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1 General Summary
Neuropsychiatric disorders are emerging as leading causes of disability and mor-
tality on a global scale (World Health Organization, 2021, 2022). Many of these
are clinical syndromes characterized by a variety of symptoms, including cog-
nitive impairments and behavioural dysfunctions. However, these symptoms
are dimensional and often overlap between disorders, complicating the effort to
precisely recognize and delineate them. This has ignited a search for quanti-
tative biological measures that can be used to accurately describe aberrations
in individual patients, both to elucidate the true nature of these conditions
and facilitate precise and personalized clinical decision-making. One potential
venue to realize this goal is through Magnetic Resonance Imaging (MRI), where
high-resolution images are acquired non-invasively to capture biological aspects
of the brain. However, analyses of MRI scans from neuropsychiatric patients
have so far been unable to reveal canonical patterns of aberrations distinctive of
the different disorders, and discerning them remains a challenge. One possible
explanation for this inability is the limited expressive power of the statistical
models employed to detect patterns of deviations in the imaging data.

Over the last decade, the renaissance of artificial intelligence and deep learn-
ing has provided new opportunities to discover and exploit complex patterns in
image data for predictive tasks (LeCun et al., 2015). This has been enabled by
artificial neural networks, advanced statistical learning models that learn how
to combine facets of data to form new, composite, representations, revealing
new perspectives of its content. These technological advances present a pivotal
opportunity for detecting subtle and intricate neuroanatomical aberrations in
MRI data that were previously inaccessible due to their complexity. This could
expand our knowledge of the biological deviations associated with neuropsychi-
atric disorders and provide accurate tools to support personalized diagnostics
and treatments. However, it requires overcoming two major challenges innate
to deep learning models: their incomprehensibility, making them hard to trust
and learn from, and their demand for large datasets.

In the current thesis, we aimed to explore the potential of using deep neural
networks to learn complex representations from neuroimaging data to charac-
terize biological aberrations in patients afflicted by neuropsychiatric disorders.
To this end, we trained convolutional neural networks (CNNs) on structural
MRI data from large, heterogeneous datasets to predict various tasks. Next,
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we used information derived from these models to evaluate their potential for
supporting clinical decision-making and to elucidate the association between the
representations they have learned and various other measures.

In paper I we trained CNNs to predict apparent brain age, a promising
imaging biomarker for depicting generalized brain health, highlighting the ca-
pacity of these models to learn robust representations that generalize to unseen
data. Next, we demonstrated that the brain age predicted by the model was
associated with a range of other phenotypic variables. Finally, we showed that
both brain age and the representations underlying it were useful to recognize
patients with a range of neuropsychiatric disorders. In paper II we trained
further brain age models to investigate its association with genetic variability.
Here, we detected seven novel genetic variants associated with differences in
apparent brain age, expressed across a variety of tissues. We also performed
analyses to investigate the causal relationship between deviations in brain age
and neuropsychiatric disorders, without revealing conclusive evidence. In paper
III we trained a classifier to differentiate patients with dementia from healthy
controls and employed a technique from explainable artificial intelligence to ex-
plain its predictions. This allowed us to probe what representations the model
had learned, and investigate which regions of the brain it used to make decisions
for individual scans. We observed that the model generally focused on regions
that are known to contain aberrations in dementia patients and that localizing
pathology for individual patients supported prognostic predictions.

Taken together, the current thesis presents evidence that deep learning mod-
els can learn to detect complex patterns in neuroimaging data that are associated
with aberrations occurring in various neuropsychiatric disorders. Furthermore,
we have demonstrated how we can employ a variety of methods to understand
what these representations mean, even though the models themselves are in-
comprehensible. Finally, we have shown that leveraging these representations
can elucidate the heterogeneity innate to these disorders and support precise
clinical decision-making for individual patients.
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4 Introduction
In recent years, several neurological and mental, collectively denoted neuropsy-
chiatric (World Health Organization, 2001), disorders have emerged as lead-
ing causes of disability and mortality (World Health Organization, 2021, 2022).
While these conditions are multifaceted, they share common characteristics such
as heterogeneous and overlapping symptomatologies and poorly understood eti-
ologies, giving them an enigmatic appearance. The complexities of their biolog-
ical underpinnings have fostered interdisciplinary efforts to collect and analyze
unprecedented amounts of biological data in search of clues of their true nature.
However, identifying patterns in these high-dimensional data require modelling
techniques with expressive capabilities beyond what has traditionally been used.
The last ten years have seen an unparalleled rise in the popularity of artificial
intelligence, where advanced deep learning techniques learn to recognize and ex-
ploit complex relationships in data (LeCun et al., 2015). Deep neural networks
have displayed their potential by repeatedly outperforming human adversaries
in a range of predictive tasks. The maturation of deep learning presents a pivotal
opportunity to increase our understanding of the biological aberrations underly-
ing neuropsychiatric disorders, and ultimately alleviate the burden they impose.
However, this requires the efforts of experts from various scientific domains to
collectively develop and apply the novel methodologies that are needed.

4.1 The neuroscientific perspective on neuropsychiatric dis-
orders

The brain is our most intricate organ and among the most complex structures
in the known universe. Through a sophisticated interplay between electrical,
biochemical, and physical signalling systems it is the source of our actions and
thoughts, hopes and dreams. Ever since Hippocrates, the ancient Greek fa-
ther of medicine, identified it as the seat of consciousness and the epicentre of
perception and action, great minds have been fascinated by the quest to un-
derstand how a biological organ can give rise to mental states, a rich inner life,
and, ultimately, behaviour. Historically, this investigation has taken on many
forms across various scientific disciplines, but since the 1960s many of these have
converged under the encompassing umbrella of neuroscience. While the overar-
ching goal of the field still traces its ancient origins, the approaches employed
to reach it have changed dramatically, propelled forward by an ever-growing
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body of knowledge and technological advances. Nonetheless, despite leaps in
understanding, a comprehensive account of the biological substrates of mental
phenomena remains elusive.

While an individual mental state is transient, representing an immediate
response to internal or external stimuli, they combine in sequences to form
longer lasting mental processes. Across these there is an apparent temporal
stability to each one of us as individuals, constituting high-level characteris-
tics such as personality traits, cognitive capacities, and ability to regulate our
emotions. Aberrations in these composite faculties sometimes lead to an endur-
ing deterioration in the well-being of an individual, or their ability to function
in society, constituting characteristic features of a neuropsychiatric condition.
This is a broad scope encompassing a wide array of disorders and diseases, but
many of them share essential properties. First and foremost, they are clinical
syndromes largely recognized and diagnosed with an emphasis on behavioural
symptomatology rather than the presence of quantitative biomarkers. This is
in part because their aetiologies are largely unknown, indicating that we don’t
know what causes them to occur in some individuals but not others. Further-
more, the defining clinical characteristics are generally considered dimensional
phenomena, where the individuals fulfilling the criteria for a clinical diagnosis
experience symptoms on the extreme end of a continuum that also encompasses
variability in the general population. Taken together, these defining features
portray a complicated clinical landscape.

The scope of disorders that fall within these bounds is extensive, and this
thesis will only concern itself with a subset of diagnoses representing some of
the diversity it encompasses. Schizophrenia (SCZ) is a mental disorder char-
acterized by a loss of touch with reality manifested through psychotic episodes
and hallucinations as well as cognitive and social dysfunction. Bipolar disor-
der (BIP) entails problems with emotion regulation, with those afflicted alter-
nating between periods of extreme emotional highs and lows. These patients
also frequently experience psychotic episodes, most commonly in relation to
manic states, the extreme highs. Patients with depression experience low moods
and reduced motivation, often combined with impaired cognition. When these
symptoms cause a persistent reduction in life quality, this can result in a ma-
jor depressive disorder (MDD) diagnosis. Dementia (DEM) is an aging-related
cognitive condition that is used to describe patients with a cognitive decline
severe enough to significantly interfere with their daily lives. In milder cases,
where symptoms are apparent but not incapacitating, patients are diagnosed
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with mild cognitive impairment (MCI). There are multiple biological aetiologies
associated with cognitive decline. The most common is Alzheimer’s Disease
(AD), recognized by the presence of specific proteins in the brain (Knopman
et al., 2021), occurring in approximately 70% of dementia cases. However, it
is possible to have dementia without AD pathology, and individuals with AD
pathology may display normal cognitive function (Aisen et al., 2017). Multiple
sclerosis (MS) is an autoimmune disease where the immune system starts attack-
ing brain tissue. It specifically targets white matter, myelin sheets that wrap
nerve fibres to enhance communication in the brain. Over time, this reduces
the brain’s ability to distribute and process information and decree commands,
causing a variety of symptoms related to perception, cognition, and motor con-
trol. Symptoms related to the latter are also prevalent in Parkinson’s disease
(PD), where neuronal atrophy of primarily dopaminergic neurons deteriorates
the ability of those afflicted to control their movements.

The above portrayal of the seven clinical conditions included in the current
thesis provides a rough nosology describing the subset of neuropsychiatric con-
ditions addressed here. Based on such simplified depictions it is easy to get the
impression that these are well-defined, disparate entities. However, this impres-
sion does not hold up to scrutiny. SCZ and BIP have a large psychopathological
and phenomenological overlap (Pearlson, 2015), highlighting the intricacies of
delineating the diagnoses by distinct symptomatologies. This is exacerbated by
the existence of comorbidities, when multiple conditions co-occur in the same
individual. For instance, patients with SCZ have substantially increased preva-
lence of MDD (Upthegrove et al., 2017). Furthermore, a variety of cognitive
impairments have been observed in SCZ (Kahn et al., 2015; Keefe & Harvey,
2012), BIP (L. J. Robinson & Nicol Ferrier, 2006), and MDD (Pan et al., 2019).
Patients with DEM and MCI often display a change in personality, regularly
entailing depressive symptoms (Enache et al., 2011). Cognitive impairments
are common among patients with MS (Brassington & Marsh, 1998; Risacher &
Saykin, 2013) and PD (Emre, 2003; Poewe et al., 2017), and there is a substan-
tial increase in the prevalence of MDD in these two patient groups compared
to the general population (Aarsland et al., 2012; Siegert & Abernethy, 2005).
Findings like these implicate these conditions as symptomatically overlapping
(Woo et al., 2017), high-dimensional (Kupfer & Regier, 2010), and continuous
(Helzer et al., 2006; Markon et al., 2011), such that identifying the correct
diagnosis can prove challenging (Freedman et al., 2013).
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4.1.1 Brain imaging in neuropsychiatric disorders

While the neuropsychiatric disorders outlined above are diagnosed, and often
even defined, through the presence of symptoms (Arbabshirani et al., 2017),
there is an undeniable concomitance between variability in the brain and along
symptomatic spectrums (Bennett & Hacker, 2022). Thus, the neuroscientific
scope extends, by encompassing the pursuit to identify and decipher the neural
substrates that underlie them.

Since its invention in the 1970s, magnetic resonance imaging (MRI) has pro-
vided an unparalleled opportunity to non-invasively study the brain in living
organisms. MRI is a versatile medical imaging technique quantifying properties
of biological tissue via the application of strong magnetic fields. In both neu-
roimaging research and clinical neurological examinations, T1-weighted MRI has
played a central role in assessing brain structure over the last decades (Symms
et al., 2004). Here, a radio frequency pulse is used alongside the magnetic field
to rapidly alter the alignment of protons in the atomic nuclei in the brain. When
these realign with the magnetic field generated by the magnet, signals are emit-
ted that can be detected by sensors in the scanner. Based on the duration of
the realignment, the so-called relaxation time, properties of the tissue surround-
ing the proton can be derived. In the brain, this tissue is usually classified as
either grey matter, mainly comprised of neuronal cell bodies, or white matter,
primarily containing nerve fibres wrapped in myelin.

In this thesis, all papers rely on T1-weighted structural MRIs, which from
here on will be referred to as structural MRIs. The atomic units in a struc-
tural MRI are voxels, the volumetric equivalent of pixels, containing informa-
tion about a cubical region of the brain with varying dimensionality, commonly∼ 1𝑚𝑚 (Liang & Lauterbur, 2000). In each voxel, the information harvested
by the scanner is encoded as an intensity value, a single numerical value de-
noting characteristics of the tissue in this circumscribed region of space. This
is further interpreted as describing the tissue type located within the voxel, be
it white or grey matter, part of the encapsulating skull, or cavities filled with
cerebrospinal fluid. When combined, the delineation of tissues between voxels
in a structural MRI allows for outlining regions that conjoin to make up the
anatomical structure of the brain, hereafter referred to as neuroanatomy.

The information captured in structural MRIs provides a basis for investigat-
ing the brains of patients with neuropsychiatric disorders using statistical meth-
ods. The high-dimensional information encoded in the images can be condensed
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by segmenting anatomical regions of interest (ROIs), a process that was origi-
nally performed manually but has later been automatized (Fischl et al., 2002).
The volumetric properties of these regions, such as size or shape, can then be
compared across patients and healthy controls to detect group-wise differences
using standardized statistical methodology. Relatedly, voxel-based morphom-
etry investigates regional brain morphometric properties via differences in in-
dividual voxels, as opposed to delineated regions (Ashburner & Friston, 2000).
Applying either of these methods to detect differences between individuals as-
sumes spatial correspondence at the relevant measurement level, i.e. that the
region or voxel in one individual corresponds to the region or voxel in another
individual. This is often achieved through image registration, the spatial con-
solidation of images against each other or a common template (Jenkinson &
Smith, 2001). Subsequently, differences between patients and controls for each
measure can be quantified via statistical inference. As such, these approaches
are essentially two-step processes, where a preprocessing step produces measures
that are subsequently analysed with statistical techniques.

Applications of variants of the analytical approaches outlined above to struc-
tural MRI data have yielded a wealth of insights into neuroanatomical aberra-
tions apparent in brain imaging data from neuropsychiatric patients. Case-
control comparisons in SCZ have revealed subtle, but widespread, group-level
reductions in both white and grey matter volumes in the cortex (van Erp et al.,
2018), and subcortically, including smaller hippocampi, amygdala, and thala-
mus (Kahn et al., 2015). In BIP, reduced cortical thickness has been observed
at the group level, most prominently in frontal, temporal, and parietal regions
(Hibar et al., 2018). Additionally, reductions in the volumes of subcortical struc-
tures have been reported, including the hippocampi and thalamus (Hibar et al.,
2016). For patients with MDD, the most consistent finding is that of reduced
volume of the hippocampi (Otte et al., 2016; Schmaal et al., 2020), in addition
to reduced volumes and surface areas across the cortex (Schmaal et al., 2017).
In AD, volumetric reductions in the medial temporal lobe have been recorded
years before the onset of clinical symptoms (Knopman et al., 2021). As the
disease progresses this neurodegeneration spreads extensively across the brain,
a feature shared with the other aetiologies underlying DEM and MCI (Risacher
& Saykin, 2013). MS and PD also have a substantial neurodegenerative com-
ponent as revealed by structural MRIs. In the former, beyond the presence of
idiosyncratic lesions that occur where the immune system causes demyelination
(Filippi et al., 2018), MRI indices suggesting widespread neurodegeneration have
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been reported (Hauser & Oksenberg, 2006). For the latter, the characteristic
neuropathological feature is degeneration of the substantia nigra (Poewe et al.,
2017), which has been shown to be accompanied by reduced cortical thickness
spanning large areas of the cortex (Laansma et al., 2021). Overall, there is
clear evidence for the presence of volumetric differences in the brains of patients
suffering from neuropsychiatric disorders, most prominently reductions in both
cortical and subcortical brain volumes.

4.1.2 Shortcomings of the case-control paradigm in the face of het-
erogeneity and comorbidity

The literature reviewed above demonstrates that the brain imaging features as-
sociated with neuropsychiatric disorders collectively form a complex and hetero-
geneous pattern. This is further complicated by the discovery that the number
of associations reported in the literature as a whole has been shown to dramat-
ically outnumber what is expected statistically (Button et al., 2013; Ioannidis,
2011), indicating that they should be interpreted with care. Relatedly, reported
findings of aberrations in patient groups based on neuroimaging data have been
notoriously hard to replicate (Boekel et al., 2015; Vogt, 2023). Furthermore,
the group-level findings listed above are subject to substantial intra-group het-
erogeneity, a phenomenon that has been quantified empirically (Wolfers et al.,
2018; Wolfers et al., 2021; Young et al., 2018). Many of the aberrations are also
overlapping between disorders, underscoring the intricacies of delineating them
based on observable differences in neuroimaging data (Venkatraghavan et al.,
2023). This has been empirically validated in a meta-analysis across mental dis-
orders (including SCZ, BIP, and MDD) revealing that the available evidence for
overlapping volumetric anomalies outweighs that of disease-specific aberrations
(Goodkind et al., 2015). In MS, cortical and subcortical grey matter volumes
have been shown as better predictors of long-term disability than volumes of
the characteristic lesions (Moridi et al., 2022). Post-mortem examinations have
found that one third of PD patients with DEM also met neuropathological crite-
ria for an AD diagnosis (Galvin et al., 2006). To conclude, the neuroanatomical
viewpoint corroborates the clinical, a continuous landscape where groups are
heterogeneous, and their demarcations are obscure. This perspective is also
supported by genetic studies, with the discovery of genetic variants that un-
derlie a variety of neuropsychiatric disorders (Brainstorm Consortium et al.,
2018).
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Even in the instances where the literature is not conflicting, and reported
group differences appear stable, it is worth contemplating their implications.
Group differences are typically inferred by comparing a group of healthy con-
trols with a group of patients, both including individuals that vary in many
respects not encompassed by their diagnostic status (Kopal & Bzdok, 2023).
The comparison itself is most commonly operationalized by quantifying the dif-
ference between the group means. Taken together, these two properties can
yield results that are statistically significant, but where the within-group vari-
ability overshadows the between-group difference. This yields discoveries that
are plausibly biologically valid but with marginal predictive value for the indi-
vidual (Bzdok et al., 2020; Davatzikos, 2019). Further aggravating this issue is
the impediment that most neuroimaging studies have been carried out in rel-
atively small groups (Marek et al., 2022; S. M. Smith & Nichols, 2018), often
combined with suboptimal validation strategies, most prominently in-sample
evaluations (Yarkoni & Westfall, 2017). All in all, this has multiple undesirable
effects on the knowledge produced by the field. First, inadequate predictive
value is limiting in and of itself, as it reduces the translational value of results
(Woo et al., 2017). Second, the fact that the knowledge is not predictive im-
plies that the differences that are found fail to encompass the phenomena being
investigated. Despite these limitations, descriptive approaches comparing MRI-
derived measures between groups using traditional statistical inference remain
the predominant methodology in the field (Loth et al., 2021).

4.1.3 From description to prediction: New venues for modelling the
relationship between brain and behaviour

To address the challenges presented by group-level, descriptive approaches, new
venues have been proposed over the last decade, aiming to increase the fidelity
of the models depicting the relationship between neuroimaging features and
behaviour. One is the reconceptualization of central ontological ideas. This
is epitomized through the reconsideration of the suitability of the case-control
paradigm with its implication of two disjunct, homogeneous, groups, an ideal-
ization that does not appear to represent clinical nor biological reality in neu-
ropsychiatric disorders. Instead, new conceptual approaches conceive patients
as a heterogeneous group that can deviate from the normalcy represented by
the controls in various ways (Marquand et al., 2019). One instance of such is
normative modelling (Marquand et al., 2016), where this overall goal is opera-
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tionalized through methodology that resembles pediatric growth charting. Here,
data is used to fit distributions for any given neuroimaging measure conditioned
on other variables, typically age, to outline a trajectory of values that are con-
sidered normal (Bethlehem et al., 2022; Rutherford et al., 2022). Normative
modelling has been used to model neuroanatomical aberrations in SCZ, BIP,
and MDD (Segal et al., 2023; Wolfers et al., 2018), and characterize diversity
in DEM (Verdi et al., 2021), proving its efficacy as a conceptual framework for
embracing heterogeneity.

Another emerging perspective in psychology and clinical neuroscience the
last decade has been a shift from description to prediction (Bzdok et al., 2021;
Rosenberg et al., 2018; Yarkoni & Westfall, 2017), made possible by machine
learning (ML) methods. A fundamental difference between the traditional, de-
scriptive framework and ML is what kind of knowledge the two methodologies
aim to produce (Breiman, 2001). In the simplistic case-control setting, the for-
mer aims to identify and describe differences between the groups as outlined
above, typically resulting in a set of measures where the groups significantly
differ. Conversely, predictive ML aims to identify which participants belong to
which group. The first step towards this goal is to procure a singular prediction
per individual. In its simplest form this is done using multivariate statistics,
where group-wise differences for each measure are identified, equivalent to the
descriptive approach. However, this is taken a step further, by comparing each
separate individual with the group-wise prototypes defined through these dif-
ferences and collapsing the results into a single prediction. Thus, instead of
procuring spatial maps of the brain highlighting locations where the groups
differ, predictive studies are evaluated through predictive performance mea-
sures indicating how well they classify individuals, such as accuracy or mean
prediction error (Varoquaux & Colliot, 2023). Furthermore, this general shift
towards prediction is often coupled with an emphasis on out-of-sample general-
ization as opposed to in-sample characterization as the main validation of the
utility of models (Bzdok, 2017), which is important to assess the translational
potential residing in clinical neuroimaging (Woo et al., 2017). The focus on
generalization and rigorous validation is also a natural remedy to counteract
the ongoing replication crisis (Botvinik-Nezer & Wager, 2022). More generally,
a shift towards prediction has the potential to profoundly change the mindset
of researchers, maturing clinical neuroscience as a quantitative, empirical field
of research (Yarkoni & Westfall, 2017).

The emphasis on predictive performance is naturally accompanied by the
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introduction of more expressive and accurate methods to model the relationship
between brain and behaviour (Bzdok & Yeo, 2017). Why the former enables
the latter is worth elaborating. One of the main benefits of the conventional
descriptive approach is its innate interpretability. Group-wise differences are
found in circumscribed spatial locations, either predefined ROIs or voxels, that
facilitate biological interpretations. This remains true also in the simplistic
multivariate predictive context outlined above. However, this approach also has
innate limitations. First, it necessitates a practical framework for ensuring that
the comparisons between individuals are based on comparable units, either by
forcing the images into the same stereotactic space or extracting ROIs. This
places a heavy burden on the veracity of the preprocessing methods underlying
this step (Bookstein, 2001). Second, it limits information being shared beyond
these units, obstructing the possibility of detecting patterns where information
in different spatial locations is combined. This imposes a strict restriction on the
types of patterns that can be discovered and utilized to differentiate the groups
in the modelling process, limiting the scope of phenomena the models are able to
capture. Specifically, these types of modelling pipelines will be able to separate
cases from controls to the degree made possible by a linear separation in either
voxel or ROI space, a conceptual level that has been argued not to be sufficient
to discern the aberrations underlying neuropsychiatric conditions (Davatzikos,
2004). This has fuelled a quest for more intricate modelling machinery able to
apply complex pattern-matching strategies to increase predictive performance.

The role filled by preprocessing software extracting volumetric properties of
specific ROIs is to exploit information from the raw voxel space of an MRI vol-
ume to procure higher-level idealizations that can be used for modelling. This
process of selectively aggregating information into a generalized, conceptual
form is known as forming an abstraction. Opposed to the high-dimensional
continuous data in a raw MRI volume, the level of abstraction represented
by volumetric properties plays right into our plausibly evolutionarily benefi-
cial propensity for seeking to describe the world in terms of delineated objects
and their characteristics (DiCarlo et al., 2012). However, there is no principled
reason to believe this is the correct level of abstraction for detecting canonical
neuroanatomical patterns to characterize complex neuropsychiatric disorders, if
they exist at all. Contrarily, there is evidence that the processing streams in
the brain responsible for higher cognition are widely distributed among non-
adjacent locations (Westlin et al., 2023), implying that any structural brain
aberration that may cause their dysfunction could be of a similar nature (For-
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nito et al., 2015). As modelling phenomena at an appropriate level of abstrac-
tion is of the utmost importance (Figure 1), this has spurred a quest for finding
modelling techniques that appropriately match the level of abstraction where
deviations plausibly emerge. In its simplest form, this has been done by re-
taining the abstraction level achieved by preprocessing tools before modelling
but introducing more complex statistical machinery to perform the modelling
itself (Mateos-Pérez et al., 2018). In neuroimaging, the early classes of models
commonly adopted were support vector machines (Arbabshirani et al., 2017;
Wolfers et al., 2015) and random forests (Davatzikos, 2019), both more expres-
sive than regular linear models. A complementary approach has been to extract
useful data-driven abstractions prior to modelling, most commonly using either
principal or independent component analysis (PCA and ICA, respectively), or
the closely related partial least squares (Mwangi et al., 2014). However, while
successfully applied in several contexts, neither of these caused a paradigmatic
shift in the collective ability to predict clinical or behavioural phenotypes based
on neuroimaging data.
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Figure 1: Two sets of data points seen from different perspectives.
(a) and (b) When the distribution of values in the two groups are assessed
with respect to the two dimensions independently, the group means are
different, but with substantial overlaps. (c) When the points are seen in

two-dimensional space, the groups are linearly separable.
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The search for appropriate abstractions in neuroimaging has also been pur-
sued in a different direction, inspired by knowledge about the structure of the
brain. On an abstract level, the brain can be conceptualized as a graph of inter-
connected neurons (Mitchell, 2009), where information processing is distributed
and parallelized. One way of describing the overall characteristics of a graph is
through its topological structure, broadly denoting patterns of interconnections
between its nodes. The topology of the brain has been described as hierar-
chical (Sporns, 2013), containing neurons that cluster to form functionally or
anatomically disparate regions (Glasser et al., 2016), interconnecting form cir-
cuits (Tau & Peterson, 2010), which again conjoin to form networks (Thomas
Yeo et al., 2011). Theoretically, a complex system with hierarchical properties
can be modelled via an analogous hierarchy of abstractions (Floridi, 2013). In
the latter, each level in the hierarchy corresponds to a level of abstraction, such
that the bottom level describes the system at full resolution, whereas the higher
levels successively condense salient information into compound representations.
In this idealized, conceptual model, it is possible that information that appears
scattered and unorganized at lower levels can be combined into meaningful pat-
terns at higher levels.

Current MRI technology does not provide the spatial resolution necessary
to accurately disentangle the interconnections between neurons. However, the
combination of structural and other MRI modalities has been used to describe
interconnections between brain regions more coarsely (E. C. Robinson et al.,
2010). Based on this a high-level graph structure can be imposed, which can
then form a basis for modelling neuroimaging data at various levels of abstrac-
tion. This has recently been combined with normative modelling to procure
promising results for unifying neuroanatomical deviations in heterogeneous pa-
tient groups at different levels (Segal et al., 2023). However, this general ap-
proach has also faced criticism: the exact levels of abstraction used in a given
analysis rely on the methodology used to identify the graph structure, leaving
room for potentially arbitrary choices of analytical strategy (Botvinik-Nezer et
al., 2020). Subsequently, this has yielded results that are hard to replicate and
have limited translational value (Bijsterbosch et al., 2020). Moving forward, it
will be beneficial to explore approaches for modelling heterogeneity in the brain
based on abstractions that are rooted in data, to complement those relying on
human efforts to uncover useful structures.

17



Input Output

Figure 2: A deep, artificial neural network, where the relationship
between inputs and outputs are modelled by layers of artificial

neurons.

4.2 Representation learning and image recognition
While the notion of an abstraction is intrinsically vague, formal roots in statis-
tical learning theory offer a conceptual structure and precise nomenclature to
describe it. In traditional statistical modelling, the process of combining infor-
mation from different variables to a meaningful abstract composition happens
either explicitly through an interaction term, or a priori feature engineering
(Zheng & Casari, 2018). Here, handcrafting features, exemplified in neuroimag-
ing by the volumetric features procured by an MRI preprocessing pipeline, is
considered a vital part of the modelling process. Yet, it is also recognized as a
labor-intensive endeavour with results largely reliant on the human engineer’s
imaginative bounds. Hence, new venues for automatically learning more ef-
fective abstractions have been explored, culminating with the construction of
the Deep Belief Network (Hinton et al., 2006). This was an early deep neural
network (DNN), a multi-layered variant of the more general class of statistical
learning models called artificial neural networks. These model the relationship
between input variables and outputs with artificial neurons, simple computa-
tional units connected in sequential layers to form a computational graph (Fig-
ure 2). The fundamental idea underlying the architecture is that each layer
assimilates and refines information from its predecessor, effectively learning to
combine data into a hierarchy of representations (Hinton, 2007), giving birth to
the notion of representation learning. These learned representations correspond
to various non-linear combinations of the input variables, fulfilling the goal of
automatically learning abstractions from data. The benefit of this modelling
approach is a massive increase in expressiveness, allowing the models to repre-
sent far more complex relationships between inputs and outputs. On the other
hand, its downside is that the rules describing these relationships become harder
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to decode and understand, giving rise to the notion of DNNs as black boxes un-
intelligible to humans. Nonetheless, the introduction of representation learning
operationalized through deep neural networks, combined with novel hardware
and the accumulation of vast amounts of data, set the stage for the 21st-century
renaissance for artificial intelligence (AI).
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Figure 3: Predictive performance
of the winning team in the

Imagenet Large Scale Visual
Recognition Challenge. The dotted
line indicates the pivotal moment when
convolutional neural networks were

introduced.

The first field to be revolutionized
by DNNs was computer vision, where
applications of the technology quickly
matured to a level yielding practical
value, by matching, or even surpass-
ing, human performance at a range of
visual tasks. A catalyzing factor un-
derlying these advances was the Im-
ageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), a yearly
modelling competition put forth to
motivate innovation and provide an
objective measure of the prevailing
state-of-the-art (Russakovsky et al.,
2015). Here, combatants were tasked
with automatically classifying sam-
ples from the ImageNet dataset, a
database containing millions of im-
ages from thousands of classes span-
ning a multitude of domains (Deng
et al., 2009). Over the eight years
the competition ran the error rate was
sliced from 28.2% in 2010 to 2.25% in 2017, more than halving the 5.1% achieved
by human antagonists. The largest year-on-year improvement occurred in 2012
(Figure 3) with the introduction of convolutional neural networks (CNNs), a
class of deep learning architectures tailored specifically for image data (LeCun
et al., 1989). Inspired by the mammalian visual cortex, a part of the brain
processing visual information, these models solve predictive tasks by employing
a hierarchy of pattern detectors trained to recognize patterns at various scales
and levels of abstraction (Goodfellow et al., 2016). These pattern detectors are
implemented in artificial neurons, structured in such a way that those early in
the model learn to recognize simple visual patterns, which are combined by sub-
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sequent ones into more complex concepts. Through this hierarchy, the model
effectively learns a conceptual taxonomy representing visual objects and their
interrelations, sufficient to solve the task at hand. The vast capabilities of CNNs
to learn complex visual representations are most often solely implied through
their predictive efficacy. However, researchers have also probed the represen-
tational space internal to such models, to explicitly investigate what they have
learned (Zeune et al., 2020). Here, the evidence suggests that the representa-
tions learned by CNNs can be semantically meaningful (Yosinski et al., 2015;
Zeiler & Fergus, 2013; Zhou et al., 2015), corresponding to concepts and objects
that are sensible also to humans (López-Rubio, 2021). This gives hope for the
utility of CNNs as epistemic tools: efficient representation learners that can
manoeuvre complexities in data to solve difficult tasks, potentially in ways that
are both informative and comprehensible to the human eye (Durstewitz et al.,
2019).

4.2.1 Deep learning in neuroimaging

The neuroimaging community quickly embraced deep learning (Plis et al., 2014)
as a set of efficacious predictive tools with two distinct goals. First, DNNs have
been adopted as means to optimize isolated steps in a standard neuroimaging
processing pipeline, to procure ideal images for subsequent analysis. A prime
example of such is Fastsurfer (Henschel et al., 2020), a deep learning-based tool
for brain segmentation, built to perform the same tasks as previous tooling
with comparable results in a fraction of the time (Bloch & Friedrich, 2021).
Secondarily, deep learning models have been used as end-to-end models to pre-
dict outcomes based on raw imaging data, such as clinical diagnoses or other
phenotypical variables (Noor et al., 2020; Zhang et al., 2020). Here, their ca-
pabilities as representation learners are put to full use, as working with the
images themselves does not restrict them to features engineered through other
processes (Abrol et al., 2021). This also alleviates the human and computa-
tional strain to procure these features (Davatzikos, 2019) and allows for the
discovery of patterns that could have been overlooked by human counterparts.
Consequently, there have been reports of a general increase in predictive efficacy
using end-to-end CNNs (Abrol et al., 2021; Quaak et al., 2021). This can be in-
terpreted as early evidence supporting the innate suitability of DNNs to model
brain imaging data: their hierarchical nature could prove ideal for detecting
nuanced, spatially distributed patterns at multiple scales, potentially detecting
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the aberrations underlying neuropsychiatric disorders (Plis et al., 2014).
When applied directly to classify patient groups based on structural MRIs,

three-dimensional CNNs have shown promising results (Figure 4). Combining
results from 76 studies compiled in two recent reviews revealed a mean accuracy
of 93.06% for models differentiating AD patients from healthy controls (Mirzaei
& Adeli, 2022; Sharma et al., 2023). Similarly, compiling results from 56 studies
classifying MCI patients resulted in a mean accuracy of 86.99% (Fathi et al.,
2022; Sharma et al., 2023). For MS, with its characteristic brain lesions, end-to-
end modelling is sometimes replaced with a two-step process of first identifying
or segmenting lesions, followed by predicting disease status. A review including
both approaches identified 12 studies with a mean accuracy of 89.82% (Shoeibi
et al., 2021). Further examinations of recent reviews revealed similar results in
PD, with a mean accuracy of 86.85% aggregated across 10 studies (Mei et al.,
2021; Noor et al., 2020), and SCZ, with 84.43% from 18 studies (de Filippis
et al., 2019; Quaak et al., 2021; Verma et al., 2023). However, it is worth
noting that the three latest results are based on fewer studies with substantially
more variability. There are, to the author’s best knowledge, no reviews on
classification in either BIP or MDD that include more than one deep learning
model trained on structural MRI data published to date. Investigations into
singular studies revealed accuracies of approximately 80% for both the former
(Martyn et al., 2019; Saghayan et al., 2023) and the latter (Gao et al., 2023;
Hong et al., 2022; Korda et al., 2021; Y. Wang et al., 2021). While altogether
promising, it is worth contextualizing these results somewhat. Concerningly,
most of them are achieved in very small datasets, and the performance of similar
classifiers has been observed to decrease as the datasets grow (Arbabshirani et
al., 2017; Janssen et al., 2018; Wolfers et al., 2015). Furthermore, they employ
a wide variety of validation approaches, and there is a large variability in the
results that have been achieved. Both in the list above and elsewhere, there
have been studies reporting accuracies of 100%, an outcome that has been
deemed improbable (Woo et al., 2017). These factors combined indicate that
the results should be interpreted with caution. It should also be mentioned
that similar performances have been reported for simpler modelling frameworks.
Although direct comparisons across studies are complicated (Arbabshirani et al.,
2017), some studies have performed them, finding evidence both for (Quaak et
al., 2021) and against (Moazami et al., 2021) the superiority of deep learning
for predicting case-control status from neuroimaging data. Nonetheless, these
early results represent a hopeful foundation for the successful adoption of deep
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Figure 4: Accuracies achieved by the case-control classifiers
compiled from the publications in Section 4.2.1. (a) Results for all deep
learning studies across all disorders. (b) Deep learning vs traditional machine

learning for each independent disorder.
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learning in clinical neuroimaging.
While the predictive performances of CNNs used for case-control differenti-

ation are encouraging, this general approach has also been subject to criticism.
For instance, it continues to perpetuate the dichotomous paradigm, rather than
exploiting the expressive potential of these models to characterize heterogeneity
in patient groups. Furthermore, it builds upon the simplified notion of pa-
tients including only those that already have been identified using other means
(Davatzikos, 2019), restricting its clinical utility. Their epistemic utility is also
limited: although the predictive efficacy of a model might be excellent, its black-
box nature makes it hard to derive scientific knowledge from, beyond quod erod
demonstrandum-type evidence that the imaging data contains information suf-
ficient to differentiate the groups to some degree. To overcome this limitation,
researchers have tried to extract more subtle, nuanced knowledge by attempting
to understand what the models have learned. One approach to reach this goal
is to look at the computation, and particularly the activation of the represen-
tations, that happen internally in the model when it sees an image. As these
internal representations correspond to visual concepts (López-Rubio, 2021), this
allows us to infer to what degree a specific image relates to each representation.
When done across multiple MRIs, we can further deduce whether there is struc-
ture in this representational space that is comprehensible, indicating that the
representations themselves correspond to concepts that appear meaningful. An
application of this technique to a CNN trained on structural MRIs revealed
a representational landscape that was more discriminative with regards to the
phenotypes of interest, than those learned by simpler models (Abrol et al.,
2021). This corroborated early evidence of the same phenomena in substan-
tially simpler CNNs for case-control classification (Plis et al., 2014). Applied to
functional MRI this technique has revealed representational spaces that covary
with abstract clinical and behavioural measures and psychological constructs
beyond what was used for training the model (Zabihi et al., 2021). These find-
ings give hope that the representations learned by CNNs can help discern brain
heterogeneity related to interesting phenotypes. However, to utilize them to-
wards epistemic and clinical goals, we should pursue understanding what they
encode.

23



4.2.2 Brain age and proxy measures

The simplest way to ensure that a CNN learns an understandable representation
is to optimize for that goal directly. This is trivially achieved by using a variable
encoding the representation as the predictive target, with disease classifiers be-
ing typical examples. However, a major impediment to applying deep learning
models to clinical neuroimaging problems is the scarcity of data (Arbabshirani
et al., 2017). This is further exacerbated in the case of data with clinical phe-
notypes (Horien et al., 2021), the typical outputs of interest. To alleviate this
problem innovative approaches leveraging ongoing large-scale efforts to collect
population data are proposed. One of these is to first learn to model variability
inherent in large healthy cohorts concerning common variables, broadly called
proxy variables (Dadi et al., 2021), before subsequently applying the models to
discern clinical phenotypes. The overall approach of learning and applying a
normative reference curve to quantify aberrations is closely related to norma-
tive modelling, which has shown promising for disentangling the heterogeneity
innate to neuropsychiatric patients (Marquand et al., 2019). Furthermore, it
rings of the deep learning mantra “representation first”, emphasizing the im-
portance of first learning to identify patterns in data that describe variability,
potentially at a high level of abstraction, before employing these to solve a task
(Goodfellow et al., 2016). The combination of these two features could prove
potent to discern brain heterogeneity related to neuropsychiatric disorders.

The most prominent example of a proxy measure is the approach aptly
referred to as brain age, where a statistical model learns to predict the age of a
brain based on its visual appearance. The concept of brain age can be described
from multiple perspectives. First, it is a normative statistical approach, where
a model learns to recognize the average brain across the lifespan based on a
training dataset (Cole & Franke, 2017). Subsequently, new brains can be placed
in reference to this norm (Figure 5), by comparing the age predicted by the
model with the chronological age of the individual (S. M. Smith et al., 2019).
This produces a measure of whether the brain as a whole appears younger or
older than counterparts in the population data of the same chronological age
(Cole et al., 2019). The introduction of aging provides a natural segue to the
perspective of biological aging. Here, the apparent age of the brain can be
interpreted as a measure of the accumulation of cellular damage or ”wear-and-
tear” that occurs during a lifespan (Ferrucci et al., 2020; Hayflick, 2007), and
whether this has accrued faster or slower than expected. Finally comes the
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perspective of brain age as an information theoretical construct, where all the
high-dimensional information in a brain scan is compressed into a single number.
To summarize, brain age is intuitive due to its statistical properties, even when
the underlying computation is unknown. It is related to health, due to its
sensitivity towards biological processes. And finally, it is summarizing, due to
its computational nature. These three properties combined outline a promising
biomarker for brain health.
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Figure 5: Predictions from a
brain age model can indicate

whether a brain appears older or
younger than a reference norm.

The first model for brain age es-
timation was fit using relevance vec-
tor machines on principal compo-
nents derived from heavily processed
T1-weighted structural MRIs (Franke
et al., 2010), and as such repre-
sents the traditional predictive frame-
work based on feature engineering
and models with restricted expressive
capabilities. Nonetheless, the model
was able to learn visual patterns co-
herent with age, predicting brain age
with a mean absolute error (MAE) of
5 years. Furthermore, the residuals
of the model, encoding the difference
between predicted and chronological
age (the brain age gap, abbreviated
to brainAGE by the original authors,

also referred to as the brain age delta), was significantly higher in a group of
patients with mild AD compared to healthy controls (Franke & Gaser, 2012),
early evidence for its sensitivity towards neuropsychiatric disorders. Since then,
this initial finding has been given credence by a wealth of empirical studies us-
ing different statistical methodologies to uncover similar patterns across differ-
ent disorders and datasets (Franke & Gaser, 2019). The observation of elevated
brain age has been replicated numerous times in both AD (Beheshti et al., 2019;
Löwe et al., 2016; Yin et al., 2023) and general DEM (Kaufmann et al., 2019;
Persson et al., 2023; J. Wang et al., 2019). A similar, but smaller, deviation
has been reported in MCI (Franke & Gaser, 2012; Kaufmann et al., 2019; Löwe
et al., 2016; Yin et al., 2023), and substantially increased brain age has been
reported repeatedly in patients with both MS (Cole et al., 2020; Høgestøl et al.,
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2019; Kaufmann et al., 2019) and PD (Beheshti et al., 2019; C. R. Eickhoff
et al., 2021). A potentially more surprising finding is that of a higher brain age
in patients with SCZ (Hajek et al., 2019; Kaufmann et al., 2019; Koutsouleris
et al., 2014; Nenadić et al., 2017; Schnack et al., 2016; Shahab et al., 2019)
and MDD (Han et al., 2020), although commonly less pronounced and with
more variability. For BIP the results are unclear, with studies reporting both
increases (Kaufmann et al., 2019) and no significant differences (Hajek et al.,
2019; Nenadić et al., 2017; Shahab et al., 2019) in brain age when compared to
healthy controls. Finally, as an ultimate testimony of its ability to encode gener-
alized brain health, higher brain age has been associated with higher mortality
(Cole et al., 2018). Through these empirical findings, the value of brain age
as a biomarker of general, but unspecific, brain health is supported, enabling
it both as a potential clinical tool and as a composite, dimensional measure
that can further our understanding of the complex neuroanatomy underpinning
neuropsychiatric disorders.

Beyond its efficacy for differentiating cases and controls, brain age offers a
multifaceted lens through which the intricate interplay between biology, lifestyle,
cognition, and psychology can be elucidated. Here, it plays the role of an inter-
mediate phenotype seeking to connect low-level biology with high-level psycho-
logical constructs and behaviour. To establish these connections, studies have
combined theory-driven pursuits with broad explorations to reveal a wealth of
potential interconnections. These have revealed genetic variants correlated with
relative differences in brain age (Jonsson et al., 2019; Ning et al., 2020; S. M.
Smith et al., 2020), forming a plausible basis for dissimilarities between individ-
uals. Associations with higher-level biology have also been established, both by
correlating it with physical and health-related measures (Beck et al., 2021; S. M.
Smith et al., 2020), and by relating it to other measures of biological ageing (El-
liott et al., 2019), physical health (Cole et al., 2018), and self-reported measures
of biological maturity in youth (Holm et al., 2023). In terms of lifestyle factors,
relative differences in brain age have been associated with socioeconomic status
(Busby et al., 2023; Cohen et al., 2023), and elevations have been observed in
those with high alcohol intake (Cole, 2020; Franke et al., 2013; Ning et al., 2020)
and smokers (Bittner et al., 2021; Cole, 2020; Linli et al., 2022). Lastly, cor-
relations have been discovered with psychosocial constructs such as well-being
(Korbmacher, Gurholt, et al., 2023; Sone et al., 2022) and a subjective experi-
ence of own age (Kwak et al., 2018). Taken together, these findings elucidate the
integrative role of brain age, associated with both biological measures, lifestyle
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factors, and psychological constructs.
Despite these promising empirical discoveries, brain age has also been sub-

ject to criticism. Ontologically, it is hard to determine exactly what the measure
means, beyond its conceptual association with age as operationalized through
statistical modelling (Butler et al., 2021). It can be complicated to determine
exactly what contributes to the prediction of the model (Cole & Franke, 2017;
Tanveer et al., 2023). This leads to uncertainty about whether it mostly encodes
differences that are stable across the lifespan, or if it meaningfully captures ongo-
ing change (Vidal-Pineiro et al., 2021), for instance related to current patholog-
ical processes. Clinically, the utility is hampered by within-subject variability,
which becomes apparent through predictions that vary with a magnitude of
years based on scans from the same individual taken days apart (Korbmacher,
Wang, et al., 2023), exacerbated by scanner differences (Baecker et al., 2021).
Thus, it is hard to imagine brain age as an imaging biomarker for clinical use in
its current state, and further work is required to enhance its technical robust-
ness, clinical validity, and reliability.

4.2.3 Understanding deep neural networks with explainable artificial
intelligence

Using deep learning for brain age modelling can be conceptualized as a vari-
ant of representation learning where an intermediate phenotype, the type of
construct that would typically emerge inside the model, is instead explicitly
modelled as the target of the modelling procedure. If this phenotype is truly
intermediate, the learned representation, now corresponding with the output
of the model, would necessarily need to be operationalized through successive
computational steps to contribute towards the actual end goal, for instance pre-
dicting case-control status. The main benefit of this two-step approach is that
the intermediate phenotype will necessarily be more understandable than if it
occurred deep within the model. A potential shortcoming is that although the
intermediate representation is understandable, it is not necessarily useful. To
avoid this, it would be better to construct a model that solves the task of in-
terest, with full expressive freedom to construct the representations that are
needed, and then retrospectively figure out what those representations mean.
Predictive modelling using deep learning attempts to solve the first half of this
problem, but resolving the second has proven difficult.

Once trained, all DNNs can be written out as a concrete mathematical for-
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mula, where the representations it has learned, and their interrelations, will be
fully defined. In a CNN trained on structural MRIs, this math will roughly cor-
respond to a hierarchy of pattern detectors (Balestriero & baraniuk, 2018), each
detecting a three-dimensional visual concept related to brain anatomy (Khor-
rami et al., 2015). This mathematical formula is fully accessible; however, it will
necessarily encode a highly complex, non-linear mapping between MRI images
and predictions, utterly incomprehensible to humans (Samek & Müller, 2019).
To grasp the true meaning of the representations they have learned we need
to associate them with familiar concepts and terminology, to foster a holistic
understanding of how they arose and what they encode (Cappelen & Dever,
2021). However, this is no simple task. DNNs fall within the scope of connec-
tionist models (Goodfellow et al., 2016), where a multitude of computational
units solve problems collectively via propagating continuous values among them-
selves (LeCun et al., 2015). Somewhat surprisingly, as these are inspired by the
inner workings of our brains, this gives rise to a mode of reasoning that does not
appear intuitive to us. Where we normally think in terms of symbols, discrete
representations that correspond to specific and delineated concepts and objects,
and their interrelation, DNNs rely on sub-symbolic representations. This entails
internal representations that encode information by distributing it across vast
vectors of continuous numbers (Calegari et al., 2020), completely circumventing
the notion of well-defined symbols. Whether these two operational modes can
be reconciled remains an open philosophical question (Smolensky, 1987).

A more practical approach towards bridging the apparent gap between the
decision processes of DNNs and humans is taken through explainable AI (XAI),
where concrete methodology is offered to demystify the inner workings of the
former. While the nomenclature varies (Barredo Arrieta et al., 2020), a common
formulation of its defining purpose is to create methods that explain decisions
made by a DNN in a human-understandable manner. A crucial nuance in this
definition is that the quality of an explanation is not governed by universal law,
but rather depends on its recipient’s capacity for understanding, for instance
relying on their preexisting knowledge about the domain at hand. XAI is be-
coming a valuable tool to safeguard that a model has learned to solve a problem
in a fashion that is recognizable to a human domain expert, fostering trust in
the model’s reliability and generalizability. In safety-critical domains, including
medicine, lack of trust has been pointed out as a main culprit underlying the
skepticism towards the practical adoption of AI (Kundu, 2021), emphasizing
the translational potential of XAI. For real-life clinical scenarios, the most com-
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mon use case proposed for XAI is in tools providing clinical decision support.
If successful, this would allow a highly efficacious predictive model to operate
in tandem with a clinician with deep domain expertise, supplementing human
intuition with immense number-crunching capabilities and an eye for detail, to
provide the best possible care to those in need.

There exists a variety of different XAI techniques, applicable in various con-
texts depending on the model that is to be explained, who the explanation is for,
and what it wants to achieve (Samek & Müller, 2019). Most common for DNNs
are post hoc techniques that provide an explanation for each individual pre-
diction of the model. In the case of CNNs, these explanations are often visual,
comprised of a heatmap indicating which regions of the image contributed to the
prediction of the model (Simonyan et al., 2014). Multiple heatmapping tech-
niques exist, mostly differing in their notion of what constitutes a contribution.
Early methods, starting with saliency mapping, relied on the backpropagation
of gradients to highlight contributing regions. An innate issue with these ap-
proaches is their literal interpretations: a highlighted region contains “what it
should contain even more of for the prediction to be even higher”. Although
this is often more intuitive in practice than in theory, this somewhat convoluted
definition has led to the development of alternative methods. An example is
Layerwise Relevance Propagation (LRP), where regions are instead highlighted
based on how much they contribute to the prediction (Bach et al., 2015). The
term relevance comes from the unit that is used to denote contribution, and the
produced heatmaps are aptly called relevance maps. A relevance map is gen-
erated by propagating relevance backward from the output space of the model
to the input space, effectively smearing the prediction out across the pixels (or
voxels in the three-dimensional case) of the input image (Figure 6). Thus, the
relevance that ends up in a specific location denotes how much the pixel (or
voxel) in that exact position contributed to the prediction. Since its invention,
multiple variants of LRP have surfaced, created to emphasize different aspects
of the decision process (Montavon et al., 2019). These can also be combined, to
create even more elaborate explanation schemes, proving more useful than their
simpler predecessors (Kohlbrenner et al., 2020).

Although the visual explanations obtained via heatmapping techniques ap-
pear meaningful, this does not necessarily entail they are veracious renditions of
anything related to the decision process that occurs within a model. Investiga-
tions have revealed that these methods appear more sensitive towards visually
salient features of the image, such as sharp edges, as opposed to information
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Figure 6: The application of Layerwise Relevance Propagation
(LRP) to a very simplified neural network. (a) Through a forward-pass

the model predicts that the image contains a ladybug. (b) Through a
backward-pass LRP computes a heatmap indicating which regions of the

image contributed to the prediction.
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that is useful to determine its content, plausibly used by the model (Adebayo
et al., 2020). Furthermore, it has been shown that explanations produced to
explain different predictions from the same model are often qualitatively similar
(Sixt et al., 2020). This is exemplified by the scenario when a classifier is given
an image containing both a cat and a dog and tasked to predict the probability
of the image containing each animal independently. When heatmapping tech-
niques are used to explain the two predictions, the resulting explanations are
indistinguishable. Finally, it has been reported that large, qualitative, changes
to an image do not impact the explanation that is generated (Kindermans et
al., 2019). Altogether, this implies that these techniques should be used with
care. Furthermore, as the degree to which these failure modes occur depends on
the specific model, task, and heatmapping technique used, they highlight the
importance of validating that the explanations procured are truthful and infor-
mative. However, as there rarely exists ground truth labels of why an image
contains what it contains, and how the model should recognize this, this can be
a difficult task.

XAI has not yet found a foothold in clinical environments relying on neu-
roimaging data. However, the empirical groundwork required to support this
endeavour is being rapidly built by the research community. In DEM, an expo-
nential increase in the number of papers applying XAI has been observed over
the last few years (Martin et al., 2023). Most of these rely on imaging data and
CNNs and use variants of heatmapping techniques, often LRP, to provide post-
hoc explanations of individual predictions. The explanations generated in such
studies have been observed to corroborate existing knowledge of neuropathol-
ogy (D. Wang et al., 2023), giving credence to the notion that the classifiers are
accruing relevant knowledge. Through discoveries like these, studies on DEM
and AD (Böhle et al., 2019; Dyrba et al., 2021) have spearheaded the effort of
showing the potential for XAI as an asset for analysing clinical neuroimaging
data (Farahani et al., 2022; Rahman et al., 2023), with other neuropsychiatric
disorders following suit. In MS, LRP has been used to show that a CNN trained
to recognize patients uses both lesions, the most prototypical biomarker for the
disorder, and other sources of information to perform its task (Eitel et al., 2019).
For MDD, XAI based on functional MRI data has been used to identify imaging
features that are associated with treatment response (Squires et al., 2023). In
PD (Camacho et al., 2023; Magesh et al., 2020), SCZ (Lin et al., 2022; Rahman
et al., 2022), and BD (Saglam et al., 2023), various XAI techniques applied to
different imaging modalities have implicated brain regions affected by the dis-
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ease. Recent years have seen multiple arguments for the immense potential of
XAI to support clinical practice, also in neuropsychiatric disorders, but the field
is still in its infancy, and the literature is sparse. To reach its potential, empir-
ical studies are imperative to identify how, when, and where these techniques
add value.

XAI was born from a practical desire to understand whether a DNN was
solving its task in a reasonable manner, articulated from the point of view of
the developer or the user of an AI system, wanting to ensure its proper func-
tioning. However, it also has the potential to provide a powerful epistemic tool,
that allows us to understand sophisticated inferential patterns at the heart of
complicated phenomena that would otherwise be beyond our cognitive grasp.
This is especially compelling in the case of neuropsychiatric disorders because
of their enigmatic appearance and apparent biological complexity. However,
whether the process of fitting a complex, expressive, DNN to data, and then
applying post-hoc techniques for understanding how it works, is a viable strat-
egy for attaining scientific knowledge is an open question. It has been argued
that explainability is mostly useful for a specific stakeholder to understand a
specific model, not to to produce facts (Páez, 2019). Determining what these
approaches can be used for relies largely on philosophical standpoints, epis-
temic beliefs, and assertions about what these models are and what they do.
Despite the abstract nature of these topics, their resolution will be supported
by empirical data, adding incentives to continue exploring the utility of XAI in
clinical neuroscience. Whether AI, and particularly the explainable kind, will
help unravel the mysteries of the mind, is a question for the future.

4.3 Validating imaging discoveries with genetic analyses
As outlined so far, intermediate phenotypes describing variation in the brain,
including abstract ones learned by advanced deep learning models, have the
potential to help us disentangle neuroanatomical heterogeneity in the context
of neuropsychiatric disorders. However, these are composite measures that will
have causes of their own, an understanding of which would even further eluci-
date the association between brain and behaviour. Focused on the most fun-
damental building blocks, imaging genetics sets out to establish the connection
between inter-individual genetic variation and observable differences in the brain
(Bogdan et al., 2017). Historically, approaches in genetics have been focused on
candidate genes, selected based on hypotheses of biological pathways tracing the
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causal influence from gene to the trait of interest. This minimized the need for
data, making genetics possible in the era predating advanced sequencing tech-
nology to yield important discoveries. However, it also has an important limi-
tation: being largely driven by existing theory, it lacks the exploratory capacity
to go far beyond what already exists in the body of knowledge. To alleviate this
shortcoming, new approaches emerged in the mid-2000s, fueled by technological
advances and the accumulation of vast amounts of data (W. Y. S. Wang et al.,
2005). The most popular was the genome-wide association study (GWAS), a
technique for detecting genetic variants associated with a trait through mass
univariate testing (Uffelmann et al., 2021). These typically investigate varia-
tion in each atomic location in the genome, manifested through single nucleotide
polymorphisms (SNPs), but can also be done for more complex sources of ge-
netic variation such as copy number variations. Overall, the introduction of
GWAS broadened the scope of genetic research, from narrow investigations of
variants exerting a large influence on the phenotype at hand, to a broader search
for variants contributing to complex phenotypes.

Over the last two decades, genetic studies, particularly those employing
GWAS, have contributed to a wealth of discoveries in clinical neuroscience.
These advances have been enabled by the collaboration and large datasets pro-
vided through large consortia, a prime example being the Enhancing Neuro
Imaging Genetics through Meta Analysis (ENIGMA) consortium (P. M. Thomp-
son et al., 2020). Using consortium data, or other techniques for pooling data
from a wide variety of sources, modern GWAS commonly look for associations
between genetic variants and clinical phenotypes based on data from hundreds
of thousands of participants, enabling novel discoveries. A recent GWAS ana-
lyzing 7,500,000 SNPs in 320,404 individuals revealed 313 variants associated
with SCZ (Trubetskoy et al., 2022). Similar efforts revealed 64 and 44 SNPs
associated with BIP (Mullins et al., 2021) and MDD (Wray et al., 2018) re-
spectively, in two GWAS based on 413,466 and 480,359 individuals. In AD,
beyond the well-known impact of mutations in the apolipoprotein E (APOE)
gene, the most recent GWAS identified 75 distinct genetic variants associated
with AD risk, using full genome sequences from 788,989 individuals (Bellenguez
et al., 2022). When combined into a composite score these yielded 1.9-fold in-
creased risk for disease onset in the high-risk versus low-risk group. A recent
meta-analytic approach including GWAS identified 551 putative genes that con-
tributed to MS susceptibility. In PD, a meta-analysis across two GWAS with
combined datasets of 429,225 individuals identified 41 significant associations
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(D. Chang et al., 2017). These studies, and many more, have provided a broad
foundation to investigate the genetic underpinnings of neuropsychiatric disor-
ders.

4.3.1 Elucidating mechanistic and causal relationships via genetic
associations

Although GWAS has played a major role in increasing the wealth of associa-
tions between genetic variation and neuropsychiatric disorders, it, like every-
thing else, has its limitations. One major drawback is that as the approach
rapidly identifies new associations, the magnitudes of their effects will be in-
versely proportional to their position in the sequence of discoveries. This could
result in a never-ending stream of variants that contribute less and less to the
phenotype at hand, while the total amount of variance explained remains mod-
est (Goldstein, 2009). Relatedly, it has been pointed out that the expanding set
of deleterious variants associated with a phenotype will contain a plethora of
covarying but non-causal variants and does little to pinpoint the biological path-
ways through which they induce pathology (Tam et al., 2019). Consequently,
they don’t illuminate the underlying biological mechanisms, and as such have
limited value both for advancing our knowledge of disorders and guiding de-
velopment of treatments. To mitigate this, GWAS are often accompanied by
subsequent analysis steps, to reduce the set of variants to those presumably
causal and investigate the pathways through which they have an effect. The
former is typically done via statistical fine-mapping, a statistical technique re-
lying on the GWAS results, prior knowledge about the structure of the genome,
and potentially empirical evidence about the role of the genes (Schaid et al.,
2018) to nominate plausibly causal variants. Next, their impact is commonly
elaborated through multi-omics, where measurements from cells or tissues can
help pinpoint their role in the biological hierarchies of the body. In sum, these
complex analysis pipelines provide a promising apparatus for understanding the
biology underlying intricate imaging phenotypes.

A complementary method for increasing the value of identified genetic as-
sociations is to use them as instruments to understand causal interactions be-
tween high-level phenotypes themselves. This can be done with causal infer-
ence, in genetics operationalized through Mendelian Randomization (MR). MR
is a method from genetic epidemiology (Davey Smith & Ebrahim, 2003), rely-
ing on the random distribution of genes from parents to offspring (Sanderson
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et al., 2022), to draw causal conclusions based on associational data. This is
implemented through an instrumental variable analysis, where the randomly
distributed genetic variants are used as an instrument to investigate whether
an exposure, such as a phenotypic risk factor, causally affects an outcome, for
instance the onset of a disease (Emdin et al., 2017). To reach the lofty goal of
causality, MR relies on three strict assumptions: that the genetic variant used
as an instrument is associated with the exposure, that this association is not
confounded by other variables, and that the instrument is only associated with
the outcome through the exposure. The first is trivially verifiable through e.g.
a GWAS, but the latter two are harder to confirm in empirical data. This is
especially true in clinical neuroscience, where the correlation between disorders,
complex traits, and intermediate phenotypes is high, making it hard to princi-
pally rule out confounding. Empirically, there has been shown broad horizontal
pleiotropy for these phenotypes, indicating that they are associated with the
same genetic variants (P. H. Lee et al., 2021), potentially through independent
biological pathways. To alleviate this, a plethora of MR variants have been pro-
posed, seeking to relax its fundamental assumptions. There is however still a
responsibility on the independent researcher or analyst to ensure MR is a viable
alternative in each specific use case (VanderWeele et al., 2014). Nonetheless,
MR has provided, and will continue to be, a valuable tool for understanding the
interrelation between complex traits, also in the neuroscientific domain.

4.4 Summary
One of the main aims of clinical neuroscience is to elucidate the relationship
between biological variability in the brain and clinical phenotypes, including
neuropsychiatric disorders. Structural MRIs allow us to investigate this rela-
tionship, by non-invasively providing information about the anatomy of individ-
ual brains. Subsequently, CNNs provide a promising technology to model these
relationships based on imaging data to reach predictive goals. To achieve this,
they will need to learn and leverage complex and potentially subtle patterns of
neuroanatomical variation that could prove useful to describe the heterogeneity
inherent to neuropsychiatric patients. However, the black-box nature of these
models will make these potential insights incomprehensible. Thus, studies that
rely on CNNs should be accompanied by efforts to understand them, through
holistically relating their predictions and internal knowledge to other domains,
and by applying techniques for explainability.
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5 Research objectives
The overall aim of the PhD project was to utilize the representational capacity
of deep learning models to learn complex, data-driven representations of the
brain based on structural MRI data. These representations should adhere to
two important principles: (1) they should be associated with clinically relevant
variables, to provide information facilitating understanding and decision-making
in the single-individual case, and (2) they should be understandable, to allow us
to confidently use and learn from them. This overall goal was operationalized
through different means in the three papers.

5.1 Paper I
In the first paper, we aimed to combine a state-of-the-art CNN architecture
and a large dataset to leverage the predictive proficiency of deep learning for
accurate and generalizable brain age predictions. Furthermore, we sought to
understand whether brain age as learned by the model would coincide with a
high-level notion of generalized brain health, through investigating associations
with other measures. Finally, we wanted to explore whether variability in brain
age, encoded in brain age deltas, and the internal representations learned by
the model provided useful instruments for predicting neuropsychiatric disorders
via transfer learning. Our main hypothesis was that the complex CNN trained
on a large and heterogeneous dataset would robustly learn to predict brain age
in a generalizable way, thereby summarizing overall brain health into a useful,
reliable biomarker. Secondarily, we hypothesized that using the internal repre-
sentations learned by the model would be more informative than the singular
delta for predicting case-control status.

5.2 Paper II
The goal of the second paper was to further understand the underpinnings of
brain age as learned by a deep neural network through applying a GWAS to
brain age deltas akin to those in paper I. Next, we wanted to explore the sig-
nificance of the identified genetic variants through in-depth investigations of
their role in biological pathways, and their associations with neuropsychiatric
disorders. Finally, we aimed to perform MR analyses enabled by these variants
to investigate the causal relationships between brain ageing and the disorders.
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Our main hypothesis was that genetic variants robustly associated with varia-
tion in the brain age delta would be associated with neuropsychiatric disorders
and relate to a spectrum of biological processes in the body. Furthermore, we
hypothesized that we would detect causal effects between brain age and the
disorders previously associated with the biomarker.

5.3 Paper III
In the third paper, we focused on a single disorder, to investigate how XAI can
be useful to describe heterogeneity within a single patient cohort. To reach this
goal, we sought to train state-of-the-art CNNs in a composite clinical dataset
containing patients with DEM and healthy controls. Around these models we
planned to implement a pipeline including XAI to procure individual-level ex-
planations of the model’s predictions. We aimed to thoroughly evaluate the
explanations to ensure their veracity. Finally, we wanted to see whether the
explanations, encoding localization of pathology detected by the model, could
be useful to support precise clinical decision-making in a cohort of MCI pa-
tients. Our main hypothesis was that the pipeline would procure explanations
that were generally supported by current knowledge about where in the brain
dementia manifests. Moreover, we hypothesized that their variability would
reflect heterogeneity in the biological embodiment of the disorder, useful for
supporting precision diagnostics for MCI patients.
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6 Methodology

Paper Images Subjects Age range (mean) Females
I 56,095 56,095 3-95 (55) 52%
II 53,542 53,542 3-95 (55) 52%
III 20,306 2,913 45-97 (75) 45%

Table 1: Key characteristics of the complied datasets used in the three
papers.

6.1 Data
An overview of the high-level characteristics of the datasets used in the three
papers can be seen in Table 1. All of these were conglomerations of data coming
from multiple sources, detailed overviews of which can be found in the indepen-
dent papers. The data sources that were used beyond training brain age models
and/or providing healthy controls for diagnostic analyses are described below
and in Table 2.

• AddNeuroMed (ANM): ANM is a cross-European study collecting
imaging data and biological measurements to facilitate biomarker discov-
ery for AD, acquired from six medical centers across Europe (Liu et al.,
2011; Lovestone et al., 2007). We used structural MRIs for paper III,
including patient groups with DEM and MCI that were defined by stan-
dardized thresholding of results from the mini-mental state examination
(Tombaugh & McIntyre, 1992). The data was acquired through collabo-
ration with Karolinska Institutet.

• Alzheimer’s Disease Neuroimaging Initiative (ADNI): ADNI is a
publicly accessible dataset developed to facilitate early detection of AD
and corresponding interventions, prevention strategies, and treatments.
It contains brain scans from multiple imaging modalities, alongside bio-
chemical measurements, behavioural data, and cognitive assessments from
multiple centers in the US and Canada (Petersen et al., 2010; Weiner et
al., 2012; Weiner et al., 2017). Structural MRIs were used for all three
papers, genetic data was used in paper II, and cognitive assessments were
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used in paper III. We used patients with DEM, diagnosed by ADNI in-
vestigators as probable AD using NINCDS/ADRDA criteria (Dubois et
al., 2007), and MCI, diagnosed using a standardized clinical procedure
(Petersen, 2004). The data was acquired through the online portal for
the Image and Data Archive (IDA) at the Laboratory of Neuro Imaging
(LONI).

• Australian Imaging Biomarkers and Lifestyle flagship study of
ageing (AIBL): AIBL is an Australian initiative mirroring ADNI, col-
lecting neuroimaging and complementary data from two sites in Australia
(Ellis et al., 2009; Fowler et al., 2021). Structural MRIs were used for
papers I and III, including patients with DEM and MCI diagnosed with
criteria equivalent to ADNI. The data was acquired through the IDA LONI
portal.

• Demgen: Demgen is a subset of the Norwegian register of persons as-
sessed for cognitive symptoms (NorCog), owned by Oslo University Hospi-
tal and administered by the Norwegian National Advisory Unit on Ageing
and Health (Doan et al., 2017). Structural MRIs were used for papers
I and III. This included patient cohorts with MCI and DEM, diagnosed
according to NIA/AA 2011 criteria (Albert et al., 2011). The data was col-
lected with approval from the Regional Committee for Medical and Health
Research Ethics South-Eastern Norway (REK, application 2013/2283).

• Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD): MIRIAD is a publicly available dataset created to inves-
tigate whether MRI provides a feasible outcome measure for clinical trials
on the efficacy of treatments for Alzheimer’s Disease (Malone et al., 2013).
Structural MRIs were used for paper III, including patients with DEM di-
agnosed using NINCDS/ADRDA criteria for mild-moderate AD. The data
was acquired from the XNAT platform.

• Open Access Series of Imaging Studies 3 (OASIS3): OASIS3 is
a publicly available dataset containing neuroimaging data, together with
clinical and cognitive assessments and other measures from a broad de-
mographic spectrum, compiled to facilitate research on cognition (LaM-
ontagne et al., 2019). Structural MRIs were used for papers I and III. We
included patients with DEM, including those with a diagnosis of either
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probable AD, vascular dementia, or a combination, based on a standard-
ized clinical assessment (Beekly et al., 2007; Morris et al., 2006). The data
was acquired from the XNAT platform.

• Oslo Multiple Sclerosis sample (OsloMS): Various neuroimaging
modalities acquired from a collection of individuals scanned between 2012
and 2023 at the Oslo University Hospital through previous and ongoing
research projects. Structural MRIs were used for paper I, including a
patient cohort diagnosed with MS using McDonald 2017 criteria (A. J.
Thompson et al., 2018). The data was collected and used with approval
from REK (application 2016/102).

• Thematically Organized Psychosis (TOP): The TOP study was ini-
tiated at the University of Oslo in 2002 and is an ongoing multicenter,
multidisciplinary investigation of clinical, genetic, neuroimaging, pharma-
cological, and neurocognitive features of schizophrenia and bipolar disor-
ders (Nesvåg et al., 2017). Structural MRIs were used for papers I and III,
including patient groups with SCZ, BIP, and MDD diagnosed according
to DSM-IV criteria (American Psychiatric Association, 1994). The data
was collected and used with approval from REK (application 2009/2485).

• UK Biobank (UKB): UKB is a large-scale population dataset collected
from three sites in the UK, containing imaging data, genetics, and a wide
variety of phenotypic information (Sudlow et al., 2015). Structural MRIs
were used in papers I and II, alongside a broad array of phenotypic vari-
ables for paper I, and genetic information for paper II. No patient groups
were included, but diagnostic information was utilized (based on ICD-10
codes, data field 41402) to exclude participants with mental (Chapter V)
or neurological (Chapter VI) disorders from the brain age training set.
The data was accessed under accession number 27412.

6.1.1 Imaging data

In all papers we applied a unifying preprocessing pipeline prior to modelling,
modifying the MRIs through a six-step process:

1. Removal of non-brain tissue through skull stripping, using steps 1-5 of the
recon-all pipeline from FreeSurfer 5.3 (Ségonne et al., 2004). Note that
this also performs intensity normalization.
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Dataset I II III Images Subjects Ages Females Diagnoses

ANM × 417 379 53-90 57%
DEM 56
HC 294
MCI 67

ADNI × × × 20,912 2,498 50-97 44%
AD 4,451
HC 7,054
MCI 9,407

AIBL × × 905 588 58-96 53%
AD 101
HC 688
MCI 116

Demgen × × 277 277 38-89 44% DEM 134
MCI 143

MIRIAD × 708 69 55-87 55% DEM 465
HC 243

OASIS3 × × 3,039 1,098 42-95 57% DEM 564
HC 2,475

OsloMS × 886 402 18-70 71% MS 886

TOP × × 2,705 2,225 13-72 45%

BIP 463
HC 1,314
MDD 69
SCZ 574

UKB × × 45,907 45,907 44-82 51% HC 45,907

Table 2: Key characteristics of the data sources that was used for specific
purposes across the three papers.
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2. Transformation from .mgz to nifti format with mri_convert from
FreeSurfer.

3. Reorientation to standard FSL space using fslreorient2std from the FM-
RIB Software Library (FSL) v6.

4. Linear registration to MNI152 space, performed by flirt (Jenkinson et al.,
2002) in FSL with 6 degrees of freedom.

5. Removal of redundant voxels around the edges. This was implemented by
extracting a central crop with bounds [6:173, 2:214, 0:160].

6. Rescaling intensity values to the range [0, 1] by division of the constant
255.

The resulting volumes had dimensions [167, 212, 160], and contained the great-
est possible amount of brain tissue rigidly transformed to MNI152 space while
minimizing the presence of extraneous tissues.

6.1.2 Genetic data

In paper II we utilized genetic data from UKB to perform a GWAS for the
brain age predictions from our model. To collect this data, participants were
split into subsets genotyped using two different, but similar, arrays (Wain et al.,
2015), both resulting in ~800,000 genetic markers (Bycroft et al., 2018). Based
on linkage disequilibrium (LD), the covariance of distinct, but related, genetic
variants, the UKB team utilized these markers to impute specific variants per
participant for ~100,000,000 SNPs. From these, we removed locations where the
quality of the data was uncertain, and variants with very low frequency, to end
up with a final sample of ~8,600,000 SNPs from 28,104 participants for analysis.

6.1.3 Phenotypic data

In paper I we performed a phenome-wide association analysis (PheWAS) to
broadly explore properties that were associated with deviations in brain age.
We utilized 402 diverse phenotypic variables from UKB which we qualitatively
grouped into thirteen categories. Each variable was encoded according to PH-
ESANT (Millard et al., 2018), a toolbox developed specifically for phenotypic
data in UKB, alongside a standardized preprocessing pipeline.

In paper III we assessed the value of the relevance maps procured by our
explainable pipeline by associating inter-individual variability in their spatial
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content with performance on tests spanning various cognitive domains. These
performances were recorded in 17 high-level summary scores extracted from 7
test batteries administered to 733 MCI patients in ADNI.

6.2 Modelling

6.2.1 Convolutional neural network architectures

The CNNs trained for all papers were variants of the Simple Fully Convolu-
tional Network (SFCN), a brain age model tailored for three-dimensional struc-
tural MRI data, crowned winner of the Predictive Analytics Competition 2019
(PAC2019) brain age prediction competition (Gong et al., 2021; Peng et al.,
2021). This model consists of a series of repeated convolutional blocks, each
based on a convolutional layer and a max pooling layer, and as such resem-
bles the models from the Visual Geometry Group (VGG) that broke major
ground in improving image recognition of two-dimensional natural imagery in
the early days of the CNN hegemony (Simonyan & Zisserman, 2015). Specifi-
cally, the backbone of SFCN consists of five blocks, each comprised of a 3x3x3
three-dimensional convolution, batch normalization, max pooling, and a recti-
fied linear unit (ReLU) activation. These are followed by a single block that
reduces the dimensionality of the feature space, implemented through a 1x1x1
convolution, batch normalization, and ReLU (Figure 7a). On top of this, the
original model has a prediction head consisting of an average pooling layer,
dropout, and a classification layer with a softmax activation, predicting an age
probability distribution.

Based on this backbone, we experimented with different architectural vari-
ants suited for the exact problem at hand in the three papers, differing only in
their prediction heads (Figure 7b) and the hyperparameter settings employed
during training. In paper I we compared three variants constructed for pre-
dicting brain age, e.g. a single-valued, continuous output (potentially derived
through further computational steps). First, we tested the unchanged, original,
SFCN-model relying on soft classification, operationalized via a softmax activa-
tion in the final layer (SFCN-sm). Second was another model with multiple out-
puts denoting individual ages, but here interpreted through a ranking scheme,
where each output predicted whether a participant was older than a given age
(SFCN-rank). The ranking behaviour was implemented through sigmoid acti-
vations in the final layer. Third and last we employed a simple regression model

43



Conv3D 3x3x3 BatchNorm ReLU MaxPooling
Conv3D 1x1x1 AvgPooling Dropout

a

⋮ ⋮
SFCN-sm SFCN-rank SFCN-reg SFCN-bin

b

Softmax Sigmoid Linear

Figure 7: The convolution neural network architectures used
throughout the thesis. (a) The Simple Fully Convolutional Network

(SFCN)-backbone. (b) The prediction heads used for various predictive tasks
across the three papers.
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(SFCN-reg), with a single continuous output node without activation. In paper
II we only used the SFCN-reg architecture, based on its superiority in paper
I. In paper III we aimed to classify patients and controls and therefore imple-
mented a variant with a binary classification head (SFCN-bin), comprised of a
single output neuron with a sigmoid activation.

6.2.2 Model training and comparison

Like the architectures, the data splitting strategy employed varied between
the papers depending on the use case. In paper I we combined a traditional
train/validation/test approach (implemented through repeated 80%/20% splits)
with an external dataset from unseen scanners to accurately assess model per-
formance and generalization. In paper II we used a cross-validation approach
without hyperparameter tuning, fitting a single model per fold (based on hy-
perparameters from paper I), to achieve out-of-sample predictions for all par-
ticipants. In paper III we employed a nested cross-validation to facilitate both
hyperparameter tuning and out-of-sample predictions. During tuning, we varied
standard hyperparameters such as the learning rate schedule (including number
of epochs), the dropout rate, and which augmentations to use. Each model was
optimized to minimize a loss function tailored for its model architecture and
specific task (Table 3). To select starting values and ranges for the different
learning rate schedules we employed learning rate sweeps (L. N. Smith, 2017),
where we evaluated how model performance in the training set changed as a
function of the learning rate. In all three papers we selected the weights from
the epoch yielding the best performance in the validation set, based on a metric
suited for the predictive task (Table 3). All models were implemented in Python
v3.8 for papers I and II, v3.9 for paper III, using Tensorflow (Abadi et al., 2015)
v2.1 for papers I and II, and v2.6 for paper III, through the Keras interface
(Chollet et al., 2015). The models were trained on Nvidia Tesla V100 and A100
GPUs.

6.2.3 Model evaluation

For model evaluation we employed the same two metrics as we did for epoch
selection, tailored for each predictive task (Table 3). Brain age models (pa-
pers I and II) were evaluated by the mean absolute error (MAE), depending
on a ground truth vector 𝑦 = [𝑦 , 𝑦 , … , 𝑦 − ] and a vector of predictionŝ𝑦 = [ ̂𝑦 , ̂𝑦 , … , ̂𝑦 − ]. For each entry 𝑖, corresponding to an MRI scan, 𝑦
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Model Loss Performance metric
SFCN-sm Kullback-Leibler divergence Mean absolute error
SFCN-rank Mean binary cross-entropy Mean absolute error
SFCN-reg Mean squared error Mean absolute error

SFCN-bin Binary cross-entropy
Area under the receiver
operating characteristic

curve

Table 3: The losses and performance metrics used for each of the individual
model architectures.

and ̂𝑦 refer to the ground truth label (chronological age of the participant)
and prediction (predicted brain age) respectively. MAE was then computed as
MAE(𝑦, ̂𝑦) = ∑= |𝑦 − ̂𝑦 |. For the dementia classification task in paper III, we
evaluated models based on the area under the receiver operating curve (AUC).
AUC also relies on two vectors 𝑦 and ̂𝑦, however here the entries 𝑦 are binary and̂𝑦 continuous numbers in the range [0, 1]. In this scheme 1 typically encodes the
positive class, in our case dementia patients, and the numbers ̂𝑦 are interpreted
as the probability of belonging to the positive class. Where most classification
metrics rely on dichotomizing the predictions ̂𝑦 to interpret them as either cor-
rect or incorrect, AUC instead considers the ordering of predictions between
the two groups. Specifically, it evaluates whether the patients are predicted as
having a higher probability of belonging to the positive class (e.g. predicted as
patients) than the controls. This alleviates the need for calibrating the model
through finding and setting an appropriate threshold for dichotomization, a
process that should be performed based on domain knowledge. Furthermore, it
alleviates the impact of class imbalance (Japkowicz, 2013). In sum, these prop-
erties render AUC generally more applicable in case-control applications than
accuracy (Dinga et al., 2019), which remains the most widespread classification
metric in the neuroimaging literature.

6.2.4 Operationalizing brain age

In papers I and II we trained CNNs to predict brain age. However, we weren’t
interested in the totality of ageing features detected by the model in any given
brain, but rather the proportion of it that indicated a deviation from the normal
ageing trajectory. This was isolated through the computation of a brain age
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delta, referred to as a brain age gap (BAG) in paper II. To calculate the delta for
each participant, we subtracted their chronological age from the predicted brain
age, leaving a singular number that expresses their deviation from the normative
curve, encoded in years. Due to properties of the statistical modelling processes
that underlie brain age (Barnett et al., 2005), it is common to observe a linear
bias of the predictions as a function of chronological age, forcing all predictions
towards the mean age in the dataset. This bias would confound subsequent
analyses by leaking information about chronological age through the delta, an
issue that has normalized the use of correction procedures (de Lange & Cole,
2020) to ensure the delta is centered around zero across the entire age range. In
our models we observed very little of this innate bias and chose to circumvent
the correction procedure, known to have shortcomings of its own (Butler et al.,
2021). Instead, we corrected for age in all subsequent analyses explicitly to
minimize the potential of confounded results.

6.2.5 Explaining model predictions

In paper I we assessed what visual patterns were correlated with variation in
the brain age delta, through two simple post hoc procedures. The first was
a qualitative process where we visualized the average brains in groups with
extreme deviations for multiple distinct age bins. The second was a slightly more
advanced, quantitative, approach, where we correlated deltas with volumetric
features from the images derived using FreeSurfer. These features were vertex-
wise measures of cortical thickness and volumes of 45 brain regions (Fischl &
Dale, 2000; Fischl et al., 2004), including six encoding hypointensities, defined
according to the Aseg atlas (Fischl et al., 2002). For each of these measures,
independently, we computed the Pearson correlation with brain age delta using
numpy v1.20 (Harris et al., 2020). These correlations comprised a map that was
overlayed a template brain and inspected visually.

In paper III we used LRP as a method for explaining the CNN trained for
dementia classification. LRP is a post hoc explainability technique that we
implemented on top of the trained models to form a pipeline procuring both
predictions and relevance maps. For each input MRI given to the pipeline, the
relevance maps represented a visual explanation of the prediction of the model,
here corresponding to the probability assigned by the model that the MRI be-
longed to a patient with DEM. The full technical specification of the LRP imple-
mentation is described in the paper, and the implementation is available online.
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Briefly, the relevance maps procured were three-dimensional volumes located
in the same stereotactic space as the input, such that the relevance in each
voxel denoted how much the corresponding input voxel contributed towards the
prediction. To simplify the interpretations of the maps we employed parame-
terizations of the LRP process that upweighted positive relevance and removed
negative relevance from the maps through a post-processing step. Consequently,
the relevance maps were three-dimensional visual objects, spatially mirroring
the input images, highlighting regions of the image containing evidence that
was used by the model to arrive at the predicted probability of DEM.

6.3 Statistical analyses

6.3.1 Case-control analyses

In paper I we used diagnostic labels to probe the clinical utility of both the brain
age deltas and the internal representations learned by the brain age model. Im-
portantly, the latter were representations of the brain specifically related to age,
as the model never saw diagnoses or any other cognitive or behavioural infor-
mation during training. First, we assessed differences in brain age explicitly by
contrasting the distribution of brain age deltas in six patient groups (AD, MCI,
MOOD (BIP/MDD), MS, PSY (mixed psychotic disorders), and SCZ) to dis-
tributions from matched cohorts of healthy controls. This comparison was done
using only data from scanners that were not seen by the model during training
or validation. Next, to assess the same relationship in a predictive context,
while also estimating the predictive gain offered by the learned representations,
we constructed a simplistic transfer learning procedure to classify cases and con-
trols in the same six cohorts. In this analysis, we employed 64 features from the
second-to-last layer of the brain age model as predictors, alongside age, sex, and
delta, and fit logistic regression models with 𝑙 -regularization using scikit-learn
v1.2.2 (Pedregosa et al., 2011). This was performed in a nested cross-validation
loop, to achieve out-of-sample predictions while simultaneously tuning the reg-
ularization parameter 𝜆. Finally, models were compared to assess the predictive
value of various combinations of predictors, by concatenating out-of-sample pre-
dictions across all outer folds to compute a total AUC per predictor set. For
each predictor, we assessed its information content by investigating whether
adding it as a predictor increased the total AUC.

In paper III we used information from the explainable pipeline to fit a new
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level of models using predictions and relevance maps for MRIs from a cohort
of MCI patients. These models attempted to differentiate progressive MCI pa-
tients, e.g. patients that were diagnosed with dementia diagnosis at a subsequent
timepoint, from a non-progressive group, comprised of both those that improved
their condition at a later timepoint and those that remained stable throughout
the data collection phase. Before these analyses, the high-dimensional relevance
maps were decomposed into simplified feature vectors by a PCA across all MCI
patients. The goal of this was to procure a manageable number of variables for
subsequent modelling while retaining the most salient spatial information from
the maps. In the subsequent analyses, the dimensions of the feature vectors,
corresponding to the principal components of the PCA, were considered proto-
typical relevance maps, each encoding a stereotypical visual pattern observed
in the MCI patients. Akin to paper I we approached the problem of prognos-
tication via both a descriptive and a predictive route. First, we fit survival
models where being given a diagnosis was treated as the terminal endpoint, us-
ing the feature vectors as predictors. We fit Cox Proportional Hazard models
implemented in lifelines v0.27.1 (Davidson-Pilon, 2019), also including sex as a
covariate for stratification. Performance of the model was evaluated in-sample,
by assessing p-values to determine which components were associated with stay-
ing undiagnosed. To correct for multiple comparisons, we employed a p-value
threshold determined via false discovery rate (FDR) correction (Benjamini &
Hochberg, 1995). The outcome of this analysis was a narrowed-down set of
prototypical relevance maps that were significantly associated with a future di-
agnosis, allowing for a qualitative interpretation of how the localization of early
dementia-related pathology related to progression. Next, we reformulated the
question of prognosis in a predictive context, simulating a clinically realistic
prognostic scenario. Here, we fit binary classifiers to predict which of the MCI
patients would progress into dementia at several fixed timepoints in the future.
These models were logistic regression models using different combinations of age,
sex, probability of dementia at the current timepoint (predicted by the original
CNN), and feature vectors as predictors (representing relevance maps), fit with
an 𝑙 -regularization term using scikit-learn. As before, this was performed in
a nested cross-validation loop, to achieve out-of-sample predictions while tun-
ing 𝜆. Model performance was assessed using the AUC, this time calculated
independently for each outer fold. Having multiple assessments of performance
for each model allowed us to more rigorously test which predictors yielded a
significant improvement, by doing pairwise comparisons of the distribution of

49



paired AUCs in a one-sided Wilcoxon signed rank test implemented in scipy
v1.6.3 (Virtanen et al., 2020).

6.3.2 Genetic analyses

In paper II we investigated the genetic foundations of differences in brain age,
operationalized through the brain age delta based on brain age predictions from
CNNs. These models were fit in a 5-fold cross-validation to achieve out-of-
sample deltas for all participants. We first performed a GWAS meta-analysis
to identify SNPs associated with variations in the delta, implemented using
PLINK version 1.9 (C. C. Chang et al., 2015), by running independent GWAS
for each of the five folds. The results from these five independent analyses
were unified using PLINK’s inverse variance-weighted meta-analysis to produce
a single effect size and significance level per SNP (C. H. Lee et al., 2016). Based
on the resulting genome-wide significant associations, we first resolved the issue
of multiple SNPs representing the same haplotypic variant by clumping the
results through FUMA (Watanabe et al., 2017), resulting in a single lead SNP
per genomic region. Each of these was linked to adjacent genes through the
Ensembl Variant Effect Predictor (VEP) tool (McLaren et al., 2016). Next, we
identified plausible causal variants within each region using FINEMAP (Benner
et al., 2016) and assessed whether these affected the expression levels of the
genes via lookups in the GTEx v8 eQTL portal (the GTEx Consortium, 2015).

Based on the results from the preceding analyses we looked for overlap-
ping associations with five disorders, based on summary statistics from recent
GWAS for AD (Jansen et al., 2019), BIP (Mullins et al., 2021), MDD (Wray
et al., 2018), PD (Nalls et al., 2019), and SCZ (Trubetskoy et al., 2022). First,
we calculated the amount of variance explained by genetic variability for each
disorder, commonly referred to as SNP-based heritability, and the correlation
between disorder and delta using LD score regression (Bulik-Sullivan, Loh, et
al., 2015) implemented in ldsc (Bulik-Sullivan, Finucane, et al., 2015). We
also assessed polygenic enrichment, indicating whether the genetic variants as-
sociated with one trait are also associated with another, through conditional
quantile-quantile (QQ) plots (Chen et al., 2017; Lo et al., 2017), conditioning
on both brain age and the disorders. Here, enrichment was assessed visually by
identifying whether the variants significantly associated with the conditioned
trait had p-values lower than expected by random chance in the target trait,
using increasingly stricter thresholds of significance for inclusion.
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In addition to the correlational analyses above, we employed multiple MR
models to disentangle the causal relationship between the brain age delta and
the five disorders. These were performed bi-directionally, both using brain age
as a risk factor and each of the disorders as an outcome and using the disor-
ders as risk factors and brain age as an outcome. In each analysis, we selected
genetic variants as instrumental variables based on the GWAS for the corre-
sponding risk factor and assessed the ratio of effect sizes between the risk factor
and outcome for each instrument. When these ratios are similar, meaning that
the genetic profile that affects the exposure and outcome is similar, and the
fundamental assumptions underlying MR are met, this allows for the interpre-
tation that the risk factor causally affects the outcome. However, evaluating
the validity of these assumptions was challenging, as they often are in real-life
data, so we employed five different variants of MR to alleviate them in various
ways, in addition to the conventional inverse-variance weighted model (Relton
& Davey Smith, 2012). The weighted median (wMed) model relaxes the as-
sumption that the genetic variants used as instruments need to be associated
with the exposure (Bowden et al., 2016). Egger regression (Bowden et al., 2015)
tests and controls for horizontal pleiotropy, when genetic variants affect both
the risk factor and outcome independently, through introducing an intercept in
the statistical model. The pleiotropy residual sum and outlier (MR-PRESSO)
model identifies outlier variants caused by horizontal pleiotropy that inflate
the causal estimate (Verbanck et al., 2018). The robust adjusted profile score
(RAPS) model applies robust regression techniques to minimize the impact of
instruments with pleiotropic effects (Zhao et al., 2020). Finally, the causal anal-
ysis using summary effect (CAUSE) model accounts for pleiotropic effects both
when they affect the risk factor and the outcome through the same biological
mechanism, and when they are uncorrelated (Morrison et al., 2020). To unify
results across these six variants we used a majority voting scheme, interpreting
only results where four or more of the methods agreed as reliable.

6.3.3 Validating relevance maps

To ensure the classifier in paper III had learned to recognize patterns plausibly
associated with DEM, and that these were conveyed through our LRP imple-
mentation, we performed two sanity checks. First, we averaged the relevance
maps across all correctly predicted patients to form a singular relevance map
representing the average patient and compared it with a statistical reference en-
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coding preexisting knowledge of the localization of dementia-related pathology
from the scientific literature. The statistical reference map was generated with
an activation likelihood estimation implemented in GingerALE v3.0.2 (S. B.
Eickhoff et al., 2012; S. B. Eickhoff et al., 2009; Turkeltaub et al., 2012). The
basis for the map was 394 experiments from 124 publications related broadly to
DEM, collected with Sleuth v3.0.4 (Laird et al., 2005). We non-linearly regis-
tered the average relevance map, such that both it and the statistical reference
map were three-dimensional volumes in MNI152-space, both containing contin-
uous values. To perform the comparison, we binarized both maps at different
percentiles, and computed the Dice-Sorensen coefficient, denoting the fraction
of overlap, between the voxels that surpassed the binarization threshold on each
side. This produced a curve, tracing the overlap as a function of the percentile
used for binarization, which was examined qualitatively. To determine whether
the overlap surpassed chance levels, the process was repeated for three other
relevance map-generating pipelines, where the procured relevance maps had no
association with DEM-related pathology.

The second sanity check was quantitative, centered around the CNN that
was trained to predict probability of DEM. Here, we used the relevance map
produced for each image to iteratively perturb it, for each iteration occluding
the region that was identified as contributing the most towards the prediction.
Additionally, for each iteration, we ran the occluded image through the classifier,
recording how the perturbation influenced its prediction. This allowed us to plot
a curve, tracing the prediction as a function of the number of perturbations.
Subsequently, we calculated an area over the perturbation curve (Samek et al.,
2017), quantifying how quickly the CNN’s ability to recognize patients faded as
important regions were sequentially being removed. Again, we compared the
curve produced by the DEM-pipeline with the three alternative pipelines, to see
whether it quantitatively was better than chance at detecting regions important
for classifying dementia.

6.3.4 Additional analyses

Although the imaging models, case-control classifiers, and genetic analyses de-
scribed so far cover most of the analytical components employed throughout
the three papers, we supplemented them with various other analyses to further
understand and exploit what was learned by our CNNs. In paper I we per-
formed the PheWAS to associate inter-individual variability in brain age deltas
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with variation across 402 other phenotypic variables. These associations were
assessed univariately, using a linear model to model delta as a function of each
phenotypic variable, while controlling for age and sex. The models were im-
plemented in statsmodels v0.13.2 (Seabold & Perktold, 2010). Significance was
assessed by assessing the p-value denoting the contribution of the phenotypic
variable in each independent model. We accounted for multiple corrections con-
trolling the FDR.

In paper III we associated visual patterns in the relevance maps from the de-
mentia classifier with performance on a neuropsychological test battery, to assess
whether the location of dementia-related pathology detected by the model was
associated with clinical symptom load. Here, we also used the simplified repre-
sentations of the relevance maps derived from the PCA described above, namely
feature vectors with dimensions representing prototypical relevance maps. Each
of these prototypes was associated univariately with 17 summary scores from
the test battery via linear models in statsmodels. In addition to the feature
vectors we corrected for age, sex, and dementia prediction from the original
CNN, to isolate the effect of the localization of pathology, as opposed to the
total pathological load. As above, significance was assessed by evaluating the p-
values for the individual prototypical relevance maps in their respective models,
with an FDR-corrected threshold.

6.4 Ethical considerations
The work in this thesis was performed partially using data acquired locally,
regulated by multiple approvals from REK (applications 2009/2485, 2013/2283,
2016/102, 2019/943). Data management and privacy issues concerning those
studies have been evaluated and approved by the University of Oslo (UiO)
and/or Oslo University Hospital. Data from various online sources and col-
laborators have also been utilized, governed through a variety of data sharing
agreements. All analytical work was performed on UiO’s services for sensitive
data (TSD), a platform facilitating storage and analysis of sensitive data in a
secure environment. The research was performed in compliance with Norwegian
law for conducting medical and health research (the Health Research Act).

Beyond what is explicitly governed by laws and regulations, there will always
be ethical aspects that should be considered when doing research. This holds
true also for this thesis, and I will elaborate some of them in the following
paragraphs. First, I will discuss some relevant ethical challenges that arise
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when doing medical research with diagnostic and prognostic aims, particularly
using advanced predictive technology. Next, I will elaborate on issues that arise
when collecting and using data for research purposes. Finally, I will delve into
some of the ethical considerations pertaining to the use of AI, first when using
it as a tool to derive scientific knowledge, and secondly pertaining its broader
role in society.

We generally want people to be healthy and content, an objective frequently
operationalized through medical research and practice. When someone is not
healthy, we seek to treat them, ideally returning them to a state of well-being.
To recognize which remedy is appropriate a diagnosis is decreed, effectively
clumping the present patient with other patients that suffer from the same, or
at least a very similar, disease. This allows the prescription of a treatment, based
either on a mechanistic understanding of the nature of the illness, or empirical
evidence of what has successfully treated the disease historically. This general
approach has formed the backbone of evidence-based medicine in the last half-
century. And while there have always been challenges with how and when a
diagnosis should be given, in this framework this has generally been a question
of balancing risks and benefits to maximize the probability of a good outcome.
However, the complexity of deciding when a diagnosis should be given increases
substantially as the definition of a disorder obfuscates. Furthermore, the poten-
tial upside of giving a diagnosis is reduced when this knowledge may provide
a limited basis for deciding upon effective treatment, a reality for many of the
complex disorders addressed in this thesis (Durães et al., 2018; Leichsenring
et al., 2022). Oppositely, the potential downside increases dramatically if the
disorder is associated with social stigma, such that simply giving the diagnosis
has a negative effect on the patients, another aspect that has been described in
these disorders (Hinshaw & Stier, 2008). Combined, these factors indicate that
these diagnoses should be prescribed with care. Similar arguments can be made
against prognosis: it is complicated to determine whether the insight that one
may be at risk to contract a life-changing, potentially untreatable, neuropsychi-
atric disorder is beneficial, especially if that knowledge does little or nothing to
alleviate the risk. Through the development of predictive technology, this thesis
can be reasonably said to contribute towards automatizing these diagnostic and
prognostic processes, prompting contemplation on whether this is morally and
ethically defensible.

To counteract the problems outlined above, I will point out reasons to be
optimistic about the use of AI and technology to diagnose neuropsychiatric dis-
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orders. Most importantly, early, precise, and personalized diagnosis has proven
effective for slowing disease progression and reducing symptom load for a range
of disorders, even when curative treatment is not currently available (Rasmussen
& Langerman, 2019). The importance of this point is further emphasized by
findings revealing that individuals are more willing to listen to recommendations
when these are based on individualized risk as opposed to general advice (Carver
et al., 2022). If this can be achieved through individualized predictive models, it
seems more appropriate to ask how they can be implemented safely, rather than
categorically denouncing them. Regarding the morality of labelling individuals
with diagnoses when this doesn’t entail treatment, there are positive sides that
can counteract negative stigma. Specifically, being given a diagnosis can pro-
vide patients with a new lens through which they can understand themselves
and their challenges (Werkhoven et al., 2022), potentially reducing the burden
of a condition. However, neither of these arguments should make out the corner-
stone of a moral defense for predicting disorders and outcomes. Instead, I will
argue that prediction can provide a useful tool in our quest to understand the
complex mechanisms of these enigmatic conditions. First, I will assertively state
that I consider this pursuit of the causes of disease a moral imperative. This
might seem redundant, but there are plausible arguments for how a more careful
dissection of individuals along behavioural axes of variability can have negative
consequences, such as overdiagnosis (Moynihan et al., 2012), overmedicalization
(Angell, 2011a), and a general constriction of normality (Angell, 2011b). While
definitively important issues these are massively outweighed by the tremendous
negative effects inflicted by the conditions considered in this thesis. However,
it is worth mentioning the unreasonability of considering these diagnoses as a
single entity in this regard, given their innate differences. Nonetheless, given
the intricacies of demarcating them, and the general focus on methodology and
technology here, it is a necessary simplification.

Prediction, when judiciously applied, can play a pivotal role in the ex-
ploratory process of understanding a phenomenon. To accentuate this view,
I will return to the representation learning perspective embraced in the intro-
duction. While predictions from a statistical learning model are commonly
seen through the lens of statistics, representing probabilities or likelihoods, it is
equally justifiable to interpret them as information-theoretical quantities. Here,
they simply represent a quantum of information, a compressed version of the
data that was input to the model that retains some properties while discarding
others, according to specific rules. In cognitive and clinical neuroscience, it can
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be argued that there is a lack of intermediate levels of description and explana-
tion between the biological and psychological domains (Rolls, 2021). One of the
main concerns of the field should be the construction of a conceptual hierarchy
that bridges this gap. However, reconciling these domains will require navi-
gating a complicated intermediary landscape of vast combinatorial possibilities.
Here, predictive models, through their capacity for processing and compressing
information, can potentially play the role of landmarks in this exploratory pur-
suit. This is best depicted in an idealized imagined setting with a predictive
model able to combine information to arbitrary degrees of complexity, e.g. a
DNN (Hornik et al., 1989), and infinite data. Here, the concordance between
prediction and labels will be indicative of the information overlap between the
input and output space of the model. In clinical neuroscience, this could allow
for quantitative reasoning about what can possibly be derived from neuroimag-
ing data, and its interrelation with clinical constructs. From this perspective,
the predictive models take on an inductive role in the quest for knowledge, where
the focus is not on the practical utility of their predictions per se, but rather
on their proficiency as information processing entities. To summarize, having
predictive capabilities does not necessarily imply using them for single-subject
predictions. While I believe that also the latter is morally defensible in some
cases, this disentangles the two processes, simplifying the moral argument for
the former.

The scientific process has always relied on data from the real world to refute
or strengthen hypotheses. When the subject matter under investigation relates
to personal life, this data will necessarily be highly sensitive. The absolute de-
pendence on sensitive and personal data has fostered the development of both
concrete judicial structures and ethical guidelines for the management and us-
age of such data for research purposes. In the age of big data, data mining,
and deep learning, some of the central pillars of these governing frameworks are
being challenged. One such is the principle of data minimization, which states
that a researcher, or any other data-collecting entity, should collect the minimal
amount of sensitive data sufficient to realize a purpose (The Norwegian Personal
Data Act, §5.1c). This stands in contrast with the exploratory nature of modern
ML approaches, where data is not used simply to test hypotheses, but also to
generate them, implying that the ideal starting point is a dataset containing as
much information as possible. This desire for breadth also potentially contra-
dicts the related principle that data should be collected towards a specific goal
(The Norwegian Personal Data Act, §5.1b). Consequently, it is crucial to weigh
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the potentially detrimental effects it could have upon participants in studies to
effectively relax these restrictions through reformulations of the intended pur-
pose and goal, against the potential benefits of having access to the data. As
this thesis relies solely on data already collected, this issue is not of direct rele-
vance. Nonetheless, it is important to keep in mind when using external data,
to ensure it was collected in accordance with high ethical standards and that
the current research falls within the collected consent. For the data used here,
this is the case. A related issue emerges when data from various sources are
combined to provide the broadest possible basis for explorative modelling. This
can potentially incite situations where data that was originally, independently,
not sufficient to identify individuals, but through combination this guarantee
is lost. Although this thesis combines a lot of data from different sources, this
never entailed augmenting data from the same individual, and thus this concern
is alleviated.

If the data we used was collected with appropriate consent and according to
high ethical standards, stored securely, and not shared, it sounds reasonable to
assume that privacy concerns are mitigated. However, there are other potential
issues to be aware of. One such that arises particularly in research develop-
ing predictive models, and maybe specifically DNNs, is the public sharing of
trained models, a practice inherited from the broader open-source community.
In a sense this practice seems unproblematic: the shared models are large ma-
trices of numbers that are unintelligible to humans. However, these numbers are
derived from the data that was used to train them, in this context highly sensi-
tive data governed by strict rules and regularization. For generative models, a
different class of models than what we used, recent research has shown it possi-
ble to extract samples that were used for training after the model was deployed
(Carlini et al., 2023). While the exact technical route for reverse engineering
the types of models we used is less obvious, this still opens the possibility that
we are somehow leaking sensitive data through our shared models. In addition
to privacy concerns, there are general problems regarding governance and own-
ership of models distilled from personal, sensitive data collected under specific
consents. Taken together, these issues problematize the sharing of pretrained
models. However, there are also moral arguments favouring the other side.
Most importantly, this is a practice that enhances the capacity of the collective
scientific community to develop better predictive models and put them to use
(Touvron et al., 2023), in addition to fostering reproducibility (European Com-
mision et al., 2020). For the models trained in this thesis the latter weighed
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heavier, and they are open-sourced under non-commercial licenses.
Another ethical concern that has always existed in research, but is exacer-

bated through the sharing of pretrained models, is the representativeness of the
data that is used. Traditionally, various biases have challenged the generalizabil-
ity of empirical findings. In medical research, a systemic error that has persisted
through the years is gender bias. Historically, most studies have included mostly
male participants, leading to knowledge, and subsequent development of inter-
ventions, that do not generalize to females (Holdcroft, 2007). However, this
has improved in later years, and while the effects of gender differences are still
not always properly accounted for, many of the large neuroimaging datasets are
relatively balanced with respect to the sexes of their participants. Conversely,
there are still severe selection biases in ongoing data collection efforts concerning
geography, demography, and race (Ricard et al., 2023). This limits the gener-
alizability of findings and could lead to differences in the healthcare solutions
available to different populations and groups. Overcoming this requires changes
in data acquisition practices, but until then it is important to be specific about
the limitations this entails. The exacerbation concerning shared models comes
from the fact that this lack of generalizability will now be implemented prac-
tically in tools that are made available to others. Furthermore, it might be
hard for users to recognize this problem, and, even when it is known, difficult
to determine when a new population is so far out-of-distribution that the model
is no longer reliable. Ideally, this should be handled by extensive testing of
where the model behaves as intended by its developers. However, as this is not
a practically feasible solution, it is at the very least important for practitioners
to be open and explicit about what data was used to train their models.

It is important to note that many of the issues outlined above are magnified
when AI models initially developed for scientific endeavours are translated into
publicly accessible software, for instance in clinical decision support systems.
Now, unrepresentative samples used for training models does not solely lead to
invalid inferences, but potentially social injustice or medical malpractice. And
poor data management can lead to personal and sensitive data collected with
consent to pursue scientific questions ultimately increasing shareholder value in
commercial companies. The effort to regulate modern AI is just getting started
with the EU AI Act, a proposed law for the regulation of AI systems in Europe to
be implemented in early 2024. Although this development is of broad interest to
everyone working in the field, there is one topic specifically relevant to this thesis
that incites reflection. If commercialized, the technology developed here would
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presumably be categorized as medical devices, putting them in the high-risk
group of products (AI Act, Recital 30). One of the demands for products in this
group is transparency, an aspect that is operationalized in this thesis through
explainability. In the legislation, transparency is defined as ”[…] enabling users
to understand and use the system appropriately” (AI Act, Article 13.1) and that
”Users should be able to interpret the system output and use it appropriately”
(AI Act, Recital 47). This reasserts the central role of the user in XAI outlined
earlier. And practically, it entails that empirical, quantitative investigations
of the explanations of AI models, such as the ones performed here, must be
supplemented by trials with potential users of the system to understand whether
they are useful. Ensuring that explainability truly fosters understanding will
be imperative to develop and deploy AI that conforms to ethical and judicial
expectations moving forward.

I will end this chapter by adding my voice to a collective concern raised in
response to the rapid development of AI in the last year. It is common practice
in many scientific branches that academics and commercial entities collaborate
to advance the research frontier. In AI, this dynamic appears to be somewhat
shifted towards commerce, with many breakthroughs in the last decade orig-
inating from large technology companies (Brown et al., 2020; Jumper et al.,
2021; Vaswani et al., 2017). This can be explained by the immense commercial
potential of the technology fostering private investments, potentially acceler-
ating its progression for the overall good. For many years this happened in a
tolerable fashion, where private actors contributed towards advancing the state-
of-the-art, necessarily promoting their commercial interests, but while making
theory, and often even code and models, accessible through standard academic
channels. This changed in 2020, when OpenAI, a research company created to
facilitate the safe development of artificial general intelligence (OpenAI, 2015),
decided not to open source their groundbreaking large language model GPT-3
(OpenAI, 2020). The rationale given was the model’s potential to cause soci-
etal harm, particularly its proficiency at generating misinformation (Brown et
al., 2020). Instead, the technology was exclusively licensed to Microsoft (Scott,
2020), about a year after OpenAI changed from a non-profit to an investor-
friendly ”capped profit” structure to meet their rising capital needs (OpenAI,
2019). In 2022 ChatGPT was released (OpenAI, 2022), a complete end-user
application for interacting with the newest, still proprietary, GPT models, fol-
lowed by an optional, paid, premium service (OpenAI, 2023). The debate on the
ethical aspects of open-sourcing advanced deep learning models is still ongoing
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and is a topic too complex to describe in detail here. However, considering the
preceding paragraphs urging general caution when developing AI methodology
in scientific contexts to avoid overstepping ethical bounds, it is worth contem-
plating that there are actors in the field with access to more data and resources,
striving for plausibly less noble goals than the scientific pursuit of knowledge,
operating under less stringent ethical frameworks. The proficiency of tools de-
veloped by private actors could lead to situations that necessitate their use,
even if they were developed with unsatisfactory ethical standards. Finding a
balance between regulating and empowering different actors to ensure progress
while mitigating the risk of harm must be a priority for both regulators and
practitioners of the field in the years to come.
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7 Summary of papers

7.1 Paper I: Deep neural networks learn general and clin-
ically relevant representations of the ageing brain

Background: Over the last decade, brain age has emerged as an intuitive and
sensitive marker of brain health. However, disparities in data acquisition have
proven troublesome for the statistical methodologies underlying brain age mod-
els, raising questions about the generality of what they learn, and hindering
clinical adoption. Facilitated by the accumulation of vast datasets and theoret-
ical advances, deep learning provides opportunities for refining brain age and
enhancing its potential for clinical implementations. Empirical studies based
on large, heterogeneous datasets are imperative to investigate whether they can
overcome differences in data acquisition, scrutinize their clinical utility, and fur-
ther understand what the measure encodes.
Methods: We compiled a large, heterogeneous dataset (𝑛 = 53, 542) of struc-
tural MRIs to fit brain age models using variants of a state-of-the-art convolu-
tional neural network. To assess generalizability, we performed out-of-sample
testing with scanners unseen by the model. Next, we tested for associations
between variability in predicted brain age, structural brain measures, and a va-
riety of phenotypes. Finally, we employed the brain age model in a transfer
learning setting to predict neuropsychiatric diagnoses (AD, MCI, MOOD, MS,
PSY, SCZ) to assess its clinical relevance.
Results: The best model achieved state-of-the-art generalization, with an MAE
of 3.9 years in data from unseen scanners. Increased brain age was associ-
ated with widespread cortical thinning and reduction of subcortical volumes.
Furthermore, we found correlations with a multitude of phenotypes, includ-
ing diabetes, cardiovascular measurements, smoking, and alcohol consumption.
Utilizing the representations learned by brain age model for transfer learning
yielded fair predictive power for detecting patients with MS, AD, and MCI,
(AUCs > 0.7), and modest differentiation for SCZ, PSY, and MOOD (AUCs≈ 0.6)
Conclusion: A CNN trained to predict brain age based on large and heteroge-
neous data can alleviate common issues with generalization, and its predictions
coincide with measures known to be associated with overall and brain-specific
health. Furthermore, both brain age and the learned representations underlying
it are predictive of neuropsychiatric disorders.
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7.2 Paper II: Genetic architecture of brain age and its
causal relations with brain and mental disorders

Background: BAG, the difference between the apparent age of the brain and
the chronological age of an individual, has been linked to a multitude of neu-
ropsychiatric disorders. However, the genetic underpinnings of BAG have not
received much attention, even though they could elucidate the role of brain
ageing in neuropsychiatric disorders. Beyond genetic associations, MR offers a
methodology to probe the causal relationships between BAG and these disor-
ders, potentially explicating its value as a clinical biomarker.
Methods: We used a state-of-the-art CNN to predict brain age in a subset of
participants from the UK Biobank (𝑛 = 28, 104) from which genetic data was
also accessible. Based on these predictions we calculated BAG and performed
a GWAS to identify genetic variants that were associated with it. Next, we
applied a battery of methods to refine the genetic signal and identify potential
biological pathways related to BAG. Finally, we investigated the relationship
between BAG and five neuropsychiatric disorders (AD, BIP, MDD, PD, SCZ)
through polygenic overlaps and bi-directional MR analyses.
Results: The brain age models were accurate, achieving consistent MAEs of< 2.5 years in unseen data. The GWAS revealed eight independent loci sig-
nificantly associated with variability in BAG, seven of which were novel. The
supporting analyses indicated that these genetic variants influenced 54 genes,
which had intricate expression patterns in the brain specifically, and other tis-
sues across the body. The MR analyses indicated that higher BAG was pro-
tective against Parkinson’s disease, whereas increased genetic risk for AD and
BIP were causally related to higher brain age. However, qualitative inspections
revealed that these causal relationships should be interpreted with care.
Conclusion: Our study represents the largest GWAS on brain age to date,
identifying seven novel genetic variants contributing to its variation. These
variants were associated with genes expressed in a range of tissues across the
body, emphasizing the sensitivity of brain age as a composite marker of gen-
eralized health. The causal relationships between BAG and neuropsychiatric
disorders remain elusive.
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7.3 Paper III: Characterizing personalized neuropathol-
ogy in dementia and mild cognitive impairment with
explainable artificial intelligence

Background: Dementia, afflicting more than 55 million individuals worldwide,
is a neuropsychiatric condition that incurs a monumental detrimental effect on
society. Dementia patients are a heterogeneous group, both in terms of pathol-
ogy and clinical manifestation. Early detection and personalized characteriza-
tion of the disease would facilitate accurate prognosis, widen the window for
early interventions and potentially alleviate uncertainty about the future of in-
dividual patients. XAI has the potential to accurately localize dementia-related
pathology to facilitate personalization and provide a translation technology for
dementia diagnosis and prognosis.
Methods: We trained CNNs to differentiate patients with DEM (𝑛 = 854)
from healthy controls (𝑛 = 854) using structural MRIs and implemented LRP
on top of the model to form an explainable pipeline, procuring both individual
predictions and relevance maps to explain them. We validated the relevance
maps extensively, first through a comparison with existing knowledge of pathol-
ogy recorded in the literature, and secondly by assessing the predictive value of
the information they encoded. Finally, we employed the pipeline in a cohort of
MCI patients (𝑛 = 1256) to investigate its potential for prognosis and person-
alization of the diagnosis at an early stage.
Results: The best model achieved satisfactory discrimination performance,
reaching an out-of-sample AUC of 0.9. The first validation revealed substantial
overlap between the average relevance map from our pipeline and the reference
map produced through a meta-analysis of the literature. The second valida-
tion affirmed the importance of the regions detected in the relevance maps for
predicting dementia in a quantitative setting. Information from the pipeline in
the MCI cohort enabled the ability to differentiate progressive from stable MCI
patients with an AUC of 0.9 after 5 years. Differential localization of pathology
encoded in the relevance maps showed associations with impairments in distinct
cognitive domains.
Conclusion: XAI presents a promising translational technology to support clin-
ical decision-making in the diagnosis and prognosis of dementia. The outputs
of our explainable pipeline was both predictive of disease progression and as-
sociated with individualized clinical manifestation of the disease, both essential
capabilities to enable precision medicine in dementia in the years to come.
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8 Discussion
Through this thesis, I have explored the hypothesis that DNNs are capable
of learning representations of the brain from neuroimaging data that can help
elucidate the biological variability that underpins neuropsychiatric conditions.
Moreover, I have demonstrated that these representations are associated with
quantifiable biological and physiological processes in the body and the brain,
to underscore that they are not simply visual patterns, but rather represent
composite and informative biological measures. Finally, I have related the rep-
resentations with existing diagnostic labels, with a focus on neuropsychiatric
disorders with a behavioural or cognitive aspect, to highlight their clinical po-
tential. In the upcoming section I will continue discussing the results from
the papers, to highlight independent aspects that warrant attention, elucidate
their interconnections, and place them into the broader context provided by
contemporaneous research in the intersection of AI and neuroscience.

8.1 Deep learning-derived brain age as a robust marker of
generalized brain health

In papers I and II we trained CNNs to predict brain age based on a large
and heterogeneous sample, to contribute to a broad literature emphasizing the
usefulness of brain age as a marker of generalized brain health. The advan-
tages of using complex deep learning models to predict brain age as opposed
to simpler models, such as the relevance vector machine underlying the original
brainAGE framework (Franke et al., 2010), are not necessarily obvious. The
most evident benefit of transitioning to more expressive models is generally the
increase in predictive performance, in brain age exemplified by the SFCN win-
ning PAC2019 (Gong et al., 2021; Peng et al., 2021). However, more accurate
brain age models are not trivially more useful. Recently, there have been put
forth arguments favouring both accurate models (Hahn et al., 2021) and models
that allow for a moderate amount of variation in their predictions (Bashyam
et al., 2020; Bashyam et al., 2021) even though the latter necessitates worse
predictive performance as measured by standard metrics. The proposed ad-
vantage of loose-fitting models is that variability in their predictions reflects
biological variation, rendering them more sensitive towards pathological alter-
ations manifest in various patient groups. This is epitomized in the argument
that a perfect brain age model, predicting the correct chronological age every
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time to yield brain age deltas of exactly zero, is useless, as these will not covary
with any phenotype of interest. While this is tautologically true, it is also worth
further contemplation. Although the outputs of the model would be neither in-
teresting nor useful, it can be argued that the model itself necessarily would
be. Having learned to navigate the complexities of neuroanatomy to perfectly
and invariably recognize age seems to imply a profound understanding of the
changing brain, knowledge that appears invaluable.

To examine the opposite side, the main argument against loose-fitting models
is the practical improbability of determining what causes their worse fit. While
it can be caused by biological variability, it can also arise from modelling errors
or imaging artifacts, and it is implausible that these two can be told apart for an
individual prediction. Following this I advocate the view that we should pursue
more accurate models, under two important presuppositions. First, that better
fits are not achieved by actively reducing heterogeneity in the dataset, in paper
I ensured via the large dataset and external validations. And second, venues for
exploiting the knowledge encoded in the models beyond their raw predictions
must be explored, exemplified through our transfer learning scheme where we
used the internal representations of the model to predict diagnostic status.

Potentially more devastating than uncertainties about modelling best prac-
tices are controversies regarding the true nature of brain age, such as the dis-
cussion on whether it is sensitive towards ongoing rates of aging, or if it rather
captures differences that are relatively stable across the lifespan. Empirical ev-
idence has been presented both in favour of the former (Franke & Gaser, 2012;
Høgestøl et al., 2019) and the latter (Vidal-Pineiro et al., 2021). Related is
the problematization of the relationship between age-related patterns encoded
in these brain age predictions and neuropsychiatric pathology (Cole & Franke,
2017), and specifically to what degree the former encompasses the latter (Hein-
richs, 2023). This is not specific to brain age, but rather part of a broader
philosophical discussion concerning the interrelation between age-related and
pathological processes (Hayflick, 2004; Holliday, 2004). A third matter that
has been raised is the limited interpretability of brain age due to its composite
nature (Cole & Franke, 2017). In my opinion, the last objection falls on its own
accord: it is exactly the ability to aggregate and consolidate information that
makes brain age valuable. This does not mean it’s not worthwhile to inquire
what underlies brain age. Both paper I and other studies (S. M. Smith et al.,
2020) have indicated that there are levels of abstraction beneath the singular
brain age that can be useful and interesting, and this direction should be ex-

65



plored further. As a broader stance against the issues presented here, I concur
with the pragmatic view (Cole & Franke, 2017), pointing towards the practical
utility of brain age. The PheWAS and diagnostic predictions in paper I add to a
wealth of empirical evidence amassed for the sensitivity of brain age predictions
towards alterations in the brain related to biological processes. This view should
not impede investigations into the ontological foundation of brain age, but nei-
ther should ontological uncertainty hinder practical work toward exploiting its
utility. While the amount of evidence for the usefulness of brain age predictions
continues to mount, there are, to my best knowledge, no implementations of
brain age models tailored for clinical use available today. To achieve this should
be a priority for practitioners in the field moving forward.

8.2 Elucidating brain age via genetic associations
Another promising approach for utilizing brain age as learned by our CNNs is
as an intermediate phenotype between low-level biology and high-level cognition
and behaviour, including clinical diagnoses. Paper II adds to a growing body
of knowledge about the genetic foundations of brain age (Jonsson et al., 2019;
Ning et al., 2020; S. M. Smith et al., 2020) and its genetic associations with
neuropsychiatric disorders (Kaufmann et al., 2019), by both replicating earlier
findings and identifying novel genetic associations. It also gives further credence
to the notion of the brain age delta as a heritable trait (Cole & Franke, 2017;
Jonsson et al., 2019; Kaufmann et al., 2019). Beyond the variants themselves,
an intriguing finding was the extensive scope of biological pathways associated
with them. This implicates brain age as a measure sensitive towards an array of
biological processes. This finding can be seen in relation to more general find-
ings indicating a broad genetic foundation underpinning other biological clocks
(Rando & Chang, 2012), potentially linking brain age with a more compre-
hensive notion of biological aging. However, this inference is complicated by an
earlier study finding no association between brain age and methylation age (Cole
et al., 2018), signifying that the two measures are sensitive to complementary
information. The latter hypothesis has been strengthened by recent reports that
an age prediction model combining brain and body measures predicted age more
accurately than a standalone brain age model (Beck et al., 2023). In sum, this
outlines an intricate relationship that should be elucidated through further ef-
forts. However, it also highlights the potential of brain age in combination with
other biological ages to provide a comprehensive array of abstract, high-level
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biological measures that can holistically support precise clinical decisions.
A surprising result from paper II was the lack of overlap we observed be-

tween the genetic variants underlying brain age and those underlying neuropsy-
chiatric disorders, contradicting earlier findings (Kaufmann et al., 2019). There
are multiple plausible explanations for this discrepancy, beyond differences in
methodology. Under the assumption that the genetic architecture is complex
and polygenic, and the individual effects are small, the datasets used by us and
others for brain age GWAS are still relatively small (Nishino et al., 2018). This
is an assumption that has proven true for other complex neuroimaging pheno-
types (Roelfs et al., 2023). This presumed polygenicity could also influence the
validity of the MR analyses we performed. However, if this was the case, and
some of the genetic variants affected brain age and one of the disorders through
horizontal pleiotropy, this should yield inflated causal results and potentially
false positives (Bowden et al., 2015). Instead, we saw little reliable evidence for
causal relations overall. Like above, a potential explanation for this is the limited
sample size of the GWAS, although imaging genetics studies based on simpler
imaging phenotypes have revealed evidence for causal relationships based on
similar sample sizes (Guo et al., 2022). It is possible that the complexity of
brain age as a measure, specifically when derived from a DNN, conflates the
genetic variation underlying it, giving it a broad pleiotropic foundation. If so,
it could be more meaningful to look for genetic signals at levels of abstraction
underlying the singular, composite, measure (S. M. Smith et al., 2020), such as
the internal representations we used for transfer learning in paper I.

8.3 Characterizing heterogeneity with explainable artifi-
cial intelligence

In paper III we assessed brain heterogeneity through XAI by leveraging the
localization of pathology enabled by our explainable pipeline built for classify-
ing patients with DEM. However, to do this confidently, we first validated the
veracity of the explanations through two validation procedures. Extensive val-
idation of these approaches is crucial, given the general shortcomings of these
methods that have been repeatedly shown (Adebayo et al., 2020; Kindermans
et al., 2019; Sixt et al., 2020). These shortcomings are potentially exacerbated
in neuropsychiatric disorders where even the ground truth diagnostic label is
subject to heterogeneity and subjectivity (Martin et al., 2023). On top of this,
the importance of concretizing the added value of applying XAI in individual
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studies has been emphasized (Lipton, 2017), incurring a need to establish why
specific validation procedures are applicable in given situations. In our first
validation, we observed that the regions where the model detected evidence for
DEM corroborated knowledge existing in the literature, similar to what has
been reported by others (Böhle et al., 2019; Dyrba et al., 2021; D. Wang et al.,
2023). This validation approach reliant on preexisting knowledge is important
to assess the fidelity of the explanations, and it represents a first step towards
evaluating whether the model utilizes information that appears plausible to a hu-
man expert, facilitating trust (Tonekaboni et al., 2019). The second validation
was focused on assessing whether the regions that were detected as informative
by our pipeline had an impact on the predictions of the model, and as such
was concerned with internal consistency as opposed to external validity (Samek
et al., 2017). Taken together, these two validations provided confidence that
our pipeline procured reliable information related to DEM, enabling subsequent
analyses.

It is interesting to contemplate the requirement for AI used in clinical situa-
tions to be explainable, and the necessity of these explanations to be thoroughly
validated. Currently, decisions taken in these situations are not supported by
algorithms but rather made by humans. It has been shown that explanations
provided by humans to justify their decisions do not necessarily reflect the ac-
tual decision processes underlying them (Holzinger et al., 2019; Johansson et
al., 2006). Furthermore, it has been reported that humans tend to overestimate
their ability to understand the decision processes of others, purely based on
the assumption that they resemble their own (Bonezzi et al., 2022). Beyond
individual humans, it has been argued that medical practice, both historically
and contemporaneously, is mostly predictive, not explanatory (London, 2019).
Building upon this argument leads to the claim that it is not intrinsic, virtuous
qualities of potential explanations that enable trust in the decisions made by
clinical personnel, but rather confidence in their expertise, accumulated experi-
ence, and proven track record. It is possible to take the same stance towards AI
(Cappelen & Dever, 2021) and weigh its predictive capacity above and beyond
its ability to explain itself. Nonetheless, this is not what upcoming legislation
aims for. One of the reasons underlying the skepticism towards decisions made
by DNNs is their propensity to take shortcuts, giving the appearance of having
understood and properly modelled a phenomenon, when in reality they have
found a clever way of surpassing it altogether (Geirhos et al., 2020). This can
make them fail in ways that appear incomprehensible, that would never occur
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in the hands of a human expert. Providing a mechanism for detecting these
situations is one of the goals XAI is striving for. However, it is critical to en-
sure the new methodology does not simply provide a new level of shortcuts
leveraging our propensity for seeking meaningful explanations (Ghassemi et al.,
2021; Lipton, 2017). This underscores the importance of multifaceted validation
procedures.

Beyond the extensive validation, the main innovation in paper III was to
utilize individualized explanations for personalized diagnostics and prognostics.
This is a possibility that has been mentioned in the literature (Martin et al.,
2023) and employed in other domains (Jin et al., 2021), but, to the author’s
best knowledge, has not been explored with regards to neuroimaging data. The
technicalities underlying this possibility deserve elucidation. In general, ML
approaches can be broadly categorized as either supervised or unsupervised
learning (Goodfellow et al., 2016). The former aims to train models that solve
problems where the answer is known, operationalized through labelled sam-
ples used for training. These are the approaches that produce run-of-the-mill
classifiers that differentiate cats and dogs, or cases and controls based on diag-
nostic labels. Although this can be knowledge-producing (Plis et al., 2014), the
main benefit of supervised approaches is to systematize and operationalize ex-
isting knowledge through automatization. Conversely, unsupervised learning is
exploratory in nature, encompassing approaches where models find patterns in
data to optimize a mathematical objective not linked to a specific label. A prime
example is clustering, where samples are grouped based on their innate char-
acteristics, rather than predefined groups. The ability of unsupervised learning
to provide new characterizations of data can be useful, mostly when these co-
vary with interesting dimensions of variability, detecting using additional data.
However, this is not necessarily the case, and the model can learn perspectives
that do not appear useful (Altman & Krzywinski, 2017).

In between these two extremes is semi-supervised learning, where labelled
data is used to guide the model, but not completely determine its output (Da-
vatzikos, 2019). In paper III we showed that something similar can be achieved
through a combination of supervised learning and XAI. Here, the diagnostic
labels guided the process by providing a foundation for training the model, but
the pipeline in its totality produced relevance maps with a spatial richness far
exceeding what existed in the original data. Furthermore, we were able to link
the spatial information in the relevance maps with clinically useful measures.
This highlights the ability of the approach to perform precise characterization
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to support personalized clinical decision-making beyond what is possible today.
Beyond its usefulness in practical, clinical situations, the pipeline in paper

III exemplifies a broader possibility to use XAI to produce new scientific knowl-
edge. In complex neuropsychiatric disorders, accurate CNNs combined with
techniques like LRP could help reveal parts of the brain containing aberrations
in patient groups. This is made possible even when these consist of patterns that
are intricate and subtle, and, importantly, without preexisting labels describing
them. However, this endeavour should be preceded by scrutinizing whether this
allegedly explainable technology constitutes a valid epistemic tool for deriving
scientific knowledge. In the case where a predictive model approximates a rela-
tion representing an underlying phenomenon, there are two processes that can
be explained: The decision process underlying the predictions of the model, and
the process governing the phenomenon itself (Srećković et al., 2022). Where the
latter is the goal of scientific inquiry, it is the former can be approximated by
XAI. This description highlights two points of interest. First, the explanations
provided by XAI are two approximations above the underlying phenomena,
plausibly causing them to be imprecise (Shmueli, 2010). Second, current pre-
dictive models, including the ones used in this thesis, are associational in nature,
relying on statistical associations in data to procure predictions. This means
they should not be trusted to accurately depict the causal mechanisms that sci-
ence commonly seeks to uncover. Furthermore, there has been a lot of emphasis
on the recipient of the explanation in XAI, to guarantee that the explanation
fosters subjective understanding. While this is valuable from a practical stand-
point, it also implies that the explanation should not necessarily be taken as
depicting an objective fact (Páez, 2019). Taken together, these do not invalidate
the use of XAI as an epistemic tool but plausibly limit its utility: it appears
more appropriate as an exploratory tool to form hypotheses that can be in-
vestigated further through other means, as opposed to playing a confirmatory
role.

8.4 The current state of deep learning in neuroimaging
Throughout this thesis I have argued principally for the particular aptness of
deep learning to discover complex, non-linear patterns of neuroanatomical aber-
rations that potentially underlie neuropsychiatric disorders based on neuroimag-
ing data. This argument has primarily been based on the capacity of DNNs to
abstract and learn hierarchical representations (LeCun et al., 2015), properties
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seemingly appropriate for dealing with the intricacies distinctive to the hierar-
chical organization of the brain (Rolls, 2021). If this argument holds one could
imagine that we now, a decade into the era of deep learning, would encounter a
neuroimaging literature brimming with empirical evidence supporting the pre-
eminence of deep learning. But while there are sporadic successes following the
introduction of DNNs, such as the SFCN winning PAC2019, neither this has
caused leaps in our ability to predict behavioural phenotypes. Instead, stud-
ies have reported that deep learning methods reach approximately the same
predictive efficacy as traditional ML for predicting high-level phenotypes (He
et al., 2020; Schulz et al., 2020), undermining the theoretical argument of its
superiority. This discrepancy deserves attention.

First and foremost, some of these comparative studies have been criticized for
not enabling DNNs to reach their full predictive potential (Abrol et al., 2021).
Furthermore, the two-step process including preprocessing underlying the tradi-
tional analyses has been seen to foster suboptimal modelling practices, enticing
a form of double-dipping that could induce a bias in their results (Arbabshirani
et al., 2017). There have also been more general reports of suboptimal validation
practices (Whelan & Garavan, 2014) and overfitting, issues empirically backed
by the recurrent finding that predictive performances reported in neuroimag-
ing studies seem to decrease as a function of sample size (Wolfers et al., 2015).
While there are no guarantees for better validations when using deep learning,
there has been an increased focus on the importance of the topic in recent years
(Scheinost et al., 2019), plausibly improving practices. However, it has also
been argued in the opposite direction, claiming that overfitting has worsened
with the introduction of deep learning models (Davatzikos, 2019). In the end,
comparing performance across studies is hard, to the level where they have been
called meaningless (Arbabshirani et al., 2017), and it is plausibly more fruitful
to focus on best practices going forward. Throughout all three papers in this
thesis, we have pursued using as rigorous validations as possible: in paper I
we employed an external test set, providing the highest level of credence in the
model’s ability to generalize. In paper II, where we relied on predictions for
all participants to enable the GWAS, we performed a cross-prediction scheme
to ensure out-of-sample predictions for the subsequent analyses. In paper III,
where a smaller dataset allowed us to train more models, we employed a similar,
nested, scheme, to achieve out-of-sample predictions while tuning hyperparam-
eters. Overall, these rigorous validations have allowed us to trust the results
achieved by our models, to use them to generate knowledge through subsequent
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analyses.
It is worth noting that the SFCN architecture used extensively here, a rel-

atively simple VGG-like architecture, outperformed other approaches, includ-
ing more advanced CNN variants, in a presumably objective comparison in
PAC2019. This could indicate that it is still early days in the adoption of deep
learning methods in the realm of neuroimaging and that there are still ample
benefits to reap. Importantly, it seems plausible that the key to enabling the
adaptation of a cascade of increasingly predictive models is not the time needed
to translate them to the new domain, but rather the availability of data. The
combination of all openly accessible neuroimaging datasets is still orders of mag-
nitude smaller than ImageNet (Madan, 2022). As pointed out before, this is an
issue especially evident for clinical data (Venkatraghavan et al., 2023). Thus,
there are purely quantitative reasons that could explain why deep learning is still
to reach its full potential in clinical neuroscience. With the ongoing amassment
of data, coupled with solutions (Plis et al., 2016) and repositories (S. B. Eickhoff
et al., 2016) for data sharing, and decentralized training (Rootes-Murdy et al.,
2022), is it plausible that this challenge can be overcome in the years to come.

On the topic of ImageNet, it is worth emphasizing the tremendous impact
the recurrent, objective assessment of the state-of-the-art via ILSVRC had on
the collective capacity for image recognition based on natural images. A similar
pattern has been observed in neuroimaging (Arbabshirani et al., 2017), through
PAC2019 (Fisch et al., 2021), the ADHD-200 competition (Milham et al., 2012),
TADPOLE (Marinescu et al., 2019), and others (Bron et al., 2022). Competitive
modelling has been historically intertwined with a tradition of sharing state-of-
the-art models, also a major contributor towards improving deep learning mod-
els and facilitating their implementation into practical solutions. In this regard,
we have contributed by making the brain age model from paper I publicly ac-
cessible, which has allowed it to be scrutinized by others (Dörfel et al., 2023;
Hanson et al., 2023). Furthermore, it has been used to elucidate the ontology of
brain age (Holm et al., 2023), its clinical potential (Persson et al., 2023), and its
technical limitations (Korbmacher, Wang, et al., 2023). Overall, there are rea-
sons to be hopeful that the collective efforts of researchers, pulled together via,
among other things, competitions and the sharing and dissemination of data,
models, and software, will enable the continued maturation of deep learning in
neuroimaging, to generate insights and translational technological solutions.
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8.5 Limitations and methodological considerations
The work in this thesis is subject to multiple limitations, the most important
of which will be described here. The first is regarding the generality of the
terminology that is used. The term neuropsychiatric disorders is used broadly
to describe a range of disorders. In reality, the empirical work performed in the
thesis concerns itself with a set of distinct diagnoses, simplifying reality dramat-
ically. This is not to undermine the existence of others or their complexities, nor
is it making value-based judgments upon which deserve to be the object of sci-
entific study. Instead, it is the result of practical necessity, limited by time and
the availability of data. And while I believe that the methodology developed
and tested is more broadly applicable than what I have been able to show, it is
also worth being aware of the dangers of overgeneralization. As such, empirical
studies are necessary before conclusions are drawn concerning the usefulness
of the methodological frameworks outlined here towards other conditions. A
similar statement can be made with about the imaging modalities used in the
present thesis. Again, I talk broadly about the aberrations that are detectable
in the brain via neuroimaging data and methods for modelling them, whereas
all three papers rely solely on structural T1-weighted imaging data. Once again,
this represents a practical necessity, and there is arguably a multitude of other
imaging modalities that could have been used instead. Furthermore, these have
shown to complement each other (Arbabshirani et al., 2017), also with respect
to the exact problems and methodological approaches discussed in this thesis
(Rokicki et al., 2021; S. M. Smith et al., 2020; Teipel et al., 2015). As such, fur-
ther studies are required to investigate the proficiency of the methods outlined
here towards other modalities, ideally in combination, to assess whether they
are more broadly useful.

8.5.1 Intricacies of clinical validations

While we have tried to perform validations to ensure the clinical validity of the
models and the representations they learn in our papers, these have been valida-
tions relying on clinical aspects of the available data, namely diagnostic labels,
not validation in clinical contexts. The importance of this difference has recently
been emphasized in the literature (Varoquaux & Cheplygina, 2022). Thus, de-
spite our promising results, it is important to highlight some outstanding issues
that complicate clinical translations of the methodologies outlined here. First
and foremost is the authenticity of the clinical scenarios we have attempted to
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emulate. For instance, in paper I, we validate the utility of the brain age model
through a case-control comparison, an approach that has been subject to broad
critique which I have outlined in this thesis. A more appropriate validation
of clinical utility would be to employ the model to support a realistic clinical
decision. One example of this would be differentially diagnosing patients from
a clinical cohort, a direction we have later explored (Persson et al., 2023). In
paper III we plausibly come closer to validating our pipeline in a realistic clinical
use case, when we validate the applicability of the relevance maps for prognosis.
However, ideally, these validations should happen in clinical settings, with clin-
ical personnel, based on actual patients and the decisions that arise concerning
their care. The key to releasing the translation potential in the technologies ex-
plored here relies on continued transdisciplinary, collaborative efforts (Herzog,
2022). We have provided the empirical foundation to facilitate these efforts, and
further research should focus on exploiting this towards genuine clinical value.

In addition to this overarching issue comes technical complications. First
is the reliability of the models. While none of the papers in this thesis has
explicitly investigated the extent of this, later applications of the brain age
model from paper I have revealed that predictions for a single individual vary
with years based on scans acquired days apart (Korbmacher, Wang, et al., 2023).
This is concerning: while the model appears reliable in research contexts relying
on large groups (Dörfel et al., 2023), this greatly diminishes the utility of its
predictions to support personalized, precise, clinical decisions. Overcoming this
issue relies on further developments focused specifically on increasing robustness,
and, importantly, detecting situations where the model is plausibly wrong, for
instance via accompanying the predictions with uncertainty measures (Hahn
et al., 2022). Another technical limitation of the models we have developed is
their reliance on high-quality, research-grade MRI scans. Thus, our models can’t
be deployed directly in clinical settings, where the MRI scanning protocols are
typically different. Approaches have been proposed to alleviate this problem,
such as training models directly on clinical-grade data (Wood et al., 2022),
or using software to enhance clinical images to research-grade quality (Iglesias
et al., 2023) prior to modelling (Valdes-Hernandez et al., 2023). However, in
the case of our already trained models, it seems more plausible to consider
finetuning based on clinical data. It has been shown that CNNs can adapt to new
scanners using transfer learning (Karani et al., 2018), also in small datasets (R.
Wang et al., 2023). This direction contributes towards exploiting the technology
and models developed here towards clinical translations and should continue to
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receive attention from researchers.

8.5.2 The limits imposed by existing samples

Although we strove to make the datasets for all three papers as large and hetero-
geneous as possible through substantial efforts in collecting and consolidating
data, the generalizability of our findings relies directly on the characteristics of
the data that was used, as is always the case in empirical research (Woo et al.,
2017). However, in the case of this thesis the concern is doubled, as the goal
was not only to generate and disseminate knowledge but also to train models
useful to others. Thus, it is worth describing what those characteristics were, to
minimize the potential for downstream errors. For papers I and II, UKB made
up the bulk of the compiled dataset. UKB is a population-based dataset from
the UK containing participants aged 44-83 years, and it is plausible that our
results are misleading or biased outside that cohort. We have seen this effect in
practice, observing qualitatively that the performance of the model was notably
worse outside this age range. To alleviate the potential detrimental effects some-
what we tested our model in an external test set, to better assess generalization.
While this is above and beyond what is commonly done in the field (Woo et al.,
2017), it is worth mentioning that also the participants in our testing set were
mostly of white European backgrounds, and thus inferences beyond this group
should be made with care.

Similarly, for paper III, most of the data came from ADNI, indicating that
the both model and the empirical results derived from it are most probably
descriptive of a northern American cohort. Here, being a clinical sample, it
is also worth including that the participants were selected via the application
of strict exclusion criteria (Petersen et al., 2010), limiting the generalization of
findings further. In addition to the specifics of samples that are given by practi-
cal constraints, such as their geographical location, or explicit aims of the study,
necessitating a specific age range or clinical cohort, it is worth contemplating
how various selection biases can affect our results in various adverse ways. It
is hard to isolate and quantify exactly what these effects are, and common to
instead urge caution in the interpretation of results. However, I believe that we
observed at least one instance of selection bias that allows us to infer that they
occur in the results presented here: in paper I, we observed that being born
outside the UK was associated with a substantially younger-looking brain. This
was identified based on a relatively small group of what are plausibly highly
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selected individuals, namely those that both move to another country and par-
ticipate in a scientific study. It is unnecessary to speculate further upon what
truly underlies this association, but it underscores the importance of careful
interpretations of the results from broad associational studies based on observa-
tional data such as the three papers presented here. To alleviate these concerns,
future data acquisition should include a broader spectrum of parcitipants.

8.5.3 The validity of cross-sectional inferences

Another point worth contemplating is the types of inference made possible from
cross-sectional data. Although paper III uses longitudinal data implicitly to
train the predictive models and explicitly to explore the prognostic capacity of
our pipeline, our studies and models are essentially cross-sectional. Brains vary
cross-sectionally, but also in terms of trajectories of change over time (Fjell &
Walhovd, 2010), and the interrelations between the two and their individual
and combined impact on behaviour and cognition is largely unknown. It has
been shown that longitudinal study designs are far more sensitive for detecting
group differences (Steen et al., 2007). However, due to their increased demands
concerning cost and time, they are commonly disfavoured compared to cross-
sectional designs. One of the downsides of using cross-sectional, observational,
data, is the limitations this causes in terms of drawing causal conclusions, as it
is impossible to determine what preceds what in time. This is however also true
for many longitudinal designs. The statistical approaches we use, both deep
learning and others, excluding MR, are essentially associational in nature. All
in all, the consequence is once again an urge for caution. Some measures can
be taken to minimize the potential for erroneous interpretations of conclusions
drawn in studies based on cross-sectional data (Kraemer et al., 2000). One
of these is the precision of the terminology being used, where temporal terms
indicating change over time should be replaced with static terms denoting cross-
sectional differences. In the context of this thesis, this is particularly relevant
in the case of brain age, for instance in the use of “accelerated”, that have plau-
sibly contributed to disagreements about what the measure truly encompasses.
To avoid these issues, we have avoided temporal language in papers I and II.
However, to remove any potential doubt, it is worth stating explicitly that this
thesis has focused on cross-sectional data and modelling with the limitations
that entail, and should be interpreted as such. To elucidate the interrelations
between our cross-sectional results and longitudinal change, further studies are
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needed based on other data sources and study designs.

8.5.4 Architectural choices

There are reasons to believe DNNs are innately appropriate for modelling brains.
After all, the former were inspired by the latter. However, this does not neces-
sarily mean that CNNs are equally appropriate to model information in brain
scans. Like all other predictive models, CNNs are built with a set of inductive
biases, assumptions about the problems they are meant to solve explicitly built
into the architecture to maximize their performance. One example shared with
general DNNs is the assumption that the data contains hierarchal information,
presumably appropriate for brain scans. Two other inductive biases in CNNs
specifically are locality and spatial invariance. The former assumes that infor-
mation close in space is probably more associated than that which is far apart.
The latter that visual patterns can occur anywhere in an image and still mean
the same. Neither of these seem apt for brain imaging data. There are other
DNN architectures that avoid these assumptions, and I will describe two for
which I have particularly high hopes. The first is vision transformers (ViTs),
a class of architectures based on the popular transformer architectures for lan-
guage processing (Vaswani et al., 2017), adapted for image data (Dosovitskiy
et al., 2021). These can combine features from standard CNNs with advanced
attention mechanisms to flexibly vary the assumption of locality across scales.
This would allow for constructions that assume adjacent voxels are intercon-
nected up to some point, after which longer distance connections are allowed,
seemingly even more suitable for neuroimaging data than what is offered by
CNNs. The second is graph neural networks (GNNs), which surpass the as-
sumption that the input data is organized in space completely and rather see it
as nodes in an unstructured graph (Kipf & Welling, 2017), another assumption
that arguably suits brain imaging data better than those underlying CNNs.

There are historical reasons why this thesis has focused on the SFCN archi-
tecture, namely that the work was undertaken right after PAC2019. However,
there are also more principled arguments for why simpler CNN architectures
still are reasonable choices for modelling neuroimaging data currently. Most no-
tably, standard ViTs have proven to be even more data-hungry than CNNs (Liu
et al., 2021). And GNNs require preprocessing prior to modelling to turn the
MRI data into graphs, potentially reintroducing the problems with human inter-
ference described earlier. Nonetheless, innovative approaches have shown that
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both are becoming feasible alternatives for modelling based on structural MRI
data (Bessadok et al., 2022; Bi et al., 2023). Through continued development
of theory and growing datasets, their adoption in the neuroimaging community
and subsequent impact will continue to grow.
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9 Concluding remarks
The main aim of this thesis was to exploit the expressive power of deep learning
models to learn complex patterns in neuroimaging data to quantify biological
heterogeneity and elucidate its role in neuropsychiatric disorders. All three pa-
pers involved training state-of-the-art CNNs for various predictive tasks based
on large, heterogeneous datasets, and then utilizing the knowledge encoded in
the model for subsequent analyses. We have explored a variety of techniques
to contextualize and understand both the predictions and the underlying rep-
resentations of the models and demonstrated how they can support clinical
decision-making. Importantly, this has been done using strict validations to en-
sure that our findings are reproducible. Taken together, the work in this thesis
exemplifies that deep neural networks can learn interesting representations of
the brain and that these can be both meaningful and useful.

Future studies should continue to develop expressive models supported
by the growing availability of neuroimaging data, and employ innovative ap-
proaches to understand and use the representations they learn. However, it
is equally important that they focus on the translational potential innate in
this technology, to advance it towards clinical implementations. This relies
on collaborations between researchers and clinical experts, to ensure that the
technology that is developed can be used to solve realistic problems in real-life
clinical scenarios.
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a b s t r a c t 
The discrepancy between chronological age and the apparent age of the brain based on neuroimaging data — the brain age delta — has emerged as a reliable 
marker of brain health. With an increasing wealth of data, approaches to tackle heterogeneity in data acquisition are vital. To this end, we compiled raw structural 
magnetic resonance images into one of the largest and most diverse datasets assembled (n = 53542), and trained convolutional neural networks (CNNs) to predict 
age. We achieved state-of-the-art performance on unseen data from unknown scanners (n = 2553), and showed that higher brain age delta is associated with diabetes, 
alcohol intake and smoking. Using transfer learning, the intermediate representations learned by our model complemented and partly outperformed brain age 
delta in predicting common brain disorders. Our work shows we can achieve generalizable and biologically plausible brain age predictions using CNNs trained on 
heterogeneous datasets, and transfer them to clinical use cases. 
Introduction 

Neurodevelopmental and age-related changes in the brain play 
a crucial role in the etiology of complex neurological Stephan and 
Brayne (2009) and mental disorders ( Thapar and Riglin, 2020 ). Predic- 
tive models for an individual’s age based on magnetic resonance imag- 
ing (MRI) have been used to estimate normative trajectories across the 
lifespan ( Cole and Franke, 2017; Cole et al., 2017; Franke et al., 2012; 
2010 ). Individual deviations from these trajectories, often called the 
brain age delta, have been linked to brain health ( Franke and Gaser, 
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2019; Kaufmann et al., 2019 ), and more extreme deviations observed in 
patients with schizophrenia (SCZ) ( Nenadi et al., 2017; Rokicki et al., 
2021; Schnack et al., 2016 ), depression ( Han et al., 2020 ), cognitive im- 
pairment ( Elliott et al., 2019; Liem et al., 2017 ), dementia ( Wang et al., 
2019 ), Alzheimer’s disease (AD) ( Gaser et al., 2013 ) and multiple scle- 
rosis (MS) ( Høgestøl et al., 2019 ), implying that such deviations could 
be a feasible biological marker for various brain disorders. 

The brain age of an individual is typically estimated from brain 
images using statistical learning techniques. The first-generation mod- 
els were relatively simple, typically based on independent voxels 
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Franke et al. (2010) or a limited number of imaging-derived phenotypes 
(IDPs) reflecting brain properties such as volumetric measures of differ- 
ent regions ( Smith et al., 2019 ). These models generally estimated linear 
relationships, were restricted in scale, and were trained on datasets with 
tens, hundreds or a few thousand participants ( Franke and Gaser, 2019 ). 
In parallel with continuous computational advances the exponential 
growth of MRI data has enabled deep learning models of scale for ac- 
curate brain age estimation ( Abrol et al., 2021; Cole et al., 2017 ). Deep 
learning models can take minimally- or non-preprocessed 3-D images 
as input - avoiding computationally demanding and hypothesis-driven 
( Oquendo et al., 2012 ) choices during image processing - and model 
complex non-linear relations between voxels. One such model is the Sim- 
ple Fully Convolutional Network (SFCN), a novel deep Convolutional 
Neural Network (CNN) that won the Predictive Analysis Challenge for 
brain age prediction in 2019 (PAC2019) ( Gong et al., 2021; Peng et al., 
2021 ). While such deep learning approaches allow for the prediction 
of brain age with unprecedented accuracy, and can potentially help us 
identify idiosyncratic regional patterns of neurodevelopment and age- 
ing at the individual level ( Dinsdale et al., 2021; Hofmann et al., 2021 ), 
their complexity also comes with a risk of overfitting, namely finding 
patterns in the training data which do not generalize well to new, pre- 
viously unseen, participants ( Arbabshirani et al., 2017 ). 

Transfer learning, a deep learning technique widely used in other 
areas of applied machine learning research, has recently gained mo- 
mentum in neuroimaging ( Valverde et al., 2021 ). Here, learned inter- 
mediate representations can be shared between tasks, allowing a model 
to be transferred to a problem or a dataset it was initially not trained 
for ( Bengio, 2012 ). This approach has arguably been one of the core 
developments underlying the practical success of deep learning in a 
range of computer vision problems ( SharifRazavian et al., 2014 ) by 
using models trained on general purpose datasets, typically ImageNet 
( Russakovsky et al., 2015 ), and fine-tuning them towards a wide ar- 
ray of tasks. Recent studies have shown that transfer learning yields 
promising results also for brain age predictions ( Jonsson et al., 2019 ) 
and clinical classifications based on MRI data ( Bashyam et al., 2020; Lu 
et al., 2020 ). This exemplifies the need for robust, pretrained models 
on massive multisite datasets, that can be translated to smaller clinical 
samples, and, ultimately, to individual cases in a clinical setting. Mod- 
elling brain age as a pre-training step has obvious advantages as age is a 
variable which is available in most current MRI datasets. Additionally, 
the representations learned by the brain age models, representing partly 
independent dimensions of age-related variance, could be of direct im- 
portance in individual level brain phenotyping. 

In the present study we trained deep neural network models for brain 
age prediction on structural MRI data from 53,542 healthy individu- 
als between 3 and 95 years of age to test their ability to generalize, 
and demonstrate the downstream applicability and biological relevance 
of a properly generalizing model. We used the Simple Fully Convolu- 
tional Network with a softmax output (SFCN-sm) which predicts age 
as a discrete probability distribution, and compared its accuracy and 
generalizability with two proposed variants of the architecture; a re- 
gression variant (SFCN-reg), directly predicting continuous age, and a 
ranking variant (SFCN-rank) encoding age as an ordinal vector. Brain 
age delta was computed as the difference between the predicted and 
chronological age. To estimate the sensitivity and clinical relevance of 
our best model, we tested for associations between brain age delta and a 
range of clinical and biological phenotypes, and sociodemographic and 
lifestyle variables, in unseen data from a population sample. To further 
demonstrate the applicability of the model, we employed the pretrained 
SFCN-reg in a transfer learning context to predict case-control status for 
AD, MS, mild cognitive impairment (MCI), SCZ, mood disorders and 
psychotic disorders on datasets obtained from a range of MRI scanners. 
To promote transparency and reproducibility we have implemented an 
easy-to-use Keras interface for all the trained models, both the brain age 
and clinical predictors, and a pipeline for preprocessing images, avail- 
able on our GitHub http://www.github.com/estenhl/pyment-public . 

Results 
We compiled 21 publicly available datasets with T1-weighted MRI 

scans into a large and diverse imaging dataset (total N = 53542; female 
N = 27715; age range = 3-95), and trained a Simple Fully Convolutional 
3-dimensional CNN with 6 convolutional blocks and a softmax output 
layer (SFCN-sm, Fig. 1 b), as introduced in Peng et al ( Peng et al., 2021 ). 
We then proposed two alternatives for the prediction layer of this archi- 
tecture, the first based on regression (SFCN-reg) and the second based on 
ranking ( Chen et al., 2017 ) (SFCN-rank) (see Materials and Methods for 
details). Due to the time-consuming process of model evaluation, we re- 
stricted our search to these three variants of the given architecture, and 
trained a handful of versions of each variant with different hyperparam- 
eter settings. To evaluate the generalization performance of the models, 
we divided our data at two levels; A reference dataset ( Fig. 1 and Sup- 
plementary Table 1) and an external dataset ( Fig. 2 a and Supplementary 
Table 2). In the reference dataset, we evaluated the performance of the 
trained models on an independent test split from known scanners with 
an age distribution resembling the training split. We then tested model 
performance on the external dataset compiled from different sources, 
originating from scanners unseen by the models during training with a 
divergent age distribution. 
Superior generalization performance of SFCN-reg 

We used the training and validation sets to optimize and tune the 
models, and a conjunction of the test set and the external dataset in a 
final model comparison. For each model variant we trained three ver- 
sions, with different hyperparameter settings, on the training data, and 
selected the best model based on the mean absolute error (MAE) on 
the validation set ( Fig. 1 c and Supplementary Table 8). We then com- 
pared the performances of the best version for each model variant on the 
test set. In this comparison the results mirrored those of the validation 
set, with SCFN-sm achieving the best result with an MAE of 2.23 years, 
followed by SCFN-reg with 2.47 years and SCFN-rank with 2.55 years 
( Fig. 2 b). Given the added complexity of including multiple datasets 
from a large range of scanners, we consider these results to be approxi- 
mately on par with the MAE of 2.14 reported in the original SFCN paper 
( Peng et al., 2021 ), and thus among the best performing models in the 
field He et al. (2021) . Additionally, the heterogeneous origins of the 
dataset facilitate cross-site generalization, an essential property when 
training large multisite models ( Dockès et al., 2021 ). 

As a conclusive test of model generalization, we performed the same 
comparison on the external dataset, containing unseen data from dif- 
ferent MRI scanners with an age distribution diverging from that of the 
reference dataset. SCFN-reg substantially outperformed the two alter- 
natives, with an MAE of 3.90 compared to 5.04 and 5.82 for SFCN-sm 
and SFCN-rank respectively ( Fig. 2 ). While the performance of all mod- 
els were lower on the external dataset, the extent of the generalization 
error was considerably different. When compared with MAEs from the 
test set, the average error of SFCN-reg increased by approximately half, 
while it more than doubled in SFCN-sm and SFCN-rank (Supplemen- 
tary Table 9). This difference coincides with the architectural differ- 
ences between the models: Where both the SFCN-sm and SFCN-rank 
used age-bins, with an output node for each age in its prediction range, 
SFCN-reg had a single output predicting a single continuous number. 
Therefore, the predictions of the SFCN-reg reflect a simpler combina- 
tion of the learned representations in the preceding layer of the model, 
which we hypothesize may be the reason for the improved generaliza- 
tion performance. In the subsequent applications we use the SFCN-reg 
version that achieved the best MAE on the external dataset. Addition- 
ally, to facilitate cross-study comparisons, we have compiled a range 
of performance metrics for our three models on the external dataset 
in Table 1 . 

To better understand the visual patterns underlying the predictions 
of the SFCN-reg we conducted two post-hoc correlational analyses. First, 
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Fig. 1. An overview of the dataset and models used for brain age modelling. (a) The reference dataset contains 53,542 healthy participants from 21 datasets, with 
ages ranging from 3 to 95 years. (b) We implemented three model variants for predicting brain age, all based on the contest-winning SFCN architecture ( Peng et al., 
2021 ). All models take minimally preprocessed T1-weighted MRI images as input. (c) The modelling process consisted of three steps, utilizing different parts of 
the reference data and the external dataset from previously unseen scanners. The best brain age model was applied in a phenome-wide association study, and a 
case-control comparison including several clinical conditions. 
we examined brains in groups of participants with extreme brain age 
deltas. Second, we correlated the delta with FreeSurfer-extracted imag- 
ing measures. High deltas were broadly associated with a general pat- 
tern of reduced cortical thickness ( Fig. 3 a and Supplementary Figure 8), 
reduced volumes of several subcortical areas, and increases in ventricle 
size, cerebrospinal fluid, and both white matter and non-white matter 
hypointensities ( Fig. 3 b). We also correlated the delta with voxel-wise 
volume and area, seeing a less pronounced pattern (Supplementary Fig- 

ure 9). A full overview of the subcortical correlations can be seen in 
Supplementary Table 11. 

Observing that all the models performed worse in the external 
dataset than in the test set, we performed post-hoc analyses to further 
understand the causes underlying the generalization problems. First, we 
investigated whether the inflated error could be explained by an addi- 
tive offset, a linear multiplicative bias, or a general increase in vari- 
ance. We observed that all three measures were amplified in the exter- 
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Fig. 2. The two datasets used in the model 
comparison, and the predictive performance of 
the three model variants. (a) For comparing 
the models we employed two distinct datasets: 
A test set sampled from the reference dataset, 
and an external dataset. The former was drawn 
from the reference dataset using stratification, 
and as a consequence has a similar age and sex- 
distribution. The latter was compiled from a 
different subset of datasets, and thus was ac- 
quired from different scanners. The age range 
of the external dataset is somewhat narrower, 
spanning a region of 13 to 95 years, and has a 
more uniform distribution. (b) The six scatter 
plots display the predictions of a given model 
on the x-axis, against the ground truth age of 
the participants on the y-axis. The top row con- 
tains the predictions of the three model vari- 
ants on the test set, and the bottom row the 
external dataset. 

Table 1 
Predictive performance of the models. We compared the soft classifiation model 
(SFCN-sm), the regression model (SFCN-reg) and the ranking model (SFCN-rank) 
on the external dataset, originating from scanners which has not been seen by 
the models during training. Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), R and R2 are sensitive to the age range of the dataset, while nor- 
malized RMSE (nRMSE) and Relative Absolute Error (RAE) are not, facilitating 
comparisons across datasets. 

Model MAE RMSE R R 2 mRMSE RAE 
SFCN-sm 5.04 6.51 0.961 0.903 0.078 0.26 
SFCN-reg 3.90 5.11 0.975 0.940 0.061 0.20 
SFCN-rank 5.92 7.54 0.959 0.870 0.090 0.31 

nal dataset when compared to the test set, and thus jointly contributed 
to the increase (Supplementary Table 10). Secondly, we tried isolating 
two sources of generalization error: Differences in population, repre- 
sented here by age and sex distributions, and differences in scanners and 

acquisition protocols. We approached this by resampling two artificial 
datasets, both with participants previously unseen by the models. First, 
we sampled a dataset with an “Unknown population “, with participants 
from the test set following the empirical age and sex distribution of the 
external dataset. Secondly, we created a dataset with “Unknown scan- 
ners ”, sampling participants from the external dataset while following 
the distributions of the test set (see Materials and Methods for further 
details). Due to the stratification used in the initial train/validation/test 
split the latter set also directly matches the distributions of the train- 
ing set. For each of these two new datasets we computed an MAE per 
model, which naturally fell between the MAEs on the test set and on the 
external dataset. While this approach is exploratory and inherently lim- 
ited to the characteristics and actual data points making up our datasets, 
the results clearly indicate that the main driver of generalization error 
is the unknown scanners ( Table 2 and Supplementary Figure 1) which 
had higher errors (MAE US ) than the unknown population (MAE UP ) for 
all the models. Additionally, these two sources of generalization error 
seem to work additively, with their sum closely matching the full gen- 
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Fig. 3. Correlation between brain age delta and 
vertex-wise and subcortical measures in imaging space. 
(a) Correlations with cortical thickness at the vertex- 
level computed by FreeSurfer, plotted on two generic 
surface hemispheres. (b) Correlations with subcortical 
volumes using the standard FreeSurfer atlas, overlayed 
over an average brain. The reported associations were 
computed as Pearson correlations in the test portion 
of UKBB, with the imaging measures derived using 
FreeSurfer’s recon-all pipeline. 

Table 2 
Results of the post-hoc generalization source analysis. We measured Mean Ab- 
solute Errors for the three model variants on the test set, drawn from the same 
distributions of scanners and ages as the training dataset, the “Unknown pop- 
ulation “ dataset (MAE UP ) and the “Unknown scanners “ dataset (MAE US ), both 
representing a single source of generalization error, and the external dataset, 
different from the training set in both regards. 

Model MAE TEST MAE UP MAE US MAE EXTERNAL 
SFCN-sm 2.23 3.48 3.84 5.04 
SFCN-reg 2.47 2.89 3.42 3.90 
SFCN-rank 2.55 3.95 4.32 5.92 

eralization error observed in the external dataset. A final observation 
was that SFCN-reg handled both sources of error best, which is further 
evidence of its superior ability to generalize. 
Brain age predictions associate with biological phenotypes and lifestyle 
factors 

Next, we examined the biological relevance of the model predic- 
tions by correlating their deviations from chronological age with an ar- 
ray of phenotypes (n = 394) in a phenome-wide association study. We 
performed this analysis in the subset of the UK Biobank (UKBB) data 
that was not used for brain age modelling or validation (n = 8066), and 
tested associations with all the biological phenotypes and lifestyle vari- 
ables accessible, manually divided into thirteen thematic categories for 
interpretability (Supplementary Table 7). For each phenotype we com- 
puted a univariate correlation while correcting for age and sex ( Alfaro- 
Almagro et al., 2021; Smith and Nichols, 2018 ), and assessed its signifi- 
cance using a Bonferroni-corrected p-value threshold of 𝑝 < 1 . 26 × 10 −4 
(see Materials and Methods). All continuous variables were standard- 
ized, such that their effect sizes denote the impact a one standard de- 
viation increase has on the brain age delta. In general, our results cor- 
roborated several findings derived from previous studies using smaller 
samples ( Fig. 4 a). We observed significantly higher delta in partici- 
pants with high blood pressure ( 𝛽 = 0 . 41 , 𝑝 = 1 . 86 × 10 −7 ), those cur- 
rently on blood pressure medication ( 𝛽 = 0 . 54 , 𝑝 = 1 . 17 × 10 −10 ), and 
a positive correlation with blood pressure readings (diastolic (DBP): 

𝛽 = 0 . 15 , 𝑝 = 2 . 53 × 10 −6 , systolic (SBP): 𝛽 = 0 . 16 , 𝑝 = 3 . 30 × 10 −6 ). The 
associations with the largest effects indicated higher delta in patients 
with a diabetes diagnosis ( 𝛽 = 0 . 74 , 𝑝 = 2 . 25 × 10 −7 ) or diabetes-related 
eye problems ( 𝛽 = 1 . 78 , 𝑝 = 4 . 59 × 10 −7 ). Among the biochemical mea- 
surements, significant associations with brain age delta were found for 
blood glucose levels ( 𝛽 = 0 . 23 , 𝑝 = 3 . 18 × 10 −11 ), Insulin-Like Growth 
Factor-1 levels ( 𝛽 = −0 . 22 , 𝑝 = 5 . 81 × 10 −11 ), glycated haemoglobin lev- 
els ( 𝛽 = 0 . 16 , 𝑝 = 7 . 97 × 10 −7 ) and mean corpuscular volume ( 𝛽 = 0 . 13 , 
𝑝 = 3 . 33 × 10 −5 ). Associations with variables we categorized as related 
to diet and lifestyle were dominated by previous smoking, with a posi- 
tive correlation with number of cigarettes per day (absolute pack years: 
𝛽 = 0 . 24 , 𝑝 = 8 . 55 × 10 −5 , pack years as proportion of age: 𝛽 = 0 . 26 , 𝑝 = 
2 . 41 × 10 −5 ) and age stopped smoking ( 𝛽 = 0 . 25 , 𝑝 = 7 . 59 × 10 −5 ). We 
also observed significant associations with average weekly beer and 
cider intake ( 𝛽 = 0 . 21 , 𝑝 = 1 . 13 × 10 −7 ) and alcohol intake frequency 
( 𝛽 = 0 . 12 , 𝑝 = 1 . 09 × 10 −4 ), cereal intake ( 𝛽 = −0 . 16 , 𝑝 = 7 . 61 × 10 −7 ) and 
participation in “Other group activity “ (e.g. social activities not related 
to a sports or social club, religious group or adult education, 𝛽 = −0 . 27 , 
𝑝 = 5 . 91 × 10 −5 ). Further, we observed a significant correlation with 
the number of people living in the participants household ( 𝛽 = −0 . 13 , 
𝑝 = 8 . 20 × 10 −5 ) and higher deltas in those born outside the United King- 
dom and the Republic of Ireland (compared to the baseline group born 
in England, 𝛽 = 0 . 62 , 𝑝 = 4 . 62 × 10 −6 ). An overview of all the 394 asso- 
ciations can be found in Supplementary Table 14. 
Transferring brain age predictions to developmental and degenerative brain 
disorders 

For six different disorders we compiled a patient cohort and a 
matched control group, and calculated a brain age delta per participant 
based on the prediction from SFCN-reg (Supplementary Figure 4). In all 
control groups, the brain age prediction accuracy was approximately the 
same as for the full test set (MAEs = 2.91-4.05, Supplementary Figure 3). 
Patients with MS showed significantly higher brain age estimates than 
their matched healthy controls (brain age group mean difference Δ = 
4 . 42 years, 𝑝 = 1 . 71 × 10 −22 , Cohen’s 𝑑 = 0 . 87 ). A similar pattern was also 
observed for patients with AD ( Δ = 2 . 81 , 𝑝 = 4 . 20 × 10 −20 , 𝑑 = 0 . 59 ), MCI 
( Δ = 2 . 13 , 𝑝 = 1 . 25 × 10 −15 , 𝑑 = 0 . 46 ) and SCZ ( Δ = 1 . 40 , 𝑝 = 4 . 29 × 10 −5 , 
𝑑 = 0 . 34 ). For the individuals with mood disorders (MOOD, see Mate- 
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Fig. 4. Associations between the brain age 
delta and a wide range of phenotypes. We cor- 
related the brain age delta originating from the 
SFCN-reg with 394 phenotypic variables cate- 
gorized into thirteen thematic categories. (a) 
A Manhattan plot visualizing the significances 
of the 394 associations. A Bonferroni-corrected 
threshold revealed 19 significant associations 
with the delta. (b) Effect sizes of the signifi- 
cant associations. For binary variables the ef- 
fect size express the mean difference between 
the groups, while for continuous variables it de- 
notes the change in brain age delta associated 
with a one standard deviation increase. (c) For 
each of the thirteen categories we calculated 
the proportion of significant hits by dividing 
the number of significant hits within that cate- 
gory with the total number of variables in the 
same category. 

rials and Methods) this difference was the smallest ( Δ = 0 . 64 , 𝑝 = . 04 , 
𝑑 = 0 . 17 ), while the difference was not significant for patients with a 
mix of psychotic diagnoses (PSY) ( Δ = 0 . 74 , 𝑝 = . 15 , 𝑑 = 0 . 20 ). Both the 
relative ordering of the disorders in terms of group difference, the mag- 
nitude of the disparities, and the observed significance resemble a pre- 
vious study Kaufmann et al. (2019) using a different model based on a 
smaller dataset. 

To demonstrate the predictive power of our best performing pre- 
trained brain age model for clinical conditions, we trained multiple bi- 
nary classifiers to predict whether a participant had a diagnosis or not 
( Fig. 1 c, Fig. 5 and Materials and Methods). We used logistic regres- 
sion models with an 𝑙 1 -penalization for this purpose (LASSO models), 

optimized via a nested cross validation procedure (Supplementary Fig- 
ure 5), and started with a baseline model classifying participants based 
only on age and sex. The second model included the brain age delta 
originating from the brain age prediction of SFCN-reg, and the third 
model replaced the brain age delta by 64 features encoded in the sec- 
ond to last layer of the same model ( Fig. 5 b and Materials and Methods). 
Across the six disorders, the baseline models achieved an area under the 
receiver operating curve (AUCs) ranging from 0.47 to 0.54, indicating 
that our matching procedure was satisfactory. Using the second set of 
models, quantifying the predictive power of the brain age deltas in Sup- 
plementary Figure 4, greatly improved the prediction performance when 
compared to the corresponding baseline models for MS (AUC = 0.71 vs. 
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Fig. 5. The datasets and models used for clini- 
cal predictions, and an overview over their per- 
formance. We trained binary classifiers to sep- 
arate cases and controls for multiple common 
brain disorders, using different levels of infor- 
mation from the brain age model. (a) We used a 
strict matching procedure, drawing a set of con- 
trols for each scanner-specific patient dataset 
matching its empirical age and sex distribution. 
(b) For each of the six disorders we trained 
three logistic regression models. The first used 
age and sex as predictors, the second included 
the brain age delta, and the third used internal 
features from SFCN-reg in a transfer learning 
setting. (c) For each disorder we compared the 
classifiers using AUCs. 

0.50), AD (0.69 vs. 0.51) and MCI (0.65 vs. 0.54); but to a minimal ex- 
tent for SCZ (0.58 vs. 0.50), MOOD (0.55 vs. 0.52), and PSY (0.52 vs. 
0.47). A third set of classifiers were implemented in a strict transfer 
learning context, utilizing the first part of the SFCN-reg as an encoder. 
Here, we ran all images in the case-control dataset through the model up 
until the second-to-last layer, encoding them as 64-dimensional feature 
vectors. We then used these vectors as predictors in a secondary mod- 
elling step, performing the regular cross-validation scheme and training 
LASSO models with the vectors from the training folds as inputs (Mate- 
rials and Methods). These features represent high-level, data-driven ab- 

stractions of the brain imaging data, and underlie the singular brain age 
prediction. We refer to this variant of transfer learning as strict because 
we kept the weights of the initial brain age model locked while optimiz- 
ing for the new binary objective, which in turn allow us to keep treating 
these as ageing features and thus promote interpretability. While this 
complicates contextualizing the performance of our models in terms of 
existing case-control classifiers, it gives us an indication of the informa- 
tion content of these learned features. This third set of models improved 
AD prediction substantially (AUC = 0.83), and also were notably better 
for MS (0.79), MCI (0.73) and PSY (0.62), while only a marginal im- 
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provement was observed in SCZ (0.62) and MOOD (0.59). Overall, our 
results show that our brain age model can be transferred to make case- 
control predictions of these common clinical brain disorders. 
Discussion 

Brain maturation and ageing, and its interactions with clinical brain 
disorders and conditions, are complex processes with pivotal environ- 
mental and genetic contributions ( Fjell and Walhovd, 2010; Johnson, 
2001 ). Brain age prediction and the accompanying brain age delta has 
the potential to provide intuitive and useful measures for summarizing 
individual brain aberrations. However, technical differences between 
studies, e.g. the use of different scanners and MRI scan parameters, have 
represented challenges for the direct generalization and applicability of 
brain age models based on large training sets. We assembled a large 
and diverse neuroimaging dataset to train multiple state-of-the-art deep 
learning models for brain age prediction, and extensively tested their 
ability to generalize, and their sensitivity to various common brain dis- 
orders. Our best model, the SFCN-reg, showed superior performance on 
an external dataset with differing scanners and age distributions com- 
pared to that of the training set, enabling it for applications in other 
datasets. We then demonstrated the relevance of the model predictions 
by showing associations between the brain age delta and a range of com- 
plex human traits and health outcomes in a population sample. Lastly, 
we transferred the trained SFCN-reg to clinical data in a transfer learn- 
ing setting, showing that both the brain age delta and the internal fea- 
tures learned by the model have predictive value when differentiating 
between controls and patients with common brain disorders. 

In our experiment the SFCN-reg outperformed the other models in 
terms of generalization performance. The age prediction accuracy on the 
test data (MAE = 2.47) is among the best in the field ( He et al., 2021 ). 
Crucially, the prediction accuracy on data coming from unknown scan- 
ners (MAE = 3.90) fares very favourably when compared to other studies 
attempting to transfer between datasets of similar size and complexity 
( Bashyam et al., 2020; Boyle et al., 2021; He et al., 2021; Jonsson et al., 
2019; Ren et al., 2019 ). Using data from different scanners, protocols 
and populations in neuroimaging comes with the problem of modelling 
the effects of these appropriately ( Butler et al., 2021; Smith et al., 2019 ). 
Previous brain age studies have often explicitly included a scanner term 
in the modelling or corrected the computed brain age for various bi- 
ases ( Lange A. Marie and Cole, 2020 ). Recent approaches have tried 
to address this problem directly via specific deep learning paradigms 
( Dinsdale et al., 2020 ). Our results show that given sufficiently large and 
heterogeneous training data, deep CNNs achieve state-of-the-art perfor- 
mance for brain age predictions even when scanner effects are not ex- 
plicitly modelled, and more importantly that this performance translates 
to scanners and protocols that are unknown to the model. This suggests 
that the representations learned by the model are dominated by age- 
related variance, not scanner-dependent artefacts, an extension of the 
model robustness shown in earlier studies ( Abrol et al., 2021 ). From 
a practical point of view this suggests that our trained model may be 
employed in other applications in new datasets, without the need for 
retraining or applying corrective procedures. 

Evaluating the biological relevance of the brain age predictions is es- 
sential to further understand and trust these models. Therefore, we cor- 
related brain age delta obtained from the SFCN-reg with a wide range of 
phenotypes in a subset of the UKBB not used for model training. When 
applying a Bonferroni-corrected threshold, we found nineteen signifi- 
cant hits spread across seven of our thirteen categories. Almost all of 
these have in earlier studies been found to have a relationship with age- 
ing, either generally or specifically in the brain, or with brain health 
and/or cognitive function: Glucose level ( Karasik et al., 2005 ), Insulin- 
like Growth factor-1 ( Ashpole et al., 2015 ), and glycated haemoglobin 
( Roth et al., 2016 ) are known to change with age, and corpuscular vol- 
ume has been associated with cognitive functioning ( Gamaldo et al., 
2013 ). Lifestyle factors involving alcohol and smoking impact various 

biological and bodily ages ( Karasik et al., 2005 ), including that of the 
brain ( Cole, 2020; Lange et al., 2020; Wrigglesworth et al., 2021 ). Ele- 
vated blood pressure and other cardiovascular risk factors have estab- 
lished associations with increased brain age ( Lange et al., 2020; Lange 
A. Marie et al., 2021 ), and an increase in predicted age has been ob- 
served in patients with diabetes ( Franke et al., 2013 ). These results need 
to be assessed carefully due to the large sample size and relatively small 
effect sizes ( Sullivan and Feinn, 2012 ), but in sum we believe they indi- 
cate that our model makes biologically meaningful predictions. Further, 
transferring the model to unseen datasets comprised of patients with dif- 
ferent clinical conditions and matched healthy peers revealed both high 
accuracy in terms of age prediction and higher deltas among patients 
with brain disorders, in line with previous studies ( Kaufmann et al., 
2019 ). Importantly, the data in the case-control datasets were obtained 
from scanners not included in the training set, supporting that the model 
generalizes to previously unseen scanners; a highly valuable asset. 

As a further attempt to understand the SFCN-reg model we corre- 
lated variance in the prediction-space with variation in imaging-space 
after standard preprocessing. Explaining the predictions of deep neural 
networks is inherently hard, and the plethora of methods for interpreta- 
tion that exist are largely tailored to classification models. Additionally, 
they often rely on humanly discernable features for validations, such 
as faces or clearly identifiable objects. Furthermore, in our analyses we 
were not interested in interpreting the predicted age per se, but rather 
its deviation from the chronological age of the participant, the brain 
age delta. Given these factors, we resolved to correlating the brain age 
delta with standard measures derived from MRI images, such as corti- 
cal measures and subcortical volumes, using linear methods. The delta 
was associated with surface-wide patterns of cortical thinning, as well as 
volumetric decreases of multiple subcortical areas. Such atrophic trajec- 
tories have been linked to the ageing brain ( Fjell et al., 2015; Walhovd 
et al., 2005 ) both in healthy populations ( Fjell et al., 2009 ) and those 
with brain disorders ( Jacobsen et al., 2014; Pini et al., 2016 ). While 
these overall patterns are plausible, and provide further confidence in 
our model, methodological advances are required to precisely describe 
its inner workings. 

Compared to the all-in-one brain age delta, a single number describ- 
ing the difference between apparent and chronological age, our results 
showed increased predictive value for MS, AD and MCI when using 
the internal representations of the SFCN-reg underlying the brain age 
predictions. This supports the view that for some applications the con- 
stituent components of the singular brain age delta are relevant beyond 
the age prediction alone ( Smith et al., 2020 ). The innate ability of deep 
neural networks to form abstractions of the brain at different spatial 
resolutions throughout the layers of the model may help disentangle in- 
dividual differences in neurodevelopmental and age-related processes 
related to complex disorders and traits. Furthermore, we see this result 
as evidence that deep learning models trained to predict age in large 
multisite datasets constitute excellent starting points for transfer learn- 
ing, which can subsequently be fine-tuned to a variety of tasks. 

There is an ongoing discussion in the field on whether brain age mod- 
els that are precise, or those that allow for sufficient variance in their 
single-subject predictions, are the most useful in a downstream analy- 
sis of behavioural and clinical traits ( Bashyam et al., 2021; 2020; Hahn 
et al., 2021 ). An argument for a model which allows for more variation 
(a ’looser’ fit) is that this would more accurately depict brain age as a 
complex process which appears differently in different individuals. One 
challenge with this approach is that the brain age delta is a residual, 
and recognizing what portion of this error comes from biological vari- 
ation and what is modelling imprecision is practically unfeasible. As 
more complex models such as deep CNNs become competitive for brain 
age modelling, it becomes possible to minimize the overall model error, 
including the methodological portion, while still allowing the model to 
accurately represent the necessary biological variability internally. 

There are some limitations of the present study which we acknowl- 
edge here. Given the computational cost of training complex deep learn- 
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ing models on such a large dataset we restrained our study to a lim- 
ited number of possible models, both in terms of model architectures 
and hyperparameter settings. With further increases in sample sizes and 
diversity, deeper architectures may be sensible, as the risk of overfit- 
ting is directly alleviated by the larger datasets. While we refer to our 
dataset as diverse, most participants included in the study are of white 
European background. However, this limitation is not specific to the 
present study, and global collaborations are needed to build models that 
generalize across cultural and genetic backgrounds ( Thompson et al., 
2020 ). Relatedly, the current investigation included T1-weighted MRI 
data only. Future integration of information spanning various imaging 
modalities may increase both age prediction accuracy and the sensitiv- 
ity and specificity of various biological and clinical traits and conditions 
( Lange A. Marie et al., 2021; Richard et al., 2018; Rokicki et al., 2021; 
Smith et al., 2020 ). To evaluate the clinical relevance of the brain age 
model in the context of disorders we employed transfer learning in a 
strict way, by training LASSO models on top of the SFCN architecture. 
This setup increases the interpretability of the transfer process as the 
lower-level representations of our model used as predictors capture age- 
related features of the brain. In turn, this allows for the interpretation 
that illnesses that are predictable by the model must also rely on these 
representations, and thus implicitly relate to age. There are multiple 
steps which could have been taken instead to maximize predictability, 
a natural starting point is to fine-tune the entire model ( Bashyam et al., 
2020 ). Lastly, in order to reach broad adoption of these models and, 
ultimately, approach clinical usability, a better understanding of the re- 
gional patterns driving the prediction, their specific biological signifi- 
cance and how it changes across time and contexts is needed ( Vidal- 
Piñeiro et al., 2021 ). 

In conclusion, we have trained multiple variants of a deep neural net- 
work to predict brain age on a large and heterogeneous sample of raw 
structural MRI data, and observed distinct differences in their ability to 
generalize to unseen samples and scanners. The predictions of our best 
model were linked to biochemical biomarkers, cardiovascular risk fac- 
tors, smoking and alcohol intake, among others. Using transfer learning, 
we demonstrated that clinical conditions with a neurodevelopmental or 
neurodegenerative aetiology were predictable by our model, initially 
trained to predict age. Jointly, these findings add to the growing litera- 
ture documenting the tremendous potential of advanced techniques for 
statistical learning to decode biologically and clinically relevant infor- 
mation from brain MRI scans. 
Materials and Methods 
Data 

All data sets used in the present study have been obtained from pre- 
viously published studies which have been approved by their respective 
institutional review board or relevant research ethics committee. 
Reference dataset 

The reference dataset used for training the brain age models was 
T1-weighted MRI scans derived from 21 non-overlapping and publicly 
available datasets (total n = 53542; female n = 27715) of healthy individ- 
uals, with ages ranging from 3 to 95 years ( Fig. 1 and Supplementary 
Table 1). The age distribution can be seen in Fig. 1 a. The younger age- 
range (3–30 years) was mainly composed of participants from multiple 
different datasets. Though the older age-range (40–80) also included 
multiple datasets, UKBB (obtained from the data repository under acces- 
sion number 27412) accounted for most of these participants. The most 
sparsely populated age-ranges were in the very young (147 participants 
with age ≤ 5), very old (17 participants with age ≥ 85), and in midlife 
(42 participants with 35 ≤ age < 45). For each of the datasets, partici- 
pants that had one or more psychiatric, neurological and/or other rele- 
vant diagnoses (Supplementary Table 4), and those withdrawn from the 
respective study were excluded before model training. In addition, for 

participants having multiple brain scans, the baseline data were used, 
such that in the final dataset each data point represents a unique partic- 
ipant drawn from a normative population. 
External dataset 

To evaluate the generalizability of our trained brain age prediction 
model, an external dataset was collected (Supplementary Table 2). This 
dataset included the IXI project (Supplementary Table 5) and healthy 
controls from the datasets underlying the clinical data described below 
(total n = 2553). Importantly, the external dataset contained images gen- 
erated by scanners not used in the reference dataset, and subsequently 
unknown to the models during training and validation. This dataset can 
be seen as having a more uniform age distribution ( Fig. 2 a), meaning 
that our test would capture whether any given model relies too heavily 
on information observed in the training data. 
Clinical data 

The clinical data consisted of six patient cohorts diagnosed with MCI, 
AD, MS, SCZ, a mix of psychotic diagnoses and mood disorders, where 
the latter was a combination of two cohorts with depression and bipolar 
disorder ( Fig. 2 a and Supplementary Table 3). The individual cohorts 
were compiled from ADNI, AIBL, and multiple scanners at the Oslo Uni- 
versity Hospital (Supplementary Tables 5 and 6). In addition to the pa- 
tients, we used healthy controls from the same scanners in the external 
dataset to create matched control groups for the clinical predictions. 
Quality control 

To ensure data quality, we executed a quality control (QC) pipeline, 
consisting of checking whether any of the image preprocessing steps 
failed, and a manual control via visual inspection. To take advantage 
of as much data as possible this manual control was lenient, removing 
samples where either a significant portion of the brain was missing, or 
where the orientation of the head was dramatically off, and resulted in 
dropping only 39/53581 participants in the reference dataset (0.07%) 
and 1/2554 participants in the external dataset (0.03%). 
Image preprocessing 

We first performed skull-stripping with the FreeSurfer 5.3 auto-recon 
pipeline ( Sgonne et al., 2004 ) to produce a brainmask, minimizing the 
amount of non-brain information in the data, then reoriented the images 
to the standard FSL ( Jenkinson et al., 2012 ) orientation using fslreori- 
ent2std. The resulting images were linearly registered to the MNI152 
space using FLIRT ( Jenkinson, 2001 ) with linear interpolation and the 
default 1 mm FSL template (version 6.0). We cropped away borders 
of [6:173, 2:214, 0:160] voxels, in the sagittal, coronal and axial di- 
mensions respectively. This cropping yielded the smallest cuboid with 
marginal loss of brain-related information across the dataset, minimiz- 
ing the memory footprint of the models during training. As a last pre- 
processing step the voxel intensity values of all brain images were nor- 
malized to the range [0, 1]. 
Brain age models 

The state-of-the-art network architecture, the Simple Fully Convo- 
lutional Network (SFCN) ( Peng et al., 2021 ), was implemented as the 
backbone in all our brain age models. The SFCN architecture consists 
of a VGG ( Simonyan and Zisserman, 2015 )-like structure, with five re- 
peated convolutional blocks, each with a three-dimensional convolu- 
tional layer with a filter size of (3, 3, 3), a batch normalization layer, 
rectified linear activation function (ReLU) activation, and a max-pooling 
layer with a pooling size of (2, 2, 2) ( Fig. 1 b). The model then has a 
channel-wise convolutional layer, a last batch normalization layer and 
a global average pooling layer. From this backbone we defined three 
end-to-end variants for brain age prediction: The original soft classi- 
fication model (SFCN-sm), a regression variant with a single output 
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node with a linear activation (SFCN-reg) and a ranking model from 
the general age-regression literature (SFCN-rank) ( Chen et al., 2017 ), 
an approach which has also been successful for brain age predictions 
( Xia et al., 2021 ). All the model definitions rely on a matrix 𝑋 of di- 
mensions [ 𝑁 , ℎ, 𝑤, 𝑑] containing MRI images as input, an N-dimensional 
vector age = [ age 0 , age 1 , … , age 𝑁−1 ] containing the ground truth ages of 
the participants to compute its loss, and are ultimately able to produce 
an N-dimensional vector ̂age = [ ̂age 0 , ̂age 1 , … , ̂age 𝑁−1 ] with a single brain 
age prediction per participant (although this is not necessarily the direct 
output of the model). 
SFCN-sm 

The soft classification variant formulates the age regression prob- 
lem as a multiclass classification problem, by having 𝑚 = ⌈max(age) ⌉ − 
⌊min(age) ⌋ output neurons, where ⌈⋅⌉ and ⌊⋅⌋ denote the ceiling and floor 
operators respectively. It is denoted as soft because it uses a target vec- 
tor per participant generated by a normal distribution centered around 
the ground truth age, instead of the one-hot encoding used in regular 
classification 
𝑦 𝑖 =  ( age 𝑖 , 1) . 

The predictions of the model are similarly a vector of length m with 
a softmax activation 
�̂� 𝑖 = [ ̂𝑦 𝑖, 0 , ̂𝑦 𝑖, 1 , … , ̂𝑦 𝑖, ( 𝑚 −1) ] , 𝑚 −1 ∑

𝑗=0 �̂� 𝑖,𝑗 = 1 . 
The loss for a single datapoint is the Kullback-Leibler divergence 

between the two vectors 
loss 𝑖 = KL ( 𝑦 𝑖 ||�̂� 𝑖 ) . 

The final age-prediction of a participant is calculated as a weighted 
sum of the prediction vector 
̂𝑎𝑔𝑒 𝑖 = ⌊min(age) ⌋ + 𝑚 −1 ∑

𝑗=0 𝑗 ̂𝑦 𝑖,𝑗 . 
SFCN-reg 

The regression variant has a single output neuron predicting a single 
value �̂� 𝑖 per participant, limited to the range (min(age), max(age)) with 
a bounded ReLU activation. The value of �̂� 𝑖 can be used directly as the 
predicted age for a participant, ̂𝑎𝑔𝑒 𝑖 = �̂� 𝑖 . During training, the model 
optimizes the mean squared error. 
SFCN-rank 

The ranking model formulates the age regression problem as a set of 
binary “Is participant X older than age y? “-questions. Like the soft classifi- 
cation model, the model has 𝑚 = ⌈max(age) ⌉ − ⌊min(age) ⌋ output neu- 
rons, each representing one such binary question. The target vector for a 
participant is a binary vector of length 𝑚 , with a 1 in bins corresponding 
to ages younger than the participants age and 0 in the rest. 
𝑦 𝑖 = [ 𝑦 𝑖, 0 , 𝑦 𝑖, 1 , … , 𝑦 𝑖, ( 𝑚 −1) ] , 𝑦 𝑖,𝑥 = { 

1 ⌊min(age) ⌋ + 𝑥 ≤ age 𝑖 
0 𝑒𝑙𝑠𝑒 

} 
. 

For each participant the model predicts a vector of length m, where 
each output neuron is limited to the range [0 , 1] by a sigmoid activation 
�̂� 𝑖 = [ ̂𝑦 𝑖, 0 , ̂𝑦 𝑖, 1 , … , ̂𝑦 𝑖, ( 𝑚 −1) ] , ̂𝑦 𝑖,𝑥 ∈ [0 , 1] . 

The model optimizes the mean binary cross entropy across all the 
output neurons 
loss 𝑖 = − 1 

𝑚 𝑚 ∑
𝑗=0 𝑦 𝑖,𝑗 log ( ̂𝑦 𝑖,𝑗 ) + (1 − 𝑦 𝑖,𝑗 ) 𝑙𝑜𝑔(1 − �̂� 𝑖,𝑗 ) . 

To calculate a predicted age for the model we sum up the number 
of age bins for which the model predicts that a participant is older than 

the given age (it is worth noting that this limits the model to integer 
predictions) 
̂𝑎𝑔𝑒 𝑖 = ⌊min(age) ⌋ + 𝑚 ∑

𝑗=0 1 𝑥 ≥ 0 . 5 ( ̂𝑦 𝑖,𝑗 ) . 
Brain age model training and comparison 

All brain age models were trained on 2 NVIDIA V100 GPUs with 
32GB memory, using the Keras Chollet (2015) interface of Tensorflow 
2.3 Abadi et al. (0000) ) on top of cuda 10.0. Using a batch size of 14 the 
models took approximately 1 second per step, translating into roughly 
45 minutes per epoch or about 2.5 days per full training session. To 
train the brain age models, 80% (n = 42829) of the reference dataset was 
used for model building (training and validation) and 20% (n = 10713) 
for testing. Among the data for model building 80% (n = 34285) and 20% 
(n = 8544) were used for training and validation of the models, respec- 
tively ( Fig. 1 c and Supplementary Table 1). Before these splits, the data 
was stratified by age and original study to ensure that all subsets had 
resembling age distributions and came from multiple scanners. Given 
the great computational cost of model training, determining optimal hy- 
perparameter values by searching over the full configuration space for 
each model is impractical. Instead, we employed post-hoc heuristics, i.e., 
tweaking the models based on previous runs. For each training run we 
trained the model from scratch (with randomly initialized parameters) 
for 80 epochs, optimized by vanilla stochastic gradient descent, employ- 
ing an annealing, step-wise, learning rate schedule. This schedule had 
three steps, reducing the learning rate by a factor of 3 after epochs 20, 
40 and 60. The initial learning rate was found independently for each 
model variant using a learning rate sweep ( Smith, 2017 ) (Supplemen- 
tary Figure 7). We used mean absolute error (MAE) on the validation 
split to determine the best epoch for each run. We also report RMSE, 
R, R 2 for all models in Table 1 , and to enable comparisons with other 
studies with possibly different age ranges the normalized measures nor- 
malized RMSE (nRMSE) 
nRMSE = RMSE 

max(age) − min(age) 
and Relative Absolute Error (RAE) 
RAE = 

𝑁 ∑
𝑖 =0 |�̂� 𝑖 − 𝑦 𝑖 |
𝑁 ∑
𝑖 =0 |𝑦 𝑖 − �̄� |

The first model we trained was SFCN-sm with the hyperparameters 
specified in the original SFCN paper ( Peng et al., 2021 ). Seeing that this 
model was underfitting we relaxed the regularization for a second run 
of the same model, and subsequently a third. The two hyperparame- 
ters we tuned in this process were the weight decay, and the dropout 
rate between the two final layers of the model. Having trained three 
soft classification models, we moved on to train three regression models 
and three ranking models using these same heuristics (Supplementary 
Table 8). To select a candidate model for each variant we compared the 
MAEs on the validation split. In the final model selection, we compared 
the MAEs of the candidate models for each variant on the test set and 
the external dataset. 
Correlating the brain age delta with imaging measures 

To investigate the influence of different brain regions and voxel-wise 
patterns on our predictions, we performed two post-hoc analyses. First, 
we carried out a qualitative comparison of groups with unusually low 
and high brain age deltas, stratified by age. To minimize the impact 
of scanner effects, both in prediction- and voxel-space, while retaining 
large enough groups to enable meaningful comparisons, we performed 
this analysis in the test-portion of UKBB. We also executed the analysis 
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independently for each sex, to ensure similarities within the groups. For 
each age bin 𝑏 ∈ [50 , 55 , 60 , 65 , 70 , 75] we selected 10 participants with 
𝑎𝑔𝑒 = 𝑏 ± 0 . 5 with the lowest and highest brain age delta, and compared 
them with a group of participants the same age with the smallest abso- 
lute delta. For each of these groups we created an average brain using 
FreeSurfer’s make_average_brain. The average brains are seen in Sup- 
plementary Figure 8. 

Additionally, we performed a quantitative analysis correlating vari- 
ation in brain age delta with structural imaging measures derived by 
FreeSurfer at the vertex (for cortical features) and atlas level (for sub- 
cortical features). This analysis also used subjects from a single scanner 
to minimize potential biases in the results. Being less reliant on a very 
large dataset, we were able to use data from the largest scanner in the 
external dataset, the Oslo GE 750 scanner (n = 876). For each subject we 
computed cortical thickness for each vertex, and subcortical volumes, 
using FreeSurfer’s recon-all pipeline and the default FreeSurfer atlas. 
For each of these measures we computed the Pearson correlation with 
the brain age delta across all healthy subjects from the given scanner. 
The vertex-wise and subcortical correlations are shown in Fig. 3 , Sup- 
plementary Figure 9 and Supplementary Table 11. 
Post-hoc generalization analysis 

To study the causes of the differences in generalization, we designed 
an experiment to isolate the underlying sources of this error. Based on 
previous knowledge of the problems of new scanners, and the predic- 
tions of the models at different ages ( Fig. 4 ) we specifically targeted two 
possible sources: Differences in population, represented by different dis- 
tributions of age and sex, and data coming from unknown scanners. For 
each source we sampled an artificial, bootstrapped dataset based on our 
existing data. For the “Unknown population “ dataset we sampled par- 
ticipants from the test set (originating from the reference dataset), to 
match the empirical age and sex distribution of the external dataset. 
Similarly, for the “Unknown scanners “ dataset we sampled participants 
from the external dataset (coming from scanners unknown to the model) 
to match the age and sex distribution of the test set (and thus also the 
training set). The idea behind both datasets is to isolate a single source 
of generalization error. For robustness, we bootstrapped each of these 
two artificial datasets 100 times and reported the mean MAE achieved 
by the different models. Each sample was drawn probabilistically, with 
replacement, with the probability of drawing participant 𝑥 of age 𝑥 𝑎 
and sex 𝑥 𝑠 from dataset source based on the age and sex distribution of 
dataset target given by 
𝑝 ( 𝑥 ) = 𝑃 𝑡𝑎𝑟𝑔𝑒𝑡 ( 𝑥 𝑎 , 𝑥 𝑠 ) 

𝑃 𝑠𝑜𝑢𝑟𝑐𝑒 ( 𝑥 𝑎 , 𝑥 𝑠 ) 
where 𝑃 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ( 𝑥 𝑎 , 𝑥 𝑠 ) denotes the proportion of participants in dataset 
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 with age 𝑥 𝑎 and sex 𝑥 𝑠 . In “Unknown population “, the test set 
plays the role of source and the external dataset is the target, while this 
is switched for “Unknown scanners “. 
Phenome-wide association study 

In the PheWAS we calculated the univariate correlation between the 
brain age delta and 402 phenotypic variables from the UKBB, manually 
divided into thirteen thematically defined categories for interpretability 
(Supplementary Table 7). We performed this analysis in the UKBB por- 
tion of the test split (n = 8066), and used all the variables available to us 
at the time. We encoded all phenotypic variables according to the PH- 
ESANT ( Millard et al., 2018 ) datatypes, and removed non-informative 
levels (Supplementary Table 12) based on the UKBB coding schemes. 
Additionally, we re-coded the ordinal variables as categorical or contin- 
uous by hand (Supplementary Table 13). Variables which were impos- 
sible to model (i.e. singular or all missing values) were discarded. We 
then fitted a linear model per variable, modelling the delta as a func- 
tion of the given covariate, age and sex, using the Python statsmodels 

API ( Seabold and Perktold, 2010 ). All continuous variables were stan- 
dardized using a z-score normalization pre-modelling, such that the re- 
ported effect sizes refer to the change in brain age delta associated with 
a one standard deviation increase in the given variable. For assessing the 
significance of the associations, we computed a Bonferroni-corrected p- 
value threshold 𝑝 𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 0 . 05∕394 = 1 . 12 × 10 −4 . 
Transfer learning to clinical samples 

In the transfer learning analysis we trained multiple binary models 
to predict whether a participant had a given diagnosis or belonged to 
the control group, based on various levels of information from the brain 
age model. For this purpose, we used the clinical dataset which was 
previously unseen by the model, and matched controls groups drawn 
from the external dataset used in the generalization test. 
Control matching 

To avoid biases in the case-control datasets we drew the subsets of 
controls independently for each scanner in the patient dataset, matching 
empirical distributions of age and sex in the corresponding case subset. 
For each disorder, for each scanner, the control group was created by 
drawing 𝑛 𝑐𝑎𝑠𝑒 controls, without replacement, using the sampling proce- 
dure described for the post-hoc generalization analysis. 
Feature extraction 

To generate the feature vectors for each participant we used the 
trained SFCN-reg model as an encoder, up until and including the global 
average-pooling layer. Running a single MRI through the model up until 
this point results in a 64-dimensional vector representing the original 
image. Each of the dimensions 𝑛 = [0 , … , 63] in this space represent a 
high level feature of the brain, and each participant 𝑋 𝑖 = [ 𝑋 𝑖, 0 , … , 𝑋 𝑖, 63 ] 
is encoded as a point in this space. When used as a predictor in the sub- 
sequent modelling phase, each of these 64 dimensions were treated as 
an independent variable. 
Modelling 

For each disorder we compared three different LASSO models, all 
trained and evaluated using the following general procedure, but on 
different covariate sets. We first stratified the given dataset on disorder, 
age and sex, respectively, and split it into 5 folds. We performed an outer 
cross-validation over these splits to allow us to have an out-of-sample 
prediction for each participant. When training a model on the training 
folds we performed an inner cross-validation to find the optimal value 
of the penalty parameter 𝜆. The nested cross-validation procedure is il- 
lustrated in Supplementary Figure 5. Having found 𝜆, we retrained the 
model on all the data from the four training folds. The models were im- 
plemented using sklearn’s LogisticRegression Pedregosa et al. (0000) ) 
with an 𝑙 1 -penalty. Having the out-of-sample predictions for all the par- 
ticipants allowed us to calculate and compare AUCs based on the entire 
case-control dataset for the given disorder. 

In addition to training the LASSO-model based on the brain age fea- 
tures, we trained an MLP using Keras with the same inputs. We did not 
optimize hyperparameters for this model, but observed similar results 
as the best LASSO models with the initial configuration (Supplemen- 
tary Figure 6). The main benefit of the MLP is that it does not require 
a two-step process for the clinical prediction models, first processing 
the images with the encoder and then doing a prediction via a separate 
API, but can be implemented as an end-to-end binary classifier in Keras 
taking MRIs as inputs, and thus are more accessible for use by others. 
Data availability 

The raw data incorporated in this work were gathered from various 
resources. Material requests will need to be placed with individual prin- 
cipal investigators. A detailed overview of the independent datasets, and 
their origins, is provided in Supplementary Table 5. 
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Code availability 

All of the trained brain age models and a pipeline for preprocess- 
ing images is released in our GitHub repo at http://www.github.com/ 
estenhl/pyment-public 
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Supplementary Figure 1: The results of the model comparison on the
resampled datasets representing a breakdown of the sources of generalization

error. (a) For the ”Unknown population” dataset we drew 100 bootstrapped subsets
from the test set matching the empirical age and sex distributions of the external
dataset, and tested the performance of SFCN-reg. (b) For the ”Unknown scanners”
dataset we similarily drew 100 bootstrapped subsets from the external dataset,

matching the distributions of the test set.(c) A conceptualization of the assumed sources
underlying the generalization error and the characteristics of the various datasets.
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Supplementary Figure 2: Predictions of SFCN-reg on the external dataset,
separated into the different scanning sites. Due to the large number of scanners,

AIBL and ADNI is shown in single plots.
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Supplementary Figure 3: Predictions of SFCN-reg on the control sets used
in the clinical classifiers.
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Supplementary Figure 5: The nested cross-validation (CV) scheme used for
the clinical predictors. The outer CV ensures that the predictions used for the AUC
calculations are on unseen data, while the inner loop optimizes the l1-penalty parameter
λ. On each level the data was split into 5 stratified folds, and the same folds were used

across the three different LASSO models.
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can be implemented as a single Keras model.
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Supplementary Figure 7: Results of the learning rate sweep for the three
model variants. The sweep investigated the models ability to learn at different
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initial learning rates, denoted by the stars, were set manually based on this visualization.
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Supplementary Figure 8: Average brains for different chronological and
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Supplementary Figure 9: Correlation between brain age delta and cortical
measures. Pearson correlation was computed with voxel-wise thickness (a), volume (b),
and surface area (c), plotted on generic surfaces. The correlations were calculated using
data from the largest scanner in the external dataset, the Oslo GE 750 scanner (n 876).
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Supplementary Table 1: An overview of the reference dataset. The dataset
was compiled from 21 sources, spanning a wide age range and a multitude of scanners
and scanning protocols. How many participants from each source was used for training,

validation and testing is indicated in the respective columns.
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Category Columns

Alcohol

’Alcohol drinker status’, ’Alcohol intake frequency’, ’Former alcohol drinker’, ’Average
monthly red wine intake’, ’Average monthly champagne plus white wine intake’,
’Average monthly beer plus cider intake’, ’Average monthly spirits intake’, ’Average
monthly fortified wine intake’, ’Average monthly intake of other alcoholic drinks’,
’Average weekly red wine intake’, ’Average weekly champagne plus white wine intake’,
’Average weekly beer plus cider intake’, ’Average weekly spirits intake’, ’Average weekly
fortified wine intake’, ’Average weekly intake of other alcoholic drinks’, ’Alcohol usually
taken with meals’, ’Alcohol intake versus 10 years previously’, ’Reason for reducing
amount of alcohol drunk’, ’Reason former drinker stopped drinking alcohol’

Biochemical

’Basophill count’, ’Basophill percentage’, ’Eosinophill count’, ’Eosinophill percentage’,
’Haematocrit percentage’, ’Haemoglobin concentration’, ’High light scatter reticulocyte
count’, ’High light scatter reticulocyte percentage’, ’Immature reticulocyte fraction’,
’Lymphocyte count’, ’Lymphocyte percentage’, ’Mean corpuscular haemoglobin’, ’Mean
corpuscular haemoglobin concentration’, ’Mean corpuscular volume’, ’Mean platelet
(thrombocyte) volume’, ’Mean reticulocyte volume’, ’Mean sphered cell volume’,
’Monocyte count’, ’Monocyte percentage’, ’Neutrophill count’, ’Neutrophill percentage’,
’Nucleated red blood cell count’, ’Nucleated red blood cell percentage’, ’Platelet count’,
’Platelet crit’, ’Platelet distribution width’, ’Red blood cell (erythrocyte) count’, ’Red
blood cell (erythrocyte) distribution width’, ’Reticulocyte count’, ’Reticulocyte
percentage’, ’White blood cell (leukocyte) count’, ’Alanine aminotransferase’,
’Albumin’, ’Alkaline phosphatase’, ’Apolipoprotein A’, ’Apolipoprotein B’, ’Aspartate
aminotransferase’, ’C-reactive protein’, ’Calcium’, ’Cholesterol’, ’Creatinine’, ’Cystatin
C’, ’Direct bilirubin’, ’Gamma glutamyltransferase’, ’Glucose’, ’Glycated haemoglobin
(HbA1c)’, ’HDL cholesterol’, ’IGF-1’, ’LDL direct’, ’Lipoprotein A’, ’Oestradiol’,
’Phosphate’, ’Rheumatoid factor’, ’SHBG’, ’Testosterone’, ’Total bilirubin’, ’Total
protein’, ’Triglycerides’, ’Urate’, ’Urea’, ’Vitamin D’, ’3-Hydroxybutyrate’, ’Acetate’,
’Acetoacetate’, ’Acetone’, ’Alanine’, ’Albumin’, ’Apolipoprotein A1’, ’Apolipoprotein
B’, ’Average Diameter for HDL Particles’, ’Average Diameter for LDL Particles’,
’Average Diameter for VLDL Particles’, ’Cholesterol in Chylomicrons and Extremely
Large VLDL’, ’Cholesterol in IDL’, ’Cholesterol in Large HDL’, ’Cholesterol in Large
LDL’, ’Cholesterol in Large VLDL’, ’Cholesterol in Medium HDL’, ’Cholesterol in
Medium LDL’, ’Cholesterol in Medium VLDL’, ’Cholesterol in Small HDL’, ’Cholesterol
in Small LDL’, ’Cholesterol in Small VLDL’, ’Cholesterol in Very Large HDL’,
’Cholesterol in Very Large VLDL’, ’Cholesterol in Very Small VLDL’, ’Cholesteryl
Esters in Chylomicrons and Extremely Large VLDL’, ’Cholesteryl Esters in HDL’,
’Cholesteryl Esters in IDL’, ’Cholesteryl Esters in LDL’, ’Cholesteryl Esters in Large
HDL’, ’Cholesteryl Esters in Large LDL’, ’Cholesteryl Esters in Large VLDL’,
’Cholesteryl Esters in Medium HDL’, ’Cholesteryl Esters in Medium LDL’, ’Cholesteryl
Esters in Medium VLDL’, ’Cholesteryl Esters in Small HDL’, ’Cholesteryl Esters in
Small LDL’, ’Cholesteryl Esters in Small VLDL’, ’Cholesteryl Esters in VLDL’,
’Cholesteryl Esters in Very Large HDL’, ’Cholesteryl Esters in Very Large VLDL’,
’Cholesteryl Esters in Very Small VLDL’, ’Citrate’, ’Clinical LDL Cholesterol’,
’Concentration of Chylomicrons and Extremely Large VLDL Particles’, ’Concentration
of HDL Particles’, ’Concentration of IDL Particles’, ’Concentration of LDL Particles’,
’Concentration of Large HDL Particles’, ’Concentration of Large LDL Particles’,
’Concentration of Large VLDL Particles’, ’Concentration of Medium HDL Particles’,
’Concentration of Medium LDL Particles’, ’Concentration of Medium VLDL Particles’,
’Concentration of Small HDL Particles’, ’Concentration of Small LDL Particles’,
’Concentration of Small VLDL Particles’, ’Concentration of VLDL Particles’,
’Concentration of Very Large HDL Particles’, ’Concentration of Very Large VLDL
Particles’, ’Concentration of Very Small VLDL Particles’, ’Creatinine’, ’Degree of
Unsaturation’, ’Docosahexaenoic Acid’, ’Free Cholesterol in Chylomicrons and
Extremely Large VLDL’, ’Free Cholesterol in HDL’, ’Free Cholesterol in IDL’, ’Free
Cholesterol in LDL’, ’Free Cholesterol in Large HDL’, ’Free Cholesterol in Large LDL’,
’Free Cholesterol in Large VLDL’, ’Free Cholesterol in Medium HDL’, ’Free Cholesterol
in Medium LDL’, ’Free Cholesterol in Medium VLDL’, ’Free Cholesterol in Small HDL’,
’Free Cholesterol in Small LDL’, ’Free Cholesterol in Small VLDL’, ’Free Cholesterol in
VLDL’, ’Free Cholesterol in Very Large HDL’, ’Free Cholesterol in Very Large VLDL’,
’Free Cholesterol in Very Small VLDL’, ’Glucose’, ’Glutamine’, ’Glycine’, ’Glycoprotein
Acetyls’, ’HDL Cholesterol’, ’Histidine’, ’Isoleucine’, ’LDL Cholesterol’, ’Lactate’,
’Leucine’, ’Linoleic Acid’, ’Monounsaturated Fatty Acids’, ’Omega-3 Fatty Acids’,
’Omega-6 Fatty Acids’, ’Phenylalanine’, ’Phosphatidylcholines’, ’Phosphoglycerides’,
’Phospholipids in Chylomicrons and Extremely Large VLDL’, ’Phospholipids in HDL’,
’Phospholipids in IDL’, ’Phospholipids in LDL’, ’Phospholipids in Large HDL’,
’Phospholipids in Large LDL’, ’Phospholipids in Large VLDL’, ’Phospholipids in
Medium HDL’, ’Phospholipids in Medium LDL’, ’Phospholipids in Medium VLDL’,
’Phospholipids in Small HDL’, ’Phospholipids in Small LDL’, ’Phospholipids in Small
VLDL’, ’Phospholipids in VLDL’, ’Phospholipids in Very Large HDL’, ’Phospholipids in
Very Large VLDL’, ’Phospholipids in Very Small VLDL’, ’Polyunsaturated Fatty
Acids’, ’Pyruvate’, ’Remnant Cholesterol (Non-HDL, Non-LDL -Cholesterol)’,
’Saturated Fatty Acids’, ’Sphingomyelins’, ’Total Cholesterol’, ’Total Cholesterol Minus
HDL-C’, ’Total Cholines’, ’Total Concentration of Branched-Chain Amino Acids
(Leucine + Isoleucine + Valine)’, ’Total Concentration of Lipoprotein Particles’, ’Total
Esterified Cholesterol’, ’Total Fatty Acids’, ’Total Free Cholesterol’, ’Total Lipids in
Chylomicrons and Extremely Large VLDL’, ’Total Lipids in HDL’, ’Total Lipids in
IDL’, ’Total Lipids in LDL’, ’Total Lipids in Large HDL’, ’Total Lipids in Large LDL’,
’Total Lipids in Large VLDL’, ’Total Lipids in Lipoprotein Particles’, ’Total Lipids in
Medium HDL’, ’Total Lipids in Medium LDL’, ’Total Lipids in Medium VLDL’, ’Total
Lipids in Small HDL’, ’Total Lipids in Small LDL’, ’Total Lipids in Small VLDL’,
’Total Lipids in VLDL’, ’Total Lipids in Very Large HDL’, ’Total Lipids in Very Large
VLDL’, ’Total Lipids in Very Small VLDL’, ’Total Phospholipids in Lipoprotein
Particles’, ’Total Triglycerides’, ’Triglycerides in Chylomicrons and Extremely Large
VLDL’, ’Triglycerides in HDL’, ’Triglycerides in IDL’, ’Triglycerides in LDL’,
’Triglycerides in Large HDL’, ’Triglycerides in Large LDL’, ’Triglycerides in Large
VLDL’, ’Triglycerides in Medium HDL’, ’Triglycerides in Medium LDL’, ’Triglycerides
in Medium VLDL’, ’Triglycerides in Small HDL’, ’Triglycerides in Small LDL’,
’Triglycerides in Small VLDL’, ’Triglycerides in VLDL’, ’Triglycerides in Very Large
HDL’, ’Triglycerides in Very Large VLDL’, ’Triglycerides in Very Small VLDL’,
’Tyrosine’, ’VLDL Cholesterol’, ’Valine’, ’Creatinine (enzymatic) in urine’,
’Microalbumin in urine’, ’Potassium in urine’, ’Sodium in urine’



Cognitive

’Mean time to correctly identify matches”’, ’Digits entered correctly’, ’Maximum digits
remembered correctly’, ’Time first key touched’, ’Time last key touched’, ’Time
elapsed’, ’Time to complete test’, ’Fluid intelligence score’, ’Number of fluid
intelligence questions attempted within time limit’, ’Attempted fluid intelligence (FI)
test’, ’FI1 : numeric addition test’, ’FI2 : identify largest number’, ’FI3 : word
interpolation’, ’FI4 : positional arithmetic’, ’FI5 : family relationship calculation’, ’FI6
: conditional arithmetic’, ’FI7 : synonym’, ’FI8 : chained arithmetic’, ’FI9 : concept
interpolation’, ’FI10 : arithmetic sequence recognition’, ’FI11 : antonym’, ’FI12 :
square sequence recognition’, ’FI13 : subset inclusion logic’, ’Duration to complete
numeric path (trail #1)’, ’Duration to complete alphanumeric path (trail #2)’, ’Total
errors traversing numeric path (trail #1)’, ’Total errors traversing alphanumeric path
(trail #2)’, ’Interval between previous point and current one in numeric path (trail
#1)’, ’Interval between previous point and current one in alphanumeric path (trail
#2)’, ’Errors before selecting correct item in numeric path (trail #1)’, ’Errors before
selecting correct item in alphanumeric path (trail #2)’, ’Number of puzzles correctly
solved’, ’Number of puzzles viewed’, ’Duration spent answering each puzzle’,
’Vocabulary level’, ’Number of word pairs correctly associated’, ’Word associated with
huge’, ’Word associated with happy’, ’Word associated with tattered’, ’Word associated
with old’, ’Word associated with long’, ’Word associated with red’, ’Word associated
with sulking’, ’Word associated with pretty’, ’Word associated with tiny’, ’Word
associated with new’, ’Prospective memory result’, ’Number of incorrect matches in
round’, ’Time to complete round’, ’Number of correct matches in round’

Diet
’Cooked vegetable intake’, ’Salad / raw vegetable intake’, ’Fresh fruit intake’, ’Dried
fruit intake’, ’Oily fish intake’, ’Non-oily fish intake’, ’Processed meat intake’, ’Poultry
intake’, ’Beef intake’, ’Lamb/mutton intake’, ’Pork intake’, ’Age when last ate meat’,
’Never eat eggs, dairy, wheat, sugar’, ’Cheese intake’, ’Milk type used’, ’Spread type’,
’Bread intake’, ’Cereal intake’, ’Salt added to food’, ’Tea intake’, ’Coffee intake’,
’Water intake’, ’Major dietary changes in the last 5 years’, ’Variation in diet’

Early life factors
’Ease of skin tanning’, ’Hair colour (natural, before greying)’, ’Country of birth’,
’Breastfed as a baby’, ’Comparative body size at age 10’, ’Comparative height size at
age 10’, ’Handedness’, ’Adopted as a child’, ’Part of a multiple birth’, ’Relative age of
first facial hair’, ’Relative age voice broke’, ’Birth weight’, ’Country of Birth (non-UK
origin)’

Family
’Illnesses of adopted father’, ’Illnesses of adopted mother’, ’Illnesses of adopted
siblings’, ’Illnesses of father’, ’Illnesses of mother’, ’Illnesses of siblings’, ’Father still
alive’, ”Father’s age”, ”Father’s age at death”, ’Mother still alive’, ”Mother’s age”,
”Mother’s age at death”, ’Number of full brothers’, ’Number of adopted brothers’,
’Number of full sisters’, ’Number of adopted sisters’, ’Number of older siblings’,
’Non-accidental death in close genetic family’

Health related

’Facial ageing’, ’Mouth/teeth dental problems’, ’Overall health rating’, ’Long-standing
illness, disability or infirmity’, ’Falls in the last year’, ’Wheeze or whistling in the chest
in last year’, ’Shortness of breath walking on level ground’, ’Pain type(s) experienced in
last month’, ’Headaches for 3+ months’, ’Facial pains for 3+ months’, ’Neck/shoulder
pain for 3+ months’, ’Back pain for 3+ months’, ’Stomach/abdominal pain for 3+
months’, ’General pain for 3+ months’, ’Had major operations’, ’Had other major
operations’, ’Vascular/heart problems diagnosed by doctor’, ’Age heart attack
diagnosed’, ’Age angina diagnosed’, ’Age stroke diagnosed’, ’Age high blood pressure
diagnosed’, ’Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy
diagnosed by doctor’, ’Age deep-vein thrombosis (DVT, blood clot in leg) diagnosed’,
’Age pulmonary embolism (blood clot in lung) diagnosed’, ’Age emphysema/chronic
bronchitis diagnosed’, ’Age asthma diagnosed’, ’Age hay fever, rhinitis or eczema
diagnosed’, ’Diabetes diagnosed by doctor’, ’Gestational diabetes only’, ’Age diabetes
diagnosed’, ’Started insulin within one year diagnosis of diabetes’, ’Cancer diagnosed
by doctor’, ’Fractured/broken bones in last 5 years’, ’Fractured bone site(s)’, ’Fracture
resulting from simple fall’, ’Other serious medical condition/disability diagnosed by
doctor’, ’Medication for cholesterol, blood pressure or diabetes’, ’Medication for
cholesterol, blood pressure, diabetes, or take exogenous hormones’, ’Taking other
prescription medications’, ’Medication for pain relief, constipation, heartburn’,
’Vitamin and mineral supplements’, ’Mineral and other dietary supplements’, ’Hearing
difficulty/problems’, ’Hearing aid user’, ’Cochlear implant’, ’Tinnitus’, ’Hair/balding
pattern’, ’Age when periods started (menarche)’, ’Had menopause’, ’Age at menopause
(last menstrual period)’, ’Time since last menstrual period’, ’Length of menstrual
cycle’, ’Menstruating today’, ’Number of live births’, ’Age at first live birth’, ’Age at
last live birth’, ’Ever had stillbirth, spontaneous miscarriage or termination’, ’Ever
taken oral contraceptive pill’, ’Age started oral contraceptive pill’, ’Ever had
hysterectomy (womb removed)’, ’Cancer code, self-reported’, ’Cancer year/age first
occurred’, ’Pregnant’, ’Pace-maker’, ’Glasses worn/required (left)’, ’Glasses
worn/required (right)’, ’Wears glasses or contact lenses’, ’Age started wearing glasses or
contact lenses’, ’Reason for glasses/contact lenses’, ’Other eye problems’, ’Eye
problems/disorders’, ’Age when diabetes-related eye disease diagnosed’, ’Age glaucoma
diagnosed’, ’Age when loss of vision due to injury or trauma diagnosed’, ’Age cataract
diagnosed’, ’Age macular degeneration diagnosed’, ’Age other serious eye condition
diagnosed’

Lifestyle

’Length of mobile phone use’, ’Weekly use of mobile phone in last 3 months’, ’Plays
computer games’, ’Sleep duration’, ’Getting up in morning’, ’Morning/evening person’,
’Nap during day’, ’Sleeplessness/insomnia’, ’Daytime dozing/sleeping (narcolepsy)’,
’Time spend outdoors in summer’, ’Time spent outdoors in winter’, ’Use of sun/uv
protection’, ’Frequency of solarium/sunlamp use’, ’Age first had sexual intercourse’,
’Lifetime number of sexual partners’, ’Ever had same-sex intercourse’, ’Lifetime number
of same-sex sexual partners’, ’Frequency of friend/family visits’, ’Leisure/social
activities’

Mental health

’Able to confide’, ’Bipolar and major depression status’, ’Bipolar disorder status’,
’Neuroticism score’, ’Probable recurrent major depression (moderate)’, ’Probable
recurrent major depression (severe)’, ’Single episode of probable major depression’,
’Mood swings’, ’Miserableness’, ’Irritability’, ’Sensitivity / hurt feelings’, ’Fed-up
feelings’, ’Nervous feelings’, ’Worrier / anxious feelings’, ”Tense / ’highly strung’”,
’Worry too long after embarrassment’, ”Suffer from ’nerves’”, ’Loneliness, isolation’,
’Guilty feelings’, ’Risk taking’, ’Happiness’, ’Work/job satisfaction’, ’Health
satisfaction’, ’Family relationship satisfaction’, ’Friendships satisfaction’, ’Financial
situation satisfaction’, ’Seen doctor (GP) for nerves, anxiety, tension or depression’,
’Seen a psychiatrist for nerves, anxiety, tension or depression’



’Ever depressed for a whole week’, ’Longest period of depression’, ’Number of
depression episodes’, ’Ever unenthusiastic/disinterested for a whole week’, ’Longest
period of unenthusiasm / disinterest’, ’Number of unenthusiastic/disinterested
episodes’, ’Ever manic/hyper for 2 days’, ’Ever highly irritable/argumentative for 2
days’, ’Manic/hyper symptoms’, ’Length of longest manic/irritable episode’, ’Severity
of manic/irritable episodes’, ’Illness, injury, bereavement, stress in last 2 years’

Microbial infection

’HSV-1 seropositivity for Herpes Simplex virus-1’, ’HSV-2 seropositivity for Herpes
Simplex virus-2’, ’VZV seropositivity for Varicella Zoster Virus’, ’EBV seropositivity
for Epstein-Barr Virus’, ’CMV seropositivity for Human Cytomegalovirus’, ’HHV-6
overall seropositivity for Human Herpesvirus-6’, ’HHV-6A seropositivity for Human
Herpesvirus-6’, ’HHV-6B seropositivity for Human Herpesvirus-6’, ’HHV-7
seropositivity for Human Herpesvirus-7’, ”KSHV seropositivity for Kaposi’s
Sarcoma-Associated Herpesvirus”, ’HBV seropositivity for Hepatitis B Virus’, ’HCV
seropositivity for Hepatitis C Virus’, ’T. gondii seropositivity for Toxoplasma gondii’,
’HTLV-1 seropositivity for Human T-Lymphotropic Virus 1’, ’HIV-1 seropositivity for
Human Immunodeficiency Virus’, ’BKV seropositivity for Human Polyomavirus BKV’,
’JCV seropositivity for Human Polyomavirus JCV’, ’MCV seropositivity for Merkel Cell
Polyomavirus’, ’HPV 16 Definition I seropositivity for Human Papillomavirus type-16’,
’HPV 16 Definition II seropositivity for Human Papillomavirus type-16’, ’HPV 18
seropositivity for Human Papillomavirus type-18’, ’C. trachomatis Definition I
seropositivity for Chlamydia trachomatis’, ’C. trachomatis Definition II seropositivity
for Chlamydia trachomatis’, ’H. pylori Definition I seropositivity for Helicobacter
pylori’, ’H. pylori Definition II seropositivity for Helicobacter pylori’

Physical measures

’Diastolic blood pressure, automated reading’, ’Diastolic blood pressure, manual
reading’, ’Pulse rate (during blood-pressure measurement)’, ’Pulse rate, automated
reading’, ’Systolic blood pressure, automated reading’, ’Systolic blood pressure, manual
reading’, ’Absence of notch position in the pulse waveform’, ’Arterial pulse-wave
stiffness device ID’, ’Arterial stiffness device ID’, ’Position of pulse wave notch’,
’Position of the pulse wave peak’, ’Position of the shoulder on the pulse waveform’,
’Pulse rate’, ’Pulse wave Arterial Stiffness index’, ’Pulse wave peak to peak time’,
’Pulse wave reflection index’, ’Pulse wave velocity (manual entry)’, ’Hand grip strength
(left)’, ’Hand grip strength (right)’, ’Height’, ’Weight (pre-imaging)’, ’Waist
circumference’, ’Weight’, ’Body mass index (BMI)’, ’Hip circumference’, ’Basal
metabolic rate’, ’Body fat percentage’, ’Ventricular rate’

Smoking

’Ever smoked’, ’Pack years adult smoking as proportion of life span exposed to
smoking’, ’Ever smoked’, ’Pack years adult smoking as proportion of life span exposed
to smoking’, ’Pack years of smoking’, ’Smoking status’, ’Current tobacco smoking’,
’Past tobacco smoking’, ’Light smokers, at least 100 smokes in lifetime’, ’Age started
smoking in current smokers’, ’Type of tobacco currently smoked’, ’Previously smoked
cigarettes on most/all days’, ’Number of cigarettes currently smoked daily (current
cigarette smokers)’, ’Age stopped smoking cigarettes (current cigar/pipe or previous
cigarette smoker)’, ’Number of cigarettes previously smoked daily (current cigar/pipe
smokers)’, ’Time from waking to first cigarette’, ’Difficulty not smoking for 1 day’,
’Ever tried to stop smoking’, ’Wants to stop smoking’, ’Smoking compared to 10 years
previous’, ’Age started smoking in former smokers’, ’Type of tobacco previously
smoked’, ’Number of cigarettes previously smoked daily’, ’Age stopped smoking’, ’Ever
stopped smoking for 6+ months’, ’Number of unsuccessful stop-smoking attempts’,
’Likelihood of resuming smoking’, ’Smoking/smokers in household’, ’Exposure to
tobacco smoke at home’, ’Exposure to tobacco smoke outside home’, ’Maternal smoking
around birth’

Socioeconomic
’Number in household’, ’Number of vehicles in household’, ’Average total household
income before tax’, ’Current employment status’, ’Job involves mainly walking or
standing’, ’Job involves heavy manual or physical work’, ’Qualifications (Education)’,
’Age completed full time education’, ’Attendance/disability/mobility allowance’,
’Private healthcare’

Supplementary Table 7: The columns used in the Phe AS, manually
divided into the thirteen categories.



Loss function Dropout Weight
decay MAE MAE

Soft Classification 0.5 1e-3 1.79 2.34
Soft Classification 0.3 1e-3 1.57 2.28
Soft Classification 0.3 1e-4 1.99 2.42

Regression 0.3 1e-3 1.96 2.67
Regression 0.2 1e-4 1.67 2.51
Regression 0.0 0.0 1.26 2.53
Ranking 0.3 1e-3 2.38 2.59
Ranking 0.2 1e-4 2.95 3.03
Ranking 0.5 1e-3 2.53 2.70

Supplementary Table 8: The hyperparameter settings tested for each of the
three model variants. The best version for each model variant was selected based on
the Mean Absolute Error in the validation set (MAE ). The hyperparameters were

determined sequentially, based on the performance of the previous runs.



Model MAE MAE
Generalization gap(

MAEEXTERNAL
MAETEST

)

SFCN-sm 2.23 5.04 2.26
SFCN-reg 2.47 3.90 1.57
SFCN-rank 2.55 5.92 2.32

Supplementary Table 9: Results of the final model comparison. The test Mean
Absolute Error (MAE ) was computed from the test set, a portion of the reference

dataset unseen during optimization. The external Mean Absolute Error
(MAE ) was computed in the external dataset, comprised of different origins,
containing other scanners and a diverging age distribution compared to that of the

training set. The generalization gap indicates the expected degree of deterioration when
transferring to a new dataset.



Dataset MAE Mean Standard deviation Slope
Test split 2.47 -0.02 3.16 -0.03

External dataset 3.90 -2.13 4.63 -0.06

Supplementary Table 10: Model performance in the two datasets used in the
final model comparison. Both the mean and standard references the brain age delta
in the respective dataset, representing the bias and precision of the predictions. The

slope is the regression coefficient of a linear model trained to predict delta from
chronological age, representing the angle of the regression line compared to a perfect

model.



Structure Correlation
Right-Hippocampus -0.20

3rd-Ventricle 0.18
Right-Accumbens-area -0.18
Left-Hippocampus -0.17
Left-Amygdala -0.16
Right-Amygdala -0.15
Left-Inf-Lat-Vent 0.15

CSF 0.15
Right-Lateral-Ventricle 0.14
non-WM-hypointensities 0.13
WM-hypointensities 0.13
Left-Lateral-Ventricle 0.13
Left-Thalamus-Proper -0.12
Right-Inf-Lat-Vent 0.12

Right-Thalamus-Proper -0.09
CC_Central -0.09
CC_Anterior -0.09
Left-Pallidum 0.08
CC_Posterior -0.08

CC_Mid_Anterior -0.08
Right-VentralDC -0.07

Right-Cerebellum-Cortex -0.07
Left-VentralDC -0.07

Right-choroid-plexus 0.07
Left-Cerebellum-White-Matter -0.06

Left-Putamen -0.06
Left-Cerebellum-Cortex -0.06

Optic-Chiasm 0.06
Right-Cerebellum-White-Matter -0.06

CC_Mid_Posterior -0.06
Left-Accumbens-area -0.04

Right-Putamen -0.04
4th-Ventricle 0.04

Left-choroid-plexus 0.04
Right-vessel 0.03
Brain-Stem -0.03

Right-Caudate 0.02
Right-Pallidum 0.02



Structure Correlation
5th-Ventricle -0.01
Left-Caudate 0.01
Left-vessel 0.00

Supplementary Table 11: Correlation between subcortical volumes and the
brain age delta. The subcortical volumes were computed using FreeSurfer’s recon-all
pipeline in the portion of the external dataset coming from the Oslo GE 750 scanner.
Then we computed the Pearson correlation univariately between each volume and the

brain age delta originating from SFCN-reg.
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Genetic architecture of brain age and its causal relations with
brain and mental disorders
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The difference between chronological age and the apparent age of the brain estimated from brain imaging data—the brain age
gap (BAG)—is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array
of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal
relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans
from 53,542 individuals (age range 3–95 years). A genome-wide association analysis across 28,104 individuals (40–84 years) from
the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10−8) implicating
neurological, metabolic, and immunological pathways – among which seven are novel. No significant genetic correlations or causal
relationships with BAG were found for Parkinson’s disease, major depressive disorder, or schizophrenia, but two-sample Mendelian
randomization indicated a causal influence of AD (p= 7.9 × 10−4) and bipolar disorder (p= 1.35 × 10−2) on BAG. These results
emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological
and neuropsychiatric disorders and BAG.

Molecular Psychiatry (2023) 28:3111–3120; https://doi.org/10.1038/s41380-023-02087-y

INTRODUCTION
Over the last decade, brain age has emerged as a promising
measure of overall brain health [1, 2]. To estimate brain age,
machine learning models are applied to brain imaging data to
learn visual patterns characteristic of different ages [3, 4]. The
difference between predicted brain age and chronological age is
termed the brain age gap (BAG) and indicates deviation from a
normative trajectory, a potential health indicator. Earlier studies
have found a large variation in the predicted brain age of
individuals with the same chronological age, and that these
interindividual variations correlate with neurological and mental
disorders [5–7], such as dementia [6, 8], schizophrenia (SCZ)
[9, 10], major depressive disorder (MDD) [11], and also mortality
[7, 12]. In addition, biological, environmental, and lifestyle factors
associated with these disorders have been reported to correlate
with BAG, for example, infections [13, 14], smoking [5], physical
activity [15], and education level [16].
Genetic differences have been shown to explain a sizeable

portion of interindividual variation in BAG. Twin-based heritability
for BAG has been estimated to be as high as 0.66 [17], and single
nucleotide polymorphism (SNP)-based heritability estimates are
also relatively high—around 0.2 [6, 18]. Earlier gene-discovery
efforts investigating genetic associations with BAG have found

and examined two genomic loci in detail: one on chromosome 1
containing the potassium channel gene, KCNK2, and one in the
chromosome 17 inversion region (17q21.31) [18, 19]. Genetic
variants in these two regions together explain a negligible fraction
of estimated SNP-heritability [18]. These results suggest that
existing GWAS were potentially underpowered to fully character-
ize the genetic architecture, supported by studies using a
conditional false discovery rate-based models yielding a larger
set of associations [6]. Furthermore, Smith et al. [20] found a rich
set of associations when investigating different facets of a
multimodal brain age, suggesting that the interplay between
genetic variants is complex.
Although BAG has been frequently associated with clinical

conditions and health-related phenotypes and behaviors, the
underlying genetic basis for the observed associations has
seldom been investigated, possibly due to incomplete knowl-
edge of the genetic architecture of the former. Furthermore, the
causal relationships between BAG and brain disorders remain
untapped. Mendelian randomization (MR) has become an
attractive tool to interrogate cause-effect relationships between
risk factors and disorders [21]. Two-sample MR models have been
used to infer causal relations between hundreds of traits or
diseases [22]. However, MR analyses targeting the causal relations
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between BAG and brain disorders and associated traits have been
lacking [23].
In the present work, we improve the yield of genetic associations

for BAG using three strategies: First, we estimate brain age using a
state-of-the-art deep neural network architecture (SFCN-reg) trained
on one of the largest samples assembled to date [5]. Then we
perform a GWAS for BAG on out-of-sample predictions for a portion
of the UK Biobank v3 data containing 28,104 unrelated individuals,
about eight thousand more than earlier studies. Finally, we use two-
sample MR to assess the genetic and causal relations between BAG
and SCZ, bipolar disorder (BIP), Alzheimer’s disease (AD), MDD, and
Parkinson’s disease (PD).

METHODS
Sample
All datasets used in the present study have been obtained from previously
published studies that have been approved by their respective institutional
review boards, research ethic committees, or other relevant ethic
organizations.
We used UK Biobank imaging data (UKB, accession number 27412)

released in 2019 in combination with a pre-compiled dataset from various
sources (Supplementary Table S1) for brain age model training and
estimation. For the downstream genetic analyses, we started with the
initial 40,330 UKB participants that had undergone at least one brain scan
(using baseline scans where more were available). We excluded those with
recorded brain injury or neurological or psychiatric conditions, those failing
standard image quality checks [5]. To quality check the genetic data, the
protocol developed by the NealeLab (nealelab.is/uk-biobank) was strictly
followed, in addition to participants who withdrew consent. After
removing samples with failed image and genetics quality check, 28,104
unique participants remained.

Brain age estimation
A minimal preprocessing protocol was applied to all raw T1-weighted brain
MRI images before brain age estimation [5]: The auto-recon pipeline from
FreeSurfer 5.3 [24] was used to remove nonbrain tissue. The resulting
volumes were reoriented to the standard FSL [25] orientation using
fslreorient2std, and linearly registered to the 1mm FSL (version 6.0)
MNI152 template using FLIRT [26], with 6 degrees of freedom. For
efficiency, during model fitting, we cropped a central cube spanning the
voxels 6:173, 2:214, and 0:160 in the sagittal, coronal, and axial dimensions,
respectively. Before modeling, all voxel intensities were normalized by a
constant factor to produce values in the range [0, 1].
The data from all sources (Supplementary Table S1 and UKB) were split

into five equally-sized and disjoint folds with comparable age ranges and
sex distributions. Four of these folds were used for fitting the brain age
model, and out-of-sample estimates were computed for the remaining
fold. This procedure was repeated five times, resulting in out-of-sample
brain age estimates for all participants. Next, BAG was calculated by
subtracting chronological age from estimated brain age. The subsequent
analyses were performed on the out-of-sample estimates of the UKB data
(Supplementary Table S2).

Genome-wide association study
Imputed genotypes for the 28,104 participants were obtained from UKB
(Category 100314, for further details see [27]). We excluded SNPs based on
missing rate (>0.02), the Hardy-Weinberg Equilibrium test (p < 10-6) and
minor allele frequency (MAF; < 0.01). In total, ≈8.6 million SNPs were
analyzed. Since we have observed apparent differences in predicted brain
age across folds (Supplementary Fig. S1), a GWAS was performed on each
hold-out fold separately using PLINK 1.90 beta [28]. The additive genetic
model was assumed, and chronological age, sex and the top ten principal
components were included as covariates, accounting for population
structure. Association results for each hold-out fold of UKB along with
distributions of BAG are shown in Supplementary Figure S1. These
association results were then meta-analyzed using the inverse variance
weighted model implemented in PLINK to identify SNPs that are
associated with BAG. Supplementary Figure S2 shows the association QQ
plot which indicated no noticeable genomic inflation.

Associated regions and genes
Association results were ‘clumped’ by the FUMA [29] web-service using the
linkage disequilibrium (LD) structure from the 1000 Genomes projects
phase 3 EUR dataset (1KGp3), with parameters –clump-p 5e-8 –clump-2 1e-6
–clump-r2 0.1. The standard 250 kilo-bases (kb) were used as the inter-
region distance threshold. Genes whose genomic coordinates located
within the boundaries of each region were assigned to the corresponding
region. SNPs with the smallest association p values were taken as the lead
SNPs for the corresponding regions. In addition, the gene that is closest to
each lead SNP by genomic position was annotated using the Ensembl tool
VEP [30] (Table 1).
Associated regions were fine-mapped using the FINEMAP [31] program.

The LD structure from 1KGp3 was also used in this analysis. The default
settings of FINEMAP were used, which compares causal models assuming
one causal variant in each region to that assuming two, based on the
estimated posterior probabilities (PP_1 versus PP_2). FINEMAP ranks all
possible configurations in each model presented as 95% credible sets. The
confidence of a variant belonging to a set was evaluated by posterior
probabilities of inclusion (PPI). In the case of assuming one causal variant,
each single variant was assigned a PPI. In the two causal variants cases,
each pair of variants was assigned a PPI.

Post-GWAS annotations
Both FUMA and Garfield [32] were used for annotating associated SNPs.
First, SNPs were assigned to genic elements (e.g., exon, intron, 3′ and 5′
untranslated regions, intergenic regions, etc.), and the enrichment of this
assignment was tested by hypergeometric test (FUMA) or logistic
regression models (Garfield). Expression levels of annotated genes to the
associated SNPs were inspected in each of the 54 tissue types from the
GTEx v8 dataset [33]. To further test if the identified variants affect
expression levels of these genes the GTEx v8 eQTL portal (gtexportal.org)
was searched. Data in this portal include the association statistics of SNPs
with gene expressions in 49 different tissues. We took a conservative
significant threshold to claim the existence of evidence as p <= 0.05/
49*8= 1.3 × 10−4. Moreover, detailed biological functions for proteins
coded by these genes were manually searched in the NCBI Entrez Gene
database [34] and the UniProtKB database [35].

Table 1. Genomic loci associated with BAG.

Locus Lead SNP POS Gene A1 A2 Beta I2 P

Chr3:183892867-183975709 rs73185796 183975709 CAMK2N2/ECE2 T G −0.29 0.0 2.53 × 10−8

Chr4:38591172-38779512 rs13132853 38680015 KLF3 G A 0.23 0.0 2.34 × 10−18

Chr5:78388694-78451813 rs79107704 78388694 BHMT2 A G 0.63 0.0 1.65 × 10−8

Chr6:45407654-45511945 rs2790102 45432214 RUNX2 A G −0.15 0.0 8.92 × 10−9

Chr8:124661974-124682971 rs7461069 124669029 KLHL38 A G −0.17 0.0 1.57 × 10−8

Chr10:134544247-134597265 rs4880424 134584577 INPP5A T C 0.16 64.95 3.69 × 10−8

Chr14: 88391116-88556525 rs17203398 88449847 GALC C G −0.16 40.97 1.42 × 10−10

Chr17: 43101281-44863413 rs2106786 43919096 MAPT G A 0.29 0.0 1.87 × 10−23

Eight independent genomic loci significantly associated with brain age gap (BAG). Lead SNP rs-number, genomic position (in hg19 coordinates), effective allele
(A1), the other allele (A2), effect size (Beta), meta-analysis heterogeneity (I2), association strength (P value, P).
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Genetic correlations between BAG and disorders
GWAS summary data for four disorders (SCZ [36], BIP [37], MDD [38], and
AD [39]) were obtained from the Psychiatric Genomics Consortium (PGC,
https://med.unc.edu/pgc/download-results). For each GWAS, the associa-
tion results for European ancestral samples excluding samples from
23andMe were used (SCZ: n case=67,390, n control = 94,015; BIP: n case =
41,917, n control = 371,549; MDD: n case = 59,851, n control = 113,154;
AD: n case = 71,880, n control = 383,378). The PD GWAS results were
obtained from the fixed-effect meta-analysis performed by the Interna-
tional Parkinson Disease Genomics Consortium (IPDGC, n case = 33,674, n
control = 449,056) [40].
Before post-GWAS analysis we processed the results from all GWAS

using a standard protocol. Specifically, SNPs having a MAF < 0.05, or
imputation INFO < 0.5, or ambiguous allelic coding (A/T, or C/G) were
removed from subsequent analyses. The LD score model (ldsc) [41] was
applied to estimate SNP-heritability and genetic correlations between
BAG and disorders. Only high-quality SNPs published in the
HapMap3 dataset were used for estimation. The LD score derived from
the 1KGp3 was used as input to ldsc. The Benjamini-Hochberg False
Discovery Rate (FDR) procedure was used to correct for multiple testing
across disorders (FDR-corrected p < 0.05 was considered statistically
significant).
To visualize polygenic enrichment, conditional QQ plots [42, 43] were

made for BAG versus each disorder. In these plots, the QQ curves for
the association statistics (-log10 P values) for BAG were stratified by the
corresponding association strength for the conditioned disorder. As
the association strength to the conditioned disorder increases, a successive
leftward deflation in these curves indicates polygenic enrichment.
Similarly, conditional QQ for each disorder versus BAG shows polygenic
enrichment in the reverse direction.

Two-sample Mendelian randomization
To study the cause-effect relations between BAG and the five disorders,
two sets of MR analyses were performed. The first set, using standard
models, included the inverse-variance weighted model (IVW) [44],
weighted median (wMed) [45], Egger regression (Egger) [46], and MR-
PRESSO (PRESSO) [47]. For these analyses, only genome-wide significant
SNPs (p < 5×10−8) to the exposure traits or disorders were used as
potential instruments. The PLINK program and the LD structure of 1KGp3
dataset were used to select instruments with the following parameters,
--clump-kb 500 kb, --clump-p1 5×10−8, and --clump-r2 0.01. The TwoSam-
pleMR package [19] was used for data harmonization and causal inference
for the IVW, wMed, and Egger models. The same harmonized datasets
were used as input to the MR-PRESSO software to assess outliers that may
artificially affect MR estimates, i.e., SNPs that show horizontal pleiotropy to
both BAG and disorders. Harmonized instrumental SNPs are shown in
Supplementary Tables S6–S15.
The second set of models included the robust adjusted profile score

(RAPS) [48] and the CAUSE models [49]. These models can make use of
SNPs that show a suggestive level of association (p < 10-3) with exposure
to increase statistical power without incurring weak instrument bias in
estimation. Although both models control for horizontal pleiotropy,
CAUSE directly tests for a shared (correlated horizontal pleiotropy)
versus a causal model for each relation [49]. The same instrument
selection procedures used in the first set of models were used here,
except that 10-3 was taken as the cut-off for selecting instruments, i.e.,
–clump-p1 10-3.
As each of the six MR models has different assumptions that are difficult

to verify in real data, a majority vote ensemble scheme was used to make
conclusions for the existence of cause-effect relations: specifically, only
when four or more models indicated a cause-effect relation (FDR adjusted
P < 0.05) was such a relation considered causal.
In addition to applying multiple MR models, GWAS results for height

measured for European samples [50] (n= 253,288; https://
portals.broadinstitute.org/collaboration/giant/), for AD diagnosed in a
Japanese sample [51] (n case= 3962 and n control = 4047) and an
African sample [52] (n case = 2784 and n control=5 222) and for BIP
diagnosed in a Japanese sample [53] (n case = 2964 and n control =
61,887) were used to corroborate MR findings. As commonly done in
genetic studies, height was used as a negative exposure control to test if
population stratification could generate spurious causal effects [54]. The
non-European GWAS data were used to test if any observed causal effects
generalize across ancestry groups, although with significantly smaller
sample sizes.

RESULTS
We obtained accurate brain age estimates; mean absolute errors
(MAEs) in each of the five disjoint folds were consistently below
2.5 years (Supplementary Table S2). This was consistent when we
split the dataset into different subsets based on covariates
(MAE= 2.40 in females compared to 2.53 in males; 2.40 in the
youngest half compared to 2.52 in the oldest), although we
observed a slight age bias (Supplementary Fig. S1). Based on the
meta-analyzed GWAS results, we estimated a SNP heritability of
0.27 (standard error (SE)= 0.036) for BAG (Methods section). Our
estimate is comparable to or higher than the two previously
reported estimates (0.26, SE= 0.044 [6]; 0.19, SE= 0.02 [18]).
We identified eight independent genomic loci significantly

associated with BAG (Fig. 1a, b and Table 1). Associations of lead
SNPs in these regions to BAG are highly consistent in directions
and effect sizes across the five folds (Supplementary Table S3).
Among these loci, the one in the inversion region on chromosome
17 (lead SNP rs2106786), including the MAPT gene, has been
previously reported [18, 19], although indexed by a different SNP
(rs2435204). This SNP was also highly significant in our analysis
(p= 5.4 × 10−21, beta = 0.27 years, effective-allele = G). The locus
containing the RUNX2 gene (lead by rs2790102: p= 8.92 × 10−9,
beta=−0.15 years, effective-allele=A), which showed suggestive
significance in Jonsson et al. [18], was genome-wide significant in
the present study. The RUNX2 gene codes for a master
transcription factor which plays a critical role in skeletal
development [55]. Among the remaining six novel loci, the
rs79107704-A allele showed the largest association with BAG; one
copy of this allele was associated with an average increase in brain
age of 0.63 years (Table 1). This SNP is located 3405 bp
downstream of the Betaine-homocystein S-methyltransferase 2
gene (BHMT2, Fig. 1b), a gene whose product is involved in choline
metabolism during development [56]. Other protein-coding genes
that are closest to the lead SNPs include those involved in calcium
signaling (CAMK2N2 and INPP5A) and metabolism and transcrip-
tion regulation (GALC, KLF3, and KLHL38), both processes are
implicated in biological ageing [57]. In Supplementary Table S5,
we present detailed annotations of biological functions of each
gene.
We further annotated these identified SNPs to nearby genes

and regulatory elements (Methods). Most of the associated SNPs
are in noncoding regions such as intergenic, intron or untrans-
lated regions (Supplementary Figs. S3 and S4). Using the default
parameters in FUMA [29], 54 unique genes were found to be
implied by these significant associations by genomic position. The
expression levels of these genes in the 54 tissue types from the
GTEx v8 project [33] showed three remarkable patterns (Fig. 1c).
The first set of genes expressed highly across almost all 54 tissues;
the second set of genes showed low expression levels in most
tissue types; and the last set, including eight genes, was highly
expressed only in brain tissue (Fig. 1c), for example, MAPT, GFAP,
and the Homeobox protein gene NKX6-2. These results suggest
that BAG encodes coordinated physiological processes implicating
both the brain and the peripheral systems.
To nominate causal variants in each locus we performed

statistical fine-mapping [31] for regions around each lead SNP in
Table 1 (Methods). Except for the locus on chromosome 14 which
was not resolvable, all loci clearly indicated that the 95% credible
sets suggest a causal model with one causal SNP, instead of two,
i.e., the posterior probability for the 1-SNP set were larger than
those of the 2-SNP sets (Supplementary Table S16). Furthermore,
four credible sets indicated that the lead SNPs were also the causal
ones (posterior inclusion probability (PPI_1) > 0.05 and >PPI of the
second most probable SNP(PPI_2)) (Methods; Supplementary
Table 16) but identifying the causal SNP for the remaining were
difficult. For example, the MAPT locus on chromosome 17 and the
RUNX2 locus on chromosome 6 showed two SNPs having almost
equal and small PPIs (i.e., <=0.05), indicating that the true causal
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Fig. 1 Genetic associations for brain age gap. a The Manhattan plot of meta-analyzed association results for brain age gap (BAG).
Chromosome numbers are shown on x axis, -log10 association p values on y axis and lead SNP rs-numbers in the plot. b Region plots for each
of the eight associated regions. Genes located in each region are shown below each figure. Linkage disequilibrium r-squared values are
indicated by colors; and recombination frequences by curves. c Expression levels of the annotated genes across tissues analyzed by the GTEx
v8 study. Colors indicate average log2 transformed expression level in each tissue.
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variants may be some untyped rare ones not investigated in this
study. The clearest signal comes from the regions on chromosome
3 and 5, where the PPIs for the lead SNPs were much larger than
that for the second most probable causal SNPs.
We investigate whether the statistically fine-mapped causal

variants affect BAG through transcriptional regulatory mechanism
using the GETx database (eQTL or sQTL data for 49 tissues;
gtexportal.org; accession date 25 February 2023). Except
rs79107704, the seven SNPs significantly affect the transcription
levels of one or more nearby genes (p < 1.3 × 10−4; Supplemen-
tary Figs. S6–S12 and Tables S17–S22). Of note, rs2790102 and
rs17203398 affect the only gene (RUNX2 and GALC, respectively).
The other five affect the expression of two or more genes,
particularly for rs2106786 that affect 37 unique genes or
noncoding RNAs across all the 49 tissue types. In addition, this
SNP also affects the splicing isoforms for 15 unique genes in the
49 tissue types (Supplementary Table S21-S22). This observed
complex pattern makes it difficult to pin down the genes through
which rs2106786 influences BAG.
We observed nominally significant genetic correlation between

BAG and AD that did not survive FDR-correction (r= 0.23, SE= 0.1,
p= 0.02, FDR adjusted p= 0.13) and no significant associations
with any other of the four disorders (Fig. 2a). SNP heritability
estimates for the five disorders were all significant but varied
greatly; SCZ showed the largest (0.34, SE= 0.01) and AD showed
the lowest (0.01, SE= 0.005) estimates. Bidirectional conditional
QQ plots (Fig. 2b–d; Supplementary Figs. S13 and S14) showed
that there was noticeable genetic enrichment for BIP conditional
on BAG but not in the reverse direction. For AD and PD, both
directions showed clear enrichment, surprisingly for PD that did
not show significant genetic correlation with BAG (r=−0.07,
p= 0.42).
We then performed extensive MR analyses using six different

models to examine the existence of cause-effect relations
between BAG and the five disorders (Methods). Figure 3a shows
that BAG was only causally associated with PD, i.e., four out of the
six MR models showed a negative relation with varying effect sizes
(all with adjusted p < 0.05). One year increase in genetically
predicted BAG was estimated to reduce the risk of PD by a log
odds ratio from 1.4 (by Egger regression) to 0.02 (by MR-RAPS)
(Supplementary Table S23). In the reverse direction (i.e., disorders
as exposure), increased genetic risk for AD and BIP were causally
associated with increased BAG (30 and 55 SNPs used as
instruments, respectively); these estimated causal effects on BAG
were relatively larger for AD than BIP (Fig. 3b; Supplementary
Table S24).
A close investigation into the scatter plots of instrumental SNPs

showed that the causal effect of AD on BAG was primarily driven
by a SNP (rs59007384) in the APOE region, which was not
identified as a horizontal pleiotropic instrument by MR-PRESSO
(outlier test p > 0.05) (Fig. 3c); there were no extreme instruments
identified for the BIP to BAG relation by MR-PRESSO (Fig. 3d) but
Egger-regression indicated existence of horizontal pleiotropy
(Egger intercept test: p= 0.017). The causal effects of BAG on
PD were primarily driven by two SNPs in the inversion region on
chromosome 17, effective alleles of these SNPs were associated
with higher BAG and lower risk of PD (Fig. 3e). SNPs in the same
region also drove the negative causal relation (not significant)
from PD to BAG (Fig. 3f). However, both SNPs were flagged as
horizontal pleiotropic instruments by MR-PRESSO (p < 0.05) and
Egger-regression (Egger intercept test: p= 0.03 and 0.008,
respectively). Therefore, the observed negative relations between
BAG and PD are less likely to be causal.
We used the GWAS results for height of European samples and

cross-ancestry MR analysis to corroborate the identified causal
relations (Methods). We found no causal effect between BAG and
height with any of the MR methods employed (all p > 0.05).
Therefore, our observed AD and BIP to BAG relations are less likely

to be driven by population stratification, i.e., both the exposure
and outcome data originating from the same ancestry group.
There was also no significant cross-ancestral causal effect detected
using AD data from Japanese or African samples (IVW p= 0.74,
0,85, respectively), and BIP data from the Japanese sample to BAG
(beta = 0.10, p= 0.13).

DISCUSSION
Combining the advantages of large samples and advanced
models for brain age prediction, we confirmed that BAG is a
heritable and polygenic trait, and estimated the genetic pleiotropy
and causal genetic relations with major brain and mental
disorders. We identified seven novel loci associated with BAG, in
addition to confirming the previously reported MAPT loci [18, 19].
Although MR indicated that increased genetic risk for AD or BIP
may be causally associated with higher BAG, our results
demonstrate that individual variability and previously reported
case-control differences in BAG only to a marginal degree should
be attributed to the common genetic architecture previously
associated with the respective diseases.
Functional annotation of the genes linked to the identified

loci confirms that deviations in BAG are linked to complex
processes encompassing multiple biological systems [20].
Although earlier work observed this variety when investigating
different multimodal aspects of imaging data linked to brain
age, our findings suggest it also exists when looking at a singular
BAG computed from only T1-weighted MRI data. Our coarse
division of the implied 54 genes into three groups indicates that
only eight genes are specifically expressed in brain tissue. The
remaining genes were either expressed in abundance across all
tissue types tested, including the brain, or expressed at very low
levels across all tissues. Nonetheless, the proteins coded by
these nonbrain-specific genes have been implicated in brain-
related disorders or traits (Supplementary Table S5). For
example, among the genes we found to be expressed across
all tissue types (group 1), mutations in AP2M1 have been linked
to epilepsy, intellectual developmental disorder, and seizures
[58]; among the genes expressed in low levels across tissues
(group 2), STH has been associated with frontotemporal
dementia and 17q21.31 duplication syndrome [59, 60]. More
importantly, we show that our fine-mapped causal SNPs affect
the expression levels of these genes in multiple tissue types,
providing testable molecular mechanisms for these genetic
variants. In addition, although our analysis revealed no
significant pathway enrichment, these 54 genes contribute to
biological functions that include calcium signaling, protein
metabolism, DNA damage repair, and general innate immune
defense. Thus, our analyses highlight the role of these diverse
sets of processes affecting the brain throughout life.
Prior work has shown higher BAG in patients with a multitude of

disorders compared to healthy controls [5, 6, 8, 9, 11], and has
documented partly overlapping genetic associations between
BAG and clinical conditions [6]. However, the causal effects have
remained unclear. Our MR approach suggested that genetically
predicted risks for AD or BIP were causally associated with
increased BAG. However, these relations were only weakly
supported by genetic correlation analysis. One possible explana-
tion for this weaker support from genome-wide signals (genetic
correlation) in contrast to MR (significant associations only) might
be due to heterogeneous genetic correlations across the genome,
i.e., some genomic regions show positive correlations while others
show negative correlations [61, 62]. In such a scenario, the net
genetic correlations between the two traits are expected to be
lower than regional correlations.
The causal effect of genetically predicted risk for AD on BAG

was small but consistent in directions across the six MR models,
four of which were significant after multiple-testing correction. For
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BIP, although four models showed significant effects, the CAUSE
model suggested an opposite direction of effect to the other five
models. Thus, we advise careful interpretation of this result. Our
attempts of testing causal relations across ancestral groups led to
largely null fundings for the AD to BAG relations. We believe these
nonsignificant fundings are largely due to the lack of statistical
power in the non-European GWAS [51–53].

The observed causal relations between genetically predicted
risk of brain disorders and BAG are intriguing. One possible
interpretation is that overt changes in the brain incurred by the
disorders contribute to accelerated aging. Another possibility may
be that lifestyle and health-related behaviors of patients with
clinical conditions such as AD and BIP, e.g., medication [63], may
increase brain age. Yet another is that genetic variation associated

Fig. 2 Polygenic genetic overlap between brain age gap and disorders. a Genetic correlation between brain age gap and disorders
computed by ldsc. SNP heritability and its standard error are indicated. b–d Conditional QQ plot between brain age gap and disorders in both
directions. Colors are used to indicate different association strength to the conditioned traits, i.e., the ones indicated after the vertical bar in
each figure. Dashed diagonal lines indicate expected null distributions. AD Alzheimer’s disease, BIP bipolar disorder, MDD major depression
disorder, PD Parkinson’s disease, SCZ schizophrenia.
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Fig. 3 Causal inference between brain age gap and disorders. a Causal effect of brain age gap (BAG) on risk of disorders; b Causal effect of
genetic risk of disorders on BAG. Colors indicate different models; triangle indicates significant effect after false discovery correction.
Estimated standard errors for each effect are aslo shown. c Scatter plots of SNP effects on AD (x axis) and BAG (y axis). d Scatter plots of SNP
effects on BIP (x axis) and BAG (y axis). e Scatter plots of SNP effects BAG (x axis) and PD (y axis). f Scatter plots of SNP effects on PD (x axis) and
BAG (y axis). Causal effects estimated by the five models (except CAUSE) are shown by fitted lines; slopes of these lines indicate causal effect
sizes. Exceptional SNPs are marked by boxes that include SNP rs-numbers and genome location in the hg19 coordinates. AD Alzheimer’s
disease, BIP bipolar disorder, MDD major depression disorder, PD Parkinson’s disease, SCZ schizophrenia.
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with clinical traits may influence the brain early in life. Given the
comparable sample sizes to the GWAS of AD and BIP and the
widely observed clinical correlations, surprisingly, no genetic nor
causal relations of SCZ and MDD with BAG were found. On the
one hand, this may suggest that previously reported case-control
differences in BAG do not reflect causal relations, but rather a
combination of indirect and confounding factors. For example,
smoking and physical exercise have been associated both with
MDD and SCZ [64–67] and brain age [5, 66]. Alternatively, it has
been shown that both BAG [20] and psychiatric disorders are
highly heterogeneous phenotypes [68, 69], and thus further
identification and characterization of the causal relations may
require even larger, and carefully screened, samples. It is also
worth noting that while the sample sizes for the disorders are
large, our BAG GWAS sample is relatively small. Thus, our null
findings in the direction from BAG to disorders may be due to too
weak instruments [70].
Our initial results showed weak evidence of a causal relation

between BAG and PD, corroborating two recent studies which
reported a weak correlation between BAG and PD [71, 72]. Striking
patterns of enrichment between the two were shown in the
conditional QQ plots and four out of six MR models indicated that
genetically predicted BAG may have protective effect from PD.
However, we found that these relations were completely caused
by the MAPT gene region on chromosome 17: After removing
chromosome 17 from our analyses, no enrichment was observed
in either direction (Supplementary Fig. S15). In addition, instru-
mental SNPs in this region were detected by MR-PRESSO as
horizontal pleiotropic SNPs, i.e., affecting BAG and PD through
independent biological pathways. Reperforming MR analysis
excluding these outlier SNPs confirmed null causal relations. Thus,
we conclude that we found no evidence for causal relations
between genetically predicted risk for PD and BAG. Our analytic
procedures also highlight the importance of triangulation and
converging evidence in causal inference analysis [73].
While the present study advances current knowledge regarding

the genetic architecture of and causal contributions to BAG, the
results should be interpreted with caution. Although we confirm
previously reported genetic associations with BAG, e.g., the MAPT
gene locus [18, 19], our sample overlaps with previous ones—
which were also based on UK Biobank data. We attempted
replicating our findings in three independent but small samples (n
ranges from 321 to 702; Supplementary Analysis and Table S4) but
no clear replications were achieved. Therefore, independent large-
scale samples are needed for replication. We used a simple voting
schema across six different MR models to infer causal relations
between genetically predicted BAG and brain disorders. Further-
more, as only eight independent loci showed significant associa-
tions with BAG, other models [74] that require large number of
genome-wide significant instruments were considered not applic-
able. However, it should be noted our simple voting approach
may not be the most efficient strategy for identifying causal
effects. Formal development of ensemble methods, such as
bagging [75], may provide better grounds for precise interpreta-
tion. Furthermore, our BAG GWAS is still smaller than GWAS
performed for the disorders, which may partly explain the lack of
causal effects of BAG on brain disorders. Another limitation is that
we were unable to obtain independent data to perform three
sample MR analysis, a model that can account for the winner’s
curse bias in two sample MR models. Therefore, to increase our
confidence in the identified relations, large-scale data for BAG, and
replications in independent datasets are needed. Relatedly, our
estimation of brain age was based on cross-sectional samples,
which makes its interpretation nontrivial [76], and studies built on
longitudinal data could help disentangle its complexities. Finally,
although we refer to our brain age estimation in general terms, it
is based on T1-weighted MRI data only. The brain is a complex and
heterogeneous organ, and different imaging modalities are known

to capture different aspects of the naturally occurring variation.
Thus, studies relying on other modalities, either independently or
in combination, could reveal a broader set of associations [77].
In conclusion, the present study increases the yield of genetic

associations with brain age to eight genomic loci; implicated
genes indicate involvement of calcium signaling, DNA damage
repair, protein metabolism, and general innate immune defense.
Our analysis did not provide evidence of a causal relationship
between BAG and the included clinical conditions, and their
interactions remain unclear.
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Replication analysis 
 
Genetic data 
We attempted to replicate the eight associations to BAG using three independent datasets, 
the Alzheimer’s Disease Neuroimaging Initiative phase 1 (ADNI I) and 2 (ADNI II) and a healthy 
control dataset (Local sample) that have been previously published in Ripke et al1 . Out local 
sample has been imputed by psychiatry genomic consortium using their standardized 
pipeline Ricopili2. However, for the two ADNI datasets, only genotyped data are publicly 
available. We imputed these genotypes to the 1000 Genomes Projects reference data, using 
Genipe3.  The default parameters of Genipe were used. After imputation, we excluded SNPs 
having MAF < 0.01, HWE p <10-6, and imputation R-sq <0.3 from subsequent analysis.  
 
Image data 
MRI data for ANDI sample were obtained from http://adni.loni.usc.edu/ with permission. 
Brain scans for our local sample were performed at Oslo University Hospital and published in 
previous works4-6. The same protocols of image preprocessing and BAG estimation used in 
discovery sample were applied to these replication sample. 
 
Replication association studies 
We performed association test for each of the eight SNPs in each of the three replication 
datasets separately. For each analysis, chronological age, sex and the top ten principal 
components were included as covariates. Association results are shown in Supplementary 
Table S4. 
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Figure S1. Genetic association to brain age gap in each fold. 
 

 
 
From left to right, GWAS association Manhattan plot and QQ plot, the scatter plot for 
estimated brain age (y axis) vs. chronological age (x axis), distribution for brain age gap (delta) 
for each fold of the UKB data (each row). In Manhattan plots, chromosome numbers are on x 
axes and -log10 association p value on the y axes. In QQ plots, the expected and observed p 
value on the -log10 scale are shown on the x and y axes. Blue lines in the scatter plots 
indicated a fitted loess model for each fold. 
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Figure S2. QQ plot for the genetic association to brain age gap. 

 
QQ plot for the results of meta-analysis over the GWAS for BAG in each of the five folds of 
UKB data. 
  



Figure S3. Genic annotations for associated SNPs. 

 
Annotations of associated SNPs to genic elements by FUMA7. UTR3, 3 prime untranslated 
region; ncRNA, non-coding RNA; UTR5, 5 prime untranslated region. Enrichment p values are 
based on hypergeometric test.  
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Figure S4. Annotations for associated SNPs. 

 
 
 
Annotations of associated SNPs to genic elements by Garfield8. 
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Figure S5. Gene based association results. 

 

 
Manhattan plot and QQ plot for gene-based association statistics for BAG. Dashed line in the 
Manhattan plot indicates the genome wide significant threshold, and, in the QQ plot 
indicates the null association. 
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Figure S6. eQTL annotations for rs73185796. 
 

 
The SNP rs73185796 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, VWA5B2, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.  Supplementary Tables XXX include numeric values for other eGenes. 
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Figure S7. eQTL annotations for rs13132853. 

 
The SNP rs13132853 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, KLF3, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.  Supplementary Tables XXX include numeric values for other eGenes. 
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Figure S8. eQTL annotations for rs2790102. 
 

 
The SNP rs2790102 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, RUNX2, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.  Supplementary Tables XXX include numeric values for other eGenes. 
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Figure S9. eQTL and sQTL annotations for rs7461069. 
 

 
 

 
Top: The SNP rs2790102 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, FAM83A-SA1, in 49 tissues. The tissue types (Tissue), 
sample sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.   
Bottom: The SNP rs2790102 was annotated as splicing QTL to the expression of KLHL38 in the 
Muscle-skeletal tissue (p=9.7x10-6, NES=0.26).  
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Figure S10. eQTL and sQTL annotations for rs4880424. 
 

 

 
Top: The SNP rs4880424 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, NKX6-2, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.   
Bottom: The SNP rs4880424 was annotated as splicing QTL to the expression of INPP5A in the 
Testis tissue (p=6.0x10-7, NES=-0.48).  
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Figure S11. eQTL and sQTL annotations for rs17203398. 

 
 

 
Top: The SNP rs17203398 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, GALC, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.  Supplementary Tables XXX include numeric values for other eGenes. 
Bottom: The SNP rs17203398 was annotated as splicing QTL to the gene GALC in the Lung 
tissue (Left, p=2.7x10-8, NES=-0.27), and the non-coding RNA LINC01146 in the liver tissue 
(Right, p=3.6x10-7, NES=-0.46).  
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Figure S12. eQTL annotations for rs2106786. 

 
The SNP rs17203398 was search for in the GTEx v8 portal to verify whether it affects the 
expression level of the nearby gene, MAPT, in 49 tissues. The tissue types (Tissue), sample 
sizes (Samples), normalized effect sizes (NES), eQTL pvalues (p-value), and posterior 
probability that the SNP affect gene expression estimated by METASOFT9 (m-value) and 95% 
CI were shown. Colors indicate tissue types. P-value <1.3x10-4 (0.05 / (49*8) is considered as 
the existence of statistical evidence; m-value >0.9 is additionally considered as the existence 
of eQTL.  Supplementary Tables XXX include numeric values for other eGenes. 
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Figure S13. Conditional QQ plot for MDD vs BAG. 
 

 
 
The conditional QQ plots for MDD condition on the levels of association for BAG (a), and for 

BAG condition on the level of association for MDD (b). As the association strength to the 

conditioned disorder increase, a successive leftward deflation in these curves indicates 

polygenic enrichment.  

  

QQplot

All
−log10P>1
−log10P>2
−log10P>3

0 1 2 3 4 5 6 7

0

2

4

6

8

Expected  - log10(p)

O
bs
er
ve
d 

 -
lo
g 1

0(
p)

QQplot

All
−log10P>1
−log10P>2
−log10P>3

0 1 2 3 4 5 6 7

0

2

4

6

8

Expected  - log10(p)
O
bs
er
ve
d 

 -
lo
g 1

0(
p)

a b



Figure S14. Conditional QQ plot for SCZ vs BAG. 
 

 
The conditional QQ plots for SCZ condition on the levels of association for BAG (a), and for 

BAG condition on the level of association for SCZ (b). As the association strength to the 

conditioned disorder increase, a successive leftward deflation in these curves indicates 

polygenic enrichment.  

 
 
  

a b
QQplot

All
−log10P>1
−log10P>2
−log10P>3

0 1 2 3 4 5 6 7

0

2

4

6

8

Expected  - log10(p)
O
bs
er
ve
d 

 -
lo
g 1

0(
p)

QQplot

All
−log10P>1
−log10P>2
−log10P>3

0 1 2 3 4 5 6 7

0

2

4

6

8

Expected  - log10(p)

O
bs
er
ve
d 

 -
lo
g 1

0(
p)



Figure S15. Conditional QQ plot for PD vs BAG excluding chr17. 
 

 
The conditional QQ plots for PD condition on the levels of association for BAG (a), and for 

BAG condition on the level of association for PD (b). As the association strength to the 

conditioned disorder increase, a successive leftward deflation in these curves indicates 

polygenic enrichment.  
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Table S1. Non-UK Biobank model training datasets. 
 

Name Size Subset Ages Train 
Autism Brain Imaging Data Exchange 555 Healthy Controls 6-56 356 

Autism Brain Imaging Data Exchange II 184 Healthy Controls 8-64 118 
ADHD 200 606 Healthy Controls 7-26 388 

Amsterdam Open MRI Collection 819 ID1000 19-26 524 
Beijing Normal University Enhanced 

Sample 
180 Full 17-28 116 

Cambridge Center for Aging and 
Neuroscience 

653 Full 18-89 418 

Consortium for Reliability and 
Reproducibility 

1368 Full 6-84 880 

Dallas Lifespan Brain Study 314 Full 21-89 201 
ds000119 73 Full 8-27 47 
ds000202 95 Full 18-30 61 
ds000222 79 Full 21-73 51 

1000 Functional Connectomes Project 812 Full 8-78 520 
Healthy Brain Network 1855 Full 5-22 1188 

Human Connectome Project 1113 Full 22-37 712 
Max Planck Institute Leipzig Mind-Brain-

Body 
73 Full 22-68 47 

Enhanced Nathan Kline Institute - 
Rockland Sample 

928 Full 6-85 594 

Open Access Series of Imaging Studies 3 1264 Healthy Controls 42-95 817 
Pediatric, Imaging and Neurocognition 1174 Full 3-21 752 

Southwest University Adult Lifespan 
Dataset 

494 Full 19-80 316 

Southwest University Longitudinal 
Imaging Multimodal 

573 Full 17-27 367 

Total 13212 - 3-95 8473 

 
The dataset was compiled from 20 sources, spanning a wide age range and a multitude of 
scanners and scanning protocols. The number of participants from each source used for 
training is shown in the respective columns. 
 
  



Table S2. Characteristics for the five folds data from UK Biobank. 
Index N Age range 

(years) 
Sex (F) MAE(years) 

Fold 0 5622 40-70 2907 2.49 
Fold 1 5601 40-70 2885 2.44 
Fold 2 5601 40-70 2888 2.45 
Fold 3 5650 40-70 2914 2.44 
Fold 4 5630 40-70 2907 2.44 

 
Four folds were used for model training and tuning, and the trained model was used for 
predicting brain age for the hold-off fold. This procedure was iterated five times until all 
subjects have a brain age estimated from independent training models. Indexes 
corresponding to those used in Supplementary Figure 1; N, sample size; MAE, mean absolute 
error for predicted brain age. 
  



Table S3. Statistics for lead SNPs of each associated region in each fold. 
Fold SNP BP A1 t-score P 
fold0 rs2790102 45432214 A -2.54 1.12e-2 
fold1 rs2790102 45432214 A -1.95 5.09e-2 
fold2 rs2790102 45432214 A -3.56 3.77e-4 
fold3 rs2790102 45432214 A -1.86 6.36e-2 
fold4 rs2790102 45432214 A -2.97 2.98e-3 
fold0 rs4880424 134584577 T 3.76 1.7e-4 
fold1 rs4880424 134584577 T 3.16 1.61e-3 
fold2 rs4880424 134584577 T 3.12 1.79e-3 
fold3 rs4880424 134584577 T -0.54 0.59 
fold4 rs4880424 134584577 T 2.75 5.97e-3 
fold0 rs17203398 88449847 C -4.13 3.71e-5 
fold1 rs17203398 88449847 C -1.37 0.17 
fold2 rs17203398 88449847 C -4.35 1.41e-5 
fold3 rs17203398 88449847 C -2.04 4.19e-2 
fold4 rs17203398 88449847 C -2.44 1.47e-2 
fold0 rs2106786 43919096 G 3.72 2.05e-4 
fold1 rs2106786 43919096 G 4.46 8.42e-6 
fold2 rs2106786 43919096 G 4.45 8.59e-6 
fold3 rs2106786 43919096 G 5.50 4.01e-8 
fold4 rs2106786 43919096 G 4.22 2.52e-5 
fold0 rs73185796 183975709 T -1.21 0.23 
fold1 rs73185796 183975709 T -2.84 4.52e-3 
fold2 rs73185796 183975709 T -3.39 6.93e-4 
fold3 rs73185796 183975709 T -2.32 2.02e-2 
fold4 rs73185796 183975709 T -2.72 6.57e-3 
fold0 rs13132853 38680015 G 3.59 3.32e-4 
fold1 rs13132853 38680015 G 4.18 2.96e-5 
fold2 rs13132853 38680015 G 4.29 1.82e-5 
fold3 rs13132853 38680015 G 4.10 4.16e-5 
fold4 rs13132853 38680015 G 3.378 7.35e-4 
fold0 rs79107704 78388694 A 2.26 2.38e-2 
fold1 rs79107704 78388694 A 1.64 0.10 
fold2 rs79107704 78388694 A 3.27 1.1e-3 
fold3 rs79107704 78388694 A 2.92 3.57e-3 
fold4 rs79107704 78388694 A 2.49 1.29e-2 
fold0 rs7461069 124669029 A -3.10 1.94e-3 
fold1 rs7461069 124669029 A -2.64 8.37e-3 
fold2 rs7461069 124669029 A -1.47 0.14 
fold3 rs7461069 124669029 A -2.04 4.13e-2 
fold4 rs7461069 124669029 A -3.39 7.12e-4 

 
BP: base pair position on the hg19 build; A1: effective allele; t-score: effect size divided by 
standard error; P: association p values. Numeric values were rounded to two decimal places. 
  



Table S4. Statistics for lead SNPs of each associated region in each replication samples. 
a. 

CHR BP SNP A1 N t-score P 
4 38680015 rs13132853 G 702 0.26 0.79 
6 45432214 rs2790102 A 702 -0.13 0.90 
8 124669029 rs7461069 A 702 -2.30 2.19e-2 
10 134584577 rs4880424 T 702 -0.72 0.47 
14 88449847 rs17203398 C 702 -2.70 7.17e-3 
17 43919096 rs2106786 G 702 0.86 0.39 

b. 
CHR BP SNP A1 N t-score P 
3 183975709 rs73185796 T 321 0.88 0.38 
4 38680015 rs13132853 G 321 -0.44 0.66 
6 45432214 rs2790102 A 321 -1.06 0.29 
8 124669029 rs7461069 A 321 0.19 0.85 
10 134584577 rs4880424 T 321 -0.19 0.85 
14 88449847 rs17203398 C 321 0.16 0.87 
17 43919096 rs2106786 G 321 0.52 0.60 

c. 
CHR BP SNP A1 N t-score P 
3 183975709 rs73185796 T 608 -1.73 8.50e-2 
4 38680015 rs13132853 G 600 -0.44 0.66 
5 78388694 rs79107704 A 612 1.11 0.27 
6 45432214 rs2790102 A 501 -1.22 0.22 
8 124669029 rs7461069 A 595 1.004 0.32 
10 134584577 rs4880424 T 602 0.35 0.72 
14 88449847 rs17203398 C 611 0.66 0.51 

a. ADNI I sample; b. ADNI II sample; c. Local healthy control sample. 
The ADNI samples I and II were impudently imputed on two the 1000 Genomes Project 
Phases3 reference data using the software Genipe3.  
CHR: chromosome number; BP: base pair position on the hg19 build; A1: effective allele; N, 
number of subjects analyzed; t-score: effect size divided by standard error; P: association p 
values. Numeric values were rounded to two decimal places.  
 
  



Table S5 Function annotation for genes in Figure 1c. 
1. Symbol: BHMT2; Name: Betaine--Homocysteine S-Methyltransferase 2 
Homocysteine is a sulfur-containing amino acid that plays a crucial role in methylation reactions. 
Transfer of the methyl group from betaine to homocysteine creates methionine, which donates the 
methyl group to methylate DNA, proteins, lipids, and other intracellular metabolites. The protein 
encoded by this gene is one of two methyl transferases that can catalyze the transfer of the methyl 
group from betaine to homocysteine. Anomalies in homocysteine metabolism have been implicated 
in disorders ranging from vascular disease to neural tube birth defects such as spina bifida, Orofacial 
Cleft. Among its related pathways are Metabolism and Sulfur amino acid metabolism.  
2. Symbol: AP2M1; Name: Adaptor Related Protein Complex 2 Subunit Mu 1 
This gene encodes a subunit of the heterotetrameric coat assembly protein complex 2 (AP2), which 
belongs to the adaptor complexes medium subunits family. The encoded protein is required for the 
activity of a vacuolar ATPase, which is responsible for proton pumping occurring in the acidification 
of endosomes and lysosomes. The encoded protein may also play an important role in regulating the 
intracellular trafficking and function of CTLA-4 protein. Among its related pathways are Arf1 
pathway and Metabolism. Adaptor protein complexes function in protein transport via transport 
vesicles in different membrane traffic pathways. AP-2 is involved in clathrin-dependent endocytosis 
in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated 
vesicles, CCVs) which are destined for fusion with the early endosome. Clathrin-associated adaptor 
protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and 
protein components of membranes are considered to be the major clathrin adaptors contributing 
the CCV formation. AP-2 may also play a role in maintaining normal post-endocytic trafficking 
through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal 
neurons, AP-2 is responsible for the endocytosis of ADAM10. Diseases associated with AP2M1 
include Intellectual Developmental Disorder, Autosomal Dominant 60, Seizures and Epilepsy, 
Myoclonic-Atonic Seizures. 
3. Symbol: PSMD2; Name: Proteasome 26S Subunit Ubiquitin Receptor, Non-ATPase 2 
The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure 
composed of 2 complexes, a 20S core and a 19S regulator. Proteasomes are distributed throughout 
eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process 
in a non-lysosomal pathway. An essential function of a modified proteasome, the 
immunoproteasome, is the processing of class I MHC peptides. This gene encodes one of the non-
ATPase subunits of the 19S regulator lid. In addition to participation in proteasome function, this 
subunit may also participate in the TNF signalling pathway since it interacts with the tumor necrosis 
factor type 1 receptor. This complex plays a key role in the maintenance of protein homeostasis by 
removing misfolded or damaged proteins, which could impair cellular functions, and by removing 
proteins whose functions are no longer required. Therefore, the proteasome participates in 
numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. 
4. Symbol: HEXIM1; Name: HEXIM P-TEFb Complex Subunit 1 
Expression of this gene is induced by hexamethylene-bis-acetamide in vascular smooth muscle cells. 
Among its related pathways are Initiation of transcription and translation elongation at the HIV-1 
LTR and Chromatin Regulation/Acetylation. It is a transcriptional regulator which functions as a 
general RNA polymerase II transcription inhibitor. Core component of the 7SK RNP complex: in 
cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing 
RNA polymerase II phosphorylation and subsequent transcriptional elongation. It may also regulate 
NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional and plays a role in the regulation of 
DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex 
that serves as a platform for IRF3 phosphorylation and subsequent innate immune response 
activation through the cGAS-STING pathway. Diseases associated with HEXIM1 include Nut Midline 
Carcinoma and Immune Deficiency Disease. 
5. Symbol: EIF2B5; Name: Eukaryotic Translation Initiation Factor 2B Subunit Epsilon 



This gene encodes one of five subunits of eukaryotic translation initiation factor 2B (EIF2B), a GTP 
exchange factor for eukaryotic initiation factor 2 and an essential regulator for protein synthesis. 
Among its related pathways are Translational Control and Peptide chain elongation. It catalyzes the 
exchange of eukaryotic initiation factor 2-bound GDP for GTP. Mutations in this gene and the genes 
encoding other EIF2B subunits have been associated with leukoencephalopathy with vanishing white 
matter. 
6. Symbol: NMT1; Name: N-Myristoyltransferase 1 
Myristate, a rare 14-carbon saturated fatty acid, is cotranslationally attached by an amide linkage to 
the N-terminal glycine residue of cellular and viral proteins with diverse functions. N-
myristoyltransferase catalyzes the transfer of myristate from CoA to proteins. N-myristoylation 
appears to be irreversible and is required for full expression of the biologic activities of several N-
myristoylated proteins, including the alpha subunit of the signal-transducing guanine nucleotide-
binding protein (G protein). Among its related pathways are Activation of BH3-only proteins and HIV 
Life Cycle. It adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral 
proteins. Diseases associated with NMT1 include Gallbladder Cancer and Noonan Syndrome 11.  
7. Symbol: DVL3; Name: Dishevelled Segment Polarity Protein 3 
This gene is a member of a multi-gene family which shares strong similarity with the Drosophila 
dishevelled gene, dsh. The Drosophila dishevelled gene encodes a cytoplasmic phosphoprotein that 
regulates cell proliferation. It also Involved in the signal transduction pathway mediated by multiple 
Wnt genes. 
8. Symbol: PARL; Name: Presenilin Associated Rhomboid Like 
This gene encodes a member of the rhomboid family of intramembrane serine proteases that is 
localized to the inner mitochondrial membrane. The encoded protein regulates mitochondrial 
remodeling and apoptosis through regulated substrate proteolysis. Proteolytic processing of the 
encoded protein results in the release of a small peptide, P-beta, which may transit to the nucleus. 
This protein is required for the control of apoptosis during postnatal growth and promotes changes 
in mitochondria morphology regulated by phosphorylation of P-beta domain. Mutations in this gene 
may be associated with Parkinson's disease. 
9. Symbol: DCAKD; Name: Dephospho-CoA Kinase Domain Containing 
The protein coded by this gene is predicted to enable dephospho-CoA kinase activity and involved in 
coenzyme A biosynthetic process. Gene Ontology (GO) annotations related to this gene include 
dephospho-CoA kinase activity. 
10. Symbol: INPP5A; Name: Inositol Polyphosphate-5-Phosphatase A 
The protein encoded by this gene is a membrane-associated type I inositol 1,4,5-trisphosphate 
(InsP3) 5-phosphatase. InsP3 5-phosphatases hydrolyze Ins(1,4,5)P3, which mobilizes intracellular 
calcium and acts as a second messenger mediating cell responses to various stimulation. Among its 
related pathways are Metabolism and superpathway of D-myo-inositol (1,4,5)-trisphosphate 
metabolism. Diseases associated with INPP5A include Alternating Esotropia and Lowe 
Oculocerebrorenal Syndrome.  
11. Symbol: FAM114A1; Name: Family With Sequence Similarity 114 Member A1 
The protein encoded by this gene belongs to the FAM114 family and may play a role in neuronal cell 
development. It is a phosphatase that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-
trisphosphate to inositol 1,4-bisphosphate, and inositol 1,3,4,5-tetrasphosphate to inositol 1,3,4-
trisphosphate. It also may play a crucial role in the survival of cerebellar Purkinje cells. 
12. Symbol: ALG3; Name: ALG3 Alpha-1,3- Mannosyltransferase 
This gene encodes a member of the ALG3 family. The encoded protein catalyses the addition of the 
first dol-P-Man derived mannose in an alpha 1,3 linkage to Man5GlcNAc2-PP-Dol. Defects in this 
gene have been associated with congenital disorder of glycosylation type Id (CDG-Id) characterized 
by abnormal N-glycosylation, and Congenital Disorders Of N-Linked Glycosylation. Among its related 
pathways are Synthesis of substrates in N-glycan biosythesis and Metabolism of proteins.  
14. Symbol: KLF3; Name: Kruppel Like Factor 3 



The protein coded by this gene enables sequence-specific double-stranded DNA binding activity. It is 
predicted to be involved in regulation of transcription by RNA polymerase II. The protein binds to the 
CACCC box of erythroid cell-expressed genes and may play a role in hematopoiesis. 
15. Symbol: ARHGAP27; Name: Rho GTPase Activating Protein 27 
This gene encodes a member of a large family of proteins that activate Rho-type guanosine 
triphosphate (GTP) metabolizing enzymes. The encoded protein may pay a role in clathrin-mediated 
endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-
bound state. 
16. Symbol: ABCC5; Name: ATP Binding Cassette Subfamily C Member 5 
The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) 
transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. 
This protein is a member of the MRP subfamily which is involved in multi-drug resistance. It 
functions in the cellular export of its substrate, cyclic nucleotides. This export contributes to the 
degradation of phosphodiesterases and possibly an elimination pathway for cyclic nucleotides. 
Studies show that this protein provides resistance to thiopurine anticancer drugs, 6-mercatopurine 
and thioguanine, and the anti-HIV drug 9-(2-phosphonylmethoxyethyl) adenine. Among its related 
pathways are Metabolism and Glycosaminoglycan metabolism. It acts as a heme transporter 
required for the translocation of cytosolic heme to the secretory pathway and may play a role in 
energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from 
enteroendocrine cells. This protein may be involved in resistance to thiopurines in acute 
lymphoblastic leukemia and antiretroviral nucleoside analogs in HIV-infected patients. Diseases 
associated with ABCC5 include Primary Angle-Closure Glaucoma and Episodic Kinesigenic Dyskinesia 
1.  
17. Symbol: NSF; Name: N-Ethylmaleimide Sensitive Factor, Vesicle Fusing ATPase 
The protein coded by this gene enables PDZ domain binding activity and ionotropic glutamate 
receptor binding activity. It is involved in intracellular protein transport, positive regulation of 
protein catabolic process, and positive regulation of receptor recycling. Among its related pathways 
are Neuroscience and Vesicle-mediated transport. Diseases associated with NSF include 
Developmental And Epileptic Encephalopathy 96 and Tetanus.  
18. Symbol: FMNL1; Name: Formin Like 1 
This gene encodes a formin-related protein. Formin-related proteins have been implicated in 
morphogenesis, cytokinesis, and cell polarity. The protein may play a role in the control of cell 
motility, survival of macrophages, the regulation of cell morphology and cytoskeletal organization. It 
is required in the cortical actin filament dynamics and cell shape. 
19. Symbol: ACBD4; Name: Acyl-CoA Binding Domain Containing 4 
This gene encodes a member of the acyl-coenzyme A binding domain containing protein family. All 
family members contain the conserved acyl-Coenzyme A binding domain, which binds acyl-CoA thiol 
esters. They are thought to play roles in acyl-CoA dependent lipid metabolism by binding to 
medium- and long-chain acyl-CoA esters and may function as an intracellular carrier of acyl-CoA 
esters. 
20. Symbol: GALC; Name: Galactosylceramidase 
This gene encodes a lysosomal protein which hydrolyzes the galactose ester bonds of 
galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. 
Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a 
major lipid in myelin, kidney and epithelial cells of small intestine and colon. Mutations in this gene 
have been associated with Krabbe disease, also known as globoid cell leukodystrophy. 
21. Symbol: KANSL1; Name: KAT8 Regulatory NSL Complex Subunit 1 
This gene encodes a nuclear protein that is a subunit of two protein complexes involved with histone 
acetylation, the MLL1 complex and the NSL1 complex. As part of the NSL complex it is involved in 
acetylation of nucleosomal histone H4 on several lysine residues and therefore may be involved in 
the regulation of transcription. 



22. Symbol: PLEKHM1; Name: Pleckstrin Homology And RUN Domain Containing M1 
The protein encoded by this gene is essential for bone resorption, and may play a critical role in 
vesicular transport in the osteoclast. It acts as a multivalent adapter protein that regulates Rab7-
dependent and HOPS complex-dependent fusion events in the endolysosomal system and couples 
autophagic and the endocytic trafficking pathways. PLEKGN1 is a dual effector of RAB7A and ARL8B 
that simultaneously binds these GTPases, bringing about clustering and fusion of late endosomes 
and lysosomes. It is required for late stages of endolysosomal maturation, facilitating both 
endocytosis-mediated degradation of growth factor receptors and autophagosome clearance. For 
example, in case of infection, it contributes to Salmonella typhimurium pathogenesis by supporting 
the integrity of the Salmonella-containing vacuole (SCV) probably in concert with the HOPS complex 
and Rab7. Mutations in this gene are associated with autosomal recessive osteopetrosis type 6 
(OPTB6). 
23. Symbol: FBXO32; Name: F-Box Protein 32 
This gene encodes a member of the F-box protein family which is characterized by an approximately 
40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of the 
ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-
dependent ubiquitination. The protein probably recognizes and binds to phosphorylated target 
proteins during skeletal muscle atrophy. It is highly expressed during muscle atrophy, whereas mice 
deficient in this gene were found to be resistant to atrophy. This protein is thus a potential drug 
target for the treatment of muscle atrophy.  
24. Symbol: PLCD3; Name: 1-Phosphatidylinositol 4,5-Bisphosphate Phosphodiesterase Delta-3 
This gene encodes a member of the phospholipase C family, which catalyze the hydrolysis of 
phosphatidylinositol 4,5-bisphosphate to generate the second messengers diacylglycerol and inositol 
1,4,5-trisphosphate (IP3). Diacylglycerol and IP3 mediate a variety of cellular responses to 
extracellular stimuli by inducing protein kinase C and increasing cytosolic Ca(2+) concentrations. Its 
activity is inhibited by spermine, sphingosine, and several phospholipids. It is essential for 
trophoblast and placental development and may participate in cytokinesis by hydrolyzing PIP2 at the 
cleavage furrow; It also regulates neurite outgrowth through the inhibition of RhoA/Rho kinase 
signaling. 
 
GROUP 2 
25. Symbol: TLR10; Name: Toll Like Receptor 10 
The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a 
fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly 
conserved from Drosophila to humans and share structural and functional similarities. They 
recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, 
and mediate the production of cytokines necessary for the development of effective immunity. It 
acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the 
inflammatory response. 
26. Symbol: GPR65; Name: G Protein-Coupled Receptor 65 
The protein encoded by this gene enables G protein-coupled receptor activity and is involved in 
several processes, including actin cytoskeleton reorganization, activation of GTPase activity, and 
positive regulation of stress fiber assembly. It is a receptor for the glycosphingolipid psychosine (PSY) 
and several related glycosphingolipids. It also plays a role in immune response by maintaining 
lysosome function and supporting phagocytosis-mediated intracellular bacteria clearance and may 
have a role in activation-induced cell death or differentiation of T-cells. 
27. Symbol: TLR1; Name: Toll Like Receptor 1 
The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a 
fundamental role in pathogen recognition and activation of innate immunity. This gene is 
ubiquitously expressed, and at higher levels than other TLR genes. This protein participates in the 
innate immune response to microbial agents,  specifically recognizes diacylated and triacylated 
lipopeptides. It cooperates with TLR2 to mediate the innate immune response to bacterial 



lipoproteins or lipopeptides by forming the activation cluster TLR2:TLR1:CD14 in response to 
triacylated lipopeptides. This cluster triggers signaling from the cell surface and subsequently is 
targeted to the Golgi in a lipid-raft dependent pathway, acting via MYD88 and TRAF6, leading to NF-
kappa-B activation, cytokine secretion and the inflammatory response. 
28. Symbol: KLHL38; Name: Kelch Like Family Member 38 
KLHL38 is a Protein Coding gene. Diseases associated with KLHL38 include Posterior Myocardial 
Infarction. 
29. Symbol: SPATA32; Name: Spermatogenesis Associated 32 
The protein encoded by this gene is predicted to enable actin binding activity, to be involved in 
spermatogenesis and active in perinuclear region of cytoplasm. 
30. Symbol: C17orf104 
This is an RNA Gene and is affiliated with the lncRNA class; Its function is unclear. 
 
 
31. Symbol: SPPL2C; Name: Signal Peptide Peptidase Like 2C 
The protein encoded by this gene enables protein homodimerization activity. And, it is predicted to 
be involved in membrane protein proteolysis. SPPL2C is integral component of cytoplasmic side of 
endoplasmic reticulum membrane and integral component of lumenal side of endoplasmic 
reticulum membrane. Diseases associated with SPPL2C include chromosome 17Q21.31 Duplication 
Syndrome and Caplan's Syndrome. 
32. Symbol: LRRC37A; Name: Leucine Rich Repeat Containing 37A 
The protein encoded by this gene is predicted to be integral component of membrane. Diseases 
associated with LRRC37A include Koolen-De Vries Syndrome and Supranuclear Palsy, Progressive, 1. 
33. Symbol: ARL17A; Name: ADP Ribosylation Factor Like GTPase 17A 
The protein encoded by this gene is predicted to enable GTP binding activity, involved in intracellular 
protein transport and vesicle-mediated transport. It functions as an allosteric activator of the 
cholera toxin catalytic subunit, an ADP-ribosyltransferase. Diseases associated with ARL17A include 
Bardet-Biedl Syndrome and Retinitis Pigmentosa. 
34. Symbol: ARL17B; Name: ADP Ribosylation Factor Like GTPase 17B 
The protein encoded by this gene is predicted to enable GTP binding activity, involved in intracellular 
protein transport and vesicle-mediated transport. It functions as an allosteric activator of the 
cholera toxin catalytic subunit, an ADP-ribosyltransferase. 
35. Symbol: STH; Name: Microtubule-Associated Protein Tau (MAPT) Intronic Transcript 
The protein encoded by this gene is involved in positive regulation of mRNA splicing via spliceosome. 
It is located in nucleus and perinuclear region of cytoplasm. Diseases associated with STH include 
Frontotemporal Dementia and Chromosome 17Q21.31 Duplication Syndrome. 
36. Symbol: C10orf91 (LINC02870); Name: Long Intergenic Non-Protein Coding RNA 2870 
No functions have been annotated to this non-coding RNA yet. 
37. Symbol: WNT9B; Name: Wnt Family Member 9B 
This gene is a member of the WNT gene family. The WNT gene family consists of structurally related 
genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis 
and in several developmental processes, including regulation of cell fate and patterning during 
embryogenesis. Study of its expression in the teratocarcinoma cell line NT2 suggests that it may be 
implicated in the early process of neuronal differentiation of NT2 cells induced by retinoic acid. This 
gene is clustered with WNT3, another family member, in the chromosome 17q21 region. It belongs 
to the canonical Wnt/beta-catenin signaling pathway. It activates a signaling cascade in the 
metanephric mesenchyme that induces tubulogenesis and plays a role in cranofacial development 
and is required for normal fusion of the palate during embryonic. 
38. Symbol: RUNX2; Name: RUNX Family Transcription Factor 2 
This gene is a member of the RUNX family of transcription factors and encodes a nuclear protein 
with an Runt DNA-binding domain. This protein is essential for osteoblastic differentiation and 



skeletal morphogenesis and acts as a scaffold for nucleic acids and regulatory factors involved in 
skeletal gene expression. The protein can bind DNA both as a monomer or, with more affinity, as a 
subunit of a heterodimeric complex. Two regions of potential trinucleotide repeat expansions are 
present in the N-terminal region of the encoded protein, and these and other mutations in this gene 
have been associated with the bone development disorder cleidocranial dysplasia (CCD). Transcript 
variants that encode different protein isoforms result from the use of alternate promoters as well as 
alternate splicing. It is essential for the maturation of osteoblasts and both intramembranous and 
endochondral ossification. In osteoblasts, it supports transcription activation: synergizes with 
SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element 
(OCFRE). 
39. Symbol: C17orf53 (HROB); Name: Homologous Recombination Factor With OB-Fold 
The protein encoded by this gene is predicted to enable single-stranded DNA binding activity and 
involved in DNA synthesis, DNA repair and interstrand cross-link repair. It functions by recruiting the 
MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. 
40. Symbol: EFCAB13; Name: EF-Hand Calcium Binding Domain 13 
EFCAB13 is a Protein Coding gene, and its annotations include calcium ion binding. 
41. Symbol: GJC1; Name: Gap Junction Protein Gamma 1 
This gene is a member of the connexin gene family. The encoded protein is a component of gap 
junctions, which are composed of arrays of intercellular channels that provide a route for the 
diffusion of low molecular weight materials from cell to cell. One gap junction consists of a cluster of 
closely packed pairs of transmembrane channels, the connexons, through which materials of low 
MW diffuse from one cell to a neighboring cell. Gene Ontology annotations related to this gene 
include ion channel activity and gap junction channel activity. They allow passive diffusion of 
molecules up to 1 kDa, including nutrients, metabolites (glucose), ions (K+, Ca2+) and second 
messengers (IP3, cAMP). 
42. Symbol: DBF4B; Name: DBF4 Zinc Finger B 
This gene encodes a regulator of the cell division cycle 7 homolog (S. cerevisiae) protein, a serine-
threonine kinase which links cell cycle regulation to genome duplication. It is a regulatory subunit for 
CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell 
proliferation and is required for progression of S and M phases. The complex CDC7-DBF4B selectively 
phosphorylates MCM2 subunit at 'Ser-40' and then is involved in regulating the initiation of DNA 
replication during cell cycle. 
43. Symbol: HEXIM2; Name: HEXIM P-TEFb Complex Subunit 2 
This gene encodes a member of the HEXIM family of proteins. This protein is a component of the 7SK 
small nuclear ribonucleoprotein. This protein has been found to negatively regulate the kinase 
activity of the cyclin-dependent kinase P-TEFb, which phosphorylates multiple target proteins to 
promote transcriptional elongation. This gene is located approximately 7 kb downstream from 
related family member HEXIM1 on chromosome 17. It is a transcriptional regulator which functions 
as a general RNA polymerase II transcription inhibitor and is a core component of the 7SK RNP 
complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex 
preventing RNA polymerase II phosphorylation and subsequent transcriptional. 
44. Symbol: LRRC37A2; Name: leucine rich repeat containing 37 member A2 
The protein encoded by this gene is predicted to be an integral component of membrane. 
Diseases associated with LRRC37A2 include Epilepsy, Progressive Myoclonic 6 and Developmental 
And Epileptic Encephalopathy 96. 
45. Symbol: DMGDH; Name: dimethylglycine dehydrogenase 
This gene encodes an enzyme involved in the catabolism of choline, catalyzing the  
oxidative demethylation of dimethylglycine to form sarcosine. The enzyme is found  
as a monomer in the mitochondrial matrix, and uses flavin adenine dinucleotide  
and folate as cofactors. Mutation in this gene causes dimethylglycine dehydrogenase  
deficiency, characterized by a fishlike body odor, chronic muscle fatigue, and elevated  



levels of the muscle form of creatine kinase in serum. 
 
GROUP 3 
46. Symbol: WNT3; Name: Wnt family member 3 
The WNT gene family consists of structurally related genes which encode secreted signaling 
proteins. These proteins have been implicated in oncogenesis and in several developmental 
processes, including regulation of cell fate and patterning during embryogenesis. Studies of the gene 
expression suggest that this gene may play a key role in some cases of human breast, rectal, lung, 
and gastric cancer through activation of the WNT-beta-catenin-TCF signaling pathway. The WNT3 
protein functions in the canonical Wnt signaling pathway that results in activation of transcription 
factors of the TCF/LEF family. And it is required for normal gastrulation, formation of the primitive 
streak, and for the formation of the mesoderm during early embryogenesis.  
47. Symbol: C1QL1; Name: complement C1q like 1 
The protein encoded by this gene is predicted to enable signaling receptor binding activity, act 
upstream of or within maintenance of synapse structure, motor learning, and neuron remodeling. It 
is predicted to be located in several cellular components, including climbing fiber; presynapse; and 
synaptic cleft. It may also regulate the number of excitatory synapses that are formed on 
hippocampus neurons but has no effect on inhibitory synapses. 
48. Symbol: MAPT; Name: microtubule associated protein tau 
This gene encodes the microtubule-associated protein tau (MAPT) whose transcript undergoes 
complex, regulated alternative splicing, giving rise to several mRNA species. MAPT transcripts are 
differentially expressed in the nervous system, depending on stage of neuronal maturation and 
neuron type. This protein promotes microtubule assembly and stability, and might be involved in the 
establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules 
while the N-terminus binds neural plasma membrane components, suggesting that tau functions as 
a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the 
neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow 
plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its 
stabilization. MAPT gene mutations have been associated with several neurodegenerative disorders 
such as Alzheimer's disease, Pick's disease, frontotemporal dementia, cortico-basal degeneration and 
progressive supranuclear palsy. 
49. Symbol: CRHR1; Name: corticotropin releasing hormone receptor 1 
This gene encodes a G-protein coupled receptor that binds neuropeptides of the corticotropin 
releasing hormone family that are major regulators of the hypothalamic-pituitary-adrenal pathway. 
The encoded protein is essential for the activation of signal transduction pathways that regulate 
diverse physiological processes including stress, reproduction, immune response and obesity. This G-
protein coupled receptor for CRH (corticotropin-releasing factor) and UCN (urocortin) has high 
affinity for CRH and UCN: Ligand binding causes a conformation change that triggers signaling via 
guanine nucleotide-binding proteins (G proteins) and down-stream effectors, such as adenylate 
cyclase. It promotes the activation of adenylate cyclase, leading to increased intracellular cAMP 
levels, inhibits the activity of the calcium channel CACNA1H. CRHR1 is required for normal 
embryonic development of the adrenal gland and for normal hormonal responses to stress. 50. 
Symbol: ECE2; Name: Endothelin Converting Enzyme 2 
The enzym coded by this gene enables metalloendopeptidase activity. It is involved in peptide 
hormone processing, converts big endothelin-1 to endothelin-1. And it is also involved in the 
processing of various neuroendocrine peptides, including neurotensin, angiotensin I, substance P, 
proenkephalin-derived peptides, and prodynorphin-derived peptides. 
51. Symbol: CAMK2N2; Name:  Calcium/Calmodulin Dependent Protein Kinase II Inhibitor 
2 
This gene encodes a protein that is highly similar to the rat CaM-KII inhibitory protein, an inhibitor of 
calcium/calmodulin-dependent protein kinase II (CAMKII). CAMKII regulates numerous physiological 



functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate (AMPA) receptors. Studies of the similar 
protein in rat suggest that this protein may function as a negative regulator of CaM-KII and may act 
to inhibit the phosphorylation of AMPA receptors. Gene Ontology (GO) annotations related to this 
gene include protein kinase binding and calcium-dependent protein kinase inhibitor activity. 
Diseases associated with CAMK2N2 include Amyotrophic Lateral Sclerosis 21 and Amyotrophic 
Lateral Sclerosis Type 6. 
52. Symbol: VWA5B2; Name: Von Willebrand Factor A Domain Containing 5B2  
Variations in this gene have been associated with Mathemtaics ability. Somatic mutations in it have 
been reported in various cancers.  
53. Symbol: GFAP; Name: Glial fibrillary acidic protein  
This gene encodes one of the major intermediate filament proteins of mature astrocytes. It is used 
as a marker to distinguish astrocytes from other glial cells during development. Mutations in this 
gene cause Alexander disease, a rare disorder of astrocytes in the central nervous system. GFAP, a 
class-III intermediate filament, is a cell-specific marker that distinguishes astrocytes from other glial 
cells during the development of the central nervous system. Defects in GFAP are a cause of 
Alexander disease (ALEXD), which is a rare disorder of the central nervous system. 
54. Symbol: NKX6-2; Name: NK6 homeobox 2 
The protein encoded by this gene enables sequence-specific double-stranded DNA binding activity 
and is Predicted to be involved in cell differentiation, regulation of myelination and transcription. It 
acts upstream of or within several processes, including negative regulation of transcription by RNA 
polymerase II, neurogenesis; and neuromuscular process controlling balance. Diseases associated 
with mutations in this gene include Spastic Ataxia 8. 
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Table S16. Statistical finemapping for associated loci. 
Locus Lead SNP PP_1 PP_2 PPI_1 SNP2 PPI_2 
Chr3:183892867-
183975709 

rs73185796 0.51 0.46 0.7 rs11402585 0.07 

Chr4:38591172-
38779512 

rs13132853 0.74 0.26 0.16 rs11727467 0.11 

Chr5:78388694-
78451813 

rs79107704 0.75 0.25 0.48 rs185486757 0.03 

Chr6:45407654-
45511945 

rs2790102 0.84 0.16 0.05 rs1934327 0.04 

Chr8:124661974-
124682971 

rs7461069 0.82 0.18 0.1 rs13340533 0.09 

Chr10:134544247-
134597265 

rs4880424 0.85 0.15 0.08 rs12767391 0.04 

Chr14: 88391116-
88556525 

rs17203398 0.5 0.5 0.04 rs10137195 0.04 

Chr17: 43101281-
44863413 

rs2106786 0.85 0.15 0.01 rs62062797 0.01 

 
PP_1: posterior probability for the causal structural assuming only one causal variant in the 
locus. PP_2: posterior probability for the causal structural assuming only two causal variants.  
PPI_1: posterior probability of inclusion to the one-causal variant structure; PPI_2: posterior 
probability of inclusion for the ranked second SNP to the one-causal variant structure. 
  



Table S17. eQTL statistics for rs73185796 from GTEx v8 portal. 
Gencode Id Gene 

Symbol 
Variant Id P-Value NES Tissue 

ENSG00000145198
.14 

VWA5B2 chr3_184257921_G_T
_b38 

8.4e-6 -0.67 Brain - Cortex 

ENSG00000161202
.17 

DVL3 chr3_184257921_G_T
_b38 

1.2e-5 -0.23 Thyroid 

ENSG00000145198
.14 

VWA5B2 chr3_184257921_G_T
_b38 

1.9e-5 -0.57 Nerve - Tibial 

ENSG00000145198
.14 

VWA5B2 chr3_184257921_G_T
_b38 

2.2e-5 -0.74 Brain - Frontal Cortex 
(BA9) 

ENSG00000161202
.17 

DVL3 chr3_184257921_G_T
_b38 

2.9e-5 -0.23 Cells - Cultured fibroblasts 

ENSG00000161202
.17 

DVL3 chr3_184257921_G_T
_b38 

3.3e-5 -0.23 Colon - Transverse 

ENSG00000161203
.13 

AP2M1 chr3_184257921_G_T
_b38 

5.1e-5 -0.15 Whole Blood 

ENSG00000161204
.11 

ABCF3 chr3_184257921_G_T
_b38 

7.2e-5 0.21 Skin - Sun Exposed (Lower 
leg) 

p-value, eQTL association p value; NES, normalized effect size. 

  



Table S18. eQTL statistics for rs13132853 from GTEx v8 portal. 
 
Gencode Id Gene 

Symbol 
Variant Id P-Value NES Tissue 

ENSG00000231160.
9 

KLF3-AS1 chr4_38678394_A_G_b3
8 

9.1e-6 -0.17 Whole Blood 

ENSG00000231160.
9 

KLF3-AS1 chr4_38678394_A_G_b3
8 

1.4e-5 -0.15 Artery - Tibial 

ENSG00000231160.
9 

KLF3-AS1 chr4_38678394_A_G_b3
8 

3.2e-5 -0.36 Brain - Cerebellum 

ENSG00000174125.
7 

TLR1 chr4_38678394_A_G_b3
8 

3.5e-5 0.15 Esophagus - 
Mucosa 

ENSG00000231160.
9 

KLF3-AS1 chr4_38678394_A_G_b3
8 

1.4e-4 -0.16 Muscle - Skeletal 

 p-value, eQTL association p value; NES, normalized effect size. 

 
 
  



Table S19. eQTL statistics for rs2790102 from GTEx v8 portal. 
 
Gencode Id Gene 

Symbol 
Variant Id P-Value NES Tissue 

ENSG00000124813.2
0 

RUNX2 chr6_45464477_G_A_b3
8 

7.9e-12 -0.54 Brain - Putamen 
(basal ganglia) 

ENSG00000124813.2
0 

RUNX2 chr6_45464477_G_A_b3
8 

6.2e-10 -0.39 Brain - Caudate 
(basal ganglia) 

ENSG00000124813.2
0 

RUNX2 chr6_45464477_G_A_b3
8 

1.1e-6 -0.35 Brain - 
Hippocampus 

ENSG00000124813.2
0 

RUNX2 chr6_45464477_G_A_b3
8 

7.4e-6 -0.29 Brain - Spinal cord 
(cervical c-1) 

p-value, eQTL association p value; NES, normalized effect size.  



Table S20. eQTL statistics for rs17203398 from GTEx v8 portal. 
Gencode Id Gene 

Symbol 
Variant Id P-Value NES Tissue 

ENSG00000054983.16 GALC chr14_87983503_G_C_b38 3.3e-32 0.40 Artery - Tibial 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 4.6e-16 0.29 Adipose - 

Subcutaneous 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 4.4e-14 0.30 Artery - Aorta 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 7.7e-12 0.25 Skin - Sun Exposed 

(Lower leg) 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 2.7e-10 0.22 Esophagus - 

Muscularis 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 4.1e-10 0.20 Cells - Cultured 

fibroblasts 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 7.1e-9 0.22 Adipose - Visceral 

(Omentum) 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 1.3e-8 0.18 Thyroid 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 1.4e-7 0.21 Breast - Mammary 

Tissue 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 3.0e-7 0.20 Skin - Not Sun 

Exposed 
(Suprapubic) 

ENSG00000054983.16 GALC chr14_87983503_G_C_b38 1.0e-6 0.16 Muscle - Skeletal 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 2.9e-6 0.25 Adrenal Gland 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 7.6e-6 -0.38 Liver 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 9.6e-6 0.19 Esophagus - 

Gastroesophageal 
Junction 

ENSG00000054983.16 GALC chr14_87983503_G_C_b38 2.1e-5 0.21 Heart - Left Ventricle 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 2.8e-5 0.17 Heart - Atrial 

Appendage 
ENSG00000054983.16 GALC chr14_87983503_G_C_b38 4.0e-5 0.18 Artery - Coronary 
 
p-value, eQTL association p value; NES, normalized effect size. 
  



Table S21. eQTL statistics for rs2106786 from GTEx v8 portal. 
Gencode Id Gene Symbol P-Value NES Tissue 

ENSG00000204650.14 LINC02210 2.5e-219 1.2 Skin - Sun Exposed (Lower leg) 

ENSG00000204650.14 LINC02210 1.4e-207 1.3 Adipose - Subcutaneous 

ENSG00000214425.7 LRRC37A4P 2.2e-193 -1.2 Whole Blood 

ENSG00000204650.14 LINC02210 1.3e-190 1.2 Nerve - Tibial 

ENSG00000204650.14 LINC02210 1.1e-182 1.3 Artery - Tibial 

ENSG00000204650.14 LINC02210 2.3e-180 1.2 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000204650.14 LINC02210 6.4e-178 1.1 Adipose - Visceral (Omentum) 

ENSG00000214425.7 LRRC37A4P 2.3e-172 -1.3 Thyroid 

ENSG00000204650.14 LINC02210 3.9e-169 1.0 Thyroid 

ENSG00000204650.14 LINC02210 7.9e-166 1.3 Cells - Cultured fibroblasts 

ENSG00000204650.14 LINC02210 4.3e-164 1.2 Lung 

ENSG00000214425.7 LRRC37A4P 5.8e-162 -1.2 Skin - Sun Exposed (Lower leg) 

ENSG00000204650.14 LINC02210 1.7e-161 1.3 Esophagus - Muscularis 

ENSG00000214401.4 KANSL1-AS1 6.2e-158 1.2 Muscle - Skeletal 

ENSG00000262539.1 RP11-259G18.3 5.0e-154 1.3 Whole Blood 

ENSG00000263503.1 MAPK8IP1P2 1.5e-153 1.2 Muscle - Skeletal 

ENSG00000214425.7 LRRC37A4P 3.4e-151 -1.2 Lung 

ENSG00000214401.4 KANSL1-AS1 1.3e-150 1.3 Whole Blood 

ENSG00000214425.7 LRRC37A4P 7.3e-150 -1.2 Adipose - Subcutaneous 

ENSG00000263503.1 MAPK8IP1P2 1.2e-145 1.2 Whole Blood 

ENSG00000214425.7 LRRC37A4P 1.2e-144 -1.3 Nerve - Tibial 

ENSG00000204650.14 LINC02210 1.8e-144 1.3 Artery - Aorta 

ENSG00000214401.4 KANSL1-AS1 9.6e-144 1.2 Artery - Tibial 

ENSG00000214425.7 LRRC37A4P 8.8e-141 -1.2 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000204650.14 LINC02210 1.9e-140 0.83 Muscle - Skeletal 

ENSG00000262539.1 RP11-259G18.3 1.9e-138 1.3 Artery - Tibial 

ENSG00000264070.1 DND1P1 1.3e-136 1.3 Muscle - Skeletal 

ENSG00000214401.4 KANSL1-AS1 2.4e-134 1.3 Skin - Sun Exposed (Lower leg) 

ENSG00000262539.1 RP11-259G18.3 1.5e-131 1.3 Skin - Sun Exposed (Lower leg) 

ENSG00000262539.1 RP11-259G18.3 8.6e-130 1.2 Muscle - Skeletal 

ENSG00000204650.14 LINC02210 3.8e-129 0.99 Breast - Mammary Tissue 

ENSG00000262500.1 MAPK8IP1P1 1.9e-126 1.1 Whole Blood 

ENSG00000262539.1 RP11-259G18.3 3.1e-126 1.3 Adipose - Subcutaneous 

ENSG00000214401.4 KANSL1-AS1 1.3e-125 1.2 Thyroid 

ENSG00000262539.1 RP11-259G18.3 4.6e-123 1.2 Cells - Cultured fibroblasts 

ENSG00000214425.7 LRRC37A4P 2.7e-121 -1.3 Esophagus - Muscularis 

ENSG00000214401.4 KANSL1-AS1 5.8e-121 1.2 Adipose - Subcutaneous 

ENSG00000214401.4 KANSL1-AS1 8.6e-121 1.3 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000262500.1 MAPK8IP1P1 3.6e-119 1.1 Skin - Sun Exposed (Lower leg) 

ENSG00000262539.1 RP11-259G18.3 3.7e-119 1.3 Thyroid 



ENSG00000263503.1 MAPK8IP1P2 4.9e-119 1.2 Skin - Sun Exposed (Lower leg) 

ENSG00000214425.7 LRRC37A4P 5.7e-119 -1.1 Artery - Tibial 

ENSG00000238083.7 LRRC37A2 1.6e-118 1.2 Adipose - Subcutaneous 

ENSG00000204650.14 LINC02210 2.7e-117 0.88 Colon - Transverse 

ENSG00000186868.15 MAPT 3.7e-117 1.2 Testis 

ENSG00000214425.7 LRRC37A4P 2.2e-116 -1.1 Cells - Cultured fibroblasts 

ENSG00000264070.1 DND1P1 1.9e-115 1.3 Skin - Sun Exposed (Lower leg) 

ENSG00000263503.1 MAPK8IP1P2 1.7e-114 1.2 Adipose - Subcutaneous 

ENSG00000214425.7 LRRC37A4P 1.1e-113 -1.2 Adipose - Visceral (Omentum) 

ENSG00000238083.7 LRRC37A2 1.2e-113 1.1 Thyroid 

ENSG00000214425.7 LRRC37A4P 1.3e-113 -1.2 Colon - Transverse 

ENSG00000214401.4 KANSL1-AS1 2.6e-113 1.2 Nerve - Tibial 

ENSG00000264070.1 DND1P1 9.7e-113 1.3 Whole Blood 

ENSG00000214401.4 KANSL1-AS1 1.8e-112 1.3 Adipose - Visceral (Omentum) 

ENSG00000204650.14 LINC02210 1.9e-112 1.2 Colon - Sigmoid 

ENSG00000214401.4 KANSL1-AS1 2.9e-112 1.2 Cells - Cultured fibroblasts 

ENSG00000262539.1 RP11-259G18.3 1.2e-110 1.3 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000214401.4 KANSL1-AS1 1.9e-110 1.3 Lung 

ENSG00000263503.1 MAPK8IP1P2 4.9e-110 1.2 Artery - Tibial 

ENSG00000263503.1 MAPK8IP1P2 9.3e-110 1.2 Thyroid 

ENSG00000263503.1 MAPK8IP1P2 2.3e-109 1.2 Cells - Cultured fibroblasts 

ENSG00000263503.1 MAPK8IP1P2 4.9e-109 1.2 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000238083.7 LRRC37A2 5.9e-108 1.2 Artery - Tibial 

ENSG00000204650.14 LINC02210 1.2e-107 0.58 Whole Blood 

ENSG00000204650.14 LINC02210 8.9e-107 1.1 Heart - Atrial Appendage 

ENSG00000262500.1 MAPK8IP1P1 2.2e-106 1.2 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000214401.4 KANSL1-AS1 4.4e-104 1.2 Esophagus - Muscularis 

ENSG00000280022.1 RP11-707O23.1 9.1e-104 1.1 Muscle - Skeletal 

ENSG00000262539.1 RP11-259G18.3 1.1e-103 1.2 Esophagus - Mucosa 

ENSG00000262539.1 RP11-259G18.3 1.8e-103 1.3 Nerve - Tibial 

ENSG00000204650.14 LINC02210 6.5e-102 1.2 Esophagus - Gastroesophageal Junction 

ENSG00000262500.1 MAPK8IP1P1 9.7e-102 1.1 Thyroid 

ENSG00000264070.1 DND1P1 1.8e-101 1.3 Artery - Tibial 

ENSG00000264070.1 DND1P1 1.3e-100 1.3 Adipose - Subcutaneous 

ENSG00000262539.1 RP11-259G18.3 5.6e-99 1.3 Adipose - Visceral (Omentum) 

ENSG00000264070.1 DND1P1 4.3e-98 1.2 Thyroid 

ENSG00000263503.1 MAPK8IP1P2 8.1e-97 1.2 Adipose - Visceral (Omentum) 

ENSG00000214401.4 KANSL1-AS1 3.6e-96 1.2 Esophagus - Mucosa 

ENSG00000263503.1 MAPK8IP1P2 4.0e-96 1.2 Nerve - Tibial 

ENSG00000238083.7 LRRC37A2 7.3e-96 1.2 Nerve - Tibial 

ENSG00000264070.1 DND1P1 8.7e-96 1.3 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000263503.1 MAPK8IP1P2 6.1e-95 1.2 Esophagus - Mucosa 



ENSG00000214425.7 LRRC37A4P 5.1e-94 -1.1 Breast - Mammary Tissue 

ENSG00000214425.7 LRRC37A4P 3.0e-93 -1.2 Artery - Aorta 

ENSG00000204650.14 LINC02210 4.4e-93 0.59 Esophagus - Mucosa 

ENSG00000262539.1 RP11-259G18.3 6.7e-93 1.2 Lung 

ENSG00000262500.1 MAPK8IP1P1 1.7e-92 1.1 Lung 

ENSG00000262539.1 RP11-259G18.3 1.4e-91 1.2 Esophagus - Muscularis 

ENSG00000238083.7 LRRC37A2 6.8e-91 1.1 Esophagus - Muscularis 

ENSG00000264070.1 DND1P1 3.5e-90 1.2 Nerve - Tibial 

ENSG00000263503.1 MAPK8IP1P2 2.1e-89 1.2 Lung 

ENSG00000204650.14 LINC02210 8.7e-89 1.1 Heart - Left Ventricle 

ENSG00000214425.7 LRRC37A4P 2.5e-87 -1.3 Esophagus - Gastroesophageal Junction 

ENSG00000214401.4 KANSL1-AS1 2.6e-86 1.2 Artery - Aorta 

ENSG00000204650.14 LINC02210 3.3e-86 1.1 Stomach 

ENSG00000214425.7 LRRC37A4P 6.7e-86 -1.0 Esophagus - Mucosa 

ENSG00000280022.1 RP11-707O23.1 8.4e-86 1.2 Adipose - Subcutaneous 

ENSG00000214425.7 LRRC37A4P 1.0e-85 -1.2 Colon - Sigmoid 

ENSG00000238083.7 LRRC37A2 1.4e-85 0.99 Adipose - Visceral (Omentum) 

ENSG00000264070.1 DND1P1 1.4e-85 1.4 Adipose - Visceral (Omentum) 

ENSG00000263503.1 MAPK8IP1P2 2.0e-85 0.97 Testis 

ENSG00000264070.1 DND1P1 2.1e-85 1.3 Lung 

ENSG00000263503.1 MAPK8IP1P2 2.7e-85 1.2 Esophagus - Muscularis 

ENSG00000280022.1 RP11-707O23.1 2.2e-84 1.2 Artery - Tibial 

ENSG00000264070.1 DND1P1 5.2e-84 1.2 Cells - Cultured fibroblasts 

ENSG00000214401.4 KANSL1-AS1 6.3e-84 1.2 Breast - Mammary Tissue 

ENSG00000204650.14 LINC02210 6.4e-83 1.2 Pancreas 

ENSG00000214425.7 LRRC37A4P 9.4e-83 -1.2 Heart - Atrial Appendage 

ENSG00000264070.1 DND1P1 1.2e-82 1.3 Breast - Mammary Tissue 

ENSG00000238083.7 LRRC37A2 2.3e-82 0.95 Lung 

ENSG00000214401.4 KANSL1-AS1 8.1e-82 1.2 Esophagus - Gastroesophageal Junction 

ENSG00000238083.7 LRRC37A2 1.4e-81 0.98 Skin - Sun Exposed (Lower leg) 

ENSG00000262500.1 MAPK8IP1P1 3.2e-81 1.1 Adipose - Visceral (Omentum) 

ENSG00000214401.4 KANSL1-AS1 1.3e-80 1.2 Heart - Left Ventricle 

ENSG00000214401.4 KANSL1-AS1 5.1e-80 1.2 Colon - Transverse 

ENSG00000262539.1 RP11-259G18.3 7.9e-80 1.3 Breast - Mammary Tissue 

ENSG00000262539.1 RP11-259G18.3 1.6e-79 1.2 Artery - Aorta 

ENSG00000264070.1 DND1P1 8.4e-79 1.2 Esophagus - Muscularis 

ENSG00000262539.1 RP11-259G18.3 9.5e-79 1.2 Heart - Left Ventricle 

ENSG00000263503.1 MAPK8IP1P2 3.4e-76 1.2 Colon - Transverse 

ENSG00000214425.7 LRRC37A4P 6.3e-76 -1.3 Pituitary 

ENSG00000262500.1 MAPK8IP1P1 1.3e-75 0.98 Esophagus - Mucosa 

ENSG00000214401.4 KANSL1-AS1 1.7e-75 1.2 Heart - Atrial Appendage 

ENSG00000214425.7 LRRC37A4P 1.9e-75 -0.95 Muscle - Skeletal 



ENSG00000238083.7 LRRC37A2 2.8e-75 1.1 Artery - Aorta 

ENSG00000204650.14 LINC02210 6.5e-74 0.72 Testis 

ENSG00000262539.1 RP11-259G18.3 2.1e-73 1.3 Heart - Atrial Appendage 

ENSG00000263503.1 MAPK8IP1P2 2.9e-73 1.2 Heart - Left Ventricle 

ENSG00000264070.1 DND1P1 3.0e-73 1.3 Colon - Transverse 

ENSG00000280022.1 RP11-707O23.1 4.3e-73 1.1 Skin - Sun Exposed (Lower leg) 

ENSG00000238083.7 LRRC37A2 5.2e-73 0.98 Muscle - Skeletal 

ENSG00000186868.15 MAPT 7.5e-73 0.69 Esophagus - Mucosa 

ENSG00000262539.1 RP11-259G18.3 8.4e-73 1.4 Testis 

ENSG00000263503.1 MAPK8IP1P2 9.0e-73 1.2 Breast - Mammary Tissue 

ENSG00000214401.4 KANSL1-AS1 1.3e-72 1.2 Colon - Sigmoid 

ENSG00000214425.7 LRRC37A4P 3.6e-72 -1.3 Pancreas 

ENSG00000263503.1 MAPK8IP1P2 8.4e-71 1.1 Artery - Aorta 

ENSG00000280022.1 RP11-707O23.1 1.1e-70 0.96 Whole Blood 

ENSG00000204650.14 LINC02210 3.0e-70 1.1 Prostate 

ENSG00000262539.1 RP11-259G18.3 1.7e-69 1.3 Colon - Sigmoid 

ENSG00000204650.14 LINC02210 6.5e-69 1.3 Adrenal Gland 

ENSG00000214425.7 LRRC37A4P 1.2e-68 -1.1 Heart - Left Ventricle 

ENSG00000238083.7 LRRC37A2 1.4e-68 1.1 Breast - Mammary Tissue 

ENSG00000262539.1 RP11-259G18.3 1.4e-68 1.2 Colon - Transverse 

ENSG00000280022.1 RP11-707O23.1 1.6e-68 1.1 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000214425.7 LRRC37A4P 1.9e-68 -1.0 Stomach 

ENSG00000204650.14 LINC02210 7.7e-68 1.1 Pituitary 

ENSG00000204650.14 LINC02210 1.3e-67 1.3 Spleen 

ENSG00000214425.7 LRRC37A4P 6.6e-67 -1.1 Testis 

ENSG00000280022.1 RP11-707O23.1 6.8e-67 1.1 Esophagus - Muscularis 

ENSG00000238083.7 LRRC37A2 7.2e-67 0.95 Esophagus - Mucosa 

ENSG00000262539.1 RP11-259G18.3 1.1e-66 1.2 Esophagus - Gastroesophageal Junction 

ENSG00000214401.4 KANSL1-AS1 1.2e-66 1.3 Stomach 

ENSG00000263503.1 MAPK8IP1P2 1.7e-66 1.2 Heart - Atrial Appendage 

ENSG00000262500.1 MAPK8IP1P1 2.6e-66 1.1 Colon - Transverse 

ENSG00000214401.4 KANSL1-AS1 4.8e-66 1.3 Testis 

ENSG00000262500.1 MAPK8IP1P1 9.1e-66 1.3 Testis 

ENSG00000262539.1 RP11-259G18.3 1.0e-65 1.3 Stomach 

ENSG00000264070.1 DND1P1 1.2e-65 1.3 Heart - Left Ventricle 

ENSG00000262500.1 MAPK8IP1P1 2.9e-65 0.99 Esophagus - Muscularis 

ENSG00000238083.7 LRRC37A2 4.7e-65 0.91 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000204650.14 LINC02210 8.9e-65 1.3 Artery - Coronary 

ENSG00000262500.1 MAPK8IP1P1 2.5e-64 1.2 Colon - Sigmoid 

ENSG00000263503.1 MAPK8IP1P2 2.9e-63 1.2 Stomach 

ENSG00000261575.2 RP11-259G18.1 7.1e-63 1.2 Testis 

ENSG00000263503.1 MAPK8IP1P2 9.6e-63 1.2 Esophagus - Gastroesophageal Junction 



ENSG00000264070.1 DND1P1 3.5e-62 1.3 Colon - Sigmoid 

ENSG00000280022.1 RP11-707O23.1 4.4e-61 1.0 Nerve - Tibial 

ENSG00000238083.7 LRRC37A2 1.2e-60 1.0 Esophagus - Gastroesophageal Junction 

ENSG00000238083.7 LRRC37A2 1.9e-60 0.84 Whole Blood 

ENSG00000263503.1 MAPK8IP1P2 1.3e-59 1.2 Colon - Sigmoid 

ENSG00000262500.1 MAPK8IP1P1 1.2e-58 1.1 Breast - Mammary Tissue 

ENSG00000264070.1 DND1P1 2.6e-58 1.2 Artery - Aorta 

ENSG00000262500.1 MAPK8IP1P1 4.3e-57 1.1 Esophagus - Gastroesophageal Junction 

ENSG00000214425.7 LRRC37A4P 7.4e-57 -1.2 Spleen 

ENSG00000238083.7 LRRC37A2 1.1e-56 1.0 Heart - Left Ventricle 

ENSG00000214425.7 LRRC37A4P 6.7e-56 -1.0 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000280022.1 RP11-707O23.1 1.7e-55 1.1 Adipose - Visceral (Omentum) 

ENSG00000264070.1 DND1P1 3.8e-55 0.99 Esophagus - Mucosa 

ENSG00000280022.1 RP11-707O23.1 6.7e-55 1.1 Esophagus - Gastroesophageal Junction 

ENSG00000238083.7 LRRC37A2 8.6e-54 1.1 Colon - Sigmoid 

ENSG00000238083.7 LRRC37A2 1.8e-53 1.1 Colon - Transverse 

ENSG00000238083.7 LRRC37A2 1.9e-53 0.98 Heart - Atrial Appendage 

ENSG00000262539.1 RP11-259G18.3 1.9e-53 1.2 Liver 

ENSG00000204650.14 LINC02210 2.5e-52 1.2 Ovary 

ENSG00000204650.14 LINC02210 3.3e-52 0.87 Small Intestine - Terminal Ileum 

ENSG00000262500.1 MAPK8IP1P1 3.5e-52 0.91 Nerve - Tibial 

ENSG00000262539.1 RP11-259G18.3 4.0e-52 1.3 Pancreas 

ENSG00000238083.7 LRRC37A2 1.2e-51 1.0 Stomach 

ENSG00000238083.7 LRRC37A2 1.4e-51 1.2 Brain - Cerebellum 

ENSG00000214425.7 LRRC37A4P 1.9e-51 -1.0 Brain - Caudate (basal ganglia) 

ENSG00000264070.1 DND1P1 2.0e-51 1.2 Stomach 

ENSG00000214425.7 LRRC37A4P 2.1e-51 -1.2 Brain - Cortex 

ENSG00000214425.7 LRRC37A4P 1.7e-50 -1.2 Artery - Coronary 

ENSG00000264070.1 DND1P1 2.2e-50 1.2 Esophagus - Gastroesophageal Junction 

ENSG00000214425.7 LRRC37A4P 2.2e-50 -1.0 Prostate 

ENSG00000214401.4 KANSL1-AS1 2.5e-50 1.2 Pituitary 

ENSG00000264070.1 DND1P1 2.9e-50 1.2 Heart - Atrial Appendage 

ENSG00000238083.7 LRRC37A2 4.5e-50 1.2 Pituitary 

ENSG00000264070.1 DND1P1 6.3e-50 1.2 Prostate 

ENSG00000214401.4 KANSL1-AS1 7.0e-50 1.2 Liver 

ENSG00000261575.2 RP11-259G18.1 7.1e-50 1.2 Brain - Cerebellum 

ENSG00000214401.4 KANSL1-AS1 1.3e-49 1.1 Pancreas 

ENSG00000280022.1 RP11-707O23.1 3.2e-49 1.2 Colon - Sigmoid 

ENSG00000214401.4 KANSL1-AS1 4.6e-49 1.2 Brain - Cortex 

ENSG00000280022.1 RP11-707O23.1 1.4e-47 1.0 Lung 

ENSG00000185829.17 ARL17A 2.1e-47 0.88 Thyroid 

ENSG00000262539.1 RP11-259G18.3 2.3e-47 1.3 Pituitary 



ENSG00000280022.1 RP11-707O23.1 2.7e-47 1.1 Artery - Aorta 

ENSG00000238083.7 LRRC37A2 3.6e-47 0.93 Cells - Cultured fibroblasts 

ENSG00000263503.1 MAPK8IP1P2 4.4e-47 1.2 Liver 

ENSG00000214401.4 KANSL1-AS1 1.4e-46 1.3 Adrenal Gland 

ENSG00000280022.1 RP11-707O23.1 1.6e-46 1.1 Breast - Mammary Tissue 

ENSG00000214425.7 LRRC37A4P 1.6e-46 -1.2 Brain - Frontal Cortex (BA9) 

ENSG00000214425.7 LRRC37A4P 3.9e-46 -1.2 Cells - EBV-transformed lymphocytes 

ENSG00000262539.1 RP11-259G18.3 4.2e-46 1.3 Prostate 

ENSG00000262539.1 RP11-259G18.3 5.0e-46 1.4 Spleen 

ENSG00000214425.7 LRRC37A4P 1.2e-45 -1.2 Brain - Hypothalamus 

ENSG00000262539.1 RP11-259G18.3 1.3e-45 1.3 Adrenal Gland 

ENSG00000214425.7 LRRC37A4P 1.5e-45 -1.1 Brain - Cerebellum 

ENSG00000214425.7 LRRC37A4P 2.7e-45 -0.92 Small Intestine - Terminal Ileum 

ENSG00000262500.1 MAPK8IP1P1 4.8e-45 1.2 Spleen 

ENSG00000261575.2 RP11-259G18.1 5.5e-45 0.78 Skin - Sun Exposed (Lower leg) 

ENSG00000262539.1 RP11-259G18.3 8.0e-45 1.2 Artery - Coronary 

ENSG00000204652.6 RPS26P8 1.0e-44 0.98 Nerve - Tibial 

ENSG00000238083.7 LRRC37A2 2.0e-44 1.2 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000214425.7 LRRC37A4P 3.2e-44 -1.2 Brain - Cerebellar Hemisphere 

ENSG00000262539.1 RP11-259G18.3 4.6e-44 1.2 Brain - Cerebellum 

ENSG00000214401.4 KANSL1-AS1 5.3e-44 1.2 Prostate 

ENSG00000280022.1 RP11-707O23.1 6.2e-44 1.1 Colon - Transverse 

ENSG00000176681.14 LRRC37A 9.4e-44 0.95 Nerve - Tibial 

ENSG00000214401.4 KANSL1-AS1 1.1e-43 1.1 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000176681.14 LRRC37A 1.1e-43 0.87 Artery - Tibial 

ENSG00000214425.7 LRRC37A4P 1.4e-43 -1.2 Brain - Hippocampus 

ENSG00000214401.4 KANSL1-AS1 1.6e-43 1.2 Artery - Coronary 

ENSG00000263503.1 MAPK8IP1P2 4.0e-43 1.2 Pituitary 

ENSG00000214425.7 LRRC37A4P 4.4e-43 -1.2 Adrenal Gland 

ENSG00000280022.1 RP11-707O23.1 5.6e-43 0.82 Cells - Cultured fibroblasts 

ENSG00000238083.7 LRRC37A2 2.1e-42 1.3 Brain - Cerebellar Hemisphere 

ENSG00000214401.4 KANSL1-AS1 2.3e-42 1.2 Brain - Cerebellum 

ENSG00000238083.7 LRRC37A2 6.8e-42 1.2 Brain - Cortex 

ENSG00000264070.1 DND1P1 8.8e-42 1.2 Pituitary 

ENSG00000108379.9 WNT3 1.7e-41 0.66 Thyroid 

ENSG00000264070.1 DND1P1 2.6e-41 1.2 Small Intestine - Terminal Ileum 

ENSG00000263503.1 MAPK8IP1P2 3.0e-41 1.2 Prostate 

ENSG00000214401.4 KANSL1-AS1 3.4e-41 1.2 Brain - Putamen (basal ganglia) 

ENSG00000238083.7 LRRC37A2 6.6e-41 1.3 Brain - Hypothalamus 

ENSG00000238083.7 LRRC37A2 7.5e-41 1.2 Brain - Caudate (basal ganglia) 

ENSG00000261575.2 RP11-259G18.1 9.8e-41 1.2 Brain - Cerebellar Hemisphere 

ENSG00000264070.1 DND1P1 1.1e-40 1.3 Liver 



ENSG00000214401.4 KANSL1-AS1 1.1e-40 1.3 Small Intestine - Terminal Ileum 

ENSG00000264070.1 DND1P1 1.4e-40 1.3 Adrenal Gland 

ENSG00000280022.1 RP11-707O23.1 1.8e-40 1.1 Heart - Atrial Appendage 

ENSG00000263503.1 MAPK8IP1P2 2.6e-40 1.3 Adrenal Gland 

ENSG00000225190.10 PLEKHM1 5.5e-40 -1.0 Brain - Cerebellum 

ENSG00000263503.1 MAPK8IP1P2 8.4e-40 1.2 Spleen 

ENSG00000262539.1 RP11-259G18.3 1.0e-39 1.2 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000262539.1 RP11-259G18.3 1.5e-39 1.3 Brain - Caudate (basal ganglia) 

ENSG00000262539.1 RP11-259G18.3 1.6e-39 1.2 Brain - Cortex 

ENSG00000204650.14 LINC02210 2.3e-39 1.1 Uterus 

ENSG00000262500.1 MAPK8IP1P1 2.6e-39 1.2 Prostate 

ENSG00000262500.1 MAPK8IP1P1 2.7e-39 1.2 Pituitary 

ENSG00000280022.1 RP11-707O23.1 6.6e-39 1.0 Heart - Left Ventricle 

ENSG00000176681.14 LRRC37A 6.8e-39 0.76 Skin - Sun Exposed (Lower leg) 

ENSG00000262539.1 RP11-259G18.3 9.8e-39 1.3 Small Intestine - Terminal Ileum 

ENSG00000263503.1 MAPK8IP1P2 1.1e-38 1.3 Small Intestine - Terminal Ileum 

ENSG00000214425.7 LRRC37A4P 1.8e-38 -1.2 Brain - Anterior cingulate cortex (BA24) 

ENSG00000280022.1 RP11-707O23.1 3.7e-38 1.1 Pancreas 

ENSG00000280022.1 RP11-707O23.1 4.6e-38 0.80 Thyroid 

ENSG00000214401.4 KANSL1-AS1 7.2e-38 1.4 Minor Salivary Gland 

ENSG00000214425.7 LRRC37A4P 1.2e-37 -1.1 Liver 

ENSG00000263503.1 MAPK8IP1P2 1.3e-37 1.2 Artery - Coronary 

ENSG00000214401.4 KANSL1-AS1 1.4e-37 1.2 Spleen 

ENSG00000280022.1 RP11-707O23.1 2.4e-37 1.0 Stomach 

ENSG00000280022.1 RP11-707O23.1 2.5e-37 1.2 Liver 

ENSG00000204650.14 LINC02210 4.8e-37 0.69 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000280022.1 RP11-707O23.1 5.1e-37 1.0 Testis 

ENSG00000204650.14 LINC02210 5.3e-37 0.89 Brain - Caudate (basal ganglia) 

ENSG00000262500.1 MAPK8IP1P1 6.2e-37 1.2 Brain - Cerebellum 

ENSG00000238083.7 LRRC37A2 6.9e-37 1.1 Prostate 

ENSG00000214425.7 LRRC37A4P 9.4e-37 -1.4 Ovary 

ENSG00000214401.4 KANSL1-AS1 1.1e-36 1.1 Brain - Caudate (basal ganglia) 

ENSG00000238083.7 LRRC37A2 1.6e-36 1.0 Artery - Coronary 

ENSG00000185829.17 ARL17A 1.8e-36 1.1 Brain - Cerebellum 

ENSG00000263503.1 MAPK8IP1P2 1.9e-36 1.2 Brain - Cerebellum 

ENSG00000264070.1 DND1P1 1.9e-36 1.3 Spleen 

ENSG00000264070.1 DND1P1 8.6e-36 1.1 Pancreas 

ENSG00000238083.7 LRRC37A2 1.2e-35 1.0 Pancreas 

ENSG00000263503.1 MAPK8IP1P2 1.3e-35 1.0 Pancreas 

ENSG00000238083.7 LRRC37A2 1.5e-35 1.2 Brain - Putamen (basal ganglia) 

ENSG00000262539.1 RP11-259G18.3 3.4e-35 1.2 Brain - Putamen (basal ganglia) 

ENSG00000159314.11 ARHGAP27 3.9e-35 0.39 Skin - Not Sun Exposed (Suprapubic) 



ENSG00000238083.7 LRRC37A2 4.3e-35 1.2 Brain - Frontal Cortex (BA9) 

ENSG00000238083.7 LRRC37A2 5.5e-35 1.1 Adrenal Gland 

ENSG00000264070.1 DND1P1 6.2e-35 1.3 Artery - Coronary 

ENSG00000261575.2 RP11-259G18.1 6.9e-35 0.73 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000263503.1 MAPK8IP1P2 1.5e-34 1.2 Brain - Cortex 

ENSG00000204650.14 LINC02210 1.6e-34 1.3 Brain - Spinal cord (cervical c-1) 

ENSG00000176681.14 LRRC37A 2.6e-34 0.80 Adipose - Subcutaneous 

ENSG00000176681.14 LRRC37A 3.3e-34 0.74 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000228696.8 ARL17B 5.5e-34 1.1 Testis 

ENSG00000262539.1 RP11-259G18.3 5.7e-34 1.3 Brain - Cerebellar Hemisphere 

ENSG00000262500.1 MAPK8IP1P1 7.2e-34 1.1 Liver 

ENSG00000262539.1 RP11-259G18.3 7.9e-34 1.3 Cells - EBV-transformed lymphocytes 

ENSG00000262500.1 MAPK8IP1P1 8.8e-34 1.1 Small Intestine - Terminal Ileum 

ENSG00000264070.1 DND1P1 9.1e-34 1.2 Brain - Cortex 

ENSG00000238083.7 LRRC37A2 9.3e-34 1.2 Brain - Hippocampus 

ENSG00000214401.4 KANSL1-AS1 2.1e-33 1.1 Brain - Cerebellar Hemisphere 

ENSG00000214401.4 KANSL1-AS1 2.8e-33 1.2 Vagina 

ENSG00000225190.10 PLEKHM1 3.9e-33 0.31 Muscle - Skeletal 

ENSG00000159314.11 ARHGAP27 4.3e-33 0.40 Skin - Sun Exposed (Lower leg) 

ENSG00000185829.17 ARL17A 8.2e-33 1.1 Brain - Cerebellar Hemisphere 

ENSG00000214401.4 KANSL1-AS1 8.3e-33 1.1 Brain - Frontal Cortex (BA9) 

ENSG00000186868.15 MAPT 3.4e-32 0.59 Lung 

ENSG00000214425.7 LRRC37A4P 3.4e-32 -1.3 Brain - Spinal cord (cervical c-1) 

ENSG00000262539.1 RP11-259G18.3 4.1e-32 1.4 Minor Salivary Gland 

ENSG00000204650.14 LINC02210 6.3e-32 0.81 Brain - Hypothalamus 

ENSG00000263503.1 MAPK8IP1P2 1.4e-31 1.2 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000262500.1 MAPK8IP1P1 1.6e-31 1.1 Brain - Cortex 

ENSG00000214425.7 LRRC37A4P 1.9e-31 -1.1 Brain - Putamen (basal ganglia) 

ENSG00000280022.1 RP11-707O23.1 7.8e-31 0.72 Esophagus - Mucosa 

ENSG00000262881.1 RP11-669E14.4 1.6e-30 -0.62 Liver 

ENSG00000280022.1 RP11-707O23.1 1.8e-30 1.1 Adrenal Gland 

ENSG00000262500.1 MAPK8IP1P1 2.2e-30 1.2 Brain - Cerebellar Hemisphere 

ENSG00000204650.14 LINC02210 7.1e-30 0.79 Brain - Hippocampus 

ENSG00000214425.7 LRRC37A4P 1.1e-29 -1.1 Brain - Amygdala 

ENSG00000238083.7 LRRC37A2 1.2e-29 1.2 Brain - Anterior cingulate cortex (BA24) 

ENSG00000262500.1 MAPK8IP1P1 1.5e-29 1.1 Brain - Caudate (basal ganglia) 

ENSG00000204650.14 LINC02210 2.0e-29 0.85 Brain - Putamen (basal ganglia) 

ENSG00000238083.7 LRRC37A2 2.2e-29 1.1 Spleen 

ENSG00000176681.14 LRRC37A 2.5e-29 0.75 Esophagus - Muscularis 

ENSG00000262539.1 RP11-259G18.3 2.8e-29 1.1 Brain - Hypothalamus 

ENSG00000232300.1 FAM215B 4.5e-29 0.72 Thyroid 

ENSG00000204650.14 LINC02210 4.5e-29 0.69 Vagina 



ENSG00000262539.1 RP11-259G18.3 5.4e-29 1.3 Uterus 

ENSG00000204650.14 LINC02210 1.0e-28 0.75 Brain - Anterior cingulate cortex (BA24) 

ENSG00000204650.14 LINC02210 1.0e-28 0.91 Brain - Amygdala 

ENSG00000262539.1 RP11-259G18.3 1.0e-28 1.2 Brain - Frontal Cortex (BA9) 

ENSG00000204650.14 LINC02210 1.3e-28 1.1 Minor Salivary Gland 

ENSG00000214425.7 LRRC37A4P 1.4e-28 -1.3 Uterus 

ENSG00000214401.4 KANSL1-AS1 1.4e-28 1.1 Brain - Hippocampus 

ENSG00000264070.1 DND1P1 2.1e-28 1.2 Brain - Putamen (basal ganglia) 

ENSG00000263503.1 MAPK8IP1P2 3.2e-28 1.1 Brain - Putamen (basal ganglia) 

ENSG00000204650.14 LINC02210 4.6e-28 0.60 Brain - Cortex 

ENSG00000263503.1 MAPK8IP1P2 5.3e-28 1.1 Cells - EBV-transformed lymphocytes 

ENSG00000185829.17 ARL17A 5.5e-28 0.61 Muscle - Skeletal 

ENSG00000280022.1 RP11-707O23.1 5.8e-28 1.1 Artery - Coronary 

ENSG00000214425.7 LRRC37A4P 6.2e-28 -1.3 Brain - Substantia nigra 

ENSG00000263503.1 MAPK8IP1P2 8.2e-28 1.2 Brain - Hypothalamus 

ENSG00000262500.1 MAPK8IP1P1 8.3e-28 1.1 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000185829.17 ARL17A 8.9e-28 1.1 Brain - Cortex 

ENSG00000263503.1 MAPK8IP1P2 9.2e-28 1.3 Minor Salivary Gland 

ENSG00000263503.1 MAPK8IP1P2 1.1e-27 1.2 Brain - Cerebellar Hemisphere 

ENSG00000214401.4 KANSL1-AS1 1.2e-27 1.1 Brain - Hypothalamus 

ENSG00000263503.1 MAPK8IP1P2 1.2e-27 1.1 Brain - Caudate (basal ganglia) 

ENSG00000225190.10 PLEKHM1 1.3e-27 -0.84 Brain - Cerebellar Hemisphere 

ENSG00000262539.1 RP11-259G18.3 2.0e-27 1.2 Brain - Anterior cingulate cortex (BA24) 

ENSG00000238083.7 LRRC37A2 2.4e-27 1.1 Small Intestine - Terminal Ileum 

ENSG00000214401.4 KANSL1-AS1 2.9e-27 1.2 Uterus 

ENSG00000261575.2 RP11-259G18.1 3.2e-27 0.72 Esophagus - Mucosa 

ENSG00000214401.4 KANSL1-AS1 3.8e-27 1.2 Ovary 

ENSG00000214401.4 KANSL1-AS1 4.5e-27 1.1 Cells - EBV-transformed lymphocytes 

ENSG00000176681.14 LRRC37A 6.3e-27 1.0 Brain - Cerebellum 

ENSG00000263503.1 MAPK8IP1P2 9.5e-27 1.2 Brain - Frontal Cortex (BA9) 

ENSG00000262500.1 MAPK8IP1P1 1.7e-26 1.2 Brain - Hippocampus 

ENSG00000262539.1 RP11-259G18.3 1.9e-26 1.3 Ovary 

ENSG00000185829.17 ARL17A 3.2e-26 1.1 Brain - Frontal Cortex (BA9) 

ENSG00000262539.1 RP11-259G18.3 3.2e-26 1.2 Brain - Hippocampus 

ENSG00000204650.14 LINC02210 4.8e-26 0.56 Brain - Frontal Cortex (BA9) 

ENSG00000262539.1 RP11-259G18.3 6.0e-26 1.1 Vagina 

ENSG00000263503.1 MAPK8IP1P2 8.3e-26 1.2 Brain - Hippocampus 

ENSG00000238083.7 LRRC37A2 9.0e-26 1.1 Brain - Amygdala 

ENSG00000214401.4 KANSL1-AS1 1.0e-25 1.1 Brain - Anterior cingulate cortex (BA24) 

ENSG00000185829.17 ARL17A 1.1e-25 0.99 Pituitary 

ENSG00000261575.2 RP11-259G18.1 2.1e-25 0.68 Pancreas 

ENSG00000263503.1 MAPK8IP1P2 2.2e-25 1.2 Brain - Anterior cingulate cortex (BA24) 



ENSG00000176681.14 LRRC37A 2.8e-25 1.1 Brain - Cerebellar Hemisphere 

ENSG00000186868.15 MAPT 5.4e-25 -0.67 Colon - Sigmoid 

ENSG00000262500.1 MAPK8IP1P1 6.9e-25 1.1 Brain - Putamen (basal ganglia) 

ENSG00000262500.1 MAPK8IP1P1 8.1e-25 1.0 Vagina 

ENSG00000214425.7 LRRC37A4P 8.1e-25 -1.0 Vagina 

ENSG00000263503.1 MAPK8IP1P2 9.3e-25 1.2 Brain - Amygdala 

ENSG00000264070.1 DND1P1 1.8e-24 1.0 Brain - Caudate (basal ganglia) 

ENSG00000225190.10 PLEKHM1 2.1e-24 -0.31 Esophagus - Mucosa 

ENSG00000262500.1 MAPK8IP1P1 2.4e-24 0.97 Adrenal Gland 

ENSG00000204650.14 LINC02210 2.9e-24 1.1 Brain - Substantia nigra 

ENSG00000262500.1 MAPK8IP1P1 3.6e-24 1.2 Brain - Frontal Cortex (BA9) 

ENSG00000185294.6 SPPL2C 5.5e-24 0.76 Brain - Cerebellum 

ENSG00000238083.7 LRRC37A2 5.7e-24 0.89 Liver 

ENSG00000264070.1 DND1P1 8.6e-24 1.1 Vagina 

ENSG00000262500.1 MAPK8IP1P1 1.8e-23 1.2 Brain - Hypothalamus 

ENSG00000185829.17 ARL17A 2.6e-23 0.99 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000262539.1 RP11-259G18.3 2.8e-23 1.2 Brain - Spinal cord (cervical c-1) 

ENSG00000262500.1 MAPK8IP1P1 3.7e-23 1.2 Brain - Anterior cingulate cortex (BA24) 

ENSG00000264070.1 DND1P1 5.2e-23 1.2 Ovary 

ENSG00000120088.14 CRHR1 5.3e-23 0.44 Breast - Mammary Tissue 

ENSG00000262539.1 RP11-259G18.3 6.8e-23 1.1 Brain - Amygdala 

ENSG00000264070.1 DND1P1 7.4e-23 1.0 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000266918.1 RP11-798G7.8 8.9e-23 0.56 Muscle - Skeletal 

ENSG00000262500.1 MAPK8IP1P1 1.3e-22 1.1 Ovary 

ENSG00000184922.13 FMNL1 1.6e-22 -0.70 Brain - Cerebellum 

ENSG00000261575.2 RP11-259G18.1 1.9e-22 0.70 Esophagus - Muscularis 

ENSG00000263503.1 MAPK8IP1P2 2.8e-22 1.1 Vagina 

ENSG00000232300.1 FAM215B 3.8e-22 0.85 Brain - Cerebellum 

ENSG00000120071.13 KANSL1 3.9e-22 0.40 Muscle - Skeletal 

ENSG00000214401.4 KANSL1-AS1 4.9e-22 1.1 Brain - Spinal cord (cervical c-1) 

ENSG00000261575.2 RP11-259G18.1 1.1e-21 0.67 Nerve - Tibial 

ENSG00000186868.15 MAPT 1.1e-21 0.49 Skin - Sun Exposed (Lower leg) 

ENSG00000238083.7 LRRC37A2 1.1e-21 1.1 Brain - Spinal cord (cervical c-1) 

ENSG00000214425.7 LRRC37A4P 1.1e-21 -1.0 Minor Salivary Gland 

ENSG00000261575.2 RP11-259G18.1 1.4e-21 0.85 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000263503.1 MAPK8IP1P2 2.0e-21 1.1 Uterus 

ENSG00000280022.1 RP11-707O23.1 2.1e-21 1.2 Ovary 

ENSG00000176681.14 LRRC37A 2.6e-21 0.60 Adipose - Visceral (Omentum) 

ENSG00000238083.7 LRRC37A2 2.8e-21 0.92 Ovary 

ENSG00000214401.4 KANSL1-AS1 3.9e-21 1.0 Brain - Amygdala 

ENSG00000264070.1 DND1P1 4.6e-21 1.0 Brain - Frontal Cortex (BA9) 

ENSG00000185829.17 ARL17A 7.9e-21 1.0 Brain - Hypothalamus 



ENSG00000264070.1 DND1P1 9.3e-21 1.0 Brain - Hippocampus 

ENSG00000264070.1 DND1P1 9.3e-21 1.0 Brain - Hypothalamus 

ENSG00000214425.7 LRRC37A4P 1.3e-20 -1.2 Kidney - Cortex 

ENSG00000238083.7 LRRC37A2 1.4e-20 0.91 Uterus 

ENSG00000264070.1 DND1P1 1.5e-20 1.1 Cells - EBV-transformed lymphocytes 

ENSG00000120088.14 CRHR1 1.6e-20 0.51 Adipose - Visceral (Omentum) 

ENSG00000238083.7 LRRC37A2 2.5e-20 1.2 Brain - Substantia nigra 

ENSG00000264589.2 MAPT-AS1 2.9e-20 -0.70 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000185829.17 ARL17A 3.3e-20 0.69 Cells - Cultured fibroblasts 

ENSG00000263503.1 MAPK8IP1P2 5.3e-20 1.1 Ovary 

ENSG00000262500.1 MAPK8IP1P1 6.6e-20 1.1 Brain - Amygdala 

ENSG00000185294.6 SPPL2C 8.3e-20 0.68 Brain - Cerebellar Hemisphere 

ENSG00000264070.1 DND1P1 1.0e-19 -0.51 Testis 

ENSG00000261575.2 RP11-259G18.1 1.4e-19 0.58 Thyroid 

ENSG00000280022.1 RP11-707O23.1 1.5e-19 1.1 Uterus 

ENSG00000261575.2 RP11-259G18.1 2.3e-19 0.77 Esophagus - Gastroesophageal Junction 

ENSG00000238083.7 LRRC37A2 2.6e-19 0.89 Vagina 

ENSG00000261575.2 RP11-259G18.1 3.6e-19 0.96 Brain - Cortex 

ENSG00000238083.7 LRRC37A2 3.9e-19 1.1 Minor Salivary Gland 

ENSG00000261575.2 RP11-259G18.1 4.5e-19 0.93 Brain - Caudate (basal ganglia) 

ENSG00000184922.13 FMNL1 5.1e-19 -0.64 Brain - Cerebellar Hemisphere 

ENSG00000176681.14 LRRC37A 5.8e-19 0.56 Lung 

ENSG00000264070.1 DND1P1 6.1e-19 1.1 Brain - Anterior cingulate cortex (BA24) 

ENSG00000280022.1 RP11-707O23.1 6.4e-19 0.78 Small Intestine - Terminal Ileum 

ENSG00000262500.1 MAPK8IP1P1 1.8e-18 0.99 Uterus 

ENSG00000176681.14 LRRC37A 2.9e-18 0.64 Artery - Aorta 

ENSG00000159314.11 ARHGAP27 4.1e-18 0.43 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000176681.14 LRRC37A 4.2e-18 0.68 Breast - Mammary Tissue 

ENSG00000120071.13 KANSL1 5.0e-18 0.35 Esophagus - Mucosa 

ENSG00000204650.14 LINC02210 5.8e-18 1.1 Kidney - Cortex 

ENSG00000204650.14 LINC02210 9.7e-18 0.72 Cells - EBV-transformed lymphocytes 

ENSG00000108379.9 WNT3 1.1e-17 0.72 Pancreas 

ENSG00000176681.14 LRRC37A 1.6e-17 0.65 Esophagus - Gastroesophageal Junction 

ENSG00000214401.4 KANSL1-AS1 1.7e-17 1.0 Brain - Substantia nigra 

ENSG00000274883.1 Metazoa_SRP 1.9e-17 -0.57 Liver 

ENSG00000185829.17 ARL17A 2.0e-17 0.59 Esophagus - Muscularis 

ENSG00000185829.17 ARL17A 2.2e-17 0.86 Brain - Caudate (basal ganglia) 

ENSG00000120088.14 CRHR1 2.2e-17 0.50 Adipose - Subcutaneous 

ENSG00000264070.1 DND1P1 3.0e-17 1.1 Brain - Spinal cord (cervical c-1) 

ENSG00000185829.17 ARL17A 3.1e-17 0.88 Adrenal Gland 

ENSG00000159314.11 ARHGAP27 3.6e-17 -0.17 Esophagus - Mucosa 

ENSG00000264070.1 DND1P1 4.0e-17 0.71 Brain - Cerebellum 



ENSG00000185829.17 ARL17A 1.1e-16 0.58 Adipose - Visceral (Omentum) 

ENSG00000120071.13 KANSL1 1.6e-16 0.27 Cells - Cultured fibroblasts 

ENSG00000280022.1 RP11-707O23.1 1.8e-16 0.76 Pituitary 

ENSG00000263503.1 MAPK8IP1P2 2.0e-16 1.1 Brain - Spinal cord (cervical c-1) 

ENSG00000264070.1 DND1P1 2.3e-16 0.97 Brain - Amygdala 

ENSG00000186868.15 MAPT 2.3e-16 -0.48 Heart - Left Ventricle 

ENSG00000214401.4 KANSL1-AS1 2.6e-16 1.1 Kidney - Cortex 

ENSG00000185829.17 ARL17A 2.6e-16 0.53 Adipose - Subcutaneous 

ENSG00000108379.9 WNT3 2.9e-16 0.54 Pituitary 

ENSG00000266918.1 RP11-798G7.8 3.0e-16 0.55 Thyroid 

ENSG00000261575.2 RP11-259G18.1 4.1e-16 0.74 Pituitary 

ENSG00000120071.13 KANSL1 4.1e-16 0.31 Skin - Sun Exposed (Lower leg) 

ENSG00000108379.9 WNT3 4.9e-16 0.34 Lung 

ENSG00000176681.14 LRRC37A 5.0e-16 0.54 Thyroid 

ENSG00000264070.1 DND1P1 5.4e-16 1.0 Uterus 

ENSG00000176681.14 LRRC37A 8.1e-16 0.78 Artery - Coronary 

ENSG00000185829.17 ARL17A 8.6e-16 0.69 Colon - Transverse 

ENSG00000262500.1 MAPK8IP1P1 9.4e-16 1.2 Brain - Substantia nigra 

ENSG00000261575.2 RP11-259G18.1 1.0e-15 0.68 Artery - Aorta 

ENSG00000261575.2 RP11-259G18.1 1.4e-15 0.95 Brain - Putamen (basal ganglia) 

ENSG00000261575.2 RP11-259G18.1 2.0e-15 0.89 Spleen 

ENSG00000280022.1 RP11-707O23.1 2.1e-15 0.65 Prostate 

ENSG00000176681.14 LRRC37A 2.6e-15 0.67 Colon - Sigmoid 

ENSG00000280022.1 RP11-707O23.1 3.4e-15 0.92 Vagina 

ENSG00000261575.2 RP11-259G18.1 4.7e-15 0.48 Adipose - Subcutaneous 

ENSG00000185829.17 ARL17A 5.2e-15 0.55 Lung 

ENSG00000108379.9 WNT3 6.2e-15 0.44 Esophagus - Muscularis 

ENSG00000262500.1 MAPK8IP1P1 6.3e-15 1.1 Brain - Spinal cord (cervical c-1) 

ENSG00000185829.17 ARL17A 7.5e-15 0.56 Esophagus - Mucosa 

ENSG00000176681.14 LRRC37A 8.3e-15 0.47 Whole Blood 

ENSG00000185829.17 ARL17A 9.2e-15 0.74 Pancreas 

ENSG00000185829.17 ARL17A 9.4e-15 0.67 Stomach 

ENSG00000261575.2 RP11-259G18.1 9.6e-15 0.68 Colon - Sigmoid 

ENSG00000232300.1 FAM215B 1.2e-14 0.84 Brain - Cerebellar Hemisphere 

ENSG00000261575.2 RP11-259G18.1 1.4e-14 0.60 Cells - Cultured fibroblasts 

ENSG00000264589.2 MAPT-AS1 1.7e-14 -0.55 Brain - Hypothalamus 

ENSG00000108379.9 WNT3 2.1e-14 0.50 Artery - Aorta 

ENSG00000120071.13 KANSL1 2.1e-14 0.32 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000266918.1 RP11-798G7.8 2.4e-14 0.84 Brain - Cerebellar Hemisphere 

ENSG00000176681.14 LRRC37A 3.0e-14 0.48 Muscle - Skeletal 

ENSG00000264070.1 DND1P1 3.5e-14 1.1 Brain - Substantia nigra 

ENSG00000261575.2 RP11-259G18.1 4.2e-14 0.83 Brain - Frontal Cortex (BA9) 



ENSG00000185829.17 ARL17A 4.2e-14 0.64 Heart - Left Ventricle 

ENSG00000185829.17 ARL17A 4.4e-14 0.66 Heart - Atrial Appendage 

ENSG00000261575.2 RP11-259G18.1 6.5e-14 0.81 Prostate 

ENSG00000262539.1 RP11-259G18.3 7.3e-14 1.1 Brain - Substantia nigra 

ENSG00000185829.17 ARL17A 8.0e-14 0.65 Colon - Sigmoid 

ENSG00000225190.10 PLEKHM1 9.2e-14 0.44 Brain - Cortex 

ENSG00000176681.14 LRRC37A 1.1e-13 0.78 Brain - Cortex 

ENSG00000261575.2 RP11-259G18.1 1.1e-13 0.64 Heart - Atrial Appendage 

ENSG00000279685.2 MAPT-IT1 1.2e-13 0.49 Testis 

ENSG00000225190.10 PLEKHM1 1.5e-13 0.41 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000261575.2 RP11-259G18.1 1.8e-13 0.84 Brain - Anterior cingulate cortex (BA24) 

ENSG00000238083.7 LRRC37A2 2.0e-13 0.88 Cells - EBV-transformed lymphocytes 

ENSG00000264589.2 MAPT-AS1 2.0e-13 -0.37 Muscle - Skeletal 

ENSG00000185829.17 ARL17A 2.2e-13 0.54 Breast - Mammary Tissue 

ENSG00000108379.9 WNT3 3.0e-13 0.43 Nerve - Tibial 

ENSG00000120088.14 CRHR1 3.9e-13 0.50 Nerve - Tibial 

ENSG00000185829.17 ARL17A 4.6e-13 0.89 Brain - Anterior cingulate cortex (BA24) 

ENSG00000261575.2 RP11-259G18.1 5.1e-13 0.48 Artery - Tibial 

ENSG00000264070.1 DND1P1 6.1e-13 0.76 Brain - Cerebellar Hemisphere 

ENSG00000108379.9 WNT3 6.4e-13 0.36 Artery - Tibial 

ENSG00000263503.1 MAPK8IP1P2 7.0e-13 1.1 Kidney - Cortex 

ENSG00000108379.9 WNT3 7.1e-13 0.51 Esophagus - Gastroesophageal Junction 

ENSG00000176681.14 LRRC37A 7.3e-13 0.89 Brain - Hypothalamus 

ENSG00000238083.7 LRRC37A2 9.7e-13 1.0 Kidney - Cortex 

ENSG00000185829.17 ARL17A 9.9e-13 0.51 Nerve - Tibial 

ENSG00000261575.2 RP11-259G18.1 1.1e-12 0.57 Heart - Left Ventricle 

ENSG00000261575.2 RP11-259G18.1 1.6e-12 0.60 Colon - Transverse 

ENSG00000176681.14 LRRC37A 1.7e-12 0.70 Uterus 

ENSG00000185829.17 ARL17A 2.0e-12 0.44 Skin - Sun Exposed (Lower leg) 

ENSG00000185829.17 ARL17A 2.2e-12 0.78 Brain - Putamen (basal ganglia) 

ENSG00000176681.14 LRRC37A 2.2e-12 0.75 Prostate 

ENSG00000236234.1 AC091132.1 2.6e-12 -0.63 Testis 

ENSG00000159314.11 ARHGAP27 2.6e-12 -0.52 Cells - EBV-transformed lymphocytes 

ENSG00000263503.1 MAPK8IP1P2 2.7e-12 1.1 Brain - Substantia nigra 

ENSG00000176681.14 LRRC37A 3.0e-12 0.73 Pituitary 

ENSG00000261575.2 RP11-259G18.1 4.0e-12 0.82 Brain - Amygdala 

ENSG00000185829.17 ARL17A 4.4e-12 0.60 Testis 

ENSG00000232300.1 FAM215B 5.0e-12 0.52 Esophagus - Muscularis 

ENSG00000232300.1 FAM215B 5.2e-12 0.48 Nerve - Tibial 

ENSG00000236234.1 AC091132.1 5.9e-12 -0.26 Esophagus - Mucosa 

ENSG00000280022.1 RP11-707O23.1 6.3e-12 0.88 Cells - EBV-transformed lymphocytes 

ENSG00000108379.9 WNT3 6.8e-12 0.61 Adrenal Gland 



ENSG00000120071.13 KANSL1 8.9e-12 0.22 Whole Blood 

ENSG00000232300.1 FAM215B 1.4e-11 0.49 Lung 

ENSG00000108379.9 WNT3 2.0e-11 0.38 Adipose - Subcutaneous 

ENSG00000185829.17 ARL17A 3.1e-11 0.44 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000225190.10 PLEKHM1 3.6e-11 0.42 Adrenal Gland 

ENSG00000185829.17 ARL17A 3.9e-11 0.44 Artery - Aorta 

ENSG00000261575.2 RP11-259G18.1 4.5e-11 0.47 Adipose - Visceral (Omentum) 

ENSG00000185829.17 ARL17A 4.7e-11 0.69 Prostate 

ENSG00000176681.14 LRRC37A 5.1e-11 0.77 Brain - Frontal Cortex (BA9) 

ENSG00000262500.1 MAPK8IP1P1 6.5e-11 1.0 Kidney - Cortex 

ENSG00000261575.2 RP11-259G18.1 7.2e-11 0.85 Ovary 

ENSG00000280022.1 RP11-707O23.1 7.7e-11 0.84 Brain - Spinal cord (cervical c-1) 

ENSG00000236234.1 AC091132.1 9.4e-11 -0.61 Brain - Cerebellum 

ENSG00000185829.17 ARL17A 1.0e-10 0.40 Artery - Tibial 

ENSG00000280022.1 RP11-707O23.1 1.1e-10 0.71 Spleen 

ENSG00000261575.2 RP11-259G18.1 1.1e-10 0.71 Small Intestine - Terminal Ileum 

ENSG00000261575.2 RP11-259G18.1 1.2e-10 0.86 Uterus 

ENSG00000266918.1 RP11-798G7.8 1.5e-10 0.46 Nerve - Tibial 

ENSG00000264070.1 DND1P1 2.0e-10 1.1 Kidney - Cortex 

ENSG00000108379.9 WNT3 2.0e-10 0.48 Colon - Sigmoid 

ENSG00000264589.2 MAPT-AS1 2.1e-10 -0.60 Brain - Caudate (basal ganglia) 

ENSG00000261575.2 RP11-259G18.1 2.1e-10 0.77 Vagina 

ENSG00000204652.6 RPS26P8 2.1e-10 0.24 Testis 

ENSG00000262539.1 RP11-259G18.3 2.3e-10 1.0 Kidney - Cortex 

ENSG00000232300.1 FAM215B 2.9e-10 0.61 Pituitary 

ENSG00000120071.13 KANSL1 3.5e-10 0.67 Cells - EBV-transformed lymphocytes 

ENSG00000185829.17 ARL17A 3.8e-10 0.68 Brain - Hippocampus 

ENSG00000261575.2 RP11-259G18.1 3.8e-10 0.46 Breast - Mammary Tissue 

ENSG00000279685.2 MAPT-IT1 4.4e-10 -0.43 Liver 

ENSG00000176681.14 LRRC37A 4.8e-10 0.72 Brain - Caudate (basal ganglia) 

ENSG00000159314.11 ARHGAP27 4.9e-10 -0.34 Testis 

ENSG00000267121.5 CTD-2020K17.1 5.4e-10 -0.55 Brain - Cerebellum 

ENSG00000185829.17 ARL17A 6.2e-10 0.82 Brain - Amygdala 

ENSG00000108379.9 WNT3 6.9e-10 0.49 Heart - Left Ventricle 

ENSG00000176681.14 LRRC37A 7.2e-10 0.91 Brain - Spinal cord (cervical c-1) 

ENSG00000120071.13 KANSL1 7.6e-10 0.29 Adipose - Subcutaneous 

ENSG00000267198.1 RP11-798G7.6 9.9e-10 -0.49 Esophagus - Mucosa 

ENSG00000225190.10 PLEKHM1 1.0e-9 -0.35 Testis 

ENSG00000204650.14 LINC02210 1.1e-9 0.31 Brain - Cerebellar Hemisphere 

ENSG00000120088.14 CRHR1 1.1e-9 0.38 Esophagus - Muscularis 

ENSG00000073969.18 NSF 1.1e-9 -0.16 Esophagus - Mucosa 

ENSG00000185829.17 ARL17A 1.2e-9 0.72 Ovary 



ENSG00000225190.10 PLEKHM1 1.5e-9 0.16 Esophagus - Muscularis 

ENSG00000266918.1 RP11-798G7.8 1.6e-9 0.40 Artery - Tibial 

ENSG00000176681.14 LRRC37A 1.7e-9 0.49 Heart - Left Ventricle 

ENSG00000186868.15 MAPT 2.1e-9 0.29 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000264589.2 MAPT-AS1 2.4e-9 -0.65 Brain - Spinal cord (cervical c-1) 

ENSG00000108379.9 WNT3 2.6e-9 0.44 Colon - Transverse 

ENSG00000185829.17 ARL17A 2.7e-9 0.65 Liver 

ENSG00000176681.14 LRRC37A 3.2e-9 0.72 Brain - Hippocampus 

ENSG00000186868.15 MAPT 3.7e-9 -0.32 Artery - Aorta 

ENSG00000073969.18 NSF 3.8e-9 0.22 Testis 

ENSG00000159314.11 ARHGAP27 4.8e-9 0.24 Brain - Caudate (basal ganglia) 

ENSG00000176681.14 LRRC37A 4.8e-9 0.64 Ovary 

ENSG00000185829.17 ARL17A 5.4e-9 0.60 Artery - Coronary 

ENSG00000266918.1 RP11-798G7.8 5.5e-9 0.39 Adipose - Subcutaneous 

ENSG00000108379.9 WNT3 6.1e-9 0.52 Artery - Coronary 

ENSG00000266918.1 RP11-798G7.8 6.4e-9 0.57 Brain - Cerebellum 

ENSG00000261575.2 RP11-259G18.1 6.8e-9 0.71 Brain - Hypothalamus 

ENSG00000176681.14 LRRC37A 7.6e-9 0.65 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000279685.2 MAPT-IT1 7.8e-9 0.50 Brain - Cerebellum 

ENSG00000204650.14 LINC02210 1.1e-8 0.37 Brain - Cerebellum 

ENSG00000266918.1 RP11-798G7.8 1.3e-8 0.49 Colon - Sigmoid 

ENSG00000225190.10 PLEKHM1 1.3e-8 0.17 Adipose - Subcutaneous 

ENSG00000225190.10 PLEKHM1 1.9e-8 0.11 Cells - Cultured fibroblasts 

ENSG00000176681.14 LRRC37A 2.0e-8 0.91 Brain - Substantia nigra 

ENSG00000185829.17 ARL17A 2.2e-8 0.46 Esophagus - Gastroesophageal Junction 

ENSG00000280022.1 RP11-707O23.1 2.6e-8 -0.52 Brain - Cerebellar Hemisphere 

ENSG00000267344.1 CTB-39G8.3 2.9e-8 0.24 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000185829.17 ARL17A 3.2e-8 0.69 Spleen 

ENSG00000185829.17 ARL17A 3.6e-8 0.70 Uterus 

ENSG00000225190.10 PLEKHM1 3.7e-8 0.18 Lung 

ENSG00000185829.17 ARL17A 4.2e-8 0.77 Minor Salivary Gland 

ENSG00000073969.18 NSF 4.4e-8 0.19 Cells - Cultured fibroblasts 

ENSG00000261575.2 RP11-259G18.1 4.4e-8 0.36 Lung 

ENSG00000120071.13 KANSL1 4.5e-8 0.37 Colon - Sigmoid 

ENSG00000176681.14 LRRC37A 4.7e-8 0.40 Esophagus - Mucosa 

ENSG00000225190.10 PLEKHM1 4.7e-8 0.31 Brain - Caudate (basal ganglia) 

ENSG00000262372.1 RP11-669E14.6 5.1e-8 -0.39 Testis 

ENSG00000261575.2 RP11-259G18.1 5.4e-8 0.72 Cells - EBV-transformed lymphocytes 

ENSG00000266918.1 RP11-798G7.8 6.1e-8 0.49 Colon - Transverse 

ENSG00000225190.10 PLEKHM1 6.2e-8 0.39 Brain - Anterior cingulate cortex (BA24) 

ENSG00000266918.1 RP11-798G7.8 6.7e-8 0.73 Uterus 

ENSG00000108379.9 WNT3 6.8e-8 0.31 Testis 



ENSG00000266918.1 RP11-798G7.8 7.3e-8 0.47 Esophagus - Gastroesophageal Junction 

ENSG00000108379.9 WNT3 7.8e-8 0.40 Heart - Atrial Appendage 

ENSG00000261575.2 RP11-259G18.1 7.9e-8 0.24 Muscle - Skeletal 

ENSG00000176681.14 LRRC37A 8.6e-8 0.68 Brain - Putamen (basal ganglia) 

ENSG00000176681.14 LRRC37A 1.2e-7 0.67 Brain - Anterior cingulate cortex (BA24) 

ENSG00000176681.14 LRRC37A 1.3e-7 0.47 Stomach 

ENSG00000236234.1 AC091132.1 1.3e-7 -0.56 Brain - Cerebellar Hemisphere 

ENSG00000225190.10 PLEKHM1 1.3e-7 0.19 Breast - Mammary Tissue 

ENSG00000120071.13 KANSL1 1.7e-7 0.36 Colon - Transverse 

ENSG00000120071.13 KANSL1 1.8e-7 0.23 Adipose - Visceral (Omentum) 

ENSG00000267344.1 CTB-39G8.3 1.8e-7 -0.17 Esophagus - Mucosa 

ENSG00000108379.9 WNT3 2.0e-7 0.33 Stomach 

ENSG00000225190.10 PLEKHM1 2.3e-7 0.34 Brain - Putamen (basal ganglia) 

ENSG00000186868.15 MAPT 2.3e-7 -0.17 Colon - Transverse 

ENSG00000073969.18 NSF 2.4e-7 -0.19 Esophagus - Muscularis 

ENSG00000120088.14 CRHR1 2.4e-7 0.25 Muscle - Skeletal 

ENSG00000266918.1 RP11-798G7.8 2.6e-7 0.38 Adipose - Visceral (Omentum) 

ENSG00000108379.9 WNT3 2.7e-7 0.30 Breast - Mammary Tissue 

ENSG00000264589.2 MAPT-AS1 3.0e-7 -0.62 Brain - Putamen (basal ganglia) 

ENSG00000232300.1 FAM215B 3.3e-7 0.59 Prostate 

ENSG00000185829.17 ARL17A 3.3e-7 0.54 Small Intestine - Terminal Ileum 

ENSG00000176681.14 LRRC37A 4.9e-7 0.46 Colon - Transverse 

ENSG00000176681.14 LRRC37A 5.1e-7 0.56 Vagina 

ENSG00000120071.13 KANSL1 5.4e-7 0.24 Artery - Tibial 

ENSG00000176681.14 LRRC37A 6.3e-7 0.68 Brain - Amygdala 

ENSG00000266918.1 RP11-798G7.8 6.3e-7 0.39 Artery - Aorta 

ENSG00000186868.15 MAPT 6.8e-7 -0.19 Artery - Tibial 

ENSG00000261575.2 RP11-259G18.1 7.0e-7 0.56 Brain - Hippocampus 

ENSG00000186868.15 MAPT 7.9e-7 -0.29 Brain - Cerebellum 

ENSG00000225190.10 PLEKHM1 8.0e-7 0.32 Brain - Frontal Cortex (BA9) 

ENSG00000266918.1 RP11-798G7.8 8.1e-7 0.46 Stomach 

ENSG00000073969.18 NSF 8.3e-7 -0.20 Heart - Atrial Appendage 

ENSG00000204652.6 RPS26P8 9.4e-7 0.72 Ovary 

ENSG00000267121.5 CTD-2020K17.1 9.8e-7 -0.44 Brain - Cerebellar Hemisphere 

ENSG00000186868.15 MAPT 0.0000010 0.17 Adipose - Visceral (Omentum) 

ENSG00000073969.18 NSF 0.0000012 -0.17 Artery - Tibial 

ENSG00000073969.18 NSF 0.0000013 -0.17 Artery - Aorta 

ENSG00000228696.8 ARL17B 0.0000014 0.36 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000176681.14 LRRC37A 0.0000014 0.55 Adrenal Gland 

ENSG00000176681.14 LRRC37A 0.0000015 0.62 Small Intestine - Terminal Ileum 

ENSG00000176681.14 LRRC37A 0.0000018 0.54 Spleen 

ENSG00000073969.18 NSF 0.0000025 -0.25 Ovary 



ENSG00000264589.2 MAPT-AS1 0.0000025 -0.23 Brain - Cerebellar Hemisphere 

ENSG00000136448.11 NMT1 0.0000026 -0.14 Cells - Cultured fibroblasts 

ENSG00000159314.11 ARHGAP27 0.0000028 0.32 Brain - Cortex 

ENSG00000225190.10 PLEKHM1 0.0000028 0.18 Adipose - Visceral (Omentum) 

ENSG00000120071.13 KANSL1 0.0000028 0.28 Lung 

ENSG00000266918.1 RP11-798G7.8 0.0000029 0.49 Pituitary 

ENSG00000185829.17 ARL17A 0.0000031 0.28 Whole Blood 

ENSG00000261575.2 RP11-259G18.1 0.0000033 0.50 Artery - Coronary 

ENSG00000280022.1 RP11-707O23.1 0.0000045 -0.55 Brain - Hypothalamus 

ENSG00000120088.14 CRHR1 0.0000045 0.37 Esophagus - Gastroesophageal Junction 

ENSG00000136448.11 NMT1 0.0000045 -0.14 Thyroid 

ENSG00000232300.1 FAM215B 0.0000046 0.41 Esophagus - Gastroesophageal Junction 

ENSG00000267344.1 CTB-39G8.3 0.0000049 -0.39 Testis 

ENSG00000232300.1 FAM215B 0.0000056 0.35 Esophagus - Mucosa 

ENSG00000176681.14 LRRC37A 0.0000057 0.37 Heart - Atrial Appendage 

ENSG00000261575.2 RP11-259G18.1 0.0000065 0.60 Minor Salivary Gland 

ENSG00000266918.1 RP11-798G7.8 0.0000079 0.33 Skin - Not Sun Exposed (Suprapubic) 

ENSG00000186868.15 MAPT 0.0000082 -0.28 Prostate 

ENSG00000266918.1 RP11-798G7.8 0.0000085 0.33 Lung 

ENSG00000236234.1 AC091132.1 0.0000090 -0.57 Cells - EBV-transformed lymphocytes 

ENSG00000185294.6 SPPL2C 0.0000090 0.37 Brain - Frontal Cortex (BA9) 

ENSG00000204650.14 LINC02210 0.0000098 -0.31 Liver 

ENSG00000261575.2 RP11-259G18.1 0.000010 0.67 Brain - Substantia nigra 

ENSG00000120071.13 KANSL1 0.000011 0.33 Brain - Cerebellum 

ENSG00000186868.15 MAPT 0.000011 -0.21 Esophagus - Muscularis 

ENSG00000186868.15 MAPT 0.000013 0.46 Spleen 

ENSG00000120071.13 KANSL1 0.000013 0.35 Brain - Cerebellar Hemisphere 

ENSG00000225190.10 PLEKHM1 0.000014 -0.066 Whole Blood 

ENSG00000280022.1 RP11-707O23.1 0.000014 0.47 Brain - Cortex 

ENSG00000228696.8 ARL17B 0.000014 0.31 Skin - Sun Exposed (Lower leg) 

ENSG00000264589.2 MAPT-AS1 0.000014 -0.67 Brain - Substantia nigra 

ENSG00000108379.9 WNT3 0.000015 0.24 Muscle - Skeletal 

ENSG00000232300.1 FAM215B 0.000015 0.61 Ovary 

ENSG00000265964.1 RP11-293E1.1 0.000015 -0.28 Testis 

ENSG00000225190.10 PLEKHM1 0.000017 0.34 Brain - Amygdala 

ENSG00000120071.13 KANSL1 0.000018 0.30 Small Intestine - Terminal Ileum 

ENSG00000266918.1 RP11-798G7.8 0.000022 0.43 Pancreas 

ENSG00000185829.17 ARL17A 0.000026 0.58 Cells - EBV-transformed lymphocytes 

ENSG00000172992.11 DCAKD 0.000029 0.19 Artery - Tibial 

ENSG00000261575.2 RP11-259G18.1 0.000030 0.63 Brain - Spinal cord (cervical c-1) 

ENSG00000228696.8 ARL17B 0.000032 -0.27 Muscle - Skeletal 

ENSG00000264589.2 MAPT-AS1 0.000032 -0.31 Brain - Hippocampus 



ENSG00000266918.1 RP11-798G7.8 0.000035 0.28 Skin - Sun Exposed (Lower leg) 

ENSG00000186868.15 MAPT 0.000035 0.12 Adipose - Subcutaneous 

ENSG00000232300.1 FAM215B 0.000039 0.27 Skin - Sun Exposed (Lower leg) 

ENSG00000267198.1 RP11-798G7.6 0.000041 -0.29 Skin - Sun Exposed (Lower leg) 

ENSG00000232300.1 FAM215B 0.000042 0.34 Breast - Mammary Tissue 

ENSG00000120071.13 KANSL1 0.000043 0.37 Pituitary 

ENSG00000266918.1 RP11-798G7.8 0.000044 0.42 Brain - Cortex 

ENSG00000266918.1 RP11-798G7.8 0.000049 0.37 Heart - Atrial Appendage 

ENSG00000185829.17 ARL17A 0.000050 0.48 Vagina 

ENSG00000186868.15 MAPT 0.000054 -0.19 Thyroid 

ENSG00000266918.1 RP11-798G7.8 0.000054 0.56 Ovary 

ENSG00000232300.1 FAM215B 0.000055 0.46 Artery - Coronary 

ENSG00000172992.11 DCAKD 0.000057 0.16 Adipose - Subcutaneous 

ENSG00000108379.9 WNT3 0.000063 0.24 Adipose - Visceral (Omentum) 

ENSG00000120088.14 CRHR1 0.000066 -0.26 Brain - Caudate (basal ganglia) 

ENSG00000267198.1 RP11-798G7.6 0.000067 -0.46 Brain - Cerebellum 

ENSG00000228696.8 ARL17B 0.000071 -0.27 Whole Blood 

ENSG00000120088.14 CRHR1 0.000074 -0.23 Brain - Hippocampus 

ENSG00000136448.11 NMT1 0.000079 -0.23 Brain - Cerebellar Hemisphere 

ENSG00000120088.14 CRHR1 0.000095 -0.26 Brain - Nucleus accumbens (basal ganglia) 

ENSG00000172992.11 DCAKD 0.00011 0.19 Nerve - Tibial 

ENSG00000159314.11 ARHGAP27 0.00012 0.12 Artery - Aorta 

ENSG00000225190.10 PLEKHM1 0.00015 0.090 Artery - Tibial 

ENSG00000266918.1 RP11-798G7.8 0.00017 0.28 Esophagus - Muscularis 

ENSG00000260075.1 NSFP1 0.00017 -0.36 Esophagus - Gastroesophageal Junction 

ENSG00000073969.18 NSF 0.00017 -0.15 Brain - Cerebellum 

ENSG00000185294.6 SPPL2C 0.00020 0.11 Testis 

ENSG00000120088.14 CRHR1 0.00021 -0.18 Thyroid 

ENSG00000181513.14 ACBD4 0.00021 -0.12 Nerve - Tibial 

ENSG00000172992.11 DCAKD 0.00027 0.16 Esophagus - Mucosa 

ENSG00000131484.4 RP11-798G7.5 0.00027 -0.25 Thyroid 

p-value, eQTL association p value; NES, normalized effect size. 

 

 

 

 
  



Table S22. sQTL statistics for rs2106786 from GTEx v8 portal. 
Gencode Id Gene 

Symbol 
Phenotype Id Intron Id P-Value NES Tissue 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13592:ENSG000
00120071.13 

46094701:46170855:clu
_13592 

1.1e-
197 

-1.8 Artery - Tibial 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_15040:ENSG000
00120071.13 

46094701:46170855:clu
_15040 

1.4e-
193 

-1.7 Skin - Sun Exposed 
(Lower leg) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12990:ENSG000
00120071.13 

46094701:46170855:clu
_12990 

6.9e-
189 

-1.6 Muscle - Skeletal 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14811:ENSG000
00120071.13 

46094701:46170855:clu
_14811 

1.7e-
180 

-1.7 Adipose - 
Subcutaneous 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14811:ENSG000
00120071.13 

46094701:46170855:clu
_14811 

1.7e-
180 

-1.7 Adipose - 
Subcutaneous 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_15568:ENSG000
00120071.13 

46094701:46170855:clu
_15568 

2.2e-
177 

-1.7 Thyroid 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14690:ENSG000
00120071.13 

46094701:46170855:clu
_14690 

3.0e-
170 

-1.7 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_15235:ENSG000
00120071.13 

46094701:46170855:clu
_15235 

3.4e-
160 

-1.8 Nerve - Tibial 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11699:ENSG000
00120071.13 

46094701:46170855:clu
_11699 

4.3e-
158 

-1.6 Whole Blood 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14343:ENSG000
00120071.13 

46094701:46170855:clu
_14343 

1.5e-
150 

-1.7 Adipose - Visceral 
(Omentum) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_15467:ENSG000
00120071.13 

46094701:46170855:clu
_15467 

5.2e-
144 

-1.7 Lung 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13509:ENSG000
00120071.13 

46094701:46170855:clu
_13509 

2.3e-
141 

-1.6 Esophagus - 
Muscularis 

ENSG000001868
68.15 

MAPT chr17:45991586:45996399:clu_12984:ENSG000
00186868.15 

45991586:45996399:clu
_12984 

9.9e-
141 

-1.4 Muscle - Skeletal 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13547:ENSG000
00120071.13 

46094701:46170855:clu
_13547 

8.6e-
135 

-1.5 Esophagus - Mucosa 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14805:ENSG000
00120071.13 

46094701:46170855:clu
_14805 

1.7e-
126 

-1.8 Breast - Mammary 
Tissue 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14256:ENSG000
00120071.13 

46094701:46170855:clu
_14256 

4.5e-
114 

-1.7 Colon - Transverse 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_14256:ENSG000
00120071.13 

46094701:46170855:clu
_14256 

4.5e-
114 

-1.7 Colon - Transverse 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13119:ENSG000
00120071.13 

46094701:46170855:clu
_13119 

3.1e-
113 

-1.6 Artery - Aorta 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13238:ENSG000
00120071.13 

46094701:46170855:clu
_13238 

1.3e-
110 

-1.7 Colon - Sigmoid 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12921:ENSG000
00120071.13 

46094701:46170855:clu
_12921 

1.8e-
109 

-1.6 Esophagus - 
Gastroesophageal 
Junction 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12921:ENSG000
00120071.13 

46094701:46170855:clu
_12921 

1.8e-
109 

-1.6 Esophagus - 
Gastroesophageal 
Junction 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11609:ENSG000
00120071.13 

46094701:46170855:clu
_11609 

1.2e-93 -1.5 Heart - Left Ventricle 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13190:ENSG000
00120071.13 

46094701:46170855:clu
_13190 

8.1e-85 -1.5 Stomach 

ENSG000001868
68.15 

MAPT chr17:45985744:45987040:clu_25872:ENSG000
00186868.15 

45985744:45987040:clu
_25872 

6.3e-84 -1.5 Testis 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12954:ENSG000
00120071.13 

46094701:46170855:clu
_12954 

1.7e-83 -1.5 Heart - Atrial 
Appendage 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13961:ENSG000
00120071.13 

46094701:46170855:clu
_13961 

1.6e-76 -1.7 Pituitary 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12402:ENSG000
00120071.13 

46094701:46170855:clu
_12402 

1.3e-74 -1.6 Brain - Cerebellum 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_15027:ENSG000
00204650.14 

45630158:45645901:clu
_15027 

2.0e-72 1.1 Skin - Sun Exposed 
(Lower leg) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13420:ENSG000
00120071.13 

46094701:46170855:clu
_13420 

2.1e-70 -1.7 Prostate 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13420:ENSG000
00120071.13 

46094701:46170855:clu
_13420 

2.1e-70 -1.7 Prostate 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_14678:ENSG000
00204650.14 

45630158:45645901:clu
_14678 

6.1e-70 1.1 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_25893:ENSG000
00120071.13 

46094701:46170855:clu
_25893 

6.0e-69 -1.4 Testis 



ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_25826:ENSG000
00204650.14 

45630158:45645901:clu
_25826 

9.3e-65 1.3 Testis 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11713:ENSG000
00120071.13 

46094701:46170855:clu
_11713 

3.5e-64 -1.6 Adrenal Gland 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_15554:ENSG000
00214425.7 

45510293:45513185:clu
_15554 

3.3e-62 -1.2 Thyroid 

ENSG000002665
04.1 

RP11-
798G7.4 

chr17:45510293:45513185:clu_15554:ENSG000
00266504.1 

45510293:45513185:clu
_15554 

3.3e-62 -1.2 Thyroid 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12290:ENSG000
00120071.13 

46094701:46170855:clu
_12290 

5.2e-61 -1.6 Artery - Coronary 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11789:ENSG000
00120071.13 

46094701:46170855:clu
_11789 

3.7e-60 -1.5 Pancreas 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_12631:ENSG000
00120071.13 

46094701:46170855:clu
_12631 

1.3e-56 -1.7 Spleen 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11885:ENSG000
00120071.13 

46094701:46170855:clu
_11885 

1.3e-56 -1.7 Brain - Cerebellar 
Hemisphere 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11869:ENSG000
00120071.13 

46094701:46170855:clu
_11869 

3.2e-54 -1.1 Cells - Cultured 
fibroblasts 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_15168:ENSG000
00214425.7 

45545676:45584572:clu
_15168 

1.8e-53 -1.2 Nerve - Tibial 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11793:ENSG000
00120071.13 

46094701:46170855:clu
_11793 

6.6e-51 -1.5 Brain - Cortex 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11869:ENSG000
00120071.13 

46094701:46170855:clu
_11869 

3.5e-48 -1.9 Minor Salivary Gland 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11840:ENSG000
00120071.13 

46094701:46170855:clu
_11840 

6.2e-48 -1.7 Ovary 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_13534:ENSG000
00204650.14 

45630158:45636283:clu
_13534 

5.1e-47 -1.0 Esophagus - Mucosa 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11396:ENSG000
00120071.13 

46094701:46170855:clu
_11396 

6.5e-46 -1.5 Brain - Caudate (basal 
ganglia) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_13074:ENSG000
00120071.13 

46094701:46170855:clu
_13074 

7.7e-46 -1.6 Small Intestine - 
Terminal Ileum 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45482525:45490652:clu_12383:ENSG000
00214425.7 

45482525:45490652:clu
_12383 

1.1e-45 1.2 Brain - Cerebellum 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45482525:45490652:clu_12383:ENSG000
00225190.10 

45482525:45490652:clu
_12383 

1.1e-45 1.2 Brain - Cerebellum 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11663:ENSG000
00120071.13 

46094701:46170855:clu
_11663 

4.6e-45 -1.5 Brain - Nucleus 
accumbens (basal 
ganglia) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10441:ENSG000
00120071.13 

46094701:46170855:clu
_10441 

6.8e-45 -1.6 Cells - EBV-
transformed 
lymphocytes 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_15024:ENSG000
00214425.7 

45510293:45513185:clu
_15024 

8.1e-43 -0.84 Skin - Sun Exposed 
(Lower leg) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_15454:ENSG000
00214425.7 

45510293:45513185:clu
_15454 

1.3e-42 -1.0 Lung 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_12976:ENSG000
00214425.7 

45545676:45584572:clu
_12976 

7.0e-41 -0.94 Muscle - Skeletal 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11124:ENSG000
00120071.13 

46094701:46170855:clu
_11124 

1.7e-40 -1.6 Uterus 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10194:ENSG000
00120071.13 

46094701:46170855:clu
_10194 

1.5e-38 -1.4 Brain - Putamen 
(basal ganglia) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10194:ENSG000
00120071.13 

46094701:46170855:clu
_10194 

1.5e-38 -1.4 Brain - Putamen 
(basal ganglia) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11684:ENSG000
00120071.13 

46094701:46170855:clu
_11684 

1.9e-38 -1.6 Vagina 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10943:ENSG000
00120071.13 

46094701:46170855:clu
_10943 

3.2e-37 -1.4 Brain - Frontal Cortex 
(BA9) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_13578:ENSG000
00214425.7 

45545676:45584572:clu
_13578 

1.0e-36 -0.98 Artery - Tibial 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_13498:ENSG000
00204650.14 

45630158:45645901:clu
_13498 

4.0e-34 0.87 Esophagus - 
Muscularis 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45482525:45490652:clu_11865:ENSG000
00214425.7 

45482525:45490652:clu
_11865 

4.2e-34 1.2 Brain - Cerebellar 
Hemisphere 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45482525:45490652:clu_11865:ENSG000
00214425.7 

45482525:45490652:clu
_11865 

4.2e-34 1.2 Brain - Cerebellar 
Hemisphere 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45482525:45490652:clu_11865:ENSG000
00225190.10 

45482525:45490652:clu
_11865 

4.2e-34 1.2 Brain - Cerebellar 
Hemisphere 



ENSG000002144
25.7 

LRRC37A
4P 

chr17:45551537:45584572:clu_11854:ENSG000
00214425.7 

45551537:45584572:clu
_11854 

2.7e-33 -0.94 Cells - Cultured 
fibroblasts 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45550732:45551440:clu_13531:ENSG000
00214425.7 

45550732:45551440:clu
_13531 

5.7e-33 -0.88 Esophagus - Mucosa 

ENSG000002665
04.1 

RP11-
798G7.4 

chr17:45550732:45551440:clu_13531:ENSG000
00266504.1 

45550732:45551440:clu
_13531 

5.7e-33 -0.88 Esophagus - Mucosa 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11857:ENSG000
00204650.14 

45630158:45636283:clu
_11857 

7.4e-33 -0.94 Cells - Cultured 
fibroblasts 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_11870:ENSG000
00204650.14 

45630158:45645901:clu
_11870 

1.3e-32 1.2 Brain - Cerebellar 
Hemisphere 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_14675:ENSG000
00214425.7 

45510293:45513185:clu
_14675 

2.8e-32 -0.80 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_14675:ENSG000
00214425.7 

45510293:45513185:clu
_14675 

2.8e-32 -0.80 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_11097:ENSG000
00120071.13 

46094701:46170855:clu
_11097 

3.1e-32 -1.4 Brain - Hypothalamus 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_15557:ENSG000
00204650.14 

45630158:45636283:clu
_15557 

2.2e-31 -0.82 Thyroid 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10078:ENSG000
00120071.13 

46094701:46170855:clu
_10078 

3.8e-31 -1.4 Brain - Anterior 
cingulate cortex 
(BA24) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_14332:ENSG000
00214425.7 

45510293:45513185:clu
_14332 

4.0e-31 -0.91 Adipose - Visceral 
(Omentum) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10089:ENSG000
00120071.13 

46094701:46170855:clu
_10089 

3.0e-29 -1.3 Liver 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_9945:ENSG0000
0120071.13 

46094701:46170855:clu
_9945 

3.3e-29 -1.4 Brain - Spinal cord 
(cervical c-1) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_12906:ENSG000
00214425.7 

45545676:45584572:clu
_12906 

3.7e-29 -1.1 Esophagus - 
Gastroesophageal 
Junction 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_13945:ENSG000
00204650.14 

45630158:45636283:clu
_13945 

8.2e-29 -1.0 Pituitary 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45510293:45513185:clu_13105:ENSG000
00214425.7 

45510293:45513185:clu
_13105 

8.4e-28 -0.92 Artery - Aorta 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_10387:ENSG000
00120071.13 

46094701:46170855:clu
_10387 

1.0e-27 -1.3 Brain - Hippocampus 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_9365:ENSG0000
0120071.13 

46094701:46170855:clu
_9365 

1.4e-25 -1.3 Brain - Amygdala 

ENSG000001868
68.15 

MAPT chr17:45974471:45978375:clu_13537:ENSG000
00186868.15 

45974471:45978375:clu
_13537 

1.5e-25 -0.69 Esophagus - Mucosa 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_15014:ENSG000
00225190.10 

45458439:45475100:clu
_15014 

1.2e-24 -0.69 Skin - Sun Exposed 
(Lower leg) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_12910:ENSG000
00204650.14 

45630158:45645901:clu
_12910 

1.5e-23 0.82 Esophagus - 
Gastroesophageal 
Junction 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_15224:ENSG000
00204650.14 

45630158:45636283:clu
_15224 

1.6e-23 -0.80 Nerve - Tibial 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_12388:ENSG000
00120088.14 

45630158:45645901:clu
_12388 

9.5e-23 0.83 Brain - Cerebellum 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_12388:ENSG000
00204650.14 

45630158:45645901:clu
_12388 

9.5e-23 0.83 Brain - Cerebellum 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_13227:ENSG000
00204650.14 

45630158:45645901:clu
_13227 

1.4e-22 0.81 Colon - Sigmoid 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_10929:ENSG000
00120088.14 

45630158:45645901:clu
_10929 

1.7e-21 1.1 Brain - Frontal Cortex 
(BA9) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_10929:ENSG000
00204650.14 

45630158:45645901:clu
_10929 

1.7e-21 1.1 Brain - Frontal Cortex 
(BA9) 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_25854:ENSG000
00214425.7 

45545676:45584572:clu
_25854 

3.3e-21 0.85 Testis 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_14335:ENSG000
00204650.14 

45630158:45636283:clu
_14335 

6.9e-21 -0.80 Adipose - Visceral 
(Omentum) 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_14793:ENSG000
00225190.10 

45458439:45475100:clu
_14793 

2.6e-20 -0.63 Adipose - 
Subcutaneous 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_13582:ENSG000
00204650.14 

45630158:45636283:clu
_13582 

3.1e-20 -0.71 Artery - Tibial 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45551537:45584572:clu_13405:ENSG000
00214425.7 

45551537:45584572:clu
_13405 

2.5e-18 -0.98 Prostate 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_11685:ENSG000
00214425.7 

45545676:45584572:clu
_11685 

3.5e-18 0.62 Whole Blood 



ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_15163:ENSG000
00225190.10 

45458439:45475100:clu
_15163 

3.7e-18 -0.63 Nerve - Tibial 

ENSG000001868
68.15 

MAPT chr17:45974471:45978375:clu_12394:ENSG000
00186868.15 

45974471:45978375:clu
_12394 

6.5e-18 0.93 Brain - Cerebellum 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11830:ENSG000
00204650.14 

45630158:45636283:clu
_11830 

8.4e-18 -1.3 Ovary 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_11779:ENSG000
00120088.14 

45630158:45645901:clu
_11779 

1.7e-17 0.86 Brain - Cortex 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_11779:ENSG000
00204650.14 

45630158:45645901:clu
_11779 

1.7e-17 0.86 Brain - Cortex 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_12941:ENSG000
00214425.7 

45545676:45584572:clu
_12941 

2.7e-17 -0.85 Heart - Atrial 
Appendage 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46487140:46517362:clu_13004:ENSG000
00238083.7 

46487140:46517362:clu
_13004 

6.6e-17 0.56 Muscle - Skeletal 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_14788:ENSG000
00204650.14 

45630158:45636283:clu
_14788 

7.1e-17 -0.77 Breast - Mammary 
Tissue 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45551537:45584572:clu_13942:ENSG000
00214425.7 

45551537:45584572:clu
_13942 

8.0e-17 -0.89 Pituitary 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_11650:ENSG000
00120088.14 

45630158:45645901:clu
_11650 

4.5e-16 0.95 Brain - Nucleus 
accumbens (basal 
ganglia) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_11650:ENSG000
00204650.14 

45630158:45645901:clu
_11650 

4.5e-16 0.95 Brain - Nucleus 
accumbens (basal 
ganglia) 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45636283:clu_11383:ENSG000
00120088.14 

45630158:45636283:clu
_11383 

1.4e-15 -0.92 Brain - Caudate (basal 
ganglia) 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45636283:clu_11383:ENSG000
00120088.14 

45630158:45636283:clu
_11383 

1.4e-15 -0.92 Brain - Caudate (basal 
ganglia) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11383:ENSG000
00204650.14 

45630158:45636283:clu
_11383 

1.4e-15 -0.92 Brain - Caudate (basal 
ganglia) 

ENSG000001868
68.15 

MAPT chr17:45978440:45987040:clu_13230:ENSG000
00186868.15 

45978440:45987040:clu
_13230 

1.7e-15 0.66 Colon - Sigmoid 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_12932:ENSG000
00185829.17 

46528859:46570759:clu
_12932 

2.3e-15 0.83 Esophagus - 
Gastroesophageal 
Junction 

ENSG000001868
68.15 

MAPT chr17:45987095:45991460:clu_11659:ENSG000
00186868.15 

45987095:45991460:clu
_11659 

4.1e-15 -0.57 Brain - Nucleus 
accumbens (basal 
ganglia) 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_8959:ENSG0000
0120071.13 

46094701:46170855:clu
_8959 

6.8e-15 -1.2 Brain - Substantia 
nigra 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_14798:ENSG000
00214425.7 

45545676:45584572:clu
_14798 

7.6e-15 -0.60 Adipose - 
Subcutaneous 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_13407:ENSG000
00204650.14 

45630158:45645901:clu
_13407 

1.2e-14 0.77 Prostate 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_12900:ENSG000
00225190.10 

45458439:45475100:clu
_12900 

2.3e-14 -0.69 Esophagus - 
Gastroesophageal 
Junction 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_14245:ENSG000
00204650.14 

45630158:45636283:clu
_14245 

2.7e-14 -0.71 Colon - Transverse 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_11085:ENSG000
00120088.14 

45630158:45645901:clu
_11085 

3.0e-14 0.89 Brain - Hypothalamus 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_11085:ENSG000
00204650.14 

45630158:45645901:clu
_11085 

3.0e-14 0.89 Brain - Hypothalamus 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_15457:ENSG000
00204650.14 

45630158:45636283:clu
_15457 

5.0e-14 -0.63 Lung 

ENSG000001200
71.13 

KANSL1 chr17:46094701:46170855:clu_8625:ENSG0000
0120071.13 

46094701:46170855:clu
_8625 

5.7e-14 -1.3 Kidney - Cortex 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_15548:ENSG000
00225190.10 

45458439:45475100:clu
_15548 

1.3e-13 -0.52 Thyroid 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_11064:ENSG000
00214425.7 

45545676:45584572:clu
_11064 

1.4e-13 -1.2 Uterus 

ENSG000002046
50.14 

LINC022
10 

chr17:45639520:45640389:clu_12979:ENSG000
00204650.14 

45639520:45640389:clu
_12979 

1.4e-13 -0.49 Muscle - Skeletal 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_15006:ENSG000
00159314.11 

45398047:45402714:clu
_15006 

1.9e-13 -0.53 Skin - Sun Exposed 
(Lower leg) 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_15006:ENSG000
00159314.11 

45398047:45402714:clu
_15006 

1.9e-13 -0.53 Skin - Sun Exposed 
(Lower leg) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_12944:ENSG000
00204650.14 

45630158:45636283:clu
_12944 

2.0e-13 -0.67 Heart - Atrial 
Appendage 



ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_13179:ENSG000
00204650.14 

45630158:45636283:clu
_13179 

2.3e-13 -0.72 Stomach 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_10067:ENSG000
00204650.14 

45630158:45636283:clu
_10067 

4.7e-13 -0.94 Brain - Anterior 
cingulate cortex 
(BA24) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_9935:ENSG0000
0204650.14 

45630158:45636283:clu
_9935 

6.1e-13 -1.0 Brain - Spinal cord 
(cervical c-1) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_14801:ENSG000
00204650.14 

45630158:45636283:clu
_14801 

6.2e-13 -0.55 Adipose - 
Subcutaneous 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_12973:ENSG000
00225190.10 

45458439:45475100:clu
_12973 

7.2e-13 -0.42 Muscle - Skeletal 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_11680:ENSG000
00225190.10 

45458439:45475100:clu
_11680 

8.4e-13 -0.34 Whole Blood 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_11827:ENSG000
00214425.7 

45545676:45584572:clu
_11827 

2.0e-12 -1.1 Ovary 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11703:ENSG000
00204650.14 

45630158:45636283:clu
_11703 

2.3e-12 -0.86 Adrenal Gland 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45636283:clu_10184:ENSG000
00120088.14 

45630158:45636283:clu
_10184 

3.9e-12 -0.81 Brain - Putamen 
(basal ganglia) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_10184:ENSG000
00204650.14 

45630158:45636283:clu
_10184 

3.9e-12 -0.81 Brain - Putamen 
(basal ganglia) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_13108:ENSG000
00204650.14 

45630158:45636283:clu
_13108 

4.4e-12 -0.63 Artery - Aorta 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_14781:ENSG000
00225190.10 

45458439:45475100:clu
_14781 

4.6e-12 -0.63 Breast - Mammary 
Tissue 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_15246:ENSG000
00185829.17 

46528859:46570759:clu
_15246 

5.3e-12 0.59 Nerve - Tibial 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11111:ENSG000
00204650.14 

45630158:45636283:clu
_11111 

9.7e-12 -1.0 Uterus 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_10436:ENSG000
00204650.14 

45630158:45636283:clu
_10436 

1.0e-11 -1.0 Cells - EBV-
transformed 
lymphocytes 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_11672:ENSG000
00204650.14 

45630158:45645901:clu
_11672 

1.6e-11 0.85 Vagina 

ENSG000001868
68.15 

MAPT chr17:45987095:45991460:clu_11391:ENSG000
00186868.15 

45987095:45991460:clu
_11391 

1.6e-11 -0.66 Brain - Caudate (basal 
ganglia) 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45482525:45490652:clu_25849:ENSG000
00225190.10 

45482525:45490652:clu
_25849 

1.7e-11 0.64 Testis 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_13489:ENSG000
00225190.10 

45458439:45475100:clu
_13489 

3.4e-11 -0.46 Esophagus - 
Muscularis 

ENSG000001868
68.15 

MAPT chr17:45971945:45974385:clu_14682:ENSG000
00186868.15 

45971945:45974385:clu
_14682 

3.4e-11 -0.48 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_13572:ENSG000
00225190.10 

45458439:45475100:clu
_13572 

4.0e-11 -0.45 Artery - Tibial 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_15480:ENSG000
00185829.17 

46528859:46570759:clu
_15480 

4.2e-11 0.57 Lung 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_14785:ENSG000
00214425.7 

45545676:45584572:clu
_14785 

8.3e-11 -0.62 Breast - Mammary 
Tissue 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_14827:ENSG000
00185829.17 

46528859:46570759:clu
_14827 

1.3e-10 0.51 Adipose - 
Subcutaneous 

ENSG000001868
68.15 

MAPT chr17:45971945:45974385:clu_15031:ENSG000
00186868.15 

45971945:45974385:clu
_15031 

1.4e-10 -0.45 Skin - Sun Exposed 
(Lower leg) 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_14658:ENSG000
00159314.11 

45398047:45402714:clu
_14658 

1.6e-10 -0.51 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000001868
68.15 

MAPT chr17:45974471:45978375:clu_13952:ENSG000
00186868.15 

45974471:45978375:clu
_13952 

2.4e-10 -0.67 Pituitary 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_15580:ENSG000
00185829.17 

46528859:46570759:clu
_15580 

2.6e-10 0.51 Thyroid 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46487140:46511511:clu_11877:ENSG000
00238083.7 

46487140:46511511:clu
_11877 

3.7e-10 -0.55 Cells - Cultured 
fibroblasts 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_10376:ENSG000
00120088.14 

45630158:45645901:clu
_10376 

5.8e-10 0.76 Brain - Hippocampus 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_10376:ENSG000
00120088.14 

45630158:45645901:clu
_10376 

5.8e-10 0.76 Brain - Hippocampus 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_10376:ENSG000
00204650.14 

45630158:45645901:clu
_10376 

5.8e-10 0.76 Brain - Hippocampus 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_11132:ENSG000
00185829.17 

46528859:46570759:clu
_11132 

5.9e-10 0.96 Uterus 



ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_11693:ENSG000
00225190.10 

45458439:45475100:clu
_11693 

8.7e-10 -0.60 Adrenal Gland 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_13101:ENSG000
00225190.10 

45458439:45475100:clu
_13101 

1.0e-9 -0.52 Artery - Aorta 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11859:ENSG000
00204650.14 

45630158:45636283:clu
_11859 

1.4e-9 -0.98 Minor Salivary Gland 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_14265:ENSG000
00185829.17 

46528859:46570759:clu
_14265 

1.6e-9 0.62 Colon - Transverse 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11689:ENSG000
00204650.14 

45630158:45636283:clu
_11689 

1.8e-9 -0.43 Whole Blood 

ENSG000001868
68.15 

MAPT chr17:45971945:45974385:clu_11787:ENSG000
00186868.15 

45971945:45974385:clu
_11787 

2.0e-9 0.70 Brain - Cortex 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_11700:ENSG000
00214425.7 

45545676:45584572:clu
_11700 

2.1e-9 -0.76 Adrenal Gland 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_15449:ENSG000
00225190.10 

45458439:45475100:clu
_15449 

2.3e-9 -0.42 Lung 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_9353:ENSG0000
0120088.14 

45630158:45645901:clu
_9353 

2.3e-9 0.84 Brain - Amygdala 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_9353:ENSG0000
0204650.14 

45630158:45645901:clu
_9353 

2.3e-9 0.84 Brain - Amygdala 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_11777:ENSG000
00204650.14 

45630158:45636283:clu
_11777 

3.5e-9 -0.61 Pancreas 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_11850:ENSG000
00225190.10 

45458439:45475100:clu
_11850 

4.0e-9 -0.45 Cells - Cultured 
fibroblasts 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13603:ENSG000
00185829.17 

46528859:46570759:clu
_13603 

6.5e-9 0.47 Artery - Tibial 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46487140:46511511:clu_10450:ENSG000
00238083.7 

46487140:46511511:clu
_10450 

6.9e-9 -0.97 Cells - EBV-
transformed 
lymphocytes 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_15213:ENSG000
00159314.11 

45398047:45402714:clu
_15213 

9.3e-9 -0.48 Nerve - Tibial 

ENSG000001868
68.15 

MAPT chr17:45971945:45974385:clu_10937:ENSG000
00186868.15 

45971945:45974385:clu
_10937 

9.3e-9 0.57 Brain - Frontal Cortex 
(BA9) 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_14666:ENSG000
00225190.10 

45458439:45475100:clu
_14666 

1.1e-8 -0.41 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_12279:ENSG000
00204650.14 

45630158:45636283:clu
_12279 

1.3e-8 -0.71 Artery - Coronary 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13248:ENSG000
00185829.17 

46528859:46570759:clu
_13248 

1.4e-8 0.61 Colon - Sigmoid 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_14811:ENSG000
00185829.17 

46528859:46570759:clu
_14811 

1.6e-8 0.56 Breast - Mammary 
Tissue 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13129:ENSG000
00185829.17 

46528859:46570759:clu
_13129 

1.7e-8 0.54 Artery - Aorta 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_12371:ENSG000
00159314.11 

45398047:45402714:clu
_12371 

2.2e-8 -0.65 Brain - Cerebellum 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_14232:ENSG000
00225190.10 

45458439:45475100:clu
_14232 

2.9e-8 -0.46 Colon - Transverse 

ENSG000001868
68.15 

MAPT chr17:45987095:45991460:clu_10074:ENSG000
00186868.15 

45987095:45991460:clu
_10074 

3.0e-8 -0.51 Brain - Anterior 
cingulate cortex 
(BA24) 

ENSG000001868
68.15 

MAPT chr17:45978440:45987040:clu_14248:ENSG000
00186868.15 

45978440:45987040:clu
_14248 

3.7e-8 0.49 Colon - Transverse 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_14355:ENSG000
00185829.17 

46528859:46570759:clu
_14355 

4.8e-8 0.47 Adipose - Visceral 
(Omentum) 

ENSG000001868
68.15 

MAPT chr17:45962470:45964397:clu_11877:ENSG000
00186868.15 

45962470:45964397:clu
_11877 

5.2e-8 -0.57 Brain - Cerebellar 
Hemisphere 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13199:ENSG000
00185829.17 

46528859:46570759:clu
_13199 

5.5e-8 0.59 Stomach 

ENSG000001868
68.15 

MAPT chr17:45987095:45991460:clu_12948:ENSG000
00186868.15 

45987095:45991460:clu
_12948 

7.1e-8 -0.56 Heart - Atrial 
Appendage 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_14328:ENSG000
00225190.10 

45458439:45475100:clu
_14328 

7.2e-8 -0.43 Adipose - Visceral 
(Omentum) 

ENSG000001200
88.14 

CRHR1 chr17:45630158:45645901:clu_8948:ENSG0000
0120088.14 

45630158:45645901:clu
_8948 

7.6e-8 0.99 Brain - Substantia 
nigra 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45645901:clu_8948:ENSG0000
0204650.14 

45630158:45645901:clu
_8948 

7.6e-8 0.99 Brain - Substantia 
nigra 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_11854:ENSG000
00159314.11 

45398047:45402714:clu
_11854 

1.1e-7 -0.73 Brain - Cerebellar 
Hemisphere 



ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_11379:ENSG000
00214425.7 

45545676:45584572:clu
_11379 

1.5e-7 -0.72 Brain - Caudate (basal 
ganglia) 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46487140:46517362:clu_13966:ENSG000
00238083.7 

46487140:46517362:clu
_13966 

1.5e-7 0.63 Pituitary 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13519:ENSG000
00185829.17 

46528859:46570759:clu
_13519 

1.6e-7 0.45 Esophagus - 
Muscularis 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_11078:ENSG000
00225190.10 

45458439:45475100:clu
_11078 

1.8e-7 -0.65 Brain - Hypothalamus 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_12639:ENSG000
00185829.17 

46528859:46570759:clu
_12639 

1.9e-7 0.75 Spleen 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_12414:ENSG000
00185829.17 

46528859:46570759:clu
_12414 

2.0e-7 0.65 Brain - Cerebellum 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_13175:ENSG000
00214425.7 

45545676:45584572:clu
_13175 

2.5e-7 0.54 Stomach 

ENSG000002655
47.1 

RP11-
293E1.2 

chr17:45731944:45734284:clu_25866:ENSG000
00265547.1 

45731944:45734284:clu
_25866 

2.7e-7 -0.49 Testis 

ENSG000002659
64.1 

RP11-
293E1.1 

chr17:45731944:45734284:clu_25866:ENSG000
00265964.1 

45731944:45734284:clu
_25866 

2.7e-7 -0.49 Testis 

ENSG000001200
88.14 

CRHR1 chr17:45821440:45829215:clu_11872:ENSG000
00120088.14 

45821440:45829215:clu
_11872 

3.3e-7 -0.59 Brain - Cerebellar 
Hemisphere 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_13521:ENSG000
00225190.10 

45458439:45475100:clu
_13521 

3.8e-7 -0.32 Esophagus - Mucosa 

ENSG000002251
90.10 

PLEKHM
1 

chr17:45458439:45475100:clu_13521:ENSG000
00225190.10 

45458439:45475100:clu
_13521 

3.8e-7 -0.32 Esophagus - Mucosa 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45401668:45402714:clu_25836:ENSG000
00159314.11 

45401668:45402714:clu
_25836 

4.6e-7 -0.51 Testis 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_14701:ENSG000
00185829.17 

46528859:46570759:clu
_14701 

5.0e-7 0.43 Skin - Not Sun 
Exposed (Suprapubic) 

ENSG000001766
81.14 

LRRC37A chr17:46331981:46332552:clu_25905:ENSG000
00176681.14 

46331981:46332552:clu
_25905 

5.6e-7 0.51 Testis 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46553449:46555152:clu_15053:ENSG000
00238083.7 

46553449:46555152:clu
_15053 

5.8e-7 -0.25 Skin - Sun Exposed 
(Lower leg) 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13429:ENSG000
00185829.17 

46528859:46570759:clu
_13429 

6.2e-7 0.63 Prostate 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45398047:45402714:clu_14770:ENSG000
00159314.11 

45398047:45402714:clu
_14770 

6.6e-7 -0.45 Breast - Mammary 
Tissue 

ENSG000001858
29.17 

ARL17A chr17:46528859:46570759:clu_13973:ENSG000
00185829.17 

46528859:46570759:clu
_13973 

0.00000
12 

0.60 Pituitary 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45397074:45397949:clu_13509:ENSG000
00159314.11 

45397074:45397949:clu
_13509 

0.00000
18 

0.39 Esophagus - Mucosa 

ENSG000001593
14.11 

ARHGAP
27 

chr17:45397074:45397949:clu_11669:ENSG000
00159314.11 

45397074:45397949:clu
_11669 

0.00000
20 

0.33 Whole Blood 

ENSG000001868
68.15 

MAPT chr17:45987095:45991460:clu_14798:ENSG000
00186868.15 

45987095:45991460:clu
_14798 

0.00000
24 

-0.34 Breast - Mammary 
Tissue 

ENSG000001868
68.15 

MAPT chr17:45990075:45991460:clu_11603:ENSG000
00186868.15 

45990075:45991460:clu
_11603 

0.00000
26 

0.43 Heart - Left Ventricle 

ENSG000002144
25.7 

LRRC37A
4P 

chr17:45545676:45584572:clu_14241:ENSG000
00214425.7 

45545676:45584572:clu
_14241 

0.00000
44 

0.46 Colon - Transverse 

ENSG000002331
75.2 

CTD-
2020K17
.3 

chr17:45240604:45241111:clu_11351:ENSG000
00233175.2 

45240604:45241111:clu
_11351 

0.00000
52 

0.55 Brain - Caudate (basal 
ganglia) 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_12620:ENSG000
00204650.14 

45630158:45636283:clu
_12620 

0.00000
55 

-0.60 Spleen 

ENSG000002046
50.14 

LINC022
10 

chr17:45630158:45636283:clu_12620:ENSG000
00204650.14 

45630158:45636283:clu
_12620 

0.00000
55 

-0.60 Spleen 

ENSG000000739
69.18 

NSF chr17:46704854:46710963:clu_13008:ENSG000
00073969.18 

46704854:46710963:clu
_13008 

0.00000
65 

0.27 Muscle - Skeletal 

ENSG000002380
83.7 

LRRC37A
2 

chr17:46517433:46520212:clu_13522:ENSG000
00238083.7 

46517433:46520212:clu
_13522 

0.00000
67 

-0.41 Esophagus - 
Muscularis 

p-value, eQTL association p value; NES, normalized effect size. 

 
  



Table S23. MR results using BAG as exposure. 
outcome effect se pval padj Model 
AD -0.0034 0.0062 0.59 0.74 IVW 
BIP 0.0467 0.0276 9.04x10-2 0.15 IVW 
MDD -0.0063 0.0212 0.77 0.77 IVW 
PD -0.4012 0.1413 4.54x10-3 2.27x10-2 IVW 
SCZ -0.0854 0.0372 2.18x10-2 5.46x10-2 IVW 
AD -0.0542 0.0172 1.96x10-2 4.9x10-2 Egger 
BIP 0.0765 0.1162 0.53 0.53 Egger 
MDD 0.1092 0.0874 0.26 0.32 Egger 
PD -1.4666 0.4074 1.14x10-2 4.9x10-2 Egger 
SCZ -0.3272 0.1254 4.02x10-2 6.7x10-2 Egger 
AD -0.0098 0.0061 0.11 0.14 wMed 
BIP 0.0661 0.0272 1.51x10-2 3.77x10-2 wMed 
MDD -0.0207 0.02485 0.41 0.41 wMed 
PD -0.2741 0.0865 1.53x10-3 7.65x10-3 wMed 
SCZ -0.0537 0.0308 8.11x10-2 0.14 wMed 
AD -0.0034 0.0062 0.61 0.76 PRESSO 
BIP 0.0467 0.0276 0.13 0.22 PRESSO 
MDD -0.0063 0.0212 0.77 0.77 PRESSO 
PD -0.2371 0.0861 7.06x10-2 0.22 PRESSO 
SCZ -0.073 0.0344 8.72x10-2 0.22 PRESSO 
AD 0.0018 0.0011 0.11 0.197 RAPS 
BIP 0.0127 0.0051 1.27x10-2 4.87x10-2 RAPS 
MDD 0.004 0.0042 0.34 0.43 RAPS 
PD -0.0237 0.0101 1.95x10-2 4.88x1-0-2 RAPS 
SCZ 0.0017 0.0051 0.74 0.738 RAPS 
AD 2.14729 1 0.98 0.98 CAUSE 
BIP 0.8014 1 0.79 0.98 CAUSE 
MDD 1.9085 1 0.97 0.98 CAUSE 
PD -0.1551 1 0.44 0.98 CAUSE 
SCZ 0.4667 1 0.68 0.98 CAUSE 
The six MR models are: IVW, Inverse variance weighted model; Egger, Egger regression; 
wMed, weighted median; PRESSO, MR-PRESSO; RAPS, MR-RAPS and CAUSE. causal effect size 
padj, FDR corrected p value; AD, Alzheimer’s disease; BIP, bipolar disorder; MDD, major 
depression disorder; PD, Parkinson’s disease; SCZ, schizophrenia. Note, negative CAUSE 
estimates indicate the existence of causal relations. 
 
  



Table S24. MR results using disorders as exposure. 
exposure effect se pval padj Model 
AD 0.69 0.21 7.9x10-4 3.95x10-3 IVW 
BIP 0.15 0.06 1.35x10-2 3.37x10-2 IVW 
MDD 0.32 0.17 6.48x10-2 8.1x10-2 IVW 
PD -0.25 0.12 3.35x10-2 5.59x10-2 IVW 
SCZ 0.06 0.04 0.14 0.14 IVW 
AD 0.48 0.30 0.13 0.16 Egger 
BIP 0.68 0.22 3.67x10-3 9.18x10-3 Egger 
MDD 0.29 0.91 0.76 0.76 Egger 
PD -1.11 0.31 1.96x10-3 9.18x10-3 Egger 
SCZ 0.39 0.14 5.66x10-3 9.44x10-3 Egger 
AD 0.67 0.22 2.40x10-3 1.2x10-2 wMed 
BIP 0.14 0.08 9.71x10-2 0.18 wMed 
MDD 0.33 0.23 0.16 0.19 wMed 
PD -0.02 0.07 0.75 0.75 wMed 
SCZ 0.08 0.05 0.11 0.18 wMed 
AD 0.69 0.21 2.22x10-3 1.11x10-2 PRESSO 
BIP 0.15 0.06 1.67x10-2 4.11x10-2 PRESSO 
MDD 0.32 0.14 5.87x10-2 0.07.34x10-2 PRESSO 
PD -0.05 0.06 0.36 0.36 PRESSO 
SCZ 0.08 0.04 2.46x10-2 04.11x10-2 PRESSO 
AD 0.50 0.11 6.97x10-6 3.485x10-5 RAPS 
BIP 0.05 0.02 9.05x10-3 0.01.8x10-2 RAPS 
MDD 0.02 0.03 0.56 0.56 RAPS 
PD -0.01 0.01 0.451 0.556 RAPS 
SCZ 0.04 0.02 1.08x10-2 1.8x10-2 RAPS 
AD -0.59 1 0.28 0.99 CAUSE 
BIP 1.01 1 0.84 0.99 CAUSE 
MDD 3.18 1 0.99 0.99 CAUSE 
PD 1.44 1 0.93 0.99 CAUSE 
SCZ -0.09 1 0.47 0.99 CAUSE 

The six MR models are: IVW, Inverse variance weighted model; Egger, Egger regression; 
wMed, weighted median; PRESSO, MR-PRESSO; RAPS, MR-RAPS and CAUSE. causal effect size 
padj, FDR corrected p value; AD, Alzheimer’s disease; BIP, bipolar disorder; MDD, major 
depression disorder; PD, Parkinson’s disease; SCZ, schizophrenia. Note, negative CAUSE 
estimates indicate the existence of causal relations. 
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Abstract 

Deep learning approaches for clinical predictions based on magnetic resonance imaging data 

have shown great promise as a translational technology for diagnosis and prognosis in 

neurological disorders, but its clinical impact has been limited. This is partially attributed to the 

opaqueness of deep learning models, causing insufficient understanding of what underlies their 

decisions. To overcome this, we trained convolutional neural networks on brain scans to 

differentiate dementia patients from healthy controls, and applied layerwise relevance 

propagation to procure individual-level explanations of the model predictions. Through extensive 

validations we demonstrate that deviations recognized by the model corroborate existing 

knowledge of neuropathology in dementia. By employing the explainable dementia classifier in a 

longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich 

explanations complement the model prediction when forecasting transition to dementia and help 

characterize the biological manifestation of disease in the individual brain. Overall, our work 

exemplifies the clinical potential of explainable artificial intelligence in precision medicine. 

Introduction 

Since its invention in the 1970s, magnetic resonance imaging (MRI) has provided an opportunity 

to non-invasively examine the body from the inside. In neuroscience, images acquired with MRI 

scanners have been used to identify how the brains of patients with various neurological 

disorders differ from their healthy counterparts. Stereotypically, this has been done by collecting 

data from a group of patients with a given disorder and a comparable group of healthy controls, 

on which traditional statistical inference is applied to identify spatial locations of the brain where 

the groups differ 1. Typically, these locations are not atomic locations identified by a spatial 

coordinate, but rather morphological regions defined by an atlas, derived from empirical or 

theoretical insights of how the brain is structured. Differences between groups are described 

using morphometric properties like thickness or volume of these prespecified regions. A large 

benefit of this approach is the innate interpretability of the results: on average, patients with a 

given disorder deviate in a specific region of the brain in a comprehensible manner. Furthermore, 

the high degree of localization offered by modern brain scans allows for accurate 

characterization of where and how the brain of an individual deviates from an expected, typically 

healthy, norm 2. However, the effects which are found are typically small 3 with limited 
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predictive power at the individual level 4,5, which in turn has raised questions about whether 

these analytical methods are expressive enough to model complex mental or clinical phenomena 
6. As an alternative, new conceptual approaches are proposed, advocating modelling frameworks 

with increased expressive power that allow for group differences through complex, non-linear 

interactions between multiple, potentially distant, parts of the brain 7, with a focus on prediction 
8. Such modelling flexibility is naturally achieved with artificial neural networks (ANNs), a class 

of statistical learning methods that combines aspects of data at multiple levels of abstraction, to 

accurately solve a predictive task 9. However, while this often yields high predictive 

performance, e.g. by demonstrating clinically sufficient case-control classification accuracy for 

certain conditions, it comes at the cost of interpretation, as the models employ decision rules not 

trivially understandable by humans 10. When the goal of the analysis is clinical, supporting the 

diagnosis and treatment of someone affected by a potential disorder, this opaqueness presents a 

substantial limitation. Thus, development and empirical validation of new methods within 

clinical neuroimaging that combine predictive efficacy with individual-level interpretability is 

imperative, to facilitate trust in how the system is working, and to accurately describe inter-

individual heterogeneity. 

 

With more than 55 million individuals afflicted worldwide 11, over 25 million disability-adjusted 

life years lost 12,13 and a cost exceeding one trillion USD yearly 14, dementia is a prime example 

of a neurological disorders that incur a monumental global burden. Due to the global aging 

population the prevalence is expected to nearly triple by 2050 15, inciting a demand for 

technological solutions to facilitate handling the upcoming surge of patients. Dementia is a 

complex and progressive clinical condition 16 with multiple causal determinants and moderators. 

Alzheimer’s disease (AD) is the most common form and accounts for 60%-80% of all cases 11. 

However, the brain pathologies underlying different subtypes of dementia are not disjoint, but 

often co-occur 17–19, and have neuropathological commonalities 20. The most prominent is 

neurodegeneration, occurring in both specific regions like the hippocampus, and globally across 

the brain 21, and inter-individual variations in the localization of atrophy has been associated with 

impairments in specific cognitive domains 22,23. Thus, the biological manifestation of dementia in 

the brain is heterogeneous 24, resulting in distinctive cognitive and functional deficits 20, 

highlighting the need for precise and personalized approaches to diagnosis. For patients with 
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mild cognitive impairment (MCI), a potential clinical precursor to dementia, providing 

individualized characterizations of the underlying etiological disease at an early stage could 

widen the window for early interventions 25, alleviate uncertainty about the condition, and help 

with planning for the future 26.  

 

In dementia, ANNs, and particularly convolutional neural networks (CNNs), have been applied 

to brain MRIs to differentiate patients from controls 27,28, prognosticate outcomes 29, and 

differentially diagnose subtypes 30. However, while research utilizing this technology has been 

influential, clinical translations are scarce 31. Where techniques for segmenting brain tumours or 

detecting lesions typically produce segmentation masks that are innately interpretable, predicting 

a complex diagnosis would entail compressing all information contained in a high-dimensional 

brain scan into a single number. Using deep learning, the decisions underlying this immense 

reduction are obfuscated, both from the developer of the system, the clinical personnel using it, 

and the patient ultimately impacted by the decision. This black box nature is broadly credited for 

the low levels of adoption in safety-critical domains like medicine 32. Responding to this 

limitation, explainable artificial intelligence (XAI) provides methodology to explain the 

behaviour of ANNs 33. The nature of these explanations varies, e.g. by what type of model is to 

be explained, what conceptual level the explanation is at, and who it is tailored for 34,35. In 

computer vision, XAI typically aims for post-hoc explanations of individual decisions, 

explaining why a model arrived at a given prediction for a given image. Explanations are often 

provided in a visual format, as a heatmap indicating how different regions of the image 

contribute to the prediction 36. Layerwise Relevance Propagation (LRP) is a variant of such a 

method, based on propagating relevance from the prediction-space, backwards through all layers 

of the model to the image-space, to form a relevance map 37. A major advantage of LRP is its 

intuitive interpretation: by construction, the total amount of relevance which denotes contribution 

to the prediction is kept fixed between layers. Thus, the relevance propagated back to an input 

voxel is directly indicative of the influence of that exact voxel to the prediction. Recently, 

several studies have applied both LRP and other explainable AI methods to dementia 38, finding 

that the heatmaps generally highlight regions known to change in dementia 39,40. However, the 

possibility of utilizing the fine-grained, individual, heatmaps produced by LRP to accurately 
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characterize individualized disease manifestations has not been explored, despite its potential for 

supporting clinical decisions towards precision medicine. 

In the present study, we applied techniques from deep learning and XAI on MRI scans of the 

brain to make explainable and clinically relevant predictions for dementia at the individual level 

(Figure 1). Using a state-of-the-art architecture for neuroimaging data, we trained CNNs to 

differentiate patients diagnosed with dementia from healthy controls based on T1-weighted 

structural MRIs. We implemented LRP on top of the trained models to form a computational 

pipeline producing individual-level explanations in the form of relevance maps alongside the 

model predictions. The relevance maps were validated in a subset of dementia patients, both in a 

qualitative comparison with existing knowledge of the anatomical distribution of 

neuropathology, and in a quantitative, predictive context. Next, we applied the pipeline to a 

large, longitudinal dataset of MCI patients to create individual morphological records, a 

proposed data format for tracking and visualizing disease progression. Finally, we investigated 

the clinical utility of these records for stratifying patients, both in terms of their specific clinical 

profile, and progression of the disease. To facilitate reproducibility and improve the translational 

value of our work, the trained models and the complete explainable pipeline is made accessible 

on GitHub.  
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Figure 1: Overview of the modelling process. The modelling process consisted of four disjoint 

steps. First, we fit multiple Simple Fully Convolutional Networks to classify dementia patients 
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and healthy controls based on structural MRIs. Then we applied the best models to generate out-

of-sample predictions and relevance maps for all participants. Next, we validated the relevance 

maps against existing knowledge using a meta-analysis to generate a statistical reference map. 

Finally, we employed the full pipeline in an exploratory analysis to stratify patients with mild 

cognitive impairment (MCI).   

Results  

We compiled MRI data from multiple sources (Supplementary Table 1) into a dataset of 

heterogeneous dementia patients (n=854, age range=47-95, 47% females, Table 1) based on 

various diagnoses (Probable AD, vascular dementia, other/unspecified dementia) and diagnostic 

criteria for inclusion (Supplementary Table 2), and a set of controls strictly matched on site, age, 

and sex of equal size. We trained multiple CNNs to differentiate between the groups, employing 

a nested validation approach utilizing all available timepoints for participants in three training 

folds and a single randomly selected timepoint for participants in separate validation and test 

folds. When stacking the out-of-sample predictions for all participants together (n=1708), for 

each fold using the model with the best validation performance, we observed satisfactory 

discrimination with a combined area under the receiver operating characteristics curve (AUC) of 

0.908 (0.904-0.920 split across folds, Supplementary Figure 1), and an accuracy of 84.95% 

(83.04%-87.13%, Supplementary Table 3). This is slightly below with what is commonly 

achieved in similar studies classifying a specific subtype (typically AD) in a single dataset 28. 

When grouping the out-of-sample predictions by site, each with a different acquisition protocol 

and diagnostic criteria, our AUCs ranged from 0.666 to 0.997 and accuracies from 58.33% to 

97.36% (Supplementary Table 4). The best results were achieved in the datasets with a large 

number of datapoints, and a specific, clinical AD diagnosis, as opposed to those where we 

employed e.g. solely a mini-mental state examination (MMSE) threshold. 
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Cohort Participants Mean age (±std) Sex (F/M) Subdiagnoses (n) 

Healthy 

controls 
854 75.13±7.81 401/453 

 

Dementia 

patients 
854 74.82±7.84 401/453 

 

MCI patients 1256 75.09±7.62 719/537 

Improving (80), stable 

(754), progressive (304), 

other (118) 

Total 2964 75.08±7.65 1521/1443  

Table 1: Cohorts. Key characteristics of the cohorts used for training and testing the models, 

and further exploratory analyses. 

 

Relevance maps highlight predictive brain regions in individuals with dementia 

Based on the classifiers with the highest AUCs in the validation sets, we built an explainable 

pipeline for dementia prediction, !"#!"#"$%&', using composite LRP 41, and a strategy to 

prioritize regions of the brain that contributed positively towards a prediction of dementia 

(Supplementary Table 5). Using this pipeline, we computed out-of-sample relevance maps for all 

participants by applying the model for which the participant was unseen. Qualitatively, these 

maps corroborated known neuropathology in dementia, while still allowing for inter-individual 

variation (Supplementary Figure 2). We confirmed this apparent corroboration quantitatively by 

comparing a voxel-wise average map "!"#"$%&' (Supplementary Figure 3), containing positive 

relevance from all correctly predicted dementia patients, with a statistical reference map $ 

(Supplementary Figure 4) from an activation likelihood estimation (ALE) meta-analysis 42. For 

sanity checks, we also computed average maps from three alternative pipelines, "(") , 

"*'$!+#&,"! ."&/0%(and  "*'$!+#&,"! &#'/"(. The comparisons with the reference map were done 

by binarizing the maps on both sides of the comparison at various thresholds and measuring the 

Dice overlap (Figure 2a). For the three alternative pipelines the amount of overlap decreased 

monotonically as the binarization threshold rose (Figure 2b), whereas for "!"#"$%&' it stabilized 

as the maps grew sparser, indicating more similarity with $. This effect was reaffirmed by a 

normalized cross-correlation 43 of 0.64 for "!"#"$%&', compared to 0.41, 0.40 and 0.12 of "("), 
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"*'$!+#&,"! ."&/0%( and "*'$!+#&,"! &#'/"( respectively. In addition, we performed a region-

wise, qualitative comparison of "!"#"$%&' and $, also yielding general agreement (Figure 2c), 

with the most important regions in both maps being the nucleus accumbens, the amygdala, and 

the parahippocampal gyrus. Next, we tested the importance of the detected regions in a 

predictive context, by applying an iterative mask-and-predict procedure. For each participant, we 

produced a baseline dementia-prediction y&1 and relevance map "%'(2 for each pipeline !"#%'(2. 

We then iteratively masked out the most important regions of the image according to the 

relevance map and recorded how the prediction changed as a function of the occlusion (Figure 

2d). Using only true positives, the predictions should ideally start out at approximately 1.0 

(empirically found to be 0.89 on average) and trend towards 0.5 (random prediction) as a larger 

proportion of the image is occluded. The rate of decline is indicative of whether the masked 

regions contain information essential for the classifier to classify the image correctly. Over 20 

iterations we observed that the predictions based on maps from both !"#!"#"$%&' , !"#(") and 

!"#*'$!+#&,"! ."&/0%(	decreased, but !"#!"#"$%&' at a distinctly steeper rate than the rest 

(Figure 2d). To quantify this observation we calculated an area over the perturbation curve 

(AOPC) of 0.231, 0.009, -0.001 and 0.002 for !"#!"#"$%&', !"#("), !"#*'$!+#&,"! &#'/"(, 

!"#*'$!+#&,"! ."&/0%( respectively. Taken together, these results demonstrate that our pipeline 

generates maps with relevance in brain regions associated with changes in dementia. 
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Figure 2: Validation of relevance maps from the dementia pipeline compared with three 

alternative pipelines. a Visualization of the comparison between the binarized average relevance 
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map )34546789 from the dementia-pipeline and the binarized statistical reference map * from 

GingerALE, at different thresholds for binarization. b Overlap between the four average relevance 

maps ) from our four pipelines and * as a function of the binarization threshold. The numbers in 

the legend denote the normalized Cross Correlation (nCC) for each pipeline c Mean voxel-wise 

activation in )34546789 and *, grouped by brain region. d Average participant-wise prediction 

from the dementia model after iteratively masking out regions of the image according to relevance 

maps from the four pipelines. Area over the permutation curve (AOPC) for the dementia map is 

indicated by the shaded area and denoted in the legend for all pipelines. 

 

Output from the explainable dementia pipeline has prognostic value for MCI patients 

For the MCI patients (n=1256, timepoints=6448), previously unseen by all models, we built an 

averaging ensemble to procure a singular out-of-sample prediction and relevance map per patient 

per timepoint. Put together, we let this represent a morphological record (illustrated in Figure 4 

and Supplementary Figure 5 and 6) visualizing the absolute quantity (indicated by the prediction) 

and location (indicated by the relevance map) of dementia-related pathology detected by the 

models over time. Qualitatively, both predictions and maps were relatively stable within a 

participant over time, while allowing enough variation to compose what resembled a trajectory. 

To investigate the prognostic value of our proposed morphological records we divided the MCI 

patients into three subgroups based on their trajectories in the follow-up period: those who saw 

improvement of their condition (n=80), those with a stable diagnosis throughout (sMCI, n=754), 

and those who progressed into dementia (pMCI, n=304). The remaining (n=118) had either a 

non-MCI diagnosis at the first timepoint, or a more complex diagnostic trajectory (e.g MCI -> 

AD -> CN), and were excluded from the subsequent analyses. We observed that the predictions 

in the first group were generally very low (mean +& = 0.13, Supplementary Figure 7a), indicating 

that the models detected little, if any, evidence of dementia in these participants. For the stable 

patients the mean prediction was higher (mean +& = 0.33), but still below the classification 

threshold of 0.5, whereas in the progressive group the model predicted the average patient to 

already have dementia (mean +& = 0.72). Importantly, this was also true when considering only 

timepoints before these patients received the clinical diagnosis (mean +& = 0.65, Supplementary 

Figure 7b), suggesting that the model found evidence of the disorder before the clinical 
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symptoms surpassed the diagnostic threshold. To formally delineate the differences in 

predictions leading up to the potential diagnosis, we combined the improving and stable patients 

into a non-progressive group (nMCI, n=834), and sampled patients to match the progressive 

group based on their visiting histories, leading up to a terminal diagnosis timepoint (or a 

constructed non-diagnosis timepoint in the non-progressive group). In this matched dataset 

(n=550) we applied a linear mixed model controlling for age and sex and observed that the group 

difference was even greater than previously observed (β = 0.47, p = 6.05	 ×	10:;<, Figure 3a, 

Supplementary Table 6). Furthermore, we observed a significant difference in longitudinal 

slopes (β = 0.05 increase in prediction per year, p = 8.14	 ×	10:<;) indicating a greater rate of 

brain change detected by the model in those who would be diagnosed with dementia at a later 

point in time.  

 

The large group differences in the dementia predictions leading up to a potential diagnosis 

suggests this as a biomarker with innate prognostic value, yet the most salient part of our 

morphological records were the relevance maps. Thus, we performed exploratory analyses based 

on these to further differentiate the non-progressive and progressive groups and characterize both 

inter- and intra-group heterogeneity. However, given the high dimensionality of the maps and the 

relatively small number of patients, we first applied a principal component analysis (PCA) to 

relevance maps from all MCI patients, effectively compressing their information content into a 

smaller set of characteristic variables encoding facets of the maps, enabling the subsequent 

analyses. We retained the 64 components that explained the largest amount of variance 

(Supplementary Figure 8) and observed that they qualitatively clustered into three overarching 

categories. The first component was a generic component detecting general presence of 

relevance, resembling the average map from dementia patients, and thus made up a cluster by 

itself. The next cluster was comprised of the subsequent three components that captured high 

level, abstract patterns of relevance, namely differences in lateralization, along the sagittal axis 

and in subcortical regions (Figure 3b). The final cluster consisted of the remaining 60 

components that captured specific, intricate patterns of presence/non-presence of relevance in 

regions revealed in the previous analyses (Supplementary Figure 9). To investigate the potential 

of using the relevance maps for prognosis, we first performed a survival analysis using a Cox 

proportional hazards model where getting a diagnosis was considered the terminal event.  
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Figure 3: Utility of the dementia pipeline for predicting progression and characterizing 
individual-level deviations in the mild cognitive impairment cohort. a Group-wise mean 

predictions from the dementia-model in the progressive and non-progressive groups in the years 

before a diagnosis was given. b The four first voxel-wise components of the principal component 

analysis plotted in MNI152-space. c Survival curves for the average MCI patient (blue) and 

fictitious patients at the extreme percentiles of the span for each component. The second 

component was not significant and is not shown. d Predictive performance of the three models 

predicting progression in the years following the MRI examination. The baseline model (ℳ='(") 

included only sex and age as covariates, the next model ℳ>*"! included the prediction from the 

dementia classifier as a predictor, while the final model ℳ?+#> also added the component 

vectors representing the relevance maps.  e Significance levels of correlations between the each 

of the four PCA components and various cognitive measures. The six annotated measures are 
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composite language (PHC_LAN) and executive function (PHC_EXF) scores from the ADSP 

Phenotype Harmonization Consortium, total score from the Functional Activities Questionnaire 

(FAQTOTAL), composite executive function score from UW – Neuropsych Summary Scores 

(ADNI_EF), clinical evaluation of impairment related to judgement and problem solving 

(CDJUDGE) from the Clinical Dementia Rating, and an overall measure of cognition from the 

Mini-Mental State Examination (MMSCORE). 

Specifically, we modelled the fraction of the population without a diagnosis as a function of age 

and used the subject-wise loadings of 9% as predictors. After Benjamini-Hochberg correction, 37 

of these components were significantly associated with staying undiagnosed (Figure 3c and 

Supplementary Table 7). However, we observed a correlation between the singular dementia 

prediction  +& and the absolute magnitudes of these components (Supplementary Figure 10), 

indicating that the associations in the survival analysis could be induced by differences in the 

prediction rather than variability in the relevance maps. To mitigate this concern, we fit an 

equivalent model while stratifying on +&, observing that 29 associations remained significant, and 

that all coefficients had the same sign. Nonetheless, this analysis did not account for the 

predictions and relevance maps changing within a participant over time, so we reframed the 

question in a purely predictive setting, constructed to bear resemblance to a clinical scenario, 

using the same participants (nMCI=834, pMCI=304, total n=1138). For each MCI patient : at 

each timepoint ; we asked whether we were able to predict, at yearly intervals < up to five years 

into the future, whether :	 had progressed into dementia, using information from !"#!"#"$%&' 

available at ;. Importantly, all timepoints for all these participants were unseen by the dementia-

model, yielding out of sample predictions and relevance maps from !"#!"#"$%&', and we 

employed nested cross-validation to ensure the progression predictions were also out-of-sample. 

First, we fit a baseline model ℳ='(" with age and sex as predictors, showing no predictive 

efficacy at any timepoint (all AUCs ≈ 0.5, Supplementary Table 8), indicating that the dataset 

was not biased with respect to these variables. When adding the prediction from the dementia 

model y&%  as a predictor in model ℳ>*"! we saw large improvements in prognostic efficacy at all 

yearly intervals, culminating with a fold-wise mean AUC of 0.889 after five years (Figure 3d). In 

the final model, ℳ?+#>, also including the component vector 9@ as predictors, we saw further 

improvements for all years, peaking at 0.903 after five years (p = 0.035 when compared to 
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ℳ>*"!  in a Wilcoxon signed-rank test across the outer folds). Overall, our best performing 

model predicted progression to dementia after five years with an AUC of 0.903, an accuracy of 

84.1%, a positive predicted value of 0.92, a sensitivity of 0.82 and a specificity of 0.86 (Table 2). 

 
Model AUC Balanced 

accuracy 
PPV Sensitivity Specificity 

ℳ!"#$ 0.515 51.05% 0.14 0.09 0.93 

ℳ%&$' 0.889 83.61% 0.91 0.83 0.84 

ℳ()*% 0.903 84.1% 0.92 0.82 0.86 

Table 2: Predictive performance of the three models predicting progression five years into the 

future. The baseline model ℳ='(" used only age and sex as covariates. ℳ>*"! also added the 

prediction from the dementia model at the current timepoint as a predictor, while ℳ?+#> 

additionally included the component vector  9% encoding information from the relevance maps. 

 

Facets of the relevance maps are associated with cognitive impairments in distinct 

domains 

Finally, we tested whether common features found in the relevance maps, represented by the 

PCA component, were correlated with impairments in distinct cognitive and functional domains. 

We extracted 17 summary measures from 7 neuropsychological tests (Supplementary Table 9 

and 10), performed approximately at the same time as an MRI examination, and tested for 

associations with the subject-wise loadings of 9% in 733 MCI patients using linear models. After 

FDR correction, while correcting for age, sex and +&, we found 48 significant correlations 

between 18 unique components and 14 of the cognitive measures (Figure 3e). Component 30 and 

the aggregate score from the Functional Activities Questionnaire (FAQTOTAL) had the highest 

number of significant hits among the components and measures respectively, both with six 

passing the threshold. Most importantly, the components showed distinct patterns of associations 

with the different cognitive measures (Supplementary Table 13). To ensure the significant 

associations were not driven by collinearity between components 9& and +&, we ran an equivalent 

analysis without including +& as a predictor, observing that only 5/48 of the previously significant 

hits had coefficients with the opposite sign (Supplementary Table 14). To summarize, the spatial 

features captured in our relevance maps, and subsequently in our component vectors, were 
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associated with distinct patterns of performance on neuropsychological tests relevant for 

characterizing phenotypic heterogeneity in dementia patients (Supplementary Figure 11). 
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Figure 4: A visualization of the proposed morphological record for a randomly selected 

progressive MCI patient that was held out of all models and analyses. a The top half shows the 

prediction from the dementia model at each visit, while the bottom part displays the relevance 

map underlying the prediction. The opaque sections (including c, d, and e) contain information 

accessible at the imagined current timepoint (22.02.07) to support a clinician in a diagnostic 

procedure. The angle (∠) represents the change in dementia prediction per year based on the 

first two visits. b Translucent regions reveal the morphological record for the remaining follow 

ups in the dataset, thus depicting the future. The ground truth diagnostic trajectory is encoded by 
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the colour of the markers. c Predicted probabilities of progression at future follow-ups based on 

the prediction and relevance map at the current timepoint. d Survival curve of the patient 

compared to the average MCI patient calculated from the prediction and relevance map. The 

marker indicates the location of the patient at the current timepoint. e A list of cognitive domains 

where the patient is predicted to significantly differ from the average based on the prediction 

and relevance map. 
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Discussion  

Given the huge burden of disease and expected increase in prevalence, innovative technological 

solutions for clinical decision making in dementia diagnostics and prognostics is urgently 

needed. Although commonly referred to as a homogenous condition or split into a few subtypes 

based on aetiology or pathophysiology 17, dementia patients exhibit unique and complex 

deficiencies, disease trajectories, and cognitive deficits. To explore the potential of brain MRI 

and XAI to characterize heterogeneity in the brain underpinnings of dementia, we trained neural 

networks to differentiate dementia patients from healthy individuals, and derived relevance maps 

using Layerwise Relevance Propagation to explain the individual-level decisions of the classifier. 

The relevance maps were specific to the individual, spanned regions that were predictive of 

dementia and corroborated existing knowledge of the anatomical distribution of neuropathology. 

In a cohort of MCI patients, it enabled characterization and differentiation of individual-level 

disease manifestations and trajectories linked to cognitive performance in multiple domains. 

While further validations in clinical contexts are needed, our XAI pipeline for dementia has the 

potential to be employed by clinicians for monitoring and characterizing disease development at 

the level of the individual subject. 

 
There is a multitude of XAI techniques available for explaining the decisions of an image 

classifier, many of which have yielded promising results for dementia classification 38. We 

employed LRP due to its straightforward interpretation as well as earlier studies indicating 

robustness 44, both properties we would consider integral in a clinical decision support system. 

But while procuring explanations that are ipso facto meaningful is an important step towards 

adoption of AI in clinical neuroimaging, it is not in itself sufficient. There is a host of predictive 

models that are trivially explainable, but not understandable 45, and there is genuine concern that 

XAI will lead to another level of systems that are formally well-defined, but opaque and obscure, 

and thus practically useless 46. Thus, empirical explorations are imperative to investigate the 

nature of these explanations, examine how they may be useful and build essential trust 47. In our 

validation, we observed that the explanatory maps produced by the dementia pipeline were more 

predictive and showed distinctly more agreement with existing knowledge of pathology than 

those produced by the three alternative pipelines. Given limitations that have been exposed in 

such methods earlier 48,49 these validations are crucial, and observing that our results both 
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corroborate earlier evidence 40 and extend beyond that, provides confidence that the explanations 

derived from the model are meaningful. However, we emphasize that the ultimate validation 

should happen in actual implementations of the technology in end-user systems, with clinical 

personnel applying it in clinical scenarios on realistic data. 

 

We extend upon validating the relevance maps by proposing them as a potential epistemic and 

clinical tool to characterize individual facets of dementia. To this end, we explored if the maps 

contributed to predicting imminent progression from MCI to dementia, and correlated them with 

different cognitive measures, extending upon the current literature 38. In both analyses we found 

evidence, although modest, that the maps are informative beyond the predictions of the model. 

To illustrate the potential of the pipeline for clinical decision making we compiled its output into 

a proposed morphological record (visualized for a single patient in Figure 4) that can help 

clinicians localize morphological abnormalities during a diagnostic process. Identifying subtle 

pathophysiology through deep phenotyping could have a huge potential for charting the 

heterogeneity of dementia, providing precise biological targets to guide future research. 

Furthermore, for the individual patient, it can support personalized diagnosis to identify 

appropriate disease-modifying treatments, and in the future, hopefully, accurate therapeutic 

interventions. 

 

The regions with the highest density of relevance in our maps were the nucleus accumbens, 

amygdala and the parahippocampal gyrus, all of which are strongly affected in dementia 50–52. 

While the two latter corroborate the established involvement of the medial temporal lobe 53 it is 

surprising that the hippocampus does not appear in our analyses, as it has frequently in similar 

studies 38. While this could be caused by actual localization of pathology 54 we consider it more 

likely to be related to the inner working of the model. Specifically, the CNN relies on spatial 

context to identify brain regions before assessing their integrity, utilizing filters that span areas of 

the image larger than those containing the region itself. In the backwards pass, LRP uses these 

filters, and thus the localization of relevance is not necessarily voxel precise. Furthermore, we 

believe the model broadly can be seen as an atrophy detector, which necessarily entails looking 

for gaps surrounding regions instead of directly at the regions themselves. Therefore, while the 
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relevance maps provide important information, they depend on contextual information and thus 

rely on interpretation from clinicians to maximize their utility in clinical practice. 

 

We focused our analyses mainly on the relevance maps, but the results with largest, immediate, 

potential for clinical utility were the predictions from the dementia classifier. Other studies have 

shown the efficacy of machine learning models in differentiating dementia patients and healthy 

controls 28, but it is intriguing that we see a large discrepancy in the predictions of the 

progressive and non-progressive MCI patients many years before the dementia diagnosis is 

given. This corroborates findings from theory-driven studies 55 and a recent deep learning study 
27, implying detectable structural brain changes many years before the clinical diagnosis is given. 

This gives hope for advanced technology to contribute to early detection and diagnosis through 

MRI based risk scores, in our case supported by a visual explanation. If curative treatments 

prove efficacious and become accessible, early identification of eligible patients could be 

imperative 56. Furthermore, timely access to interventions have shown efficiency in slowing the 

progress of cognitive decline 57, in addition to improving the quality of life for those afflicted and 

their caregivers 26,58. Widely accessible technology that allows for early detection with high 

precision could play a key role in the collective response to the impending surge of patients and 

provide an early window of opportunity for more effective treatments. 

 

While our results show a great potential for explainable AI, and particularly LRP, as a 

translational technology to detect and characterize dementia, there are limitations to our study. 

First, there are technical caveats to be aware of. Most importantly, there is an absolute 

dependence between the predictions of our model and the relevance maps. In our case, when we 

qualitatively assessed the relevance maps of the false negatives, they were indistinguishable from 

the true negatives. This emphasizes the fact that when the model is wrong, this is not evident 

from the explanations. Next, while the maps contain information sufficient to explain the 

prediction, they are not necessarily complete. Thus, they don’t contain all evidence in the MRI 

pointing towards a diagnosis, a property which could prove essential for personalization. We 

have addressed this problem through pragmatic solutions, namely ensembling and targeted 

augmentations, but theoretical development of the core methodology might be necessary to 

theoretically guarantee complete maps. Beyond the fundamental aspects of LRP, there are 
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weaknesses to the present study that should be acknowledged. First, the dataset with dementia 

patients portrayed as heterogeneous mostly consists of ADNI and OASIS data, and thus patients 

with a probable AD diagnosis (although clinically determined). Thus, while we consider it likely, 

it is not necessarily true that the dimension of variability spanning from healthy controls to 

dementia patients portrayed by our model has the expressive power to extrapolate to other 

aetiologies. To overcome this in actual clinical implementations, we encourage the use of 

datasets that are organically collected from subsets of the population that are experiencing early 

cognitive impairments, for instance from memory clinics. A related problem is the out-of-sample 

generalization, especially related to scanners and acquisition protocols. Although we utilize data 

from many sites, which we have earlier shown to somewhat address this problem 59, in 

combination with transfer learning, we did not explicitly test this by e.g., leaving sites out for 

validation. Again, we advise that clinical implementations should be based on realistic data, and 

thus at least be finetuned towards data coming from the relevant site, scanner, and protocol 

implemented in the clinic 60. This also includes training models with class frequencies matching 

those observed in clinical settings, instead of naively balancing classes as we have done here. 

Next, we want to explicitly mention the cyclicality of our mask-and-predict validation. In a sense 

it trivially follows that regions that are considered important by a model are also the ones that are 

driving the predictions, and thus it is no surprise that the relevance maps coming from the 

dementia model are more important to the dementia model than the maps coming from e.g., the 

sex model. We addressed this by alternating the models for test and validation, but fully avoiding 

this circularity would require disjunct datasets, and more and larger cohorts. In summary, the 

predictive value for the individual patient must be interpreted with caution. However, our 

extensive validation approach as well as our thorough explanation of the method and its 

limitations, and training on a massive dataset, provides a first step towards making explainable 

AI relevant for clinical decision support in neurological disorders. Nonetheless, it also reveals a 

complicated balance between validating against existing knowledge and allowing for new 

discoveries. In our case, confirming whether small details revealed in the relevance maps are 

important aspects of individualization or simply intra-individual noise requires datasets with a 

label-resolution beyond what currently exists. Thus, we reiterate our belief that the continuation 

of our work should happen at the intersection between clinical practice and research 61, by 
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continuously collecting and labelling data to develop and validate technology in a realistic 

settings.  

 

To conclude, while there are still challenges to overcome, our study provides an empirical 

foundation and a roadmap for implementations of brain MRI based explainable AI in clinical 

decision support systems for personalization. Specifically, we show that deep neural networks 

trained on a heterogenous set of brain MRI scans can predict dementia, and that their predictions 

can be made human interpretable. Furthermore, our pipeline allows us to reason about 

neurobiological aberrations in individuals showing early signs of cognitive impairment by 

providing personalized characterizations which can subsequently be used for precise 

phenotyping and prognosis, thus fulfilling a realistic clinical purpose. 

Materials and Methods 

Data 

All data used in the present study have been obtained from previously published studies which 

have been approved by their respective institutional review board or relevant research ethics 

committee.  

 

To train the dementia models we compiled a case-control dataset from seven different sources 

(Supplementary Table 1), consisting of patients with a dementia diagnosis and healthy controls 

from the same scanning sites. Because of the different diagnostic criteria used in the original 

datasets we applied different rules to achieve a singular, heterogeneous dementia label 

(Supplementary Table 2). We extracted all participants with a dementia-diagnosis at all 

timepoints to comprise the patient group (n=854). Then, for each unique proxy site (In ADNI, 

due to the large number of scanners and acquisition protocols, and the work put into unifying 

them, we used field strength as a proxy for site), sex, and age-bin spanning 10 years, we sampled 

an equal number of healthy controls to form the matched control set (total n=1708, Table 1). 

Lastly, before modelling, we split the data into five equally sized folds stratified on diagnosis, 

site, sex, and age, such that all timepoints for a single participant resided in the same fold.  
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For the MCI dataset we started with all participants from all ADNI waves with an MCI diagnosis 

(subjective memory complaint, MMSE between 24 and 30, CDR>0.5 with memory box>0.5, 

Weschler Memory Scale-Revised <9 for 16 years of education, <5 for 8-15 years of education 

and <3 for 0-7 years of education) 62, on at least one timepoint. These were 12661 images from 

6448 visits for 1256 participants, none of which were used for model training. This selection 

criterion ensured all participants had an MCI diagnosis at one point in time, though it did not 

limit us to only those timepoints. Thus, in addition to those with a consistent, stable, MCI 

diagnosis (sMCI), we had a variety of diagnostic trajectories, including those transitioning from 

normal cognition to MCI, MCI to AD (pMCI) and various other combinations. Before the 

subsequent analyses we discarded all participants without an MCI diagnosis initially, and 

everyone with ambiguous trajectories (e.g. MCI->CN->AD), leaving 5607 visits from 1138 

participants.  

Modelling 

All dementia models were variants of the PAC2019-winning simple fully convolutional network 

(SFCN) architecture 63,64, modified to have a single output neuron with a sigmoid activation. The 

architecture is a simple, VGG-like convolutional neural network with 6 convolutional blocks and 

approximately 3 million parameters. We initialized the model with weights from a publicly 

accessible brain age model previously shown to have superior generalization capabilities when 

dealing with unseen scanning sites and protocols 59. Before modelling, all images were 

skullstripped 65 and linearly registered to MNI152 space 66 using a previously developed pipeline 
59 relying on FreeSurfer v5.3 and FSL v6.0 67. The models were trained on a single Nvidia A100 

GPU with 40GB of memory, Tensorflow 2.6 68 through the Keras interface 69. We used a vanilla 

stochastic gradient descent (SGD) optimizer with a learning rate defined by the hyperparameter 

settings (see next section), optimizing the binary cross-entropy loss. All models ran for 160 

epochs with a batch size of 6, and for each run the epoch with the lowest validation loss was 

chosen. Varying slightly depending on the hyperparameters, a single model trained in 

approximately 4 hours.  

 

For each hold-out test fold we trained models on three of the remaining folds and validated on 

the fourth, akin to a cross-validation with an additional out-of-sample test set, to achieve out-of-

sample predictions for all 1708 participants while allowing for hyperparameter tuning. The 
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hyperparameters we optimized were dropout >  ∈ {0.25,  0.5} and weight decay C  ∈

{10:A,  10:B}. Additionally, we tested stepwise, one-cycle and multi-cycle learning rate 

schedules (Supplementary Figure 12b), and a light and a heavy augmenter (Supplementary Table 

12). Initial values for the learning rate were set manually based on a learning rate sweep 70, 

though kept conservative to preserve the learned features from the pretraining (Supplementary 

Figure 12a). The hyperparameter search was implemented as a naive grid-search over the total 

24 different configurations (Supplementary Figure 13). We selected the model procuring the best 

AUC in the validation set to produce out-of-sample predictions for the outer hold-out fold. In the 

final evaluation of the models, we compiled predictions for all participants, for each using the 

model where they belonged to the hold-out test set. Our main method for measuring performance 

was the AUC, but we also report accuracy, which, due to our matching procedure, is equivalent 

to balanced accuracy.  

Relevance maps 

We built a pipeline !"#!"#"$%&'for generating relevance maps by implementing LRP (Bach et 

al., 2015) on top of the trained classifier. LRP is a technique for explaining single decisions 

made by the model, and thus, when running the pipeline on input D	 a relevance map "	 is 

generated alongside the prediction +&. "	is a three-dimensional volume, representing a visual 

explanation for +& , where each voxel E&,D,2   ∈ " has a spatial position F, G, H	corresponding to the 

location of an input voxel I&,D,2   ∈ D. Furthermore, the intensity of E&,D,2 can be directly 

interpreted as how much voxel I&,D,2 contributes to +&, such that ∑ E*∈F =  +&. In the original LRP-

formulation, relevance E	is propagated subsequent layers K1 and K< according to the relative 

contribution of one artificial neuron L& ∈ K1 in the first layer on relevance in all artificial neurons 

LD ∈ K< in the following layer, 

 

E(L&) = ∑
'+.+,

∑ '-.-,-
E(LD)D , 

 

where C&D denotes the weight between L& and LD. We controlled the influence of different aspects 

of the explanations using a composite LRP strategy 41, combining different formulations of the 

LRP-formula for the different layers in the model to enhance specific aspects of the relevance 
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maps. Specifically, we employed LRPϵ for the prediction layer to retain the most salient 

explanations,  

 

EH(L&) = ∑
'+.+,

HI∑ '-.-,-
E(LD)D . 

 

For the central convolutional layers, we upweighted positive relevance (e.g. features increasing 

the prediction, corresponding to evidence for a diagnosis) with LRPαβ, 

 

EJK(L&) = ∑ OP
L'+.+,M

.

∑ L'-.-,M
.

-
− R

L'+.+,M
/

∑ L'-.-,M
/

-
S E(LD)D ,  

 

Where (⋅)I and (⋅): denote positive and negative contributions respectively. For the input layer 

and the following convolutional layer we employed LRPb (also denoted as LRPflat), to smooth 

finer details of the relevance maps, 

 

Eb(L&) = ∑ <
∑ <-

E(LD)D . 

 

The configuration of the full strategy can be found in Supplementary Table 5. The raw relevance 

maps produced by the pipeline were full brain volumes with the same dimensionality as the MRI 

data (167x212x160 voxels) containing mostly (see below) positive relevance.  

 

Notation-wise we generally consider the relevance map "(D&) for an image D& to be a function of 

the model  U%'(2, where ;LVH	indicates which task the model was trained for, the LRP strategy 

LRPcomposite and the image D& 

 

"(D&) = WXU%'(2 ,  LRPcomposite, D&Y. 

 

Because the composite LRP strategy described above is kept fixed in our pipeline, we contract 

this to  
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"(D&) = W(U%'(2 ,  D&). 

 

Furthermore, we let the model-specifier task annotate the map for a further simplification  

 

"%'(2(D&) = W(D&). 

 

Thus, !"#%'(2 is used to annotate the full pipeline for a given task, while "%'(2(D&) denotes a 

single relevance map generated by this pipeline for image D&. When the task is given by the 

context, we sometimes simplify this further to "(D&), and when a general image is considered, 

we simply use "	 to denote its relevance map. 

 

While we generally discuss our pipeline as a singular one, there were in reality five 

approximately equivalent pipelines (corresponding to the models trained for the five test folds), 

and which one is used depends on what image was used as input. Specifically, for each 

participant diagnosed with dementia, the pipeline is chosen where the participant was part of the 

hold-out test set while training the model, and both the relevance maps and the predictions are 

thus always out-of-sample. For participants used in the MCI analysis, which are all out-of-

sample for all models, we created an ensemble by averaging the predictions and the voxel-wise 

relevance across all models.  

 

Before implementing the LRP procedure we made two slight modifications to the models to 

facilitate the backwards relevance propagation, both leaving the functional interface of the model 

unchanged. First, we removed the sigmoid activation in the final layer, so that the output of the 

model changed from a bounded continuous variable +&  ∈ [0,  1] to an unbounded prediction y&N   ∈

[−∞,  ∞]. In this space a raw prediction of y&N   = 0 is equivalent to a sigmoid-transformed 

prediction of +& = 0.5, and thus y&N   <  0 means that the model predicts control status for the 

given participant, and oppositely y&N   >  0 implies that the model predicts a dementia diagnosis. 

Furthermore, this means that all positive relevance E  ∈ ",  E  >  0	can be interpreted as visual 

evidence in favour of a dementia diagnosis. Secondly, we modified the model by fusing all batch 

normalization layers with their preceding convolutional layers, adjusting their weights and biases 

to match the shift and scaling previously performed by the normalization layer 71,72.  
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After generation, the relevance maps are in the same stereotaxic space as their corresponding, 

linearly registered, input MRIs. To ensure intra-individual comparisons were done in the same 

space we non-linearly registered the maps to MNI152- space before subsequent statistical 

analyses were run. First, we registered the preprocessed MRIs D& used as inputs to the 1mm 

MNI152 template packaged with FSL using fnirt with splineorder=2. We then applied the 

transformation computed for D& to "(D&) using applywarp. We also restrained our relevance 

maps to contain strictly positive relevance, evidence in favour of a dementia prediction, by 

clipping them to a minimum value of 0. Furthermore, to remove edge-effects from our analyses, 

we enforce that there is no relevance in non-brain tissue by nullifying all relevance outside the 

brain: 

 

∀(F, G, H)`I&,D,2 = 0  ⇒  E&,D,2 = 0b. 

 

All visualized relevance maps are plotted after non-linear registration, overlayed on the MNI152-

template. As the maps are three-dimensional, we generally plot a collection of distributed axial 

slices. The relevance is coloured by the nibabel v3.2.2 73 cold_hot colourmap. Since the absolute 

relevance values vary between maps, all maps are normalized to the intensity range [0, 1] in the 

visualizations.  

Validating the relevance maps 

Earlier studies have shown that interpretability techniques in general are prone to generate visual 

explanations that do not capture salient parts of the input 48,49. To investigate the extent of this for 

our pipeline !"#!"#"$%&'  we employed two analyses to assess the sanity of the relevance maps. 

The first was a domain-specific analysis comparing the relevance maps to existing knowledge of 

the pathology of dementia, while the second was a purely quantitative analysis examining how 

important the regions found by the pipeline are for the dementia prediction +&. In both cases we 

contrasted the relevance maps generated from the main pipeline with three alternative pipelines 

representing variants of a null hypothesis, all expected to produce relevance maps with no 

significant association to dementia.  
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!"#*'$!+# &#'/"( represents the simplest alternative pipeline, and is built around the dementia-

model, but with an additional preprocessing step scrambling the input,  

 

"*'$!+# &#'/"((D&)  =  "!"#"$%&'(c&), where 

c& = dXD& ,  eO+Y. 

 

!"#*'$!+# &#'/"( is expected to generated relevance maps where the relevance is evenly 

distributed across the entire image. In the next pipeline !"#*'$!+# ."&/0%( we replaced the 

dementia-model with a model with random weights,  

 

"*'$!+# ."&/0%((D&) = "(UP ,  D&). 

 

UP has not been trained for any task, and thus has random weights initialized by the default 

Keras ”Glorot Uniform” weight-initializer. This pipeline is expected to produce relevance maps 

which correlate with the raw voxel intensities, e.g. high intensity in the input should entail more 

(absolute) relevance, thereby reflecting aspects of morphology. The final and most realistic 

alternative pipeline was !"#("), where we replaced the dementia-model with a binary sex-

classifier,  

 

"(")(D&) = "(U(") ,  D&). 

 

The sex-classifier was trained to differentiate males from females in one of the splits from the 

dementia-dataset, achieving an out-of-sample AUC of 0.956 and a balanced accuracy of 89.40%. 

We did not do any hyperparameter optimization for this model but used the best configuration 

from the dementia cross-validation in the same fold. The heatmaps from this pipeline should 

reflect regions where there is intra-individual variation in morphology, which are predictive of 

sex but with minimal association with dementia.  
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As a proxy for existing knowledge in the literature we performed an ALE meta-analysis using 

Sleuth v3.0.4 74 and GingerALE v3.0.2 42. We used Sleuth to search for relevant articles with the 

query 

 

Imaging Modality is MRI 

 AND 

 Context is disease 

 AND 

 Diagnosis is Dementia OR Alzheimer’s Disease OR Lewy Body Dementia OR Frontotemporal 

Dementia OR Non-Aphasic Frontotemporal Dementia  

 

in the Voxel-based morphometry database, yielding 394 experiments from 124 articles. These 

experiments contained 3972 foci, 280 of which were outside the MNI152 mask, leaving 3692 to 

be loaded into GingerALE. Then the reference map $, with voxels f&,D,2, was generated by an ALE 

meta-analysis using the default parameters: Cluster-level FWE=0.01, Threshold 

Permutations=1000, P Value=0.001. The reference map is visualized in Supplementary Figure 4.  

 

We performed four pairwise comparisons to estimate the amount of overlap between each of the 

pipelines and $. For each pipeline, we first computed an average relevance map " across all true 

positives (e.g. dementia patients where the dementia-model correctly predicted a diagnosis, 

n=697, Supplementary Figure 1c), by computing their voxel-wise average relevance. Next, we 

binarized both the average map and the reference map by thresholding them at multiple 

percentiles :  ∈ [0,  100), 

 

"g> =	 h
1				E&,D,2 > :iE9ij;Fki(E, :)
0				ikVi																																					

, 

$> =	h
1				f&,D,2 > :iE9ij;Fki(f, :)
0				ikVi																																							

. 

 

 

Then, for each percentile p we calculate the Sørensen-Dice coefficient SDC between the two,  
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lmn>X"g>, $>Y =
∑ E&,D,2f&,D,2 	&,D,2

∑ E&,D,2 + ∑ f&,D,2&,D,2&,D,2
, E ∈ "g>, f ∈ $>	 

  

which allows us to plot the Dice coefficient as a function of the percentile (Figure 2b). To have a 

singular numerical basis for comparison we also computed the normalized cross-correlation 43 

between the (non-binarized) average maps " and the reference map $	, 

 

  

jnn("g, $) = 	
∑ (E&,D,2 − E̅&,D,2 )(f&,D,2 − f̅)	

q∑ (E&,D,2 − E̅)A ∗ 	∑ (f&,D,2 − f̅)A&,D,2&,D,2
, E ∈ "g, f ∈ $.	 

 

To facilitate an intuitive understanding of what parts of the brain the dementia-model is focusing 

on, we also performed a similar, region-wise comparison. This was done by extracting a subset 

of voxels from the average relevance map "!"#"$%&',  

 

"Q  =  sE&,D,2  I (F,  G,  H)  ∈ tu, 

 

where t is one of 69 regions defined in the Harvard-Oxford cortical and subcortical atlases 75. 

We did the same for $ and let the mean activation per region for both constitute a tuple 

 

v
∑ E*∈F0
|"Q|

,
∑ f/∈R0
|$Q|

x	 

 

plotted Figure 2c. However, since it is non-trivial to determine which aggregation method 

corresponds to the most understandable and intuitive interpretation, we also created plots for 

tuples of sums, 

 

yz E
*∈F0

, z f
/∈R0

{ 
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and maximum values 

 

Omax
*∈F0

E ,max
/∈R0

fS 

 

per region in Supplementary Figure 14.  

To quantify the importance of the spatial locations captured by the various LRP pipelines for 

predicting dementia, we implemented a procedure for iteratively occluding parts of the image 

based on the relevance maps and observing how the prediction from the dementia model changed 
76. Still using the true positives, for each pipeline !"#%'(2 for each MRI D1 we generated a 

baseline dementia-prediction y&1 and relevance map "%'(2. Then we located the voxel with the 

highest amount of relevance in "%'(2 and replaced a 15x15x15 cube centred around the voxel 

with random uniform noise �(0,  1), effectively concealing all information contained in this 

region. Next, we ran the modified image D%'(2<  through the dementia-model to see how the 

prediction +&%'(2<  changed as a function of the occlusion. Note that injecting a box of random 

noise into the image is not trivially equivalent to removing information, however we specifically 

applied the same modification in the random box-augmentation during training and are thus 

hopeful that the model is invariant to the injection beyond the information removal. We 

iteratively applied this modify-and-predict procedure, also masking out the regions from the 

relevant maps between each iteration to minimize overlap of occlusion windows, for 20 

iterations, producing a list of predictions [y&1,  +&%'(2< , +&%'(2
A , … , +&%'(2

<S ] plotted for each pipeline in 

Figure 2d (averaged across all true positives). The rate of decline in these traces indicate the 

importance of the regions found in the respective relevance maps. We quantified the differences 

between the pipelines !"#%'(2 by calculating the area over the area over their perturbation 

curves 76,  

 

ÅÇ#n%'(2 =	
<
A1 	X∑ +&1 −	+&%'(2

&A1
&T< Y. 
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Exploratory analyses in the MCI cohort 

In the exploratory MCI analyses we used !"#!"#"$%&' to generate predictions and relevance 

maps for participants from ADNI who were given an MCI diagnosis at inclusion. We first 

compiled the predictions and relevance maps (and the corresponding timestamps) for each 

participant at all timepoints into a single data structure we called a morphological record. We 

then tried to utilize this data structure to differentiate three groups: stable MCI patients (sMCI), 

progressive MCI patients (pMCI), and those who saw improvement in their cognition throughout 

the data collection phase. The remaining participants, e.g. those who either passed through all 

three diagnostic stages, or bounced between diagnoses, were excluded. Furthermore, we 

combined the stable and improving cohorts into a non-progressive group (nMCI) to facilitate 

binary group comparisons in the subsequent analyses. 

 

For the first analysis comparing predictions in the two groups, due to variability in the total 

number and the frequency of visits between participants, we aimed to create a matched dataset 

based on visit history from the nMCI and pMCI cohorts to compare the predictions in the two 

groups with reference to a specific timepoint. We first started with all the progressive patients 

:>  ∈ :ÉnÑ who got a diagnosis at timepoint ;$I<, and, for each patient individually, compiled 

all previous visits ;#,  U  ≤  j into a vector ℎ> representing the time of the visits. The entries 

>%1of the vector were the number of days until the diagnosis was given, ;$I< − ;#. For 

simplicity we also appended >%2.3 = 0 to ℎ>, such that for a single patient 

 

ℎ> = `>%4 ,  >%3 ,   … ,  >%2 ,  0b. 

 

Then, for each of the non-progressive patients :$  ∈ jÉnÑ who didn’t have a time of diagnosis 

(e.g. ;$I< is not given) we compiled a set á> of all possible history vectors ℎ> by varying which 

visit was chosen as ;1 and a terminal non-diagnosis timepoint ;$I<. Next, we defined a cost-

criterion for matching two histories (with an equal number of visits) as the sum of absolute 

pairwise differences between the vectors, 

 

9àV;(ℎ<, ℎA) = ∑ |>%1
03 −	>%1

05 |$
#T1 . 



 

 35 

 

For each pair of progressive and non-progressive patients X:>, :$Y this allowed us to calculate a 

best possible match, given that the stable patient had a total number of visits equal to or larger 

than the number of visits for the progressive patient: 

 

UL;9ℎX:>, :(Y = 	 â
min
0∈U67

9àV; åℎ>6 , ℎç			∃ℎ ∈ á>7 å|ℎ| = èℎ>6èç

∞																																			ikVi																																			
. 

 

 

Finally, we compiled the cost of the optimal match from all pairs into a matrix and found the best 

complete matching by minimizing the total cost across this matrix using the Hungarian algorithm 

implemented in scipy v1.6.3 77, such that each patient occurs in at most one pair.  

 

We estimated differences in predictions +& between the two groups using a linear mixed model. 

Specifically, we modelled +& at all timepoints before the terminal timepoint ;$I< as a function of 

age, sex (as controlling variables), years to diagnosis, categorical group membership (nMCI, 

pMCI), and an interaction between years to diagnosis and group. In addition, we had an 

independent intercept and slope per participant. The model was fit the formula API of 

statsmodels v0.13.2 78 using the formula 

 

+ ∼ Lfi + ViI + +iLEV	;à	>FLfjàVFV + n(fEàë:) + +iLEV	;à	>FLfjàVFV: n(fEàë:)

+ (1 + +iLEV	;à	>FLfjàVFV	|	VëìGi9;) 

 

on the matched dataset. A full overview of coefficients and p-values can be found in 

Supplementary Table 7.  

 

Due to the high dimensionality of the relevance maps, we decomposed them with a principal 

component analysis (PCA) before the final analyses. To fit the PCA we used the non-linearly 

registered relevance maps from a randomly selected timepoint for all MCI patients. Before fitting 

the model, all relevance maps were smoothed with a constant 3x3x3 blurring kernel using the 

convolution operation from Tensorflow 2.6 to strengthen the signal-to-noise ratio. The PCA was 



 

 36 

computed using scikit-learn v1.0.2 79, retaining 64 components (out of 1137 maximally possible) 

in a component vector 9  =  [91,  9<,   … ,  9VB]. An axial slice from each of the 64 components 

visualized in MNI152-space is shown in Supplementary Figure 9. 

 

We fit Cox proportional hazard models using the component vectors as predictors to assess the 

association between the relevance maps and progression as a function of age. In addition to the 

components, representing the maps, we controlled for sex in the model. The p-values and 

coefficient can be found in Supplementary Table 7. To account for covariance between the 

components and the dementia-prediction +& (Supplementary Figure 10) we ran an additional 

model where we divided the patients into ten strata based on +&. Both models were fit using 

lifelines v0.27.1 80. 

 

To further explore the prognostic efficacy of our pipeline we set up a predictive analysis for 

predicting progression at multiple, fixed timepoints a given number of months in the future. For 

each participant : with visits at timepoints ;>, we denoted the last timepoint with an MCI 

diagnosis ;$"/
>  and the first timepoint with a dementia diagnosis (if present) ;>+(

> . Using a fixed 

set of years into the future, <  ∈ {1,  2,  3,  4,  5}, we constructed a target variable îW(;>) such that  

 

îW(;>) = ï
1						;> + < ≥ ;>+(

>

0						;> + < ≤ ;$"/
>

óÅ		ikVi																		

 

 

 

where the NAs allow for exclusion of all patients where the status at timepoint ;> + < is 

unknown. For each < we constructed the target vector îW  across all timepoints for all participants 

with îW  ≠ óÅ and split the constituent patients :	into five folds stratified on îW, sex and age, 

such that all timepoints from a participant resided in the same fold. Using these folds, we fit 

logistic regression models to predict îW with an k<-penalty in a nested cross-validation loop, 

allowing us to both tune the regularization parameter ô and have out-of-sample predictions for 

all participants. For eligible participants we used all timepoints for training the models, but 
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during testing we sampled a random timepoint per participant to ensure independence between 

datapoints in the final evaluation. For each < we fit three models: a baseline model 

 

ℳ='("   ≔  îW  ~ Lfi%6 + ViI + Lfi%6 × ViI 

 

to assess the bias in the dataset with respect to age at the given timepoint ;> and sex, a model 

using the prediction  +&%6 from the dementia classifier at ;> as a predictor  

 

ℳ>*"!   ≔  îW  ~ Lfi%6 + ViI + Lfi%6 × ViI  +  +&%6   +  Lfi%6 × +&%6 

 

and a model including the relevance maps from ;>, represented by the component vector 9%6,  

 

ℳ?+#>  ≔  îW  ~ Lfi%6 + ViI + Lfi%6 × ViI  +  +&%6   +  Lfi%6 × +&%6   +  9%6. 

 

All models were fit and tuned using the LogisticRegressionCV interface of sklearn v1.0.2 79. We 

compared models by measuring the mean AUC across the five folds (Supplementary Table 8). 

To evaluate clinical applicability we also report accuracy, positive predictive value, sensitivity, 

and specificity (Table 2). To determine whether the more complex models represented 

significant improvements we employed a Wilcoxon signed-rank test from scipy v1.9.3 77 to do 

pairwise comparisons between ℳ='(" and ℳ>*"!, and ℳ>*"!,  and ℳ?+#> on results from the 

five out-of-sample AUCs independently. 

 

To assess whether the relevance maps were associated with specific cognitive functions we 

associated aspects of them with performance on various cognitive tests. We first extracted test 

results from seven neuropsychological batteries which spanned all ADNI waves and contained 

high-level summary scores from the ADNI website (Supplementary Table 9). We then manually 

extracted 17 summary scores spanning different, but overlapping, cognitive domains 

(Supplementary Table 10). The component vectors 9 were used as proxies for the relevance 

maps, where each 9& represented a template for localization of pathology. We matched 2402 

component vectors with test results from 733 MCI patients, forming a basis for the comparison. 

We then calculated the univariate association between cognitive performance according to each 
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of the 17 with each of the dimensions 9&   ∈ 9, while including age and sex as covariates for 

correction. To isolate the effect of the localization we also corrected for dementia-prediction, +&. 

When a patient had multiple potential matches, a random timepoint was selected, and the final 

number of datapoints used in the analyses varied from 518 to 675. Correction for multiple testing 

was done with the Benjamini-Hochberg procedure. The coefficients and p-values of all 

correlations are reported in Supplementary Table 13. To ensure the associations were not 

confounded by collinearities between 9 and +&, we also performed an equivalent analysis without 

correction to observe whether the sign of the coefficients changed (Supplementary Table 14). 
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Supplementary Figure 1: Predictive performance of the best performing
dementia classifiers, combined across each out-of-sample test fold.
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Supplementary Figure 2: Example relevance maps produced by the pipeline
for three randomly selected dementia patients.
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Supplementary Figure 3: Average voxel-wise relevance maps produced for the
four pipelines across all correctly predicted dementia patients.



Supplementary Figure 4: Statistical map of dementia-related pathology
generated by a GingerALE meta-analysis of 124 articles.
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Supplementary Figure 5: Morphological record for a randomly selected stable
MCI patient across six visits.
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Supplementary Figure 6: Morphological record of a randomly selected
improving MCI patient across seven visits.
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Supplementary Figure 8: Explained variance for each of the 64 selected PCA
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Supplementary Figure 9: A single axial slice from each of the 64 principal
components plotted in brain space.
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Dataset Controls Patients
AddNeuroMed MMSE ≥ 24 MMSE < 19

ADNI DX = CN DX = AD
AIBL DX = DXNORM DX ∈ {DXAD, DXOTHDEM}

Demgen - DX ∈ {AD, OtherDem, UnspecDem, VaD}
MIRIAD Group = Control Group = AD
OASIS3 NORMCOG = 1 NORMCOG = 0 & DEMENTED = 1

StrokeMRI Group = Control -
TOP diagnosis = CTRL -

Supplementary Table 2: Criteria for inclusion in the case-control groups. For
replicability, variable and category names are kept as they were originally used

in the originating dataset.



Validation Test
Fold AUC Accuracy AUC Accuracy

0 0.914 84.16% 0.917 83.04
1 0.929 84.79% 0.920 86.25
2 0.925 85.96% 0.915 87.13
3 0.929 87.42% 0.904 84.45
4 0.904 84.16% 0.905 83.87

0.918 85.30 0.908 84.95

Supplementary Table 3: Predictive performance of the dementia classifiers
split up into individual folds. The fold number denotes which fold was used as

the test fold for the given run.



Sites Size AUC Accuracy Confusion Matrix
ADNI 3.0T 506 0.942 90.11 237 16

34 219
OASIS 3.0T 438 0.850 79.45 185 34

56 163
ADNI 1.5T 290 0.944 87.93 125 20

15 130
Oslo GE750 226 0.900 84.07 102 11

25 88
AIBL Site 1 92 0.906 84.78 43 3

11 35
ANM GE 74 0.848 72.97 26 11

9 28
Miriad 1.5T 38 0.997 97.36 19 0

1 18
AIBL Site 2 22 0.950 86.36 11 0

3 8
OASIS 1.5T 12 0.666 58.33 3 3

2 4
ANM Picker 10 0.76 70.00 3 2

1 4

Supplementary Table 4: Predictive performance of the dementia classifiers
split up into individual proxy sites.



Layer LRP Strategy Parameters
Conv3D flat {♭ = True}
Conv3D flat {♭ = True}
Conv3D alpha-beta {α = 1,β = 0}
Conv3D alpha-beta {α = 1,β = 0}
Conv3D alpha-beta {α = 1,β = 0}
Conv3D alpha-beta {α = 1,β = 0}
Dense epsilon {ϵ = 0.25}

Supplementary Table 5: Composite LRP strategy that was used for generating
the explanations.



Variable Coefficient p
intercept −0.373 1.94× 10−3

sex[M] −0.084 7.29× 10−4

group[pMCI] 0.473 6.05× 10−71

age 0.009 8.76× 10−10

years_to_diagnosis 0.013 3.92× 10−3

years_to_diagnosis:group[pMCI] 0.050 8.14× 10−17

Supplementary Table 6: Coefficients and p-values from the linear mixed model
modelling dementia prediction ŷ as a function of various variables, including

membership in the progressive (pMCI) or non-progressive group.



Uncorrected Corrected for ŷ
Component p β p β

0 1.60 × 10−66 0.683 0.003 0.18
1 0.061 −0.043 0.001 −0.07

2 4.41 × 10−26 −0.248 1.74 × 10−20 −0.22

3 2.32 × 10−20 0.222 9.49 × 10−10 0.16

4 6.61 × 10−14 0.173 3.91 × 10−09 0.14
5 0.117 −0.032 0.525 −0.01

6 1.22 × 10−04 −0.083 2.84 × 10−05 −0.09
7 0.11 −0.036 0.037 0.05

8 2.90 × 10−04 0.076 7.93 × 10−04 0.07
9 0.164 0.028 0.766 0.01

10 0.024 0.051 0.049 0.05

11 5.74 × 10−05 0.082 1.25 × 10−04 0.08

12 3.50 × 10−05 −0.09 2.78 × 10−06 −0.1

13 0.003 −0.063 1.13 × 10−05 −0.1

14 6.83 × 10−05 0.088 0.003 0.07

15 1.94 × 10−04 −0.081 1.91 × 10−06 −0.1
16 0.001 −0.071 0.016 −0.05

17 6.44 × 10−05 −0.087 0.001 −0.07

18 0.002 −0.064 9.70 × 10−07 −0.1
19 0.316 −0.022 0.152 −0.03
20 0.492 0.016 0.949 0.0
21 0.484 −0.018 0.374 −0.02

22 0.008 −0.067 6.99 × 10−05 −0.1
23 0.018 0.049 0.068 0.04

24 4.03 × 10−06 −0.106 1.02 × 10−04 −0.09

25 0.017 0.057 5.75 × 10−04 0.08

26 1.40 × 10−07 −0.11 3.63 × 10−07 −0.11
27 0.368 0.019 0.006 0.06
28 0.546 0.013 0.229 0.03

29 4.03 × 10−04 −0.075 2.80 × 10−04 −0.08

30 3.44 × 10−08 −0.104 1.72 × 10−15 −0.16
31 0.859 0.004 0.617 0.01
32 0.061 0.04 0.029 0.05

33 0.003 −0.063 5.71 × 10−04 −0.08
34 0.059 0.04 0.001 0.07
35 0.316 −0.024 0.792 0.01
36 0.233 0.023 0.007 0.05

37 1.82 × 10−05 −0.09 5.41 × 10−06 −0.1

38 7.93 × 10−04 0.075 0.001 0.07
39 0.267 −0.022 0.07 −0.04

40 0.01 0.052 3.62 × 10−05 0.08
41 0.159 −0.034 0.08 −0.04

42 1.87 × 10−07 −0.116 2.83 × 10−10 −0.14
43 0.044 0.042 0.104 0.03
44 0.009 0.058 0.1 0.04
45 0.157 0.032 0.287 0.02
46 0.81 0.005 0.399 −0.02

47 2.24 × 10−05 0.087 0.001 0.07
48 0.067 0.034 0.009 0.05
49 0.159 0.028 0.009 0.05
50 0.969 0.001 0.196 −0.02
51 0.004 0.065 0.01 0.06
52 0.691 0.008 0.424 0.02
53 0.805 −0.005 0.941 −0.0
54 0.204 0.032 0.071 0.05
55 0.082 0.033 0.121 0.03
56 0.207 0.028 0.104 0.04
57 0.147 −0.03 0.052 −0.04

58 2.18 × 10−08 −0.11 4.09 × 10−09 −0.12

59 0.05 0.035 7.21 × 10−04 0.06
60 0.412 −0.017 0.173 −0.03
61 0.554 0.011 0.555 0.01

62 8.24 × 10−04 0.067 0.023 0.05
63 0.336 0.019 0.006 0.05

Supplementary Table 7: Coefficient and p-value for each component in the two
Partial Hazard analyses. In the corrected analyses (the two rightmost

columns), the patients were stratified based on ŷ, to isolate the effect of the
components.



odel alanced accurac PP Sensiti it Speci cit
Mbase 0.506±0.039 49.85%±3.7% 0.11±0.1 0.31±0.26 0.69±0.26
Mpred 0.666±0.083 61.49%±10.58% 0.21±0.12 0.56±0.31 0.67±0.18
Mcomp 0.743±0.063 70.1%±4.79% 0.32±0.03 0.68±0.11 0.72±0.02

a ne yea
odel alanced accurac PP Sensiti it Speci cit

Mbase 0.474±0.05 49.47%±5.34% 0.33±0.05 0.47±0.06 0.52±0.07
Mpred 0.742±0.053 69.92%±5.24% 0.52±0.07 0.75±0.09 0.65±0.08
Mcomp 0.786±0.019 74.31%±0.99% 0.61±0.04 0.72±0.04 0.76±0.06

o yea
odel alanced accurac PP Sensiti it Speci cit

Mbase 0.536±0.032 53.9%±3.78% 0.32±0.26 0.35±0.29 0.73±0.23
Mpred 0.797±0.037 75.76%±4.16% 0.75±0.04 0.76±0.09 0.76±0.06
Mcomp 0.808±0.016 77.17%±2.29% 0.79±0.04 0.72±0.03 0.82±0.05

c ee yea
odel alanced accurac PP Sensiti it Speci cit

Mbase 0.529±0.056 53.01%±3.74% 0.38±0.32 0.35±0.29 0.71±0.24
Mpred 0.844±0.041 80.6%±4.09% 0.84±0.04 0.82±0.06 0.79±0.04
Mcomp 0.867±0.031 80.38%±3.26% 0.87±0.02 0.75±0.08 0.85±0.02

Fou yea
odel alanced accurac PP Sensiti it Speci cit

Mbase 0.515±0.031 51.05%±2.09% 0.14±0.28 0.09±0.18 0.93±0.14
Mpred 0.889±0.024 83.61%±1.81% 0.91±0.02 0.83±0.04 0.84±0.03
Mcomp 0.903±0.034 84.1%±2.52% 0.92±0.02 0.82±0.03 0.86±0.04

e Fi e yea

Supplementary Table 8: Predictive performance for each of the progression
models at each of the five years following the MRI examination.



Name Included Exclusion reason
Alzheimer’s Disease Assessment Scale Sub-scores No Missing ADNI2, 3, GO

ADSP Phenotype Harmonization Consortium Yes
Alzheimer’s Disease Assessment Scale No Missing description

Clinical Dementia Rating Yes
Cognitive Change Index No Missing ADNI1, GO

Cogstate Battery No Missing ADNI1, GO
Cogstate Brief Battery No Missing ADNI1, 2, GO

Digital Cognitive Biomarkers No Missing summary scores
Everyday Cognition No Missing ADNI1

Financial Capacity Instrument No Missing ADNI1, 2, GO
Functional Activities Questionnaire Yes

Geriatric Depression Scale Yes
Item level data No Missing ADNI2, 3, GO

Mini-Mental State Examination Yes
Modified Haschinski Ischemia Scale No Non-congruent visit codes

Montreal Cognitive Assessment No Missing ADNI1
Neuropsychiatric Inventory Questionnaire Yes

Neuropsychological Battery No Missing explanation
UW - Neuropsych Summary Scores Yes

Supplementary Table 9: Neuropsychological assessments used as a basis for
finding associations with the components from the relevance maps.



Variable Source Description
PHC_MEM ADSP Phenotype Harmonization Consortium Harmonized composite memory score
PHC_EXF ADSP Phenotype Harmonization Consortium Harmonized composite executive function score
PHC_LAN ADSP Phenotype Harmonization Consortium Harmonized composite language score
PHC_VSP ADSP Phenotypxe Harmonization Consortium Harmonized composite visuospatial score

CDRMEMORY Clinical Dementia Rating Clinical evaluation of impairment related to memory
CDRORIENT Clinical Dementia Rating Clinical evaluation of impairment related to orientation
CDRJUDGE Clinical Dementia Rating Clinical evaluation of impairment related to judgement and problem solving

CDRCOMMUN Clinical Dementia Rating Clinical evaluation of impairment related to community affairs
CDRHOME Clinical Dementia Rating Clinical evaluation of impairment related to home and hobbies
CDRCARE Clinical Dementia Rating Clinical evaluation of impairment related to personal care

CDRGLOBAL Clinical Dementia Rating Total clinical dementia rating
MMSCORE Mini-Mental State Examination Overall measure of cognitive impairment
FAQTOTAL Functional Activities Questionnaire Measures instrumental activities from daily life
GDTOTAL Geriatric Depression Scale Screening for depression in elderly adults
NPISCORE Neuropsychiatric Inventory Questionnaire Informant-based assessment of Neuropsychiatric symptoms
ADNI_EF UW - Neuropsych Summary Scores Composite score for executive functioning

ADNI_MEM UW - Neuropsych Summary Scores Composite score for memory

Supplementary Table 10: Test scores which were correlated against the
components from the relevance maps.



Hyperparameter Values
Dropout {0.25, 0.5}

Weight decay {1e-2, 1e-3}
Augmenter {Light, Heavy}

Learning rate {Stepwise, Cyclical, One-Cycle}

Supplementary Table 11: Hyperparameters that were tuned when training the
dementia classifiers.



Augmentation Light Heavy Unit
Sagittal flip 0.5 0.5 Probability
Sagittal shift [0,5] [0,5] Voxels
Coronal shift [0,5] [0,5] Voxels
Axial shift [0,5] [0,5] Voxels

Zoom [0, 0.05] Fraction
Rotation [0, 5] Degrees

Noise [0, 0.1] Fraction
Blur [0, 0.2] Fraction

Crop box [0, 50] [0, 50] Voxels

Supplementary Table 12: Augmentations used in the two augmenters. For the
augmentations with a range, values were sampled for each image each epoch in

real-time during training.
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