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1 General Summary

Neuropsychiatric disorders are emerging as leading causes of disability and mor-
tality on a global scale (World Health Organization, 2021, 2022). Many of these
are clinical syndromes characterized by a variety of symptoms, including cog-
nitive impairments and behavioural dysfunctions. However, these symptoms
are dimensional and often overlap between disorders, complicating the effort to
precisely recognize and delineate them. This has ignited a search for quanti-
tative biological measures that can be used to accurately describe aberrations
in individual patients, both to elucidate the true nature of these conditions
and facilitate precise and personalized clinical decision-making. One potential
venue to realize this goal is through Magnetic Resonance Imaging (MRI), where
high-resolution images are acquired non-invasively to capture biological aspects
of the brain. However, analyses of MRI scans from neuropsychiatric patients
have so far been unable to reveal canonical patterns of aberrations distinctive of
the different disorders, and discerning them remains a challenge. One possible
explanation for this inability is the limited expressive power of the statistical
models employed to detect patterns of deviations in the imaging data.

Over the last decade, the renaissance of artificial intelligence and deep learn-
ing has provided new opportunities to discover and exploit complex patterns in
image data for predictive tasks (LeCun et al., 2015). This has been enabled by
artificial neural networks, advanced statistical learning models that learn how
to combine facets of data to form new, composite, representations, revealing
new perspectives of its content. These technological advances present a pivotal
opportunity for detecting subtle and intricate neuroanatomical aberrations in
MRI data that were previously inaccessible due to their complexity. This could
expand our knowledge of the biological deviations associated with neuropsychi-
atric disorders and provide accurate tools to support personalized diagnostics
and treatments. However, it requires overcoming two major challenges innate
to deep learning models: their incomprehensibility, making them hard to trust
and learn from, and their demand for large datasets.

In the current thesis, we aimed to explore the potential of using deep neural
networks to learn complex representations from neuroimaging data to charac-
terize biological aberrations in patients afflicted by neuropsychiatric disorders.
To this end, we trained convolutional neural networks (CNNs) on structural

MRI data from large, heterogeneous datasets to predict various tasks. Next,



we used information derived from these models to evaluate their potential for
supporting clinical decision-making and to elucidate the association between the
representations they have learned and various other measures.

In paper I we trained CNNs to predict apparent brain age, a promising
imaging biomarker for depicting generalized brain health, highlighting the ca-
pacity of these models to learn robust representations that generalize to unseen
data. Next, we demonstrated that the brain age predicted by the model was
associated with a range of other phenotypic variables. Finally, we showed that
both brain age and the representations underlying it were useful to recognize
patients with a range of neuropsychiatric disorders. In paper II we trained
further brain age models to investigate its association with genetic variability.
Here, we detected seven novel genetic variants associated with differences in
apparent brain age, expressed across a variety of tissues. We also performed
analyses to investigate the causal relationship between deviations in brain age
and neuropsychiatric disorders, without revealing conclusive evidence. In paper
III we trained a classifier to differentiate patients with dementia from healthy
controls and employed a technique from explainable artificial intelligence to ex-
plain its predictions. This allowed us to probe what representations the model
had learned, and investigate which regions of the brain it used to make decisions
for individual scans. We observed that the model generally focused on regions
that are known to contain aberrations in dementia patients and that localizing
pathology for individual patients supported prognostic predictions.

Taken together, the current thesis presents evidence that deep learning mod-
els can learn to detect complex patterns in neuroimaging data that are associated
with aberrations occurring in various neuropsychiatric disorders. Furthermore,
we have demonstrated how we can employ a variety of methods to understand
what these representations mean, even though the models themselves are in-
comprehensible. Finally, we have shown that leveraging these representations
can elucidate the heterogeneity innate to these disorders and support precise

clinical decision-making for individual patients.
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4 Introduction

In recent years, several neurological and mental, collectively denoted neuropsy-
chiatric (World Health Organization, 2001), disorders have emerged as lead-
ing causes of disability and mortality (World Health Organization, 2021, 2022).
While these conditions are multifaceted, they share common characteristics such
as heterogeneous and overlapping symptomatologies and poorly understood eti-
ologies, giving them an enigmatic appearance. The complexities of their biolog-
ical underpinnings have fostered interdisciplinary efforts to collect and analyze
unprecedented amounts of biological data in search of clues of their true nature.
However, identifying patterns in these high-dimensional data require modelling
techniques with expressive capabilities beyond what has traditionally been used.
The last ten years have seen an unparalleled rise in the popularity of artificial
intelligence, where advanced deep learning techniques learn to recognize and ex-
ploit complex relationships in data (LeCun et al., 2015). Deep neural networks
have displayed their potential by repeatedly outperforming human adversaries
in a range of predictive tasks. The maturation of deep learning presents a pivotal
opportunity to increase our understanding of the biological aberrations underly-
ing neuropsychiatric disorders, and ultimately alleviate the burden they impose.
However, this requires the efforts of experts from various scientific domains to

collectively develop and apply the novel methodologies that are needed.

4.1 The neuroscientific perspective on neuropsychiatric dis-
orders

The brain is our most intricate organ and among the most complex structures
in the known universe. Through a sophisticated interplay between electrical,
biochemical, and physical signalling systems it is the source of our actions and
thoughts, hopes and dreams. Ever since Hippocrates, the ancient Greek fa-
ther of medicine, identified it as the seat of consciousness and the epicentre of
perception and action, great minds have been fascinated by the quest to un-
derstand how a biological organ can give rise to mental states, a rich inner life,
and, ultimately, behaviour. Historically, this investigation has taken on many
forms across various scientific disciplines, but since the 1960s many of these have
converged under the encompassing umbrella of neuroscience. While the overar-
ching goal of the field still traces its ancient origins, the approaches employed

to reach it have changed dramatically, propelled forward by an ever-growing



body of knowledge and technological advances. Nonetheless, despite leaps in
understanding, a comprehensive account of the biological substrates of mental
phenomena remains elusive.

While an individual mental state is transient, representing an immediate
response to internal or external stimuli, they combine in sequences to form
longer lasting mental processes. Across these there is an apparent temporal
stability to each one of us as individuals, constituting high-level characteris-
tics such as personality traits, cognitive capacities, and ability to regulate our
emotions. Aberrations in these composite faculties sometimes lead to an endur-
ing deterioration in the well-being of an individual, or their ability to function
in society, constituting characteristic features of a neuropsychiatric condition.
This is a broad scope encompassing a wide array of disorders and diseases, but
many of them share essential properties. First and foremost, they are clinical
syndromes largely recognized and diagnosed with an emphasis on behavioural
symptomatology rather than the presence of quantitative biomarkers. This is
in part because their aetiologies are largely unknown, indicating that we don’t
know what causes them to occur in some individuals but not others. Further-
more, the defining clinical characteristics are generally considered dimensional
phenomena, where the individuals fulfilling the criteria for a clinical diagnosis
experience symptoms on the extreme end of a continuum that also encompasses
variability in the general population. Taken together, these defining features
portray a complicated clinical landscape.

The scope of disorders that fall within these bounds is extensive, and this
thesis will only concern itself with a subset of diagnoses representing some of
the diversity it encompasses. Schizophrenia (SCZ) is a mental disorder char-
acterized by a loss of touch with reality manifested through psychotic episodes
and hallucinations as well as cognitive and social dysfunction. Bipolar disor-
der (BIP) entails problems with emotion regulation, with those afflicted alter-
nating between periods of extreme emotional highs and lows. These patients
also frequently experience psychotic episodes, most commonly in relation to
manic states, the extreme highs. Patients with depression experience low moods
and reduced motivation, often combined with impaired cognition. When these
symptoms cause a persistent reduction in life quality, this can result in a ma-
jor depressive disorder (MDD) diagnosis. Dementia (DEM) is an aging-related
cognitive condition that is used to describe patients with a cognitive decline
severe enough to significantly interfere with their daily lives. In milder cases,

where symptoms are apparent but not incapacitating, patients are diagnosed



with mild cognitive impairment (MCI). There are multiple biological aetiologies
associated with cognitive decline. The most common is Alzheimer’s Disease
(AD), recognized by the presence of specific proteins in the brain (Knopman
et al., 2021), occurring in approximately 70% of dementia cases. However, it
is possible to have dementia without AD pathology, and individuals with AD
pathology may display normal cognitive function (Aisen et al., 2017). Multiple
sclerosis (MS) is an autoimmune disease where the immune system starts attack-
ing brain tissue. It specifically targets white matter, myelin sheets that wrap
nerve fibres to enhance communication in the brain. Over time, this reduces
the brain’s ability to distribute and process information and decree commands,
causing a variety of symptoms related to perception, cognition, and motor con-
trol. Symptoms related to the latter are also prevalent in Parkinson’s disease
(PD), where neuronal atrophy of primarily dopaminergic neurons deteriorates
the ability of those afflicted to control their movements.

The above portrayal of the seven clinical conditions included in the current
thesis provides a rough nosology describing the subset of neuropsychiatric con-
ditions addressed here. Based on such simplified depictions it is easy to get the
impression that these are well-defined, disparate entities. However, this impres-
sion does not hold up to scrutiny. SCZ and BIP have a large psychopathological
and phenomenological overlap (Pearlson, 2015), highlighting the intricacies of
delineating the diagnoses by distinct symptomatologies. This is exacerbated by
the existence of comorbidities, when multiple conditions co-occur in the same
individual. For instance, patients with SCZ have substantially increased preva-
lence of MDD (Upthegrove et al., 2017). Furthermore, a variety of cognitive
impairments have been observed in SCZ (Kahn et al., 2015; Keefe & Harvey,
2012), BIP (L. J. Robinson & Nicol Ferrier, 2006), and MDD (Pan et al., 2019).
Patients with DEM and MCI often display a change in personality, regularly
entailing depressive symptoms (Enache et al., 2011). Cognitive impairments
are common among patients with MS (Brassington & Marsh, 1998; Risacher &
Saykin, 2013) and PD (Emre, 2003; Poewe et al., 2017), and there is a substan-
tial increase in the prevalence of MDD in these two patient groups compared
to the general population (Aarsland et al., 2012; Siegert & Abernethy, 2005).
Findings like these implicate these conditions as symptomatically overlapping
(Woo et al., 2017), high-dimensional (Kupfer & Regier, 2010), and continuous
(Helzer et al., 2006; Markon et al., 2011), such that identifying the correct

diagnosis can prove challenging (Freedman et al., 2013).



4.1.1 Brain imaging in neuropsychiatric disorders

While the neuropsychiatric disorders outlined above are diagnosed, and often
even defined, through the presence of symptoms (Arbabshirani et al., 2017),
there is an undeniable concomitance between variability in the brain and along
symptomatic spectrums (Bennett & Hacker, 2022). Thus, the neuroscientific
scope extends, by encompassing the pursuit to identify and decipher the neural
substrates that underlie them.

Since its invention in the 1970s, magnetic resonance imaging (MRI) has pro-
vided an unparalleled opportunity to non-invasively study the brain in living
organisms. MRI is a versatile medical imaging technique quantifying properties
of biological tissue via the application of strong magnetic fields. In both neu-
roimaging research and clinical neurological examinations, T1-weighted MRI has
played a central role in assessing brain structure over the last decades (Symms
et al., 2004). Here, a radio frequency pulse is used alongside the magnetic field
to rapidly alter the alignment of protons in the atomic nuclei in the brain. When
these realign with the magnetic field generated by the magnet, signals are emit-
ted that can be detected by sensors in the scanner. Based on the duration of
the realignment, the so-called relaxation time, properties of the tissue surround-
ing the proton can be derived. In the brain, this tissue is usually classified as
either grey matter, mainly comprised of neuronal cell bodies, or white matter,
primarily containing nerve fibres wrapped in myelin.

In this thesis, all papers rely on T1-weighted structural MRIs, which from
here on will be referred to as structural MRIs. The atomic units in a struc-
tural MRI are voxels, the volumetric equivalent of pixels, containing informa-
tion about a cubical region of the brain with varying dimensionality, commonly
~ 1mm? (Liang & Lauterbur, 2000). In each voxel, the information harvested
by the scanner is encoded as an intensity value, a single numerical value de-
noting characteristics of the tissue in this circumscribed region of space. This
is further interpreted as describing the tissue type located within the voxel, be
it white or grey matter, part of the encapsulating skull, or cavities filled with
cerebrospinal fluid. When combined, the delineation of tissues between voxels
in a structural MRI allows for outlining regions that conjoin to make up the
anatomical structure of the brain, hereafter referred to as neuroanatomy.

The information captured in structural MRIs provides a basis for investigat-
ing the brains of patients with neuropsychiatric disorders using statistical meth-

ods. The high-dimensional information encoded in the images can be condensed
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by segmenting anatomical regions of interest (ROIs), a process that was origi-
nally performed manually but has later been automatized (Fischl et al., 2002).
The volumetric properties of these regions, such as size or shape, can then be
compared across patients and healthy controls to detect group-wise differences
using standardized statistical methodology. Relatedly, voxel-based morphom-
etry investigates regional brain morphometric properties via differences in in-
dividual voxels, as opposed to delineated regions (Ashburner & Friston, 2000).
Applying either of these methods to detect differences between individuals as-
sumes spatial correspondence at the relevant measurement level, i.e. that the
region or voxel in one individual corresponds to the region or voxel in another
individual. This is often achieved through image registration, the spatial con-
solidation of images against each other or a common template (Jenkinson &
Smith, 2001). Subsequently, differences between patients and controls for each
measure can be quantified via statistical inference. As such, these approaches
are essentially two-step processes, where a preprocessing step produces measures
that are subsequently analysed with statistical techniques.

Applications of variants of the analytical approaches outlined above to struc-
tural MRI data have yielded a wealth of insights into neuroanatomical aberra-
tions apparent in brain imaging data from neuropsychiatric patients. Case-
control comparisons in SCZ have revealed subtle, but widespread, group-level
reductions in both white and grey matter volumes in the cortex (van Erp et al.,
2018), and subcortically, including smaller hippocampi, amygdala, and thala-
mus (Kahn et al., 2015). In BIP, reduced cortical thickness has been observed
at the group level, most prominently in frontal, temporal, and parietal regions
(Hibar et al., 2018). Additionally, reductions in the volumes of subcortical struc-
tures have been reported, including the hippocampi and thalamus (Hibar et al.,
2016). For patients with MDD, the most consistent finding is that of reduced
volume of the hippocampi (Otte et al., 2016; Schmaal et al., 2020), in addition
to reduced volumes and surface areas across the cortex (Schmaal et al., 2017).
In AD, volumetric reductions in the medial temporal lobe have been recorded
years before the onset of clinical symptoms (Knopman et al., 2021). As the
disease progresses this neurodegeneration spreads extensively across the brain,
a feature shared with the other aetiologies underlying DEM and MCT (Risacher
& Saykin, 2013). MS and PD also have a substantial neurodegenerative com-
ponent as revealed by structural MRIs. In the former, beyond the presence of
idiosyncratic lesions that occur where the immune system causes demyelination

(Filippi et al., 2018), MRI indices suggesting widespread neurodegeneration have
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been reported (Hauser & Oksenberg, 2006). For the latter, the characteristic
neuropathological feature is degeneration of the substantia nigra (Poewe et al.,
2017), which has been shown to be accompanied by reduced cortical thickness
spanning large areas of the cortex (Laansma et al., 2021). Overall, there is
clear evidence for the presence of volumetric differences in the brains of patients
suffering from neuropsychiatric disorders, most prominently reductions in both

cortical and subcortical brain volumes.

4.1.2 Shortcomings of the case-control paradigm in the face of het-

erogeneity and comorbidity

The literature reviewed above demonstrates that the brain imaging features as-
sociated with neuropsychiatric disorders collectively form a complex and hetero-
geneous pattern. This is further complicated by the discovery that the number
of associations reported in the literature as a whole has been shown to dramat-
ically outnumber what is expected statistically (Button et al., 2013; Ioannidis,
2011), indicating that they should be interpreted with care. Relatedly, reported
findings of aberrations in patient groups based on neuroimaging data have been
notoriously hard to replicate (Boekel et al., 2015; Vogt, 2023). Furthermore,
the group-level findings listed above are subject to substantial intra-group het-
erogeneity, a phenomenon that has been quantified empirically (Wolfers et al.,
2018; Wolfers et al., 2021; Young et al., 2018). Many of the aberrations are also
overlapping between disorders, underscoring the intricacies of delineating them
based on observable differences in neuroimaging data (Venkatraghavan et al.,
2023). This has been empirically validated in a meta-analysis across mental dis-
orders (including SCZ, BIP, and MDD) revealing that the available evidence for
overlapping volumetric anomalies outweighs that of disease-specific aberrations
(Goodkind et al., 2015). In MS, cortical and subcortical grey matter volumes
have been shown as better predictors of long-term disability than volumes of
the characteristic lesions (Moridi et al., 2022). Post-mortem examinations have
found that one third of PD patients with DEM also met neuropathological crite-
ria for an AD diagnosis (Galvin et al., 2006). To conclude, the neuroanatomical
viewpoint corroborates the clinical, a continuous landscape where groups are
heterogeneous, and their demarcations are obscure. This perspective is also
supported by genetic studies, with the discovery of genetic variants that un-
derlie a variety of neuropsychiatric disorders (Brainstorm Consortium et al.,
2018).
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Even in the instances where the literature is not conflicting, and reported
group differences appear stable, it is worth contemplating their implications.
Group differences are typically inferred by comparing a group of healthy con-
trols with a group of patients, both including individuals that vary in many
respects not encompassed by their diagnostic status (Kopal & Bzdok, 2023).
The comparison itself is most commonly operationalized by quantifying the dif-
ference between the group means. Taken together, these two properties can
yield results that are statistically significant, but where the within-group vari-
ability overshadows the between-group difference. This yields discoveries that
are plausibly biologically valid but with marginal predictive value for the indi-
vidual (Bzdok et al., 2020; Davatzikos, 2019). Further aggravating this issue is
the impediment that most neuroimaging studies have been carried out in rel-
atively small groups (Marek et al., 2022; S. M. Smith & Nichols, 2018), often
combined with suboptimal validation strategies, most prominently in-sample
evaluations (Yarkoni & Westfall, 2017). All in all, this has multiple undesirable
effects on the knowledge produced by the field. First, inadequate predictive
value is limiting in and of itself, as it reduces the translational value of results
(Woo et al., 2017). Second, the fact that the knowledge is not predictive im-
plies that the differences that are found fail to encompass the phenomena being
investigated. Despite these limitations, descriptive approaches comparing MRI-
derived measures between groups using traditional statistical inference remain
the predominant methodology in the field (Loth et al., 2021).

4.1.3 From description to prediction: New venues for modelling the

relationship between brain and behaviour

To address the challenges presented by group-level, descriptive approaches, new
venues have been proposed over the last decade, aiming to increase the fidelity
of the models depicting the relationship between neuroimaging features and
behaviour. One is the reconceptualization of central ontological ideas. This
is epitomized through the reconsideration of the suitability of the case-control
paradigm with its implication of two disjunct, homogeneous, groups, an ideal-
ization that does not appear to represent clinical nor biological reality in neu-
ropsychiatric disorders. Instead, new conceptual approaches conceive patients
as a heterogeneous group that can deviate from the normalcy represented by
the controls in various ways (Marquand et al., 2019). One instance of such is

normative modelling (Marquand et al., 2016), where this overall goal is opera-
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tionalized through methodology that resembles pediatric growth charting. Here,
data is used to fit distributions for any given neuroimaging measure conditioned
on other variables, typically age, to outline a trajectory of values that are con-
sidered normal (Bethlehem et al., 2022; Rutherford et al., 2022). Normative
modelling has been used to model neuroanatomical aberrations in SCZ, BIP,
and MDD (Segal et al., 2023; Wolfers et al., 2018), and characterize diversity
in DEM (Verdi et al., 2021), proving its efficacy as a conceptual framework for
embracing heterogeneity.

Another emerging perspective in psychology and clinical neuroscience the
last decade has been a shift from description to prediction (Bzdok et al., 2021;
Rosenberg et al., 2018; Yarkoni & Westfall, 2017), made possible by machine
learning (ML) methods. A fundamental difference between the traditional, de-
scriptive framework and ML is what kind of knowledge the two methodologies
aim to produce (Breiman, 2001). In the simplistic case-control setting, the for-
mer aims to identify and describe differences between the groups as outlined
above, typically resulting in a set of measures where the groups significantly
differ. Conversely, predictive ML aims to identify which participants belong to
which group. The first step towards this goal is to procure a singular prediction
per individual. In its simplest form this is done using multivariate statistics,
where group-wise differences for each measure are identified, equivalent to the
descriptive approach. However, this is taken a step further, by comparing each
separate individual with the group-wise prototypes defined through these dif-
ferences and collapsing the results into a single prediction. Thus, instead of
procuring spatial maps of the brain highlighting locations where the groups
differ, predictive studies are evaluated through predictive performance mea-
sures indicating how well they classify individuals, such as accuracy or mean
prediction error (Varoquaux & Colliot, 2023). Furthermore, this general shift
towards prediction is often coupled with an emphasis on out-of-sample general-
ization as opposed to in-sample characterization as the main validation of the
utility of models (Bzdok, 2017), which is important to assess the translational
potential residing in clinical neuroimaging (Woo et al., 2017). The focus on
generalization and rigorous validation is also a natural remedy to counteract
the ongoing replication crisis (Botvinik-Nezer & Wager, 2022). More generally,
a shift towards prediction has the potential to profoundly change the mindset
of researchers, maturing clinical neuroscience as a quantitative, empirical field
of research (Yarkoni & Westfall, 2017).

The emphasis on predictive performance is naturally accompanied by the
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introduction of more expressive and accurate methods to model the relationship
between brain and behaviour (Bzdok & Yeo, 2017). Why the former enables
the latter is worth elaborating. One of the main benefits of the conventional
descriptive approach is its innate interpretability. Group-wise differences are
found in circumscribed spatial locations, either predefined ROIs or voxels, that
facilitate biological interpretations. This remains true also in the simplistic
multivariate predictive context outlined above. However, this approach also has
innate limitations. First, it necessitates a practical framework for ensuring that
the comparisons between individuals are based on comparable units, either by
forcing the images into the same stereotactic space or extracting ROIs. This
places a heavy burden on the veracity of the preprocessing methods underlying
this step (Bookstein, 2001). Second, it limits information being shared beyond
these units, obstructing the possibility of detecting patterns where information
in different spatial locations is combined. This imposes a strict restriction on the
types of patterns that can be discovered and utilized to differentiate the groups
in the modelling process, limiting the scope of phenomena the models are able to
capture. Specifically, these types of modelling pipelines will be able to separate
cases from controls to the degree made possible by a linear separation in either
voxel or ROI space, a conceptual level that has been argued not to be sufficient
to discern the aberrations underlying neuropsychiatric conditions (Davatzikos,
2004). This has fuelled a quest for more intricate modelling machinery able to
apply complex pattern-matching strategies to increase predictive performance.

The role filled by preprocessing software extracting volumetric properties of
specific ROIs is to exploit information from the raw voxel space of an MRI vol-
ume to procure higher-level idealizations that can be used for modelling. This
process of selectively aggregating information into a generalized, conceptual
form is known as forming an abstraction. Opposed to the high-dimensional
continuous data in a raw MRI volume, the level of abstraction represented
by volumetric properties plays right into our plausibly evolutionarily benefi-
cial propensity for seeking to describe the world in terms of delineated objects
and their characteristics (DiCarlo et al., 2012). However, there is no principled
reason to believe this is the correct level of abstraction for detecting canonical
neuroanatomical patterns to characterize complex neuropsychiatric disorders, if
they exist at all. Contrarily, there is evidence that the processing streams in
the brain responsible for higher cognition are widely distributed among non-
adjacent locations (Westlin et al., 2023), implying that any structural brain

aberration that may cause their dysfunction could be of a similar nature (For-
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nito et al., 2015). As modelling phenomena at an appropriate level of abstrac-
tion is of the utmost importance (Figure 1), this has spurred a quest for finding
modelling techniques that appropriately match the level of abstraction where
deviations plausibly emerge. In its simplest form, this has been done by re-
taining the abstraction level achieved by preprocessing tools before modelling
but introducing more complex statistical machinery to perform the modelling
itself (Mateos-Pérez et al., 2018). In neuroimaging, the early classes of models
commonly adopted were support vector machines (Arbabshirani et al., 2017;
Wolfers et al., 2015) and random forests (Davatzikos, 2019), both more expres-
sive than regular linear models. A complementary approach has been to extract
useful data-driven abstractions prior to modelling, most commonly using either
principal or independent component analysis (PCA and ICA, respectively), or
the closely related partial least squares (Mwangi et al., 2014). However, while
successfully applied in several contexts, neither of these caused a paradigmatic
shift in the collective ability to predict clinical or behavioural phenotypes based

on neuroimaging data.
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Figure 1: Two sets of data points seen from different perspectives.
(a) and (b) When the distribution of values in the two groups are assessed
with respect to the two dimensions independently, the group means are
different, but with substantial overlaps. (¢) When the points are seen in

two-dimensional space, the groups are linearly separable.
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The search for appropriate abstractions in neuroimaging has also been pur-
sued in a different direction, inspired by knowledge about the structure of the
brain. On an abstract level, the brain can be conceptualized as a graph of inter-
connected neurons (Mitchell, 2009), where information processing is distributed
and parallelized. One way of describing the overall characteristics of a graph is
through its topological structure, broadly denoting patterns of interconnections
between its nodes. The topology of the brain has been described as hierar-
chical (Sporns, 2013), containing neurons that cluster to form functionally or
anatomically disparate regions (Glasser et al., 2016), interconnecting form cir-
cuits (Tau & Peterson, 2010), which again conjoin to form networks (Thomas
Yeo et al., 2011). Theoretically, a complex system with hierarchical properties
can be modelled via an analogous hierarchy of abstractions (Floridi, 2013). In
the latter, each level in the hierarchy corresponds to a level of abstraction, such
that the bottom level describes the system at full resolution, whereas the higher
levels successively condense salient information into compound representations.
In this idealized, conceptual model, it is possible that information that appears
scattered and unorganized at lower levels can be combined into meaningful pat-
terns at higher levels.

Current MRI technology does not provide the spatial resolution necessary
to accurately disentangle the interconnections between neurons. However, the
combination of structural and other MRI modalities has been used to describe
interconnections between brain regions more coarsely (E. C. Robinson et al.,
2010). Based on this a high-level graph structure can be imposed, which can
then form a basis for modelling neuroimaging data at various levels of abstrac-
tion. This has recently been combined with normative modelling to procure
promising results for unifying neuroanatomical deviations in heterogeneous pa-
tient groups at different levels (Segal et al., 2023). However, this general ap-
proach has also faced criticism: the exact levels of abstraction used in a given
analysis rely on the methodology used to identify the graph structure, leaving
room for potentially arbitrary choices of analytical strategy (Botvinik-Nezer et
al., 2020). Subsequently, this has yielded results that are hard to replicate and
have limited translational value (Bijsterbosch et al., 2020). Moving forward, it
will be beneficial to explore approaches for modelling heterogeneity in the brain
based on abstractions that are rooted in data, to complement those relying on

human efforts to uncover useful structures.
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Output

Figure 2: A deep, artificial neural network, where the relationship
between inputs and outputs are modelled by layers of artificial

neurons.

4.2 Representation learning and image recognition

While the notion of an abstraction is intrinsically vague, formal roots in statis-
tical learning theory offer a conceptual structure and precise nomenclature to
describe it. In traditional statistical modelling, the process of combining infor-
mation from different variables to a meaningful abstract composition happens
either explicitly through an interaction term, or a priori feature engineering
(Zheng & Casari, 2018). Here, handcrafting features, exemplified in neuroimag-
ing by the volumetric features procured by an MRI preprocessing pipeline, is
considered a vital part of the modelling process. Yet, it is also recognized as a
labor-intensive endeavour with results largely reliant on the human engineer’s
imaginative bounds. Hence, new venues for automatically learning more ef-
fective abstractions have been explored, culminating with the construction of
the Deep Belief Network (Hinton et al., 2006). This was an early deep neural
network (DNN), a multi-layered variant of the more general class of statistical
learning models called artificial neural networks. These model the relationship
between input variables and outputs with artificial neurons, simple computa-
tional units connected in sequential layers to form a computational graph (Fig-
ure 2). The fundamental idea underlying the architecture is that each layer
assimilates and refines information from its predecessor, effectively learning to
combine data into a hierarchy of representations (Hinton, 2007), giving birth to
the notion of representation learning. These learned representations correspond
to various non-linear combinations of the input variables, fulfilling the goal of
automatically learning abstractions from data. The benefit of this modelling
approach is a massive increase in expressiveness, allowing the models to repre-
sent far more complex relationships between inputs and outputs. On the other

hand, its downside is that the rules describing these relationships become harder
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to decode and understand, giving rise to the notion of DNNs as black boxes un-
intelligible to humans. Nonetheless, the introduction of representation learning
operationalized through deep neural networks, combined with novel hardware
and the accumulation of vast amounts of data, set the stage for the 21st-century
renaissance for artificial intelligence (AI).

The first field to be revolutionized

by DNNs was computer vision, where CNN
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introduced.

(Figure 3) with the introduction of convolutional neural networks (CNNs), a
class of deep learning architectures tailored specifically for image data (LeCun
et al., 1989). Inspired by the mammalian visual cortex, a part of the brain
processing visual information, these models solve predictive tasks by employing
a hierarchy of pattern detectors trained to recognize patterns at various scales
and levels of abstraction (Goodfellow et al., 2016). These pattern detectors are
implemented in artificial neurons, structured in such a way that those early in

the model learn to recognize simple visual patterns, which are combined by sub-
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sequent ones into more complex concepts. Through this hierarchy, the model
effectively learns a conceptual taxonomy representing visual objects and their
interrelations, sufficient to solve the task at hand. The vast capabilities of CNNs
to learn complex visual representations are most often solely implied through
their predictive efficacy. However, researchers have also probed the represen-
tational space internal to such models, to explicitly investigate what they have
learned (Zeune et al., 2020). Here, the evidence suggests that the representa-
tions learned by CNNs can be semantically meaningful (Yosinski et al., 2015;
Zeiler & Fergus, 2013; Zhou et al., 2015), corresponding to concepts and objects
that are sensible also to humans (L6pez-Rubio, 2021). This gives hope for the
utility of CNNs as epistemic tools: efficient representation learners that can
manoeuvre complexities in data to solve difficult tasks, potentially in ways that
are both informative and comprehensible to the human eye (Durstewitz et al.,
2019).

4.2.1 Deep learning in neuroimaging

The neuroimaging community quickly embraced deep learning (Plis et al., 2014)
as a set of efficacious predictive tools with two distinct goals. First, DNNs have
been adopted as means to optimize isolated steps in a standard neuroimaging
processing pipeline, to procure ideal images for subsequent analysis. A prime
example of such is Fastsurfer (Henschel et al., 2020), a deep learning-based tool
for brain segmentation, built to perform the same tasks as previous tooling
with comparable results in a fraction of the time (Bloch & Friedrich, 2021).
Secondarily, deep learning models have been used as end-to-end models to pre-
dict outcomes based on raw imaging data, such as clinical diagnoses or other
phenotypical variables (Noor et al., 2020; Zhang et al., 2020). Here, their ca-
pabilities as representation learners are put to full use, as working with the
images themselves does not restrict them to features engineered through other
processes (Abrol et al., 2021). This also alleviates the human and computa-
tional strain to procure these features (Davatzikos, 2019) and allows for the
discovery of patterns that could have been overlooked by human counterparts.
Consequently, there have been reports of a general increase in predictive efficacy
using end-to-end CNNs (Abrol et al., 2021; Quaak et al., 2021). This can be in-
terpreted as early evidence supporting the innate suitability of DNNs to model
brain imaging data: their hierarchical nature could prove ideal for detecting

nuanced, spatially distributed patterns at multiple scales, potentially detecting
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the aberrations underlying neuropsychiatric disorders (Plis et al., 2014).

When applied directly to classify patient groups based on structural MRIs,
three-dimensional CNNs have shown promising results (Figure 4). Combining
results from 76 studies compiled in two recent reviews revealed a mean accuracy
of 93.06% for models differentiating AD patients from healthy controls (Mirzaei
& Adeli, 2022; Sharma et al., 2023). Similarly, compiling results from 56 studies
classifying MCI patients resulted in a mean accuracy of 86.99% (Fathi et al.,
2022; Sharma et al., 2023). For MS, with its characteristic brain lesions, end-to-
end modelling is sometimes replaced with a two-step process of first identifying
or segmenting lesions, followed by predicting disease status. A review including
both approaches identified 12 studies with a mean accuracy of 89.82% (Shoeibi
et al., 2021). Further examinations of recent reviews revealed similar results in
PD, with a mean accuracy of 86.85% aggregated across 10 studies (Mei et al.,
2021; Noor et al., 2020), and SCZ, with 84.43% from 18 studies (de Filippis
et al., 2019; Quaak et al., 2021; Verma et al., 2023). However, it is worth
noting that the three latest results are based on fewer studies with substantially
more variability. There are, to the author’s best knowledge, no reviews on
classification in either BIP or MDD that include more than one deep learning
model trained on structural MRI data published to date. Investigations into
singular studies revealed accuracies of approximately 80% for both the former
(Martyn et al., 2019; Saghayan et al., 2023) and the latter (Gao et al., 2023;
Hong et al., 2022; Korda et al., 2021; Y. Wang et al., 2021). While altogether
promising, it is worth contextualizing these results somewhat. Concerningly,
most of them are achieved in very small datasets, and the performance of similar
classifiers has been observed to decrease as the datasets grow (Arbabshirani et
al., 2017; Janssen et al., 2018; Wolfers et al., 2015). Furthermore, they employ
a wide variety of validation approaches, and there is a large variability in the
results that have been achieved. Both in the list above and elsewhere, there
have been studies reporting accuracies of 100%, an outcome that has been
deemed improbable (Woo et al., 2017). These factors combined indicate that
the results should be interpreted with caution. It should also be mentioned
that similar performances have been reported for simpler modelling frameworks.
Although direct comparisons across studies are complicated (Arbabshirani et al.,
2017), some studies have performed them, finding evidence both for (Quaak et
al., 2021) and against (Moazami et al., 2021) the superiority of deep learning
for predicting case-control status from neuroimaging data. Nonetheless, these

early results represent a hopeful foundation for the successful adoption of deep
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compiled from the publications in Section 4.2.1. (a) Results for all deep
learning studies across all disorders. (b) Deep learning vs traditional machine
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learning in clinical neuroimaging.

While the predictive performances of CNNs used for case-control differenti-
ation are encouraging, this general approach has also been subject to criticism.
For instance, it continues to perpetuate the dichotomous paradigm, rather than
exploiting the expressive potential of these models to characterize heterogeneity
in patient groups. Furthermore, it builds upon the simplified notion of pa-
tients including only those that already have been identified using other means
(Davatzikos, 2019), restricting its clinical utility. Their epistemic utility is also
limited: although the predictive efficacy of a model might be excellent, its black-
box nature makes it hard to derive scientific knowledge from, beyond quod erod
demonstrandum-type evidence that the imaging data contains information suf-
ficient to differentiate the groups to some degree. To overcome this limitation,
researchers have tried to extract more subtle, nuanced knowledge by attempting
to understand what the models have learned. One approach to reach this goal
is to look at the computation, and particularly the activation of the represen-
tations, that happen internally in the model when it sees an image. As these
internal representations correspond to visual concepts (Lépez-Rubio, 2021), this
allows us to infer to what degree a specific image relates to each representation.
When done across multiple MRIs, we can further deduce whether there is struc-
ture in this representational space that is comprehensible, indicating that the
representations themselves correspond to concepts that appear meaningful. An
application of this technique to a CNN trained on structural MRIs revealed
a representational landscape that was more discriminative with regards to the
phenotypes of interest, than those learned by simpler models (Abrol et al.,
2021). This corroborated early evidence of the same phenomena in substan-
tially simpler CNNs for case-control classification (Plis et al., 2014). Applied to
functional MRI this technique has revealed representational spaces that covary
with abstract clinical and behavioural measures and psychological constructs
beyond what was used for training the model (Zabihi et al., 2021). These find-
ings give hope that the representations learned by CNNs can help discern brain
heterogeneity related to interesting phenotypes. However, to utilize them to-
wards epistemic and clinical goals, we should pursue understanding what they

encode.

23



4.2.2 Brain age and proxy measures

The simplest way to ensure that a CNN learns an understandable representation
is to optimize for that goal directly. This is trivially achieved by using a variable
encoding the representation as the predictive target, with disease classifiers be-
ing typical examples. However, a major impediment to applying deep learning
models to clinical neuroimaging problems is the scarcity of data (Arbabshirani
et al., 2017). This is further exacerbated in the case of data with clinical phe-
notypes (Horien et al., 2021), the typical outputs of interest. To alleviate this
problem innovative approaches leveraging ongoing large-scale efforts to collect
population data are proposed. One of these is to first learn to model variability
inherent in large healthy cohorts concerning common variables, broadly called
proxy variables (Dadi et al., 2021), before subsequently applying the models to
discern clinical phenotypes. The overall approach of learning and applying a
normative reference curve to quantify aberrations is closely related to norma-
tive modelling, which has shown promising for disentangling the heterogeneity
innate to neuropsychiatric patients (Marquand et al., 2019). Furthermore, it
rings of the deep learning mantra “representation first”, emphasizing the im-
portance of first learning to identify patterns in data that describe variability,
potentially at a high level of abstraction, before employing these to solve a task
(Goodfellow et al., 2016). The combination of these two features could prove
potent to discern brain heterogeneity related to neuropsychiatric disorders.
The most prominent example of a proxy measure is the approach aptly
referred to as brain age, where a statistical model learns to predict the age of a
brain based on its visual appearance. The concept of brain age can be described
from multiple perspectives. First, it is a normative statistical approach, where
a model learns to recognize the average brain across the lifespan based on a
training dataset (Cole & Franke, 2017). Subsequently, new brains can be placed
in reference to this norm (Figure 5), by comparing the age predicted by the
model with the chronological age of the individual (S. M. Smith et al., 2019).
This produces a measure of whether the brain as a whole appears younger or
older than counterparts in the population data of the same chronological age
(Cole et al., 2019). The introduction of aging provides a natural segue to the
perspective of biological aging. Here, the apparent age of the brain can be
interpreted as a measure of the accumulation of cellular damage or ”"wear-and-
tear” that occurs during a lifespan (Ferrucci et al., 2020; Hayflick, 2007), and

whether this has accrued faster or slower than expected. Finally comes the
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perspective of brain age as an information theoretical construct, where all the
high-dimensional information in a brain scan is compressed into a single number.
To summarize, brain age is intuitive due to its statistical properties, even when
It is related to health, due to its

sensitivity towards biological processes. And finally, it is summarizing, due to

the underlying computation is unknown.

its computational nature. These three properties combined outline a promising
biomarker for brain health.

The first model for brain age es-
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Figure 5: Predictions from a

brain age model can indicate of the model, encoding the difference
whether a brain appears older or between predicted and chronological
age (the brain age gap, abbreviated
to brainAGE by the original authors,
also referred to as the brain age delta), was significantly higher in a group of
patients with mild AD compared to healthy controls (Franke & Gaser, 2012),

early evidence for its sensitivity towards neuropsychiatric disorders. Since then,

younger than a reference norm.

this initial finding has been given credence by a wealth of empirical studies us-
ing different statistical methodologies to uncover similar patterns across differ-
ent disorders and datasets (Franke & Gaser, 2019). The observation of elevated
brain age has been replicated numerous times in both AD (Beheshti et al., 2019;
Lowe et al., 2016; Yin et al., 2023) and general DEM (Kaufmann et al., 2019;
Persson et al., 2023; J. Wang et al., 2019). A similar, but smaller, deviation
has been reported in MCI (Franke & Gaser, 2012; Kaufmann et al., 2019; Lowe
et al., 2016; Yin et al., 2023), and substantially increased brain age has been
reported repeatedly in patients with both MS (Cole et al., 2020; Hogestol et al.,
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2019; Kaufmann et al., 2019) and PD (Beheshti et al., 2019; C. R. Eickhoff
et al., 2021). A potentially more surprising finding is that of a higher brain age
in patients with SCZ (Hajek et al., 2019; Kaufmann et al., 2019; Koutsouleris
et al., 2014; Nenadié¢ et al., 2017; Schnack et al., 2016; Shahab et al., 2019)
and MDD (Han et al., 2020), although commonly less pronounced and with
more variability. For BIP the results are unclear, with studies reporting both
increases (Kaufmann et al., 2019) and no significant differences (Hajek et al.,
2019; Nenadi¢ et al., 2017; Shahab et al., 2019) in brain age when compared to
healthy controls. Finally, as an ultimate testimony of its ability to encode gener-
alized brain health, higher brain age has been associated with higher mortality
(Cole et al., 2018). Through these empirical findings, the value of brain age
as a biomarker of general, but unspecific, brain health is supported, enabling
it both as a potential clinical tool and as a composite, dimensional measure
that can further our understanding of the complex neuroanatomy underpinning
neuropsychiatric disorders.

Beyond its efficacy for differentiating cases and controls, brain age offers a
multifaceted lens through which the intricate interplay between biology, lifestyle,
cognition, and psychology can be elucidated. Here, it plays the role of an inter-
mediate phenotype seeking to connect low-level biology with high-level psycho-
logical constructs and behaviour. To establish these connections, studies have
combined theory-driven pursuits with broad explorations to reveal a wealth of
potential interconnections. These have revealed genetic variants correlated with
relative differences in brain age (Jonsson et al., 2019; Ning et al., 2020; S. M.
Smith et al., 2020), forming a plausible basis for dissimilarities between individ-
uals. Associations with higher-level biology have also been established, both by
correlating it with physical and health-related measures (Beck et al., 2021; S. M.
Smith et al., 2020), and by relating it to other measures of biological ageing (El-
liott et al., 2019), physical health (Cole et al., 2018), and self-reported measures
of biological maturity in youth (Holm et al., 2023). In terms of lifestyle factors,
relative differences in brain age have been associated with socioeconomic status
(Busby et al., 2023; Cohen et al., 2023), and elevations have been observed in
those with high alcohol intake (Cole, 2020; Franke et al., 2013; Ning et al., 2020)
and smokers (Bittner et al., 2021; Cole, 2020; Linli et al., 2022). Lastly, cor-
relations have been discovered with psychosocial constructs such as well-being
(Korbmacher, Gurholt, et al., 2023; Sone et al., 2022) and a subjective experi-
ence of own age (Kwak et al., 2018). Taken together, these findings elucidate the

integrative role of brain age, associated with both biological measures, lifestyle

26



factors, and psychological constructs.

Despite these promising empirical discoveries, brain age has also been sub-
ject to criticism. Ontologically, it is hard to determine exactly what the measure
means, beyond its conceptual association with age as operationalized through
statistical modelling (Butler et al., 2021). It can be complicated to determine
exactly what contributes to the prediction of the model (Cole & Franke, 2017;
Tanveer et al., 2023). This leads to uncertainty about whether it mostly encodes
differences that are stable across the lifespan, or if it meaningfully captures ongo-
ing change (Vidal-Pineiro et al., 2021), for instance related to current patholog-
ical processes. Clinically, the utility is hampered by within-subject variability,
which becomes apparent through predictions that vary with a magnitude of
years based on scans from the same individual taken days apart (Korbmacher,
Wang, et al., 2023), exacerbated by scanner differences (Baecker et al., 2021).
Thus, it is hard to imagine brain age as an imaging biomarker for clinical use in
its current state, and further work is required to enhance its technical robust-

ness, clinical validity, and reliability.

4.2.3 Understanding deep neural networks with explainable artificial

intelligence

Using deep learning for brain age modelling can be conceptualized as a vari-
ant of representation learning where an intermediate phenotype, the type of
construct that would typically emerge inside the model, is instead explicitly
modelled as the target of the modelling procedure. If this phenotype is truly
intermediate, the learned representation, now corresponding with the output
of the model, would necessarily need to be operationalized through successive
computational steps to contribute towards the actual end goal, for instance pre-
dicting case-control status. The main benefit of this two-step approach is that
the intermediate phenotype will necessarily be more understandable than if it
occurred deep within the model. A potential shortcoming is that although the
intermediate representation is understandable, it is not necessarily useful. To
avoid this, it would be better to construct a model that solves the task of in-
terest, with full expressive freedom to construct the representations that are
needed, and then retrospectively figure out what those representations mean.
Predictive modelling using deep learning attempts to solve the first half of this
problem, but resolving the second has proven difficult.

Once trained, all DNNs can be written out as a concrete mathematical for-
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mula, where the representations it has learned, and their interrelations, will be
fully defined. In a CNN trained on structural MRIs, this math will roughly cor-
respond to a hierarchy of pattern detectors (Balestriero & baraniuk, 2018), each
detecting a three-dimensional visual concept related to brain anatomy (Khor-
rami et al., 2015). This mathematical formula is fully accessible; however, it will
necessarily encode a highly complex, non-linear mapping between MRI images
and predictions, utterly incomprehensible to humans (Samek & Miiller, 2019).
To grasp the true meaning of the representations they have learned we need
to associate them with familiar concepts and terminology, to foster a holistic
understanding of how they arose and what they encode (Cappelen & Dever,
2021). However, this is no simple task. DNNs fall within the scope of connec-
tionist models (Goodfellow et al., 2016), where a multitude of computational
units solve problems collectively via propagating continuous values among them-
selves (LeCun et al., 2015). Somewhat surprisingly, as these are inspired by the
inner workings of our brains, this gives rise to a mode of reasoning that does not
appear intuitive to us. Where we normally think in terms of symbols, discrete
representations that correspond to specific and delineated concepts and objects,
and their interrelation, DNNs rely on sub-symbolic representations. This entails
internal representations that encode information by distributing it across vast
vectors of continuous numbers (Calegari et al., 2020), completely circumventing
the notion of well-defined symbols. Whether these two operational modes can
be reconciled remains an open philosophical question (Smolensky, 1987).

A more practical approach towards bridging the apparent gap between the
decision processes of DNNs and humans is taken through explainable AT (XAI),
where concrete methodology is offered to demystify the inner workings of the
former. While the nomenclature varies (Barredo Arrieta et al., 2020), a common
formulation of its defining purpose is to create methods that explain decisions
made by a DNN in a human-understandable manner. A crucial nuance in this
definition is that the quality of an explanation is not governed by universal law,
but rather depends on its recipient’s capacity for understanding, for instance
relying on their preexisting knowledge about the domain at hand. XAI is be-
coming a valuable tool to safeguard that a model has learned to solve a problem
in a fashion that is recognizable to a human domain expert, fostering trust in
the model’s reliability and generalizability. In safety-critical domains, including
medicine, lack of trust has been pointed out as a main culprit underlying the
skepticism towards the practical adoption of Al (Kundu, 2021), emphasizing

the translational potential of XAI. For real-life clinical scenarios, the most com-
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mon use case proposed for XAl is in tools providing clinical decision support.
If successful, this would allow a highly efficacious predictive model to operate
in tandem with a clinician with deep domain expertise, supplementing human
intuition with immense number-crunching capabilities and an eye for detail, to
provide the best possible care to those in need.

There exists a variety of different XAl techniques, applicable in various con-
texts depending on the model that is to be explained, who the explanation is for,
and what it wants to achieve (Samek & Miiller, 2019). Most common for DNNs
are post hoc techniques that provide an explanation for each individual pre-
diction of the model. In the case of CNNs, these explanations are often visual,
comprised of a heatmap indicating which regions of the image contributed to the
prediction of the model (Simonyan et al., 2014). Multiple heatmapping tech-
niques exist, mostly differing in their notion of what constitutes a contribution.
Early methods, starting with saliency mapping, relied on the backpropagation
of gradients to highlight contributing regions. An innate issue with these ap-
proaches is their literal interpretations: a highlighted region contains “what it
should contain even more of for the prediction to be even higher”. Although
this is often more intuitive in practice than in theory, this somewhat convoluted
definition has led to the development of alternative methods. An example is
Layerwise Relevance Propagation (LRP), where regions are instead highlighted
based on how much they contribute to the prediction (Bach et al., 2015). The
term relevance comes from the unit that is used to denote contribution, and the
produced heatmaps are aptly called relevance maps. A relevance map is gen-
erated by propagating relevance backward from the output space of the model
to the input space, effectively smearing the prediction out across the pixels (or
voxels in the three-dimensional case) of the input image (Figure 6). Thus, the
relevance that ends up in a specific location denotes how much the pixel (or
voxel) in that exact position contributed to the prediction. Since its invention,
multiple variants of LRP have surfaced, created to emphasize different aspects
of the decision process (Montavon et al., 2019). These can also be combined, to
create even more elaborate explanation schemes, proving more useful than their
simpler predecessors (Kohlbrenner et al., 2020).

Although the visual explanations obtained via heatmapping techniques ap-
pear meaningful, this does not necessarily entail they are veracious renditions of
anything related to the decision process that occurs within a model. Investiga-
tions have revealed that these methods appear more sensitive towards visually

salient features of the image, such as sharp edges, as opposed to information
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Figure 6: The application of Layerwise Relevance Propagation
(LRP) to a very simplified neural network. (a) Through a forward-pass
the model predicts that the image contains a ladybug. (b) Through a
backward-pass LRP computes a heatmap indicating which regions of the

image contributed to the prediction.
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that is useful to determine its content, plausibly used by the model (Adebayo
et al., 2020). Furthermore, it has been shown that explanations produced to
explain different predictions from the same model are often qualitatively similar
(Sixt et al., 2020). This is exemplified by the scenario when a classifier is given
an image containing both a cat and a dog and tasked to predict the probability
of the image containing each animal independently. When heatmapping tech-
niques are used to explain the two predictions, the resulting explanations are
indistinguishable. Finally, it has been reported that large, qualitative, changes
to an image do not impact the explanation that is generated (Kindermans et
al., 2019). Altogether, this implies that these techniques should be used with
care. Furthermore, as the degree to which these failure modes occur depends on
the specific model, task, and heatmapping technique used, they highlight the
importance of validating that the explanations procured are truthful and infor-
mative. However, as there rarely exists ground truth labels of why an image
contains what it contains, and how the model should recognize this, this can be
a difficult task.

XAI has not yet found a foothold in clinical environments relying on neu-
roimaging data. However, the empirical groundwork required to support this
endeavour is being rapidly built by the research community. In DEM, an expo-
nential increase in the number of papers applying XAI has been observed over
the last few years (Martin et al., 2023). Most of these rely on imaging data and
CNNs and use variants of heatmapping techniques, often LRP, to provide post-
hoc explanations of individual predictions. The explanations generated in such
studies have been observed to corroborate existing knowledge of neuropathol-
ogy (D. Wang et al., 2023), giving credence to the notion that the classifiers are
accruing relevant knowledge. Through discoveries like these, studies on DEM
and AD (Bohle et al., 2019; Dyrba et al., 2021) have spearheaded the effort of
showing the potential for XAl as an asset for analysing clinical neuroimaging
data (Farahani et al., 2022; Rahman et al., 2023), with other neuropsychiatric
disorders following suit. In MS, LRP has been used to show that a CNN trained
to recognize patients uses both lesions, the most prototypical biomarker for the
disorder, and other sources of information to perform its task (Eitel et al., 2019).
For MDD, XAI based on functional MRI data has been used to identify imaging
features that are associated with treatment response (Squires et al., 2023). In
PD (Camacho et al., 2023; Magesh et al., 2020), SCZ (Lin et al., 2022; Rahman
et al., 2022), and BD (Saglam et al., 2023), various XAI techniques applied to

different imaging modalities have implicated brain regions affected by the dis-
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ease. Recent years have seen multiple arguments for the immense potential of
XAI to support clinical practice, also in neuropsychiatric disorders, but the field
is still in its infancy, and the literature is sparse. To reach its potential, empir-
ical studies are imperative to identify how, when, and where these techniques
add value.

XAI was born from a practical desire to understand whether a DNN was
solving its task in a reasonable manner, articulated from the point of view of
the developer or the user of an Al system, wanting to ensure its proper func-
tioning. However, it also has the potential to provide a powerful epistemic tool,
that allows us to understand sophisticated inferential patterns at the heart of
complicated phenomena that would otherwise be beyond our cognitive grasp.
This is especially compelling in the case of neuropsychiatric disorders because
of their enigmatic appearance and apparent biological complexity. However,
whether the process of fitting a complex, expressive, DNN to data, and then
applying post-hoc techniques for understanding how it works, is a viable strat-
egy for attaining scientific knowledge is an open question. It has been argued
that explainability is mostly useful for a specific stakeholder to understand a
specific model, not to to produce facts (Péez, 2019). Determining what these
approaches can be used for relies largely on philosophical standpoints, epis-
temic beliefs, and assertions about what these models are and what they do.
Despite the abstract nature of these topics, their resolution will be supported
by empirical data, adding incentives to continue exploring the utility of XAl in
clinical neuroscience. Whether AI, and particularly the explainable kind, will

help unravel the mysteries of the mind, is a question for the future.

4.3 Validating imaging discoveries with genetic analyses

As outlined so far, intermediate phenotypes describing variation in the brain,
including abstract ones learned by advanced deep learning models, have the
potential to help us disentangle neuroanatomical heterogeneity in the context
of neuropsychiatric disorders. However, these are composite measures that will
have causes of their own, an understanding of which would even further eluci-
date the association between brain and behaviour. Focused on the most fun-
damental building blocks, imaging genetics sets out to establish the connection
between inter-individual genetic variation and observable differences in the brain
(Bogdan et al., 2017). Historically, approaches in genetics have been focused on

candidate genes, selected based on hypotheses of biological pathways tracing the
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causal influence from gene to the trait of interest. This minimized the need for
data, making genetics possible in the era predating advanced sequencing tech-
nology to yield important discoveries. However, it also has an important limi-
tation: being largely driven by existing theory, it lacks the exploratory capacity
to go far beyond what already exists in the body of knowledge. To alleviate this
shortcoming, new approaches emerged in the mid-2000s, fueled by technological
advances and the accumulation of vast amounts of data (W. Y. S. Wang et al.,
2005). The most popular was the genome-wide association study (GWAS), a
technique for detecting genetic variants associated with a trait through mass
univariate testing (Uffelmann et al., 2021). These typically investigate varia-
tion in each atomic location in the genome, manifested through single nucleotide
polymorphisms (SNPs), but can also be done for more complex sources of ge-
netic variation such as copy number variations. Overall, the introduction of
GWAS broadened the scope of genetic research, from narrow investigations of
variants exerting a large influence on the phenotype at hand, to a broader search
for variants contributing to complex phenotypes.

Over the last two decades, genetic studies, particularly those employing
GWAS, have contributed to a wealth of discoveries in clinical neuroscience.
These advances have been enabled by the collaboration and large datasets pro-
vided through large consortia, a prime example being the Enhancing Neuro
Imaging Genetics through Meta Analysis (ENIGMA) consortium (P. M. Thomp-
son et al., 2020). Using consortium data, or other techniques for pooling data
from a wide variety of sources, modern GWAS commonly look for associations
between genetic variants and clinical phenotypes based on data from hundreds
of thousands of participants, enabling novel discoveries. A recent GWAS ana-
lyzing 7,500,000 SNPs in 320,404 individuals revealed 313 variants associated
with SCZ (Trubetskoy et al., 2022). Similar efforts revealed 64 and 44 SNPs
associated with BIP (Mullins et al., 2021) and MDD (Wray et al., 2018) re-
spectively, in two GWAS based on 413,466 and 480,359 individuals. In AD,
beyond the well-known impact of mutations in the apolipoprotein E (APOE)
gene, the most recent GWAS identified 75 distinct genetic variants associated
with AD risk, using full genome sequences from 788,989 individuals (Bellenguez
et al., 2022). When combined into a composite score these yielded 1.9-fold in-
creased risk for disease onset in the high-risk versus low-risk group. A recent
meta-analytic approach including GWAS identified 551 putative genes that con-
tributed to MS susceptibility. In PD, a meta-analysis across two GWAS with

combined datasets of 429,225 individuals identified 41 significant associations
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(D. Chang et al., 2017). These studies, and many more, have provided a broad
foundation to investigate the genetic underpinnings of neuropsychiatric disor-

ders.

4.3.1 Elucidating mechanistic and causal relationships via genetic

associations

Although GWAS has played a major role in increasing the wealth of associa-
tions between genetic variation and neuropsychiatric disorders, it, like every-
thing else, has its limitations. One major drawback is that as the approach
rapidly identifies new associations, the magnitudes of their effects will be in-
versely proportional to their position in the sequence of discoveries. This could
result in a never-ending stream of variants that contribute less and less to the
phenotype at hand, while the total amount of variance explained remains mod-
est (Goldstein, 2009). Relatedly, it has been pointed out that the expanding set
of deleterious variants associated with a phenotype will contain a plethora of
covarying but non-causal variants and does little to pinpoint the biological path-
ways through which they induce pathology (Tam et al., 2019). Consequently,
they don’t illuminate the underlying biological mechanisms, and as such have
limited value both for advancing our knowledge of disorders and guiding de-
velopment of treatments. To mitigate this, GWAS are often accompanied by
subsequent analysis steps, to reduce the set of variants to those presumably
causal and investigate the pathways through which they have an effect. The
former is typically done via statistical fine-mapping, a statistical technique re-
lying on the GWAS results, prior knowledge about the structure of the genome,
and potentially empirical evidence about the role of the genes (Schaid et al.,
2018) to nominate plausibly causal variants. Next, their impact is commonly
elaborated through multi-omics, where measurements from cells or tissues can
help pinpoint their role in the biological hierarchies of the body. In sum, these
complex analysis pipelines provide a promising apparatus for understanding the
biology underlying intricate imaging phenotypes.

A complementary method for increasing the value of identified genetic as-
sociations is to use them as instruments to understand causal interactions be-
tween high-level phenotypes themselves. This can be done with causal infer-
ence, in genetics operationalized through Mendelian Randomization (MR). MR
is a method from genetic epidemiology (Davey Smith & Ebrahim, 2003), rely-

ing on the random distribution of genes from parents to offspring (Sanderson
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et al., 2022), to draw causal conclusions based on associational data. This is
implemented through an instrumental variable analysis, where the randomly
distributed genetic variants are used as an instrument to investigate whether
an exposure, such as a phenotypic risk factor, causally affects an outcome, for
instance the onset of a disease (Emdin et al., 2017). To reach the lofty goal of
causality, MR relies on three strict assumptions: that the genetic variant used
as an instrument is associated with the exposure, that this association is not
confounded by other variables, and that the instrument is only associated with
the outcome through the exposure. The first is trivially verifiable through e.g.
a GWAS, but the latter two are harder to confirm in empirical data. This is
especially true in clinical neuroscience, where the correlation between disorders,
complex traits, and intermediate phenotypes is high, making it hard to princi-
pally rule out confounding. Empirically, there has been shown broad horizontal
pleiotropy for these phenotypes, indicating that they are associated with the
same genetic variants (P. H. Lee et al., 2021), potentially through independent
biological pathways. To alleviate this, a plethora of MR, variants have been pro-
posed, seeking to relax its fundamental assumptions. There is however still a
responsibility on the independent researcher or analyst to ensure MR is a viable
alternative in each specific use case (VanderWeele et al., 2014). Nonetheless,
MR has provided, and will continue to be, a valuable tool for understanding the

interrelation between complex traits, also in the neuroscientific domain.

4.4 Summary

One of the main aims of clinical neuroscience is to elucidate the relationship
between biological variability in the brain and clinical phenotypes, including
neuropsychiatric disorders. Structural MRIs allow us to investigate this rela-
tionship, by non-invasively providing information about the anatomy of individ-
ual brains. Subsequently, CNNs provide a promising technology to model these
relationships based on imaging data to reach predictive goals. To achieve this,
they will need to learn and leverage complex and potentially subtle patterns of
neuroanatomical variation that could prove useful to describe the heterogeneity
inherent to neuropsychiatric patients. However, the black-box nature of these
models will make these potential insights incomprehensible. Thus, studies that
rely on CNNs should be accompanied by efforts to understand them, through
holistically relating their predictions and internal knowledge to other domains,

and by applying techniques for explainability.
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5 Research objectives

The overall aim of the PhD project was to utilize the representational capacity
of deep learning models to learn complex, data-driven representations of the
brain based on structural MRI data. These representations should adhere to
two important principles: (1) they should be associated with clinically relevant
variables, to provide information facilitating understanding and decision-making
in the single-individual case, and (2) they should be understandable, to allow us
to confidently use and learn from them. This overall goal was operationalized

through different means in the three papers.

5.1 Paper I

In the first paper, we aimed to combine a state-of-the-art CNN architecture
and a large dataset to leverage the predictive proficiency of deep learning for
accurate and generalizable brain age predictions. Furthermore, we sought to
understand whether brain age as learned by the model would coincide with a
high-level notion of generalized brain health, through investigating associations
with other measures. Finally, we wanted to explore whether variability in brain
age, encoded in brain age deltas, and the internal representations learned by
the model provided useful instruments for predicting neuropsychiatric disorders
via transfer learning. Our main hypothesis was that the complex CNN trained
on a large and heterogeneous dataset would robustly learn to predict brain age
in a generalizable way, thereby summarizing overall brain health into a useful,
reliable biomarker. Secondarily, we hypothesized that using the internal repre-
sentations learned by the model would be more informative than the singular

delta for predicting case-control status.

5.2 Paper 11

The goal of the second paper was to further understand the underpinnings of
brain age as learned by a deep neural network through applying a GWAS to
brain age deltas akin to those in paper I. Next, we wanted to explore the sig-
nificance of the identified genetic variants through in-depth investigations of
their role in biological pathways, and their associations with neuropsychiatric
disorders. Finally, we aimed to perform MR analyses enabled by these variants

to investigate the causal relationships between brain ageing and the disorders.
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Our main hypothesis was that genetic variants robustly associated with varia-
tion in the brain age delta would be associated with neuropsychiatric disorders
and relate to a spectrum of biological processes in the body. Furthermore, we
hypothesized that we would detect causal effects between brain age and the

disorders previously associated with the biomarker.

5.3 Paper III

In the third paper, we focused on a single disorder, to investigate how XAI can
be useful to describe heterogeneity within a single patient cohort. To reach this
goal, we sought to train state-of-the-art CNNs in a composite clinical dataset
containing patients with DEM and healthy controls. Around these models we
planned to implement a pipeline including XAI to procure individual-level ex-
planations of the model’s predictions. We aimed to thoroughly evaluate the
explanations to ensure their veracity. Finally, we wanted to see whether the
explanations, encoding localization of pathology detected by the model, could
be useful to support precise clinical decision-making in a cohort of MCI pa-
tients. Our main hypothesis was that the pipeline would procure explanations
that were generally supported by current knowledge about where in the brain
dementia manifests. Moreover, we hypothesized that their variability would
reflect heterogeneity in the biological embodiment of the disorder, useful for

supporting precision diagnostics for MCI patients.
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6 Methodology

Paper | Images | Subjects | Age range (mean) | Females
I 56,095 56,095 3-95 (55) 52%
11 53,542 53,542 3-95 (55) 52%
111 20,306 2,913 45-97 (75) 45%

Table 1: Key characteristics of the complied datasets used in the three

papers.

6.1 Data

An overview of the high-level characteristics of the datasets used in the three
papers can be seen in Table 1. All of these were conglomerations of data coming
from multiple sources, detailed overviews of which can be found in the indepen-
dent papers. The data sources that were used beyond training brain age models
and/or providing healthy controls for diagnostic analyses are described below
and in Table 2.

e AddNeuroMed (ANM): ANM is a cross-European study collecting
imaging data and biological measurements to facilitate biomarker discov-
ery for AD, acquired from six medical centers across Europe (Liu et al.,
2011; Lovestone et al., 2007). We used structural MRIs for paper III,
including patient groups with DEM and MCI that were defined by stan-
dardized thresholding of results from the mini-mental state examination
(Tombaugh & Mclntyre, 1992). The data was acquired through collabo-

ration with Karolinska Institutet.

o Alzheimer’s Disease Neuroimaging Initiative (ADNI): ADNI is a
publicly accessible dataset developed to facilitate early detection of AD
and corresponding interventions, prevention strategies, and treatments.
It contains brain scans from multiple imaging modalities, alongside bio-
chemical measurements, behavioural data, and cognitive assessments from
multiple centers in the US and Canada (Petersen et al., 2010; Weiner et
al., 2012; Weiner et al., 2017). Structural MRIs were used for all three

papers, genetic data was used in paper II, and cognitive assessments were

38



used in paper III. We used patients with DEM, diagnosed by ADNI in-
vestigators as probable AD using NINCDS/ADRDA criteria (Dubois et
al., 2007), and MCI, diagnosed using a standardized clinical procedure
(Petersen, 2004). The data was acquired through the online portal for
the Image and Data Archive (IDA) at the Laboratory of Neuro Imaging
(LONTI).

Australian Imaging Biomarkers and Lifestyle flagship study of
ageing (AIBL): AIBL is an Australian initiative mirroring ADNI, col-
lecting neuroimaging and complementary data from two sites in Australia
(Ellis et al., 2009; Fowler et al., 2021). Structural MRIs were used for
papers I and III, including patients with DEM and MCI diagnosed with
criteria equivalent to ADNI. The data was acquired through the IDA LONI
portal.

Demgen: Demgen is a subset of the Norwegian register of persons as-
sessed for cognitive symptoms (NorCog), owned by Oslo University Hospi-
tal and administered by the Norwegian National Advisory Unit on Ageing
and Health (Doan et al., 2017). Structural MRIs were used for papers
I and III. This included patient cohorts with MCI and DEM, diagnosed
according to NIA/AA 2011 criteria (Albert et al., 2011). The data was col-
lected with approval from the Regional Committee for Medical and Health
Research Ethics South-Eastern Norway (REK, application 2013/2283).

Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD): MIRIAD is a publicly available dataset created to inves-
tigate whether MRI provides a feasible outcome measure for clinical trials
on the efficacy of treatments for Alzheimer’s Disease (Malone et al., 2013).
Structural MRIs were used for paper III, including patients with DEM di-
agnosed using NINCDS/ADRDA criteria for mild-moderate AD. The data
was acquired from the XNAT platform.

Open Access Series of Imaging Studies 3 (OASIS3): OASISS3 is
a publicly available dataset containing neuroimaging data, together with
clinical and cognitive assessments and other measures from a broad de-
mographic spectrum, compiled to facilitate research on cognition (LaM-
ontagne et al., 2019). Structural MRIs were used for papers I and ITII. We
included patients with DEM, including those with a diagnosis of either
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probable AD, vascular dementia, or a combination, based on a standard-
ized clinical assessment (Beekly et al., 2007; Morris et al., 2006). The data
was acquired from the XNAT platform.

e Oslo Multiple Sclerosis sample (OsloMS): Various neuroimaging
modalities acquired from a collection of individuals scanned between 2012
and 2023 at the Oslo University Hospital through previous and ongoing
research projects. Structural MRIs were used for paper I, including a
patient cohort diagnosed with MS using McDonald 2017 criteria (A. J.
Thompson et al., 2018). The data was collected and used with approval
from REK (application 2016/102).

e Thematically Organized Psychosis (TOP): The TOP study was ini-
tiated at the University of Oslo in 2002 and is an ongoing multicenter,
multidisciplinary investigation of clinical, genetic, neuroimaging, pharma-
cological, and neurocognitive features of schizophrenia and bipolar disor-
ders (Nesvag et al., 2017). Structural MRIs were used for papers I and 111,
including patient groups with SCZ, BIP, and MDD diagnosed according
to DSM-1V criteria (American Psychiatric Association, 1994). The data
was collected and used with approval from REK (application 2009/2485).

« UK Biobank (UKB): UKB is a large-scale population dataset collected
from three sites in the UK, containing imaging data, genetics, and a wide
variety of phenotypic information (Sudlow et al., 2015). Structural MRIs
were used in papers I and II, alongside a broad array of phenotypic vari-
ables for paper I, and genetic information for paper II. No patient groups
were included, but diagnostic information was utilized (based on ICD-10
codes, data field 41402) to exclude participants with mental (Chapter V)
or neurological (Chapter VI) disorders from the brain age training set.

The data was accessed under accession number 27412.

6.1.1 Imaging data

In all papers we applied a unifying preprocessing pipeline prior to modelling,

modifying the MRIs through a six-step process:

1. Removal of non-brain tissue through skull stripping, using steps 1-5 of the
recon-all pipeline from FreeSurfer 5.3 (Ségonne et al., 2004). Note that

this also performs intensity normalization.
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Dataset IT | IIT | Images | Subjects | Ages | Females Diagnoses
DEM 56
ANM X 417 379 53-90 57% HC 294
MCI 67
AD 4451
ADNI X | x 20,912 2,498 50-97 44% HC 7,054
MCI 9,407
AD 101
AIBL X 905 588 58-96 53% HC 688
MCI 116
Demgen X 277 277 38-89 44% DEM 134
MCI 143
MIRIAD X 708 69 55-87 55% DEM 465
HC 243
OASIS3 X 3,039 1,098 42-95 57% DEM o4
HC 2,475
OsloMS 886 402 18-70 1% MS 886
BIP 463
TOP X 2,705 2,225 13-72 45% HO 1,314
MDD 69
SCZ 574
UKB X 45,907 45,907 44-82 51% HC 45,907

Table 2: Key characteristics of the data sources that was used for specific

purposes across the three papers.
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2. Transformation from .mgz to nifti format with mri_convert from

FreeSurfer.

3. Reorientation to standard FSL space using fslreorient2std from the FM-
RIB Software Library (FSL) v6.

4. Linear registration to MNI152 space, performed by flirt (Jenkinson et al.,
2002) in FSL with 6 degrees of freedom.

5. Removal of redundant voxels around the edges. This was implemented by
extracting a central crop with bounds [6:173, 2:214, 0:160].

6. Rescaling intensity values to the range [0, 1] by division of the constant
255.

The resulting volumes had dimensions [167, 212, 160], and contained the great-
est possible amount of brain tissue rigidly transformed to MNI152 space while

minimizing the presence of extraneous tissues.

6.1.2 Genetic data

In paper II we utilized genetic data from UKB to perform a GWAS for the
brain age predictions from our model. To collect this data, participants were
split into subsets genotyped using two different, but similar, arrays (Wain et al.,
2015), both resulting in ~800,000 genetic markers (Bycroft et al., 2018). Based
on linkage disequilibrium (LD), the covariance of distinct, but related, genetic
variants, the UKB team utilized these markers to impute specific variants per
participant for ~100,000,000 SNPs. From these, we removed locations where the
quality of the data was uncertain, and variants with very low frequency, to end

up with a final sample of ~8,600,000 SNPs from 28,104 participants for analysis.

6.1.3 Phenotypic data

In paper I we performed a phenome-wide association analysis (PheWAS) to
broadly explore properties that were associated with deviations in brain age.
We utilized 402 diverse phenotypic variables from UKB which we qualitatively
grouped into thirteen categories. Each variable was encoded according to PH-
ESANT (Millard et al., 2018), a toolbox developed specifically for phenotypic
data in UKB, alongside a standardized preprocessing pipeline.

In paper III we assessed the value of the relevance maps procured by our

explainable pipeline by associating inter-individual variability in their spatial

42



content with performance on tests spanning various cognitive domains. These
performances were recorded in 17 high-level summary scores extracted from 7
test batteries administered to 733 MCI patients in ADNI.

6.2 Modelling

6.2.1 Convolutional neural network architectures

The CNNs trained for all papers were variants of the Simple Fully Convolu-
tional Network (SFCN), a brain age model tailored for three-dimensional struc-
tural MRI data, crowned winner of the Predictive Analytics Competition 2019
(PAC2019) brain age prediction competition (Gong et al., 2021; Peng et al.,
2021). This model consists of a series of repeated convolutional blocks, each
based on a convolutional layer and a max pooling layer, and as such resem-
bles the models from the Visual Geometry Group (VGG) that broke major
ground in improving image recognition of two-dimensional natural imagery in
the early days of the CNN hegemony (Simonyan & Zisserman, 2015). Specifi-
cally, the backbone of SFCN consists of five blocks, each comprised of a 3x3x3
three-dimensional convolution, batch normalization, max pooling, and a recti-
fied linear unit (ReLU) activation. These are followed by a single block that
reduces the dimensionality of the feature space, implemented through a 1x1x1
convolution, batch normalization, and ReLU (Figure 7a). On top of this, the
original model has a prediction head consisting of an average pooling layer,
dropout, and a classification layer with a softmax activation, predicting an age
probability distribution.

Based on this backbone, we experimented with different architectural vari-
ants suited for the exact problem at hand in the three papers, differing only in
their prediction heads (Figure 7b) and the hyperparameter settings employed
during training. In paper I we compared three variants constructed for pre-
dicting brain age, e.g. a single-valued, continuous output (potentially derived
through further computational steps). First, we tested the unchanged, original,
SFCN-model relying on soft classification, operationalized via a softmax activa-
tion in the final layer (SFCN-sm). Second was another model with multiple out-
puts denoting individual ages, but here interpreted through a ranking scheme,
where each output predicted whether a participant was older than a given age
(SFCN-rank). The ranking behaviour was implemented through sigmoid acti-

vations in the final layer. Third and last we employed a simple regression model
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Figure 7: The convolution neural network architectures used
throughout the thesis. (a) The Simple Fully Convolutional Network
(SFCN)-backbone. (b) The prediction heads used for various predictive tasks

across the three papers.
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(SFCN-reg), with a single continuous output node without activation. In paper
IT we only used the SFCN-reg architecture, based on its superiority in paper
I. In paper III we aimed to classify patients and controls and therefore imple-
mented a variant with a binary classification head (SFCN-bin), comprised of a

single output neuron with a sigmoid activation.

6.2.2 Model training and comparison

Like the architectures, the data splitting strategy employed varied between
the papers depending on the use case. In paper I we combined a traditional
train/validation/test approach (implemented through repeated 80% /20% splits)
with an external dataset from unseen scanners to accurately assess model per-
formance and generalization. In paper II we used a cross-validation approach
without hyperparameter tuning, fitting a single model per fold (based on hy-
perparameters from paper I), to achieve out-of-sample predictions for all par-
ticipants. In paper III we employed a nested cross-validation to facilitate both
hyperparameter tuning and out-of-sample predictions. During tuning, we varied
standard hyperparameters such as the learning rate schedule (including number
of epochs), the dropout rate, and which augmentations to use. Each model was
optimized to minimize a loss function tailored for its model architecture and
specific task (Table 3). To select starting values and ranges for the different
learning rate schedules we employed learning rate sweeps (L. N. Smith, 2017),
where we evaluated how model performance in the training set changed as a
function of the learning rate. In all three papers we selected the weights from
the epoch yielding the best performance in the validation set, based on a metric
suited for the predictive task (Table 3). All models were implemented in Python
v3.8 for papers I and II, v3.9 for paper III, using Tensorflow (Abadi et al., 2015)
v2.1 for papers I and II, and v2.6 for paper III, through the Keras interface
(Chollet et al., 2015). The models were trained on Nvidia Tesla V100 and A100
GPUs.

6.2.3 Model evaluation

For model evaluation we employed the same two metrics as we did for epoch
selection, tailored for each predictive task (Table 3). Brain age models (pa-
pers I and IT) were evaluated by the mean absolute error (MAE), depending
on a ground truth vector y = [yy,¥;,--,¥Y,_1] and a vector of predictions

¥ = [Uo,Y1»---»Yn_1]- For each entry ¢, corresponding to an MRI scan, y;

45



Model Loss Performance metric

SFCN-sm Kullback-Leibler divergence Mean absolute error
SFCN-rank Mean binary cross-entropy Mean absolute error
SFCN-reg Mean squared error Mean absolute error

Area under the receiver

SFCN-bin Binary cross-entropy operating characteristic

curve

Table 3: The losses and performance metrics used for each of the individual

model architectures.

and g; refer to the ground truth label (chronological age of the participant)
and prediction (predicted brain age) respectively. MAE was then computed as

n

MAE(y,y) = > |y; — y;|. For the dementia classification task in paper III, we
i=0

evaluated models based on the area under the receiver operating curve (AUC).
AUC also relies on two vectors y and y, however here the entries y, are binary and
gy, continuous numbers in the range [0, 1]. In this scheme 1 typically encodes the
positive class, in our case dementia patients, and the numbers g, are interpreted
as the probability of belonging to the positive class. Where most classification
metrics rely on dichotomizing the predictions g, to interpret them as either cor-
rect or incorrect, AUC instead considers the ordering of predictions between
the two groups. Specifically, it evaluates whether the patients are predicted as
having a higher probability of belonging to the positive class (e.g. predicted as
patients) than the controls. This alleviates the need for calibrating the model
through finding and setting an appropriate threshold for dichotomization, a
process that should be performed based on domain knowledge. Furthermore, it
alleviates the impact of class imbalance (Japkowicz, 2013). In sum, these prop-
erties render AUC generally more applicable in case-control applications than
accuracy (Dinga et al., 2019), which remains the most widespread classification

metric in the neuroimaging literature.

6.2.4 Operationalizing brain age

In papers I and II we trained CNNs to predict brain age. However, we weren’t
interested in the totality of ageing features detected by the model in any given
brain, but rather the proportion of it that indicated a deviation from the normal

ageing trajectory. This was isolated through the computation of a brain age
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delta, referred to as a brain age gap (BAG) in paper II. To calculate the delta for
each participant, we subtracted their chronological age from the predicted brain
age, leaving a singular number that expresses their deviation from the normative
curve, encoded in years. Due to properties of the statistical modelling processes
that underlie brain age (Barnett et al., 2005), it is common to observe a linear
bias of the predictions as a function of chronological age, forcing all predictions
towards the mean age in the dataset. This bias would confound subsequent
analyses by leaking information about chronological age through the delta, an
issue that has normalized the use of correction procedures (de Lange & Cole,
2020) to ensure the delta is centered around zero across the entire age range. In
our models we observed very little of this innate bias and chose to circumvent
the correction procedure, known to have shortcomings of its own (Butler et al.,
2021). Instead, we corrected for age in all subsequent analyses explicitly to

minimize the potential of confounded results.

6.2.5 Explaining model predictions

In paper I we assessed what visual patterns were correlated with variation in
the brain age delta, through two simple post hoc procedures. The first was
a qualitative process where we visualized the average brains in groups with
extreme deviations for multiple distinct age bins. The second was a slightly more
advanced, quantitative, approach, where we correlated deltas with volumetric
features from the images derived using FreeSurfer. These features were vertex-
wise measures of cortical thickness and volumes of 45 brain regions (Fischl &
Dale, 2000; Fischl et al., 2004), including six encoding hypointensities, defined
according to the Aseg atlas (Fischl et al., 2002). For each of these measures,
independently, we computed the Pearson correlation with brain age delta using
numpy v1.20 (Harris et al., 2020). These correlations comprised a map that was
overlayed a template brain and inspected visually.

In paper III we used LRP as a method for explaining the CNN trained for
dementia classification. LRP is a post hoc explainability technique that we
implemented on top of the trained models to form a pipeline procuring both
predictions and relevance maps. For each input MRI given to the pipeline, the
relevance maps represented a visual explanation of the prediction of the model,
here corresponding to the probability assigned by the model that the MRI be-
longed to a patient with DEM. The full technical specification of the LRP imple-

mentation is described in the paper, and the implementation is available online.
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Briefly, the relevance maps procured were three-dimensional volumes located
in the same stereotactic space as the input, such that the relevance in each
voxel denoted how much the corresponding input voxel contributed towards the
prediction. To simplify the interpretations of the maps we employed parame-
terizations of the LRP process that upweighted positive relevance and removed
negative relevance from the maps through a post-processing step. Consequently,
the relevance maps were three-dimensional visual objects, spatially mirroring
the input images, highlighting regions of the image containing evidence that

was used by the model to arrive at the predicted probability of DEM.

6.3 Statistical analyses

6.3.1 Case-control analyses

In paper I we used diagnostic labels to probe the clinical utility of both the brain
age deltas and the internal representations learned by the brain age model. Im-
portantly, the latter were representations of the brain specifically related to age,
as the model never saw diagnoses or any other cognitive or behavioural infor-
mation during training. First, we assessed differences in brain age explicitly by
contrasting the distribution of brain age deltas in six patient groups (AD, MCI,
MOOD (BIP/MDD), MS, PSY (mixed psychotic disorders), and SCZ) to dis-
tributions from matched cohorts of healthy controls. This comparison was done
using only data from scanners that were not seen by the model during training
or validation. Next, to assess the same relationship in a predictive context,
while also estimating the predictive gain offered by the learned representations,
we constructed a simplistic transfer learning procedure to classify cases and con-
trols in the same six cohorts. In this analysis, we employed 64 features from the
second-to-last layer of the brain age model as predictors, alongside age, sex, and
delta, and fit logistic regression models with [,-regularization using scikit-learn
v1.2.2 (Pedregosa et al., 2011). This was performed in a nested cross-validation
loop, to achieve out-of-sample predictions while simultaneously tuning the reg-
ularization parameter A. Finally, models were compared to assess the predictive
value of various combinations of predictors, by concatenating out-of-sample pre-
dictions across all outer folds to compute a total AUC per predictor set. For
each predictor, we assessed its information content by investigating whether
adding it as a predictor increased the total AUC.

In paper III we used information from the explainable pipeline to fit a new
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level of models using predictions and relevance maps for MRIs from a cohort
of MCI patients. These models attempted to differentiate progressive MCI pa-
tients, e.g. patients that were diagnosed with dementia diagnosis at a subsequent
timepoint, from a non-progressive group, comprised of both those that improved
their condition at a later timepoint and those that remained stable throughout
the data collection phase. Before these analyses, the high-dimensional relevance
maps were decomposed into simplified feature vectors by a PCA across all MCI
patients. The goal of this was to procure a manageable number of variables for
subsequent modelling while retaining the most salient spatial information from
the maps. In the subsequent analyses, the dimensions of the feature vectors,
corresponding to the principal components of the PCA, were considered proto-
typical relevance maps, each encoding a stereotypical visual pattern observed
in the MCI patients. Akin to paper I we approached the problem of prognos-
tication via both a descriptive and a predictive route. First, we fit survival
models where being given a diagnosis was treated as the terminal endpoint, us-
ing the feature vectors as predictors. We fit Cox Proportional Hazard models
implemented in lifelines v0.27.1 (Davidson-Pilon, 2019), also including sex as a
covariate for stratification. Performance of the model was evaluated in-sample,
by assessing p-values to determine which components were associated with stay-
ing undiagnosed. To correct for multiple comparisons, we employed a p-value
threshold determined via false discovery rate (FDR) correction (Benjamini &
Hochberg, 1995). The outcome of this analysis was a narrowed-down set of
prototypical relevance maps that were significantly associated with a future di-
agnosis, allowing for a qualitative interpretation of how the localization of early
dementia-related pathology related to progression. Next, we reformulated the
question of prognosis in a predictive context, simulating a clinically realistic
prognostic scenario. Here, we fit binary classifiers to predict which of the MCI
patients would progress into dementia at several fixed timepoints in the future.
These models were logistic regression models using different combinations of age,
sex, probability of dementia at the current timepoint (predicted by the original
CNN), and feature vectors as predictors (representing relevance maps), fit with
an [;-regularization term using scikit-learn. As before, this was performed in
a nested cross-validation loop, to achieve out-of-sample predictions while tun-
ing A\. Model performance was assessed using the AUC, this time calculated
independently for each outer fold. Having multiple assessments of performance
for each model allowed us to more rigorously test which predictors yielded a

significant improvement, by doing pairwise comparisons of the distribution of
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paired AUCs in a one-sided Wilcoxon signed rank test implemented in scipy
v1.6.3 (Virtanen et al., 2020).

6.3.2 Genetic analyses

In paper II we investigated the genetic foundations of differences in brain age,
operationalized through the brain age delta based on brain age predictions from
CNNs. These models were fit in a 5-fold cross-validation to achieve out-of-
sample deltas for all participants. We first performed a GWAS meta-analysis
to identify SNPs associated with variations in the delta, implemented using
PLINK version 1.9 (C. C. Chang et al., 2015), by running independent GWAS
for each of the five folds. The results from these five independent analyses
were unified using PLINK’s inverse variance-weighted meta-analysis to produce
a single effect size and significance level per SNP (C. H. Lee et al., 2016). Based
on the resulting genome-wide significant associations, we first resolved the issue
of multiple SNPs representing the same haplotypic variant by clumping the
results through FUMA (Watanabe et al., 2017), resulting in a single lead SNP
per genomic region. Each of these was linked to adjacent genes through the
Ensembl Variant Effect Predictor (VEP) tool (McLaren et al., 2016). Next, we
identified plausible causal variants within each region using FINEMAP (Benner
et al., 2016) and assessed whether these affected the expression levels of the
genes via lookups in the GTEx v8 eQTL portal (the GTEx Consortium, 2015).

Based on the results from the preceding analyses we looked for overlap-
ping associations with five disorders, based on summary statistics from recent
GWAS for AD (Jansen et al., 2019), BIP (Mullins et al., 2021), MDD (Wray
et al., 2018), PD (Nalls et al., 2019), and SCZ (Trubetskoy et al., 2022). First,
we calculated the amount of variance explained by genetic variability for each
disorder, commonly referred to as SNP-based heritability, and the correlation
between disorder and delta using LD score regression (Bulik-Sullivan, Loh, et
al., 2015) implemented in ldsc (Bulik-Sullivan, Finucane, et al., 2015). We
also assessed polygenic enrichment, indicating whether the genetic variants as-
sociated with one trait are also associated with another, through conditional
quantile-quantile (QQ) plots (Chen et al., 2017; Lo et al., 2017), conditioning
on both brain age and the disorders. Here, enrichment was assessed visually by
identifying whether the variants significantly associated with the conditioned
trait had p-values lower than expected by random chance in the target trait,

using increasingly stricter thresholds of significance for inclusion.
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In addition to the correlational analyses above, we employed multiple MR
models to disentangle the causal relationship between the brain age delta and
the five disorders. These were performed bi-directionally, both using brain age
as a risk factor and each of the disorders as an outcome and using the disor-
ders as risk factors and brain age as an outcome. In each analysis, we selected
genetic variants as instrumental variables based on the GWAS for the corre-
sponding risk factor and assessed the ratio of effect sizes between the risk factor
and outcome for each instrument. When these ratios are similar, meaning that
the genetic profile that affects the exposure and outcome is similar, and the
fundamental assumptions underlying MR are met, this allows for the interpre-
tation that the risk factor causally affects the outcome. However, evaluating
the validity of these assumptions was challenging, as they often are in real-life
data, so we employed five different variants of MR to alleviate them in various
ways, in addition to the conventional inverse-variance weighted model (Relton
& Davey Smith, 2012). The weighted median (wMed) model relaxes the as-
sumption that the genetic variants used as instruments need to be associated
with the exposure (Bowden et al., 2016). Egger regression (Bowden et al., 2015)
tests and controls for horizontal pleiotropy, when genetic variants affect both
the risk factor and outcome independently, through introducing an intercept in
the statistical model. The pleiotropy residual sum and outlier (MR-PRESSO)
model identifies outlier variants caused by horizontal pleiotropy that inflate
the causal estimate (Verbanck et al., 2018). The robust adjusted profile score
(RAPS) model applies robust regression techniques to minimize the impact of
instruments with pleiotropic effects (Zhao et al., 2020). Finally, the causal anal-
ysis using summary effect (CAUSE) model accounts for pleiotropic effects both
when they affect the risk factor and the outcome through the same biological
mechanism, and when they are uncorrelated (Morrison et al., 2020). To unify
results across these six variants we used a majority voting scheme, interpreting

only results where four or more of the methods agreed as reliable.

6.3.3 Validating relevance maps

To ensure the classifier in paper III had learned to recognize patterns plausibly
associated with DEM, and that these were conveyed through our LRP imple-
mentation, we performed two sanity checks. First, we averaged the relevance
maps across all correctly predicted patients to form a singular relevance map

representing the average patient and compared it with a statistical reference en-
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coding preexisting knowledge of the localization of dementia-related pathology
from the scientific literature. The statistical reference map was generated with
an activation likelihood estimation implemented in GingerALE v3.0.2 (S. B.
Eickhoff et al., 2012; S. B. Eickhoff et al., 2009; Turkeltaub et al., 2012). The
basis for the map was 394 experiments from 124 publications related broadly to
DEM, collected with Sleuth v3.0.4 (Laird et al., 2005). We non-linearly regis-
tered the average relevance map, such that both it and the statistical reference
map were three-dimensional volumes in MNI152-space, both containing contin-
uous values. To perform the comparison, we binarized both maps at different
percentiles, and computed the Dice-Sorensen coefficient, denoting the fraction
of overlap, between the voxels that surpassed the binarization threshold on each
side. This produced a curve, tracing the overlap as a function of the percentile
used for binarization, which was examined qualitatively. To determine whether
the overlap surpassed chance levels, the process was repeated for three other
relevance map-generating pipelines, where the procured relevance maps had no
association with DEM-related pathology.

The second sanity check was quantitative, centered around the CNN that
was trained to predict probability of DEM. Here, we used the relevance map
produced for each image to iteratively perturb it, for each iteration occluding
the region that was identified as contributing the most towards the prediction.
Additionally, for each iteration, we ran the occluded image through the classifier,
recording how the perturbation influenced its prediction. This allowed us to plot
a curve, tracing the prediction as a function of the number of perturbations.
Subsequently, we calculated an area over the perturbation curve (Samek et al.,
2017), quantifying how quickly the CNN’s ability to recognize patients faded as
important regions were sequentially being removed. Again, we compared the
curve produced by the DEM-pipeline with the three alternative pipelines, to see
whether it quantitatively was better than chance at detecting regions important

for classifying dementia.

6.3.4 Additional analyses

Although the imaging models, case-control classifiers, and genetic analyses de-
scribed so far cover most of the analytical components employed throughout
the three papers, we supplemented them with various other analyses to further
understand and exploit what was learned by our CNNs. In paper I we per-

formed the PheWAS to associate inter-individual variability in brain age deltas
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with variation across 402 other phenotypic variables. These associations were
assessed univariately, using a linear model to model delta as a function of each
phenotypic variable, while controlling for age and sex. The models were im-
plemented in statsmodels v0.13.2 (Seabold & Perktold, 2010). Significance was
assessed by assessing the p-value denoting the contribution of the phenotypic
variable in each independent model. We accounted for multiple corrections con-
trolling the FDR.

In paper III we associated visual patterns in the relevance maps from the de-
mentia classifier with performance on a neuropsychological test battery, to assess
whether the location of dementia-related pathology detected by the model was
associated with clinical symptom load. Here, we also used the simplified repre-
sentations of the relevance maps derived from the PCA described above, namely
feature vectors with dimensions representing prototypical relevance maps. Each
of these prototypes was associated univariately with 17 summary scores from
the test battery via linear models in statsmodels. In addition to the feature
vectors we corrected for age, sex, and dementia prediction from the original
CNN, to isolate the effect of the localization of pathology, as opposed to the
total pathological load. As above, significance was assessed by evaluating the p-
values for the individual prototypical relevance maps in their respective models,
with an FDR-corrected threshold.

6.4 Ethical considerations

The work in this thesis was performed partially using data acquired locally,
regulated by multiple approvals from REK (applications 2009/2485, 2013 /2283,
2016/102, 2019/943). Data management and privacy issues concerning those
studies have been evaluated and approved by the University of Oslo (UiO)
and/or Oslo University Hospital. Data from various online sources and col-
laborators have also been utilized, governed through a variety of data sharing
agreements. All analytical work was performed on UiQ’s services for sensitive
data (TSD), a platform facilitating storage and analysis of sensitive data in a
secure environment. The research was performed in compliance with Norwegian
law for conducting medical and health research (the Health Research Act).
Beyond what is explicitly governed by laws and regulations, there will always
be ethical aspects that should be considered when doing research. This holds
true also for this thesis, and I will elaborate some of them in the following

paragraphs. First, I will discuss some relevant ethical challenges that arise
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when doing medical research with diagnostic and prognostic aims, particularly
using advanced predictive technology. Next, I will elaborate on issues that arise
when collecting and using data for research purposes. Finally, I will delve into
some of the ethical considerations pertaining to the use of Al first when using
it as a tool to derive scientific knowledge, and secondly pertaining its broader
role in society.

We generally want people to be healthy and content, an objective frequently
operationalized through medical research and practice. When someone is not
healthy, we seek to treat them, ideally returning them to a state of well-being.
To recognize which remedy is appropriate a diagnosis is decreed, effectively
clumping the present patient with other patients that suffer from the same, or
at least a very similar, disease. This allows the prescription of a treatment, based
either on a mechanistic understanding of the nature of the illness, or empirical
evidence of what has successfully treated the disease historically. This general
approach has formed the backbone of evidence-based medicine in the last half-
century. And while there have always been challenges with how and when a
diagnosis should be given, in this framework this has generally been a question
of balancing risks and benefits to maximize the probability of a good outcome.
However, the complexity of deciding when a diagnosis should be given increases
substantially as the definition of a disorder obfuscates. Furthermore, the poten-
tial upside of giving a diagnosis is reduced when this knowledge may provide
a limited basis for deciding upon effective treatment, a reality for many of the
complex disorders addressed in this thesis (Duraes et al., 2018; Leichsenring
et al., 2022). Oppositely, the potential downside increases dramatically if the
disorder is associated with social stigma, such that simply giving the diagnosis
has a negative effect on the patients, another aspect that has been described in
these disorders (Hinshaw & Stier, 2008). Combined, these factors indicate that
these diagnoses should be prescribed with care. Similar arguments can be made
against prognosis: it is complicated to determine whether the insight that one
may be at risk to contract a life-changing, potentially untreatable, neuropsychi-
atric disorder is beneficial, especially if that knowledge does little or nothing to
alleviate the risk. Through the development of predictive technology, this thesis
can be reasonably said to contribute towards automatizing these diagnostic and
prognostic processes, prompting contemplation on whether this is morally and
ethically defensible.

To counteract the problems outlined above, I will point out reasons to be

optimistic about the use of AI and technology to diagnose neuropsychiatric dis-
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orders. Most importantly, early, precise, and personalized diagnosis has proven
effective for slowing disease progression and reducing symptom load for a range
of disorders, even when curative treatment is not currently available (Rasmussen
& Langerman, 2019). The importance of this point is further emphasized by
findings revealing that individuals are more willing to listen to recommendations
when these are based on individualized risk as opposed to general advice (Carver
et al., 2022). If this can be achieved through individualized predictive models, it
seems more appropriate to ask how they can be implemented safely, rather than
categorically denouncing them. Regarding the morality of labelling individuals
with diagnoses when this doesn’t entail treatment, there are positive sides that
can counteract negative stigma. Specifically, being given a diagnosis can pro-
vide patients with a new lens through which they can understand themselves
and their challenges (Werkhoven et al., 2022), potentially reducing the burden
of a condition. However, neither of these arguments should make out the corner-
stone of a moral defense for predicting disorders and outcomes. Instead, I will
argue that prediction can provide a useful tool in our quest to understand the
complex mechanisms of these enigmatic conditions. First, I will assertively state
that I consider this pursuit of the causes of disease a moral imperative. This
might seem redundant, but there are plausible arguments for how a more careful
dissection of individuals along behavioural axes of variability can have negative
consequences, such as overdiagnosis (Moynihan et al., 2012), overmedicalization
(Angell, 2011a), and a general constriction of normality (Angell, 2011b). While
definitively important issues these are massively outweighed by the tremendous
negative effects inflicted by the conditions considered in this thesis. However,
it is worth mentioning the unreasonability of considering these diagnoses as a
single entity in this regard, given their innate differences. Nonetheless, given
the intricacies of demarcating them, and the general focus on methodology and
technology here, it is a necessary simplification.

Prediction, when judiciously applied, can play a pivotal role in the ex-
ploratory process of understanding a phenomenon. To accentuate this view,
I will return to the representation learning perspective embraced in the intro-
duction. While predictions from a statistical learning model are commonly
seen through the lens of statistics, representing probabilities or likelihoods, it is
equally justifiable to interpret them as information-theoretical quantities. Here,
they simply represent a quantum of information, a compressed version of the
data that was input to the model that retains some properties while discarding

others, according to specific rules. In cognitive and clinical neuroscience, it can
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be argued that there is a lack of intermediate levels of description and explana-
tion between the biological and psychological domains (Rolls, 2021). One of the
main concerns of the field should be the construction of a conceptual hierarchy
that bridges this gap. However, reconciling these domains will require navi-
gating a complicated intermediary landscape of vast combinatorial possibilities.
Here, predictive models, through their capacity for processing and compressing
information, can potentially play the role of landmarks in this exploratory pur-
suit. This is best depicted in an idealized imagined setting with a predictive
model able to combine information to arbitrary degrees of complexity, e.g. a
DNN (Hornik et al., 1989), and infinite data. Here, the concordance between
prediction and labels will be indicative of the information overlap between the
input and output space of the model. In clinical neuroscience, this could allow
for quantitative reasoning about what can possibly be derived from neuroimag-
ing data, and its interrelation with clinical constructs. From this perspective,
the predictive models take on an inductive role in the quest for knowledge, where
the focus is not on the practical utility of their predictions per se, but rather
on their proficiency as information processing entities. To summarize, having
predictive capabilities does not necessarily imply using them for single-subject
predictions. While I believe that also the latter is morally defensible in some
cases, this disentangles the two processes, simplifying the moral argument for
the former.

The scientific process has always relied on data from the real world to refute
or strengthen hypotheses. When the subject matter under investigation relates
to personal life, this data will necessarily be highly sensitive. The absolute de-
pendence on sensitive and personal data has fostered the development of both
concrete judicial structures and ethical guidelines for the management and us-
age of such data for research purposes. In the age of big data, data mining,
and deep learning, some of the central pillars of these governing frameworks are
being challenged. One such is the principle of data minimization, which states
that a researcher, or any other data-collecting entity, should collect the minimal
amount of sensitive data sufficient to realize a purpose (The Norwegian Personal
Data Act, §5.1c). This stands in contrast with the exploratory nature of modern
ML approaches, where data is not used simply to test hypotheses, but also to
generate them, implying that the ideal starting point is a dataset containing as
much information as possible. This desire for breadth also potentially contra-
dicts the related principle that data should be collected towards a specific goal
(The Norwegian Personal Data Act, §5.1b). Consequently, it is crucial to weigh
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the potentially detrimental effects it could have upon participants in studies to
effectively relax these restrictions through reformulations of the intended pur-
pose and goal, against the potential benefits of having access to the data. As
this thesis relies solely on data already collected, this issue is not of direct rele-
vance. Nonetheless, it is important to keep in mind when using external data,
to ensure it was collected in accordance with high ethical standards and that
the current research falls within the collected consent. For the data used here,
this is the case. A related issue emerges when data from various sources are
combined to provide the broadest possible basis for explorative modelling. This
can potentially incite situations where data that was originally, independently,
not sufficient to identify individuals, but through combination this guarantee
is lost. Although this thesis combines a lot of data from different sources, this
never entailed augmenting data from the same individual, and thus this concern
is alleviated.

If the data we used was collected with appropriate consent and according to
high ethical standards, stored securely, and not shared, it sounds reasonable to
assume that privacy concerns are mitigated. However, there are other potential
issues to be aware of. One such that arises particularly in research develop-
ing predictive models, and maybe specifically DNNs, is the public sharing of
trained models, a practice inherited from the broader open-source community.
In a sense this practice seems unproblematic: the shared models are large ma-
trices of numbers that are unintelligible to humans. However, these numbers are
derived from the data that was used to train them, in this context highly sensi-
tive data governed by strict rules and regularization. For generative models, a
different class of models than what we used, recent research has shown it possi-
ble to extract samples that were used for training after the model was deployed
(Carlini et al., 2023). While the exact technical route for reverse engineering
the types of models we used is less obvious, this still opens the possibility that
we are somehow leaking sensitive data through our shared models. In addition
to privacy concerns, there are general problems regarding governance and own-
ership of models distilled from personal, sensitive data collected under specific
consents. Taken together, these issues problematize the sharing of pretrained
models. However, there are also moral arguments favouring the other side.
Most importantly, this is a practice that enhances the capacity of the collective
scientific community to develop better predictive models and put them to use
(Touvron et al., 2023), in addition to fostering reproducibility (European Com-

mision et al., 2020). For the models trained in this thesis the latter weighed
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heavier, and they are open-sourced under non-commercial licenses.

Another ethical concern that has always existed in research, but is exacer-
bated through the sharing of pretrained models, is the representativeness of the
data that is used. Traditionally, various biases have challenged the generalizabil-
ity of empirical findings. In medical research, a systemic error that has persisted
through the years is gender bias. Historically, most studies have included mostly
male participants, leading to knowledge, and subsequent development of inter-
ventions, that do not generalize to females (Holdcroft, 2007). However, this
has improved in later years, and while the effects of gender differences are still
not always properly accounted for, many of the large neuroimaging datasets are
relatively balanced with respect to the sexes of their participants. Conversely,
there are still severe selection biases in ongoing data collection efforts concerning
geography, demography, and race (Ricard et al., 2023). This limits the gener-
alizability of findings and could lead to differences in the healthcare solutions
available to different populations and groups. Overcoming this requires changes
in data acquisition practices, but until then it is important to be specific about
the limitations this entails. The exacerbation concerning shared models comes
from the fact that this lack of generalizability will now be implemented prac-
tically in tools that are made available to others. Furthermore, it might be
hard for users to recognize this problem, and, even when it is known, difficult
to determine when a new population is so far out-of-distribution that the model
is no longer reliable. Ideally, this should be handled by extensive testing of
where the model behaves as intended by its developers. However, as this is not
a practically feasible solution, it is at the very least important for practitioners
to be open and explicit about what data was used to train their models.

It is important to note that many of the issues outlined above are magnified
when Al models initially developed for scientific endeavours are translated into
publicly accessible software, for instance in clinical decision support systems.
Now, unrepresentative samples used for training models does not solely lead to
invalid inferences, but potentially social injustice or medical malpractice. And
poor data management can lead to personal and sensitive data collected with
consent to pursue scientific questions ultimately increasing shareholder value in
commercial companies. The effort to regulate modern Al is just getting started
with the EU AI Act, a proposed law for the regulation of Al systems in Europe to
be implemented in early 2024. Although this development is of broad interest to
everyone working in the field, there is one topic specifically relevant to this thesis

that incites reflection. If commercialized, the technology developed here would
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presumably be categorized as medical devices, putting them in the high-risk
group of products (Al Act, Recital 30). One of the demands for products in this
group is transparency, an aspect that is operationalized in this thesis through
explainability. In the legislation, transparency is defined as ”[...] enabling users
to understand and use the system appropriately” (Al Act, Article 13.1) and that
”Users should be able to interpret the system output and use it appropriately”
(AI Act, Recital 47). This reasserts the central role of the user in XAI outlined
earlier. And practically, it entails that empirical, quantitative investigations
of the explanations of Al models, such as the ones performed here, must be
supplemented by trials with potential users of the system to understand whether
they are useful. Ensuring that explainability truly fosters understanding will
be imperative to develop and deploy Al that conforms to ethical and judicial
expectations moving forward.

I will end this chapter by adding my voice to a collective concern raised in
response to the rapid development of Al in the last year. It is common practice
in many scientific branches that academics and commercial entities collaborate
to advance the research frontier. In Al, this dynamic appears to be somewhat
shifted towards commerce, with many breakthroughs in the last decade orig-
inating from large technology companies (Brown et al., 2020; Jumper et al.,
2021; Vaswani et al., 2017). This can be explained by the immense commercial
potential of the technology fostering private investments, potentially acceler-
ating its progression for the overall good. For many years this happened in a
tolerable fashion, where private actors contributed towards advancing the state-
of-the-art, necessarily promoting their commercial interests, but while making
theory, and often even code and models, accessible through standard academic
channels. This changed in 2020, when OpenAl, a research company created to
facilitate the safe development of artificial general intelligence (OpenAl, 2015),
decided not to open source their groundbreaking large language model GPT-3
(OpenAl, 2020). The rationale given was the model’s potential to cause soci-
etal harm, particularly its proficiency at generating misinformation (Brown et
al., 2020). Instead, the technology was exclusively licensed to Microsoft (Scott,
2020), about a year after OpenAl changed from a non-profit to an investor-
friendly ”capped profit” structure to meet their rising capital needs (OpenAl,
2019). In 2022 ChatGPT was released (OpenAl, 2022), a complete end-user
application for interacting with the newest, still proprietary, GPT models, fol-
lowed by an optional, paid, premium service (OpenAl, 2023). The debate on the

ethical aspects of open-sourcing advanced deep learning models is still ongoing
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and is a topic too complex to describe in detail here. However, considering the
preceding paragraphs urging general caution when developing Al methodology
in scientific contexts to avoid overstepping ethical bounds, it is worth contem-
plating that there are actors in the field with access to more data and resources,
striving for plausibly less noble goals than the scientific pursuit of knowledge,
operating under less stringent ethical frameworks. The proficiency of tools de-
veloped by private actors could lead to situations that necessitate their use,
even if they were developed with unsatisfactory ethical standards. Finding a
balance between regulating and empowering different actors to ensure progress
while mitigating the risk of harm must be a priority for both regulators and

practitioners of the field in the years to come.
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7 Summary of papers

7.1 Paper I: Deep neural networks learn general and clin-

ically relevant representations of the ageing brain

Background: Over the last decade, brain age has emerged as an intuitive and
sensitive marker of brain health. However, disparities in data acquisition have
proven troublesome for the statistical methodologies underlying brain age mod-
els, raising questions about the generality of what they learn, and hindering
clinical adoption. Facilitated by the accumulation of vast datasets and theoret-
ical advances, deep learning provides opportunities for refining brain age and
enhancing its potential for clinical implementations. Empirical studies based
on large, heterogeneous datasets are imperative to investigate whether they can
overcome differences in data acquisition, scrutinize their clinical utility, and fur-
ther understand what the measure encodes.

Methods: We compiled a large, heterogeneous dataset (n = 53,542) of struc-
tural MRIs to fit brain age models using variants of a state-of-the-art convolu-
tional neural network. To assess generalizability, we performed out-of-sample
testing with scanners unseen by the model. Next, we tested for associations
between variability in predicted brain age, structural brain measures, and a va-
riety of phenotypes. Finally, we employed the brain age model in a transfer
learning setting to predict neuropsychiatric diagnoses (AD, MCI, MOOD, MS,
PSY, SCZ) to assess its clinical relevance.

Results: The best model achieved state-of-the-art generalization, with an MAE
of 3.9 years in data from unseen scanners. Increased brain age was associ-
ated with widespread cortical thinning and reduction of subcortical volumes.
Furthermore, we found correlations with a multitude of phenotypes, includ-
ing diabetes, cardiovascular measurements, smoking, and alcohol consumption.
Utilizing the representations learned by brain age model for transfer learning
yielded fair predictive power for detecting patients with MS, AD, and MCI,
(AUCs > 0.7), and modest differentiation for SCZ, PSY, and MOOD (AUCs
~ 0.6)

Conclusion: A CNN trained to predict brain age based on large and heteroge-
neous data can alleviate common issues with generalization, and its predictions
coincide with measures known to be associated with overall and brain-specific
health. Furthermore, both brain age and the learned representations underlying

it are predictive of neuropsychiatric disorders.
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7.2 Paper II: Genetic architecture of brain age and its

causal relations with brain and mental disorders

Background: BAG, the difference between the apparent age of the brain and
the chronological age of an individual, has been linked to a multitude of neu-
ropsychiatric disorders. However, the genetic underpinnings of BAG have not
received much attention, even though they could elucidate the role of brain
ageing in neuropsychiatric disorders. Beyond genetic associations, MR offers a
methodology to probe the causal relationships between BAG and these disor-
ders, potentially explicating its value as a clinical biomarker.

Methods: We used a state-of-the-art CNN to predict brain age in a subset of
participants from the UK Biobank (n = 28,104) from which genetic data was
also accessible. Based on these predictions we calculated BAG and performed
a GWAS to identify genetic variants that were associated with it. Next, we
applied a battery of methods to refine the genetic signal and identify potential
biological pathways related to BAG. Finally, we investigated the relationship
between BAG and five neuropsychiatric disorders (AD, BIP, MDD, PD, SCZ)
through polygenic overlaps and bi-directional MR analyses.

Results: The brain age models were accurate, achieving consistent MAEs of
< 2.5 years in unseen data. The GWAS revealed eight independent loci sig-
nificantly associated with variability in BAG, seven of which were novel. The
supporting analyses indicated that these genetic variants influenced 54 genes,
which had intricate expression patterns in the brain specifically, and other tis-
sues across the body. The MR analyses indicated that higher BAG was pro-
tective against Parkinson’s disease, whereas increased genetic risk for AD and
BIP were causally related to higher brain age. However, qualitative inspections
revealed that these causal relationships should be interpreted with care.
Conclusion: Our study represents the largest GWAS on brain age to date,
identifying seven novel genetic variants contributing to its variation. These
variants were associated with genes expressed in a range of tissues across the
body, emphasizing the sensitivity of brain age as a composite marker of gen-
eralized health. The causal relationships between BAG and neuropsychiatric

disorders remain elusive.
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7.3 Paper III: Characterizing personalized neuropathol-
ogy in dementia and mild cognitive impairment with

explainable artificial intelligence

Background: Dementia, afflicting more than 55 million individuals worldwide,
is a neuropsychiatric condition that incurs a monumental detrimental effect on
society. Dementia patients are a heterogeneous group, both in terms of pathol-
ogy and clinical manifestation. Early detection and personalized characteriza-
tion of the disease would facilitate accurate prognosis, widen the window for
early interventions and potentially alleviate uncertainty about the future of in-
dividual patients. XAI has the potential to accurately localize dementia-related
pathology to facilitate personalization and provide a translation technology for
dementia diagnosis and prognosis.

Methods: We trained CNNs to differentiate patients with DEM (n = 854)
from healthy controls (n = 854) using structural MRIs and implemented LRP
on top of the model to form an explainable pipeline, procuring both individual
predictions and relevance maps to explain them. We validated the relevance
maps extensively, first through a comparison with existing knowledge of pathol-
ogy recorded in the literature, and secondly by assessing the predictive value of
the information they encoded. Finally, we employed the pipeline in a cohort of
MCT patients (n = 1256) to investigate its potential for prognosis and person-
alization of the diagnosis at an early stage.

Results: The best model achieved satisfactory discrimination performance,
reaching an out-of-sample AUC of 0.9. The first validation revealed substantial
overlap between the average relevance map from our pipeline and the reference
map produced through a meta-analysis of the literature. The second valida-
tion affirmed the importance of the regions detected in the relevance maps for
predicting dementia in a quantitative setting. Information from the pipeline in
the MCI cohort enabled the ability to differentiate progressive from stable MCI
patients with an AUC of 0.9 after 5 years. Differential localization of pathology
encoded in the relevance maps showed associations with impairments in distinct
cognitive domains.

Conclusion: XAI presents a promising translational technology to support clin-
ical decision-making in the diagnosis and prognosis of dementia. The outputs
of our explainable pipeline was both predictive of disease progression and as-
sociated with individualized clinical manifestation of the disease, both essential

capabilities to enable precision medicine in dementia in the years to come.
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8 Discussion

Through this thesis, I have explored the hypothesis that DNNs are capable
of learning representations of the brain from neuroimaging data that can help
elucidate the biological variability that underpins neuropsychiatric conditions.
Moreover, I have demonstrated that these representations are associated with
quantifiable biological and physiological processes in the body and the brain,
to underscore that they are not simply visual patterns, but rather represent
composite and informative biological measures. Finally, I have related the rep-
resentations with existing diagnostic labels, with a focus on neuropsychiatric
disorders with a behavioural or cognitive aspect, to highlight their clinical po-
tential. In the upcoming section I will continue discussing the results from
the papers, to highlight independent aspects that warrant attention, elucidate
their interconnections, and place them into the broader context provided by

contemporaneous research in the intersection of Al and neuroscience.

8.1 Deep learning-derived brain age as a robust marker of

generalized brain health

In papers I and II we trained CNNs to predict brain age based on a large
and heterogeneous sample, to contribute to a broad literature emphasizing the
usefulness of brain age as a marker of generalized brain health. The advan-
tages of using complex deep learning models to predict brain age as opposed
to simpler models, such as the relevance vector machine underlying the original
brainAGE framework (Franke et al., 2010), are not necessarily obvious. The
most evident benefit of transitioning to more expressive models is generally the
increase in predictive performance, in brain age exemplified by the SFCN win-
ning PAC2019 (Gong et al., 2021; Peng et al., 2021). However, more accurate
brain age models are not trivially more useful. Recently, there have been put
forth arguments favouring both accurate models (Hahn et al., 2021) and models
that allow for a moderate amount of variation in their predictions (Bashyam
et al., 2020; Bashyam et al., 2021) even though the latter necessitates worse
predictive performance as measured by standard metrics. The proposed ad-
vantage of loose-fitting models is that variability in their predictions reflects
biological variation, rendering them more sensitive towards pathological alter-
ations manifest in various patient groups. This is epitomized in the argument

that a perfect brain age model, predicting the correct chronological age every
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time to yield brain age deltas of exactly zero, is useless, as these will not covary
with any phenotype of interest. While this is tautologically true, it is also worth
further contemplation. Although the outputs of the model would be neither in-
teresting nor useful, it can be argued that the model itself necessarily would
be. Having learned to navigate the complexities of neuroanatomy to perfectly
and invariably recognize age seems to imply a profound understanding of the
changing brain, knowledge that appears invaluable.

To examine the opposite side, the main argument against loose-fitting models
is the practical improbability of determining what causes their worse fit. While
it can be caused by biological variability, it can also arise from modelling errors
or imaging artifacts, and it is implausible that these two can be told apart for an
individual prediction. Following this I advocate the view that we should pursue
more accurate models, under two important presuppositions. First, that better
fits are not achieved by actively reducing heterogeneity in the dataset, in paper
I ensured via the large dataset and external validations. And second, venues for
exploiting the knowledge encoded in the models beyond their raw predictions
must be explored, exemplified through our transfer learning scheme where we
used the internal representations of the model to predict diagnostic status.

Potentially more devastating than uncertainties about modelling best prac-
tices are controversies regarding the true nature of brain age, such as the dis-
cussion on whether it is sensitive towards ongoing rates of aging, or if it rather
captures differences that are relatively stable across the lifespan. Empirical ev-
idence has been presented both in favour of the former (Franke & Gaser, 2012;
Hogestol et al., 2019) and the latter (Vidal-Pineiro et al., 2021). Related is
the problematization of the relationship between age-related patterns encoded
in these brain age predictions and neuropsychiatric pathology (Cole & Franke,
2017), and specifically to what degree the former encompasses the latter (Hein-
richs, 2023). This is not specific to brain age, but rather part of a broader
philosophical discussion concerning the interrelation between age-related and
pathological processes (Hayflick, 2004; Holliday, 2004). A third matter that
has been raised is the limited interpretability of brain age due to its composite
nature (Cole & Franke, 2017). In my opinion, the last objection falls on its own
accord: it is exactly the ability to aggregate and consolidate information that
makes brain age valuable. This does not mean it’s not worthwhile to inquire
what underlies brain age. Both paper I and other studies (S. M. Smith et al.,
2020) have indicated that there are levels of abstraction beneath the singular

brain age that can be useful and interesting, and this direction should be ex-
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plored further. As a broader stance against the issues presented here, I concur
with the pragmatic view (Cole & Franke, 2017), pointing towards the practical
utility of brain age. The PheWAS and diagnostic predictions in paper I add to a
wealth of empirical evidence amassed for the sensitivity of brain age predictions
towards alterations in the brain related to biological processes. This view should
not impede investigations into the ontological foundation of brain age, but nei-
ther should ontological uncertainty hinder practical work toward exploiting its
utility. While the amount of evidence for the usefulness of brain age predictions
continues to mount, there are, to my best knowledge, no implementations of
brain age models tailored for clinical use available today. To achieve this should

be a priority for practitioners in the field moving forward.

8.2 Elucidating brain age via genetic associations

Another promising approach for utilizing brain age as learned by our CNNs is
as an intermediate phenotype between low-level biology and high-level cognition
and behaviour, including clinical diagnoses. Paper II adds to a growing body
of knowledge about the genetic foundations of brain age (Jonsson et al., 2019;
Ning et al., 2020; S. M. Smith et al., 2020) and its genetic associations with
neuropsychiatric disorders (Kaufmann et al., 2019), by both replicating earlier
findings and identifying novel genetic associations. It also gives further credence
to the notion of the brain age delta as a heritable trait (Cole & Franke, 2017;
Jonsson et al., 2019; Kaufmann et al., 2019). Beyond the variants themselves,
an intriguing finding was the extensive scope of biological pathways associated
with them. This implicates brain age as a measure sensitive towards an array of
biological processes. This finding can be seen in relation to more general find-
ings indicating a broad genetic foundation underpinning other biological clocks
(Rando & Chang, 2012), potentially linking brain age with a more compre-
hensive notion of biological aging. However, this inference is complicated by an
earlier study finding no association between brain age and methylation age (Cole
et al., 2018), signifying that the two measures are sensitive to complementary
information. The latter hypothesis has been strengthened by recent reports that
an age prediction model combining brain and body measures predicted age more
accurately than a standalone brain age model (Beck et al., 2023). In sum, this
outlines an intricate relationship that should be elucidated through further ef-
forts. However, it also highlights the potential of brain age in combination with

other biological ages to provide a comprehensive array of abstract, high-level
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biological measures that can holistically support precise clinical decisions.

A surprising result from paper II was the lack of overlap we observed be-
tween the genetic variants underlying brain age and those underlying neuropsy-
chiatric disorders, contradicting earlier findings (Kaufmann et al., 2019). There
are multiple plausible explanations for this discrepancy, beyond differences in
methodology. Under the assumption that the genetic architecture is complex
and polygenic, and the individual effects are small, the datasets used by us and
others for brain age GWAS are still relatively small (Nishino et al., 2018). This
is an assumption that has proven true for other complex neuroimaging pheno-
types (Roelfs et al., 2023). This presumed polygenicity could also influence the
validity of the MR analyses we performed. However, if this was the case, and
some of the genetic variants affected brain age and one of the disorders through
horizontal pleiotropy, this should yield inflated causal results and potentially
false positives (Bowden et al., 2015). Instead, we saw little reliable evidence for
causal relations overall. Like above, a potential explanation for this is the limited
sample size of the GWAS, although imaging genetics studies based on simpler
imaging phenotypes have revealed evidence for causal relationships based on
similar sample sizes (Guo et al., 2022). It is possible that the complexity of
brain age as a measure, specifically when derived from a DNN, conflates the
genetic variation underlying it, giving it a broad pleiotropic foundation. If so,
it could be more meaningful to look for genetic signals at levels of abstraction
underlying the singular, composite, measure (S. M. Smith et al., 2020), such as

the internal representations we used for transfer learning in paper I.

8.3 Characterizing heterogeneity with explainable artifi-

cial intelligence

In paper III we assessed brain heterogeneity through XAI by leveraging the
localization of pathology enabled by our explainable pipeline built for classify-
ing patients with DEM. However, to do this confidently, we first validated the
veracity of the explanations through two validation procedures. Extensive val-
idation of these approaches is crucial, given the general shortcomings of these
methods that have been repeatedly shown (Adebayo et al., 2020; Kindermans
et al., 2019; Sixt et al., 2020). These shortcomings are potentially exacerbated
in neuropsychiatric disorders where even the ground truth diagnostic label is
subject to heterogeneity and subjectivity (Martin et al., 2023). On top of this,

the importance of concretizing the added value of applying XAl in individual
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studies has been emphasized (Lipton, 2017), incurring a need to establish why
specific validation procedures are applicable in given situations. In our first
validation, we observed that the regions where the model detected evidence for
DEM corroborated knowledge existing in the literature, similar to what has
been reported by others (Bohle et al., 2019; Dyrba et al., 2021; D. Wang et al.,
2023). This validation approach reliant on preexisting knowledge is important
to assess the fidelity of the explanations, and it represents a first step towards
evaluating whether the model utilizes information that appears plausible to a hu-
man expert, facilitating trust (Tonekaboni et al., 2019). The second validation
was focused on assessing whether the regions that were detected as informative
by our pipeline had an impact on the predictions of the model, and as such
was concerned with internal consistency as opposed to external validity (Samek
et al., 2017). Taken together, these two validations provided confidence that
our pipeline procured reliable information related to DEM, enabling subsequent
analyses.

It is interesting to contemplate the requirement for Al used in clinical situa-
tions to be explainable, and the necessity of these explanations to be thoroughly
validated. Currently, decisions taken in these situations are not supported by
algorithms but rather made by humans. It has been shown that explanations
provided by humans to justify their decisions do not necessarily reflect the ac-
tual decision processes underlying them (Holzinger et al., 2019; Johansson et
al., 2006). Furthermore, it has been reported that humans tend to overestimate
their ability to understand the decision processes of others, purely based on
the assumption that they resemble their own (Bonezzi et al., 2022). Beyond
individual humans, it has been argued that medical practice, both historically
and contemporaneously, is mostly predictive, not explanatory (London, 2019).
Building upon this argument leads to the claim that it is not intrinsic, virtuous
qualities of potential explanations that enable trust in the decisions made by
clinical personnel, but rather confidence in their expertise, accumulated experi-
ence, and proven track record. It is possible to take the same stance towards Al
(Cappelen & Dever, 2021) and weigh its predictive capacity above and beyond
its ability to explain itself. Nonetheless, this is not what upcoming legislation
aims for. One of the reasons underlying the skepticism towards decisions made
by DNNs is their propensity to take shortcuts, giving the appearance of having
understood and properly modelled a phenomenon, when in reality they have
found a clever way of surpassing it altogether (Geirhos et al., 2020). This can

make them fail in ways that appear incomprehensible, that would never occur
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in the hands of a human expert. Providing a mechanism for detecting these
situations is one of the goals XAl is striving for. However, it is critical to en-
sure the new methodology does not simply provide a new level of shortcuts
leveraging our propensity for seeking meaningful explanations (Ghassemi et al.,
2021; Lipton, 2017). This underscores the importance of multifaceted validation
procedures.

Beyond the extensive validation, the main innovation in paper III was to
utilize individualized explanations for personalized diagnostics and prognostics.
This is a possibility that has been mentioned in the literature (Martin et al.,
2023) and employed in other domains (Jin et al., 2021), but, to the author’s
best knowledge, has not been explored with regards to neuroimaging data. The
technicalities underlying this possibility deserve elucidation. In general, ML
approaches can be broadly categorized as either supervised or unsupervised
learning (Goodfellow et al., 2016). The former aims to train models that solve
problems where the answer is known, operationalized through labelled sam-
ples used for training. These are the approaches that produce run-of-the-mill
classifiers that differentiate cats and dogs, or cases and controls based on diag-
nostic labels. Although this can be knowledge-producing (Plis et al., 2014), the
main benefit of supervised approaches is to systematize and operationalize ex-
isting knowledge through automatization. Conversely, unsupervised learning is
exploratory in nature, encompassing approaches where models find patterns in
data to optimize a mathematical objective not linked to a specific label. A prime
example is clustering, where samples are grouped based on their innate char-
acteristics, rather than predefined groups. The ability of unsupervised learning
to provide new characterizations of data can be useful, mostly when these co-
vary with interesting dimensions of variability, detecting using additional data.
However, this is not necessarily the case, and the model can learn perspectives
that do not appear useful (Altman & Krzywinski, 2017).

In between these two extremes is semi-supervised learning, where labelled
data is used to guide the model, but not completely determine its output (Da-
vatzikos, 2019). In paper III we showed that something similar can be achieved
through a combination of supervised learning and XAI. Here, the diagnostic
labels guided the process by providing a foundation for training the model, but
the pipeline in its totality produced relevance maps with a spatial richness far
exceeding what existed in the original data. Furthermore, we were able to link
the spatial information in the relevance maps with clinically useful measures.

This highlights the ability of the approach to perform precise characterization
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to support personalized clinical decision-making beyond what is possible today.

Beyond its usefulness in practical, clinical situations, the pipeline in paper
I1T exemplifies a broader possibility to use XAl to produce new scientific knowl-
edge. In complex neuropsychiatric disorders, accurate CNNs combined with
techniques like LRP could help reveal parts of the brain containing aberrations
in patient groups. This is made possible even when these consist of patterns that
are intricate and subtle, and, importantly, without preexisting labels describing
them. However, this endeavour should be preceded by scrutinizing whether this
allegedly explainable technology constitutes a valid epistemic tool for deriving
scientific knowledge. In the case where a predictive model approximates a rela-
tion representing an underlying phenomenon, there are two processes that can
be explained: The decision process underlying the predictions of the model, and
the process governing the phenomenon itself (Sreckovié et al., 2022). Where the
latter is the goal of scientific inquiry, it is the former can be approximated by
XAI This description highlights two points of interest. First, the explanations
provided by XAI are two approximations above the underlying phenomena,
plausibly causing them to be imprecise (Shmueli, 2010). Second, current pre-
dictive models, including the ones used in this thesis, are associational in nature,
relying on statistical associations in data to procure predictions. This means
they should not be trusted to accurately depict the causal mechanisms that sci-
ence commonly seeks to uncover. Furthermore, there has been a lot of emphasis
on the recipient of the explanation in XAI, to guarantee that the explanation
fosters subjective understanding. While this is valuable from a practical stand-
point, it also implies that the explanation should not necessarily be taken as
depicting an objective fact (Paez, 2019). Taken together, these do not invalidate
the use of XAl as an epistemic tool but plausibly limit its utility: it appears
more appropriate as an exploratory tool to form hypotheses that can be in-
vestigated further through other means, as opposed to playing a confirmatory

role.

8.4 The current state of deep learning in neuroimaging

Throughout this thesis I have argued principally for the particular aptness of
deep learning to discover complex, non-linear patterns of neuroanatomical aber-
rations that potentially underlie neuropsychiatric disorders based on neuroimag-
ing data. This argument has primarily been based on the capacity of DNNs to

abstract and learn hierarchical representations (LeCun et al., 2015), properties
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seemingly appropriate for dealing with the intricacies distinctive to the hierar-
chical organization of the brain (Rolls, 2021). If this argument holds one could
imagine that we now, a decade into the era of deep learning, would encounter a
neuroimaging literature brimming with empirical evidence supporting the pre-
eminence of deep learning. But while there are sporadic successes following the
introduction of DNNs, such as the SFCN winning PAC2019, neither this has
caused leaps in our ability to predict behavioural phenotypes. Instead, stud-
ies have reported that deep learning methods reach approximately the same
predictive efficacy as traditional ML for predicting high-level phenotypes (He
et al., 2020; Schulz et al., 2020), undermining the theoretical argument of its
superiority. This discrepancy deserves attention.

First and foremost, some of these comparative studies have been criticized for
not enabling DNNs to reach their full predictive potential (Abrol et al., 2021).
Furthermore, the two-step process including preprocessing underlying the tradi-
tional analyses has been seen to foster suboptimal modelling practices, enticing
a form of double-dipping that could induce a bias in their results (Arbabshirani
et al., 2017). There have also been more general reports of suboptimal validation
practices (Whelan & Garavan, 2014) and overfitting, issues empirically backed
by the recurrent finding that predictive performances reported in neuroimag-
ing studies seem to decrease as a function of sample size (Wolfers et al., 2015).
While there are no guarantees for better validations when using deep learning,
there has been an increased focus on the importance of the topic in recent years
(Scheinost et al., 2019), plausibly improving practices. However, it has also
been argued in the opposite direction, claiming that overfitting has worsened
with the introduction of deep learning models (Davatzikos, 2019). In the