast
to the phenomenological approach, REOM is an ab ini-
tio theory extendable to configurations of arbitrary com-
plexity. An example of such an extension was presented
as REOM3 accommodating 2q ⊗ 2phonon configurations
in Refs. [120, 127].

In this work, REOM2-RQTBA was applied to calcu-
lations of the dipole response of the Sn isotopes under
study in a broad energy range up to 25 MeV. The ob-
tained strength distributions are compared to those of
relativistic QRPA (RQRPA), which is used as a reference
case, and to experimental data, as displayed in Figs. 6
and 7. The NL3* meson-exchange interaction [125] was
employed in both approaches and the subtraction [122]
is implemented in REOM2. In the latter, natural-parity
phonons up to 15 MeV with J = [1, 6] and reduced
transition probabilities above 5% of the maximal one for
each multipolarity were comprised in the intermediate
2q⊗phonon propagators. The 2q configurations were in-
cluded up to 100 MeV, while the 2q ⊗ phonon ones were
accommodated up to 25 MeV. Calculations with two val-
ues of the smearing parameter ∆, which is defined below,
∆ = 20 keV and ∆ = 200 keV are presented.

It is clearly seen from Figs. 6 and 7 that adding 2q ⊗
phonon configurations in RQTBA significantly changes
the strength distribution, as compared to RQRPA. Over-
all, the gross structures of the strength become frag-
mented and a significant portion moves toward lower
transition energies. In particular, the PDR region be-
low 10 MeV manifests considerable structural differences
between the RQTBA and RQRPA approaches. Thus,
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FIG. 6. Calculated dipole strengths for 112,116,118Sn. The
low-lying E1 transitions computed with the 20-keV (thin solid
line) and 200-keV (thick dashed line) artificial widths are
shown up to 10 MeV (a, c, e). The strengths computed with
the 200-keV artificial width are also shown up to 22 MeV in
(b, d, f). The blue and orange bands indicate the correspond-
ing Oslo and (p, p′) data (Bass2020). Calculations within the
RQRPA and the RQTBA are shown with magenta and violet
lines, respectively.

the spreading of the IVGDR and the PDR structure oc-
cur mainly due to these configurations. In the paradigm
of a self-consistent covariant many-body theory, its only
input is the local meson-exchange interaction between
two nucleons, while all the in-medium many-body cor-
relations are included without changing the parameters
of this interaction, or introducing new ones. Within this
paradigm, the RQTBA strength distribution is a result
of the fragmentation of the RQRPA modes.

This can be understood from the general model-
independent relationships, where the strength function
S(ω) for a given energy (or frequency) ω is defined by
Fermi’s golden rule:

S(ω) =
∑

ν>0

[
|⟨ν|F †|0⟩|2δ(ω − ων)− |⟨ν|F |0⟩|2δ(ω + ων)

]
,

(18)

where the summation is performed over all excited states
|ν⟩ with transition energy ων = Eν − E0 with E0 being
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FIG. 7. Same as in Fig. 6, but for 120,122,124Sn. For 122Sn,
both 120Sn and 124Sn (p, p′) data are shown.

the ground-state energy. The transition matrix element
⟨ν|F †|0⟩ for the typical one-body external field operator

⟨ν|F †|0⟩ =
∑

12

⟨ν|F ∗
12ψ

†
2ψ1|0⟩ =

∑

12

F ∗
12ρ

ν∗
21 , (19)

is expressed via the transition densities

ρν12 = ⟨0|ψ†
2ψ1|ν⟩, (20)

which are the weights of the pure particle-hole configura-

tions ψ†
2ψ1 in the single-particle basis {1}, on top of the

ground state |0⟩, in the excited states |ν⟩, and ψ1 and

ψ†
1 are the nucleonic field operators. Conventionally, the

δ functions in Eq. (18) are represented by the Lorentz
distribution

δ(ω − ων) =
1

π
lim
∆→0

∆

(ω − ων)2 +∆2
, (21)

so that

S(ω) = − 1

π
lim
∆→0

ImΠ(ω + i∆), (22)

where Π(ω) is the polarizability of the nucleus:

Π(ω) =
∑

ν

[ Bν

ω − ων
− B̄ν

ω + ων

]
(23)
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related to the transition probabilities Bν and B̄ν of ab-
sorption and emission, respectively:

Bν = |⟨ν|F †|0⟩|2 B̄ν = |⟨ν|F |0⟩|2. (24)

Therefore, the strength function that quantifies the nu-
clear response to the given external field operator F
reads:

SF (ω) = − 1

π
lim
∆→0

Im
∑

121′2′

F12R12,1′2′(ω + i∆)F ∗
1′2′ ,

(25)
where the central role in characterizing the nuclear struc-
ture is played by the response function R12,1′2′(ω), whose
spectral representation is:

R12,1′2′(ω) =
∑

ν>0

[ ρν21ρ
ν∗
2′1′

ω − ων + iδ
− ρν∗12ρ

ν
1′2′

ω + ων − iδ

]
. (26)

The poles of R12,1′2′(ω) are at the energies ων = Eν −E0

of the excited states with respect to the ground state
energy and δ → +0.

Eq. (26) is the Fourier transform of the particle-hole
propagator in a correlated medium:

R12,1′2′(t− t′) = −i⟨Tψ†(1)ψ(2)ψ†(2′)ψ(1′)⟩, (27)

where ⟨...⟩ is a shorthand notation for the expecta-
tion value in the ground state and ψ(1), ψ†(1) are the
fermionic field operators in the Heisenberg picture:

ψ(1) ≡ ψ1(t1) ≡ eiHt1ψ1e
−iHt1

ψ†(1) ≡ ψ†
1(t1) ≡ eiHt1ψ†

1e
−iHt1 . (28)

where t1 = t2 = t, t1′ = t2′ = t′, and the fermionic
Hamiltonian

H =
∑

12

h12ψ
†
1ψ2 +

1

4

∑

1234

v̄1234ψ
†
1ψ

†
2ψ4ψ3 (29)

is specified by its one-body h12 and two-body v̄1234 ma-
trix elements.

The strength distribution for the given external field
operator, which, in this work, is the electric dipole oper-
ator (µ denotes the magnetic substate)

F
(E1)
1µ =

eN

A

Z∑

i=1

riY1µ(r̂i)−
eZ

A

N∑

i=1

riY1µ(r̂i),

(30)

is completely determined by the response function given
by Eq. (26). The number of peaks in the resulting spec-
trum is equal to the number of terms in Eq. (26), and this
number as well as the locations of the poles and transi-
tion densities are determined by the correlation content
of the theory. The response function can be found from
the Bethe-Salpeter-Dyson equation (BSDE), that is, in
the operator form,

R(ω) = R0(ω) +R0(ω)
(
K0 +Kr(ω)

)
R(ω), (31)

where R0(ω) is the non-interacting particle-hole propa-
gator in the mean field and the specific forms of the inter-
action kernels are given, for instance, in Refs. [121, 123].
For the application discussed in this work, it is essen-
tial that the RQRPA strength is obtained by neglecting
completely the Kr(ω) term, which contains the qPVC
correlations and is retained in RQTBA.

In the implementations using physical effective interac-
tions, these interactions play the role of the static kernel
K0, which is the only interaction term in the (R)QRPA.
In this approach, the dipole spectrum is characterized
by two pronounced peaks, one at higher energy and the
other at low energy, and a few less prominent structures.
The high-energy peak is associated with the IVGDR
formed by the out-of-phase oscillations of the proton
and neutron Fermi liquids against each other, which fol-
lows from the radial behavior of the transition densities
for this excitation. The two-quasiparticle content of the
transition densities shows a rather high degree of collec-
tivity when many 2q configurations contribute coherently
to the probabilities from Eq. (24). The low-energy peak,
often assigned as the PDR, can be identified by similar
means. Within this framework, it shows up as a neutron
excess oscillation against the isospin-saturated core, also
with some sign of collectivity [5, 20].

In comparison to data, the position of the main IVGDR
peak is typically described reasonably well in (R)QRPA,
however, this is often not the case for the PDR. The
reason becomes evident only when going beyond the
simplistic QRPA and including the frequency-dependent
kernel Kr(ω) in the BSDE [Eq. (31)]. The leading
2q⊗phonon configurations included in REOM2-RQTBA
induce a similar fragmentation of both major peaks, and
the resulting fragments overlap in the energy region be-
tween the IVGDR and PDR modes. This further leads
to the same problem of separating the PDR contribu-
tion from the low-energy tail of the IVGDR as discussed
earlier in Sec. III B.

According to Eq. (26), adding 2q ⊗ phonon configura-
tions produces additional terms in the sum on the right-
hand side, i.e., more states in the resulting spectrum
than with 2q configurations alone. This is reflected in
Figs. 6 and 7 for all the isotopes under study. The num-
ber of additional states is equal to the number of possi-
ble 2q ⊗ phonon combinations compatible with angular-
momentum conservation. Overall, adding complex con-
figurations leads to a better description of the data, in
particular, the IVGDR width and the PDR fine structure.
The importance of these configurations is especially ev-
ident when comparing the strength distributions at low
energies shown in the left panels of Figs. 6 and 7 obtained
with the different values of the smearing parameter ∆. It
can be seen, for instance, that the low-energy portion of
the RQRPA strength function is the purely artificial tail
of the states located at 8-9 MeV. The finite strength be-
low that energy originates solely from the smearing. Ac-
cordingly, the strength varies considerably when varying
∆. In contrast, the RQTBA strength below the neu-
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FIG. 8. The evolution of the energy-weighted electric dipole
strength extracted from the RQRPA and RQTBA calcula-
tions and the combined experimental Oslo and (p, p′), inte-
grated from 4 MeV up to 8 MeV (a), 10 MeV (b), and Sn (c).

tron threshold is essentially physical and the choice of
the smearing parameter plays a minor role. This choice
in the low level-density regime is stipulated by the ex-
perimental energy resolution, the finite level lifetime and
missing higher-complexity configurations. In the context
of this work, ∆ = 200 keV is an appropriate value, and
calculations with ∆ = 20 keV are given to illustrate the
fine structure of the strength. Nevertheless, the choice
of this parameter plays a minor role as long as complex
configurations are taken into account, which emphasizes
the importance of these configurations for an adequate
description of the low-energy nuclear strength functions.

To compare the overall behavior of the RQRPA,
RQTBA, and experimental strength distributions on an
equal footing, we extract the energy-weighted sums of
the total electric dipole strength (the M1 component
was subtracted from the experimental strength functions)
within three energy ranges, namely 4 − 8 MeV, 4 − 10
MeV, and 4−Sn, similarly to how it was done in Ref. [13].
This procedure corresponds to the second method of
quantifying the LEDR contribution mentioned in the pre-

vious section. The extracted fractions of the TRK sum
rule exhausted in each case are shown in Fig. 8. As dis-
cussed earlier, the experimental LEDR appears to be con-
centrated in the vicinity of 8 MeV and, naturally, a large
fraction of the strength is located above this threshold.
The experimental strength between 4 and 8 MeV cor-
responds to ≈ 1.2 − 1.5% of the TRK sum rule. The
monotonous increase of the RQRPA strength in this en-
ergy range is solely due to the artificial tails of the states
at 8-9 MeV with the applied 200-keV smearing parame-
ter, while the RQTBA strength increases gradually from
≈ 0.5 − 2.7% of the TRK sum rule. Within the energy
range up to 10 MeV, including most of the LEDR in
the studied nuclei, the experimental strength exhausts
≈ 3 − 4% of the TRK sum rule (here the IVGDR tail
is included in the sum), in contrast to both RQRPA
and RQTBA predicting a steady, monotonous increase of
strength up to ≈ 7% in 124Sn. Indeed, both approaches
result in larger concentrations of strength in the imme-
diate vicinity of 8-10 MeV as compared to the exper-
imental strength distribution, gradually increasing with
neutron number. Moreover, as clearly shown in Fig. 8(c),
RQRPA and RQTBA yield on average more strength be-
low the neutron threshold in comparison to the experi-
mental data, demonstrating steadily decreasing TRK val-
ues toward 124Sn in the even-even isotopes.

The agreement of RQTBA to experimental data, al-
though improved compared to RQRPA, is still imperfect.
This indicates that some mechanisms of the strength for-
mation are still missing to achieve spectroscopic accu-
racy. A complete response theory should take into ac-
count the continuum, including the multiparticle escape,
a more complete set of phonons (in particular, those of
unnatural parity and isospin-flip), complex ground state
correlations, and in principle higher-complexity configu-
rations.

The single-particle continuum effect above the parti-
cle emission threshold can be taken into account by the
smearing parameter, as it mainly causes uniform broad-
ening of the individual peaks. This was quantified by
direct calculations in Ref. [130] that give a 100-200 keV
width to characterize such a broadening, which is con-
siderably smaller than the spreading width. The two-
fermionic cluster decomposition of the fully correlated
dynamical kernel of the response function [120] suggests
that the next-level complexity non-perturbative approxi-
mation is the 2q⊗2phonon or correlated six-quasiparticle
configurations in the intermediate propagators. The im-
plementation of such configurations is becoming gradu-
ally possible with the increasing computational capabili-
ties [120, 127]; however, systematic calculations for long
isotopic chains of medium-heavy nuclei are still compu-
tationally demanding. Current efforts on optimizing the
numerical 2q ⊗ 2phonon approach may enable such cal-
culations in the near future.
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FIG. 9. Cross sections (CS) for the 112Sn(n, γ)113Sn (a), 115Sn(n, γ)116Sn (b), 116Sn(n, γ)117Sn (c), 117Sn(n, γ)118Sn (d),
118Sn(n, γ)119Sn (e), 119Sn(n, γ)120Sn (f), 120Sn(n, γ)121Sn (g), 121Sn(n, γ)122Sn (h), and 123Sn(n, γ)124Sn (i) reactions. The
predictions with the Oslo method inputs (blue bands) are compared with experimental data by Macklin et al. [48], Timokhov
et al. [128], Wisshak et al. [49], Koehler et al. [50], Nishiyama et al. [129], and the TALYS uncertainty range obtained with
different available GSFs, NLDs, and optical model potentials (beige band).

V. NEUTRON CAPTURE CROSS SECTIONS

The experimental values of the NLD and GSF ex-
tracted with the Oslo method can further be used to es-
timate the radiative neutron-capture cross sections (n, γ)
(NCCS) and reaction rates of interest for the astrophys-
ical neutron capture processes. This was done within
the statistical Hauser-Feshbach framework [45] with the
TALYS reaction code (version 1.96) [47, 134]. The ex-
perimental Oslo method GSFs were combined with the

(p, p′) data at energies above their range to produce the
tabulated E1 strengths used as input functions. For the
M1 input strength function, the (p, p′) M1 data were
chosen. For the optical model potential we use the phe-
nomenological model of Koning and Delaroche [135]. An
alternative option provided by TALYS is the semimicro-
scopic Jeukenne-Lejeune-Mahaux model renormalized by
the Bruyères-le-Châtel group [136]. In contrast to the
earlier published cases of 165,166Ho [137] and 185W [76],
the results obtained with both optical model potentials
agree well within the uncertainty bands. Therefore, only
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FIG. 10. Maxwellian-averaged cross sections (MACS) for the 112Sn(n, γ)113Sn (a), 115Sn(n, γ)116Sn (b), 116Sn(n, γ)117Sn (c),
117Sn(n, γ)118Sn (d), 118Sn(n, γ)119Sn (e), 119Sn(n, γ)120Sn (f), 120Sn(n, γ)121Sn (g), 121Sn(n, γ)122Sn (h), and 123Sn(n, γ)124Sn
(i) reactions. The predictions with the Oslo method inputs (blue bands) are compared with recommended values from JINA
REACLIB [131], BRUSLIB [132], KADoNiS [133], and the TALYS uncertainty range obtained with different available GSFs,
NLDs, and optical model potentials (beige band).

calculations performed with the former model are pre-
sented in this work. The resulting NCCSs are shown
in Fig. 9. The uncertainties due to the normalization
parameters are included in the total uncertainty bands.
The Oslo NCCSs (blue bands) are shown together with
the span of TALYS cross sections, obtained by varying
available GSFs, NLDs, and optical model potentials. In
case of the Sn isotopes, since the radiative NCCS is rather
insensitive to the optical potential and the experimental
masses are adopted in each case, the former two are the
major contributors to the wide spread of TALYS predic-

tions, describing the overall discrepancies between NLD
and GSF options available in TALYS [47, 137]. The cross
section obtained with the default combination of mod-
els (constant temperature plus Fermi gas NLD model,
SMLO form of the E1 strength, Koning and Delaroche
global optical model potential) is also shown for each iso-
tope in Fig. 9.

Even though the 112Sn(n, γ)113Sn reaction is of no po-
tential interest for the astrophysical s process, the com-
parison of the Oslo results with experimental (n, γ) cross
sections from a comprehensive study by Timokhov et
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al. [128] is still valuable. Other experimental data in
the keV region are also available for the neutron cap-
ture on the 115−120Sn targets [see Figs. 9(b)-(g)], cov-
ering almost all Sn isotopes involved in the s process
[50]. As was shown recently by Goriely et al [53], the
(n, γ) reactions on 120,121,123Sn [Figs. 9(g)-(i)] might be
of interest for the intermediate neutron capture process (i
process). All experimental cross sections in Fig. 9 were
obtained with the time-of-flight method with neutrons
produced in the 7Li(p, n)7Be reaction. The cross sections
of Timokhov et al. appear to be in excellent agreement
with the Oslo cross sections for the (n, γ) reaction on
112Sn, 115Sn, 118Sn, 119Sn, and 120Sn. The Oslo NCCS
is systematically lower for the 116Sn and systematically
higher for the 117Sn targets compared to the data by
Timokhov et al., while still agreeing within the uncer-
tainty bands with the cross sections by Wisshak et al.
[49]. In particular, a good agreement is achieved with
the cross sections by Nishiyama et al. for the neutron
capture on 116−119Sn [129, 138]. Overall, the Oslo re-
sults tend to agree within the uncertainty margins with
all other experimental NCCS above neutron energies of
≈ 20 − 30 keV. At lower energies, the experimental un-
certainties increase, and different data sets demonstrate
a wide spread of cross sections (of the order of ≈ 100 mb).
For the 121,123Sn targets no experimental data are avail-
able and, similarly to the lighter isotopes, the Oslo results
are closer to the bottom part of the range of TALYS cross
sections.

With the radiative NCCS at hand, the corresponding
Maxwellian-averaged cross sections (MACS) can be es-
timated. The MACS values for the same target nuclei
obtained with the experimental Oslo data are shown in
Fig. 10 together with the span covered by available com-
binations of TALYS input models and the TALYS default
MACSs. We also compare our results to the cross sec-
tions from the JINA REACLIB [131] and BRUSLIB [132]
libraries, commonly used for astrophysical network cal-
culations. The available data points from the KADoNiS
database [133] are also shown in Fig. 10. It is important
to note that all cross sections shown in Fig. 10 are stel-
lar MACSs. For the 119Sn and 121Sn target nuclei the
discrepancy between the stellar and laboratory MACSs
might reach up to ≈ 56% and 20%, respectively, below
the thermal energy of 100 keV [133].

In the majority of considered cases, the recommended
MACSs from the libraries fall well within the un-
certainty bands of the Oslo results. The BRUSLIB
MACSs for the 121Sn and 123Sn targets appear to be
on average ≈ 1.2 and ≈ 2.2 times higher, respec-
tively, compared to the Oslo MACSs for the thermal
energies between 10 and 100 keV. This disagreement
stems primarily from the combinations of the NLD
model (Skyrme-Hartree-Fock-Bogoluybov plus Combina-
torial NLDs [139]) and GSF model (Gogny-Hartree-Fock-
Bogoliubov plus QRPA GSF [44]) employed in BRUS-
LIB. The latter model tends to underestimate the E1
strength distribution in the immediate vicinity of Sn. In

0 20 40 60 80 100

T (keV)Bk

210

310

410

M
A

C
S 

(m
b)

Oslo data

Oslo data, no LEDR

TALYS-1.96

KADoNiS
Sn120)γSn(n,119

FIG. 11. MACS for the 119Sn(n, γ)120Sn reaction with and
without the low-lying electric dipole strength included. The
Oslo results with the LEDR (blue band) and without (red
band) are compared with the TALYS uncertainty range (beige
band) and recommended values from KADoNiS [133].

general, the Skyrme-HFB plus combinatorial model re-
produces the Oslo method NLDs quite well for the lighter
Sn nuclei (e.g. 116Sn) and begins to overestimate the Oslo
NLD values quite significantly toward more neutron-rich
isotopes. Despite the model GSF being, on average, lower
than the experimental strength, the net effect of these
models combined together leads to the disagreement vis-
ible in Figs. 10(h) and (i).

The Oslo MACSs agree quite well within the estimated
uncertainties with the values provided by the KADoNiS
database. Some systematic deviations are observed for
the 116Sn and 117Sn targets, similarly to those in the
NCCSs. The source of these deviations in both cases
is not immediately obvious based on the used Oslo in-
put data. The recommended KADoNiS values at 30 keV
for Sn isotopes are largely based on the cross sections
of Macklin et al. [48], Timokhov et al., Wisshak et al.,
Koehler et al. [50], Nishiyama et al., and are often pre-
sented at other kBT values by the average of evaluations
from the ENDF/B-VII.1 [140] and JENDL-4.0 [141] li-
braries. The uncertainties of these values, estimated for
the majority of Sn isotopes from the deviations of these
two evaluations, might be underestimating the KADoNiS
systematic errors. The error bands of the Oslo MACSs,
including all uncertainties due to the normalization of the
nuclear inputs (NLD and GSF), provide far more conser-
vative spans of the cross sections, nevertheless, consider-
ably constraining the TALYS uncertainty range.

As mentioned earlier, correct theoretical reproduction
of the LEDR is of importance for astrophysical applica-
tions, in particular involving neutron-rich nuclei. Albeit
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the LEDR in the studied stable isotopes exhausts only
≈ 2 − 3% of the TRK sum rule, it might still notice-
ably contribute to the radiative neutron capture rates
and cross sections. To estimate the contribution of the
observed LEDR in the Sn isotopes to the MACS, we per-
formed TALYS calculations for the 119Sn(n, γ)120Sn re-
action with the Oslo input GSF of 120Sn with an artifi-
cially subtracted LEDR, extracted according to the pro-
cedure in Sec. III B (see Table IV for the Gaussian peak
parameters). This MACS is compared to the MACS ex-
tracted with the original Oslo GSF of 120Sn in Fig. 11.
The MACS obtained with no LEDR is consistently lower
and, on average, it amounts to ≈ 80% of the full MACS
in the vicinity of 30 keV. Even though the cross sections
overlap within the estimated uncertainty bands, the 20%
decrease is considerable for the relatively small exhausted
fraction of the TRK sum rule (≈ 3%). With the current
status of available theoretical frameworks a consistent
quantitative assessment of the role of the LEDR in astro-
physical simulations remains a complex, non-trivial task,
encouraging further advances in theoretical approaches
and experimental studies of nuclei beyond the valley of
stability.

VI. ASTROPHYSICAL IMPLICATIONS

To illustrate the impact of the newly determined re-
action rates on some astrophysical applications, we con-
sider the i-process nucleosynthesis in Asymptotic Giant
Branch (AGB) stars. The AGB phase corresponds to
the last evolutionary stage of ≈ 1−8M⊙ stars [e.g. 142].
During this stage, hydrogen can be engulfed by one of the
recurrent convective thermal pulses, leading to a proton
ingestion event (PIE, e.g. [143–146]). During a PIE, pro-
tons are transported downwards in a timescale of about
1 hr and quickly burnt by the 12C(p, γ)13N reaction. The

TABLE V. Cases considered for the rates of the
121Sn(n, γ)122Sn and 123Sn(n, γ)124Sn reactions for the multi-
zone stellar calculations.

121Sn(n, γ)122Sn 123Sn(n, γ)124Sn
TALYS parameter uncertainties

case 1 min min
case 2 max max
case 3 min max
case 4 max min

TALYS model uncertainties
case 5 min −
case 6 max −
case 7 − min
case 8 − max

Experiment (this work)
case 9 min min
case 10 max max
case 11 min max
case 12 max min
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FIG. 12. Uncertainty bands for the neutron capture rates
in the 121Sn(n, γ)122Sn (a) and 123Sn(n, γ)124Sn reaction (b)
reactions. The blue band corresponds to the span of exper-
imentally constrained reaction rates due to uncertainties of
the input Oslo NLD and GSF. The hatched band denotes the
span of TALYS rates for all available GSF, NLD, and optical
model potential combinations (model uncertainty). The pur-
ple band is due to the variation of the HFB+Combinatorial
NLD and D1M+QRPA GSF model parameters according to
the procedure of Ref. [152] (parameter uncertainty).

13N isotope decays to 13C in a timescale of about 10 min.
Then, the reaction 13C(α, n)16O is activated, mostly at
the bottom of the pulse, where T ≃ 250 MK. The neu-
tron density goes up to about 1015 cm−3 which leads to
an i-process nucleosynthesis [e.g. 147–151]. The i-process
material is later dredged up to the stellar surface and ex-
pelled through stellar winds.
Here, we investigated the impact of our new exper-

imentally constrained 121,123Sn(n, γ)122,124Sn reaction
rates and corresponding uncertainties on the i-process
nucleosynthesis in a 1 M⊙ low-metallicity ([Fe/H] =
−2.5) AGB model computed with the STAREVOL code
[53, 153, 154]. The network considered comprises 1160
nuclei, linked through 2123 nuclear reactions (n-, p-, α-
captures and α-decays) and weak interactions (electron
captures, β-decays). The rates were extracted from the
BRUSLIB database, the Nuclear Astrophysics Library of
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FIG. 13. Final surface elemental abundances (after de-
cays) of multi-zone AGB stellar models experiencing i-process
nucleosynthesis, computed with different combinations of
121,123Sn(n, γ) rates. Shown are the [X/Fe] ratios defined
as [X/Fe] = log10(NX/NFe)⋆ − log10(NX/NFe)⊙ with NX

the number density of an element X. The first and second
log10 terms refer to the abundances of the model and the
Sun, respectively. (a) Eight theoretical rates combinations
are considered. These are theoretical estimates of parame-
ter and model uncertainties affecting TALYS predictions of
121Sn(n, γ) and 123Sn(n, γ) reaction rates. (b) Same but with
the new experimentally constrained rates from this work.

the Université Libre de Bruxelles1[155] and the updated
experimental and theoretical rates from the NETGEN
interface [132]. Additional information on the stellar
physics ingredients, modeling, and nuclear physics can
be found in Refs. [53, 149, 150].

Since relatively accurate MACS have been previously
measured for stable Sn isotopes, we only consider here
the uncertainties affecting 121Sn(n, γ) and 123Sn(n, γ) re-
action rates. To do so, we first considered their theo-
retical TALYS predictions and associated uncertainties.
The latter include both parameter and models uncertain-
ties, as extensively discussed in Ref. [152]. The impact
of uncorrelated parameter uncertainties has been esti-
mated considering four cases (cases 1–4 in Table V) ob-
tained on the basis of the HFB+Combinatorial NLD and
D1M+QRPA GSF models (note that similar parameter
uncertainties are obtained for different NLD or GSF mod-
els, as discussed in Ref. [152]). The four cases correspond
to the different minimum / maximum possible combina-
tions for both rates. The impact of correlated nuclear
model uncertainties was investigated by considering the
NLD and GSF models leading to the lower or upper limits

1 Available at http://www.astro.ulb.ac.be/bruslib/
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FIG. 14. Same as Fig. 13 but for the isotopic mass fraction
X as a function of the mass number A, around the Sn region.

of the TALYS MACSs [beige bands in Fig. 10(h) and (i)]
and, thus, the respective reaction rates; these correspond
to cases 5 to 8 in Table V. Finally, the new experimentally
constrained rates are considered (cases 9 to 12) and as-
sumed to be uncorrelated. In total, 12 AGB simulations
experiencing a PIE were computed with these different
rate combinations. The associated uncertainty bands are
shown in Fig. 12.

As seen in Fig. 13, the impact of 121,123Sn(n, γ) rate un-
certainties on the i-process nucleosynthesis is local, aris-
ing at Z = 51 (Sb). This is in line with recent results from
[152] where the relevant reactions for i-process nucleosyn-
thesis in AGB stars were shown to mainly have a local
impact on the resulting chemical abundances. In partic-
ular, the 121,123Sn(n, γ) reactions appear in their Table 1,
listing the key uncertain reactions affecting i-process pre-
dictions. The impacted element, Sb (Z = 51), is pro-
duced in different quantities depending on the strength
of the 121,123Sn(n, γ) reactions, the latter competing with
β-decay (with half-lives of 27 hr and 129 days, respec-
tively). A minimal rate for both 121,123Sn(n, γ) reactions
favors the production of 121,123Sb through β-decay (blue
pattern in Fig. 14). By contrast, if the (n, γ) rates are
maximal, the flow favours the production of 122,124Sn and
less of 121,123Sb, which results in lower 121,123Sb abun-
dances (red pattern in Fig. 14). Globally, TALYS theo-
retical uncertainties lead to an uncertainty of 0.84 dex in
the final surface Sb abundance (the uncertainty is 0.65
dex for parameter uncertainties and 0.84 dex for model
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uncertainties). It is decreased to 0.27 dex when consid-
ering the new experimentally constrained rates (Fig. 13).
As shown in Fig. 14, for the 121Sb (123Sb) isotope, the
overall uncertainty is reduced from 0.75 (0.98) to 0.29
(0.26) dex.

VII. CONCLUSIONS AND OUTLOOK

In this work, a consistent analysis of the
111−113,116−122,124Sn isotopes with the Oslo method
applied to light-particle-induced reaction data has
been presented. The extracted NLDs demonstrate a
clear constant-temperature trend below the neutron
separation energy. They appear to be in good agreement
with each other and reproduce the low-lying discrete
states up to ≈ 2− 3 MeV quite well. The Oslo GSFs are
fully compatible with the available Coulomb excitation
(p, p′) data for even-even isotopes 112,116,118,120,124Sn
within the uncertainty bands and demonstrate a smooth
evolution of the low-lying dipole strength with a slight
increase of the GSF slope toward the heaviest studied
124Sn isotope.

Based on the Oslo method and (p, p′) strength distri-
butions, the low-lying E1 strength on top of the IVGDR
was found to be located at ≈ 7.8− 8.3 MeV and exhaust
≈ 2− 3% of the TRK sum rule for all the studied nuclei.
The observed trend does not reveal any strong depen-
dence on neutron number, and suggests a local maxi-
mum of strength at 120Sn. The 6.4-MeV component of
the LEDR extracted in 118−122,124Sn demonstrates an ap-
proximate dependence on neutron excess and might po-
tentially be related to a similar concentration of strength
observed in this energy region in earlier works [22, 23],
where it was interpreted as the PDR.

The experimental results have been compared to calcu-
lations of the LEDR in the even-even Sn isotopes within
the RQRPA and RQTBA frameworks. Despite a greatly
improved agreement with the experimental strength dis-
tribution within the PDR and IVGDR regions as com-
pared to the RQRPA approach, the RQTBA calculations
do not reproduce the experimental TRK values extracted
within the same energy regions. Both the RQRPA and
RQTBA predict a clear linear increase in strength at
≈ 8−10 MeV toward 124Sn, in contrast to the experimen-
tal estimates that are approximately constant throughout
the whole chain of the investigated isotopes.

The Oslo method NLDs and GSFs were further used
to constrain the radiative neutron-capture cross sections
and Maxwellian-averaged cross sections with the reac-
tion code TALYS. Overall, the obtained values are in

good agreement with available experimental data and
Maxwellian-averaged cross sections and reaction rates re-
ported in the JINA REACLIB, BRUSLIB, and KADo-
NiS libraries. The 121,123Sn(n, γ) reaction rates obtained
with the Oslo input NLDs and GSFs were found to lo-
cally impact the production of 121,123Sb in the i-process
nucleosynthesis in AGB stars and significantly reduce the
available model and parameter uncertainties for the esti-
mated final surface Sb abundance.
Despite the relatively small fractions of the TRK sum

rule exhausted in the studied stable Sn isotopes, the low-
lying dipole strength in these nuclei has a noticeable im-
pact on the estimated reaction cross sections and rates.
Further improvements in the microscopic calculations of
E1 and M1 strength distributions close to the neutron
threshold, especially in neutron-rich nuclei beyond the
valley of stability, are highly desirable for future astro-
physical calculations involving the i- and r-process nu-
cleosynthesis. Moreover, from a nuclear-structure point
of view, further detailed studies of the underlying struc-
ture of the states contributing to the LEDR strength are
called for. In the near future, high-resolution experi-
ments utilizing (d, pγ) and (p, dγ) reactions to populate
the same even-even nucleus 118Sn are envisaged to shed
new light on this very intriguing issue.
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A. Bürger, A. Görgen, H. T. Nyhus, J. Rekstad,
A. Schiller, S. Siem, et al., Phys. Rev. C 83, 034315
(2011).

[63] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. In-
strum. Methods Phys. Res. A 255, 518 (1987).

[64] J. E. Midtbø, Ph.D. thesis, University of Oslo (2019).
[65] J. E. Midtbø, F. Zeiser, E. Lima, A.-C. Larsen,

G. M. Tveten, M. Guttormsen, F. L. Bello Garrote,
A. Kvellestad, and T. Renstrøm, Comput. Phys. Com-
mun. 262, 107795 (2021).

[66] D. M. Brink, (1955), doctoral thesis, Oxford University.
[67] P. Axel, Phys. Rev. 126, 671 (1962).
[68] R. Capote, M. Herman, P. Obložinský, P. Young,
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APPENDIX A. DERIVATION OF THE OSLO METHOD DECOMPOSITION
EQUATION

Appendix A

Derivation of the Oslo method
decomposition equation

To provide a derivation of the decomposition of the primary matrix into the NLD and the
GSF (Eq. (3.18)), let us start with a residual nucleus Y in a compound excited state C below
the neutron threshold, produced in a light-ion-induced reaction X(a, b)Y . Here, we follow
closely the notations of Blatt and Weisskopf ([90], p.342-345). The experimentally extracted
primary matrix contains information on the subsequent γ decay of this compound state, and
instead of focusing on the energy distribution of particles b, we consider the decay products
of the compound state C. According to the assumption of Bohr, the cross section of the
formation of the compound state C through an entrance channel α with a subsequent decay
though an exit channel β can be factorized as:

σ(α,β) = σC(α)GC(β), (A.1)

with the entrance and exit channels being decoupled from one another. The first factor is
the cross section for the formation of the compound state though the channel α, and the last
factor corresponds to the decay probability through a specific exit channel β, or the branching
ratio. It can be expressed in terms of the decay rates Γ/h̵ (Γ is further referred to as the level
width):

GC(β) =
ΓC(β)

∑β ΓC(β)
=

ΓC(β)

ΓC
, (A.2)

where ΓC(β) determines a decay rate of C through β, and ΓC is the total width, accounting
for all decay channels β. We shall keep in mind that for the compound state C below the
neutron threshold, these widths correspond solely to the γ decay (radiative widths).

The energy spectrum of emitted photons can be written as:

dNγ(ε)∝ Iγ(ε)dε = ∑
ε<εβ<ε+dε

σ(α,β) = σC(α) ∑
ε<εβ<ε+dε

GC(β)

= σC(α) ∑
ε<εβ<ε+dε

ΓC(β)

ΓC
=
σC(α)

ΓC
∑

ε<εβ<ε+dε
ΓC(β).

(A.3)

Here Iγ(ε)dε is proportional to the number of emitted photons with energies from ε to ε+ dε,
which can be simply expressed as a sum of cross sections with energies of emitted photons
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falling within this interval. The proportionality factor is constant, depends on the properties
of the target nucleus and a flux of incident particles, and will be canceled out in the subsequent
steps. The intensity Iγ(ε) represents the number of particles with energies ε − εdε per energy
interval dε. Moreover, in Eq. (A.3) we take into account that the total width and the cross
section σC(α) depend only on the properties of the compound state C.

At this point, let us change the notations in the equations above to match the notations
from the main part the thesis. The compound state would correspond to the initial state i,
decaying to the final state f by emitting photons with energy Eγ. The previous equation can
then be rewritten as:

Iγ(i→ f)dEγ =
σC(i)

ΓC(i)
∑

Eγ<Eγ(i→f)<Eγ+dEγ
ΓC(i→ f)

(1)
==

σC(i)

ΓC(i)
∑
XL

⟨Γγ(i→ f)⟩ρavXL(f)dEγ.

(A.4)

In (1) we take into account that the decay can proceed via photons of different type X and
multipolarity L, and that the number of terms in the sum is determined by the number of
available final states ρavXL(f)dEγ, accessible through the radiation of type XL. The partial
radiative widths are averaged over all possible transitions of type XL from the state i to the
states f with energies ranging from Ei −Eγ − dEγ up to Ei −Eγ.

To be able to use this relation, we should note that the experimental matrix contains such
transitions grouped in excitation energy bins Ei and Eγ, and we thus work with ensembles of
transitions from states within the initial excitation energy bin Ei to states with final excitation
energies, determined by the width of the corresponding γ-energy bin. For such bins, Eq. (A.4)
can be written as:

Iγ(Ei, Ji, πi,Eγ) =
σC(i)

Γγ(i)
∑
XL

⟨ΓγXL(i→ f)⟩ρavXL(f)

=
σC(i)

Γγ(i)
∑
XL

fXL(i→ f)E2L+1
γ

ρ(i)
ρavXL(f)

BA
==

σC(i)

Γγ(i)ρ(i)
∑
XL

fXL(Eγ)E2L+1
γ

ρ(i)
ρavXL(f).

(A.5)

Here Iγ(Ei, Ji, πi,Eγ) determines the number of decays of the states with spin-parity Jπii in
the bin Ei with γ energies falling within the γ-ray energy bin in the vicinity of Eγ per γ-ray
energy bin width. An explicit dependence on the energy Ei, spin Ji, and parity πi of the
initial states is shortened down to (i) in the cross-section and the total radiative width. By
averaging the partial widths we now assume averaging in the vicinity of the above-mentioned
bins Ei and Eγ. According to the definition of the GSF [143], they can now be replaced by
fXL(i→ f), which can be further simplified to fXL(Eγ) using the Brink-Axel hypothesis. The
density ρ(i) depends on the energy, spin, and parity of the initial states.

The products of the GSF and the density of the final states are summed over different
types of radiation. In the following, we assume that the dipole radiations plays the leading
role in the γ decay, and the only decay modes are E1 and M1. The former one changes the
initial parity πf → −πi, while the latter preserves it. Considering this, Eq. (A.5) can be further
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transformed as:

Iγ(Ei,Ji, πi,Eγ) =
σC(i)E3

γ

Γγ(i)ρ(i)
∑

E1+M1

fX1(Eγ)

ρ(i)
ρavX1(f)

=
σC(i)E3

γ

Γγ(i)ρ(i)
(fE1(Eγ)ρ

av
E1(f) + fM1(Eγ)ρ

av
M1(f))

=
σC(i)E3

γ

Γγ(i)ρ(i)
(fE1(Eγ)

Ji+1

∑
Jf=Ji−1

ρ(Ef , Jf ,−πi) + fM1(Eγ)
Ji+1

∑
Jf=Ji−1

ρ(Ef , Jf , πi))

(2)
==

σC(i)E3
γ

Γγ(i)ρ(i)

⎛

⎝

fE1(Eγ)

2

Ji+1

∑
Jf=Ji−1

ρ(Ef , Jf) +
fM1(Eγ)

2

Ji+1

∑
Jf=Ji−1

ρ(Ef , Jf)
⎞

⎠

(3)
==

σC(i)E3
γρ(Ef)

Γγ(i)ρ(i)

⎛

⎝

fE1(Eγ)

2

Ji+1

∑
Jf=Ji−1

g(Ef , Jf) +
fM1(Eγ)

2

Ji+1

∑
Jf=Ji−1

g(Ef , Jf)
⎞

⎠
.

(A.6)

In (2), the parity equipartition is taken into account, hence the 1/2 factor. In step (3), we
also adopt the expression for the partial NLD ρ(Ex, J) through the spin distribution g(Ex, J)
and the total NLD ρ(Ex) [95, 97].

With the dipole radiation, the angular momentum either remains unchanged or changes
by one unit, so the sum of g(Ef , Ji − 1) + g(Ef , Ji) + g(Ef , Ji + 1) can be approximated by
the value of 3g(Ef , Ji). Strictly speaking, the factor of three should be smaller due to the
initial states with Ji = 0 and 1/2. This correction is, however, quite small and assumed to be
negligible. Taking this approximation into account:

Iγ(Ei,Ji, πi,Eγ) ≈
3σC(i)E3

γρ(Ef)g(Ef , Ji)

2Γγ(i)ρ(i)
(fE1(Eγ) + fM1(Eγ))

=
3σC(i)E3

γρ(Ef)g(Ef , Ji)f(Eγ)

2Γγ(i)ρ(i)
.

(A.7)

The intensity can now be presented in the following form:

Iγ(Ei, Ji, πi,Eγ) = A(i)ρ(Ei −Eγ)f(Eγ)E
3
γg(Ei −Eγ, Ji), (A.8)

where A(i) includes the cross section of the population of the initial compound states, density
of these states, and the corresponding total radiative width and thus depends on the energy,
spin, and parity of the initial state. The probability of decay of these states with a certain
Eγ can be expressed through a normalized intensity as:

Pγ(Ei, Ji, πi,Eγ) =
Iγ(Ei, Ji, πi,Eγ)

∑Eγ Iγ(Ei, Ji, πi,Eγ)
= B(Ei, Ji)ρ(Ei −Eγ)f(Eγ)E

3
γg(Ei −Eγ, Ji), (A.9)

where summation in the denominator runs over all γ-ray energy bins in the experimental
spectra. Here, the factor A(i) in the numerator and the denominator, depending on the
properties of the initial states, is canceled out. The remaining normalization factor

B(Ei, Ji) =
1

∑
Ei
Eγ=0 ρ(Ei −Eγ)f(Eγ)E

3
γg(Ei −Eγ, Ji)

(A.10)
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depends on the initial excitation energy and spin only. We can notice that the inverted nor-
malization factor B(Ei, Ji) resembles the average total radiative width, provided by Eq. (2.11)
in [143], multiplied by the density of initial states ρ(i).

The γ-ray spectra, corresponding to a certain excitation energy bin in the primary matrix,
can be expressed as a weighted sum of normalized intensities for the decay of states with dif-
ferent spins and parities. The weights would be proportional to a populated spin distribution
gpop(Ex, J, π), which might be different from the initially adopted intrinsic spin distribution
g(Ex, J). Taking this into account, the primary spectrum takes the following form:

Pγ(Ei,Eγ) = ∑
Ji,πi

gpop(Ei, Ji, πi)Pγ(Ei, Ji, πi,Eγ)

= ∑
Ji,πi

gpop(Ei, Ji, πi)B(Ei, Ji)ρ(Ei −Eγ)f(Eγ)E
3
γg(Ei −Eγ, Ji)

= ρ(Ei −Eγ)f(Eγ)E
3
γ ∑
Ji,πi

B(Ei, Ji)gpop(Ei, Ji, πi)g(Ei −Eγ, Ji)

= C(Ei,Eγ)ρ(Ei −Eγ)f(Eγ)E
3
γ .

(A.11)

The remaining normalization factor C depends on both the γ-ray and the initial excitation
energy. In principle, it also depends on the parity πi (due to gpop), which was omitted in C
due to a presumably small impact.

Within the Oslo method, this factor is assumed to be approximately constant, leading to
the decomposition relation in the form of Eq. (3.18):

Pγ(Ei,Eγ)∝ ρ(Ei −Eγ)f(Eγ)E
3
γ . (A.12)

The omitted normalization factor is a potential source of an additional systematic un-
certainty, which is believed to have little impact on the final NLD and the GSF within the
estimated total uncertainty bands. For a large number of cases of stable nuclei, a good agree-
ment between the Oslo and other experimental data supports this belief. The impact of the
normalization C(Ei,Eγ) with the factor B(Ei, Ji) assumed to be constant was studied in
Ref. [233]. It was shown to affect the coupling between the NLD and the GSF in such a
way that, for different ranges of populated spins, the low-energy tail of the GSF might vary
significantly. The largest deviation from the case where the normalization factor was assumed
to be constant (standard Oslo method) was observed for a narrow range of high populated
spins. In other cases, the correction is quite small and might indeed be expected to be well
accounted for by the total uncertainty band. Nevertheless, it should be considered in the
studies with limited ranges of populated spins, in particular, when focusing on the low-lying
part of the strength (e.g. systematics of the upbend [187], comparison with shell-model calcu-
lations [306]). For the studied Sn isotopes, this factor is expected to have little to no impact
on the main trend in the systematics of the low-lying E1 strength.
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Appendix B

Preliminary analysis of the 114Sn data

Two (p, p′γ) experiments have been recently performed at the Horia Hulubei Institute for
Physics and Nuclear Engineering (IFIN-HH) in order to study the 112,114Sn isotopes with
the Oslo method. The work on the analysis and preparation of a manuscript is currently
in progress. One of the main objectives of this study is to address the transitions in the
PDR region in terms of QPM calculations in comparison with the experimental data and
thermodynamic properties, by analogy with Paper III and the earlier publications of the Oslo
group.

The experiments have been performed with the 9 MV Tandem accelerator at IFIN-HH,
using a special version of the ROmanian array for SPectroscopy in HEavy ion REactions
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Figure B.1: The preliminary experimental NLD (a) and GSF (b) of 114Sn. The low-lying
discrete states are shown as a blue-shaded histogram, the ρ(Sn) value and the constant-
temperature fit are shown as a blue cross and a blue dashed line, respectively. The GSF is
compared with the (p, p′) data for the same isotope [42] and the GSFs of 112,116Sn from this
thesis.
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Figure B.2: (a) Decomposition of the ELI-NP/IFIH-HH and the (p, p′) GSFs into the IVGDR,
M1, and LEDR shown together with the (n, γ) data by Varlamov et al. [251]. The notations
are the same as in Fig. 5.2. (b) Systematics of the LEDR (same as Fig. 5.3), but including
the preliminary TRK value for 114Sn.

(ROSPHERE) setup [307]. The latter consists of 21 LaBr3:Ce and CeBr3 detectors from
ELI-NP with the total solid-angle coverage of 11.95% of 4π (see Ref. [308] for more details).
The setup also includes a particle telescope consisting of two annular double-sided silicon
strip detectors placed in the backward direction and covering polar angles of 120○ − 136○ with
respect to the beam line. The experiment was performed with a 12.7-MeV proton beam with
an average beam current of ≈ 0.5 nA. Further details regarding the experiment and the data
analysis will be presented in the upcoming publication [309].

To assess the LEDR in the 114Sn isotope, a preliminary analysis of p-γ data has been
performed by analogy with the analyses presented in this thesis. The normalization coefficients
used in this case are provided in Table C.1. The NLD and the GSF extracted with these
coefficients in accordance with the procedures from Secs. 3.3.4 and 3.3.5 are shown in Fig. B.1.
The extracted NLD is in excellent agreement with that of 112Sn over the whole studied range
of excitation energies and somewhat lower than in 116Sn between 4 − 7 MeV. Similarly to the
neighboring even-even isotopes, the extracted GSF is in good agreement within the uncertainty
bands with the corresponding (p, p′) data.

To extract the fraction of the TRK sum rule exhausted in this case, the decomposition
of the ELI-NP/IFIN-HH and the (p, p′) strengths was performed in accordance with the
procedure from Sec. 5.2. Similarly to 111−113Sn and 116,117Sn, the best fit to the experimental
data below the neutron threshold was achieved using a single Gaussian peak for the LEDR
in the decomposition of the total GSF, as shown in Fig. B.2(a). The parameters for each
component of the fit (IVGDR, LEDR, M1 response, upbend) are presented in Table C.2. The
LEDR in this nucleus exhausts ≈ 1.9% of the TRK sum rule, which appears to be perfectly
in line with the systematics presented in this thesis, as demonstrated in Fig. B.2(b).
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Appendix C

Results, normalization and fit
parameters

C.1 Tables

This section contains all input parameters used for the normalization of the NLDs and the
GSFs of 111−113,116−122,124Sn, the fit parameters of the GLO for the IVGDR, the SLO for the
M1 response, the Gaussian function for the LEDR, and the integrated strengths for each
isotope. The preliminary normalization and fit parameters for 114Sn are also included.
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C.2 Systematics of the Lorentzian parameters for the

description of the M1 spin-flip resonance
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Figure C.1: Systematics of the energy centroid EM1 (a), the width ΓM1 (b), and the peak
cross section σM1 (c) from the fit of the experimental M1 data from Ref. [42] with the SLO.
The linear fit (red dashed line) is used to extract the parameters for the M1 resonance in
111,113,117,119,121,122Sn.
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F. Ingebretsen, T. Lönnroth, S. Messelt, G. E. Mitchell, et al., Phys. Rev. C 73, 034311
(2006).

[117] A. Schiller, A. Bjerve, M. Guttormsen, M. Hjorth-Jensen, F. Ingebretsen, E. Melby,
S. Messelt, J. Rekstad, S. Siem, and S. W. Ødeg̊ard, Phys. Rev. C 63, 021306 (2001).

[118] S. Goriely, Nucl. Phys. A 605, 28 (1996).

[119] P. Demetriou and S. Goriely, Nucl. Phys. A 695, 95 (2001).

[120] S. Hilaire, J. P. Delaroche, and M. Girod, Eur. Phys. J. A 12, 169 (2001).

[121] Y. Alhassid, Nucl. Phys. A 690, 163 (2001).

[122] Y. Alhassid, L. Fang, and H. Nakada, J. Phys. Conf. 267, 012033 (2011).

[123] Y. Alhassid, Eur. Phys. J. 51, 171 (2015).

[124] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda, Comput. Phys. Commun. 244,
372 (2019).

[125] Data taken from the ENSDF database of the NNDC online data service, https://www.
nndc.bnl.gov/ensdf/. Last accessed: October 5, 2023.

[126] S. Mughabghab, Atlas of neutron resonances; 6th ed. (Elsevier, Amsterdam, 2018).

[127] H. K. Vonach and J. R. Huizenga, Phys. Rev. 149, 844 (1966).

[128] D. R. Chakrabarty, V. M. Datar, S. Kumar, E. T. Mirgule, H. H. Oza, and U. K. Pal,
Phys. Rev. C 51, 2942 (1995).

[129] T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Phys. Rev. C 56, 1613 (1997).

[130] D. Martin, P. von Neumann-Cosel, A. Tamii, N. Aoi, S. Bassauer, C. A. Bertulani,
J. Carter, L. Donaldson, H. Fujita, Y. Fujita, et al., Phys. Rev. Lett. 119, 182503
(2017).

[131] T. Ericson, Phys. Rev. Lett. 5, 430 (1960).

[132] V. Mishra, N. Boukharouba, S. M. Grimes, K. Doctor, R. S. Pedroni, and R. C. Haight,
Phys. Rev. C 44, 2419 (1991).

[133] F. B. Bateman, S. M. Grimes, N. Boukharouba, V. Mishra, C. E. Brient, R. S. Pedroni,
T. N. Massey, and R. C. Haight, Phys. Rev. C 55, 133 (1997).

[134] W. P. Abfalterer, R. W. Finlay, and S. M. Grimes, Phys. Rev. C 62, 064312 (2000).

[135] Y. Kalmykov, T. Adachi, G. P. A. Berg, H. Fujita, K. Fujita, Y. Fujita, K. Hatanaka,
J. Kamiya, K. Nakanishi, P. von Neumann-Cosel, et al., Phys. Rev. Lett. 96, 012502
(2006).

225

http://dx.doi.org/ 10.1103/PhysRevC.73.034311
http://dx.doi.org/ 10.1103/PhysRevC.73.034311
http://dx.doi.org/10.1103/PhysRevC.63.021306
http://dx.doi.org/https://doi.org/10.1016/0375-9474(96)00162-5
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(01)01095-8
http://dx.doi.org/10.1007/s100500170025
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(01)00940-X
http://dx.doi.org/10.1088/1742-6596/267/1/012033
http://dx.doi.org/10.1140/epja/i2015-15171-3
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2019.06.011
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2019.06.011
https://www.nndc.bnl.gov/ensdf/
https://www.nndc.bnl.gov/ensdf/
http://dx.doi.org/10.1016/C2015-0-00522-6
http://dx.doi.org/10.1103/PhysRev.149.844
http://dx.doi.org/ 10.1103/PhysRevC.51.2942
http://dx.doi.org/10.1103/PhysRevC.56.1613
http://dx.doi.org/ 10.1103/PhysRevLett.119.182503
http://dx.doi.org/ 10.1103/PhysRevLett.119.182503
http://dx.doi.org/10.1103/PhysRevLett.5.430
http://dx.doi.org/ 10.1103/PhysRevC.44.2419
http://dx.doi.org/ 10.1103/PhysRevC.55.133
http://dx.doi.org/10.1103/PhysRevC.62.064312
http://dx.doi.org/ 10.1103/PhysRevLett.96.012502
http://dx.doi.org/ 10.1103/PhysRevLett.96.012502


BIBLIOGRAPHY
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A. Makinaga, and G. Rusev, Phys. Rev. C 86, 051302 (2012).

[165] C. Romig, J. Beller, J. Glorius, J. Isaak, J. H. Kelley, E. Kwan, N. Pietralla, V. Y.
Ponomarev, A. Sauerwein, D. Savran, et al., Phys. Rev. C 88, 044331 (2013).
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[168] J. Isaak, D. Savran, B. Löher, T. Beck, M. Bhike, U. Gayer, Krishichayan, N. Pietralla,
M. Scheck, W. Tornow, et al., Phys. Lett. B 788, 225 (2019).

[169] K. Sieja, Eur. Phys. J. A 59, 147 (2023).

[170] E. Litvinova and N. Belov, Phys. Rev. C 88, 031302 (2013).

[171] N. Q. Hung, N. D. Dang, and L. T. Q. Huong, Phys. Rev. Lett. 118, 022502 (2017).

[172] K. Sieja, Phys. Rev. Lett. 119, 052502 (2017).

227

http://dx.doi.org/ https://doi.org/10.1016/j.nds.2007.11.003
http://dx.doi.org/ 10.1103/PhysRevC.86.035805
http://dx.doi.org/ 10.1103/PhysRevC.86.035805
http://dx.doi.org/10.1103/PhysRevC.105.015801
http://dx.doi.org/10.1103/PhysRevC.101.045806
http://dx.doi.org/10.1103/PhysRevC.101.045806
http://dx.doi.org/10.1103/PhysRevLett.92.172501
http://dx.doi.org/10.1103/PhysRevC.83.014312
http://dx.doi.org/10.1103/PhysRevC.83.014312
http://dx.doi.org/10.1103/PhysRevC.98.054303
http://dx.doi.org/10.1103/PhysRevC.98.054303
http://dx.doi.org/https://doi.org/10.22323/1.281.0062
http://dx.doi.org/ 10.1103/PhysRevC.86.051302
http://dx.doi.org/10.1103/PhysRevC.88.044331
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2013.10.040
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2015.04.018
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2018.11.038
http://dx.doi.org/10.1140/epja/s10050-023-01067-8
http://dx.doi.org/10.1103/PhysRevC.88.031302
http://dx.doi.org/10.1103/PhysRevLett.118.022502
http://dx.doi.org/10.1103/PhysRevLett.119.052502


BIBLIOGRAPHY

[173] H. P. Loens, K. Langanke, G. Mart́ınez-Pinedo, and K. Sieja, Eur. Phys. J. 48, 34
(2012).

[174] C. W. Johnson, Phys. Lett. B 750, 72 (2015).

[175] V. F. Weisskopf, Phys. Rev. 83, 1073 (1951).

[176] C. M. McCullagh, M. L. Stelts, and R. E. Chrien, Phys. Rev. C 23, 1394 (1981).

[177] S. Kadmenskii, V. Markushev, and V. Furman, Sov. J. Nucl. Phys. 37, 345 (1983).

[178] J. Kopecky and R. Chrien, Nucl. Phys. A 468, 285 (1987).

[179] J. Kopecky, M. Uhl, and R. E. Chrien, Phys. Rev. C 47, 312 (1993).

[180] Handbook for Calculations of Nuclear Reaction Data, RIPL-2 , TECDOC Series No.
1506 (International Atomic Energy Agency, Vienna, 2006).

[181] V. Plujko, Nucl. Phys. A 649, 209 (1999), giant Resonances.

[182] V. Plujko, Acta Phys. Pol. B 31, 435 (2000).

[183] V. A. Plujko, S. Ezhov, M. Kavatsyuk, A. Grebenyuk, and R. Yermolenko, J. Nucl.
Sci. Technol. 39, 811 (2002).

[184] V. A. Plujko, I. M. Kadenko, O. M. Gorbachenko, and E. V. Kulich, Int. J. Mod. Phys.
E 17, 240 (2008).

[185] S. Mughabghab and C. Dunford, Phys. Lett. B 487, 155 (2000).

[186] A. C. Larsen, G. M. Tveten, T. Renstrøm, H. Utsunomiya, E. Algin, T. Ari-izumi, K. O.
Ay, F. L. Bello Garrote, L. Crespo Campo, F. Furmyr, et al., Phys. Rev. C 108, 025804
(2023).

[187] M. Guttormsen, K. O. Ay, M. Ozgur, E. Algin, A. C. Larsen, F. L. Bello Garrote, H. C.
Berg, L. Crespo Campo, T. Dahl-Jacobsen, F. W. Furmyr, et al., Phys. Rev. C 106,
034314 (2022).

[188] O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara,
S. Okumura, C. Ishizuka, T. Yoshida, et al., J. Nucl. Med. Technol. 60, 1 (2023).

[189] T. Togashi, T. Otsuka, N. Shimizu, and Y. Utsuno, JPS Conf. Proc. 23, 012031 (2018).

[190] R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys. Rev. Lett. 111, 232504 (2013).

[191] S. N. Liddick, A. C. Larsen, M. Guttormsen, A. Spyrou, B. P. Crider, F. Naqvi, J. E.
Midtbø, F. L. Bello Garrote, D. L. Bleuel, L. Crespo Campo, et al., Phys. Rev. C 100,
024624 (2019).

[192] S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002).

228

http://dx.doi.org/10.1140/epja/i2012-12034-5
http://dx.doi.org/10.1140/epja/i2012-12034-5
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2015.08.054
http://dx.doi.org/10.1103/PhysRev.83.1073
http://dx.doi.org/10.1103/PhysRevC.23.1394
http://inis.iaea.org/search/search.aspx?orig_q=RN:15008335
http://dx.doi.org/https://doi.org/10.1016/0375-9474(87)90518-5
http://dx.doi.org/10.1103/PhysRevC.47.312
https://www.iaea.org/publications/7129/handbook-for-calculations-of-nuclear-reaction-data-ripl-2
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(99)00063-9
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(99)00063-9
http://dx.doi.org/ 10.1080/00223131.2002.10875222
http://dx.doi.org/ 10.1080/00223131.2002.10875222
http://dx.doi.org/10.1142/S0218301308009744
http://dx.doi.org/10.1142/S0218301308009744
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(00)00792-9
http://dx.doi.org/10.1103/PhysRevC.108.025804
http://dx.doi.org/10.1103/PhysRevC.108.025804
http://dx.doi.org/10.1103/PhysRevC.106.034314
http://dx.doi.org/10.1103/PhysRevC.106.034314
http://dx.doi.org/ 10.1080/00223131.2022.2141903
http://dx.doi.org/10.7566/JPSCP.23.012031
http://dx.doi.org/10.1103/PhysRevLett.111.232504
http://dx.doi.org/ 10.1103/PhysRevC.100.024624
http://dx.doi.org/ 10.1103/PhysRevC.100.024624
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(02)00860-6


BIBLIOGRAPHY

[193] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

[194] S. Hilaire, S. Goriely, S. Péru, F. Lechaftois, I. Deloncle, and M. Martini, EPJ Web
Conf. 146, 05013 (2017).

[195] F. Andreozzi, F. Knapp, N. L. Iudice, A. Porrino, and J. Kvasil, Phys. Rev. C 75,
044312 (2007).

[196] V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

[197] T. Kawano, Y. Cho, P. Dimitriou, D. Filipescu, N. Iwamoto, V. Plujko, X. Tao, H. Ut-
sunomiya, V. Varlamov, R. Xu, et al., Nuc. Data Sheets 163, 109 (2020).

[198] N. Pietralla, Nucl. Phys. News 28, 4 (2018).
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[224] C. Sükösd, W. Galster, I. Licot, and M. Simonart, Nucl. Instr. Meth. Phys. Res. A
355, 552 (1995).
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