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Abstract 

Background  Autism and different neurodevelopmental conditions frequently co-occur, as do their symptoms 
at sub-diagnostic threshold levels. Overlapping traits and shared genetic liability are potential explanations.

Methods  In the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), we leverage item-level 
data to explore the phenotypic factor structure and genetic architecture underlying neurodevelopmental traits at age 
3 years (N = 41,708–58,630) using maternal reports on 76 items assessing children’s motor and language develop-
ment, social functioning, communication, attention, activity regulation, and flexibility of behaviors and interests.

Results  We identified 11 latent factors at the phenotypic level. These factors showed associations with diagnoses 
of autism and other neurodevelopmental conditions. Most shared genetic liabilities with autism, ADHD, and/or schiz-
ophrenia. Item-level GWAS revealed trait-specific genetic correlations with autism (items rg range = − 0.27–0.78), 
ADHD (items rg range = − 0.40–1), and schizophrenia (items rg range = − 0.24–0.34). We find little evidence of common 
genetic liability across all neurodevelopmental traits but more so for several genetic factors across more specific areas 
of neurodevelopment, particularly social and communication traits. Some of these factors, such as one capturing 
prosocial behavior, overlap with factors found in the phenotypic analyses. Other areas, such as motor development, 
seemed to have more heterogenous etiology, with specific traits showing a less consistent pattern of genetic correla-
tions with each other.

Conclusions  These exploratory findings emphasize the etiological complexity of neurodevelopmental traits at this 
early age. In particular, diverse associations with neurodevelopmental conditions and genetic heterogeneity could 
inform follow-up work to identify shared and differentiating factors in the early manifestations of neurodevelopmen-
tal traits and their relation to autism and other neurodevelopmental conditions. This in turn could have implications 
for clinical screening tools and programs.
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Introduction
Recent versions of international diagnostic classifica-
tion systems have introduced an umbrella category of 
neurodevelopmental conditions. Conditions classified in 
this category typically manifest from childhood and are 
characterized by divergent trajectories of development. 
Generally, they are diagnosed based on significant diffi-
culties in developmental skills in areas such as language, 
social abilities, learning, or motor activity. Neurodevel-
opmental conditions include autism spectrum conditions 
(autism) as well as conditions such as attention-deficit 
hyperactivity disorder (ADHD), intellectual disabilities, 
specific learning disabilities, developmental coordination 
disorder, and tic conditions. Some of these conditions 
had previously been conceptualized as independent and 
mutually exclusive conditions. For example, under DSM-
IV, autism was an exclusion criterion for ADHD prevent-
ing their co-diagnosis. However, the recent shift towards 
their co-classification aligns diagnostic systems, such as 
the DSM, with a longstanding clinical awareness that 
observations of the specific traits and clinical features of 
neurodevelopmental conditions co-occur across diagnos-
tic boundaries.

Neurodevelopmental conditions frequently co-occur 
[1, 2] and share symptoms at sub-diagnostic threshold 
levels [3, 4]. While the etiology of this co-occurrence 
is not well understood, some observations have impli-
cated shared genetic liability between neurodevelop-
mental conditions. Unidentified latent genetic factors 
[5] as well as identified common [6–9] and rare genetic 
variants [10–12] are shared amongst many clinically-
distinct neurodevelopmental conditions. Revisions of the 
formal diagnostic classification of neurodevelopmental 
conditions, such as those mentioned above, are in part a 
reflection of developments in our understanding of their 
common features [13–15]. However, it is also important 
to recognize that initial classifications were intended to 
describe characteristic symptom profiles rather than 
intended to imply inherent distinctions reflecting biologi-
cal realities. That is, investigating the co-occurrence and 
shared etiology of different neurodevelopmental condi-
tions can result in highly clinically-relevant insights with-
out necessarily calling into question the distinctiveness 
and clinical utility of the conditions as separate entities.

Investigating the nosological and genetic bases for 
co-occurring neurodevelopmental conditions requires 
detailed data on their traits. Population-based registries, 
which collect diagnostic information from health care use 
for a given population, are typically limited to diagnos-
tic (yes/no) outcomes. Clinical cohorts, which may have 
more detailed data, are generally smaller and commonly 
ascertain individuals based on a single condition. Thus, 
meaningful analyses of common genetic variants and 

shared etiology across areas of development and specific 
traits are difficult. Data collected in population-based 
cohorts, which are sampled from the general popula-
tion and focused on longitudinal collection of data, typi-
cally have more breadth and depth of information that 
can help explore shared etiology of neurodevelopmental 
traits, but relatively fewer individuals with neurodevelop-
mental conditions. Still, relevant traits—capturing indi-
vidual differences in language and motor development, 
attention, hyperactivity, social behavior, and repetitive, 
restricted behaviors and interests—can be observed in 
all children. These traits are likely influenced by some 
of the same underlying genetic liabilities as neurodevel-
opmental conditions [16–18]. The prospective nature of 
population-based birth cohorts means these traits can be 
studied early—prior to or around the age at which neu-
rodevelopmental diagnoses are most commonly made 
[19, 20]. Exploring the relationships between neurode-
velopmental traits early in life, investigating their genetic 
liabilities, and exploring links to neurodevelopmental 
conditions can give new insights into etiological mecha-
nisms underlying the development and differentiation of 
such conditions.

Previous studies have examined the phenotypic factor 
structure of behaviors related to multiple neurodevel-
opmental conditions, primarily using items from ques-
tionnaires for both autism and ADHD in school-aged or 
older children. Out of five studies, four found differenti-
ated dimensions of social communication, restricted and 
repetitive interests and behaviors, attention, and hyper-
activity-impulsivity [21–24], while one found a common 
dimension for restricted and repetitive interests and 
behaviors with hyperactivity-impulsivity [25].

Regarding genetic factor structure, studies have found 
both shared and differentiating genetic factors between 
different domains of autism as well as with other neu-
rodevelopmental conditions. Evidence from both twin 
and molecular genetic studies suggests that communica-
tion and repetitive interest and behavior traits of autism 
have genetically dissociable domains [26, 27]. Findings 
across a range of methodologies support correlated but 
separate genetic contributions to ADHD and autism [24, 
28, 29]. Although the status and history of schizophrenia’s 
conceptualization as having neurodevelopmental ori-
gins is complex and warrants a more fulsome discussion 
[30, 31], it is worth noting that schizophrenia also shares 
genetic liability with both autism [7, 32, 33] and ADHD 
[29]. Initial evidence shows that this overlap contributes 
to different aspects of the phenotypic heterogeneity seen 
in autism [18, 27, 33]. Finally, across neurodevelopment 
more broadly, Pettersson et  al. [5] found both a shared 
latent genetic factor across a range of different neurode-
velopmental traits as well as specific genetic latent factors 
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for impulsivity, learning problems, and autism and tics in 
a general population twin sample. In the present study, 
we leverage information on multiple traits related to dif-
ferent neurodevelopmental conditions. We investigate 
the phenotypic factor structure and genetic architecture 
underlying these early (age 3 years) neurodevelopmental 
traits in a large population-based birth cohort. We addi-
tionally investigate associations of these early signs with 
neurodevelopmental conditions at both the phenotypic 
and genotypic levels.

Methods
Measures and sample
Sample
The Norwegian Mother, Father and Child Cohort Study 
(MoBa) is a population-based pregnancy cohort study 
conducted by the Norwegian Institute of Public Health 
[34, 35]. Participants were recruited from all over Nor-
way from 1999 to 2008. The women consented to par-
ticipation in 41% of the pregnancies. Blood samples 
were obtained from both parents during pregnancy and 
from mothers and children (umbilical cord) at birth. The 
cohort includes approximately 114,500 children, 95,200 
mothers and 75,200 fathers. The current study is based 
on version 12 of the quality-assured data files released 
for research in January 2019. The establishment of MoBa 
and initial data collection was based on a license from 
the Norwegian Data Protection Agency and approval 
from The Regional Committees for Medical and Health 
Research Ethics. The MoBa cohort is currently regulated 
by the Norwegian Health Registry Act. The current study 
was approved by The Regional Committees for Medical 
and Health Research Ethics (2016/1702).

The present study was conducted on a subset of the 
cohort (n = 58,630) who had information available from 
the 36-month questionnaire. The children were an aver-
age of 3.1 years (SD = 0.18) old when mothers completed 
the questionnaire. The sample had a  1.04:1 male-to- 
female ratio. Genetic analyses were conducted using a 
further quality controlled genotyped subset of the cohort 
(n = 42,934). For more information on the genotyping of 
the MoBa sample and for the family-based quality con-
trol pipeline used to prepare these data for analysis, see 
Corfield et al. [36].

Measures for neurodevelopmental traits
We included items from all maternal report scales related 
to neurodevelopment in the 3-year questionnaire that 
asked about children’s observable behavior (as opposed 
to maternal concerns). Items were selected to cover 
areas of motor, language, social, communication, atten-
tion, activity regulation, sensory perception, and flex-
ibility of behaviors and interests across multiple scales 

when possible (Fig.  1). This included items from the 
Social Communication Questionnaire (SCQ) [37], Ages 
and Stages Questionnaire (ASQ) [38], Non-Verbal Com-
munication Checklist (NVCC) [39], Modified Checklist 
for Autism in Toddlers (M-CHAT) [40], Early Screening 
for Autistic Traits Questionnaire (ESAT) [41], the atten-
tion and hyperactivity subscale from the Child Behavior 
Checklist (CBCL) [42], the prosocial behaviors subscale 
of the Strength and Difficulties Questionnaire (SDQ) 
[43] as well as several MoBa-specific questions. All items 
included had either dichotomous (e.g., yes/no) or tri-
chotomous (e.g., not true/sometimes true/often true) 
response categories. Items were reverse coded where 
needed so that higher values reflected greater endorse-
ment of the trait.

Measures for diagnostic and clinically relevant outcomes
Diagnostic data was ascertained from the Norwegian 
Patient Register (NPR) between 2008 and June 2021 
based on ICD-10 criteria using the R package phenotools 
[44]. Therefore, for the youngest in the cohort, diagnos-
tic data was available from birth until approximately age 
12, and for the oldest from approximately age 8 to 21. For 
those without diagnostic data from birth, the first diag-
nosis may be missing from registry data, but most will 
have the diagnostic code registered in subsequent health-
care use. Diagnostic groups were defined for receiving a 
diagnostic code at least one time for ADHD (F90), autism 
(F84.0, F84.1, F84.5, F84.8, and F84.9), intellectual dis-
ability and general developmental delay (F7 and F83), 
specific conditions of speech and language (F80, F98.5, 
F98.6), specific conditions of scholastic skills (F81), spe-
cific conditions of motor function (F82), and tic condi-
tions (F95). The validity of autism diagnoses in MoBa 
has been studied previously [45]. Of 61 children identi-
fied with at least one instance of autism code in NPR, 58 
(95%) received an autism diagnosis based on an inde-
pendent multi-disciplinary standardized diagnostic 
assessment, and record review for another 567 children 
showed that for 86% the diagnostic criteria were well-
documented in the health records [46]. No exclusions 
were made on the basis of other co-occurring disabilities 
or potentially contributing causes of disability (e.g., cere-
bral palsy, identified genetic syndromes, premature birth, 
birth complications) because this might lead to a biased 
or incomplete representation of children with neurode-
velopmental conditions.

Sensitivity analyses for the main diagnostic outcomes 
(ADHD, autism, and intellectual disability/general 
developmental delay) were run restricting to individuals 
who had received a diagnostic code more than once to 
address the possibility of misdiagnosis or coding errors. 
Most diagnoses will have occurred after age 3, but some 
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children will have already had a diagnosis at the time the 
questionnaire data was collected. This impacts different 
diagnostic outcomes differently. For example, using only 
individuals with NPR data available at age 3 so that all 
diagnoses by age 3 are captured, the percent of the diag-
nostic group who had received a diagnosis before age 
4 was as low as 0.2% for ADHD, 6% for autism, 11% for 
intellectual disability/global developmental delay and up 
to 26% for specific conditions of motor function. Percent-
ages for all outcomes are available in Additional file  1: 
Table S2.

Additionally, clinically relevant outcomes for hav-
ing multiple neurodevelopmental conditions diagno-
ses registered as well as any psychiatric hospitalization 
were derived from NPR. Several clinically relevant 
outcomes were also coded using the MoBa question-
naire data. These included measures of maternal report 
of early (by age 3) referral to service use (habilitation 
service, educational psychology service, or child psy-
chiatric clinic/department) as well as later maternally 
perceived impact and impairment from difficulties in 
development and behavior in their child’s life in the age 
5 & 8 questionnaires. Further information on the scales, 

the items used in the factor models, and diagnostic and 
clinically relevant outcomes are available in Additional 
file  2:   supplementary methods and Additional file  1: 
Tables S1–3.

Polygenic scores
Polygenic scores (PGS) were estimated with the soft-
ware PRSice2 [47] based on summary statistics from the 
most recent Psychiatric Genomic Consortium GWAS for 
ADHD [6], autism [7], and schizophrenia [48]. ADHD 
and autism were included as they are neurodevelopmen-
tal conditions with well powered and publicly available 
GWAS summary statistics. Schizophrenia was included 
given neurodevelopmental aspects to its development 
[31, 49, 50]. Scores were regressed on the first 10 genomic 
principal components (PCs) and genotype batch. The 
first principal component of 11 scores, constructed based 
on p-value thresholds between 5 × 10–8 and 1, was used 
for the subsequent analyses. This approach controls for 
type one error rate arising from optimization of pruning 
and thresholding while still maintaining prediction per-
formance [51].

Fig. 1  Outline of study design and main analyses at the phenotypic and genotypic levels. Grey boxes outline the steps where questionnaire 
items were removed with the exclusion thresholds listed to the right. Boxes indicate an analysis with the arrows denoting analyses which are 
based on (i.e., factor structure) or used results (i.e., summary statistics) from a previous analysis. Analyses conducted at the phenotypic level 
with no sample size listed were conducted in the full sample (N = 58,630). Half-samples for the EFA/CFA conducted in the phenotypic level were 
randomly selected halves of the full sample. Estimating rg refers to estimation of genetic correlations of the items/factors with neurodevelopmental 
conditions. 1 With the assumptions of an OR of 1.2, MAF of 0.01, and alpha of 0.01 in a logistic model with additive genetic effects. 2 Only common 
factor models with 3+ items run. 3 Common factor GWAS only run on models with good fits and significant factor loadings
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Analyses
An overview of the analyses performed as well as thresh-
olds for item inclusion in each analytic step are presented 
in Fig. 1. Lenient thresholds for item selection were cho-
sen to maximize the number of traits across different 
areas of development. Analytical code can be found at 
https://​github.​com/​psych​gen/​neuro​devel​opment_​traits_​
struc​ture.

Exploratory and confirmatory factor analyses
Exploratory factor analysis (EFA) was performed in one 
randomly selected half of the full sample (n = 29,183). 
Confirmatory factor analyses (CFA) were run in the 
other half of the full sample (n = 29,447) for possible 
viable models derived from the EFA. Using standard fit 
indices (CFI, TLI, RMSEA) the best fitting model out of 
these possible models was used as the final model for 
all downstream analyses. In the full sample, both bifac-
tor and higher-order models were run alongside the final 
selected correlated factor model to assess a unidimen-
sional factor.  To address potential sex differences in the 
measurement of these factors, we conducted measure-
ment invariance testing in the full sample. A multi-group 
CFA (MG-CFA) of the correlated factor model by sex 
(Nmales = 29,955, Nfemales = 28,589) was used to test for 
configural invariance and invariance of thresholds and 
loadings [52]. See Additional file 2: supplementary meth-
ods for further details on the factor analyses, criteria for 
model selection, and measurement invariance testing.

Measurement models with neurodevelopmental diagnoses, 
clinically relevant outcomes, and polygenic scores
The factor associations with diagnostic outcomes served 
two purposes:(1) validation and further characterization 
of the factors and (2) insight into how specific areas of 
development at age 3 are related to receiving a particular 
neurodevelopmental condition diagnosis. A correlated 
factor and a higher-order general factor model were run 
specifying the factors to predict neurodevelopmental 
diagnoses and other clinically relevant outcomes. In the 
correlated factor models, both univariate models with the 
factors predicting the outcomes individually and multiple 
regression models with factors predicting the outcome 
simultaneously were run. Due to collinearity concerns 
in the multiple regression models arising from groups of 
highly correlated factors, the magnitude of the factors’ 
effects within those groups were constrained to be equal 
in the correlated factor model. A higher-order model 
was run to assess if factors moderated the effect of a gen-
eral factor on the outcomes as well as gain some insight 
into the factor effects on outcomes that are unique to 
the specific factor between highly correlated factors in 

the correlated factor model. In the higher-order model, 
general and specific factors were specified to predict 
outcomes separately in two models. Measurement mod-
els including PGS as explanatory variables for the  fac-
tors were run in the correlated factors and higher-order 
model. Models were run in a multi-group SEM frame-
work, grouped by sex with both regression effects and 
model parameters estimated for each sex separately.

Factor analyses software
EFA analyses were all run using the weighted least square 
mean and variance adjusted (WLSMV) estimation 
method and with a geomin oblique rotation applied in 
the Mplus statistical software (Muthén & Muthén, 2011). 
All CFA and measurement invariance models were run 
using the lavaan (v0.6–14) and semTools (v0.5–6) pack-
ages in R with the WLSMV estimation method [53, 54]. 
Missing data was handled using pairwise deletion for 
both the EFA and CFA, as it is the default in Mplus for 
categorical data.

Genome‑wide association studies
Genome-wide association studies (GWAS) were run on 
each individual item (item GWAS) for which power cal-
culations indicated sufficient statistical power, and on 
factor scores estimated for each factor (factor GWAS). 
This was done both to investigate the genetic effects 
underlying the factors we identified as well as to inves-
tigate the specificity of genetic effects between the factor 
and item levels of analysis. Factor scores were estimated 
using parameters for each sex from the correlated factor 
model multi-group CFA using the Empirical Bayes Model 
approach, the lavaan default method for categorical indi-
cators. All GWAS included sex, genotype batch, and the 
first 10 PCs as covariates. Additional sex specific GWAS 
were run as sensitivity analyses for the factors. GWAS 
were run using version 3.1 of the REGENIE software, a 
computationally efficient linear mixed model method 
of conducting multi-trait GWAS. REGENIE can handle 
relatedness in the sample and correct for unbalanced 
case–control phenotypes in binary phenotypes [55]. For 
all factor and feasible item GWAS, SNP-based heritabil-
ity (h2

SNP) and genetic correlations (rg) with ADHD [6], 
autism [7], and schizophrenia [48] were estimated using 
linkage disequilibrium score regression (LDSC) [56]. 
Estimated h2

SNP for the item GWAS was on the liability 
scale. Functional mapping and annotation of the factor 
GWAS results were performed with FUMA (v1.5.3) [57]. 
Further information on sample sizes, prevalence esti-
mates for LDSC, and power estimates used for the above 
analyses are listed in the Additional file 2: supplementary 
methods and Additional file 1: Table S4.

https://github.com/psychgen/neurodevelopment_traits_structure
https://github.com/psychgen/neurodevelopment_traits_structure
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Genomic factor modeling and specificity of SNP effects
Genomic factor modeling used selected item GWAS. A 
lenient power inclusion threshold of Z > 2 as opposed to 
a more standard heuristic of Z > 4 for the item GWAS 
meant that power was borderline for genomic factor 
modeling. Because of this, an EFA was conducted on 
the estimated smoothed genetic correlation matrix of all 
chromosomes as opposed to only on even or odd chro-
mosomes, which has been done to guard against over-
fitting if performing downstream analyses based on the 
EFA [9]. Therefore, no further downstream analyses (e.g., 
CFA) were conducted based on the results. Version 4.1.2 
of the R package stats [58] was used to run the EFA and 
a promax rotation was applied. Common factor models 
based on factors from the phenotypic models that had at 
least three items meeting the item GWAS power thresh-
old were run. For those with good fits and significant fac-
tor loadings, a common factor GWAS was run estimating 
SNP and QSNP effects. QSNP being a measure of how 
well the association of the SNP and the individual trait 
is accounted for by the factor [9, 59]. All confirmatory 
genomic factor modeling and GWAS were conducted 
using diagonally weighted least squares (DWLS) estima-
tion in version 0.0.5 of the GenomicSEM R package [59].

Results
Phenotypic factor structure underlying early 
neurodevelopmental traits
Results of the EFA (Additional file  1: Tables S5–6) and 
CFA models indicated high dimensionality underlying 
early neurodevelopmental traits. Procedures to deter-
mine the optimal number of factors to retain indicated 
between 1 and 15 factors (Additional file  2: Figure S1) 
and fit indices from the EFA showed models with more 
than 9 factors met good fit criteria (Additional file  1: 
Table S5). Balancing these results with the interpretabil-
ity of the factors, 3 models (9, 10, and 11-factor models) 
were selected to be run as confirmatory factor models in 
the other half of the sample. The 11-factor showed the 
best fit for complexity-penalized fit indices out of the 
three in both the EFA (Additional file  1: Table  S5) and 
CFA (Additional file  1: Table  S7). The 11-factor model 
was selected to be used in the downstream analyses.

The 11-factor model included factors roughly corre-
sponding to areas of prosocial behavior (prosocial), motor 
development (motor), nonverbal communication and joint 
attention (NVcom), social attention and interest (Social-
Att), language and verbal communication (language), play, 
repetitive and restricted behaviors and interests (RepBe-
havior), repetitive and idiosyncratic speech (RepSpeech), 
waiting, inattention and overactivity (inattention), and 
impulsivity. Most items (73/76) loaded well (λ > 0.4) onto 
their respective factors (Additional file  2: Figure S2). 

Additionally, all factors except the idiosyncratic speech 
and impulsivity factors had moderate to high positive cor-
relations with most other factors (Fig. 2). Factors covering 
the broad domains of social/communication, ADHD traits, 
and repetitive behaviors and speech were highly correlated 
amongst themselves but showed differing patterns of cor-
relation with factors outside their broad domains. Parame-
ter estimates of the final model are presented in Additional 
file 1: Tables S8–11. Finally, measurement invariance test-
ing showed that invariance of thresholds and loadings 
held, so factors were assumed to largely represent the same 
constructs between males and females (Additional file  1: 
Table S12).

An additional general factor explaining all covariance 
between the different factors of early neurodevelopment 
had poor model fit indices (Hierarchical CFI: 0.621, TLI: 
0.609, RMSEA: 0.032; Bifactor: CFI: 0.644, TLI: 0.624, 
RMSEA: 0.031) compared with the correlated factor 
model (CFI: 0.888, TLI: 0.883, RMSEA: 0.018) in the full 
sample. Besides fit indices, anomalous results in param-
eter estimates, non-uniform (λ = 0.07–0.89) loadings, and 
several specific factors with variances estimated close 
to zero indicated misspecification of the bifactor model 
to the data. For indicators other than model fit, this 
was less apparent in the hierarchical model (Additional 
file  1: Tables S13–14); therefore, it was used for further 
analyses. However, the general factor still exhibited var-
ied loadings (λ = 0.313–0.787) and was characterized by 
factors encompassing social, communication, and motor 
development, which all had strong loadings from items 
with low endorsement in the general population.

Factor validation and correlations with later outcomes
We found that nearly all early neurodevelopmental fac-
tors were associated with receiving a diagnosis of any of 
the neurodevelopmental conditions, higher perceived 
impact in daily life at ages 5 and 8, later psychiatric inpa-
tient services, and reported early referral to habilitation, 
special education, and psychiatric services (Additional 
file 2: Figures S3–S5). In multiple regression models, all 
outcomes were still associated with at least one factor or 
group of highly correlated factors, and many were asso-
ciated with multiple (Fig. 3; Additional file 2: Figures S6, 
S7). For example, both the highly correlated groups of the 
ADHD-trait factors, and social and communication fac-
tors were still associated with later receiving a diagnosis 
of ADHD. Estimates of these associations did not differ 
when restricting the sample to those  who had received 
a diagnostic code at least twice, although precision 
decreased slightly (Additional file 2: Figure S8). Some of 
these associations also differed by sex, such as the motor 
factor being associated with an autism diagnosis only in 
girls in this model.
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In the hierarchical model, where specific factors 
simultaneously predicted the outcomes, all factors were 
still associated with at least one outcome and some 
factors within the highly correlated factor groups had 
differing magnitude and direction of effects from each 
other (Additional file 2: Figures S9–S11). For example, 
out of the highly correlated social and communication 
factors, only the play and language factors were associ-
ated with ADHD. These two factors also had the most 
associations in the higher-order models, both being 

significantly associated with most of the diagnostic out-
comes. The general factor was associated with all out-
comes (Additional file 2: Figures S9–S11). However, the 
effect of a general factor on the outcome, when mod-
erated by the specific factors, primarily explained addi-
tional variance in the outcomes related to early referral, 
general developmental delay/intellectual disability, and, 
in girls, specific language conditions when compared to 
the correlated factors model (Additional file  2: Figure 
S12).

Fig. 2  A correlation matrix of the 11 factors from the correlated factor model in the full population. Factors include prosocial behavior (prosocial), 
motor development (motor), nonverbal communication and joint attention (NVcom), social attention and interest (Social Att), language and verbal 
communication (language), play, repetitive and restricted behaviors and interests (RepBehavior), repetitive and idiosyncratic speech (RepSpeech), 
waiting, inattention and overactivity (inattention), and impulsivity. An example item from the factor is listed for each factor
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Common genetic variance underlying early 
neurodevelopmental traits
GWAS of the factor scores from the 11-factor model 
had low h2

SNP estimates. Four factors had estimated 
confidence intervals that crossed 0 (Additional file  1: 
Table  S15). The highest estimate was the non-verbal 
communication factor (h2

SNP = 0.037 [0.013–0.061], 
p = 0.003). Four unique genome-wide significant loci 
identified across the factors, three of which were associ-
ated with multiple factors (Additional file 1: Table S16). 
Results from gene-based association analyses imple-
mented in FUMA (significant p < 2.682 × 10–6; Table S17), 
identified CNGB3 (p = 1.53 × 10–6) as associated with 
the motor factor as well as RSRC1 (p = 3.95 × 10–7) and 
ADAMTS17 (p = 8.19 × 10–7) with the prosocial behavior 
factor. Sex-stratified factor GWAS showed high genetic 
correlations with the factors in the full sample. These 
GWAS showed some differences in h2

SNP estimates by 
sex, but these differences did not reach statistical sig-
nificance (Additional file  1: Table  S18). 34 item GWAS 
reached our greater than 1 h2

SNP Z threshold (Addi-
tional file 1: Table S19), of which 21 items had h2

SNP that 

reached statistical significance. These items had a large 
range of estimated h2

SNP (range: 0.02–0.27; Additional 
file 1: Table S20) with differing levels of precision.

Early neurodevelopmental traits relationships with genetic 
liability for neurodevelopmental conditions
Genetic correlations between early neurodevelopmental 
traits and neurodevelopmental conditions were observed 
across multiple domains, as shown in Fig.  4,  and were 
evident at both the factor (Additional file  1: Table  S21) 
and item-level (Additional file 1: Table S22). ADHD had 
the highest genetic correlation with the inattentive and 
overactivity factor (rg = 0.95 [0.13–1]). The prosocial 
behavior factor had the highest significant association 
for both autism (rg = 0.56 [0.29–0.83]) and schizophre-
nia (rg = 0.20 [0.05–0.34]). We find some instances of 
differing effects across conditions, such as the positive 
genetic correlation between the motor factor and autism 
(rg = 0.42 [0.11–0.72]), and to a lesser extent, schizophre-
nia (rg = 0.17 [0–0.34]) but a negative correlation with 
ADHD (rg = − 0.32 [− 0.58 to − 0.01]).

Fig. 3  Estimated effects of factors from the correlated factor model in a multivariate regression controlling for the effects of all factors 
on the outcome for 5 selected diagnostic outcomes. Effects are presented as odds ratios calculated from the exponential of the standardized 
beta value from the logistic regression in the measurement models. 95% percent confidence intervals are shown. Due to high correlations 
amongst domains in the broad areas of social communication (the language & verbal communication, nonverbal communication and joint 
attention, play, and social attention and interest factors), ADHD-associated traits (the inattention and overactivity, waiting, impulsivity factors), 
and repetitive and restricted behaviors (the repetitive and idiosyncratic speech and repetitive and restricted behaviors and interests factors) effects 
of these factors were constrained to be equal to avoid collinearity issues. “*”, “**”, “***” denote adjusted p < 0.05, < 0.01, and < 0.001 respectively, 
after multiple testing correction. For full results of the outcome models, see the supplementary results (Additional file 2)
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The factors from the sex-stratified GWAS displayed 
similar genetic correlations with the neurodevelopmental 
conditions as in the entire sample but with slightly higher 
correlation estimates in males than females with autism 
and slightly higher in females than males with schizo-
phrenia (Additional file  1: Table  S23). These correla-
tions were accompanied by large, overlapping confidence 
intervals but were in accordance with the findings of the 
PGS analyses. In these analyses, effects surviving multi-
ple testing corrections were found exclusively in males 
for the autism PGS and in females for the schizophrenia 
PGS (Additional file  2: Figures  S13–S14 and Additional 
file 1: Tables S24–S25).

At the item-level, the item “considerate of feelings” had 
the highest genetic correlation with autism, the item 
“can’t sit still, restless or overactive” with ADHD, and “vol-
unteers to help others” with schizophrenia (Additional 
file 1: Table S22). A few item GWAS had differing effects 
compared to their specified factor’s GWAS. For example, 
the item measuring “excessive talking”, which was a part 

of the CBCL and loaded onto the impulsivity factor, was 
significantly negatively correlated (rg = − 0.25 [− 0.37 to 
− 0.124]) with schizophrenia after multiple testing cor-
rections while the impulsivity factor was uncorrelated 
with schizophrenia (rg = − 0.01[− 0.17–0.15]).

Genomic structure modeling and specificity of SNP effects
Given power constraints, the EFA was run on the 
smoothed estimated genetic correlation matrix of all 
chromosomes and no further downstream analyses were 
performed. Genetic correlations between all items were 
estimated and are presented in Fig. 5. Two to three clus-
ters of items seem to emerge from this, the most obvi-
ous being the prosocial behavior items and the item “uses 
hand like a tool.” These items were notably the items with 
the highest genetic correlations with autism. Extracting 
one “general” factor in the EFA left many items unrep-
resented. Further extractions of factors beyond a single 
factor were hard to interpret and frequently had factors 

Fig. 4  Estimated item and factor loading GWAS genetic correlation with PGS GWAS. 95% percent confidence intervals are presented. Results 
of multiple testing corrections are presented in Additional file 1: Tables S21 and S22 as a reference for the strength of statistical significance. Items 
are represented by points and factors are represented by bars. Bar width only reflects the number of items from the factor that were included. 
(R) denotes reversed coded items. The inattention factor had an estimated genetic correlation above one but is shown just below 1.0. This factor 
as well as the impulsivity factor had upper bounds of the confidence interval estimated over 1. Item-level estimates were removed if confidence 
intervals were estimated as having a range larger than 1.5
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defined by a few items, frequent cross-loadings, and 
strong negative loadings.

The motor, prosocial behavior, RepBehavior, and inat-
tention factors were recreated via a CFA at the genomic 
level. Among these, only the prosocial behavior factor 
demonstrated an exceptional fit (CFI = 1, SRMR = 0.095; 
Additional file  2: Figure S15) and significant loadings 
for most items. The other common factor models either 
had loadings that did not reach statistical significance, 
fit indices that could not be estimated, or, in the case of 
the motor factor, did not converge. Based on this, we 
only performed a subsequent common factor GWAS 
for the prosocial behavior factor, which did not yield 
any genome-wide significant loci but identified more 
Qsnp than SNP hits at a suggestive association thresh-
old (p < 5 × 10–5; see Additional file  2:supplementary 
results and Additional file 1: Tables S26–S27).

Discussion
We leverage the item-level questionnaire data in up to 
58,630 MoBa children to investigate patterns of rela-
tionships between specific traits from different areas of 

development in early childhood, the underlying genetic 
contributions, and potential shared etiology to clinically 
diagnosed neurodevelopmental conditions. We find that 
difficulties across all areas of early neurodevelopment 
are associated with receiving diagnoses across a range 
of neurodevelopmental conditions. Particularly, early 
difficulties in social and communication domains  are 
associated with receiving a diagnosis of almost all neu-
rodevelopmental conditions, suggesting that these are 
trans-diagnostically relevant in neurodevelopmental con-
ditions. Additionally, the genetic contributions underly-
ing variation in the general population for several early 
neurodevelopmental domains are genetically correlated 
with ADHD, autism, and schizophrenia. Finally, we find 
limited evidence of shared common genetic effects across 
all areas of neurodevelopment. From these results, we 
draw two over-arching conclusions. First, at both the 
phenotypic and genotypic levels, there is high hetero-
geneity in the underlying effects on variation in these 
traits—higher than would be expected if these traits were 
neatly aligned with distinct neurodevelopmental condi-
tions. Secondly, despite their etiological and structural 

Fig. 5  The estimated smoothed genetic correlations matrix for the 22 neurodevelopmental items used in the EFA and genetic factor modeling. 
Items order using angular order of the eigenvectors (AOE). "*”, “**”, “***” denote uncorrected p < 0.05, < 0.01, and < 0.001 respectively
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heterogeneity, early neurodevelopmental traits in a gen-
eral population sample are phenotypically and genetically 
associated with neurodevelopmental diagnoses.

Heterogeneity underlying early neurodevelopmental traits 
in a population‑based sample
We find that most domains of neurodevelopment traits 
are at least moderately correlated with each other at 
the phenotypic level. The simplest etiological explana-
tion for this would be shared liability across all areas of 
neurodevelopment, such as a general genetic neurode-
velopment factor, which has been suggested based on a 
previous twin study [5]. However, we find substantial 
heterogeneity underlying early neurodevelopmental 
traits both at the phenotypic and genetic levels, and lit-
tle evidence supporting a general factor of liability to all 
early neurodevelopmental traits at either level of analy-
sis. Notwithstanding the question of the existence of a 
general factor for neurodevelopmental traits, we observe 
increased heterogeneity compared to what would be 
expected based on etiological factors that neatly lined up 
with diagnostic criteria. The observed factors are highly 
correlated amongst themselves in domains related to 
commonly separated neurodevelopmental domains (i.e., 
social and communication, repetitive behaviors, ADHD-
related traits). However, these factors are differentially 
correlated with the factors outside of their domain and, 
when correlations between factors were accounted for 
by a general factor, have differing associations with later 
diagnoses. To note, while the neurodevelopmental traits 
are associated with and share some genetic variance with 
neurodevelopmental conditions, traits are non-specific to 
conditions. This pattern is consistent with co-occurrence 
between neurodevelopmental conditions being com-
monplace—in many cases "being the rule, rather than the 
exception" [3, 60, 61].

The results of the genomic factor modeling point 
towards a similar level of heterogeneity in the genetic 
architecture of early neurodevelopmental traits. We find 
some evidence for a genetic factor that resembles the 
prosocial factor identified in the phenotypic models and 
some shared genetic loci across areas of neurodevelop-
ment, particularly across social and communication 
and prosocial behavior. However, in other areas, such as 
motor development, increased heterogeneity is observed 
at the item-level, potentially suggesting different genetic 
mechanisms underlying different aspects of motor skills. 
Lastly, even among the items measuring prosocial behav-
ior, the higher number of QSNP hits compared to SNP hits 
contributing to the common genetic factor at a sugges-
tive association threshold emphasizes the possibility of 
item-level specificity of genetic effects, even within the 
most coherent genetic factor.

Early neurodevelopmental traits are associated 
with neurodevelopmental conditions
The factors identified as underpinning early neurode-
velopmental traits in our sample were all associated 
with receiving a clinical diagnosis for different neurode-
velopmental conditions. We find stronger associations 
between conditions and factors that contain items that 
overlap with diagnostic criteria of that condition, such 
as the inattention, impulsivity, and waiting factors with 
ADHD. One notable exception to this concerns the repet-
itive speech and behavior factors. Although these factors 
were independently associated with receiving an autism 
diagnosis, the effect sizes were lower compared to factors 
covering social communication difficulties. Further, when 
controlling for variation in other areas of development, 
these factors were no longer associated with receiving a 
diagnosis in some of the subgroups of the diagnostic out-
come, such as girls who received an autism diagnosis but 
not a diagnosis for ADHD. What the repetitive speech 
and behavior factors are capturing in the general popu-
lation should be considered in the interpretation of this 
finding. Most of the items that make up repetitive speech 
and behavior factors are from the SCQ, which, as a diag-
nostic screener, has mixed findings on the validity of its 
use for children under 4 [62]. Additionally, items in these 
factors are endorsed relatively frequently compared to 
the other SCQ items in our sample, meaning maternal 
reports of these items may be primarily capturing behav-
iors in the more typical range of these traits.

Stronger associations between factors and the diag-
nostic outcomes are seen for conditions that have higher 
rates of earlier referral or diagnosis in our sample, such 
as intellectual disability and specific motor conditions. 
The strength of these associations is likely impacted by 
the overlap in items with diagnostic criteria, however, 
we still find associations of factors with conditions with 
later  average age of diagnosis, such as specific learning 
conditions, and with conditions  that do not have diag-
nostic criteria overlapping with the factor, such as the 
social and communication factors with an ADHD diag-
nosis without co-occurring autism.

We find  early childhood neurodevelopmental traits 
share common genetic liability with ADHD, autism, 
and schizophrenia. We identified associations between 
autism, and to a lesser extent, schizophrenia genetic 
liability with early motor, language, and social traits in 
contrast to some work in general populations, includ-
ing in a smaller subset of MoBa, which have found few 
associations between these conditions and early child-
hood behaviors [17, 63]. Although the previous finding of 
autism genetic liability being associated with motor dif-
ficulties at age 3 in MoBa [17] remains in our larger sam-
ple. There are mixed findings on the association between 
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ADHD genetic liability and social, communication, and 
repetitive behaviors and interests [64, 65]. We primarily 
find weak evidence for ADHD genetic liability contribut-
ing to early repetitive and idiosyncratic speech. Whilst 
it is tempting to read into discrepancies, it is important 
to note here the potential impact of well-characterized 
issues with the portability of polygenic scores across dif-
ferent study samples and populations [66], as well as the 
potential impact of chance variation—given the small 
effect sizes with which polygenic liability appears to man-
ifest early in life [68]. Based on these inconsistent results 
across samples  and   given the current stage of genomic 
discovery for neurodevelopmental conditions, this result 
should not be over-interpreted. However, our findings are 
in line with previous findings of inattention and hyperac-
tivity traits as well as social and communication behav-
ior in the general population sharing genetic variation 
with ADHD and autism, respectively [16, 65]. Finally, we 
observe other consistent findings with the literature, such 
as autism and schizophrenia genetic liability being asso-
ciated with lower prosocial behavior [64, 67] and ADHD 
with fewer early motor difficulties [63].

Many items suggest similar associations to neurode-
velopmental conditions as their factor. However, we do 
observe some trait-level heterogeneity  similar to the item-
level or sub-domain level genomic analysis of neuroticism 
[69] and impulsivity [70]. For example, while the prosocial 
factor was genetically correlated with autism, only the fac-
tor’s items “kind to young children”, “helpful when hurt”, 
and “considerate of feelings” had associations with autism 
after multiple testing corrections. Items in the motor and 
repetitive behavior factors also show some trait-level het-
erogeneity. These observations offer some potential areas 
for follow-up work in clinical samples identifying differ-
entiating mechanisms of early development across condi-
tions. Our findings also identify some potential for shared 
mechanisms across domains at the sub-diagnostic level: 
for instance, repetitive behaviors and speech with ADHD 
traits. Genetic liability to ADHD has also been associated 
with repetitive behaviors and interests in clinical samples 
of autistic individuals [18, 33]. However, as previously 
mentioned,  the potential impact of chance variation and 
the validity of items in a general population should also be 
considered with this observation. For example, items such 
as “says the same thing over and over" could be misinter-
preted by parents, resulting in it capturing activity level 
or more common behaviors, rather than the idiosyncratic 
speech typically associated with autism.

Limitations
There are some limitations of our study that should be 
considered. Despite splitting our sample into discovery 
and test halves, the exploratory factor analysis of such 

a diverse set of items in a large sample is likely to have 
led to some level of overfitting. Because of this, we do 
not suggest interpreting all identified factors as neces-
sarily definitive distinct factors but instead put forward 
that there is increased dimensionality across areas of 
development with differing relationships to each other 
and neurodevelopmental conditions that may be lost at 
the diagnostic or scale level. Although we included meas-
ures of most behavioral domains of neurodevelopmen-
tal conditions, we did not have measures of all domains, 
such as cognitive ability and tics. Another consideration 
is that we used registry data to create our diagnostic 
outcomes. A limitation of this is that we cannot distin-
guish between subsequent co-occurring diagnoses and 
substitution diagnoses. Further, data being only available 
after 2008 means we do not know for certain how many 
had a diagnosis at the time mothers filled out the ques-
tionnaire. As these individuals were included this could 
impact the strength of the associations seen for some of 
the diagnostic outcomes.

Low power to detect signal for many of the item 
GWAS limits the claims. For the effects we identified the 
increased variation due to underpowered GWAS may 
contribute to the large range of estimated genetic cor-
relations. However, power concerns are unlikely to fully 
explain the lack of a single general genetic factor. Our 
genetic analyses were also limited to common genetic var-
iants, which may contribute to a lack of a general genetic 
factor as there is considerable overlap of rare variants 
associated with different neurodevelopmental conditions 
[10–12]. Finally, the genetic analyses were limited to par-
ticipants in MoBa of European genetic ancestry, limiting 
the generalizability of our results across ancestries.

Conclusions
Our exploratory results reveal the multidimensional-
ity underlying early neurodevelopmental traits in a 
population-based birth cohort. These dimensions are 
broadly associated with receiving a diagnosis of neu-
rodevelopmental conditions, and many are  genetically 
correlated with ADHD, autism, and/or schizophrenia. 
We find little support for a shared common genetic 
liability across all traits in the general population. 
Instead, we observe multiple specific factors with cer-
tain shared genetic loci identified across, particularly, 
the social and communication domains of neurodevel-
opment, but none that are evidently relevant across all 
domains. Our trait-level analyses highlight the role of 
heterogenous genetic effects underlying early neurode-
velopment traits and their relationships to neurodevel-
opmental conditions. These findings provide areas for 
further investigation to identify shared and distinct 
mechanisms across neurodevelopmental conditions.
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