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Abstract
Garbage collection plays a vital role in Java applications by freeing up unused
memory allocated by applications. Selecting an optimal Garbage Collector
(GC) and heap size is crucial for application performance yet poses significant
challenges for users and developers lacking expertise in this domain. This thesis
comprises a progression of research papers, each extending the groundwork of
the preceding one to provide solutions where prior works have not adequately
covered. Together, these contributions form a coherent sequence of investigations
that collectively address the intricate challenges of GC and heap size selection.
It begins by conducting a comprehensive evaluation of several widely used
GCs in OpenJDK HotSpot, considering performance metrics such as application
throughput, GC pause time, and memory usage. Our findings enable the selection
of the most suitable GC for CPU and I/O-intensive applications based on user-
defined performance goals. Building on these findings, a system is proposed to
automatically recommend a proper heap size and the most suitable GC based on
user-defined application requirements. Further, an adaptive heap sizing technique
is introduced that adjusts heap size dynamically based on a user-defined GC CPU
utilization limit rather than estimating application memory needs. Evaluations
demonstrate this strategy matches the memory usage to the application memory
usage pattern. This thesis offers a user-centric perspective on simplifying the
GC and heap size selection process by empowering users to meet application
goals without extensive GC expertise.
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Chapter 1

Introduction

In the Java ecosystem, the Java Virtual Machine (JVM) is a core component
that provides a runtime environment for executing Java bytecodes (resulting
from compiling the Java source code). Automatic memory management plays a
key role in the JVM and includes the garbage collection process. The garbage
collection process frees up memory that is no longer in use by an application
and ensures the optimal performance and stability of Java applications while
minimizing the effort of the developer.

Java applications generate a substantial amount of objects during their
execution. These objects become dead, and therefore garbage, when they are no
longer being used by the application, which can cause memory usage to grow
rapidly if not managed effectively. A Garbage Collector (GC) helps to identify and
free up dead objects, thus preventing memory leaks and ensuring the application
remains responsive. In the absence of an efficient GC, Java applications can
experience performance degradation, leading to increased resource usage, longer
response times, and even failures. In addition, a GC increases the developers’
productivity by eliminating the need for them to worry about managing unused
objects.

There are several collection algorithms available in the JVM with different
characteristics and goals. Consequently, some GCs may better meet different
application requirements. For instance, a throughput-oriented GC may be a
better option for applications that need a high rate of processing, while a low-
pause GC is a better choice for an application with strict latency requirements.
To select a suitable GC for a Java application, the user would need to understand
the characteristics of different GC algorithms, their resource requirements,
their impact on application performance, and how a GC aligns with the
application’s goals. A poorly chosen GC negatively impacts the application’s
overall performance and results in longer GC pause times, higher CPU usage, or
increased memory usage.

In this chapter we begin by explaining the motivation behind this research,
providing a clear understanding of the driving forces that prompted this thesis.
Subsequently, we articulate the research questions and objectives, specifying the
specific goals and the key inquiries that this thesis aims to address. Then, we
explain the system requirements, the constraints that direct our research and
implementations in this thesis. By identifying unaddressed gaps in previous
works, we show the distinctive contributions of this research to the existing
body of knowledge. Moreover, we outline the evaluation approach and the
research findings. Finally, this chapter concludes with a summary of the key
points discussed and an overview of the thesis structure, providing readers with
a roadmap for the forthcoming chapters, which will prepare the details of our

1



1. Introduction

research and its outcomes.

1.1 Motivation

Selecting an appropriate GC and optimizing heap size stands as a pivotal
challenge in the development and management of applications. The complicated
process of choosing the right GC for a user or developer who is not knowledgeable
and an expert in GCs makes this process even harder. To make a proper
GC selection, users would need to understand the benefits and limitations of
available GC solutions and match them with their application’s requirements
(e.g., GC pause times, application throughput, etc.). Moreover, considering
certain application demands, like memory requirements, determining an adequate
memory size can be a complex task, often necessitating users to engage in multiple
rounds of trial and error to identify the optimal memory size for their applications.
Alternatively, users could try to increase the resource’s capacity to overcome
issues such as Out-of-Memory (OOM) errors and subsequent failures, or slow
application execution. However, these approaches are time-consuming, expensive,
and inefficient in terms of resource utilization.

In this thesis, we aim to address these challenges (selecting the best GC and
optimizing the heap size) by providing solutions that simplify them. Our focus
is on assisting users and developers (hereafter referred to as "users") who may
lack expertise in this field, enabling them to make informed decisions without
doing costly hardware upgrades or spending time in a time-consuming process.

1.2 Research Questions

As modern applications continue to grow in complexity, the evolution of GC
algorithms becomes vital to meet the diverse memory requirements. Nevertheless,
selecting the ideal GC algorithm remains a tough challenge. This challenge
becomes even more critical when considering performance metrics like application
throughput, GC pause time, and memory usage. Consequently, addressing these
difficulties calls for the development of solutions to aid users in choosing the
most suitable GC for their applications. In addition, it highlights the need
for innovative solutions to assist users in determining the optimal amount of
memory that aligns with their application’s requirements, all while preserving
other crucial performance metrics.

In the following, we present a set of research questions that aim to address
these challenges, including:

• RQ 1: How do different GC solutions perform in terms of performance
metrics, such as application throughput, GC pause time, and memory
usage, for various applications?

• RQ 2: How can users without GC expertise select an appropriate GC
algorithm or an optimal heap size for their applications?
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• RQ 3: Can a software tool be developed to suggest the most appropriate
GC algorithm for an application based on desired performance metrics,
such as application throughput, GC pause time, and memory usage?

• RQ 4: Given the complexity of preventing memory stalls by determining
an optimal memory size for an application, are there alternative metrics
available that allow users to manage GC overhead and memory usage
effectively?

1.3 Objectives

This thesis aims to explore the GC domain with a user-centric approach, offering
solutions to address the challenges mentioned above (i.e., GC selection and heap
size determination). By taking into account a user’s application requirements,
the research strives to empower users with the tools and insights needed to make
well-informed decisions about GC and heap size configuration.

To begin our exploration, we initiate an evaluation and comparison of various
GC solutions across different application classes and offer a GC for each class.
Subsequently, based on our previous findings, we focus on automating the GC
and heap selection processes for users. To this end, we introduce a system
designed to recommend an appropriate GC (within the types of concurrent or
non-concurrent GCs) based on the requirements of the user’s application. This
step includes determining an optimal heap size for running the application and
assessing whether the application is CPU-intensive, considering the pivotal role
of the CPU as a shared resource between the GC and the application. Then,
continuing our investigation into the provision of an optimal GC and heap size
for users, we address the critical concern of determining an optimal heap size for
users’ applications. Our emphasis is on overcoming the challenge of selecting
the most suitable heap size for users. Considering the advantages of concurrent
collectors, which operate simultaneously with the application and are designed
to function independently of the application’s critical path, we implement our
adaptive heap size strategy within one of the concurrent collectors that showed
the best results in the previous steps.

In pursuit of these aims, our objectives are:

• to analyze and compare available GC solutions for different application
categories; it allows for gaining a better understanding of the trade-offs in
the GC solutions regarding application throughput, GC pause time, and
application memory usage.

• to propose a software system, BestGC, that suggests the most suitable GC
solution for an application based on the user’s application performance
goals, in addition to suggesting an appropriate heap size for running the
application.

3
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• to propose a strategy to adapt the memory size based on the GC CPU
utilization, to follow the previous research and offer users an alternative
approach for optimizing their application’s heap size.

1.4 System Requirements

To effectively frame the scope and methodological approach of this thesis,
it is important to outline the system requirements, more precisely, specific
parameters and constraints to direct our research in this thesis. Establishing
these requirements helps ensure the research contributions are effective and
practical. Formulated in alignment with our research objectives, these system
requirements serve as guiding principles, and keep the research focused while
highlighting the foundations on which the findings are built.

To meet our first objective (as outlined in the previous section), the
primary requirement is to establish an approach and define the categorization of
applications into CPU-intensive and I/O-intensive categories. It is important
that the suggested GC for each application category results from comprehensive
evaluations and maintains a high level of accuracy. Furthermore, the strategy
developed should have the flexibility in integrating new GC algorithms. This
research forms the foundational framework of our thesis by enabling evaluation
and a deeper understanding of various GCs, particularly Stop The World (STW)
and concurrent GCs.

For implementing and developing BestGC, the requirements include the
following key aspects:

• BestGC should run for a specific duration, by default set to 30 seconds
but modifiable by the user. The BestGC runtime should be shorter than
the user’s application to ensure efficiency in its utilization.

• BestGC should be flexible to user preferences, enabling them to specify
their optimization preferences in terms of application throughput versus
GC pause time.

• The methodology employed by BestGC should be extensible to new JDK
versions, diverse GCs, and varying heap sizes.

• Utilizing the GC suggested by BestGC should provide better overall
performance compared to simply using the default GC provided by the
JDK.

To implement a strategy to adapt the heap size based on the GC CPU
utilization, the following requirements are considered:

• The strategy should automatically adjust the heap size in response to the
user’s application memory usage pattern, eliminating the need for manual
heap tuning.
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• The strategy should not negatively impact application performance metrics
like application throughput and latency compared to the default heap
management strategy of the GC.1

• The strategy should converge towards a user-defined limit for GC CPU
utilization throughout the application’s execution.

• The strategy should avoid excessive changes to the heap size during each
round of adjustment.

These system requirements establish a framework and serve as the foundation
for our implementations. This framework additionally ensures the effectiveness
and reliability of our proposed strategies and contributions.

1.5 Unaddressed Gaps in Previous Works

While previous studies have evaluated and compared GCs and suggested heap
adjustment strategies, at the time of conducting our research contributions and
to the best of our knowledge:

• Previous works have not adequately covered the process of selecting the
best GC solution based on specific application characteristics, such as
whether it is CPU or I/O intensive. Additionally, these studies have not
encompassed a thorough evaluation of the array of GCs employed in our
research with a broad range of benchmark applications, regarding their
impact on key performance metrics, including application throughput, GC
pause time, and memory footprint.

• Previous works did not offer an automatic GC selection mechanism.
BestGC is the first system to automate GC selection. It would be easily
extensible to work with a new JDK version, new heap configurations, and
new GCs beyond those it was initially trained with. Furthermore, although
we developed BestGC for the JVM, its underlying algorithm has the
flexibility to be adapted to other runtime environments and programming
languages.

• Existing works have not introduced a heap size adjustment strategy based
on GC CPU utilization for an in-production and well-known concurrent
GC in widely used OpenJDK. We adjust the heap size to meet a specific
GC CPU target, instead of estimating the amount of memory needed by
the application. Our CPU-driven heap size adjustment is particularly

1It is important to note that energy constraints were also taken into account during this
research process. However, we need to clarify that the energy consumption metric falls beyond
the scope of this thesis. This metric was the primary focus of the research group with whom
we collaborated for this research. Consequently, the emphasis on energy constraints within
their research objectives influenced the consideration of this metric within the scope of the
third paper.
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important for concurrent collectors (like ZGC) which compete with the
application thread (mutator) for CPU resources to collect memory, unlike
the STW collectors used in prior studies. In other words, rather than
directly controlling the heap as in previous works for STW collectors, we
specify the desired GC CPU target and adjust the heap accordingly.

1.6 Contribution

The significance of this PhD thesis lies in the way it contributes to the
understanding of how different GC solutions perform for different applications in
terms of performance metrics like application throughput, GC pause time, and
memory usage. This contribution is realized by developing a software system,
BestGC, that suggests a heap size for executing the application and the most
appropriate GC solution based on the application’s requirements.

Also, due to the importance and complexity of choosing an optimal heap size
for a user’s application, this thesis aims to propose a strategy that helps users
overcome the struggles of finding a proper memory size for their application;
instead, they use a more intuitive metric, CPU, to control the frequency of GC
invocations, and therefore, GC adjusts the heap size based on the application’s
memory usage pattern.

In summary, our contributions include: 1) classifying user applications
into CPU/I-O intensive and offering a GC for each category, 2) designing
and developing BestGC, and 3) adjusting heap size based on the GC CPU limit.
Our research papers that formulate our contributions represent a progression
from the initial GC analysis to an automated selection system and to a fully
adaptive heap tuning mechanism. Each research paper is built on the insights
from the previous paper to incrementally advance capabilities for optimizing
garbage collection. Our techniques have matured from manual methodologies to
automated systems for GC and heap optimization.

Figure 1.1 illustrates how our contributions, as exemplified in our research
papers, directly and comprehensively address the research questions outlined in
Section 1.2.

1.7 Evaluation

The evaluation criteria in this thesis is based on choosing applications that
effectively stress GCs, have various memory usage patterns, report relevant
performance metrics essential for GC algorithm examinations, and represent
real-world scenarios. Consequently, as indicated next, we chose well-known and
broadly utilized benchmark suites within the GC domain.

In the first research paper, "Selecting a GC for Java Applications" (published
in NIKT’21), we employed DaCapo [Bla+06] and Renaissance [Pro+19]
benchmark suites. Additionally, we introduced a custom benchmark, Buffer
Bench (B2), designed to do a large volume of read and write operations to study
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Figure 1.1: How each of the key research questions are addressed in our research
papers.

GCs’ behavior and the cost associated with the read and write barriers2 that
GCs use. We further utilized the PetClinic [Spr07] application in our evaluations,
a web-based model of a veterinary clinic management system. These applications
enabled us to assess GCs with varying data profiles. We categorized applications
as CPU-intensive and I/O-intensive (basically, we define as I/O-intensive all
applications which are not CPU-intensive) and assessed performance metrics
such as application throughput, GC pause time, and memory usage before and
after GC; then, we identified the most suitable GC solution (among CMS [Ora15],
G1 [Det+04], ZGC [CK22], and Shenandoah [Flo+16]) for each category and
metric. CMS excelled in application throughput, while ZGC proved to be the
top choice for minimizing GC pause times in both CPU and I/O-intensive
applications. In terms of memory usage before GC, CMS performed well in both
application categories, with Shenandoah being equally effective, for I/O-intensive
applications. Regarding memory usage after GC, G1 outperformed the other
GCs in CPU-intensive applications in freeing memory after garbage collection,
whereas Shenandoah matched G1’s success in I/O-intensive scenarios.

For the second research paper, "BestGC: An Automatic GC Selector"
(published in IEEE Access Journal), Renaissance and DaCapo’s Chopin version3

provided us with several standardized applications for training our system,

2A read barrier (also known as a load barrier) is executed when reading or accessing object
references in memory. In contrast, a write barrier’s code snippet is invoked to track and
manage changes to object references [PGM19].

3https://github.com/dacapobench/dacapobench/tree/dev-chopin
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BestGC. Subsequently, we tested BestGC’s performance using a third benchmark
suite, SPECjvm 2008 [Sta08], as a representative of applications that might
be used by users of BestGC. BestGC recommends the optimal GC solution in
approximately 51.24% of cases and correctly identifies a GC with the appropriate
concurrent or non-concurrent category about 85.95% of the time for user
applications. Even when BestGC falls short of suggesting the best GC, utilizing
the recommended GC still results in a slight improvement compared to using
default OpenJDK GC (G1).

In the third research paper, "Heap Size Adjustment with CPU Control"
(published in ACM MPLR’23), following the discussions with the Oracle team
located in the Stockholm office, we decided to do the experiments using the
latest version of DaCapo Chopin. To include more latency-sensitive applications,
we utilized the Hazelcast [Gen+21] benchmarks in our evaluation. The findings
revealed that setting GC CPU limits higher than what an application truly
utilizes leads to reduced memory usage due to an increased frequency of garbage
collections. The proposed dynamic heap sizing strategy did not have a significant
impact on the execution time of most of the applications. In terms of application
latency, the proposed approach did not have a negative effect on latency and even
demonstrated the potential for latency reduction in some instances. Most notably,
the evaluations suggested that a 15% GC CPU target could be a favorable default
choice for optimizing the trade-off between memory usage, execution time, and
energy consumption while eliminating users’ concerns about finding an optimal
heap size for their applications.

1.8 Summary

In this thesis, we delve into the realm of GCs within the JVM ecosystem, with an
emphasis on simplifying the challenges associated with selecting the appropriate
GC and managing heap sizes for Java applications. These challenges particularly
arise for users lacking expertise in GC and heap-related issues.

We propose a GC selection methodology that provides a framework for
analyzing application characteristics and guiding the choice of suitable GC
algorithms based on the application performance goals. This lays the groundwork
for developing more sophisticated optimization approaches.

Building upon these fundamental insights, the BestGC system represents an
approach to automate GC selection. By removing the need for tedious manual
GC selection, BestGC streamlines GC selection for production environments;
while it also suggests a heap size for application execution.

The introduction of a dynamic heap tuning technique controlled by GC
CPU overhead further enhances BestGC’s capabilities. Adaptively resizing
heap memory based on real-time feedback from GC CPU utilization pushes GC
optimization to the next level.

These projects have advanced GC optimization from manual profiling
methodologies to automated systems. These advances promise to streamline GC
efficiency in emerging application domains like cloud computing.
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The insights gained and solutions developed in this thesis open avenues for
further exploration and advancement in the field of Java memory management,
impacting both research and industry practices.

1.9 Thesis Structure

This PhD thesis adopts a collection of articles format while maintaining a
well-structured and coherent narrative throughout several core chapters.

In Chapter 2, various aspects of garbage collection are explored, including
performance metrics related to the GCs, GC methods and strategies, and an
overview of existing GCs. Chapter 3 offers a review of prior research on GCs,
serving as a vital foundation for the present study.

Chapter 4 elaborates on the overall architecture underpinning the key concepts
presented in the research papers. Chapters 5 and 6 provide practical insights into
our proposed solutions and present the results we have obtained, respectively.

Finally, Chapter 7 consolidates the findings of our research, offering a
comprehensive summary of the thesis. This organizational framework is designed
to provide insights into our solutions, which are aimed at simplifying user
interactions with GCs and mitigating the complications associated with GC and
heap size selection.

For a more detailed exploration of the topics discussed, the published
research papers, which are referenced throughout the thesis, are available
in Paper I, Paper II, and Paper III.
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Chapter 2

Garbage Collection Foundations

Memory management plays a key role in utilizing the available memory resources.
There are several programming languages in which the process of memory
(de)allocation is performed explicitly by the developer, like C and C++. In
contrast, several programming languages, like Java, benefit from automatic
memory management achieved through the usage of garbage collection techniques.
In the presence of a GC, developers no longer need to struggle with the process
of managing memory (de)allocation for the objects in their applications.

The Java Virtual Machine (JVM)1 is a widely-used runtime system for
executing Java bytecodes that employs GCs to manage the memory automatically.
The JVM uses a heap as a memory pool to provide dynamic memory allocation in
Java programs. This heap is a designated region of memory that can dynamically
expand or contract as the application requires during runtime. Whenever objects
are created in Java, the JVM assigns memory from the heap to store these
objects and accommodate their data.

In Java, each object in memory includes a header and the object’s data.
The header contains objects’ class-related and control information. The data
component includes different fields that hold the object’s characteristics with
different data types (such as Integer, Boolean, etc.); it also holds references to
other objects. Interconnection between objects, through the references, forms an
object graph in the heap. The object graph’s structure is changed dynamically
when an object is created, modified, and destroyed during an application’s
execution time. JVM employs a GC to identify live objects that are currently
accessible or referenced by other objects and reclaims dead objects that are no
longer needed or accessible by the application.

In the most commonly used collection approach (called tracing, see
Section 2.2.2), the GC traverses the object graph starting from root objects,
e.g., global variables, static variables (variables associated with a class rather
than specific instances of that class) or local variables (i.e., ones that are on
the stack). Then, it marks live objects and reclaims the dead ones. Figure 2.1
illustrates four Java objects in the heap and how they connect to each other
through references. The corresponding object graph of the existing objects in
the heap is also shown in the same figure (on the right-hand side). Object 2 is
not referenced by any live object in the object graph. Therefore, it is identified
as a dead object, and the GC will collect it.

In the subsequent sections, we explain various performance metrics that play
a crucial role in evaluating the performance of GCs. These metrics are important
for evaluating GCs in managing memory in Java applications. Following this, we

1https://docs.oracle.com/en/java/javase/20/vm/java-virtual-machine-technology-
overview.html
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Figure 2.1: Objects in the heap (left) and corresponding application-level’s object
graph (right). Object 1 (marked with *) is the root object. Live objects are
highlighted in green and dead objects in red.

will explore diverse algorithms and strategies employed by GCs in the process of
reclaiming memory from objects no longer in use. To offer a more comprehensive
perspective, we will also provide an overview of the specific GCs utilized in our
thesis, highlighting their features and how they contribute to the overall memory
management scheme.

2.1 Performance Metrics

In the realm of evaluating GC algorithms, a set of key performance metrics, some
application-related and others GC-related, comes to the forefront. However,
reaching an optimal balance among all these metrics is not possible at the same
time and GCs may need to sacrifice some of them to enhance the others. It
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depends on the goals each GC follows as well as the resource limitations on the
machine and the requirements of a particular application. The most important
of them are explained next.

Application Throughput is the number of operations per amount of time.
The goal for every GC is not to decrease the application throughput (but to
increase it, if possible). Thus, the maximum application throughput goal focuses
on optimizing the time spent in the GC to increase the application throughput.
Taking OpenJDK HotSpot JVM as a reference implementation for Java, hereafter
we call it "Java"2, users can define a throughput goal using the command line
-XX:GCTimeRatio=nnn, where the ratio of GC time to application execution time
is 1/(1+nnn) [Ora22]. For instance, if a user wants the GC time to take 10% of
the application execution time, he/she should set GCTimeRatio=93. Accordingly,
the GC changes the heap size to meet the throughput goal.

GC Pause Time is the duration of pauses in which the GC halts the mutator.
The GC pause time goal focuses on minimizing such pauses. In Java, users
can define a maximum GC pause time goal using the command line option
-XX:MaxGCPauseMillis=<nnn>. If the average pause time exceeds the specified
maximum pause-time goal, the GC determines that the goal is not being met,
and then it adjusts relevant parameters like heap size to ensure that GC pauses
stay within the specified limit. The adjustments may lead to more frequent
collections, resulting in a potential decrease in overall application throughput.

Application Memory Usage refers to the amount of memory used by an
application. When an application throughput and GC pause time goals are
achieved, GC embarks on reducing the size of the heap to optimize memory usage.
The GC tries to make a trade-off in such a way that the application’s memory
usage is optimized, GC pauses are minimized, and the overall throughput of
the application is maximized. However, users are allowed to specify a minimum
and maximum heap size using the JVM options -Xms=<nnn> and -Xmx=<mmm>.
Therefore, they can control the initial heap size at application startup and the
maximum size of the Java heap can reach during application runtime.

CPU Utilization This metric shows the percentage of CPU resources allocated
to garbage collection activities. Balancing CPU utilization between application
tasks and garbage collection tasks is important for overall system performance.
Defining an upper bound for this metric affects the frequency of the GC
invocations within the JVM.

2When we mention ’Java’, we are referring to both the Java language and its implementation,
OpenJDK HotSpot JVM.

3This means that the application should get 9 times more working time compared to the
time given to garbage collection.
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Application Latency This refers to the delay experienced in application
responsiveness imposed by the GC for the collection. Low-latency GC is essential
for maintaining responsive applications, especially in real-time and interactive
scenarios.

2.2 GC Algorithms

Continuing from the discussion of the above-mentioned performance metrics in
the context of GC, this section explores the distinct strategies used in collection
algorithms, with a focus on two pivotal approaches: reference counting and
reference tracing.

2.2.1 Reference Counting Algorithm

As the name implies, the Reference Counting (RC) algorithm [BM03] keeps, for
each object, the number of incoming references from other objects in a counter.
When a new reference to an object is created, it increments the counter. It also
decrements the counter whenever a reference pointing to that object is removed.
In fact, when an object is destroyed, the counters of all objects referenced by
it are decremented, potentially leading to further reclamations. If an object’s
counter reaches zero, it becomes inaccessible, and its memory can be reclaimed.
It should be noted that these operations have to be atomic to prevent wrong
counter updates.

Reference counting is considered a direct collection algorithm as it identifies
unreachable objects directly. It aims to reduce the collection pauses and improve
responsiveness. However, it comes with the overhead of keeping a counter for
each object in the heap, along with the overhead of updating the counter for all
the referenced objects when an object is destroyed. Another major drawback of
the reference counting algorithm, as shown in Figure 2.2, is that it can’t reclaim
cyclic references, which leads to memory leaks. In Figure 2.2, if Object 1’s
counter field falls to zero, it becomes dead, and it immediately will be collected
by the GC; consequently, the counter of Object 2, referenced by Object 1, will be
decremented by one and will become 1. So, the RC algorithm does not recognize
Object 2 as garbage in the current collection cycle. Therefore, Objects 2 and
3, which have cyclic references, remain in the heap; while they are unreachable
from other objects, and it is not possible for the RC algorithm to reach these
objects.

To address this issue, other techniques, like the reference tracing algorithm,
are employed to trace object reachability from the root objects.

2.2.2 Reference Tracing Algorithm

Reference Tracing (RT) [McC60] is the primary class of algorithms used in
HotSpot JVM (the default JVM implementation in OpenJDK). RT, also known
as the mark-and-sweep algorithm, aims to trace and mark the live and reachable
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Figure 2.2: Cyclic reference issue in RC algorithm. Highlighted fields in orange
are counter fields. When Object 1 is collected, Objects 2 and 3 remain in the
heap without any path from other objects reaching them.

objects starting from the root objects in the object tree and then reclaim the
memory used by dead objects.

The RT algorithm starts traversing the object graph from the root objects
(static variables, global variables, etc.); then, it follows references to other objects.
If the GC finds an object throughout traversing, it marks the object as live. It
shows that the marked object is still reachable and, therefore, in use by the
application. During the marking phase, collectors can use various data structures
to keep track of marked objects. Since the RT algorithm marks live objects
instead of dead ones, it is also called an indirect collection algorithm.

After finishing marking the live objects in the entire object graph, the
sweeping phase is started. In this phase, GC reclaims all the memory occupied
by the objects not being marked live. GCs may also use different techniques
during the sweeping phase to update the reference fields of live objects and the
data structure it uses to keep track of the objects.

By sweeping the objects that are not referenced by other objects, i.e., not
marked as live, the RT algorithm handles the cyclic referenced (non-reachable)
objects. However, RT also comes with some overheads. RT needs to traverse
the entire object graph, the entire heap, to mark live objects. It introduces
a performance overhead, especially when the heap size is too large since the
overhead of tracing is proportional to the number of live objects. This overhead
becomes more problematic when the GC needs to stop the application threads
(mutators) to perform the marking/sweeping. In addition, scattered free memory
segments appear in the heap after memory deallocations (this is called memory
fragmentation). So, it might be hard to find a contiguous heap space to allocate
new (big) objects. GCs may need techniques to remove the fragmentation to
provide bigger chunks of memory as well as increase locality.

In order to deal with memory fragmentation, GCs may utilize copying or
compaction methods to defragment live objects:

• Copying: By dividing the heap into two semispaces, in each GC cycle, GC
uses one semispace as from-space and the other as to-space. Then, it uses
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the from-space to allocate objects and, by moving and grouping all the live
objects to the to-space, tries to eliminate the gap that occurred between
the live objects. This approach works efficiently when the number of live
objects scattered in different heap spaces is low; thus, copying them will
not cost a lot.

• Compaction: GC rearranges and moves the live objects to a part of the
heap space. By compacting all the live objects, GC removes the gaps
between the live objects and creates a larger contiguous block of empty
memory.

It is worth mentioning that GCs also may use a combination of copying and
compaction techniques to use the heap optimally.

2.3 Garbage Collector’s Strategies

In this section, we explain different GC modes including serial, parallel, stop-
the-world, incremental, and concurrent. Additionally, we explore the main heap
layouts employed in the GCs.

2.3.1 GC Modes

GCs may use different modes to do the collection, such as:

• Serial: In this mode, the GC uses only one single thread to perform the
collection task. A serial GC best suits machines with a single processor,
it cannot take advantage of multiprocessors, and is also a good choice for
simple applications. Serial GC eliminates the overhead of syncing different
GC threads. However, it causes long GC pauses in mutators’ execution,
making it less suitable for applications that demand high responsiveness.

• Parallel: In the parallel implementation, multiple threads are used to
perform the collection task. In this way, it speeds up the garbage collection
process, reduces the GC pause time, and improves application throughput
compared to utilizing a single thread for the GC. A parallel approach is
good to use on machines having multiprocessors or multithreaded hardware
available. Due to utilizing several threads, GCs implementing the parallel
approach use more system resources.

• Stop-The-World (STW): To ensure a consistent state during the garbage
collection process, this strategy results in GC pauses where all the mutators
stop from execution during the collection process. In this way, it allows the
GC to perform efficiently without being affected by the mutators. Thus,
the GC performs an accurate collection. However, STW induces delays in
application responsiveness and negatively affects the application’s latency.
Both Serial and Parallel GCs stop mutators for garbage collection.
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• Incremental: An incremental GC performs collection in steps, e.g., per
memory page, per sub-heap, per sub-graph. This approach helps to
minimize the impact of garbage collection on responsiveness by reducing
garbage collection pause times.

• Concurrent: Employing concurrent implementation allows GC threads to
work with mutators concurrently. Therefore, concurrent GCs minimize
GC pause times while improving user experience, compared to STW GCs.
However, implementing a concurrent strategy is complicated. The GC
should manage the heap while the state of the heap is frequently changing,
and references pointing to objects may be destroyed or updated at the
same time as the GC is examining the heap. So, GC needs to employ
different data structures and various approaches to provide concurrency,
which may cause memory overheads.

Figure 2.3 illustrates how the serial, parallel, STW, and concurrent GCs work
with mutators.

Figure 2.3: Serial and Parallel (STW GCs), and Concurrent GC working with
mutators.

2.3.2 GC’s Heap Layouts

GCs implement different strategies to manage the heap optimally and increase
the effectiveness of garbage collection. Some algorithms choose to partition
the heap to hold objects based on their lifetime (generations), and some may
partition the heap into spaces (regions) with fixed sizes. These solutions allow
holding the objects based on their size or other characteristics, and some may
even use a mixed strategy.
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Generational GCs Examining the entire heap in each GC cycle to determine
the live objects imposes a significant overhead that affects different performance
metrics, such as application throughput and GC pause time. However, the
generational strategy follows the generational hypothesis [LH83] to make the
collection process more efficient. The generational hypothesis is based on the
observation that newly created objects by the application are more likely to
die soon. Therefore, based on this hypothesis, GCs can hold the newly created
objects in a different partition in the heap, known as the young generation, and
examine this partition frequently through a minor collection. Following this
approach, GCs are able to check a fraction of the heap, rather than the entire
heap, seeking for garbage. Thus, they would spend less time in the collection
process, i.e., shorter GC pause times, and therefore increase performance. Objects
that survive several minor GC cycles are moved to the old generation. When a
certain amount of the old generation is occupied, GC triggers a major collection
to perform the collection in both the old and young generations.

Region-based GCs These GCs divide the heap into fixed-size regions and
use these regions to store objects with different lifetimes. Different GCs may
use various region sizes; they may split the heap into regions with equal or
fixed different sizes. In this way, they can have good control over the heap.
Dividing the heap into fixed-size regions reduces the appearance of small gaps
between the objects and reduces the fragmentation in the heap (compared to
non-region-based approaches). This strategy can help GCs target regions with
more garbage instead of scanning the entire heap.

2.4 Overview of Existing JVM GCs

Different GCs have been developed for the JVM in the field of automatic memory
management to effectively manage memory. This section aims to give an overview
of the landscape of existing GCs, more specifically in OpenJDK. These GCs are
the ones used in our research papers to address the research questions mentioned
in Section 1.2.

2.4.1 Serial GC

The Serial GC [Ora22] has been available since the early versions of OpenJDK.
As explained in Section 2.3.1, it uses one single thread to perform the garbage
collection tasks. Serial GC is a STW GC that halts mutators while it is doing
the garbage collection process. This GC is the primary choice on single-processor
machines, yet it can be used on multiprocessor machines for applications with
small data sets. Since it uses a single thread it eliminates all the overheads of
thread communications and syncing needs in other multi-threaded GCs. Serial
GC is a generational GC that uses mark-copy (identifying live objects and moving
them to a new location in memory) in the young generation and a mark-sweep-
compact in the old generation. However, using a single thread makes all the tasks
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in the young and old generation serial which leads to longer GC pauses. Serial
GC can be enabled by the command-line option -XX:+UseSerialGC available
in JVM.

2.4.2 Parallel GC

The Parallel GC [Ora22] is the default collector for JDK8 and earlier4 and
utilizes multiple threads to perform the garbage collection tasks. It is suitable
for multiprocessor machines to run applications with medium-sized to large-sized
data sets. Parallel GC is also known as the throughput collector since it uses
several threads for the GC while between the collection cycles, it does not use
any resources for GC threads. Although using several threads speeds up the
collection process compared to the serial GC, it is still a STW GC that pauses
mutators to do the collection.

Parallel GC is also a generational GC that uses mark-copy in the young
and mark-sweep-compact in the old generation and in a parallel manner. The
number of threads used in GC can be defined with a command-line option
-XX:ParallelGCThreads=NNN. The default number of threads in this GC is
equal to the number of cores in the machine. If the Parallel GC spends an
extended time in the garbage collection process while it recovers a small portion
of the heap (less than 2%), it will throw an OOM error. The Parallel GC adjusts
the sizes of the generations to meet its performance goals. These adjustments
are made based on statistics and tests performed at the end of each collection.
Parallel GC can be enabled using the XX:+UseParallelGC option.

2.4.3 Concurrent Mark and Sweep GC (CMS)

CMS [JHM16] was introduced in OpenJDK5 and was deprecated after OpenJDK
version 13. The CMS GC is a generational GC that is designed to decrease
the GC pause times (compared to STW GCs) by doing most of the garbage
collection process concurrently with the mutators in the old generation. The
collection process in the young generation includes a mark-copy task which is
done while mutators are stopped (STW). However, in the old generation, the GC
stops mutators shortly for an initial marking phase, and it continues marking the
live objects concurrently with the mutators. CMS imposes another STW pause
(longer than the first one in the old generation) to mark live objects that were
missed during the concurrent marking phase (as shown in Figure 2.4). Once the
marking phase is completed, CMS starts a concurrent sweeping phase to reclaim
the memory of the dead objects.

Due to the concurrent phases in CMS, it reduces the GC pause times compared
to the Serial and Parallel GCs. However, this concurrency comes with the cost
of using more CPU resources because of the additional threads it utilizes. In
addition, CMS causes floating garbage to appear in the heap. Floating garbage
refers to those live objects that become unreachable in the concurrent phase of

4https://blogs.oracle.com/javamagazine/post/java-garbage-collectors-evolution
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Figure 2.4: CMS GC’s concurrent (green) and STW (orange) phases.

CMS since mutators are working simultaneously with the GC threads. These
dead objects remain garbage in the heap waiting to be collected by the next
GC cycle. Furthermore, because of the lack of a compaction process in CMS,
removing dead objects results in fragmentation in the heap. The scattered
heap increases memory usage since a contiguous space is not available to hold
new large objects. The CMS GC is enabled with the command-line option
-XX:+UseConcMarkSweepGC.

2.4.4 Garbage-First (G1) GC

G1 [Det+04] became the default GC since OpenJDK9. It is a generational
and parallel GC that does most of the garbage collection tasks concurrently
with the running application while including some STW pauses. G1 strives to
make a balance between application throughput and GC pause time goals. It
performs some garbage collection tasks in STW pauses but to keep these pauses
short, it performs heap reclamation in steps and incrementally in the heap. To
achieve this, it divides the heap into fixed-size regions. Upon startup, the JVM
sets the region size (from 1 MB to 32 MB depending on the heap size). The
goal is to have no more than 2048 regions. Instead of assigning portions of the
contiguous heap to young and old generations, G1 assigns each of its regions to
one generation when it is needed. It keeps track of the number of live objects in
each region and uses this information to create a collection set of regions. As
its name implies, Garbage First, it starts reclaiming the regions with the most
garbage first.

G1 starts with a young-only phase in which it moves live objects that have
survived multiple GC cycles in the young generation to the old generation. When
the old generation is occupied to a certain threshold, G1 starts a Concurrent
Start Young Collection phase. In this phase, G1 performs a normal young
collection as well as marking all live objects in the old generation.

Marking the live objects in G1 includes two STW pauses:

• Remark: G1 completes the marking process, plus some additional cleanings
like reclaiming empty regions. Also, it uses the Snapshot-At-The-Beginning
(SATB) [Ora21] technique that takes a virtual "snapshot"5 of the live objects
at the moment; then, it uses the live object set captured in SATB to trace
objects and choose the collection set. This provides an incremental and
fast collection.

5A virtual snapshot is a representation or a reference to the current state of the heap, to
track live objects during garbage collection without making a physical copy of the entire heap.
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• Cleanup: It prepares the heap for the next phase (space reclamation)
by counting the number of live objects in each region and then sorting
the regions based on their live objects count. This helps G1 to perform
efficiently; regions that are more likely to be collected (more garbage) and
those that are better to be evacuated are prioritized.

Then, G1 proceeds with a space reclamation phase. In this phase, G1 performs
a mixed collection both in young and old generations. It copies live objects
from different regions to a new region while compacting. G1 also takes care of
remembered sets [Det+04] which allow the collection in different regions.6 In
that case, if objects in one region are referenced by objects in other generations,
they are considered live objects. Finally, parallel threads reclaim the memory
for future use. It is worth mentioning that G1 utilizes write barriers to perform
garbage collection. So, when an object reference is modified, the write barrier
updates the necessary data structures, such as the remembered set, to maintain
accurate information about which objects may have references to objects in other
regions.

G1 is the default GC on most hardware and operating system configurations,
however, it can be explicitly enabled using the JVM’s command-line option
-XX:+UseG1GC.

2.4.5 The Z GC (ZGC)

ZGC [CK22] is a single-generation (no concept of old and young objects) and
low-latency GC designed to do heavy parts of garbage collection concurrently
with the running application. ZGC aims to keep the GC pause times at some
sub-milliseconds independent of the size of the heap, which can be between 8 MB
to 16 TB; therefore, ZGC will have a minimum impact on a Java application’s
responsiveness. It is also a region-based GC that divides the heap into regions
(also called ZGC pages) of three sizes: small (2 MB), medium (32 MB), and large
(the size is configurable but should be more than 4 MB) [YÖW20b]. Small and
medium regions can hold multiple objects, but large regions only accommodate
a single large object [YW22].

Defining a good value for maximum heap size, which can be configured using
the JVM option -Xmx, really matters while using ZGC. The more heap size
available for the ZGC, the more headroom (space) it has to perform the collection
tasks, and the better it accommodates the objects of an application. However, it
should not come with the cost of wasting memory. ZGC was introduced as an
experimental feature in OpenJDK11 and has become a production-ready feature
since OpenJDK15.

ZGC utilizes read barriers to perform the garbage collection more accurately.
A read barrier is invoked when GC reads a reference to an object and it makes
sure that the GC has an up-to-date view of the object. Also, ZGC employs a
data structure called colored pointers to manage objects in the heap. It uses four

6A remember set is a data structure that keeps track of the references from the old
generation to the young generation.
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unused bits of the 64-bit object pointer to store some metadata: Finalizable (F),
Remapped (R), Marked1 (M1), and Marked0 (M0). When the bit F is set to 1,
it indicates that an object is eligible for finalization, a process for cleaning up
resources before it is deallocated (i.e., removed from memory). Having R bit 1
signifies that the object has been remapped during garbage collection. M0 and
M1 are the bits used for marking objects during the garbage collection process
(only one of them is used in each GC cycle). In ZGC there is a good color when
one of R, M1, or M0 is 1 and the other three are zero. All the other combinations
are considered as a bad color. ZGC uses one of the M0 and M1 at a time and
decides the good color in each GC cycle. The distinction between good and bad
colors helps to identify which objects need to be collected and which ones should
be retained, improving the efficiency of memory management.

ZGC follows several phases to do the collection:

• STW Mark Start: A good color for the current cycle is chosen and all the
root objects are marked as live objects.

• Marking and Remapping: GC threads mark live objects, and update the
liveness information of pages (the total number and the total size of live
objects on each memory page). Also, ZGC updates pointers to the objects
that have been moved to the new locations through previous cycles.

• STW Mark End: ZGC checks if all the live objects have been marked.

• Reference Processing: ZGC ensures that references are properly managed
and processed, then it does operations like clearing or updating references
if necessary.

• Evacuation Candidates Set Selection: This phase involves adding sparse
pages to the Evacuation Candidate (EC) set, removing empty pages,
and sorting pages according to their number of live bytes. Based on a
fragmentation limit, some pages will be removed from the EC set.

• STW Transitioning to Relocation: In this phase, a new good color with
the R bit 1 is selected. Next, the roots are visited and all the objects they
point to, while they are located on EC pages, are moved to non-EC pages
and tinted with good color.

• Relocation: In this phase, GCs migrate all the objects in the EC sets. If
all the objects in an EC page are evacuated, GC threads can reclaim the
page. During this phase, ZGC compacts the evacuated objects to decrease
fragmentation.

It should be noted that, at the time of writing this thesis, a generational
version of ZGC had been released relatively recently with Java version 21.
Generational ZGC [Kar21] will benefit from the current features of ZGC plus
lower risks of allocation stalls, lower required heap memory overhead, and lower
garbage collection CPU overhead. In addition, it provides applications with the
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benefits of generational GCs that consider the short lifetime of newly created
objects.

In order to enable ZGC, users should include the JVM option
-XX:+UseZGC. Additionally, to activate ZGC’s generational mode, the option
-XX:+ZGenerational should be specified within the JVM configuration.

2.4.6 Shenandoah GC

Shenandoah [Flo+16] was developed by Red Hat and introduced as an
experimental feature since OpenJDK11. Just like ZGC, Shenandoah also aims
to reduce the GC pause times, regardless of the heap size, by performing most
garbage collection tasks concurrently with the mutators. Shenandoah is a non-
generational and region-based GC. It divides the heap into equal-size regions,
similar to the heap layout in G1 (see Section 2.4.4).

Shenandoah’s performance is dependent on the available heap size and live
data set size. So, it is important to provide it with a reasonable heap size
while being careful about memory resource wastage. Shenandoah uses various
barriers to provide concurrency including write and read barriers which can
induce throughput loss (up to 15% [Iri15]).

There are several phases in Shenandoah:

• STW Initial Mark: This phase prepares the heap for concurrent marking
by scanning the root set. Therefore, the size of the root set directly affects
the duration of the GC pauses in this phase.

• Concurrent Marking: GC threads traverse the object graph to mark the
live objects while mutators are running.

• STW Final Mark: This phase finishes the marking phase and re-scans the
root set. It also specifies the regions that need to be evacuated (evacuation
collection set) and then evacuates some root objects to other regions (to
reduce the amount of work required during the evacuation phase).

• Concurrent Cleanup: It reclaims regions with only garbage and no live
objects as detected in the previous marking phases.

• Concurrent Evacuation: In this phase, GC threads evacuate (copy) live
objects from the regions in the evacuation collection set to other regions.
This phase is done concurrently with the mutators, which means that
mutators may allocate new objects meanwhile. Shenandoah makes sure
every read or write operation on an object is happening in the correct
location of the objects in memory.

• STW Initial Update References: This short STW phase ensures that GC
threads have finished the evacuation process.

• Concurrent Update References: This phase updates the references to those
objects that were moved during the previous concurrent phase.
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• STW Final Update References: It completes the previous updating phase
and updates the root set.

• Concurrent Cleanup: It reclaims regions in the collection set as their
objects have been moved to other regions.

In order to enable Shenandoah GC, users can include the JVM command-line
option -XX:+UseShenandoahGC.

Also, a generational version of Shenandoah has been developed in collab-
oration between Amazon Corretto7 and Red Hat teams. Compared to the
single-generation Shenandoah, the generational version still maintains pause
times below 10 milliseconds while using less heap. Also, it delivers a higher
allocation rate for short-lived objects, in addition to decreasing the probability
of incurring STW pauses during allocation spikes. Evaluation of generational
Shenandoah showed that it has less than 5% reduction in overall application
throughput compared to single generation Shenandoah [Coo+21].

2.5 Summary

This chapter provides an overview of important performance metrics related
to the GC, core garbage collection concepts, methods, strategies, and existing
GCs in OpenJDK. It emphasizes the intricate performance trade-offs in GC
design and the core garbage collection algorithms. It highlights the significance
of performance metrics such as application throughput, GC pause times, memory
usage, CPU utilization, and application latency when discussing GCs. We also
explore commonly employed reference tracing algorithms and heap layouts in
GCs, while delving into various GC types, including stop-the-world (STW) and
concurrent approaches.

Moreover, an overview of major production GCs in OpenJDK is also provided.
The Serial collector uses a single thread with stop-the-world pauses. Parallel GC
uses multiple threads to reduce pause times at the cost of more resource usage.
CMS and G1 collectors perform parts of garbage collection concurrently to lower
pauses. ZGC and Shenandoah target low pause times regardless of heap size by
doing more tasks concurrently.

7https://docs.aws.amazon.com/corretto/
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Chapter 3

Related Work

The importance of GCs in programming languages such as Java led to extensive
studies on GC performance. Many studies compared existing GC algorithms,
evaluated their performance, combined the features of existing GCs, or introduced
new ones. In this section, we go over some of the studies tightly related to our
work. Papers I, II, and III, provide more extensive details and insights regarding
the related work.

3.1 Novel GC Strategies

Several studies have introduced novel GCs built upon existing collection
algorithms. In the work by Ossia et al. [Oss+02], a parallel, incremental (which
performs the collection in steps), and a predominantly concurrent GC was
developed to achieve the objective of minimal GC pause times. This collector is
specifically designed for shared-memory and multiprocessor servers, suitable for
highly multi-threaded applications.

To address fragmentation concerns in multi-threaded applications, Pizlo
et al.[Piz+07] proposed STOPLESS, a tracing collector supplemented with a
compactor. Additionally, Pizlo et al.[PPS08] proposed CLOVER and CHICKEN
as two solutions for concurrent real-time GCs, aiming to simplify the complexities
associated with STOPLESS.

Frampton et al. [Fra+07] designed an incremental, young-generation STW
GC for real-time systems. The collector uses both read and write barriers to
track remembered set changes.

Tene et al. [TIW11] proposed C4, the Continuously Concurrent Compacting
Collector. It supports concurrent compaction, and incremental update tracing
through the use of a read barrier. C4 enables simultaneous-generational
concurrency that allows different generations to be collected concurrently. It
continuously performs concurrent young generation collections, even during long
periods of concurrent full heap collection, maintaining high allocation rates and
efficiency without sacrificing response times.

Wu et al. [Wu+20] introduces Platinum, a novel concurrent GC designed to
reduce latency in interactive services. Platinum creates an isolated execution
environment for concurrent mutators, improving application latency without
restricting GC thread execution. Additionally, Platinum utilizes a new hardware
feature to make access control to different regions of memory more efficient and
therefore minimize software overhead present in previous concurrent collectors.

Bruno et al. [BF18] described how objects created by Big Data applications
are kept in memory and surveyed the existing GCs for big data environments.
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They also addressed scalability issues in classic garbage collection algorithms
and analyzed several relevant systems that try to solve these scalability issues.

Xu et al. [Xu+19] used the Apache Spark [Fou18] application to analyze GCs
like G1 and Parallel. They proposed strategies for designing GCs specified for
Big Data.

Nguyen et al. [Ngu+16] also proposed a GC with low GC pause time and
application high throughput based on the logical distinction between the data
path and the control path. The data path consists of data manipulation
functions, while the control path is responsible for cluster management, setting
communication channels between nodes, and interacting with users. They argue
these paths differ in heap usage and object creation patterns. So, based on the
previously mentioned paths, they divide the heap into data and control spaces
to reduce the objects managed by the GC. Not many objects are created in the
control spaces, and they are subject to generation-based collection; the objects
in the data space, which creates the most objects, are subject to region-based
collections. However, the developer is responsible for marking the beginning and
end points of the data path in the program.

Broom [Gog+15] and NG2C [BOF17] also proposed two GCs for Big Data
systems. In Broom, the programmer has to create the regions in the heap
explicitly; in NG2C, the programmer identifies the generation in which a new
object should be allocated. These GCs require developer efforts and are prone
to errors. Then, the authors of NG2C proposed POLM2 [BF17], an offline
profiler that automatically infers generations for object allocation, and finally,
ROLP [Bru+19], an online profiler to select an object generation with no user
intervention.

However, the GCs mentioned above are not available in OpenJDK HotSpot,
the most widely used JVM implementation, and therefore they have not been
included in our analysis.

3.2 GC Comparative Analysis

Zhao et al. [ZBM22] introduced LXR to deliver low GC pause times and
high application throughput. Their approach includes regular and brief STW
collections to optimize responsiveness and an RC mechanism to deliver scalability
and promptness. They evaluated and compared barrier overhead and GC pause
time for GCs like G1, Shenandoah, and ZGC that we also used in this thesis;
yet, note that RC-based GCs are not widely used in production and, therefore,
they are out of the scope of this document.

Zhao et al. [ZB20] decomposed G1 into several key components to evaluate
the impact of different algorithmic elements of G1 on performance. They first
built a simple collector and incrementally added key elements of G1 and built 6
collectors to evaluate the G1 element’s impact. Their evaluations revealed that
G1’s concurrent marking and generational collection reduce the 95thpercentile
GC pauses by 64% and 93% respectively. Also, they also independently measured
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the barriers used by G1 and found that they have an overhead of around 12%
with respect to total performance.

Pufek et al. [PGM19] analyzed several garbage collectors like G1, Parallel,
Serial, and CMS [PD00] (a generational GC with concurrent tracing in the
old generation). The study provides a solid benchmark-based methodology for
empirically comparing GC algorithms. It demonstrates the need for continuous
evolution of GCs to improve performance as Java applications grow more complex.
They used the DaCapo benchmark suite [Bla+06] to evaluate the GCs. They
compare the number of algorithm iterations and the total GC pause time for
applications running on top of JDK8 and JDK11. Also, they compared ZGC
and Shenandoah, which were experimental GCs by then, with G1. Key findings
showed that G1 greatly improved from Java 8 to Java 11, significantly reducing
collection times and outperforming Parallel GC in several DaCapo benchmarks.
This indicates the value of new enhancements to the G1 collector. Overall, they
concluded that G1 and Parallel operated better than Serial and CMS regarding
the overall duration of collections. They also showed that those experimental
GCs (ZGC and Shenandoah) would contribute to overall system optimizations.
Their results also emphasize the importance of evaluating ZGC and Shenandoah,
as we do in this document.

Grgic et al. [GMR18] analyzed Serial, G1, Parallel, and CMS using the
DaCapo benchmark suite in JDK version 9. They concluded that the G1 showed
significant improvements compared to Parallel GC and CMS, especially for multi-
threaded benchmarks. G1 required less collection time and fewer GC cycles
than Parallel and CMS. However, for single-threaded environments, G1 did not
show obvious advantages compared to other collectors. The authors suggest
optimizations and tuning may be needed based on application characteristics to
fully utilize the capabilities of G1. The results highlight the importance of GC
selection and configuration based on factors like application behavior.

Lengauer et al. [Len+17] described commonly used benchmarks, including
DaCapo, DaCapo Scala [Sew+11], and SPECjvm2008 [Sta08] in terms of memory
and garbage collection behavior. They compared G1 and Parallel Old (parallel
collection in the old generation) regarding the number of full collections (GC
counts), the GC time relative to the total execution time of the application, and
GC pause times. They concluded that G1 performs better than the Parallel Old
concerning GC pause times by selecting different regions to collect.

Beronić et al. [Ber+22] investigated and compared memory issues, heap
allocation, CPU usage, and duration of collection in three GCs: G1, ZGC, and
Shenandoah. They found that GCs are sensitive to the heap size and that G1
uses less heap than the two other GCs. However, G1 is more CPU intensive
since it occupies more OS threads necessary for scanning the live objects in a
heap.

Cai et al. [Cai+22] introduced a new methodology that defines a practical
lower bound on the costs of GCs for any given cost metric. They showed that
GCs are sensitive to heap size and indicated that low GC pause times achieved
by concurrent GCs do not translate into low application latency. To achieve this
conclusion, the authors used latency-sensitive workloads from the DaCapo Chopin
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benchmark suite. These latency-sensitive workloads serve requests arriving at
a determined rate, and if they are not able to process a request instantly, they
enqueue the request. Therefore, they used a metric, called metered latency, to
show the delay both for the executing and the enqueued requests. Using this
metric (metered latency), the authors show that the GCs, especially concurrent
ones, cause delays for both executing and enqueued requests and therefore affect
the latency.

While drawing insights from prior research, our approach stands out by
comparing a collection of GCs that have not been directly compared together
in previous studies. In addition, our main focus was on identifying the most
suitable GC for specific categories of applications. Furthermore, we aimed to
leverage these comparisons and GC evaluations, while also taking into account
user preferences in the development of a software system (called BestGC). As
it is described in Paper II, this tool automates the GC selection process which
aligns with user preferences and the application’s objectives.

3.3 Heap Sizing Algorithms for GCs

A number of studies have been conducted for STW collectors, aiming to improve
execution time [Bre+01], avoid paging [Grz+07] or both [Yan+04]. Brecht et
al. [Bre+01] proposed an adaptive technique for increasing the heap size with the
goal of reducing execution time in a STW Boehm-Demers-Weiser GC [BW88].
The authors suggest increasing the heap size aggressively without collecting
garbage if sufficient memory is available. Only when memory is scarce, garbage
collection becomes more frequent, and the heap size stabilizes. This approach
prioritizes reducing the GC calls in order to improve the throughput of the
application.

White et al. [Whi+13] proposed an approach using control theory to minimize
GC overhead (defined as the proportion of time spent in garbage collection rather
than application execution) and make efficient use of memory by adaptively
resizing the heap. They implemented a Proportional-Integral-Derivative (PID)
controller that monitors GC overhead and adjusts the heap resize ratio to
maintain a target GC overhead level set by the user. The GC overhead is
the proportion of execution time spent doing garbage collection rather than
application work. They utilized the Jikes Research Virtual Machine (RVM) along
with the Memory Management Toolkit (MMTk) as the experimental platform
and used the MarkSweep 1 collector within MMTK.

Yang et al. [Yan+04] introduced an analytical model to adjust the heap
size in a multi-program environment. In the proposed approach, an operating
system’s virtual memory manager monitors an application’s memory allocation
and footprint. Then, it periodically changes the heap size to closely match the
real amount of memory used by the application. The proposed technique uses
a model that minimizes GC overhead (by giving it enough heap size) but also

1https://docs.mmtk.io/tutorial/mygc/ss/prefix.html
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minimizes paging (by avoiding large heaps). The model is offered for semi-space2

and Appel collectors [App89].
Zhang et al. [Zha+06] proposed a novel approach to memory management

called Program-level Adaptive Memory Management (PAMM). PAMM uses the
program’s repetitive patterns (phases) information to manage memory adaptively.
The authors highlight that the behavior of the phase instances is quite similar
and repetitive, so they can represent the memory usage cycle in the application.
PAMM monitors the program’s current heap usage and the number of page faults
to adjust a softbound as a GC threshold. When the threshold is reached, PAMM
triggers the GC to collect and free unused memory. They evaluate PAMM with
three STW and generational collectors within Jikes Research Virtual Machine
(JikesRVM3)(Mark-Sweep4, CopyMS5, and GenCopy6 [CT21]). PAMM relies on
a specific phase detection algorithm, which may not be applicable to all types of
applications.

Grzegorczyk et al. [Grz+07] proposed the Isla Vista heap sizing strategy to
avoid GC-induced paging. Their strategy is to grow the heap when more physical
memory is available and shrink it by triggering the GC when physical memory
overflows. Thus, it trades more garbage collection for less paging. This is done
by communicating between the OS and Virtual Machine (VM) and triggering
the heap sizing logic when allocation stalls occur during GC.

Bruno et al. [Bru+18] proposed a vertical memory scalability approach to
scale JVM heap sizes dynamically. To do this, the authors introduce a new
parameter: CurrentMaxMemory. Contrary to the static memory limit defined
at launch time, CurrentMaxMemory can be re-defined at run-time. In addition
to the new dynamic limit, this work also proposed an automatic trigger to
start heap compaction whenever the amount of unused memory is large. This
technique allows returning memory to the Operating System as soon as possible.

Immix [BM08] is a GC suitable for high-performance computing. Immix does
not require the maximum heap size to be known in advance. It continuously
monitors the amount of free memory available in the heap and adjusts memory
allocation accordingly. When the amount of free memory falls below a certain
threshold (which may vary between implementations), Immix triggers a GC cycle
to reclaim unused memory. If the free space is still insufficient after collection,
Immix may allocate additional memory blocks to meet the application’s memory

2A copying collector that divides the heap into two halves (semi-spaces); when one half
becomes full, it collects the heap by copying live objects to the other semi-space.

3https://www.jikesrvm.org/
4Mark-Sweep (MS) GC traverses the entire object graph, marks live objects and considers

the unmarked objects as garbage. In the Jikes RVM objects are allocated in specific-sized
blocks and managed in a free-list. Objects that are not marked are simply returned to the
list [Zha+06].

5CopyMS GC utilizes two memory regions: new objects are sequentially allocated in the
first region, a copying space. Once full, reachable objects are transferred to the second region,
which is managed by Mark-Sweep. [Zha+06].

6GenCopy GC is a generational garbage collector. In its design, the young generation
consists of two semi-spaces. When one semi-space becomes full, live objects are copied into the
other semi-space. The old generation utilizes the Mark-Sweep algorithm to reclaim memory
space [Zha+06].
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needs. Immix also considers the rate of object allocation as a metric. If
the allocation rate exceeds a certain threshold, it indicates a high memory
consumption and the potential need for more memory to avoid out-of-memory
errors. Moreover, Immix uses heuristics to estimate the size of the working
set or the set of objects that are actively being used by the application. Since
Immix is a STW collector, this dynamic heap resizing brings many disadvantages.
For example, the application may experience brief pauses or slowdowns during
the resizing process, which in turn makes it more difficult to reason about the
memory usage and performance characteristics of an application.

Cheng et al.[CB01] introduced a parallel, concurrent, real-time GC for multi-
processors. The work done by the GC is proportional to the allocation rate; so,
it indirectly scales up and down with application CPU utilization. It aims to
provide bounds on pause times for the GC while also scaling well across multiple
processors. To evaluate their collector, they implemented several variants of their
algorithm including a non-incremental collector. Using the concept of Minimum
Mutator Utilisation (MMU), they capture the percentage of time in a given
time window the mutators have access to the CPU. They showed that their
proposed collector keeps higher MMU results compared to the non-incremental
GC. However, they do not assess GC CPU or utilize MMU-based actions.

Degenbaev et al. [Deg+16] proposed scheduling the GC during detected
idle periods in the application to reduce GC latency. It uses knowledge of
idle times from Chrome’s scheduler to opportunistically schedule different GC
tasks like minor collections and incremental marking. This allows adapting the
GC based on real-time application behavior and available idle cycles. While
not directly adjusting heap size, scheduling GC during idle periods allows for
reducing memory usage and footprint when the application becomes inactive
and based on the real-time needs of the application.

The G1 [Det+04] (Garbage First) garbage collector requires knowledge of the
maximum memory needed for an application in advance. If it is not explicitly
provided, it uses a default value. G1 uses a dynamic heap size adjustment
strategy to adjust the memory usage during runtime based on the current usage
pattern of the application [Ora21]. G1 divides the heap into regions of equal
size and groups them into two generations: young and old. When the young
generation fills up, G1 performs a young collection, during which live objects are
copied to a new region while unused regions are reclaimed. G1 also performs
periodic concurrent marking of live objects in the old generation. When the old
generation fills up, G1 performs a mixed collection, which collects both young
and old regions that have been marked as garbage. During a mixed collection,
G1 dynamically sizes the heap by using the occupancy of the old generation as
a target and adjusts the heap size to meet that target.

The subject of adjusting heap size has been studied in existing works, however,
they did not propose an approach that fits well concurrent GCs, especially for
ones that are used in the well-known and mostly used OpenJDK Hotspot.
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3.4 Discussion

Differently from previous works, this Ph.D thesis:

• studies and evaluates four widely used GCs, G1, Parallel, Shenandoah,
and ZGC, using a broad collection of workloads; these workloads represent
real-world applications to show GCs’ overhead on the different performance
metrics (such as application throughput, GC pause time, memory usage).

• implements a system (BestGC) to help the users overcome the complications
of selecting a GC for their application (more details in Section 4.2); to
the best of our knowledge, there is no such software tool that suggests the
most proper GC solution for a user’s application, as a defined goal, in this
Ph.D. project.

• introduces an approach for helping users with limited/no expertise in GCs.
So, by utilizing this approach, users can use a more understandable and
better-known metric, CPU, to gain control over memory usage; this is done,
without the user going through the complicated process of determining a
good maximum heap size for their applications.

3.5 Summary

This chapter explores relevant literature on GCs, including novel GC solutions,
comparative analysis of GCs, and heap-sizing algorithms for GCs. The goal is
to introduce and discuss existing works that are relevant to our research that
helped us to identify research gaps, and position our own research within the
broader context.
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Chapter 4

Architecture

In this chapter, we present the architecture of our contributions that form the
backbone of this thesis. As already mentioned, the goal is to empower developers
and users to overcome heap-related challenges including selecting a GC and
the heap size for their applications. The overall architecture we follow in this
thesis begins with a deep dive into the evaluation of GC algorithms to unravel
the performance of the GCs across diverse application types. It continues with
simplifying the often challenging task of GC and heap size selection through a
system, called BestGC, by considering user preferences regarding two crucial
performance metrics, application throughput and GC pause time. Following our
goal of automating heap size selection, we pick one of the concurrent GCs that
showed promising results in our evaluations and then introduce an approach to
heap size adjustment, offering dynamic control over memory utilization through
a GC CPU limit. Together, these approaches provide smoother and more
productive ways for developers and users in the GC and heap size selection.

In the following, we aim to provide an overview of each paper’s architecture
and the methodology utilized to support it. For more details, the readers should
refer to Paper I, Paper II, and Paper III.

4.1 Selecting a GC for Java Applications

The motivation behind this research stems from the critical role of automatic
memory management, facilitated by GCs, in object-oriented programming
languages like Java. With the growing prevalence of high-volume data handling in
applications, such as Big Data and Cloud Services, efficient memory management
becomes crucial. However, the selection of the most suitable GC solution for
specific applications remains a challenge for users who are not experts in GCs,
particularly when dealing with significant data volumes and resource demands.

In this paper, firstly, we demonstrate the performance differences in various
GC solutions, in terms of performance metrics, more specifically application
throughput, GC pause time, and memory usage. Secondly, we introduce
BufferBench (B2), a benchmark we developed specifically to examine GC behavior
and the associated costs related to read and write barriers employed by GCs.
Thirdly, we propose a methodology that guides users in the GC selection process,
taking into account application characteristics (CPU or I/O intensiveness) and
prioritizing specific performance metrics such as application throughput, GC
pause time, and memory usage. By offering a systematic approach, we aim to
empower users without GC expertise to make informed decisions.
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Methodology We utilize the well-known and widely used benchmark suites:
DaCapo [Bla+06] and Renaissance [Pro+19]. Additionally, as mentioned above,
we developed a custom workload, B2, designed to assess the read and write
barriers of the GCs. B2 puts GCs under the pressure of handling a large number
of requests. Furthermore, we also utilize the PetClinic application [Spr07] to
investigate the effectiveness of our approach with another real-world application
that uses an in-memory database, therefore, is a good choice to evaluate GCs.

To determine the category of the applications (CPU-intensive and I/O-
intensive), we compare the average CPU usage percentage with the average I/O
usage percentage. Applications with a higher percentage of average CPU usage
are classified as CPU-intensive, while those with higher I/O usage are considered
I/O-intensive.

Subsequently, we utilize the above-mentioned benchmarks to evaluate four
GCs available in OpenJDK 13: CMS, G1, Shenandoah, and ZGC, in terms of
application throughput, GC pause time, and memory usage. The performance
metrics are collected during the execution of the applications. Because of
the challenge of defining a universally applicable unit of operation across all
benchmarks and considering that all benchmarks report execution times, we
calculate throughput by averaging the execution times of the applications. GC
pause times are extracted from the JVM log files, allowing us to calculate the
90th percentile. Additionally, we measure the average heap memory usage before
and after GC to evaluate the extent of memory reduction achieved by each
collection. These metrics are thoroughly analyzed to assess the performance of
each GC solution. Finally, based on the evaluation results, we determine the
most effective GC for each category of applications.

4.2 BestGC: An Automatic GC Selector

In the first paper, we evaluated and showed how GCs impact performance metrics.
Furthermore, we provide some high-level recommendations regarding choosing
a GC for different categories of applications. However, the main goal of this
paper is to propose a system, that automatically suggests the most suitable
GC for users’ applications guided by their performance preferences (regarding
application throughput and GC pause time). The system aims to facilitate
GC selection by allowing users to define weights for these performance metrics
based on how they care about these metrics according to their applications’
goals. Additionally, the work evaluates four widely used GCs in OpenJDK15 (a
newer version of OpenJDK compared to the previous research): G1, Parallel,
Shenandoah, and ZGC, utilizing Renaissance and DaCapo (Chopin version)
benchmark suites. The evaluation considers application execution time (as a
metric to report application throughput), GC pause time, and diverse heap sizes,
achieved through experiments using different workloads that represent real-world
applications.
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Figure 4.1: Architecture of BestGC: the phases that BestGC goes through to
suggest the most suitable GC for the user’s application, based on the user’s
inputs and preferences.

Methodology The methodology used in this Paper II is divided into two parts.
First, we evaluate four GCs in OpenJDK15 (G1, Parallel, Shenandoah, and ZGC)
in terms of performance metrics such as application throughput (execution time)
and GC pause time. We utilize workloads from well-accepted benchmark suites
(DaCapo and Renaissance). To assess GCs based on memory usage, we assign
them the same fixed heap sizes, eliminating their dependency on the available
heap memory of the machine. This approach prevents GCs from freely selecting
heap sizes according to their individual policies and ensures a fair and consistent
experimental setup for all GCs. In this way, we incorporate the impact of heap
usage on the evaluations. The evaluation results are employed within BestGC
to score and select an appropriate GC. The results are stored in the form of
matrices, with one matrix dedicated to each evaluated heap size.

Second, we design and develop BestGC to automate the GC selection process
for users’ applications. An overview of the internal workings of BestGC is
presented in Figure 4.1.

As shown in Figure 4.1, there are four phases in BestGC: Matrix Generation,
Monitoring, Calculation, and Running. In the matrix generation phase, matrices
are created based on the extensive measurement of the four above-mentioned
GCs for each heap size. These matrices will be used in the calculation phase.
The monitoring phase consists of running BestGC (as long as it is set using the
monitoring time defined as a constant in BestGC or any time set by the user)
to find an application’s maximum heap size and CPU usage. In the calculation
phase, GCs are scored based on the matrices generated in the first phase. Finally,
in the running phase, the user’s application is executed with the suggested GC
and heap size.

Finally, the validation of BestGC using workloads from SPECjvm2008,
another widely used benchmark suite, further confirms the effectiveness of
the proposed system.

35



4. Architecture

4.3 Heap Size Adjustment with CPU Control

As a result of the previously mentioned work, we observed that efficient
management of memory resources is vital for software applications to achieve
optimal performance. In fact, the GC relieves users from explicit memory
management but leaves the challenge of selecting the maximum heap size (the
maximum amount of memory the application can use while running in the JVM).
Currently, JVM selects a maximum heap size for an application on startup
(currently, OpenJDK selects 25% of the available RAM) or leaves it to the
developer. However, a small heap size may result in frequent GCs and a large
one may result in wasting memory resources.

In the previous paper, we introduced BestGC which in addition to suggesting
a suitable GC for an application, also suggests a maximum heap size for the user
application. In this paper (Paper III), we put a greater emphasis on the heap size.
We propose an automated approach to adjust heap size (in concurrent collectors),
removing the need for manual heap configuration by setting an upper bound
for GC CPU usage. ZGC’s highly concurrent design, strong performance based
on our earlier analyses in our previous paper (BestGC), and integration with
OpenJDK made it an ideal platform for building and validating our automatic
heap adjustment approach. To this end, we aimed to provide users with a new
"tuning knob" to control the GC frequency and therefore heap usage based on the
CPU usage of the GC. In addition to being able to perform effectively regarding
application execution time, latency, energy, and memory usage.

This technique has been developed under the direct supervision of the ZGC
development team of Oracle Corporation and is going to be integrated into the
new generational ZGC.

Methodology The methodology of this paper (Paper III) involves an approach
to tuning heap size during application execution time and helping users overcome
the complications of setting a proper maximum heap size. Unlike existing related
works, the proposed approach allows developers to control memory by setting
a GC target, which dictates the percentage of CPU spent on GC compared to
GC spent on the application threads. The rationale behind this approach is the
observed inverse correlation between memory and GC CPU utilization. A large
heap size leads to infrequent garbage collections and low CPU time spent on
GC, while a small heap size increases the frequency of garbage collections and
corresponding CPU time. This trade-off between memory and CPU usage is
particularly relevant for concurrent garbage collectors, as they work concurrently
with the running applications. By determining the GC target (in terms of GC
CPU usage), the heap size can dynamically be adjusted to match the application’s
memory usage behavior. The methodology involves iteratively adjusting the heap
size until the GC CPU overhead meets the GC target set by the developer. If the
actual GC CPU overhead exceeds the target, the heap size is increased to reduce
the frequency of garbage collections and lower the CPU overhead. Conversely,
if the actual GC CPU overhead is below the target, the heap size is decreased
to trigger more collections and increase the GC CPU overhead. Fluctuations
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in the heap sizes are mitigated by passing the GC overhead error (difference
between current GC utilization and the target) through the Sigmoid [HM95]
function, which smoothens the changes. This prevents sudden and huge changes
in the heap size. This methodology also honors the maximum heap size (Xmx)
option, if defined by the developer. In the absence of Xmx, the system sets it to
a default value close to the maximum memory available on the machine while
avoiding system instability (in our implementation in generational ZGC, we set
it to 80% of the available RAM); this is due to the fact that the plan is to adjust
the heap size based on the application memory usage pattern, regardless of the
amount of available memory. This methodology can be applicable in concurrent
GCs and in the following chapter, we show our implementation in generational
ZGC.

4.4 Summary

In this chapter, we provide a summary of the core architecture and methodology
in our proposed user-centric solutions for simplifying the process of selecting
the right GC and heap size for user applications. More details can be found
in Papers I, II, III. In the first paper, we categorize applications as I/O or
CPU intensive and identify the best GC solutions, among G1, CMS, ZGC, and
Shenandoah, for each category through extensive GC evaluations. In the second
paper, we introduce BestGC, a system that suggests a maximum heap size to
run the application and the most suitable GC solution based on user preferences
regarding application throughput and GC pause time. Although we evaluate four
GCs (G1, Parallel, ZGC, Shenandoah) in our study, the proposed architecture
can be extended to work with other GCs and runtime environments. Lastly, in
the third paper, to continue our investigation of dealing with heap size challenges
for the users, we propose an approach where users can define the desired GC
CPU utilization, allowing the GC to dynamically adjust the heap size based on
application memory usage while respecting a user-defined upper bound for GC
CPU utilization in concurrent GCs.

The methodology utilized to evaluate GCs and suggest a proper GC for diverse
application types, as well as the way we automated this process by BestGC, is
adaptable to various JVMs and can be extended to various GCs. Furthermore,
the heap adjustment strategy can be implemented into the concurrent collectors
that operate based on concepts such as a soft maximum heap size.1.

1This is a soft limit on how large the Java heap can grow. ZGC will strive to not grow
beyond this limit, but it allows the heap to expand beyond this limit without triggering
out-of-memory errors.
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Chapter 5

Implementation

This chapter explores the practical aspects of translating the architectural
concepts outlined in the previous chapter into implementations. We presented an
approach to categorizing applications based on their CPU and I/O characteristics
and explored the performance characteristics of various GCs to recommend the
most suitable GC for each application category. In this chapter, we explain
how we implement these ideas. We delve into the specifics of BestGC, the tool
that automates the selection of optimal heap size configurations and GC for
applications. We elaborate on how BestGC measures key performance metrics,
such as heap and CPU utilization, while also accommodating users’ preferences
in terms of application throughput and GC pause times. The aim is to ensure
that the selected heap size and the GC configuration align with the specific needs
of each application. Furthermore, we provide details on our heap adjustment
approach within ZGC, a concurrent collector that demonstrated promising results
during our previous evaluations. Specifically, we discuss our approach of using
GC CPU utilization as a tuning parameter to dynamically adjust heap sizes
with the real-time memory usage pattern of the application.

For a deeper understanding of the details involved in these implementations,
we encourage readers to refer to Paper I, Paper II, and Paper III. These papers
offer a more extensive exploration and context to the content presented in this
chapter.

5.1 Selecting a GC for CPU or I/O-Intensive Applications

As discussed in Section 4.1, in order to recommend an ideal GC for specific
application categories (either CPU-intensive or I/O-intensive), we follow a two-
step approach. Initially, we categorize applications based on their CPU or
I/O usage. Subsequently, we evaluate the performance of four GCs (CMS, G1,
ZGC, and Shenandoah) available in OpenJDK version 13 utilizing DaCapo and
Renaissance benchmark suites, the PetClinic application, and a self-developed
benchmark (BufferBench, B2). All the implementations were done on a server
running GNU/Linux, Ubuntu 16.04.4 LTS, running OpenJDK version 13.

5.1.1 Categorizing Applications

To categorize applications based on their CPU and I/O usage, we collected CPU
and disk data using the atop Linux command at one-second intervals. From the
obtained values, we calculate the average disk and CPU usage. Additionally, we
monitored the number of running threads for each Java process using the htop
command at one-second intervals to determine the average number of engaged
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CPU cores. Dividing the average CPU utilization by the average CPU cores, we
derived the application’s average CPU utilization per core. If the average disk
utilization exceeds the average CPU utilization, the application is categorized as
I/O-intensive; otherwise, it is considered CPU-intensive.

5.1.2 BufferBench (B2)

B2 is a Java application designed to perform extensive read/write operations in
memory. Its purpose is to facilitate a comprehensive evaluation of the behavior
of various GCs and to analyze the performance implications imposed by the
read and write barriers they employ. B2 requires three input values to run:
data size, number of operations, and the read percentage. Based on the data
size a hash map data structure is created to store the objects. The number of
operations represents the total count of both read and write operations. The read
percentage specifies the proportion of operations that involve reading objects
from the heap, with the remaining percentage allocated to write operations and
generating new objects.

5.2 BestGC: An Automatic GC Selector

We implement BestGC using Java and OpenJDK version 151 on a machine
running GNU/Linux, Ubuntu 20.04.5 LTS. BestGC encompasses four distinct
phases (as presented in Figure 4.1): matrix generation, monitoring, calculation,
and running. The matrix generation phase utilizes the evaluation results of
the GCs in the form of matrices in BestGC. The remaining three phases are
executed for each user’s application running, enabling BestGC to recommend
the most suitable GC solution based on the user’s input values (for application
throughput and GC pause time). BestGC measures the heap usage of the user’s
application to determine the relevant matrix and then assigns scores to different
GCs. Finally, it suggests the GC with the lowest score as the optimal choice.

5.2.1 Input Options for BestGC

BestGC requires a minimal set of input parameters to initiate its operation.
Users, who utilize BestGC, need to provide two essential inputs. Firstly, it
necessitates the absolute path to the user application’s JAR file, along with all
the application-specific input arguments. Secondly, users must define at least
one of the mandatory weights (ranging from 0 to 1) that signifies weights for
application execution time (we) or GC pause time (wp). The weights reflect the
user’s preferences for these two critical performance metrics, where a value of
1 signifies the highest importance. It is essential to note that the sum of these
weights must equal 1, indicating a consideration of both aspects.

1We used a newer version of OpenJDK compared to our previous research. In this version
of OpenJDK, ZGC was declared "Production Ready", while CMS was deprecated.

40



BestGC: An Automatic GC Selector

Figure 5.1: Example of a matrix for the heap size of 8192 MB.

BestGC also provides additional optional switches, allowing users to configure
various parameters, such as the monitoring-time, which allows users to control
the monitoring time interval in which BestGC collects crucial data on heap and
CPU usage from the user’s application.

5.2.2 Heap Size Variety

GCs may use different heuristics to choose heap size based on their requirement.
So, to keep the evaluation setup the same for all the GCs, we use the fixed
heap sizes of 256, 512, 1024, 2048, 4096, and 8192 MB in all the evaluations
to generate the corresponding matrices. The heap sizes in powers of two are
commonly used by the users [Eva20]; also, these include the required heap sizes
to run all workloads in our evaluations.

5.2.3 Matrices

In the matrix generation phase, there is a collection of matrices that have been
created through experimental evaluations performed on G1, Parallel, Shenandoah,
and ZGC for each heap configuration (256, 512, 1024, 2048, 4096, and 8192
MB). As Figure 5.1 shows, in each matrix, every row represents a specific GC
and contains two columns: the average application execution time (application
throughput) and the average 90th percentile of GC pause times. These values
are normalized to the corresponding values of G1 (which is OpenJDK’s default
GC). These matrices will be utilized in subsequent phases.

5.2.4 Measuring Heap and CPU Utilization

During the monitoring phase, BestGC runs a user’s Java application with the
default GC (G1) of the available default JDK installed on the user’s machine.
Therefore, both the application’s maximum heap memory and CPU usage are
measured by BestGC during monitoring-time, which by default is set to 30
seconds if the user does not change it.

To capture the maximum heap usage, every second, BestGC invokes the
jstat2 command with the gc option, which represents the behavior of the garbage-
collected heap, for the user’s application using its Process ID (PID). BestGC
considers 20% extra headroom for the application (i.e., max_heap× 1.2) and
picks the closest bigger heap configuration among 256, 512, 1024, 2048, 4096,

2https://docs.oracle.com/en/java/javase/15/docs/specs/man/jstat.html
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and 8192 MB. Based on the suggested heap size, the corresponding matrix is
also used in the other phases.

For accurate CPU utilization measurements, BestGC must run alone on the
user’s machine to avoid interference from other applications that may impact
CPU measurements during the monitoring phase. BestGC captures the amount
of CPU utilization of the user’s application by averaging the recorded total
CPU usage every second using the top3 command during the monitoring-time
interval. Moreover, since not all the applications utilize all the CPU cores in the
machine, BestGC also calculates the number of engaged CPU cores for the user’s
application. It achieves this by utilizing the proc/stat4 command to compute
the CPU usage for each core at every second during the monitoring-time. If the
usage exceeds 50% for a core, BestGC increments the count of the engaged CPU
cores per second by one. Subsequently, the average number of engaged cores is
calculated at the end of the monitoring-time. Finally, it divides the average total
CPU utilization of the application by the average number of engaged CPU cores.
Should the results be over 90%,5 the application is reported as a CPU-intensive
application; otherwise, it is considered non-CPU-intensive.

5.2.5 Scoring GCs

To execute BestGC, the user needs to pass a weight for the execution time
(application throughput) (we) or GC pause time (wp), as already pointed.
Having wp (or we), and the most appropriate matrix (selected based on the
detected maximum used heap size), BestGC calculates a formula (Equation (5.1))
to score each GC during BestGC’s calculation phase:

scoregc =we ×matrix[heap]<gc,ExecutionT ime>

+ wp ×matrix[heap]<gc,P auseT ime>

gc ∈ {G1, Parallel, Shenandoah, ZGC}
heap ∈ {256, 512, 1024, 2048, 4096, 8192}

(5.1)

5.2.6 Executing the User’s Application

Finally, in the running phase, BestGC runs the user’s application with the
minimum-scored GC (the best one) and suggested heap size using the following
command:
java -Xmx<max_heap>*1.2m -XX:+Use_<best_gc> -jar user_application

However, if the user has previously deactivated the auto-execution feature (run-
best-gc=false), BestGC will simply print out the command above.

3https://manpages.ubuntu.com/manpages/xenial/man1/top.1.html
4https://manpages.ubuntu.com/manpages/xenial/man5/proc.5.html
5We used the considerations in the Linux command atop, which defines the

CPU usage to be critical when the total CPU usage percentage is 90% and above;
https://manpages.ubuntu.com/manpages/bionic/man1/atop.1.html
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5.3 Heap Size Adjustment with CPU Control

We implemented our heap size adjustment strategy by modifying the generational
ZGC available in OpenJDK version 21 (which includes the new generational
ZGC). The implementation has been done on a machine running Oracle Linux
Server 8.4. More details can be seen in Paper III.

We used soft max heap size concept available in ZGC. It is a limit on the
size of the heap beyond which ZGC tries not to grow. Unlike Xmx, which is a
JVM option to set a hard limit on the heap size, exceeding the soft max heap
size will not result in an OOM error. We set the Xmx to 80% of the machine’s
available RAM, although we honor the Xmx value if set by the user. When
approaching the soft max heap, ZGC triggers garbage collection to bring the
heap size below the soft max heap size. So, we used the soft max heap size to
implement adaptive heap sizing by scaling it up and down based on the GC
CPU usage.

5.3.1 GC CPU Overhead

We need to scale the soft maximum heap size when the GC CPU usage reaches
a user-defined limit. As it is shown in Equation (5.2), we define the GC CPU
overhead (henceforth denoted GCCP U ) as the ratio of time spent doing GC
(TGC) to the time spent in the entire application (TAPP).

GCCP U = TGC
TAPP

. (5.2)

For simplicity and to avoid adding logic contributing to GC CPU overhead,
we use existing telemetries in ZGC. So, we used wall-clock time measurements
for GC time (WGC), which is a good proxy for GC CPU time, and CPU time
measurements for application time (CAPP). Also, to mitigate fluctuations if one
GC cycle has high CPU activity and the other low, WGC should be calculated
using average times for the last n collections (in our implementation, we pick
n = 3, as it could effectively mitigate sudden fluctuations in WGC). The WGC is
calculated as the sum of time spent on young Wyoung and old collections Wold,
plus the time spent by mutators in the slow path of barriers (B):6

WGC = Wyoung + Wold + B (5.3)

When the mutator enters the slow path, it ensures that the pointer is valid
by looking up the new canonical address of the object from a forwarding table.
Mutator may involve copying the object elsewhere and writing the new address
in the forwarding table. Moreover, the application’s average time is the sum
of the scheduled time of all threads spawned by the process (i.e., a CPU time
measurement) between two collections in the same generation:

TAPP = CGCi − CGCi+1 (5.4)
6A slow path is a code path that is executed when specific conditions or less common cases

occur, which can result in slower performance due to additional checks, synchronization, or
more complex operations.
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5.3.2 Adjusting the Heap Size

At the end of each GC cycle, we compare the GC CPU overhead to the user-
defined GC target to calculate overhead_errorCP U which we use to adjust the
heap size:

overhead_errorCP U = GCCP U −
Target_GCCP U

100 (5.5)

Large error numbers can cause fluctuations in the heap sizes and lead to
memory being claimed that is not required in the long run. To mitigate this, we
pass the overhead_errorCP U through the Sigmoid function [HM95] to calculate
the Sigmoid overhead error. It maps input values to a range between 0 and 1,
and thus, smoothens changes in heap sizes:

S(overhead_error) = 1
1 + e−overhead_errorCPU

. (5.6)

Then, we use this result to calculate an adjustment factor that limits the
changes of the heap size within a range of 0.5 to 1.5:

adjustment_factor = S(overhead_error) + 0.5 (5.7)
An S(overhead_error) < 0.5 means that the actual GCCP U has exceeded

the Target_GCCP U , so the adjustment_factor would be less than 1 and will
reduce the heap size, leading to more GC cycles. When the actual GCCP U is
below Target_GCCP U , S(overhead_error) > 0.5, i.e., adjustment_factor > 1
will increase the heap size. The heap size will never change more than 50% of
the current size (in any direction). Finally, we compute the new heap size as
follows:

new_size = current_size × adjustment_factor (5.8)

5.4 Summary

In this chapter, we provide an overview of the practical aspects of our research
papers. We implemented the core ideas of our proposed architecture and
approach described in Chapter 4. We begin by explaining the way we categorize
applications into CPU-intensive and I/O-intensive categories based on their
resource usage. Notably, we introduce the BufferBench (B2) benchmark, a
tool developed for comprehensive GC behavior analysis. Next, we present the
implementation of "BestGC", which is a solution for selecting the most suitable
GC and heap size for a given application. BestGC utilizes matrices generated
from experimental evaluations of multiple GCs in OpenJDK15. It then measures
the user application heap and CPU utilization, scores GCs, and recommends
a heap size and the optimal GC based on user-defined priorities. Finally, we
detail our strategy for adjusting heap sizes in response to GC CPU usage limits,
primarily implemented in the generational ZGC of OpenJDK version 21. This
adaptive approach, driven by a user-defined GC CPU utilization target, helps
optimize memory management and aligns with an application’s real-time memory
usage pattern. For in-depth technical information, please refer to the research
papers I, II, and III.
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Chapter 6

Evaluation
In this chapter, we provide an overview of the evaluation details, mostly the
benchmarks utilized in the research papers and the obtained results. The
benchmark selection and performance metric choices were made to provide
a comprehensive evaluation of our proposed approaches. These benchmarks
resemble real-world applications and the performance metrics we evaluate
are crucial in GCs’ performance realm. We aimed to replicate real-world
conditions, challenge GCs, and assess their performance across various dimensions,
ultimately contributing valuable insights to the field of JVM optimization. These
benchmarks serve the purpose of identifying the most suitable GC solution for
distinct application categories, as well as evaluating the effectiveness of GCs
for integration into the BestGC software. Additionally, we discuss benchmarks
employed to introduce a JVM option that dynamically adjusts heap usage based
on the CPU utilization of the GC. Then, we go over the performance metrics
we measured in our research. Finally, we present the results derived from our
contributions by evaluating our proposed approaches in the research papers.
More evaluation details can be found in Paper I, Paper II, and Paper III.

6.1 Benchmarks

DaCapo Benchmark Suite The DaCapo benchmark suite [Bla+06] is a widely
used set of various real-world applications, designed to evaluate the performance
of GCs, including web services, XML processing, interpreters, databases, etc.
The regular branch of the DaCapo benchmark suite comprises popular programs
that provide insights into the performance characteristics of GCs under real-
world workloads. These workloads cover a diverse range of application categories
including I/O-intensive and CPU-intensive, therefore they enabled us to evaluate
GCs’ behavior and performance for each category.

In addition to the regular branch, this benchmark suite includes the Chopin
branch.1 DaCapo Chopin includes latency-sensitive workloads that provide
insights into GCs’ ability regarding responsiveness. These latency-sensitive
workloads handle incoming requests arriving at a determined rate, and if they
are not able to process a request instantly, they enqueue the request. These
workloads measure latency in two ways: simple latency and metered latency.
Simple latency disregards queuing effects. On the other hand, metered latency
considers delay both for the executing and the enqueued requests [Cai+22]. It
makes the metered latency a good choice to compare the performance of GCs.

We utilized the regular DaCapo benchmark suite in Paper I, and the Chopin
version in Paper II and Paper II.

1https://github.com/dacapobench/dacapobench/tree/dev-chopin
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There are several input options available for the workloads in DaCapo
including the input size and the number of iterations. During our evaluation, we
prioritized using a large input size whenever it was available for the workloads
to put more load on the application and stress the GC more. Otherwise, we
used the default input size. Also, using the switch -no-pre-iteration-gc, we
disabled explicit GC calls in the workload’s code. DaCapo provides execution
time measurements for its applications, like other benchmarks utilized in our
research. Therefore, we use the same metric to report average application
throughput.

Renaissance Benchmark Suite The Renaissance benchmark suite [Pro+19]
is a collection of applications designed specifically to evaluate the performance of
GCs. The benchmarks in Renaissance cover a wide range of application domains,
including web services, databases, and more. The applications are representative
of real-world applications and are designed to stress different aspects of GCs.

As for the DaCapo, the number of iterations specifies how many times
the workloads are executed to gather performance data. Therefore, to execute
workloads, we set the number of iterations to a value that gave us stable execution
time results from then on. Also, we set the input size to large, if available,
otherwise we set it to the default. Disabling explicit GC calls (System.gc())
existing in the source code was done using the switch -no-forced-gc while
running the workloads.

We utilized both the DaCapo and Renaissance benchmark suites for precise
comparisons of different GCs and to draw conclusions. These benchmarks are
widely used and reliable to evaluate GCs’ performance. The combined use of
DaCapo and Renaissance benchmarks ensured a comprehensive and thorough
evaluation of the GCs, strengthening the validity and reliability of our research
findings. Additionally, to provide a broader evaluation of our proposed solutions,
we utilized other benchmark suites, which are discussed next.

Buffer Bench (B2) We developed BufferBench (B2), a software designed to
perform read and write operations in memory. B2 is a Java-based tool explicitly
created to assess the impact of read and write barriers on GCs’ performance
metrics. BufferBench relies on three input parameters: data size, the number
of operations, and read percentage. Based on the data size, a hash map is
created to keep the objects. For our study, we chose data sizes of 1 or 2 million
objects, providing the basis for our evaluations. The number of operations
represents the total count of both read and write operations, set at 100 million
for our experiments. These quantities, both for the number of objects and
operations, were chosen as they effectively trigger multiple GC cycles to measure
GC performance metrics accurately. The read percentage parameter indicates
the proportion of operations involving reading objects from the heap, with the
remaining percentage devoted to write operations generating new objects in the
heap. For our study, we explored read percentages of 25%, 50%, 75%, and 100%,
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allowing us to analyze GCs’ behavior concerning their performance metrics by
varying the read and write operation proportions.

Petclinic While comparing different GCs for different categories of applications
(CPU-intensive and I/O-intensive), to provide real-world scenarios for different
application categories, we utilized the PetClininc application [Spr07]. It is a web-
based application that typically models a simple veterinary clinic management
system, where you can perform tasks like adding and managing veterinarians,
owners, and their pets. To conduct these evaluations, we employed Apache
JMeter2 (version 5.4). Using JMeter, we simulated the usage of the PetClinic
application with 100 threads. Input data files, containing records for various
entities within the application, were used for testing. Additionally, we configured
each thread group to run 10 iterations. These parameters have been fine-tuned
through extensive testing to represent typical usage of the application, minimize
errors arising from simultaneous thread execution, induce multiple GC cycles,
and effectively utilize server resources.

SPECjvm2008 The SPECjvm 2008 benchmark [Sta08] emulates a range of
typical real-world general-purpose applications. This design aims to ensure the
benchmark’s relevance in assessing Java performance across diverse client and
server systems. We use the Lagom switch (available in SPECjvm2008); Lagom
provides a fixed-size workload for the benchmarks, i.e., it does a fixed number of
operations in each benchmark (just like DaCapo and Renaissance benchmark
suites). Then, we use the corresponding application execution time as a metric
for throughput. We utilized workloads in SPECjvm2008, as any application a
user may run, for performance check of our GC selector system, BestGC. This
validation process proved that using BestGC shows performance benefits in a
highly optimized environment like OpenJDK.

Hazelcast In order to obtain a more comprehensive understanding of our
prototype while proposing a new JVM option based on the GC CPU usage, we
also include the Hazelcast benchmark [Gen+21]. Hazelcast was chosen since most
of the latency-sensitive workloads in DaCapo Chopin were excluded for different
reasons (as it is noted by the DaCapo’s maintainers3 at the time of writing
Paper III). As low latency is the main goal of a concurrent collector, we wanted
to study more such workloads. Hazelcast is designed to provide distributed
and scalable in-memory data storage and processing, which can help reduce
data access and processing latency. We used all the suggested configuration
parameters [Top20] and reported the results of 3 different configurations of
Hazelcast (fixed workload with key-set sizes: 400 000, 250 000, 100 000). Using
three configurations offers a good enough representation of various workloads
and is practical for evaluating GCs under different conditions and data sizes.

2https://jmeter.apache.org/
3https://github.com/dacapobench/dacapobench/blob/dev-

chopin/benchmarks/status.md
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We executed the benchmarks until a steady state was reached in execution
times. Then, we utilized the recorded data to report the performance metrics
detailed in the next section.

6.2 Performance Metrics

To evaluate our proposed solutions, we measured several performance metrics
crucial in evaluating GCs: application throughput, GC pause time, memory
usage, and latency (delay in responsiveness).

Although our benchmarking methodology varied across our research papers,
a common aspect was the execution of benchmarks until a steady state was
reached in execution times. Reaching this stable state allowed us to extract and
report desired performance metrics to draw conclusions.

All the benchmarks used in the evaluations provide execution time data,
which we utilized to report the average application throughput. The reported
application throughput is calculated as the average execution time of running
workloads over multiple iterations. The number of iterations set in the evaluations
is determined by our observation that it provides stable results for execution
times. This chosen number of iterations for the workloads ensures more accurate
results through repeated executions of the same workload. During the execution
of each workload with each of the studied GCs at a time, we enabled the JVM
option -Xlog:gc* to record GC dump data. Subsequently, from the recorded GC
pause times, we calculated and reported the 90th percentile (as it is used in most
SLAs) of pause time to assess GC pause times. In addition, we extracted heap-
related data, from the recorded GC logs, to determine the average heap usage
before/after garbage collection. Furthermore, for latency-sensitive workloads,
we employed metered latency values and reported the 99th percentile, which is a
common practice in latency analysis.

6.3 Results

We conducted evaluations of the proposed approaches to achieve the objectives
outlined in this thesis using the aforementioned benchmarks, which are
representative of real-world applications. Next, we present a summary of the
results presented in our research papers.

6.3.1 Selecting a GC for Java Applications

We categorized applications from the DaCapo (version 9.12) and Renaissance
(version 0.11.0) benchmark suites, as well as the B2 benchmark and the PetClinic
application, into CPU-intensive and I/O-intensive categories. All the evaluations
have been done on a machine running GNU/Linux, Ubuntu 16.04.4 LTS, with
an x86_64 Intel(R) Xeon(R) 4-core CPU E5506 @2.13GHz, and 16GB RAM.
We evaluated four GCs in OpenJDK13: CMS, G1, ZGC, and Shenandoah. For
all the evaluations, we set the maximum heap to 4 gigabytes, using –Xmx4g and
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used the -Xlog:gc* to enable the printing of each GC’s activities. The evaluation
focused on application throughput, GC pause times, and memory usage before
and after GC. The following results were obtained:

• In approximately 57% of CPU-intensive applications, CMS performed
better than other GCs in terms of application throughput; ZGC, G1, and
Shenandoah demonstrated acceptable throughput in around 20%, 13%,
and 10% of these applications, respectively; for I/O-intensive applications,
using CMS delivered the best throughput performance in almost 86% of
cases, while the remaining 14% got better results with ZGC.

• In roughly 97% of CPU-intensive and all I/O-intensive applications, ZGC
achieved the shortest 90th percentile of pause times.

• In terms of average memory utilization before garbage collection, among
the CPU-intensive applications, CMS emerged as the top GC choice in
80% of the cases; also, in the I/O-intensive category, CMS and Shenandoah
were equally selected as the leading GCs.

• Concerning heap usage reduction after garbage collection, findings highlight
G1 as the optimal solution for average memory reduction in approximately
57% of CPU-intensive applications; in the I/O-intensive category, both G1
and CMS were effective in reducing heap usage in about 43% of benchmarks;
these results align with one of the main design principles of G1, which
focuses on reclaiming heap spaces with the most garbage.

In summary, the evaluation of the mentioned GCs provided valuable insights
for users in the process of selecting the most suitable GC for their applications.
Using CMS consistently delivered the best application throughput, while ZGC
excelled in minimizing GC pause times, and these findings held true for both
CPU-intensive and I/O-intensive application categories. When it came to average
heap usage before garbage collection, CMS emerged as the preferred GC for
both application categories. Shenandoah also demonstrated as good results as
CMS, particularly for I/O-intensive applications. As expected, G1 proved to be
an excellent choice for reducing heap usage after GC, showcasing its effectiveness
in this regard. Additionally, CMS was found to be a possible option for I/O-
intensive applications when considering heap reduction. More details on the
evaluations are available in Paper I, Section I.5.

6.3.2 BestGC: An Automatic GC Selector

The results are obtained from two phases of evaluation. Firstly, we evaluated
the performance of four commonly used GCs within OpenJDK15, Parallel, G1,
ZGC, and Shenandoah. As previously mentioned, this evaluation was conducted
using the DaCapo Chopin and Renaissance (version 0.11.0) benchmark suites.
Secondly, we conducted an evaluation of BestGC’s performance, while pretending
to be a user, using the SPECjvm2008 benchmark suite. All the evaluations have
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been done on a machine running GNU/Linux, Ubuntu 16.04.4 LTS, with an
x86_64 Intel(R) Xeon(R) 4-core CPU E5506 @2.13GHz, and 16GB RAM.

The results obtained from the evaluation of the mentioned GCs regarding
the 90th of the GC pause times and the application execution time (throughput)
across various heap sizes (256, 512, 1024, 2048, 4096, and 8192 MB), reveal the
following findings:

• Parallel GC by maintaining nearly constant application execution times
consistently outperforms other GCs across various heap sizes because it
adjusts the sizes of generations to optimize throughput. Following Parallel,
G1 ranks second in terms of application execution time. In contrast,
Shenandoah and ZGC exhibit worse results and show different behaviors
as heap sizes change. Even with an 8192 MB heap size, Shenandoah and
ZGC, both exhibit longer application execution times compared to G1 and
Parallel. Notably, Shenandoah and ZGC demonstrate similar execution
times at an 8192 MB heap size, but their performance deteriorates as
heap sizes decrease. ZGC performs the poorest with a 256 MB heap size
compared to other GCs. The difference in performance between ZGC and
Shenandoah, both of which are concurrent GCs, is attributed to ZGC’s
prioritization of concurrency, which requires more heap space for object
allocations during garbage collection [CK22]. This, in turn, has a negative
effect on application execution times. Whereas, Parallel and G1 are both
generational collectors, focusing on the frequent garbage collection that
occurs in the young generation due to the generational hypothesis [LH83].
Consequently, these two GCs (Parallel and G1) offer better application
execution times (throughput) compared to ZGC and Shenandoah.

• Unlike the application execution time results, Parallel performs poorly
regarding the GC pause time. Parallel tries to change one generation size
at a time (the generation with the more significant GC pause time [Ora20]).
However, for heap sizes exceeding 2048 MB, Parallel’s generation sizes
become large enough to avoid frequent collections, resulting in shorter
GC pause times. Concurrent GCs, particularly ZGC, exhibit significantly
shorter GC pause times compared to generational G1 and Parallel GCs.
This improvement is attributed to the use of concurrent tracing and copying
mechanisms in ZGC and Shenandoah. While Shenandoah consistently
keeps GC pause times very small, it does not exhibit a predictable pattern
with different heap sizes. In contrast, ZGC maintains a nearly constant
average GC pause time across all heap sizes.

In the second step, we assess BestGC. The goal is to validate BestGC using
workloads from the SPECjvm2008 benchmark suite and evaluate its effectiveness
in recommending the most suitable GC for various applications. The validation
process involves three key phases: 1) empirically determining the most suitable
GC and heap size by manually measuring application execution time and GC
pause time for SPECjvm2008 workloads, 2) employing BestGC to obtain heap
and GC suggestions for the SPECjvm2008 workloads, and 3) comparing the
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results obtained from the first two phases to assess the accuracy and performance
of BestGC’s recommendations. The validation process regarding heap sizes,
which are obtained empirically and through BestGC for the SPECjvm2008
workloads indicates BestGC’s reliability in this aspect.

The evaluation of the accuracy of BestGC’s GC suggestions considering
user preferences regarding application throughput and GC pause time indicates
that BestGC suggests the most suitable GC on average 51.24% of the time
and recommends the correct category of the GC (concurrent/non-concurrent)
in about 85.95% of cases. When BestGC fails to provide an exact GC or GC
category, using its recommended GC still results in about a 1.75% improvement
in GC performance compared to the default OpenJDK GC (G1). On average,
BestGC offers an overall performance benefit of approximately 36.75% when
considering both successful and unsuccessful recommendations, highlighting its
potential to significantly enhance application performance, especially in highly
optimized environments like OpenJDK. More details on the evaluations are
available in Paper II, Section II.6.

6.3.3 Heap Size Adjustment with CPU Control

We utilize the DaCapo Chopin and Hazelcast benchmarks which include latency-
sensitive applications to evaluate the adjustment strategy implemented in ZGC
(the GC showcased very good results among the concurrent collectors in previous
papers). Since the proper configuration of a concurrent collector should avoid
allocation stalls, we decided to adopt a manual heap size adjustment strategy for
our baseline (vanilla ZGC), where we pick the smallest power-of-two heap size
with which the application runs reliably without stalling. This way we compared
our modified ZGC with vanilla ZGC. Then, we investigated the implications of
our proposed design with varying percentages of GC CPU target overheads: 5%,
10%, 15%, and 20%. The evaluations have been done on an Intel Xeon server
machine with 30GB RAM and 32 identical CPUs E5-2680, running Oracle Linux
Server 8.4. Throughout the experiments, we closely examined various metrics,
including memory usage, application execution time (throughput), application
latency, and energy consumption. The following results were obtained:

• Memory usage mostly decreased when the GC target was higher than the
application default GC CPU overhead. We even observed a reduction
of 96 % for an application (Sunflow) with 15 % and 20 % GC targets.
The reduction in memory usage correlates with a higher number of
minor and major collections (collections in the young and old generations,
respectively), which simply means that GC works more to keep a tighter
heap. As expected, in terms of reducing memory footprint, the GC
CPU target of 20 % leads to the smallest heap size across almost all the
benchmarks.

• The results show that adjusting the heap size dynamically with 15 % and
10 % GC targets had a minimal negative impact on execution time (except
for 2 out of 13 workloads). We even obtained a reduction in execution time
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in some applications. This improvement can be attributed to the collector
compacting live objects close together, improving cache locality [YÖW20a],
and making memory accesses easier to prefetch.

• We expected energy changes to exhibit an opposite trend to memory. We
anticipated that if a benchmark consumed more CPU during GC than the
baseline, then we would see a decrease in memory usage and an increase in
energy consumption. This is because CPU usage incurs higher energy costs
than DRAM [Hor14]. As expected, the 20 % GC target showed on average
worse energy results compared to 10 % and 15 % GC targets. However, it
was apparent that the relationship between reduced memory and increased
energy is not always linear.

• Our adaptive approach demonstrated that it had no adverse impact on
the 99th percentile latency; in fact, it could even lead to latency reduction.
For CPU-intensive workloads, where there is intense competition for CPU
resources between collector and mutator threads, lower GC targets (e.g.,
10 %) resulted in increased memory usage. This positively influenced
latency by allowing GC to run less frequently, thereby reducing its impact
on mutator performance. While increasing Xmx could achieve a similar
effect, our approach reduces latency while also decreasing memory usage.
By maintaining stable GC CPU overhead around a specified GC target,
our technique ensures that GC does not take up a lot of space, allowing
mutators to deliver stable low latency without frequent drops. Higher GC
targets in CPU-intensive workloads could reduce latency by mitigating
contention between GC and mutator threads. However, due to the limited
number of available latency-sensitive workloads assessed, we could not
draw definitive conclusions regarding the positive impact of our technique
on latency. Nevertheless, our results indicated that it did not exhibit a
statistically significant adverse effect on latency.

It can be observed that different GC targets yielded varying outcomes for
different optimization objectives. The highest GC target, 20 %, proved optimal
for memory, while energy optimization favored the lowest GC target. Meanwhile,
too many or too few GC cycles can harm performance. Thus, choosing the
best GC target for each application may require manual selection. However,
an examination of the benchmarks collectively revealed that a 15 % GC target
achieved a 51 % reduction in memory usage with only a 3 % increase in execution
time and energy consumption (calculated as the geometric mean across all
benchmarks[FW86]). Hence, a 15 % GC target may serve as a suitable default
choice for optimizing the trade-off between memory usage, execution time, and
energy consumption. More details are provided in Paper III, Section III.5.

6.4 Summary

To evaluate our proposed solutions, we utilize several benchmarks and evaluate
various metrics. We utilize DaCapo, Renaissance, B2, SPECjvm2008, and
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Hazelcast benchmark suites. These benchmarks are chosen for their ability to
stress different aspects of GCs and provide insights into GC performance.

Furthermore, to evaluate the results obtained from our solutions, we measure
important performance metrics. These metrics include application throughput,
GC pause times (reported as the 90th percentile), memory usage, and latency
(reported as the 99th percentile). We utilize execution time data to report
throughput and analyze GC log files to extract the necessary information for
calculating other performance metrics.

The combination of benchmark suites and performance metrics allows us
to comprehensively evaluate and compare the performance of different GCs,
ensuring the validity and reliability of our research findings. Our findings
emphasize the effectiveness of our proposed approaches. They show the impact
of various GCs for different application categories. Also, the results underscore
the benefits derived from automating the GC selection process, aligning with
user preferences for application throughput and pause time. Additionally, results
reveal the efficacy of optimizing memory usage by imposing an upper limit on
GC CPU usage, a strategy implemented in ZGC which was proven as a superior
concurrent GC through prior results.
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Chapter 7

Conclusion and FutureWork
In this final chapter, we bring our exploration to a close by encapsulating the
contributions of our research journey. We provide a summary of the insights
gained from our evaluation of various GCs, the development of BestGC, and
the introduction of an approach to heap size adjustment in concurrent GCs.
This chapter also looks ahead to the future. We outline promising directions
for further research, presenting opportunities for advancing the field of JVM
GCs. From a focus on benchmarking and latency-sensitive applications to the
potential of machine learning-driven enhancements, we set the stage for what
lies ahead.

7.1 Conclusion

Java is one of the leading programming languages and development platforms,
with millions of developers running over 60 billion JVMs worldwide1. GCs play
a pivotal role in managing the heap automatically within the JVM. While a
default GC is available, alternative GCs have been developed with different
performance goals and trade-offs. Changing the default GC based on an
application’s requirements and functionalities can potentially improve application
performance, offering benefits such as lower latency, increased throughput, and
reduced memory usage that can affect, for example, cost savings when using cloud
resources. However, the process of selecting the most suitable GC for a specific
application is far from straightforward. Users face numerous complications
and challenges when evaluating different GCs and their associated parameters.
These complications can include understanding the trade-offs between various
application’s and GC’s performance metrics and considering the compatibility
of GC algorithms with the application’s characteristics and requirements.

As already mentioned in Chapter 1.1, the main motivation of this thesis is
to address these complications and empower users to make informed decisions
when selecting the best GC solution and a heap size for their Java applications.
With a user-centric approach, this research aims to enable users to navigate the
complexities of GC and heap size selection effectively. Through a comprehensive
analysis of various GCs, their performance characteristics, and the factors
influencing their suitability for specific applications, this thesis offers guidance
and tools that facilitate the GC and heap size selection process.

We started our work by conducting a comprehensive analysis of various GCs,
classifying applications into two categories: CPU-intensive and I/O-intensive,
and then, suggesting the most suitable GC for each category. Next, we embarked
on the development of a software tool called BestGC. This tool automates

1https://www.oracle.com/java/
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the GC selection process, allowing users to input their preferences (application
throughput and GC pause time) in accordance with their application’s goals.
BestGC leverages our extensive GC evaluations to provide GC recommendations
for the user application. By automating this traditionally complex and time-
consuming task, BestGC empowers users to make informed decisions regarding
the GC and heap size they use for executing their applications. Finally, by
recognizing the complexity and importance of selecting an appropriate heap size
for GCs, particularly in concurrent GCs, we directed our attention to this aspect.
The complexity surrounding heap size selection for users motivated us to propose
an approach that helps users determine the optimal heap size for concurrent
collectors. We introduced a new tuning knob, GC CPU utilization target, which
allows users to set a limit on the CPU utilization of the GC. This method
provides users with a practical and intuitive means to indirectly control the
maximum heap size, addressing the challenges associated with this process. We
implemented this strategy in ZGC as a concurrent GC that showcased promising
results in our prior evaluation.

Importantly, the approaches and methodologies employed throughout these
projects can be adapted to other runtime systems. Furthermore, our research
findings and tools can be extended to encompass other GCs, broadening their
applicability and utility beyond the specific scope of this thesis.

7.2 Future Work

This section highlights several promising directions for future research, which
can serve as the foundation for PhD and Masters research proposals.

Given the continuous evolution of GCs and the expanding complexity of
contemporary applications, several areas exist for exploration. Future research
efforts could delve into conducting thorough evaluations involving a broader array
of GCs, by focusing on comparing GCs (including newer versions of powerful
GCs like generational versions of ZGC and Shenandoah) and considering various
performance metrics. The increasing availability of benchmarks that report
detailed data, such as latency (as seen in benchmark suites like DaCapo’s
Chopin version), provides an excellent opportunity to evaluate GCs with a
strong emphasis on latency. Given the low-latency performance of concurrent
GCs, such evaluations could offer valuable insights into these GCs’ behavior.
This, in turn, increases the demand for reliable latency-sensitive benchmarks
and opens up opportunities for the development of more applications that
facilitate GC evaluations. Therefore, the scope of our research conducted on
finding a proper GC solution for CPU-intensive and I/O-intensive applications
can be extended to encompass other application classes, e.g., latency-sensitive
applications. Additionally, this work can be extended to encompass evaluating
other relevant metrics for GCs, such as energy usage. It can explore the energy
usage of GCs across various application categories or can address the selection of
the most energy-efficient GC for user applications, particularly when energy costs
are a significant consideration. Moreover, it can conduct more comprehensive
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energy assessments in connection with GC CPU usage when adjusting the heap
size during application runtime.

Building upon the foundation of BestGC, future research can explore the
integration of machine learning techniques to enhance the precision of GC
suggestions for users’ applications. The inherent adaptability of the BestGC
approach, which allows for training with a diverse range of GCs and performance
metrics, and even runtime environments beyond the JVM, offers the possibility
of machine learning-driven enhancements. This line of research could ultimately
lead to the development of an advanced enterprise-level system for optimizing
GC selection across diverse application scenarios.

The research on dynamically adjusting heap sizes based on GC CPU
utilization represents an approach to memory management. Future investigations
could build upon this strategy by evaluating its effectiveness across a broader
range of benchmark classes. Exploring its applicability in different concurrent
GCs can provide valuable insights into its extensibility and potential areas for
optimization.

In summary, the evolving landscape of GC technologies and the diverse
requirements of modern applications offer diverse research opportunities. This
thesis provides a roadmap for future research works that can make a significant
impact on the field of JVM GCs. These efforts will contribute to creating more
efficient, user-friendly, and adaptable solutions that can better help both users
and developers in this domain.
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I

Abstract

Nowadays, there are several Garbage Collector (GC) solutions that can
be used in an application. Such GCs behave differently regarding several
performance metrics, in particular throughput, pause time, and memory
usage. Thus, choosing the correct GC is far from trivial due to the
impact that different GCs have on several performance metrics. This
problem is particularly evident in applications that process high volumes
of data/transactions especially, potentially leading to missed Service Level
Agreements (SLAs) or high cloud hosting costs.

In this paper, we present: i) a thorough evaluation of several of the
most widely known and available GCs for Java in OpenJDK HotSpot
using different applications, and ii) a method to easily pick the best
one. Choosing the best GC is done while taking into account the kind
of application that is being considered (CPU or I/O intensive) and the
performance metrics that one may want to consider: throughput, pause
time, or memory usage.
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I. Selecting a GC for Java Applications

Figure I.1: Throughput, 90th percentile of pause times, and memory usage before
GC, in the Luindex benchmark.

I.1 Introduction

In object-oriented programming languages, e. g. Java, automatic memory
management regulates all the objects’ allocations and deallocations in memory
using Garbage Collection algorithms. A Garbage Collector (GC) in Java, which
is responsible to free objects that are no longer referenced by any part of running
applications and processes, is even more important when applications are dealing
with high volumes of data (i.e., Big Data and/or Cloud Services [CML14]).

Existing garbage collection solutions apply a trade-off between different
performance metrics based on how the GC algorithm is designed. Taking Luindex
benchmark (included in DaCapo benchmark suites [Bla+06]) as an example,
90th percentile of pause times along with execution time and memory usage for
four different GCs are depicted in Figure I.1. We can conclude that ZGC [Per18]
has almost 12x and 57x less pause time compared to Shenandoah [Flo+16] and
G1 [Det+04] GCs, respectively. regarding pause time, CMS [Jon96] would be
the last choice when compared to the other GCs.

As Figure I.1 shows, the minimum execution time for Luindex is obtained
when CMS is running; also, there is a slight difference between the execution
time in CMS and G1 (we consider an application’s execution time as the
throughput; for more detail see Sections I.3.3 and I.4). Furthermore, Shenandoah
followed by the G1 uses the heap memory better than the two other GCs before
garbage collection. Based on the results, ZGC uses about 3x more memory than
Shenandoah. For this particular benchmark, although ZGC is the best option
regarding pause time, in terms of memory usage before GC it is the worst choice.

The existence of several GCs with diverse functionality and purposes makes
it hard for a developer to choose the most suitable GC solution for a given
application. This happens especially when the application deals with a large
amount of data and demands a significant amount of resources like CPU
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or I/O. To select the most suitable GC, a user must know whether a given
application is CPU-intensive or I/O-intensive; then, the user only requires to
decide what GC performance metric (throughput, pause time, and memory
usage) he wants to prioritize. In this paper, we evaluate how several widely
known GCs behave regarding the above mentioned performance metrics, then
we propose a methodology to choose the best GC for a given Java application
running on the most widely used Java Virtual Machine (JVM) implementation,
OpenJDK HotSpot JVM.

Several relevant works studied and compared various performance metrics in
different GC solutions using existing benchmarks or real applications. However,
to the best of our knowledge, selecting the best GC solution for a given Java
application, given its characteristics (CPU or I/O intensive), and regarding some
GC performance metrics, is not covered in previous studies.

In this work, we use both Renaissance [Pro+19] and DaCapo [Bla+06]
benchmark suites that represent a large set of applications. We also developed
an application, called BufferBench (B2), that does read/write operations in
memory to better study the GCs’ behavior and the cost associated with the read
and write barriers that some GCs use. Furthermore, we use Spring Boot based
PetClinic application [Spr07] to investigate our methodology using a real-world
application. Using these applications, while applications are classified as being
CPU-intensive or I/O-intensive, we investigate four well-known GCs available in
the JVM. G1, which is the default GC since JDK 9, ZGC, Shenandoah, and CMS
to evaluate their performance metrics. According to the results, we recommend
the best GC solution for a specific application to fulfill its requirements: maximize
throughput, minimize pause time, or minimize memory usage.

In the following section, we present related work, while providing some basic
information about the key concepts of GCs. In Section I.3, we describe the
architecture of our solution with a focus on its most relevant technical aspects. In
Section I.4, we give some implementation details, and in Section I.5 we describe
the experiments and the results obtained. We conclude this paper with the
conclusions in Section I.6.

I.2 Related Work

This section starts with a summary of background work regarding basics aspects
of garbage collection, with a focus on some relevant characteristics of GCs that
are addressed in the remaining of this article. Then, it addresses some existing
work that can be compared to ours.

I.2.1 Background

Garbage collection is an essential part of automatic memory management and
aims at allowing the reuse of the memory occupied by unused objects. This
leads to organizing objects in two main groups: i) dead objects, i.e., those that
are not being referenced by any running application, and ii) live objects, i.e.,
those that are still referred from an application.
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In Java run-time systems, several GC solutions were developed to automati-
cally manage heap memory that stores objects created by applications on the
JVM. Although GCs employ different approaches to optimize their target per-
formance metrics, they tend to make a trade-off between: throughput (number
of operations done by an application), pause time (time that an application
is forced to stop to let the GC execute), and memory usage(the amount of
memory used in a process).

There are several designs and implementations for GC solutions [JHM11].
Some GCs partition the heap into multiple partitions or sub-heaps [UJ88]. This
is the case of generational GCs in which the partitioned heap holds objects that
are segregated based on their lifetime. In this case, a newly created object is
placed in the young generation partition; should it survive several GC cycles, it
will be transferred to the old generation partition. In serial GCs [Ora16] garbage
collection is done serially using just one single thread in both generations, or
multiple threads can be used by GC in the young generation (parallel GC ) or
in both young and old generations (Parallel Old GC ) [Ora16]. In the GCs to
organize the free spaces in the heap, compaction and copying algorithms may be
used. Through the compaction, GC moves all the live objects to the beginning
of the memory segment, whilst through copying, a GC groups the live objects
by moving them from multiple memory segments into a single one [BF18].

Moreover, several GCs are designed to work concurrently with a running
application; multiple threads are responsible for running the application and the
GC simultaneously. In contrast, some GCs employ the stop-the-world (STW)
technique, in which the GC stops an application while running.

Also, GC algorithms use read and/or write barriers. Read barrier (also known
as load barrier) code is run whenever an application thread loads a reference
from the heap. A write barrier is also called by the compiler just before any
write operation to some object occurs.

There are multiple GC algorithms available for the JVM. Concurrent
Mark/ Sweep collector (CMS) [Ora15] is a tracing collector (i. e. attempts
to identify all the reachable objects in the heap by tracing the root objects) and
generational GC including young and old generations. CMS employs an STW
mark and copy technique in the young generation while there is a concurrent
mark and sweep collector in the old generation to collect the marked unreachable
objects. Also, It uses a write barrier that is run every time a reference in an
object is updated. Since CMS does not have the compacting step; this may lead
to heap fragmentation [Xu+19].

Garbage first (G1) [Det+04] is the default GC since JDK9. G1 is a
generational GC with fixed-size regions in the heap that uses a compacting
algorithm. In STW young generation GC phase, G1 starts to traverse the object
graph to find the live objects and copies them to the old regions. The old
generation GC employs write barriers to mark live objects concurrently with
the running application [ZB20]. In fact, the main strategy in G1 is to reclaim
regions with the least live objects, i.e., most garbage first (as its name suggests).

The main goal in Shenandoah [Flo+16] GC is having short pause times
regardless of the heap size. It maintains the heap as a collection of regions
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and uses both concurrent copy and compaction techniques. To achieve object
relocation concurrently with the application threads, Shenandoah uses a data
structure that needs an additional field per object which points back to the
object itself, when initializing the object and, with using the write barriers, to
the object’s new location once it is moved. It also uses read barriers to read
objects from the exact current location in the heap memory.

ZGC [Per18] is a non-generational GC that divides the heap into regions
of different sizes (small, medium, and huge) to hold the objects based on their
size. To relocate the live objects concurrently, it uses read barriers and colored
pointers, and stores some important metadata to hold information about an
object itself and marking and relocation-related information [PGM19]. ZGC
applies STW pauses to mark live objects and mark the regions for compaction.

I.2.2 Existing Work

Several studies have been conducted over the past few years regarding GC
designs, methodology, and performance in Java.

Ossia et el. [Oss+02] designed an incremental, and concurrent collector, with
threads running in parallel, to ensure low pause time; Also, Pizlo et al. [Piz+07]
propose a GC, STOPLESS, that uses a mark and sweep collector and a compactor
to avoid fragmentation, for multi-processors running multithreaded applications.
Pizlo et al. [PPS08], also propose two other solutions for concurrent real-time
GCs, CLOVER and CHICKEN, to improve the complexity of STOPLESS.
Detlefs et al. [Det+04] propose a GC that attempts to achieve high throughput
for the applications running on multi-processor systems while they have a high
allocation rate and need large heaps. Printezis et al. [PD00], propose a GC
algorithm that works mostly concurrent with the application and attempts to
reduce the worst-case pause time in generational memory systems.

Zhao et el. [ZB20] decompose G1 into several key components and reimplement
it. Also, they produce six collectors to evaluate different algorithmic elements
of G1 using benchmarks including the DaCapo benchmark suite (also used
by us as shown in Section I.5). They developed a concurrent, region-based
moving collector to find the shared elements in G1, ZGC, C4 [TIW11], and
Shenandoah. Pufek et al. [PGM19] used selected benchmarks of the DaCapo suite
and compared the results of G1, Parallel, Serial, and CMS GCs regarding the time
spent in the garbage collection process as well as the number of collections in JDK
versions 8, 11, and 12. Grgic et al. [GMR18] analyzed the same GCs as Pufek’s
also using DaCapo benchmarks. They concluded that G1 performed better
than CMS and Parallel GC regarding the total number of garbage collections
and CPU utilization in multi-threaded applications. Prokopec et al. [Pa19]
describe Renaissance benchmark suite and explain the focus of each benchmarks.
They also provide information about different metrics, including average CPU
utilization, during a single steady-state execution of Renaissance and DaCapo
benchmark suites.

Lengauer et al. [Len+17] provides a description of commonly used benchmarks,
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including DaCapo, DaCapo Scala [Sew+11], and SPECjvm2008,1 in terms of
memory and garbage collection behavior. They compared G1 and Parallel Old
(parallel old generation) regarding GC counts, the GC time relative to total run
time, and the total pause time. They concluded that G1 performs better than
the Parallel Old regarding pause time as it can select which regions to collect.

There are several works that studied GCs in Big Data systems. Bruno et
al. [BF18] describes existing GC solutions for Big Data environments and the
scalability of some memory management algorithms in terms of throughput and
pause time. Nguyen et al. [Ngu+16] propose a GC for Big Data systems with low
pause time and high throughput To reduce the objects managed by the GC, the
GC divides the heap into data space and control space and uses generation-based
and region-based algorithms in the spaces respectively. However, the developer
has to mark the beginning and end points of the data path in the program.
Broom [Gog+15] and NG2C [BOF17] propose two GCs for Big Data systems.
In Broom the regions in the heap are explicitly created by the programmer; in
NG2C, the programmer identifies the generation where a new object should be
allocated

To the best of our knowledge, there are no studies that compare all the
GCs we consider (G1, CMS, ZGC, and Shenandoah) regarding throughput,
pause time, and memory usage. Also, none of the previous work proposes a
methodology to pick the best GC both for CPU-intensive and I/O-intensive
applications.

I.3 Architecture

We start this section by first describing how a user can pick the best GC for his
application; then, we describe if a certain application (see Section I.5) is CPU or
I/O intensive; finally, we present some main aspects of the system.

I.3.1 User Level Overview

When a user wants to choose the best GC solution for a given application, he
must: i) characterize the application as being CPU-intensive or I/O-intensive;
and ii) decide what GC metric he wants to prioritize among the following three:
throughput, pause time, or memory usage.

The first item mentioned above is simply done (by the user) by running the
application and using the Linux command atop ( more details are given in see
Section I.4) to categorize an application as being CPU-intensive or I/O-intensive.

Then, based on the GC metrics that the user wants to make better, the best
GC regarding throughput is CMS in both CPU and I/O-intensive applications.
Also, ZGC minimizes the pause time in almost all the CPU and I/O-intensive
applications; and CMS has acceptable results regarding using memory before
garbage collection, especially in CPU-intensive applications, while CMS can be
replaced with Shenandoah in I/O-intensive applications; G1 is a good choice for

1https://www.spec.org/jvm2008/
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Table I.1: Categorizing benchmarks as CPU or I/O intensive based on average
CPU usage per core (%) and average I/O usage (%)

a) Renaissance benchmark suite
Benchmark Avg CPU Avg I/O Category
Akka Uct 89.25 58 CPU-intensive
Als 82.25 93 I/O-intensive
Chi Square 102 39 CPU-intensive
Dec Tree 88.66 60 CPU-intensive
Fj Kmeans 86.28 21 CPU-intensive
Future Genetic 88 12 CPU-intensive
Gauss Mix 99.5 29 CPU-intensive
Mnemonics 104 12 CPU-intensive
Movie Lens 96.33 98 I/O-intensive
Naive Bayes 79.62 79 CPU-intensive
Neo4j Analytics 87.33 38 CPU-intensive
Page Rank 72.37 56 CPU-intensive
Par Mnemonics 129 13 CPU-intensive
Philosophers 92.14 12 CPU-intensive
Reactors 77 17 CPU-intensive
Rx Scrabble 95 32 CPU-intensive
Scala Doku 109 14 CPU-intensive
Scala Kmeans 106 27 CPU-intensive
Scrabble 80.66 14 CPU-intensive

d) PetClinic Application
Benchmark Avg CPU Avg I/O Category
PetClinic 88.25 17 CPU-intensive

b) DaCapo benchmark suite
Benchmark Avg CPU Avg I/O Category
Avrora 66.24 92 I/O-intensive
Fop 58.81 80 I/O-intensive
H2 76.15 10 CPU-intensive
Jython 122.24 15 CPU-intensive
Luindex 62.09 99 I/O-intensive
Lusearch-fix 88.84 99 I/O-intensive
PMD 76.71 43 CPU-intensive
Sunflow 92.65 23 CPU-intensive
Xalan 96.01 100 I/O-intensive

c) B2
Benchmark Avg CPU Avg I/O Category
1M-25% read 66.00 46.34 CPU-intensive
1M-50% read 69.73 27.18 CPU-intensive
1M-75% read 83.87 21.07 CPU-intensive
1M-100% read 101.03 11.32 CPU-intensive
2M-25% read 58.19 49.68 CPU-intensive
2M-50% read 56.16 49.85 CPU-intensive
2M-75% read 53.75 40.30 CPU-intensive
2M-100% read 66.87 14.58 CPU-intensive

reducing memory usage after GC in CPU-intensive applications, CMS works as
well as G1 regarding this metric in I/O-intensive applications (see Section I.5).

I.3.2 Application Classification

In this section, we focus on classifying applications based on their CPU and I/O
usage. As described in Section I.4, all the process mentioned above is done with
G1 activated as a default GC in the OpenJDK and by employing representative
applications available in well-known benchmark suites: Renaissance [Pro+19]
and DaCapo [Bla+06]. These two Java-based benchmark suites allow us to
disable/enable multiple features (e.g., disabling garbage collection before each
iteration in benchmarks, or change input parameters like input size), and are
representative of most existing applications.

We also developed B2 to test and evaluate the aforementioned GCs so that
we can broaden our study experiments. In particular, B2 makes read and write
operations from/to the heap while the percentage of the read and write operations
can be changed. This leads to triggering GC, affects the GC’s behavior and
indeed the performance metrics.

Table I.1 shows the relative average CPU consumption per core and average
I/O usage of each application used in the evaluation (for more details, see
Section I.5). We tag an application as CPU-intensive if the percentage of average
CPU usage is bigger than the average I/O usage; otherwise, we consider the
application to be I/O-intensive.

Among Renaissance benchmarks, as shown in Table I.1.a, only ALS and Movie
Lens benchmarks have a greater percentage of I/O usage than the percentage of
CPU consumption; thus, these applications are considered to be I/O-intensive.
All the other applications in the Renaissance benchmark suite are considered to
be CPU-Intensive.
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In the DaCapo benchmark suite (Table I.1.b) more than 50% of the
benchmarks are I/O-intensive; H2, Jython, PMD, and Sunflow are the only
CPU-intensive applications.

In B2 (Table I.1.c) all running cases are as CPU-intensive (in fact, the CPU
is the resource that is most used). And, finally, Table I.1.d shows that there is a
significant difference between average CPU usage and average I/O usage in the
PetClinic application; thus, we conclude that PetClinic is CPU-intensive.

I.3.3 Main Aspects

The GC solution especially when there are huge amounts of objects like in Big
Data and Cloud environments, has a great impact on different performance
metrics. Therefore, by knowing a given application’s requirements regarding
throughput, pause time, or memory usage, while identifying the resources an
application needs mostly (CPU or I/O), we can find the most suitable GC.

On one hand, using Renaissance and DaCapo benchmarks allows us to
evaluate throughput, pause time, and memory usage and examine how they
change by employing different GC solutions. On the other hand, using the
two benchmarks suites while knowing if the benchmarks included are CPU or
I/O-intensive, aids to figure out which GC solution is the best to a specific
application.

We consider an application’s execution time as a measure of its throughput,
rather than the (most usual) number of operations in a time interval. The
reason is to make the different benchmarks comparable since they are in different
contexts and software designs; thus, it is impossible to define a common definition
of what an operation is. The execution time includes all the time that is needed
for the GC process and the time for the execution of the application itself. Since
the amount of work is the same for each benchmark, and this is the GC that is
changed, less execution time means a better throughput.

Moreover, recording the logs generated by the GCs, about heap usage changes
during GC’s phases, provides useful information regarding GC’s pause times and
memory usage. We extract the records related to pause times to calculate the
desired percentile of such metric. The average amount of memory usage before
and after a garbage collection process indicates how a GC is successful to reduce
memory usage, deplete the dead objects from the heap, and prepare the heap to
host new objects. An ideal GC manages memory usage properly before garbage
collection and frees up significant memory by performing garbage collection.

Knowing how each GC performs regarding throughput, pause time, and
memory usage in different applications, while an application is CPU or I/O
intensive, leads to picking the best GC solution. The user who knows the
application’s requirements can then decide on the best GC that fulfills them
more accurately.
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I.4 Implementation

We developed B2 on a server running GNU/Linux, Ubuntu 16.04.4 LTS, with
four Intel(R) Xeon(R) E5506 @ 2.13GHz CPU cores and 16 GB of RAM memory.
We employed OpenJDK 13 and set the heap memory size to 4 GB.

Moreover, we create a configuration file for each garbage collector. The
file consists of JAVA_HOME, JAVA_EXE, and JAVA_OPTS that indicate
the address of the Java folder on the machine, Java execution file location,
and the desired options to run the Java run-time with them, respectively. We
added the relevant Java options for each GC in the related configuration file to
replace the default GC. For G1, we added –XX:+UseG1GC, for CMS –XX:+Use
ConcMarkSweepGC, for Shenandoah –XX:+UseShenandoahGC, and for ZGC
–XX:+UseZGC. Also, we set the maximum heap to 4 gigabytes, using –Xmx4g
and added the -Xlog:gc* to enable the printing of each GC’s detailed messages.

B2 is a simple application written in Java with a focus on evaluating the
impact of read and write barriers on garbage collection performance metrics.
This application needs three input values: data size, number of operations, and
read percentage. Based on the data size, a hash map is created to keep the
objects. In our study, data size is either 1 or 2 million objects. The number of
operations indicates the total number of both read and write operations; this
is set to 100 million in our study. The results showed that this amount is big
enough to trigger several GC cycles to measure the GC’s performance metrics.
Finally, the read percentage indicates how much of the operations are reading
objects from the heap; the remaining percentage refers to write operations that
create new objects in the heap. We chose 25%, 50%, 75%, and 100% as read
percentages in our study. We change the percentage of read (write) operations
to analyze GC’s behavior regarding their performance metrics. Also, we wrote a
simple script that evaluates the GCs with the defined data size, the number of
operations, and read percentage using B2 JAR file. So, there is a triple nested
loop; each iteration is executed with one of the four evaluated GCs at a time. To
run the B2 application using each configuration file, the B2 JAR file is executed
with the three inputs using the configuration file of each GC as the selected Java
executor. At the end of each iteration, the log file of the running GC is copied
to the desired file. We also record the exact time of the start and the end of the
B2 application to calculate the execution time (i.e., its throughput).

We also wrote a script to execute each of the benchmarks. For DaCapo, the
script runs each benchmark 10 times using each GC configuration file and the
DaCapo JAR file. The DaCapo JAR file needs three input variables: benchmark
name, number of iterations (using switch -n), and the input size (using switch
-s). The input size is set to large for all benchmarks, except for fop and luindex
that were set to default, since large was not available for them. We recorded the
DaCapo output log that shows the execution time for each iteration.

We followed the same process to write an executable script for the Renaissance.
The difference is that there is no input size for the benchmarks in Renaissance.
We used –repetitions to set the number of iterations to 10. Also, we used –no-
forced-gc, to disable the garbage collection that would be forced by the original
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Renaissance benchmark suite before each iteration.
As we mentioned in Section I.3.1, to categorize an application into CPU-

intensive or I/O-intensive, we use atop command to obtain useful information
regarding CPU and disk usage of any application. A user should activate the
storage accounting feature in the OS (using the command sudo /usr/sbin/accton
on) as it shows the accumulated read and write throughput percentage on disk.
Then, a user just has to log the disk column values per second and calculate
the average percentage of disk utilization. In addition, with the hyperthreading
feature deactivated, a user collects the values in the CPU column for the Java
process; this indicates the CPU consumption per second. The hyperthreading
feature specifies the number of threads per core and can be deactivated both in
BIOS or by changing the simultaneous multithreading (SMT) state to off. Then,
it is just a matter of calculating the average amount of CPU consumption and
divide it by the number of cores that are being used by the running Java process.
We just do this in our study to analyze the CPU usage of the benchmarks and
to categorize them as CPU or I/O intensive.

There are 8 cores available on our server, and to obtain the number of cores
engaged for each application, a user simply determines the average number
of running threads of the corresponding Java process by executing the Linux
command htop. Then, a user uses this number and divides the average CPU
utilization by it to obtain a relative average CPU usage per core. There may be
results bigger than 100% because of the relative numbers of engaged cores.

We capture the atop data every second during the execution of an application
using a script. At the same time, we extract the values for running threads from
htop and store them in a file. Then, the script executes the applications, as
explained before, just with the G1 configuration file since we just need to check
the CPU and disk utilization of applications. In the end, we just read the atop
output file and extract the data related to disk and CPU utilization and print
them into separate files.

All the software and the related scripts are open source and are available on
https://anonymous.4open.science/r/BestGC-6A71.

I.5 Evaluation

In this section we start by presenting the methodology used to obtain the results
concerning the GC metrics, i.e., throughput, pause time, and memory usage for
each one of the GCs evaluated (CMS, G1, ZGC, and Shenandoah).

I.5.1 Methodology

All the experiments were done on a server running GNU/Linux, Ubuntu 16.04.4
LTS, with four Intel(R) Xeon(R) E5506 @ 2.13GHz CPU cores and 16 GB
of RAM memory. We employ OpenJDK 13 and set the heap memory size in
JVM to 4 GB to exercise Java-based applications (it was large enough to run all
workloads for most of the applications). To run the applications with the desired

76

https://anonymous.4open.science/r/BestGC-6A71


Evaluation

Figure I.2: Average execution time in applications using different GCs.

GCs, we made a separate configuration file for each GC containing different
JVM options for each one of them.

To evaluate CMS, G1, ZGC, and Shenandoah in JVM, we use Renaissance
(version 0.11.0) and DaCapo (version 9.12) benchmark suites that include several
applications (see Section I.3.2).

When using these benchmark suites, after several experimental evaluations,
we set the number of iterations for each benchmark to 10 (as we obtained stable
results from then on and adequate data to study). Also, during the study, we
excluded particular benchmarks (e.g., Batik, Tradebeans, and Tradesoap in the
Dacapo benchmark suite, and Db-shootout, Dotty, and Finagle-chirper in the
Renaissance benchmark suite) from the experiments if one of the GCs was not
able to do garbage collection and takes an excessively large amount of time while
the application stops doing any progress waiting for more memory.

In B2, which is developed with a focus on the performance of GC read and
write barriers, we consider 100 million read/write operations. We change the
read percentage to 25 (i. e. 25% of 100 million operations are allocated to read
the objects from the memory, and 75% of them are related to generate new
objects in the heap), 50, 75, or 100, while there are 1 or 2 million objects created
in the heap.

Moreover, to evaluate the GC performance metrics with a real-world
application we examine the GCs using the PetClinic Spring Boot application.
First, we investigate if the application is CPU or I/O intensive, then we evaluate
for each GC, the throughput, pause time, and memory usage. To test the
PetClinic application we use Apache JMeter [Apa] (version 5.4). Using JMeter,
the APIs in the Petclinic application were called using 100 threads and data files
containing records as input values for different entities in the application. We
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also set the number of iterations to 10 for each thread group. Choosing these
numbers after several evaluations, revealed a typical usage of the application,
reduced the errors resulting from using simultaneous threads, triggered several
GC cycles and used resources significantly in the server.

For all the applications, to evaluate throughput, pause time, and memory
usage we mainly use the log files obtained from their execution. Regarding
throughput, we used the average execution time of the application. Then, using
the JVM log files, we find all the records related to pause times and calculate
the 90th percentile. We also calculate the average heap memory usage before
and after GC , and then evaluate the percentage of memory reduction achieved
by the GC (see Section I.3.3). In the following section, we present the results of
the evaluations.

I.5.2 Results

In this section, we present the results of the experiments regarding throughput,
pause time, and memory usage, while different CPU-intensive or I/O-intensive
applications are being executed. Then, we present a discussion of the results.

I.5.2.1 Throughput

Figure I.2 shows the results regarding average throughput (execution time) for
both the Renaissance and DaCapo benchmark suites as well as for B2 and
PetClinic.

Figure I.2.a reveals that, in 16 out of 19 benchmarks, on average, CMS
performs better. G1 comes after CMS with around a 16% difference in average
execution time (the lower the execution time the better the throughput). ZGC
is the worst option in all of the Renaissance benchmarks.

Figure I.2.b shows the average execution time for DaCapo benchmarks. In 7
out of 9 benchmarks, CMS has the minimum execution time. While for H2 and
Sunflow, G1 is the preferred GC. On average, there is less than a 1% difference
between CMS and G1 execution times in the benchmarks included in DaCapo.
Shenandoah and ZGC, with an average difference of about 5% and 3% compared
to CMS, are the last option for all benchmarks in DaCapo.

In Figure I.2.c, unlike the previous applications, ZGC has the lowest execution
time in 75% of the cases. CMS, with around a 3% difference when compared to
ZGC in the average value of all the execution times, is the second choice for B2.

In the PetClinic, the lowest average execution time (the best throughput) is
obtained when using CMS. After CMS, Shenandoah can be selected; however,
there is a very small difference between GCs’ execution times in PetClinic.

I.5.2.2 Pause Time

Table I.2 shows the 90th percentile of all the pause times obtained from all the
executions for each application (because of the very small values obtained using
ZGC and a huge difference between the CMS and ZGC results, we preferred to
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Table I.2: 90th Percentile of pause times (ms).
a) Renaissance benchmark suite

Benchmark CMS G1 Shenandoah ZGC
Akka Uct 139.14 102.03 24.00 1.07
als 36.08 70.11 2.89 1.18
Chi Square 17.22 27.65 2.81 0.63
Dec Tree 28.94 27.34 2.99 0.69
Fj Kmeans 15.95 7.84 1.50 0.47
Future Genetic 19.22 9.70 1.50 0.33
Gauss Mix 17.20 15.41 2.35 0.92
mnemonics 53.50 19.62 1.68 0.53
Movie Lens 21.00 60.10 7.21 0.80
Naive Bayes 59.74 18.97 2.50 0.45
Neo4j Analytics 102.21 120.34 3.05 0.57
Page Rank 156.24 128.73 2.90 0.62
Par Mnemonics 52.05 22.53 1.74 0.55
philosophers 17.58 6.72 1.17 0.32
Reactors 346.11 185.85 2.22 0.44
Rx Scrabble 20.23 38.89 2.22 0.61
Scala Doku 53.92 55.48 1.73 0.53
Scala Kmeans 110.39 41.36 1.94 0.41
Scrabble 33.60 26.62 2.48 0.41

d) PetClinic Application
Benchmark CMS G1 Shenandoah ZGC
PetClinic 124.20 116.67 129.23 120.68

b) DaCapo benchmark suite
Benchmark CMS G1 Shenandoah ZGC
Avrora 229.61 12.32 2.02 0.31
Fop 107.25 22.61 2.61 0.34
H2 942.84 313.25 2.41 0.46
Jython 17.36 79.21 2.51 0.67
Luindex 59.50 20.02 4.06 0.35
Lusearch-fix 53.09 32.19 2.94 0.34
Pmd 131.17 20.95 3.47 0.48
Sunflow 17.39 19.52 1.58 0.49
Xalan 15.08 24.08 1.42 0.41

c) B2
Benchmark CMS G1 Shenandoah ZGC
1M-25% read 298.66 111.14 2.48 0.40
1M-50% read 204.92 106.42 2.48 0.39
1M-75% read 123.46 104.25 2.50 0.37
1M-100% read 34.50 7.99 1.57 0.35
2M-25% read 283.94 127.15 2.35 0.33
2M-50% read 244.49 115.75 2.29 0.36
2M-75% read 144.32 97.54 2.32 0.36
2M-100% read 33.62 4.92 1.59 0.35

show the results in a table). ZGC has a pause time of less than 1 millisecond in
most of the applications and has the minimum pause time in comparison with
other GCs. Although Shenandoah has on average a pause time about 6x more
than ZGC, it performs significantly better than CMS and G1. Based on the
values in Tables I.2.a, I.2.b , and I.2.c, CMS is not able to manage the pause time
as well as other GCs. In addition, in both DaCapo benchmarks and B2, CMS has
a pause time of about 400x more than ZGC; in Renaissance benchmarks, CMS
has a pause time of around 100x more than ZGC on average. Also, Table I.2.d
shows that G1 performed slightly better than the other three GCs regarding
pause time in PetClinic.

I.5.2.3 Memory Usage

There are two main aspects to consider regarding memory usage: i) the size of
the heap space occupied by objects before a garbage collection, and ii) the size
of the heap space occupied by objects after a garbage collection has been done.

Average memory utilization before garbage collection As Figure I.3.a
shows, in 15 out of 19 benchmarks of the Renaissance benchmark suite, CMS
uses less memory than the other three GCs. For Akka Uct, ALS, Page Rank, and
Reactors, G1 is the superior GC. G1, ZGC, and Shenandoah use respectively,
on average, around 27%, 43%, and 46% more memory than CMS.

In the DaCapo benchmark suite, as shown in Figure I.3.b, although
Shenandoah beats CMS in Avrora, Fop, and Luindex, CMS is the GC that
manages heap memory before garbage collection the best for the rest of the
benchmarks. Figure I.3.c reveals that in B2, G1 works better just for two cases
(with 1M and 2M objects) with the lowest read percentage; otherwise, CMS is the
preferred choice. G1, ZGC, and then Shenandoah use on average around 20%,
34%, and 46% more memory than CMS before garbage collection, respectively.
Based on the Figure I.3.d, although there is a small difference between the
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Figure I.3: Average memory usage before garbage collection.

Figure I.4: Memory usage reduction (%) after GC.

memory usage in the four GCs, we can see that G1 uses the minimum amount of
memory. After G1, CMS performs the best followed by Shenandoah and ZGC.

Average memory utilization after garbage collection As shown in
Figure I.4.a, in the Renaissance benchmark suite, G1 can reduce the average
memory consumption the best after garbage collection in most of the benchmarks.
Moreover, ZGC and Shenandoah have a very similar average memory usage
reduction percentage and much smaller when compared to CMS.
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In DaCapo benchmarks (Figure I.4.b) the results of CMS and G1 are close
(they differ in the average reduction of memory consumption by 1.1%). Although
CMS has the best memory usage reduction in Avrora, Fop, and Luindex, for
the rest of the benchmarks, G1 works better. Shenandoah reduces the memory
usage by an average of about 35% less than G1; this value is 11% for ZGC.

In B2, memory reduced not more than 65% after garbage collection by the
GCs (since most of the objects, held in a hashmap data structure, are still alive).
However, ZGC is the preferred solution in almost 90% of experiments in B2.
Finally, in the PetClinic application (Figure I.4.d), all the GCs reduced the
memory usage by around 24%. However, G1 is the GC that performed better.

I.5.3 Discussion

We use the data of previous experiments regarding GC performance metrics to
find the best GC solution for applications categorized as being CPU-intensive or
I/O-intensive.

I.5.3.1 Throughput

In about 57% of CPU-intensive applications, CMS is the preferred GC regarding
throughput. ZGC, G1, and Shenandoah have an acceptable throughput in
about 20%, 13%, and 10% of the applications, respectively. For I/O-intensive
applications, CMS has the best performance regarding throughput in almost
86% of applications; the remaining 14% are best served with ZGC.

I.5.3.2 Pause-time

In about 97% of CPU-intensive and in all I/O-intensive applications, ZGC
achieves the minimum pause time.

I.5.3.3 Memory Usage

We evaluate memory usage before and after garbage collection. In 24 out of
30 CPU-intensive applications, CMS is the best GC, and for the I/O-intensive
category, CMS and Shenandoah are equally selected as the leading GCs regarding
average memory utilization before garbage collection.

Regarding the heap usage reduction after garbage collection, in the CPU-
intensive category, G1 is the leading GC in both DaCapo and Renaissance
benchmark suites. However, ZGC is the GC that reduces most the amount of
heap usage in B2. Also, as shown in Figure I.4, for the PetClinic application, G1
reduced the heap utilization the best. According to the results, G1 is the best
solution regarding average memory reduction for about 57% of applications in
the CPU-intensive category. In the I/O-intensive category, G1 and CMS could
reduce the heap usage by around 43% of benchmarks. The results match one of
the main design principles in G1. G1 attempts to reclaim the heap spaces with
the most garbage [Det+04].
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Table I.3: Summary: The best GC solutions regarding performance metrics for
CPU-intensive and I/O-intensive categories.

Category Throughput Pause Time Heap Usage Before GC Heap Usage Reduction (after GC)
CPU-intensive CMS ZGC CMS G1
I/O-intensive CMS ZGC CMS / Shenandoah G1 / CMS

I.5.3.4 Best GC

Table I.3 shows the best GC solution selected based on all evaluation results
regarding each GC performance metric both for CPU-intensive and I/O-intensive
applications.

I.6 Conclusion

Big data and Cloud services require a high amount of memory. A GC is
responsible for allocating and releasing the memory used by such applications
automatically. Although there is a default GC available in the Java run-time
system, changing the default GC based on the application’s requirements leads
to better performance.

In this work, we perform a study on CMS, G1, Shenandoah, and ZGC GCs
using: i ) the Renaissance and DaCapo benchmark suites, ii) an application that
we developed (called B2) that examines GCs cost with a focus on read and write
barriers, and iv) a real-world Spring Boot-based application called PetClinic.

Having the results of GCs’ behavior regarding the performance metrics
we considered (throughput, pause time, and memory usage), while taking into
account an application category (CPU-intensive or I/O-intensive), we indicate the
best GC solution as well as a methodology for any user to maximize throughput,
minimize pause time, or minimize memory usage in any application.
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Abstract

Garbage collection algorithms are widely used in programming languages
like Java. However, selecting the most suitable garbage collection (GC)
algorithm for an application is a complex task since they behave differently
regarding crucial performance metrics such as garbage collection pause
time, application throughput, and memory usage. This challenge is
particularly more complicated as there is currently no available tool
to assist users/developers in this critical decision-making process. In
this paper, we address this pressing need by conducting an extensive
evaluation of four widely used GCs (G1, Parallel, Shenandoah, and ZGC)
in OpenJDK, considering application throughput, GC pause time, and
various heap sizes. Building upon this evaluation, we present BestGC,
a novel system that suggests the most suitable GC solution based on
user-defined performance goals in terms of application throughput and
GC pause time. Our evaluation of BestGC using multiple workloads
demonstrates its effectiveness in suggesting the most suitable GC category
(concurrent or generational/non-fully concurrent GC) in approximately
86% of the experiments on average. Additionally, BestGC accurately
identifies the best GC in approximately 52% of the cases on average. Even
in situations where BestGC failed to suggest the exact best GC or GC
category, the suggested GC still outperforms the default GC (G1) in the
JDK, exhibiting an average improvement of 1.75%. Notably, BestGC is
designed to be easily extensible, facilitating its compatibility with other
JDK versions, as well as new GCs and heap sizes. By addressing the lack
of a practical tool to aid in GC selection, our research makes a significant
contribution to the field of performance optimization in Java applications.
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II.1 Introduction

A significant portion of today’s applications use managed runtime languages like
Java, and therefore, take advantage of automatic memory management, also
commonly known as Garbage Collection. It is a crucial component in managed
runtimes as it eliminates developers’ effort to manually allocate and deallocate
objects in memory, thus improving developer productivity.

Several Garbage Collectors (GCs) are available in the Java Virtual Machine
(JVM), attempting to improve performance metrics like application throughput,
GC pause time (the time application threads stop to let the GC execute),
and memory footprint. For example, Figures II.1a and II.1b show the total
application execution time and the 90th percentile pause time (both normalized
to G1) for the Philosopher workload (from the Renaissance [Pro+19] benchmark
suite) with heap sizes of 256 MB and 4096 MB. Results show that GCs behave
differently regarding application execution time and GC pause time. ZGC
performs significantly better than other GCs regarding pause time in both heap
sizes, while it sacrifices application execution time when the heap size is reduced
to 256 MB. G1 outperformed other GCs considering application execution time
with a 256 MB heap. However, ZGC has the best execution time with 4096 MB
of heap. Note that, as in the rest of the paper, we use the total execution time
of an application instead of the number of operations being done per second
(throughput) since the concept of an operation is widely distinct for the workloads
we use. In addition, for GC pause time, the usual 90th percentile is used.

(a) Heap Size = 256 MB (b) Heap Size = 4096 MB

Figure II.1: Normalized application execution time and 90th percentile of GC
pause time for Philosopher workload (from Renaissance benchmark suite). Lower
is better.
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Figure II.2: Suggested GCs by BestGC for varying user preferences in terms
of application throughput and GC pause time, for the Compress workload
(included in SPECjvm2008 benchmark suite) and with a heap size of 512 MB.
The suggested GC algorithm is Parallel when prioritizing application throughput,
whereas the suggestion changes to ZGC when GC pause time becomes a more
crucial factor.

Selecting the appropriate GC for an application is a challenging task due to
the significant impact GCs can have on application performance goals, specifically
GC pause time and application throughput. For applications handling large
data sets or experiencing high transaction rates, the choice of GC algorithm
becomes even more critical. However, determining the optimal GC to meet
specific performance demands, such as minimizing GC pause time, poses a
significant difficulty for users and developers who may not have expertise in GC
optimization. Consequently, without a dedicated tool to aid in GC selection,
developers and users are left to navigate this complex process with limited
guidance, to choose a suitable GC solution with trial and error. Therefore,
addressing the lack of a tool to assist in GC selection is important to alleviate
the burden on users and developers and enable them to make well-informed
decisions regarding the selection of the most suitable GC algorithm for their
applications.

Thus, this work aims to propose a system, BestGC, that automatically
suggests a GC that best suits the users’ preferences regarding GC pause time and
application throughput and uses the GC right away to run the user’s application.
The two performance metrics, application throughput and GC pause time, are
widely used by users due to the desire to have more resources and time spent in
the user’s application and the maximum responsiveness possible. BestGC makes
it possible for the users to simply apply their requirements to these performance
metrics by defining a weight for each while running BestGC (Figure II.2 shows
an example of suggested GCs by BestGC for different weights of application
throughput and GC pause time). Given that memory footprint is another
important performance metric to evaluate GCs, BestGC employs a strategy to
include this metric in its GC suggestion process. Since we evaluate GCs from two
generational and non-generational categories, and each of them follows different
policies to pick the default maximum heap size, we use several heap sizes to
investigate GCs’ behavior. Providing GCs with fixed heap size prevents them
from using their policy (which varies in GCs) to choose the maximum heap size
and make the comparison between GC fare by working with the same memory
budget.

We extensively evaluate four widely used GCs (G1, Parallel, Shenandoah, and
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ZGC) in OpenJDK version 15. This evaluation considers application throughput
(in fact, total application execution time), GC pause time, and diverse heap sizes.
We do so while aiming at the following sub-goals:

• evaluating four well-known GCs (G1, Parallel, Shenandoah, and ZGC) in
a production JVM implementation (OpenJDK) considering application
execution time and GC pause time, with different amounts of memory
available (256 MB, 512 MB, 1024 MB, 2048 MB, 4096 MB, or 8192 MB);

• conducting the above mentioned experiments based on a set of work-
loads from standard benchmark suites (DaCapo [Bla+06] and Renais-
sance [Pro+19]) that represent existing real-world applications to reveal
the costs of the GCs; and

• proposing an approach to suggest a suitable GC for a user’s application
while considering how the user cares about the GC pause time and
application throughput.

Regarding the requirements of the final system, BestGC, the most funda-
mental is the impact that the system has on the given applications. This should
be minimized as much as possible. In particular, the time it takes for BestGC
to run should be short when compared to the time interval taken to run a user
application. In addition, BestGC should have some flexibility regarding this
aspect. Also, BestGC should be able to take into account the kind of performance
the user is interested in optimizing regarding her/his application.

We evaluate G1 [Det+04], Parallel [Ora20c], Shenandoah [Flo+16], and
ZGC [Per18], the most relevant GC implementations available in OpenJDK 15.
We use workloads from two widely-used benchmark suites, DaCapo [Bla+06]
and Renaissance [Pro+19]. These two benchmarks include diverse workloads
that mostly need CPU (CPU-intensive), which is also a critical resource for
GC. Using a forthcoming release of DaCapo, called DaCapo Chopin,1 we have
several latency-sensitive workloads. These workloads enqueue requests if they
can not be processed immediately; this causes requests to be served after some
time. This latency can be affected by a GC and results in longer application
execution times (i.e., less throughput). Therefore, using these workloads, we
can consider the concurrency overhead of the GCs on our studied performance
metrics [Cai+22].

We measure application execution time (as a metric to report application
throughput) and GC pause time, due to their undeniable importance, while
providing different heap sizes for the GCs. Modifying the heap size allows us
to investigate GCs’ behavior when they have to scan a large heap area to find
used objects; or when they are trying to manage a small heap to deliver high
throughput (minimum application execution time) while imposing GC low pause
times. Thus, the contributions of this work are as follows:

1https://github.com/dacapobench/dacapobench/tree/dev-chopin
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• extensive measurement of four GCs (G1, Parallel, Shenandoah, and ZGC)
using two widely accepted benchmark suites (DaCapo and Renaissance);

• developing a system, BestGC (by using a set of matrices we created from
the results obtained from our extensive measurements done in the previous
step) that frees the user from the complicated process of selecting a GC
that fits a user’s application performance goals; and

• validation of BestGC with the workloads from another widely used
benchmark (which is SPECjvm2008 [Sta08]).

Due to the importance of the GCs, extensive research analyzed, characterized,
and proposed new GCs to either improve GCs’ capabilities or fix current GC
issues [Fra+07; Oss+02; Piz+07; PPS08]. Several studies also compared GC
solutions regarding performance metrics like application throughput, GC pause
time, and memory usage [Ber+22; GMR18; JHM16; PGM19; Tav20; ZB20;
ZBM22]. These performance metrics are the most common, and we also consider
them the most critical metrics that highly affect users’ applications. However,
we believe that there is a lack of a system that suggests the best GC, among
those existing powerful and in-production GCs, that matches a user’s application
performance goals. We believe BestGC is the first system that allows the
user/developer to overcome the challenges of selecting a suitable GC that meets
the application’s performance requirements. BestGC is extendable to work with
new JDK versions and new GCs. Besides, the methodology used in BestGC
could be used in other runtimes in which there are GCs available to manage the
heap.

In this document, we put our focus on the user side, assuming she/he has not
enough knowledge to choose a GC that fits the user application’s requirements.
We selected two generational (non-fully concurrent) and two (mostly) concurrent
GCs that have different main goals: i) providing maximum throughput, i.e.,
minimum application execution time (Parallel), ii) balancing the GC pause time
and application throughput (G1), and iii) keeping the GC pause times to a
minimum (Shenandoah and ZGC). We evaluated these GCs regarding application
throughput/execution time and GC pause time. We added a third important
performance metric in our evaluations, memory usage, by changing the available
heap for the GCs; this way, we investigated its impact on GCs. Then, we build
up BestGC based on the results conducted in our evaluations that suggests the
most proper GC for a user’s application.

The rest of this paper is organized as follows. The next section presents some
background important to understand the GCs studied. Then, in Section II.3,
we present some related work. In Section II.4 and Section II.5 we describe
the BestGC architecture and implementation, respectively. Finally, we present
evaluation results in Section III.5, conclude the paper in Section II.7, and present
some directions for the future in Section II.8.
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II.2 Background

This section briefly presents GCs’ key terminology and algorithms (for more
detailed background, see Jones and Lins’s book [JHM16]). Then, we give an
overview of the GCs evaluated in this paper.

II.2.1 Garbage Collection Algorithms

The Java HotSpot VM [20] provides different GCs to satisfy various performance
requirements of Java applications. These GCs provide dynamic memory
management that facilitates allocating memory to objects, managing the heap,
and reclaiming unused memory for future use. There are two types of garbage
collection algorithms: reference counting [Col60], and reference tracing [Ora15].

A reference counting (RC) algorithm counts the number of references (e.g.,
pointers) to an object, keeps that number updated, and removes the objects
when their counter falls to zero (providing immediate memory reuse). However,
it comes with the cost of counters’ space and updating overhead, in addition to
skipping cyclic structures with destroyed references. Tracing collectors identify
objects in use by the running applications (also called live objects) by tracing the
object graph, starting from a set of roots (registers, stacks, and global variables),
and moving live objects to another space or sweeping them [BCM04]. Although
it eliminates the additional field in RC, it requires tracing the whole object graph
and needs mechanisms to deal with application threads’ (mutator) activities.
GCs we evaluate in this work follow the reference tracing approach.

To optimize the collection, GCs divide the heap into generations or regions.
Generational GCs divide the heap into two age groups. Newly created objects
are placed in the young generation, and those that survive multiple collection
cycles are moved into the old generation. As the generational hypothesis [LH83]
states, most objects die (i.e., become unreferenced) after a short period of time.
Therefore, the young generation often fills up with dead objects (objects that are
not being referenced by the mutator threads); consequently, minor collections
occur more frequently and move live objects to the old generation (and implicitly
remove unused objects). A major collection runs in the old generation if it fills
up. Conversely, some GCs maintain the heap as a single generation. However,
GCs may use mechanisms to divide the heap into regions to make the collection
and improve their performance goals (for example, to evacuate the regions with
the most unused objects first [Det+04]).

To monitor the object graph, keep track of references in generations,
and provide concurrency in the collectors, GCs employ read and write
barriers [ZBM22]. A read barrier (also known as a load barrier) is executed
when loading an object reference from the heap [PGM19]. In contrast, a write
barrier’s code snippet is invoked before any write operations in the heap [PGM19].
Stop-the-world (STW) collectors pause mutator threads as long as the garbage
collection runs, then use write barriers to update pointers to the evacuated
objects. However, concurrent GCs do not pause the mutator as STW GCs.
Concurrent GCs use write barriers to mark live objects and also may employ
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read barriers to do evacuation and reclamation simultaneously with the running
mutator threads. These barriers impose performance costs on the GCs [Yan+12].

II.2.2 Evaluated GCs

In this work, as already mentioned, we evaluate four production GCs in OpenJDK
15:2 G1 [Det+04], Parallel [Ora20b], Shenandoah [Flo+16], and ZGC [Per18].
In this section, we highlight the GCs’ key features that provide the background
to understand the results obtained in the evaluation (see Section III.5) that are
used in BestGC (see Sections II.4 and II.5).

Parallel (also known as throughput collector [Ora20b]) is a STW generational
collector. It performs garbage collection in its generations using multiple threads
in parallel. So, it is well suited for applications that can tolerate long application
pauses (as it is not a concurrent GC).

Garbage First (G1) has become the default collector of OpenJDK since version
9. It tries to keep a balance between pause time and throughput [Ora20b]. G1
divides the heap into fixed-size regions, and, as its name implies, it targets the
regions containing the most existing garbage (dead objects) to start the collection
from them. It is a generational GC that uses a concurrent tracing mechanism to
mark live objects, yet it performs a STW collection to evacuate objects. It also
uses write barriers to make sure that all the live objects remain alive during the
concurrent tracing phase.

Moving from STW and generational to mostly-concurrent collectors, GC
pause times are significantly reduced. Concurrent collectors such as Shenandoah
and ZGC, two of the mostly-used production concurrent collectors, keep the
pause time to a minimum regardless of the heap size. Shenandoah GC (available
from JDK version 12) is a single-generation (a generational version is available
as an experimental GC) and region-based collector that does both the tracing
and evacuation concurrently.

Z Garbage Collector, ZGC (available from JDK version 15), tries to keep the
GC pause times below 10 ms. It is a single-generation collector (a generational
version is under development) that divides the heap into regions of different sizes.
It uses part of an object’s reference (called colored bits) to keep marking and
relocation-related information [PGM19]. A read barrier checks on the colored
bits once a reference is loaded to take action for the object.

II.3 Related Work

The importance of GCs in programming languages such as Java led to extensive
studies on GC performance. Many studies compared existing GC algorithms,
evaluated their performance, combined the features of existing GCs, or introduced
new ones. In this section, we go over some of the studies tightly related to our
work.

2https://openjdk.org/projects/jdk/15
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II.3.1 Novel GC Strategies

Many studies introduce new GCs created over existing collection algorithms.
Ossia et al. [Oss+02] designed a parallel, incremental (which performs the
collection in steps), and mostly concurrent GC to meet the low GC pause
time goal. The collector is suitable for shared-memory and multiprocessor
servers and supports highly multi-threaded applications. Pizlo et al. [Piz+07]
propose STOPLESS, which uses a tracing collector and a compactor to control
fragmentation to support multi-threaded applications. Pizlo et al. [PPS08]
also propose two other solutions for concurrent real-time GCs, CLOVER, and
CHICKEN, to reduce the complexity of STOPLESS. Frampton et al. [Fra+07]
designed an incremental, young-generation STW GC for real-time systems. The
collector uses both read and write barriers to track remembered set changes.

Tene et al. [TIW11] propose C4, the Continuously Concurrent Compacting
Collector. It supports concurrent compaction, and incremental update tracing
through the use of a read barrier. C4 enables simultaneous-generational
concurrency that allows different generations to be collected concurrently. It
continuously performs concurrent young generation collections, even during long
periods of concurrent full heap collection, maintaining high allocation rates and
efficiency without sacrificing response times. Wu et al. [Wu+20] introduces
Platinum, a novel concurrent GC designed to reduce latency in interactive
services. Platinum creates an isolated execution environment for concurrent
mutators, improving application latency without restricting GC thread execution.
Additionally, Platinum utilizes a new hardware feature to make access control
to different regions of memory more efficient and therefore minimize software
overhead present in previous concurrent collectors.

However, the above mentioned GCs are not very popular because they are
not available in most mainstream JVMs.

Bruno et al. [BF18] described how objects created by Big Data applications
are kept in memory and surveyed the existing GCs for big data environments.
They also addressed scalability issues in classic garbage collection algorithms and
analyzed several relevant systems that try to solve these scalability issues. Xu et
al. [Xu+19] used the Apache Spark [Fou18] application to analyze GCs like G1
and Parallel. They proposed strategies for designing GCs specified for Big Data.
Nguyen et al. [Ngu+16] also propose a GC with low pause time and application
high throughput based on the logical distinction between the data path and
the control path. The data path consists of data manipulation functions, while
the control path is responsible for cluster management, setting communication
channels between nodes, and interacting with users. They believe these paths
differ in heap usage and object creation patterns. So, based on the previously
mentioned paths, they divide the heap into data and control spaces to reduce the
objects managed by the GC. Not many objects are created in the control spaces,
and they are subject to generation-based collection, while the objects in the data
space, which creates the most objects, are subject to region-based collections.
However, the developer is responsible for marking the beginning and end points
of the data path in the program. Broom [Gog+15] and NG2C [BOF17] also
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propose two GCs for Big Data systems. However, in Broom, the programmer has
to create the regions in the heap explicitly; in NG2C, the programmer identifies
the generation in which a new object should be allocated. These GCs require
developer efforts and are prone to errors. Then, the authors of NG2C proposed
POLM2 [BF17], an offline profiler that automatically infers generations for object
allocation, and finally, ROLP [Bru+19], an online profiler to select an object
generation with no user intervention.

II.3.2 GC Comparative Analysis

Zhao et al. [ZBM22] introduce LXR to deliver low GC pause times and high
application throughput. Their approach includes STW collections to increase
responsiveness and an RC mechanism to deliver scalability and promptness.
They evaluated and compared barrier overhead and pause time for GCs like G1,
Shenandoah, and ZGC that we also used in this paper; yet, note that RC-based
GCs are not widely used in production and, therefore, they are out of the scope
of this document. Zhao et al. [ZB20] decomposed G1 into several key components
to evaluate the impact of different algorithmic elements of G1 on performance.
Pufek et al. [PGM19] analyzed several garbage collectors like G1, Parallel, Serial
(a GC that uses the same thread as the mutator [Ora20a]), and CMS [PD00] (a
generational GC with a concurrent tracing in the old generation).3 They used
the DaCapo benchmark suite [Bla+06] to evaluate the GCs. They compare the
number of algorithm iterations and the total GC pause time for applications
running on top of JDK 8 and JDK 11. Also, they compared ZGC and Shenandoah,
which were experimental GCs by then, with G1. They concluded that G1 and
Parallel operated better than Serial and CMS regarding the overall duration of
collections. They also showed that those experimental GCs would contribute to
overall system optimizations. Their results also emphasize the importance of
evaluating ZGC and Shenandoah, as we do in this paper.

Grgic et al. [GMR18] analyzed Serial, G1, Parallel, and CMS using the
DaCapo benchmark suite in JDK version 9. They concluded that G1 is a better
choice regarding the total number of garbage collections and CPU utilization for
multi-threaded environments (but not for single-threaded environments).

Lengauer et al. [Len+17] describes commonly used benchmarks, including
DaCapo, DaCapo Scala [Sew+11], and SPECjvm2008 [Sta08] in terms of memory
and garbage collection behavior. They compared G1 and Parallel Old (parallel
collection in the old generation) regarding the number of full collections (GC
counts), the GC time relative to the total execution time of the application, and
GC pause time. They concluded that G1 performs better than the Parallel Old
concerning GC pause time by selecting different regions to collect.

Beronić et al. [Ber+22] investigated and compared memory issues, heap
allocation, CPU usage, and duration of collection in three GCs: G1, ZGC, and
Shenandoah. They found that GCs are sensitive to the heap size and that G1
uses less heap than the two other GCs. However, G1 is more CPU intensive

3CMS is deprecated in JDK version 15, so we do not evaluate it in our study.
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Figure II.3: Overall architecture of BestGC. Solid arrows for mandatory inputs
and dotted arrows for optional inputs.

since it occupies more OS threads necessary for scanning the live objects in a
heap.

Cai et al. [Cai+22] introduced a new methodology that defines a practical
lower bound on the costs of GCs for any given cost metric. They showed that GCs
are sensitive to heap size and indicated that low GC pauses achieved by concurrent
GCs do not translate into low application latency. To achieve the conclusions, the
authors used latency-sensitive workloads from the DaCapo Chopin benchmark
suite. These latency-sensitive workloads serve requests arriving at a determined
rate, and if they are not able to process a request instantly, they enqueue the
request. Therefore, they used a metric, called metered latency, to show the delay
both for the executing and the enqueued requests. Using this metric (metered
latency), the authors show that the GCs, especially concurrent ones, cause delays
for both executing and enqueued requests and therefore affect the latency. In
this document, we do not measure such metric, but we include latency-sensitive
workloads in our evaluations; in fact, we do so because it impacts the application’s
total execution time, the metric we use to report the throughput.

Differently from previous works, in this study, we evaluate four widely used
G1, Parallel, Shenandoah, and ZGC for application throughput/execution time
and GC pause time using a broad collection of workloads from DaCapo-Chopin
(in the rest of the paper, when we refer to DaCapo-Chopin, we will use the
simpler term DaCapo) and Renaissance benchmark suites (more details in
Sections II.4 and II.5). These workloads simulate real-world applications to show
GCs’ overhead on the performance metrics mentioned above (i.e., application
throughput/execution time and GC pause time). We use the results from such
experiments in BestGC. BestGC is a system that runs any Java application with
the best GC, from the four above-mentioned GCs, and a recommended heap
size while considering the user’s preferences regarding application throughput
and GC pause time. To the best of our knowledge, BestGC is the first system
to automate GC selection, while it would be easily extensible to work with a
new JDK version, new heap sizes, and new GCs. Furthermore, although we
developed BestGC for the JVM, its algorithm is totally agnostic (regarding the
JVM), as it could be used for other runtimes and languages.
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II.4 BestGC

This section addresses the architecture of BestGC, which aims to suggest the
most suitable GC for a user’s application. As Figure II.3 illustrates, there are
four phases to consider: Matrices Generation, Monitoring, Calculation, and
Running. First, in the matrices generation phase, matrices are created based on
the extensive measurement of the four GCs under consideration (this is done only
once, i.e., when building BestGC). These matrices will be used in the calculation
phase (see Section II.4.4). When using BestGC, a user needs to pass a set of
input arguments to BestGC and run it (see Section II.4.2). The monitoring
phase (see Section II.4.3) consists of running BestGC to find an application’s
maximum heap size and CPU usage. In the calculation phase (see Section II.4.4),
GCs are scored based on the matrices generated in the first phase. The running
phase (see Section II.4.5) corresponds to the running of the Java application with
the suggested GC available immediately after the monitoring and calculation
phases. Thus, regarding the four phases mentioned above, the first one runs only
once; the others run whenever BestGC is executed.

II.4.1 Matrices Generation Phase

A set of matrices for different heap sizes is included in BestGC. They
hold the manually evaluated application execution time and pause time for
four GCs (G1, Parallel, Shenandoah, and ZGC). Such evaluated results are
obtained by measuring the average application execution time and GC pause
time (with different heap sizes) of the workloads in DaCapo [Bla+06] and
Renaissance [Pro+19] in OpenJDK version 15 (more details in Section III.5).
These matrices are generated only once and inserted as constants in BestGC.
BestGC fetches the matrix corresponding to the measured heap size to score GCs,
suggests the best of the GCs (see Section II.4.4), and runs the user/developer
application with it.

Note that the workloads from the DaCapo and Renaissance benchmark suites
report application execution time for a fixed input size, i.e., a fixed amount
of work done by the workloads. So, we do not report the throughput with its
common definition (number of requests per time unit), yet we report application
execution time as a metric for throughput.

In short, we extensively evaluate G1, Parallel, Shenandoah, and ZGC,
regarding the application execution time and GC pause time for distinct heap
configurations (256 MB, 512 MB, 1024 MB, 2048 MB, 4096 MB, and 8192 MB).
Based on our evaluations, the heap sizes set includes those that are big enough to
give headroom for the application to work with no limitation. Also, small heap
sizes put GCs under pressure to provide the heap needed by the application.

Figure II.4 shows such a matrix (as an example). As can be seen, the matrix
shows the application execution time and GC pause time when the heap size
is 8192 MB normalized to G1. For each evaluated GC and heap size, the first
column contains the average application execution time of all the workloads; the
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Table II.1: Available switches for BestGC.

Switch Value Optional Comments

user-app Absolute path to user’s ap-
plication jar file + input ar-
guments.

No A space-separated string.

we [0,1] Yes∗ Weight for application ex-
ecution time (throughput)
(∗If wp is set, we is op-
tional).

wp [0,1] Yes∗ Weight for GC pause time
(∗If we is set, wp is op-
tional).

monitoring-time Time in seconds; default
value is 30 seconds.

Yes Time interval to monitor
the user’s application.

pid Process ID. Yes PID of the running user’s
application.

run-best-gc Boolean (true / false); de-
fault is true.

Yes Autorun of the user’s ap-
plication with the recom-
mended GC.

second column contains the average 90th percentile of the GC pause times (values
are normalized to G1) also for all workloads. This is detailed in Section II.4.4.

Figure II.4: Example of a matrix for the heap size of 8192 MB.

II.4.2 Input Options for BestGC

BestGC requires a few simple inputs to run.4 The user (who is defined as she/he
who wants to run a Java application with the best performance possible) needs
to pass two inputs (see Table II.1): first, the mandatory absolute path to the
application’s jar file, plus all the application-specific input arguments (if the
user’s application is already running, the user must pass its process id to BestGC
using the pid command option); second, a mandatory weight (between 0 and 1)

4A simple command to run BestGC with, in this case, 40 seconds of monitoring-time:
java -jar BestGC.jar --user-app="path to the user’s application’s jar file + its input options"
--monitoring-time=40 --wp="weight for pause time"
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Algorithm 1 Calculation of maximum heap usage.
1: t← 0
2: pid← user_app_pid
3: while t ≤ monitoringT ime do
4: heap← 0
5: jstat← jstat(pid)
6: heap← jstat.s1u + jstat.eu + jstat.ou + jstat.ccsu
7: heap_usage_list.add(heap)
8: t + +
9: end while

10: max_heap← heap_usage_list.max()

for application execution time (we) and/or GC pause time (wp) to show how the
user cares for these two performance metrics (1 for the highest importance) in
such a way that wp + we = 1. Users have to specify at least one of these weights
to run BestGC.

There are also several optional switches to set different parameters in BestGC
(as shown in Table II.1). For example, when using monitoring-time, the user
determines the monitoring time interval during which BestGC captures heap
and CPU usage of the user’s application (more details in the upcoming section).
BestGC runs the user’s application with the suggested GC in its final phase (see
Section II.4.5); however, the user can deactivate the auto-execution feature by
setting run-best-gc to false.

II.4.3 Monitoring Phase

During this phase, BestGC runs a user’s Java application with the default
GC (G1) of the available default JDK installed on the user’s machine. Also,
both the application’s maximum heap memory and CPU usage are obtained by
BestGC. BestGC measures heap and CPU usage during a time interval called
monitoring-time. As previously mentioned, this time interval, by default, is set to
30 seconds in BestGC. Based on our evaluations, the 30 seconds monitoring-time
is long enough to measure the heap and CPU usage. However, the user can
change it by specifying the desired value; for example, a longer monitoring-time
is recommended if there is an initialization phase in the application. Also, if the
user’s application execution time is really short, obviously, 30 seconds should be
reduced as needed. In other words, using BestGC may not be practical for an
application with a short execution time that runs only once.

Based on the recorded maximum heap usage in this phase, BestGC offers a
reasonable heap configuration for future executions of the user’s application. As
already mentioned, such maximum heap values can be 256 MB, 512 MB, 1024
MB, 2048 MB, 4096 MB, or 8192 MB. We now describe how a Java application’s
heap usage is obtained by BestGC. The pseudocode in Algorithm 1 shows how
BestGC measures the heap usage of a Java application. To capture the maximum
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Algorithm 2 Calculating the number of total engaged cores.
1: t← 0
2: pid← user_app_pid
3: engaged_cores← 0
4: while t ≤ monitoringT ime do
5: cpu_by_core_list.add(read(/proc/stat))
6: for all core_usage in cpu_by_core_list do
7: new_core_cpu_usage← core_usage.all_usage_values
8: new_core_cpu_idle← core_usage.idle_value
9: delta_core_cpu_usage←

10: new_core_cpu_usage− last_core_cpu_usage
11: delta_core_cpu_idle←
12: last_core_cpu_idle− last_core_cpu_idle
13: core_cpu_usage←
14: 100× (delta_core_cpu_usage−
15: delta_core_cpu_idle)/delta_core_cpu_usage
16: if core_cpu_usage ≥ 50 then
17: engaged_cores_per_second + +
18: end if
19: end for
20: engaged_core_list.add(engaged_cores)
21: t + +
22: end while
23: engaged_cores← engaged_core_list.average()

heap usage, every second, BestGC invokes the jstat5 command with the gc option
for the user’s application using its Process ID (line 5). This option displays
statistics about the heap behavior. BestGC considers all the metrics that report
the capacity of the different parts of the whole heap (line 6). Considering G1,
which BestGC uses to run a user’s application in this phase, these metrics are:
S1U (survivor space 1 utilization), EU (Eden space utilization), OU (old space
utilization), and CCSC (compressed class space used). Finally, the maximum
heap usage is detected by BestGC at the end of the monitoring-time (line 10).

BestGC also reports if a user’s application is CPU-intensive or not. BestGC
obtains a Java application’s CPU usage through two steps; first, it calculates the
number of engaged cores while running the Java application (Algorithm 2), and
then the average CPU usage per engaged core (Algorithm 3). When running
a CPU-intensive application, the choice of GC is even more important (than
running a non-CPU-intensive application) given that the CPU is a shared
resource between the application and the GC. This feature is also included in
BestGC for adding future GC selection factors in the system. For best results,
BestGC should run alone on the user’s machine to avoid interference from other
applications that may impact CPU measurements during the monitoring phase.

5https://docs.oracle.com/en/java/javase/15/docs/specs/man/jstat.html
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Algorithm 3 Calculating average CPU usage per engaged core.
1: t← 0
2: pid← user_app_pid
3: while t ≤ monitoringT ime do
4: cpu_usage← top(pid)
5: cpu_usage_list.add(cpu_usage)
6: t + +
7: end while
8: average_cpu← cpu_usage_list.average()
9: average_cpu_per_core← average_cpu/engaged_cores

BestGC captures the amount of CPU the user’s application uses every second
during the monitoring-time interval (Algorithm 2, line 4). Moreover, since not
all the applications utilize all the CPU cores in the machine, there is a function
(pseudocode presented in Algorithm 2) to calculate the number of engaged
CPU cores for the user’s application. The proc/stat6 command reports different
metrics for each CPU core in Linux. BestGC sums all consumed values (line 6)
and the CPU idle time (line 7) for each CPU core. Then, to calculate the core
CPU usage at the current second relative to the last second, BestGC calculates
the difference between the new and last CPU usage (also the CPU idle time)
for the selected core. Finally, it computes the CPU usage for the core at the
current second (lines 8-10). Should the value be above 50% for a core, BestGC
increases the number of engaged CPU cores per second by one. Then, the average
number of engaged cores is calculated at the end of the monitoring-time. Also,
the average total CPU utilization (Algorithm 3) is computed by averaging the
recorded total CPU usage every second using the top7 command and dividing it
by the average number of engaged CPU cores. Should the results be over 90%,8
the application is CPU-intensive; otherwise, it is considered non-CPU-intensive
(Algorithm 3, lines 4-8).

Thus, recording the CPU usage for the engaged CPU cores reports the
CPU consumption intensity of the user application, which may affect the GC
performance (see Section II.6.3 for more details). Note that in the monitoring
phase, the length of which is specified by monitoring-time, BestGC runs the
user’s application with the user inputs using the default GC of the default
JDK available on his/her machine while it sets no other limitations. Then, in
the calculation phase (see Section II.4.4), BestGC uses the weights (we or wp),
provided by the user, in addition to the pre-calculated application execution
time and GC pause time results obtained from the various evaluations, to score
G1, Parallel GC, Shenandoah, and ZGC.

6https://manpages.ubuntu.com/manpages/xenial/man5/proc.5.html
7https://manpages.ubuntu.com/manpages/xenial/man1/top.1.html
8We used the considerations in the Linux command atop, which assumes the

CPU usage to be critical when the total CPU usage percentage is 90% and above;
https://manpages.ubuntu.com/manpages/bionic/man1/atop.1.html

99



II. BestGC: An Automatic GC Selector

II.4.4 Calculation Phase

BestGC uses the matrices previously created (described in Section II.4.1) to score
each GC for the user application. The GC with the lowest score is the winner,
i.e., it will be the GC solution that will be used to run the user’s application
in the running phase of BestGC. For example, the matrix shown in Figure II.4
illustrates the application execution time and GC pause time results when the
heap size is 8192 MB.

BestGC selects the suitable matrix among the matrices available for all six
heap sizes depending on the maximum heap size used by the user’s application
(see Section II.4.3). BestGC considers 20% headroom for the application (i.e.,
max_heap × 1.2) and picks the closest bigger heap configuration’s matrix
available. Due to our evaluation, 20% additional heap space is big enough
to let GCs manage the heap. For example, during a 30-second monitoring-time,
BestGC reports that the maximum heap memory used by Tomcat is 308.1 MB.
It simply computes the required heap, 308.1× 1.2 = 369.72, and looks for the
closest next heap size in its heap sizes set, which is 512 MB. Then, it uses
matrix_512 for further calculations.

Furthermore, BestGC needs to know the user’s performance goals regarding
the application’s throughput and the GC pause time. Accordingly, as stated in
Section II.4.2, the user needs to pass a weight for the application throughput (we)
or GC pause time (wp) to execute BestGC ([wp + we = 1] with wp ∈ [0, 1], we ∈
[0, 1]). Having wp (or we), and the most appropriate matrix (for the detected
maximum used heap size), BestGC calculates a formula (Equation II.1) to score
each GC:

scoregc =we ×matrix[heap]<gc,ExecutionT ime>

+ wp ×matrix[heap]<gc,P auseT ime>

gc ∈ {G1, Parallel, Shenandoah, ZGC}
heap ∈ {256, 512, 1024, 2048, 4096, 8192}

(II.1)

Consequently, using the formula above, BestGC scores the GCs. Finally,
it selects the minimum-scored GC along with the recommended heap size and
passes it to the last phase.

II.4.5 Running Phase

In this phase, BestGC utilizes the maximum heap size and the most suitable
GC suggested, both from the previous phase. It executes the user’s application
with the following command:

java -Xmx <max_heap>*1.2m -XX:+Use_<best_gc> -jar
path_to_run_user_application

However, if the user has previously deactivated the auto-execution feature (run-
best-gc=false), BestGC will simply print out the command above.
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II.5 Implementation

This section describes the implementation steps we took to de-
velop BestGC. The system is available for download and testing at
https://github.com/SaTaSo/BestGC-Software.

II.5.1 BestGC

We implemented BestGC using Java and OpenJDK version 15 on a machine
running GNU/Linux, Ubuntu 16.04.4 LTS, with a x86_64 Intel(R) Xeon(R)
4-core CPU E5506 @2.13GHz. Running BestGC is quite straightforward since
it only asks the user to pass a few simple inputs (input options are available
in Table II.1). In the monitoring phase, BestGC looks for the JAVA_HOME
environment variable on the local machine and executes the given application on
a new JVM instance while setting no heap limitations. The user should not run
any other application on the machine to let the application run in isolation for
best results, as interference might impact CPU and memory utilization tracking.

JDK provides tools like jcmd9 and jstat to measure the heap usage. Using jcmd
to monitor heap usage requires enabling the Native Memory Tracking feature
(-XX:NativeMemoryTracking=[summary | detail]) when starting the JVM.
However, Native Memory Tracking will cause a 5-10% performance overhead to
JVM [Ora01] which is not the case with jstat. Therefore, we decided to use jstat
in BestGC. Jstat provides different output options to display various statistics.
We use the gc option, which represents the behavior of the garbage-collected
heap. Computing the utilized capacities reported for separated parts of the heap
reveals the heap consumption at the moment in which jstat is invoked. Since
BestGC sets no JVM options while executing the user’s application, it employs
the JVM default GC (G1 since JDK version 9). Therefore, jstat reports heap
consumption, including both young and old generations statistics. Recording
the total heap usage every second lets BestGC find the adequate heap size to
decide on the most suitable GC for the application.

II.5.2 Heap Size Variety

GCs are sensitive to the heap size [Bla+06]. The way GCs manage the heap
is one of their critical performance features. Large heap memory size shows
GCs’ behavior when there exists much memory to assign the new objects and
GCs have to manage a large memory area. However, small heap memory causes
frequent garbage collections to free more memory; this has obvious impacts
on the GCs’ pause time and may lead to GCs’ failure in the worst case. This
research also involved heap size in GC evaluations to monitor its impact on the
other performance metrics, such as application execution time and GC pause
time. As already mentioned, we set the heap size in our evaluations to 256, 512,
1024, 2048, 4096, and 8192 MB. First, heap sizes in powers of two are commonly

9https://docs.oracle.com/en/java/javase/15/docs/specs/man/jcmd.html
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used by the users [Eva20], also, these include the required heap sizes to run all
workloads in our evaluations. If the maximum heap usage by the application is
higher than 8192 MB, BestGC runs the application with the actual maximum
heap usage (plus extra headroom for running); however, it chooses the GC based
on the GC scores for 8192 MB heap size (conversely, the same process applies
for heap usage bellow 256 MB).

II.6 Evaluation

First, we describe some details regarding the benchmark suites we use: DaCapo
and Renaissance. Then, we present the application execution time and
GC pause time results (per each heap size) for the selected workloads. As
already mentioned, these benchmark workloads are representative of real-
world applications. Finally, we validate BestGC using workloads from a third
benchmark suite, SPECjvm2008 [Sta08]; BestGC runs the workloads from
SPECjvm2008 as any other application a user may run. All the results were
obtained on a server running GNU/Linux, Ubuntu 16.04.4 LTS, with eight
Intel(R) Xeon(R) E5506 @ 2.13GHz CPUs and 16 GB of RAM.

II.6.1 Benchmarks

For both benchmark suites DaCapo and Renaissance, we varied the number of
iterations for each workload to achieve stable execution times then we used the
reported results for the last iteration.

We used the latest version of the DaCapo benchmark suite, the Chopin
branch.10 DaCapo is a widely used benchmark suite composed of Java CPU-
intensive along with, in the Chopin version, latency-sensitive workloads. Since
there are different sizes available for the workloads’ inputs in DaCapo, we use
large if available (to increase the number of live objects in the heap and make GCs
work frequently); otherwise, we set the input size (using switch -s) to default (for
Zxing, Fop, and Luindex workloads). Using the switch -no-pre-iteration-gc,
we disable explicit GC calls in the workload’s code.

We also use the Renaissance benchmark suite (version gpl-0.11.0). It
includes several Java-based workloads representing a large collection of existing
applications such as big data, machine learning, and functional programming.
As with DaCapo, we set the input size to large, if available, otherwise we set it
to default. Also, disabling explicit GC calls (System.gc()) existing in the source
code is done using the switch -no-forced-gc while running the workloads.

Table II.2 shows the workloads in DaCapo and Renaissance benchmark
suites we used in this work. Some of the workloads in DaCapo and Renaissance
benchmark suites fail due to incompatibility with JDK version 15 (e.g., Cassandra
in DaCapo or Db Shootout in Renaissance) or other errors like database
connection failures (in Tradesoap and Tradebeans workloads). Also, the strategy
we employ to evaluate GCs provides GCs with the same fixed heap sizes and

10https://github.com/dacapobench/dacapobench/tree/dev-chopin
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Table II.2: Workloads from DaCapo and Renaissance benchmark suites used in
the experiments.

Benchmark
Suite

Workloads

DaCapo Avrora, Fop, Jme, Luindex, Lusearch, Tomcat, Xalan, Zxing

Renaissance Dotty, Finagle-Chirper, Finagle-HTTP, Fj-Kmeans, Future-Genetic,
Mnemonics, Par-Mnemonics, Philosophers, Rx-Scrabble, Scala-Doku,
Scala-Kmeans, Scrabble

Table II.3: Number of garbage-collected workloads per GC with different heap
configurations for: a) 24 workloads in DaCapo benchmark suite, and b) 16
workloads in Renaissance benchmark suite.

a) DaCapo b) Renaissance

GC Heap Size (MB) Heap Size (MB)

256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

G1 14 20 22 24 24 24 10 13 16 16 16 16
Parallel 12 20 21 23 24 24 9 12 15 16 16 16

Shenandoah 14 20 22 24 24 24 10 12 15 16 16 16
ZGC 13 19 22 23 24 24 8 12 15 16 16 16

eliminates the dependence of the GCs on the available heap memory on the
machine; also, it prevents GCs from freely choosing heap sizes by their different
policies. Since they have to manage the same heap size, it makes their abilities
comparable. This heap selection strategy in BestGC results in facing failures
while running some workloads due to an Out of Memory error. Thus, we omit
all the non-running workloads from the evaluations with all the heap sizes. This
narrows our set of workloads down but allows us to make the GC comparison fair
since they are working on the same workloads with the same heap availability.

Tables II.3.a and II.3.b show the number of workloads for which the GCs
could do the garbage collection for the two benchmark suites (maximum is 24 for
DaCapo and 16 for Renaissance). For workloads in the DaCapo benchmark suite
(Table II.3.a), all four GCs manage the heap with 4096 and 8192 MB heap sizes.
Parallel and ZGC fail to execute when the heap size is decreased to 2048 MB.
As the table shows, by reducing the heap size, GCs start to fail, and with the
smallest heap size (256 MB), Parallel could pass 12 out of 24 workloads, while
G1 and Shenandoah outperformed the other two GCs and performed well in 14
workloads. With 2048, 4096, and 8192 MB of the heap, all the GCs perform well
while running workloads from the Renaissance benchmark suite (Table II.3.b).
Although Parallel still manages the heap for all the workloads, G1, Shenandoah,
and ZGC fail in one workload with a 1024 MB heap size. GCs fail in more
workloads when the heap size is set to 512 MB. ZGC is the GC with the worst
performance with a 256 MB heap.
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Table II.4: Average (the arithmetic mean is calculated for the set of all the
workloads in each benchmark suite) of the application execution time for the
GCs with different heap sizes. Values are normalized to G1. Lower is better.
The line highlighted in green (light gray) is the one with the best results.

a) DaCapo b) Renaissance

GC Heap Size (MB) Heap Size (MB)

256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

Parallel 0.951 0.940 0.934 0.958 0.961 0.976 0.929 0.887 0.900 0.932 0.953 0.939
Shenandoah 1.035 1.009 1.001 1.043 1.018 1.032 1.692 1.364 1.254 1.143 1.178 1.133

ZGC 1.032 1.007 0.986 0.995 1.032 1.037 2.381 1.552 1.324 1.288 1.210 1.138

II.6.2 Application Execution Time and GC Pause Time

This section shows the results obtained regarding application execution time
and GC pause time when running a workload from benchmarks DaCapo and
Renaissance, with each one of the GCs (G1, Parallel, Shenandoah, and ZGC)
for various heap sizes (256, 512, 1024, 2048, 4096, and 8192 MB). As previously
mentioned, these results are embedded into BestGC in the form of matrices (as
detailed in Section II.4.1).

II.6.2.1 Application Execution Time

Table II.4 shows the arithmetic mean of the DaCapo and Renaissance workloads’
application execution time with different heap sizes. Since all the execution
times are normalized to G1, the values for G1 are all 1 (so, we do not show these
values in the table). Also, since we use application execution time to report
throughput, a lower value is better. The table shows that Parallel outperforms
other GCs in DaCapo and Renaissance benchmark suites for all the heap sizes.
The results clearly confirm that Parallel GC is optimized for high throughput.
It is, on average, about 5% better than G1 (value 1) and almost 7% and 6%
better than Shenandoah and ZGC in DaCapo. Moreover, there is no considerable
difference between the results when the heap size decreases for Parallel. After
Parallel, G1 (value 1) has a better execution time than Shenandoah and ZGC
with most of the heap sizes.

In the Renaissance, Parallel outperforms G1 (value 1), Shenandoah, and
ZGC, respectively, by about 8%, 40%, and 60% on average. Parallel can keep
the workloads’ execution time almost the same for all the heap sizes, while
application execution time in Shenandoah and ZGC worsens when decreasing the
heap size. For example, with a 256 MB heap size, the application execution time
of the workloads is 2.5× and 1.8× better with Parallel compared to ZGC and
Shenandoah, respectively. This shows that the workloads in Renaissance are more
aggressive regarding memory usage than DaCapo; in fact, using concurrent GCs,
which work concurrently with the application threads, significantly affects the
application execution time of these workloads. This difference is not happening
in G1 (value 1), even with a 256 MB heap size. Unlike ZGC and Shenandoah, G1
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Table II.5: Average (the arithmetic mean is calculated for the set of all the
workloads in each benchmark suite) of the 90th percentile of GC pause times for
the GCs with different heap sizes. Values are normalized to G1. Lower is better.
The line highlighted in green (light gray) is the one with the best results.

a) DaCapo b) Renaissance

GC Heap Size (MB) Heap Size (MB)

256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

Parallel 2.298 2.208 2.485 2.188 1.174 0.945 1.060 1.050 1.143 1.543 0.959 1.996
Shenandoah 0.596 0.645 0.550 0.737 0.366 0.410 0.146 0.173 0.254 0.259 0.057 0.140

ZGC 0.149 0.136 0.128 0.128 0.132 0.127 0.069 0.053 0.111 0.112 0.054 0.021

is a generational collector that keeps a balance between throughput (application
execution time in our case) and GC pause time. Also, since the minor collection
happens more frequently, G1 is able to manage the heap and, consequently, the
overall application execution time better.

II.6.2.2 GC Pause Time

To extract GC pause times, we use the JVM log files corresponding to executing
each workload for each GC. As previously mentioned, for each workload, after
achieving stable results from several iterations, we use the results of the last
iteration. To obtain the relevant GC pause times of the last iteration, we use
the records of the JVM logfile from the exact time at which warm ups finish to
the time the last iteration ends; then, we calculate the 90th percentile of the GC
pause times (as it is used in most SLAs) that happened in the chunked log.

The average 90th percentile of GC pause times for both DaCapo and
Renaissance are shown in Table II.5. For each GC, the 90th percentile of
the GC pause times obtained from the workload’s last iteration is normalized
to G1. Since all the GC pause times are normalized to G1, the values for G1
are all 1 (so we do not show these values in the table). The arithmetic mean
is calculated for the set of all the workloads’ results (the results highlighted
in green/light gray are the best). ZGC achieved the best results for all the
heap sizes in DaCapo and Renaissance. On average, in DaCapo, ZGC has 7.5×,
14×, and 4× lower GC pause time than G1 (value 1), Parallel, and Shenandoah,
respectively. Also, in Renaissance, ZGC outperformed G1 (value 1), Parallel,
and Shenandoah by having the results 19.5×, 28×, and 3× lower than G1,
Parallel, and Shenandoah on average. The workloads in Renaissance are memory
demanding and sensitive to changing the heap size; so, with larger heap sizes,
there is enough room for the concurrent GCs, especially ZGC, to spend less
time in the collection process than Parallel and G1. By decreasing the heap size,
concurrent GCs need more time to manage the heap.Parallel is the worst choice
considering GC pause time due to the STW pauses and lack of concurrency. G1
(value 1), using its concurrent evacuation phase, performs better than Parallel.
After ZGC, Shenandoah manages the GC pause time better than G1 (value 1)
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(a) application execution time

(b) GC pause time

Figure II.5: Normalized (to G1) average application execution time and the
normalized average of 90th percentile of GC pause time for all the DaCapo and
Renaissance workloads.

and Parallel; it obtained results closer to ZGC than G1 (value 1) and Parallel.
However, because of the overheads of the different barriers [Flo+16] it uses to
provide concurrent collection, it manages the GC pause time worse than ZGC.

II.6.2.3 Discussion

Figures II.5a and II.5b show application execution time and GC pause times over
all the workloads from both benchmark suites (values are normalized against
G1, also shown). First, we provide each workload with a large heap size (letting
GCs freely assign memory to new objects). Then, we gradually decrease the
heap size and make the GCs do their best to manage the heap.

As Figure II.5a shows, Parallel outperforms other GCs for all heap sizes. It
keeps application execution times almost the same while changing the heap size.
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Parallel, which is a throughput-oriented GC, adjusts the generations’ sizes to
reach the best throughput (application execution time in our case). G1 comes
after Parallel regarding the time it takes to run a workload. Shenandoah and ZGC
have worse results and show different behavior with different heap sizes. Even
with an 8192 MB heap size, they both have higher application execution times
than G1 and Parallel. These two GCs’ application execution times (Shenandoah
and ZGC) are almost the same for 8192 MB; their execution times worsen when
the heap size gets smaller. In fact, reducing the heap size from 1024 MB to 512
MB results in a significant application execution time degradation in Shenandoah
and especially in ZGC. With a 256 MB heap, ZGC shows the worst application
execution time among the other GCs. Compared to Shenandoah, which is also a
concurrent GC, ZGC sacrifices more of the workloads’ application execution time
to provide concurrency since it requires more room in the heap to allow object
allocations while the GC is running [CK22]. Parallel and G1 are generational
collectors. As already mentioned, since newly created objects tend to die in a
short time (generational hypothesis), garbage collection happens most frequently
in the young generation. So, in each collection, a GC detects a noticeable amount
of dead objects by tracing a portion of the heap (not the entire heap). Therefore,
as Figure II.5a shows, these two GCs (Parallel and G1) deliver better application
execution time, in our study, than ZGC and Shenandoah.

As Figure II.5b shows, unlike the application execution time results, Parallel
performs poorly regarding the GC pause time. Parallel tries to change one
generation size at a time (the generation with the more significant GC pause
time [Ora20b]). With a 2048 MB heap capacity, it experiences the highest GC
pause time to meet its throughput (application execution time) goal. While
more heap capacity is available for Parallel, it may increase the young generation
size; also, the objects created by the workloads fill this capacity, resulting in
longer GC pause times for the frequent collections in the young generation
with 2048 MB heap. For heap sizes above 2048 MB, generation sizes created
by Parallel are large enough not to invoke a collection repeatedly. GC pause
times for concurrent GCs, especially ZGC, are shorter than generational G1 and
Parallel, as Figure II.5b illustrates. In other words, utilizing concurrent tracing
and copying mechanisms, ZGC and Shenandoah results are significantly better
than G1 and Parallel regarding the GC pause time. Although Shenandoah keeps
the GC pause time very small, it shows no predictable pattern for different heap
sizes. However, ZGC maintains almost a steady average GC pause time for all
the heap sizes because its main goal is keeping GC pause times small, regardless
of the heap size [Per18].

II.6.3 CPU Usage and GC

This section addresses the correlation between CPU usage and GCs. CPU is a
resource shared between GC and application threads. So, the amount of CPU
an application use affects GC performance and vice versa. We evaluated several
workloads from DaCapo and Renaissance benchmark suites to investigate the
correlation between CPU usage and GC. These benchmark suites mostly contain
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Table II.6: Average performance benefit of the selected GC for each workload
with different heap sizes.

Workloads Benchmark
Suite

Type AVG Perf. Benefit(%)
(comparing to G1) for Each

Heap Size (MB)

256 512 1024 2048 4096 8192

Finagle-Chirper Renaissance CPU-Intensive 38.6 44.2 46.0 48.1 51.3 48.5
Xalan DaCapo CPU-Intensive 39.3 48.9 47.9 50.0 49.7 48.7
Avrora DaCapo Non-CPU-Intensive 50.1 48.6 48.5 49.1 49.5 50.5

Jme DaCapo Non-CPU-Intensive 49.3 49.4 49.4 49.1 48.1 47.5

workloads with high CPU consumption, yet, we selected some workloads with
low and very high CPU usage per engaged cores (as discussed in Section II.4.3).

We run each workload with one GC (G1, Parallel, Shenandoah, ZGC) at
a time with different heap sizes. Then, we empirically (i.e., manually) scored
each GC, with different weights for application throughput/execution time (wp)
and GC pause time (we), using the same formula we used to score the GCs in
BestGC (see Section II.4.4).

Next, we normalized the scores for each GC (G1, Parallel, Shenandoah, ZGC)
to G1 and selected the GC with the minimum score. Then, for each pair of
wp and we, we calculated the performance benefit of the selected GC (i.e., the
difference between the score of the best GC and G1). This metric shows how
the selected GC is superior to G1 (when the application runs with the default
GC). Finally, we computed the average of these differences in every heap size.

Table II.6 shows an example of the average performance benefit of the selected
GCs, when compared to the default GC (G1), for two highly CPU-intensive
and two non-CPU-intensive workloads. In CPU-intensive workloads, we can see
that changing the heap size affects the performance benefit of the selected GC.
In particular, for both Finagle-Chirper and Xalan, with the 256 MB heap, the
performance benefit drops compared to larger heap sizes. In non-CPU-intensive
workloads, Avrora and Jme, the results show that the performance benefit of
the selected GC does not fluctuate with different heap sizes. In both workloads,
the maximum and minimum performance benefits differ by approximately 4% in
different heap sizes.

Based on the results obtained, we can conclude that changing the default
GC (G1) has a positive performance effect. However, with different heap sizes
available for the application, the performance benefit is lower in CPU-intensive
applications compared to non-CPU-intensive applications. In fact, in applications
with high CPU demands, GCs are restricted by available CPU resources, and
their performance is affected consequently; this is depicted in Table II.6 that the
performance benefit of the selected GC decreases as the heap size decreases. Due
to this, in our system, BestGC, we report if a user’s application is CPU-intensive
(in the BestGC’s output log) to inform the user that the performance benefit of
the suggested GC by BestGC may be affected and restricted by the CPU usage
of the application.
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Table II.7: Workloads from SPECjvm2008 benchmark suite used in the validation.

Benchmark
Suite

Workloads

SPECjvm2008 Compress, MPEGaudio,Crypto.rsa, Crypto.aes, Crypto.signverify,
Sunflow, Scimark.large, Scimark.small, Serial, XML, Derby

II.6.4 Validation of BestGC Results

As already mentioned, BestGC suggests a GC based on the results obtained from
the evaluation of workloads in DaCapo and Renaissance benchmark suites (in
the form of matrices as described in Section II.4.1). In this section, we validate
BestGC with workloads from the SPECjvm2008 benchmark suite. Our objective
is to verify the degree of correspondence between the GC suggested by BestGC
and the empirically determined GC for various applications. For this purpose,
we empirically (i.e., manually) do all the steps and measurements we performed
in BestGC (regarding the workload’s execution time and GC pause time) for the
SPECjvm2008 workloads.Thus, we have the following three phases to consider:
1) empirically (i.e., manually) finding the most proper GC by measuring the
application execution time and GC pause time for SPECjvm2008 workloads, 2)
running BestGC to get the suggested GC for the workloads in SPECjvm2008,
and 3) comparing the results of the previous two steps. In other words, we
validate BestGC using workloads from SPECjvm2008 as if these were any other
application a user may have. For the first step:

• We use the Lagom switch (available in SPECjvm2008) to run each workload.
Lagom provides a fixed-size workload for the benchmarks, i.e., it does a fixed
number of operations in each benchmark (just like DaCapo and Renaissance
benchmark suites). Then, we use the corresponding application execution
time as a metric for throughput.

• We select eleven workloads (see Table II.7) from SPECjvm2008. We
excluded the Startup workload since it has a very short execution time
(less than one second), as well as the Compiler workload since it is not
compatible with JDK version 15.

• Just as with the workloads from DaCapo and Renaissance benchmark
suites shown in the previous sections, we invoke all the workloads of the
SPECjvm2088 several times to the point the execution times remain stable,
employing one of four GCs (G1, Parallel, Shenandoah, ZGC) at a time.
Then, we use the application execution time and GC pause times of the
last iteration.

To empirically obtain the application execution time and GC pause time,
and consequently, to find the GC that fits best a SPECjvm2008 workload, we
applied the following:
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Table II.8: Heap size selected with empirical measurements for each one of the
SPECjvm2008 workloads and the heap size suggested by BestGC (for all the we

and wp).

Workloads real max heap
usage × 1.2 (MB)

selected heap size by
empirical

measurements (MB)

heap size determined
by BestGC (MB)

Compress 259.5 512 512
MPEGaudio 187.2 256 256
Crypto.rsa 184.6 256 256
Crypto.aes 866.9 1024 1024
Crypto.signverify 326.8 512 512
Sunflow 777.6 1024 1024
Scimark.large 1532.0 2048 2048
Scimark.small 314.5 512 512
Serial 654.6 1024 1024
XML 1359.9 2048 2048
Derby 1626.9 2048 2048

• We record the output of the jstat -gc command every second while running
each workload; at the end of its execution, we find the maximum heap used
by it. We increase the maximum heap usage by 20% (maximum-used-heap
×1.2), the same way as we did for BestGC, and select the next available
heap size from the heap sizes set (256, 512, 1024, 2048, 4096, 8192 MB).

• We calculate the average application execution time, and the 90th GC pause
time normalized to G1 for the selected heap size, for each SPECjvm2008
workload. Then, we use the same formula as we used for BestGC to score
the GCs (see Section II.4.4).

• Finally, we mark the GC with the minimum score for different application
execution time and GC pause time weights as the most proper GC.

In the second step, we follow the same approach as BestGC to obtain the
max heap used by the application and find the most proper GC. Then, in the last
step, we compare the results from what we have previously obtained empirically
to those obtained with BestGC.

The heap sizes obtained from the empirical maximum heap size measurement
and the one obtained with BestGC are shown in Table II.8. In the second
column, the real max heap size utilized by each SPECjvm2008’s workload is
multiplied by 1.2. We consider 20% extra headroom for GC (see Section II.5)
as we did with BestGC. In the third and fourth columns, it can be seen that
the measurement of the heap in BestGC is consistent with the measurements we
took empirically.

Table II.9 shows the most appropriate heap size (empirically obtained), the
suggested GC by BestGC (for different we and wp values), and the most proper
GC, all for the Compress workload. Note that the last row is the GC with the
minimum score obtained empirically (for the Compress workload) corresponding
to the heap used. As the table shows, for all the wp larger than 0.3, the
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Table II.9: Comparing the GCs suggested by BestGC and the GC with the
minimum score (empirically obtained) for the Compress workload.

we 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

wp 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Most proper
heap size in

MB
(empirically

obtained)

512 512 512 512 512 512 512 512 512 512 512

Suggested GC
(by BestGC)

ZGC ZGC ZGC ZGC ZGC ZGC ZGC Shenandoah Parallel Parallel Parallel

Empirically
obtained GC

ZGC ZGC ZGC ZGC ZGC ZGC ZGC ZGC ZGC ZGC G1

suggested GC by BestGC and the GC obtained empirically are exactly the
same. With wp = 0.3 and we = 0.7, although the GC suggested by BestGC
and the GC empirically obtained are not exactly the same, they are both in
the fully-concurrent GC category. For other values of wp and we, the suggested
GC by BestGC and the GC empirically obtained are neither the same nor of
the same category. In these cases, we think that such a mismatch may happen
because BestGC did not use even more workloads. In the future, as mentioned in
Section II.8, we plan to include further evaluations of other classes of workloads
that rely on resources other than CPU, such as I/O. This will allow BestGC to
have even better results.

By using a similar evaluation (like Compress) for other workloads in
SPECjvm2008, we evaluate the accuracy of the suggested GC (by BestGC)
for different we/wp while wt + wp = 1 (see Table II.10):

• Exact GC: indicates the percentage of cases in which BestGC suggests a
GC that exactly matches the GC empirically chosen for the workload.

• Exact Category: indicates the percentage of cases in which BestGC
successfully suggests a GC with the same category (concurrent or
generational (non-fully concurrent)) as the GC empirically chosen. Note
that BestGC is not offering the exact GC in this case.

• Worst-case Performance Benefit (comparing to G1): in the cases
in which BestGC fails to offer both the exact GC and the exact category,
this metric shows the difference between the score of the GC suggested by
BestGC and the default GC, which is G1 (when BestGC is not used and
the JVM runs with the default GC).

• Overall Performance Benefit (comparing to G1): shows the average
difference between the scores of suggested GC by BestGC and G1 with
respect to all the BestGC’s failures and successes. In other words, it shows
how the suggested GC performs compared to the default GC (G1) overall.
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Table II.10: Validation of BestGC using SPECjvm2008 workloads. N/A when
the fail percentage is 0. The average (arithmetic mean) is calculated for each
metric.

Workloads Exact GC
(%)

Exact Category
(%)

Worst-case Perf.
Benefit (comparing

to G1) (%)

Overall Perf.
Benefit (comparing

to G1) (%)

Compress 63.64 81.82 4.18 37.53
MPEGaudio 36.36 81.82 0 34.16
Crypto.rsa 36.36 81.82 1.49 33.46
Crypto.aes 18.18 100 N/A 37.42

Crypto.signverify 63.64 72.73 2.8 36.98
Sunflow 90.91 100 N/A 39.79

Scimark.large 9.09 81.82 -0.55 29.21
Scimark.small 18.18 72.73 11.07 34.90

Serial 100 100 N/A 41.10
XML 81.82 90.91 0 45.57
Derby 45.45 81.82 -4.97 34.22

Table II.10 shows the BestGC’s results in terms of the metrics defined above
for the eleven SPECjvm2088 workloads (shown in Table II.7). For each workload,
there is a percentage for exact GC, exact category detection by BestGC, in
addition to the average worst-case performance benefit (comparing to G1) and
average overall performance benefit (comparing to G1).

The table indicates, for instance, that BestGC’s exact GC suggestion
percentage is 63.64% for the Compress workload. At the same time, it offers a
GC with the exact category in 81.82% of the cases. BestGC failed to suggest the
exact GC category in 18.18% of the cases (worst-cases) in Compress; however,
the suggested GC by BestGC still causes a 4.18% improvement (worst-case
performance benefit) in GC score compared to running the user application with
the default GC (G1). In addition, for this workload, it is shown in the table that
using the suggested GC (with respect to all failures and successes of BestGC
for all the we and wp) makes, on average, a 37.53% improvement compared to
default GC (G1) when the user does not use BestGC. The worst-case performance
benefit for MPEGaudio and XML workloads are 0. It shows that for these two
workloads, BestGC suggested G1, where it failed to detect both the exact GC
and the exact category; thus, there is 0% improvement between the suggested
GC and the default GC (G1). Also, according to the table, BestGC suggests the
exact GC for all the application execution time and GC pause time weights in
the Serial workload. For Sunflow and Crypto.aes workloads, although the exact
GC metric for BestGC is not 100%, it could suggest a GC with the correct GC
category (Figures II.5a and II.5b demonstrates that most of the time, GCs with
the same category have close scores). In Scimark.large and Derby workloads,
the worst-case performance benefit is 0.55% and 4.97%, respectively. For these
workloads, using BestGC still results in significant overall performance benefits
compared to G1. The average of all the worst-case performance benefits for the
workloads in SPECjvm2008 is 1.75%. It shows that using the suggested GC
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by BestGC has a 1.75% performance benefit compared to the default GC (G1).
BestGC suggests the exact GC for the workloads in 51.24%, while it suggests the
best GC category in 85.95%, on average. BestGC’s average overall performance
benefit is reported in the last column in Table II.10. It indicates that using
BestGC’s suggested GC results in an average improvement of 36.75% (including
all the failures and successes of BestGC) compared to the situation in which
applications are run with the default GC (G1).

II.7 Conclusion

In this paper, we proposed BestGC, a system that automatically runs a user
application with the suggested GC, considering user preferences regarding
application throughput and GC pause time. Although GCs used in production
may have different objectives, the end-user may not be familiar with their specific
characteristics. Users may prioritize throughput to a certain extent or may have
the primary concern of achieving an acceptable level of GC pause time for their
application, as deviations from this may negatively impact their goals.

To do that, we evaluated four widely used production GCs (G1, Parallel,
Shenandoah, and ZGC) available in OpenJDK version 15 regarding their most
critical performance metrics: application throughput/execution time and GC
pause time, while changing the available heap sizes. BestGC respects all
the requirements we set at the beginning of this work (see Section II.1). It
provides a flexible monitoring-time and allows a user/developer to indicate what
performance metrics of her/his application (application throughput or GC pause
time) should be considered.

The results show that G1 and Parallel perform better than (mostly) concurrent
GCs regarding application execution time, especially when decreasing the heap
size. With an 8192 MB heap size, the application execution time for concurrent
GCs is about 15% more than Parallel GC; however, it rises about 43% for
Shenandoah and about 84% for ZGC when the heap size is decreased to 256
MB. Considering GC pause time, ZGC outperforms all the GCs, followed
by Shenandoah, while there is a huge difference between these two (mostly)
concurrent GCs and G1 and Parallel. In the worst case, for Parallel with 2048
MB heap, ZGC achieves about 16× smaller GC pause times than Parallel.

We also evaluated BestGC using SPECjvm2008 workloads in which each
workload is used as any user application. On average, BestGC suggests the
most proper GC for about 51.24% of the time; also, it suggests a GC with the
best category (concurrent/non-concurrent) on average about 85.95% of the time.
When BestGC fails, still using the suggested GC by BestGC results in about
a 1.75% improvement in GC score compared to using the default OpenJDK
GC (G1). This improvement for a highly optimized environment like OpenJDK
would greatly affect the performance of the users’ applications, especially for
big data and cloud applications. Using BestGC results in having a GC with
an average of 36.75% overall performance benefit, considering both BestGC’s
failures and successes, compared to running the user’s application with the
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default GC (when not using the BestGC).
We also investigated the correlation between CPU usage and the suggested

GC by BestGC. The user should be aware that although the suggested GC by
BestGC improves performance compared to default GC (G1), this performance
benefit in CPU-intensive applications may be lower with different heap sizes.

II.8 Future Work

The extensibility of BestGC is not limited to the scope of this specific work but has
broader applicability. By leveraging the underlying principles and methodologies
utilized in the development of BestGC, it becomes feasible to adapt and integrate
the tool with other JDK versions, GCs, and heap configurations. Therefore, the
next version of BestGC will be able to re-run all benchmarks and re-generate all
the performance matrices to accommodate new JDK versions and/or new GCs.

We will also include further evaluations of other classes of workloads that
rely on resources other than CPU, such as I/O. This will depict how the GCs
impact this class of applications and leads to expanding the BestGC data set.

While we focused on three crucial performance metrics, memory usage,
application throughput, and GC pause time, it is worth noting that other metrics,
such as latency, could potentially be added to our scoring formula. There are
some latency-sensitive workloads available in DaCapo; however, limitations
existed in our evaluation set due to the chosen heap sizes, resulting in excluding
certain latency-sensitive workloads (Section II.6.1). Additionally, there are issues
with CPU utilization in some of these latency-sensitive workloads (noted by
the DaCapo maintainers11), e.g. Jme, Kafka, and Lusearch, that will directly
affect the latency results and make them unreliable. So, future work also can
encompass evaluating a sufficient number of latency-sensitive workloads to better
score the GCs.

Furthermore, in our future work, we also plan on exploring Machine Learning
techniques [Sin+07] to achieve a more accurate model and replace the formula
we used in BestGC. It has the potential to enhance the accuracy of the GC
offered by BestGC.
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III

Abstract

This paper explores automatic heap sizing where developers let the
frequency of GC expressed as a target overhead of the application’s CPU
utilization, control the size of the heap, as opposed to the other way around.
Given enough headroom and spare CPU, a concurrent garbage collector
should be able to keep up with the application’s allocation rate, and neither
the frequency nor duration of GC should impact throughput and latency.
Because of the inverse relationship between time spent performing garbage
collection and the minimal size of the heap, this enables trading memory
for computation and conversely, neutral to an application’s performance.

We describe our proposal for automatically adjusting the size of a
program’s heap based on the CPU overhead of GC. We show how our
idea can be relatively easily integrated into ZGC, a concurrent collector in
OpenJDK, and study the impact of our approach on memory requirements,
throughput, latency, and energy.
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III. Heap Size Adjustment with CPU Control

Table III.1: Smallest heap sizes in MB without any allocation stalls for multiple
benchmarks across multiple machines. Machines are listed in ascending order
based on the number of cores and memory capacity. The lower half of the table
displays architectural details for each machine. Machine number 3 is listed
three times, indicating configurations with 8, 16, and 24 cores, where the core
count was controlled using the taskset command. Note that machine #1 could
not run Batik without experiencing stalls due to a combination of insufficient
memory and inadequate hardware resources for running GC effectively.

Machines #1 #2 #3a #4 #3b #3c #5 #6

H
ea

p
S

iz
es Tomcat 256 512 512 1024 1024 2048 2048 4096

Spring 4096 4096 4096 8192 4096 16384 4096 32768
Batik – 32768 65536 16384 32768 32768 16384 16384
Luindex 512 512 512 256 512 512 256 256

H
ar

dw
ar

e
S

pe
cs Cores 8 8 8 16 16 24 32 44

Hardware
threads

8 16 16 24 32 48 64 88

Memory (GB) 16 64 256 128 256 256 16 64
Core freq
(GHz)

2.13 2.3 3.7 3.2/2.4 3.7 3.7 2.7 2.2

L1 (bytes) 512 KB 64 KB 1 MB 1.5 MB 1 MB 1 MB 64 KB 64 KB
L3 (bytes) 8 MB 16 MB 128 MB 30 MB 128 MB 128 MB 20 MB 55 MB

III.1 Introduction

Garbage collection (GC) offers significant benefits to applications and developers.
By abstracting away memory management, code is not tied to a specific strategy
for managing heap memory, allowing programs to switch easily between different
GC implementations with different properties, e.g., by a command-line argument.

Managed programming languages use various approaches for controlling an
application’s footprint. Some languages include strategies that automatically
reduce the heap size based on memory usage or other metrics. Although the
programmer can influence this behavior to some extent by ensuring that objects
become garbage, the system may not detect it immediately. Other languages
allow the programmer to set an upper bound for the heap size and then manage
it relative to that limit. Regardless of how language runtimes manage memory,
collecting memory inherently impacts performance in an indirect and hard-to-
predict manner.

In OpenJDK HotSpot JVM (OpenJDK for short) a maximum heap size is
set on startup, to a user-defined value using the –Xmx command-line flag, or
in its absence, by picking a default value based on the available memory of the
machine (at the time of writing, OpenJDK sets Xmx to 25% of the machine’s
RAM). This decision is made before the program is started, so unless care is
taken to explicitly control the maximum heap size, simple programs and complex
enterprise applications will share the same memory constraints.
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The size of the heap affects the performance differently depending on the GC
algorithm. Stop-the-world GC’s typically optimize for high throughput and are
only able to deliver low latency if the working sets are small enough. In contrast,
concurrent collectors typically are not able to achieve as high throughput, but
by allowing program activities to continue while GC is running, the frequency
or duration of GC has very little impact on a program’s performance, as long
as the GC is able to collect memory at the same rate as the application is
allocating. When memory is abundant or allocation rate is low, infrequent GC
can materialize through worse spatial locality in both types of collectors, which
may negatively affect performance and/or latency [YÖW20a].

A common approach to picking a heap size for an application is by trial-and-
error: run the program multiple times with representative load across different
JVM instances with varying maximum heap limits and measure its performance
until a suitable heap size is identified. A heap size may not be portable across
machines and may have to be reevaluated after changes are made to the software
or after a switch to a new JVM. This approach may be time-consuming and
may not account for variations in the program’s memory use during execution.
If the maximum heap size is invariant throughout the entire program duration
(as in OpenJDK), the entire heap may be used for allocating objects even when
memory pressure is low(er), which defers GC and may not be optimal for a
program’s performance. In conclusion, determining an appropriate heap size for
a given application is a complex task that necessitates consideration of various
factors. These factors include the hardware configuration of the machine running
the program and software-related details such as memory usage patterns.

Automatic heap size adjustment aims to free developers from the need to
manually set a heap size, which has proven to be complicated. Instead, developers
will be given a sensible default parameter for effective resource management,
which should also be intuitive to change. In this work, we explore automatic
heap size adjustment in the context of concurrent collectors, where the heap
size is controlled by how often we trigger GC, instead of the other way around.
As a result, developers can launch Java applications (servers, GUI programs,
command line tools, etc.) without having to worry about estimating their
memory requirements or worrying that Java’s default values might result in
these processes ballooning to impractical proportions, thereby disrupting other
programs or affecting the application’s performance negatively. Our proposal
distinguishes itself from previous proposals for automatically adjusting the heap
size (e.g., Bruno et al. [Bru+18], Grzegorczyk et al. [Grz+07], and Yang et al.
[Yan+04], and White et al. [Whi+13], cf. Section III.7) by utilizing a different
“tuning knob” for concurrent collectors. Instead of letting developers control
performance through an upper bound on the heap size, we let developers control
how much CPU they are willing to spend on GC, expressed as a proportion of
the CPU usage of the application. Our strategy is thus more directly tied to
performance than heap size, and the heap size becomes a consequence of the
GC CPU overhead budget (we call it GC target henceforth). As a result of our
choice of tuning knob, the job of picking a reasonable default is easier (or dare
we say possible!) than picking a default maximum heap size.
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Our contributions can be summarized as:

• Highlighting heap size variability: We reveal significant variability of heap
sizes across different benchmarks and hardware configurations, emphasizing
the impracticality of a one-size-fits-all default heap size. This finding
underscores the need for more adaptive approaches. (Section III.2)

• Exploring automatic heap sizing in a concurrent collector: We target
concurrent collectors whose CPU-intensive activities are not on the critical
path of the program’s performance. This allows us to dynamically change the
heap size to match the program’s current behavior and allows developers to
trade CPU for memory (and conversely) with minimal impact on performance.
(Section III.3)

• Application in ZGC: We specifically showcase the implementation and
application of our proposed technique on ZGC, a fully concurrent garbage
collector. By doing so, we demonstrate its feasibility in a real-world example.
(Section III.4)

• Performance evaluation: We conduct a comprehensive evaluation demon-
strating that adopting our heap size adjustment does not compromise per-
formance or introduce latency issues. Furthermore, we establish that it is
possible to determine a sensible default value for CPU overhead that can
effectively cater to a variety of applications. (Section III.6)

• Energy efficiency considerations: In addition to performance optimization,
we illustrate how the concept of CPU overhead can be harnessed as a powerful
tool for adjusting the energy spent by an application. (Section III.6)

III.2 The Perils of Manual Heap Size Picking

When it comes to finding heap sizes, people use multiple rules of thumb,
for example, setting heap limits to some multiple of a live set [HB05]. The
challenge becomes even more intricate when considering multiple applications
running simultaneously. Kirisame et al. [KSP22] introduced a framework to
compare different practices people used for setting up a heap size and derived an
optimal “square-root” heap limit rule, which minimizes total memory usage for
all applications running together. However, it is still a static heap limit, which
might not be optimal on a machine with another architecture, as we demonstrate
below.

To study the challenges of manually picking a heap size, we conducted
an experiment across multiple machines to find heap sizes for a number of
benchmarks. Table III.1 shows heap sizes for 4 benchmarks from the DaCapo
suite running with the ZGC collector across a range of different machines.
Following best practices for tuning heap sizes for concurrent collectors, we tried
to find the smallest heap size—expressed as a power of two— that does not
produce an allocation stall, a relocation stall, or an OOM (Out of Memory)
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Figure III.1: Memory usage of vanilla (unmodified, by default uses 25% of the
available RAM) ZGC (22 cycles) and ZGC with 1% (856 cycles), 2% (1506
cycles), and 5% (3182 cycles) GC CPU overhead limits. For this run, we used
12 application threads on a 16-core machine, leaving a 4-core headroom. For
each, we measure the following: maximum heap size, memory usage before GC,
and memory usage after GC. Note that the y-axis for vanilla ZGC is two orders
of magnitude higher. The differences in the x-axes demonstrates the impact
of GC on throughput. An artifact of the current ZGC design where each GC
cycle forces mutators to take a slow path in the load barrier the first time each
reference is loaded. Thus, very frequent GC (, i.e., 5%) can materialize as a
throughput regression.

error for each benchmark on each machine. Ensuring the absence of stalls
is of paramount importance when utilizing fully concurrent collectors, given
their low-latency nature. Stalls not only lead to performance degradation, as
GC becomes critical, but they also undermine the predictability of GC, thereby
posing a risk to meeting server-level agreements (SLAs) and latency requirements.
Maintaining a consistent and predictable latency profile is essential to uphold
performance standards and guarantee uninterrupted service delivery. The reason
why we limit ourselves to powers of two is twofold: first, developers have a
preference for selecting heap sizes in powers of two [Eva20], and second, finding
a stall-free heap size in a reasonable time requires increasing the heap in some
increments. In our case, we started at 16MB, doubled the heap size on a stall,
and continued our search at the higher heap size. Nevertheless, due to Java’s
inherited variance, we adopt a stability-oriented approach in which we consider
a heap size to be a successful candidate only if three consecutive runs with the
same heap size yield no stalls or OOM errors. If stalls or OOM errors do occur,
we increment the heap size and repeat the evaluation process.

As it is clear from this experiment, heap sizes vary between the machines
without a discernible pattern1, such as being a function of the number of cores.

1One anonymous MPLR reviewer suggested that heap sizes might be contingent on both
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In addition, we experimented with the same machine, tagged as #3 in the table,
with different numbers of cores controlled by taskset: 8, 16, and 24. For Tomcat
and Spring, the heap size changes by 4×. So, even within the same machine,
modifying core configurations can often require substantial changes in heap sizes.
Thus, application deployment across different configurations requires heap sizing
to be repeated for each configuration.

III.3 Heap Size Adjustment with CPU Control

Similar to [Whi+13], but in a concurrent setting, we explore an approach where
developers directly control memory by setting a GC target dictating how much
CPU should be spent on GC, expressed as a percentage of the total CPU
utilization of the program. Our insight is that memory and GC CPU utilization
are inversely correlated. Let’s consider a program with a constant allocation rate.
When the heap is large, GC occurs infrequently, resulting in low CPU time spent
doing GC; conversely, when the heap is small, GC occurs more often, causing a
corresponding increase in the CPU time spent doing GC. In a concurrent garbage
collector, this kind of trading memory for CPU, or the other way around, should
be largely (at least ideally) orthogonal to the program’s performance since the
program will not block on GC. Furthermore, the program’s CPU usage can be
considered a proxy for its allocation rate and, by extension, its need for GC.
By expressing the GC target in terms of the program’s CPU usage, increased
program activity immediately translates to increased CPU headroom for GC
in absolute numbers. Understanding and controlling the scalability and CPU
utilization of a program is a more direct task compared to comprehending its
live set, which encompasses all objects contributing to memory pressure.

We define the GC overhead (henceforth denoted GCCP U ) as the ratio of
time spent doing GC (henceforth TGC) to time spent in the entire application
(henceforth TAPP):

GCCP U = TGC
TAPP

. (III.1)

These time measurements are the main inputs to our algorithm for
determining the new heap size. To mitigate fluctuations, TGC should be
calculated using average times for the last n collections (in our implementation,
we pick n = 3). For instance, if one GC cycle has high CPU activity when the
previous cycles did not, it might be too hasty to change the heap size. Thus,
the heap size varies “slowly,” preventing committing memory that is not needed
in the long run.

The core idea of our proposal is to iteratively adjust the heap size until the GC
overhead,, i.e., GCCP U , meets the target set by the developer, Target_GCCP U .
Note that the value is a target, not an upper bound. Thus, if GCCP U >
Target_GCCP U , we increase the heap size to lower the GC frequency and thereby

the count of CPU cores and the number of mutators. We sadly currently lack data on the
number of mutators, but this aspect presents an intriguing avenue for future exploration.
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lower the GC CPU overhead. Conversely, when GCCP U < Target_GCCP U , we
decrease the heap size to trigger more collections, to increase the GC CPU
overhead.

To showcase the impact of target GC CPU overhead, we run the Xalan
benchmark from the DaCapo suite. It was run four times with vanilla ZGC on
machine #3a from Table III.1. Additionally, the benchmark was executed with
GC targets: 1%, 2%, and 5%. By default, vanilla ZGC uses a high heap memory
size (25% of RAM) that is significantly reduced when higher GC target values
are used. Figure III.1 depicts the results of these runs.

In our approach, during periods of lower CPU activity in the application,
a collector will work less, as it is proportional to the application’s CPU usage.
This results in fewer allocations and overall less pressure on both the allocator
and memory manager. Conversely, spikes in the application’s activity translate
into a higher CPU budget for the GC threads. While it may seem logical to run
GC during low CPU activity to utilize available CPU resources, the effectiveness
may be limited if there is less memory to free.

At the end of each GC cycle, we compare the GC CPU overhead to the
user-defined GC target to calculate overhead_errorCP U which we use to adjust
the heap size:

overhead_errorCP U = GCCP U −
Target_GCCP U

100 (III.2)

We aim to prevent sudden and sharp heap size changes. Therefore, in addition to
smoothing out fluctuations in the TGC by considering the average over the last
three collections, we avoid using overhead_errorCP U directly to modify the heap
size, as large error numbers can cause fluctuations in the heap sizes. To mitigate
this, we pass the overhead_errorCP U through the Sigmoid function [HM95]
to smoothen changes in heap sizes2. The Sigmoid function is a mathematical
function that is commonly used to model non-linear relationships between
variables in statistical models. It maps input values to a range between 0 and
1. Thus, using the Sigmoid function prevents aggressive changes in the heap
size. We pass the overhead_errorCP U to the Sigmoid function S to calculate
“Sigmoid overhead error”:

[h]S(overhead_error) = 1
1 + e−overhead_errorCPU

. (III.3)

We use this result to calculate an adjustment factor that limits the changes to
the heap size to within a range of 0.5 to 1.5:

[h]adjustment_factor = S(overhead_error) + 0.5 (III.4)
2We explored two variations of a step function as well. The first adjusted the heap size

proportional to the disparities between CPU overhead and the target. The second involved
increasing the soft limit by 50% in either direction if the CPU overhead was above or below
the target. Each function led to distinct rates of adaptation and total memory usage. We
did not directly compare these three functions against one another; instead, we somewhat
arbitrarily opted for the Sigmoid function in our approach.
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When overhead_errorCP U is zero, i.e., actual GC CPU overhead equals
GC target, the Sigmoid function returns 0.5. Therefore, the adjustment_factor
becomes 1 and the heap size remains unchanged.

An S(overhead_error) < 0.5 means that the actual GCCP U has exceeded
the Target_GCCP U , so the adjustment_factor would be less than 1 and will
reduce the heap size, leading to more GC cycles. When the actual GCCP U is
below Target_GCCP U , S(overhead_error) > 0.5,, i.e., adjustment_factor > 1
will increase the heap size. The heap size will never change more than 50% of
the current size (in any direction). Finally, we compute the new heap size as
follows:

new_size = current_size × adjustment_factor (III.5)

Our approach can be used in combination with an upper bound on the heap
size—e.g., Xmx—to trigger an OOM error. However, setting this upper limit
may prevent the application from reaching the target GC CPU utilization rate
(Target_GCCP U ). If an upper limit is not specified, the system sets it to a
default value, which should be close to the maximum memory available on the
machine, but not set to 100% to prevent system instability and swapping. Note,
that previously it was 25% of the machine.

III.4 Prototype Implementation in ZGC

Adjusting the heap size based on GC CPU overhead is suitable for concurrent
GCs that do not interfere with the application’s critical path. In this section,
we implement a prototype on ZGC, a concurrent collector in OpenJDK, to
demonstrate the effectiveness of this approach. The prototype follows the ideas
presented in the previous section.

III.4.1 Background on ZGC

The Z Garbage Collector [ZGC-main] (ZGC) is designed for low latency, offering
sub-millisecond pause times invariant of the heap size. GC activity in ZGC
occurs concurrently with “mutators” (application threads) by relying on barriers
that trap object accesses and coordinate accesses to objects from mutators and
GC worker threads. A barrier is essentially some additional logic triggered (in
the case of generational ZGC) when a reference is read from a field and placed on
the stack or when a reference is loaded from a field. The barrier logic branches
on metadata bits embedded in pointers [JHM12]. For example, in the case of a
load barrier, if the metadata shows that the pointer is valid, we enter the fast
path in which the overhead of the barrier is simply shifting off the metadata bits
from the address. Otherwise, we enter the slow path, where we ensure that the
pointer is valid by looking up the new canonical address of the object from a
forwarding table. This last step may involve copying the object elsewhere and
writing to the forwarding table ourselves. ZGC is a multi-phase collector with
separate mark and evacuation phases. Its overall design was described by Yang
et al. [YW22].
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Single-generation ZGC uses load barriers to synchronize GC activities with
mutators. Generational ZGC [Kar23] instead uses write barriers in addition
to load barriers. It maintains a remembered set of references from the old
generation to young objects, serving as additional roots during GC in the young
generation only. Such a design favors generational workloads where objects are
more likely to die young (following the weak generational hypothesis [LH83])
by supporting a more aggressive collection of the young generation without
having to do repeated work on long-living objects. From a resource perspective,
generational ZGC requires less CPU and memory usage than single-generation
ZGC. In this paper, when we refer to ZGC, we are specifically discussing the
generational version of ZGC.

Memory in OpenJDK and ZGC In addition to Xmx, ZGC introduced a new
JVM option in OpenJDK 13 called “soft max heap size”, and subsequently
adopted by G1. A soft max heap size is a limit on the size of the heap, beyond
which ZGC strives not to grow. Unlike Xmx, exceeding the soft max heap
size will not result in an OOM error (unless the limit is equal to Xmx). When
approaching the soft max heap, ZGC triggers GC to bring the heap size below
the soft max heap size. If it fails to do so, it will grow the heap instead of going
into an allocation stall. The soft max heap size value thus serves as a guiding
parameter for GC to balance heap size and allocation rate and has a direct
impact on GC activity and frequency. If the value is too small, ZGC might end
up doing back-to-back collections. If the value is too large, it can lead to inflated
memory costs, floating garbage, heap fragmentation, and poor spatial locality;
especially under a low allocation rate.

The relations between different memory parameters in ZGC are shown in
Figure III.2. Used memory refers to the occupied memory by both live and dead
objects (that have not yet been collected). Maximum capacity or committed
memory represents the amount of memory requested by OpenJDK from the
Operating System, which is always higher than used memory. In practice,
committed memory is often significantly higher: bursts of allocation immediately
drive the committed memory up, and to avoid requesting memory from the
OS—which may cause delay, or worse, fail—OpenJDK will not return committed
memory unless several minutes have elapsed since it was needed (lower bounded
by Xms, the flag is used to set the minimum and initial heap sizes).

ZGC Heuristics Heuristics control when to start a GC cycle to avoid running
OOM and also how many threads to use for each cycle. In addition, a GC may
also be triggered due to other reasons such as a high allocation rate, high heap
usage, or if no collection has been triggered for 5 minutes. Collecting the old
generation can also be performed occasionally if not triggered by other reasons.
These heuristics consider the available free memory and the time remaining
before an OOM error occurs based on the average allocation rate and unforeseen
circumstances. To determine the number of GC workers required to prevent
OOM, ZGC analyzes the duration of previous GC cycles and adjusts the worker
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Figure III.2: The different heap parameters. Xmx: absolute maximum memory
for an application. Xms: minimum and initial heap. Maximum capacity:
currently committed memory (above or equal Xms, below or equal Xmx). Used
memory: memory occupied by all the objects (above or equal Xms, below or
equal Maximum capacity). Soft max heap: point below Xmx is used to trigger a
GC but will not generate a stall if exceeded, up to Xmx.

count according to hardware limitations. Finally, ZGC predicts the duration of
the next GC cycle based on the number of GC workers and calculates the start
time for the next cycle.

III.4.2 Heap Size Adjustment with CPU control in ZGC

We take advantage of the aforementioned soft max heap size limit as it has
the characteristics we require: it triggers GC but does not stall. To prevent
exceeding the machine’s heap capacity unintentionally (e.g., due to a too low
target), we set Xmx to 80% of the available RAM3 (unless the user has explicitly
set Xmx). This ensures that the adaptive heap size remains within an upper
limit.

Thus, the heap size in our prototype implementation is ZGC’s soft max heap,
and our technique ultimately results in adjusting the soft heap max up and down
at the end of each GC cycle to meet the GC CPU overhead target set by the
programmer. The amount of memory committed from the OS by OpenJDK is
limited (as usual) by Xmx and will only grow in tandem with the soft max heap.

3This number reflects a pragmatic choice motivated by wanting to keep some spare
memory for remaining programs running on the machine and also to leave space for ZGC’s
forwarding tables which are allocated off-heap and may grow very large under certain
circumstances [NÖW22].
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Figure III.3: Concrete measurements of GC and application time in our
implementation. At the end of the GC cycle n + 1 (t = 7.5), we consider
the time spent in GC threads (blue) and the time spent in mutators (green).
Gray lines denote time measured at the end of GC cycle n. We only include the
time when mutators were scheduled, meaning CAPP = 2.5 + 2 + 2.5 = 7. In the
case of WGC, we measure from the start to the finish of the GC cycle. Thus,
WGC = 3× 1.5 = 4.5, even though the 2nd GC thread was not scheduled after
t = 7. Thus, GCCP U = 4.5

7 ≈ 64%. (This example omits barriers, read more
about them in Section III.4.3)

III.4.3 Obtaining TGC

We calculate TGC as the sum of time spent on young (Wyoung) and old collections
(Wold) plus an estimate of the time mutators spent in the slow path of barriers
(B). For simplicity and to avoid adding logic contributing to GC overhead,
we use existing telemetry in ZGC. Thus, Wyoung and Wold are wall-clock time
measurements. For traceability, we prefix wall-clock time measurements by W
and CPU time measurements by C below. Thus, we will henceforth write WGC
instead of TGC to highlight that the time measurement is a wall-clock time. To
address potential inaccuracies in individual measurements, we calculate Wyoung
and Wold using the average times for the last 3 collections (as we described
in Section III.3). For uniformity, we use a single formula (Equation (III.6)) to
describe WGC and, in a minor collection, set Wold to 0.

WGC = Wyoung + Wold + B (III.6)

As already mentioned, B is the mutator time spent in the slow paths of barriers.
When mutators hit slow paths in barriers, they do GC work, either remapping
an old address to a forwarding address or performing relocation. We measure the
wall-clock time of barriers using sampling: we record the time once for every 1024
slow paths taken, calculate the average time spent in slow paths, and multiply
that with the number of slow paths taken.

ZGC calculates GC time separately for each generation by adding the times
for the serial and parallel work. The serial time is the wall-clock time spent on
non-parallel tasks like relocation set selection after marking, while the parallel
time is the sum of the wall-clock time spent by worker threads on parallelizable
tasks.

Wyoung = Wserial_young + Wparallel_young (III.7)
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Similarly, for activity in the old generation:

Wold = Wserial_old + Wparallel_old (III.8)

III.4.4 Obtaining TAPP

The application’s average time is the sum of the scheduled time of all threads
spawned by the process (, i.e., a CPU time measurement) between two collections
in the same generation. Thus, we write CAPP henceforth to clarify the nature of
TAPP in our implementation:

CAPP = CGCi
− CGCi+1 (III.9)

Similarly to GC time, we reuse existing GC telemetry to capture application
time to avoid additional measurement overheads. Application time is obtained
by measuring CPU time (see Figure III.3 for an overview). Listing III.1 shows
the code for measuring the CPU time of the process.

Listing III.1: Code that calculates the process CPU time at moment of the call.
1 double ZAdaptiveHeap::process_cpu_time() {
2 timespec tp;
3 int status =
4 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp);
5 if (status != 0) {
6 return -1.0;
7 } else {
8 return double(tp.tv_sec) +
9 double(tp.tv_nsec) / NANOSECS_PER_SEC;

10 }
11 }

The function clock_gettime measures the CPU time consumed by a process,
meaning that it includes the CPU time consumed by all threads in the process,
including application threads, GC threads, compiler threads, etc. To measure the
CPU time between two moments in time, we cache the last result and subtract
it from the result of the subsequent call.

III.4.5 Calculating a Suggested Heap size

Most of our modifications to ZGC are located in its heap sizing mecha-
nism: class ZAdaptiveHeap. The main logic is captured in the method
ZAdaptiveHeap::adapt (see Listing III.2), which performs the calculations
outlined in Sections III.3 to III.4. For clarity, we add comments with the labels
from the equations to aid in mapping the C++ code to the descriptions above.
The method is called at the end of each GC activity in both major (young +
old) and minor (only young) collections.

Listing III.2: The modified adapt method that recalculates heap limits in ZGC.
(For simplicity, we only show the logic for major GC and remove one lock to
reduce clutter.)
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1 void ZAdaptiveHeap::adapt(ZGenerationId generation,
2 ZStatCycleStats stats) {
3 ZGenerationData& generation_data =
4 _generation_data[(int)generation]; // holds the historical
5
6 double time_last = generation_data._last_cpu_time;
7 double time_now = process_cpu_time(); // see listing 1
8 generation_data._last_cpu_time = time_now;
9

10 // calculate C_APP as in (9)
11 double total_time = time_now - time_last;
12 // record C_APP to calculate averages
13 generation_data._process_cpu_time.add(total_time);
14
15 // Obtain the number of barriers triggered
16 size_t barriers =
17 Atomic::xchg(&_barrier_slow_paths, (size_t)0u);
18 // Obtain average barrier time
19 double barrier_slow_path_time=_barrier_cpu_time.davg();
20 // Calculate B in (6)
21 double avg_barrier_time =
22 barriers * barrier_slow_path_time;
23 double avg_gc_time = stats. // (7) or (8)
24 _avg_serial_time + stats._avg_parallelizable_time;
25 // recalculate C_APP using historical data to smoothen the curve
26 double avg_total_time =
27 generation_data._process_cpu_time.davg();
28
29 double avg_generation_cpu_overhead =
30 (avg_gc_time + avg_barrier_time) / avg_total_time;
31 Atomic::store(&generation_data._generation_cpu_overhead
32 , avg_generation_cpu_overhead);
33
34 double young_cpu_overhead =
35 Atomic::load(&young_data()._generation_cpu_overhead);
36 double old_cpu_overhead =
37 Atomic::load(&old_data()._generation_cpu_overhead);
38 double cpu_overhead = // Calculate W_GC as in (6)
39 young_cpu_overhead + old_cpu_ov or noterhead;
40 double cpu_overhead_error =
41 cpu_overhead - (ZCPUOverheadPercent / 100.0); // (2)
42 double cpu_overhead_sigmoid_error =
43 sigmoid_function(cpu_overhead_error); // (3)
44 double correction_factor =
45 cpu_overhead_sigmoid_error + 0.5; // (4)
46
47 if (is_enabled()){
48 // Call into ZGC to resize the heap, c.f. §III.4.6
49 ZHeap::heap()->resize_heap(correction_factor);
50 }
51 }

III.4.6 Bounding the Heap Size

After calculating the new suggested heap size, the listing below depicts how we
ensure that the result of the calculation falls within a given range. If it does, the
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function returns suggested_heap_size. If it is less than lower_bound, then
the function returns lower_bound. Also, if it is greater than upper_bound, the
function returns upper_bound.
1 const size_t upper_bound = // select smallest of two
2 MIN2(soft_max_capacity, current_max_capacity);
3 const size_t lower_bound = // select smallest of two
4 MIN2(1.1 * used(), upper_bound); // 10% extra headroom
5
6 const size_t selected_capacity =
7 clamp(suggested_capacity, lower_bound, upper_bound);

We establish a lower bound for the suggested heap by using the amount
of used memory. This is because we aim to avoid triggering GC more often
than necessary. If we set the suggested heap size below the used value, we risk
triggering GC when there are no objects to clean. Although concurrent GC does
not interfere with the application’s critical path (as it is running concurrently and
does not force the application to stop) and therefore it might have a negligible
impact on performance or latency, the additional GC work can have a negative
impact on energy consumption.

III.4.7 Initial and Adapted Heap Sizes

We set the initial heap size to 16 MB, in terms of the soft limit. This is an unlikely
heap size for most programs and will trigger GC as the limit is approached or
exceeded which will cause GC to adapt the heap size and (most likely) increase
the soft limit (by at most 50% each time). Figure III.1 shows the frequent
increases of the soft limit in green. (The top-left sub-figure shows Vanilla ZGC
where the soft limit is equal to Xmx and never exceeded.) If the soft limit is
not exceeded, and the GC overhead is below the target, we will decrease the
soft limit to trigger GC more often. This is clearly visible in the two bottom
subfigures of Figure III.1.

III.5 Evaluation

In this section, we are going to answer the following question: How effective
is our automated heap sizing strategy, based on CPU usage as a tuning knob,
compared to vanilla ZGC which relies on setting a maximum heap size? We now
explain our experimental setup and benchmarking methodology.

III.5.1 Hardware and Software

We evaluate our work by comparing our modified ZGC with its unmodified base
also referred to as vanilla (generational ZGC in OpenJDK version 21). We used
an Intel Xeon SandyBridge EN/EP server machine (machine #5 in Table III.1)
running Oracle Linux Server 8.4. The machine has 32 identical CPUs, which we
configured as a single NUMA-node to avoid NUMA effects. The CPU model is
Intel® Xeon® CPU E5-2680 with 64KB L1 cache, 256KB L2 cache, a shared
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20MB L3 cache, and 30GB RAM. The configuration allows us to obtain energy
consumption statistics.

III.5.2 Benchmarks

We use the DaCapo benchmark suite (Chopin branch), which includes a variety
of microbenchmarks and real-world applications that stress the JVM and the
garbage collector. The suite includes several latency-sensitive applications that
require low-latency response times. These benchmarks measure metered latency,
including request serving time, queuing delays, and interruptions like GC. By
using these benchmarks, GC performance can be evaluated in terms of both
throughput and responsiveness. We excluded the benchmarks Kafka and JME
due to a low CPU utilization issue, as well as Lusearch due to a high CPU
utilization variability, making it hard to draw any meaningful conclusions (noted
by the benchmark maintainers). We also excluded H2 due to a reproducible
memory leak across multiple machines and garbage collectors. When referring
to DaCapo in this paper, we specifically mean the DaCapo Chopin benchmark
suite. We included all throughput-oriented benchmarks except Cassandra, which
is incompatible since OpenJDK 16.

In order to obtain a more comprehensive understanding of our prototype,
we also include the Hazelcast benchmark [Gen+21]. Hazelcast was chosen
since most of the latency-sensitive workloads in DaCapo were excluded for the
aforementioned reasons. As low latency is the main goal of a concurrent collector,
we wanted to study more such workloads. Hazelcast is designed to provide
distributed and scalable in-memory data storage and processing, which can help
reduce data access and processing latency.

DaCapo We use a commit (number 300acaa7) that includes latency-oriented
benchmarks as evaluating latency is crucial for fully concurrent collectors. We
conducted the benchmarks using the large size for all applicable tests. For the
remaining benchmarks (Fop, Zxing, Xalan), we used the default size.

Hazelcast Hazelcast performs real-time stream processing. We used all the
suggested configuration parameters [Top20]. It has a fixed workload, set by
its key-set size. We experiment with multiple key-set sizes: 400 000, 250 000,
100 000. Thus, we report the results of those 3 different configurations.

III.5.3 Benchmarking Methodology

We run each benchmark using 5 JVM instances, which lets us identify performance
anomalies and outliers that might not have been discernible using a single JVM
instance. Note that the variation between JVM instances is within the variation
between the last 5 stable iterations of a single JVM. Inside each JVM instance,
each benchmark repeats multiple iterations (varies across benchmarks to reach
a coefficient of variation (CV) for the last 5 iterations below 5% with respect
to execution time), which is necessary to avoid impact from warmup and JIT
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compilation. Notably, our approach takes time to adjust from the initial heap
size before stabilizing around a GC target.

Once we reached a steady state, we calculated the arithmetic mean of the
last 5 iterations to remove noise from the environment. However, in cases where
a steady state could not be reached, we used all recorded values for the last 5
iterations per JVM instead of computing the arithmetic mean. This is because
taking a mean could hide outliers, and we do not know the shape of the data
distribution.

In summary, we compute either one arithmetic mean per JVM instance
(resulting in 5 data points in the final set) or all values from each JVM (resulting
in 25 data points in the final set). We use the same approach for both adaptive
ZGC and vanilla ZGC and to compare them, we perform statistical analysis on
the final data sets. The final results reported in Table III.2 were calculated using
an arithmetic mean of the final set.

III.5.4 Statistical Analysis

We used different tests to verify the validity and reliability of the results. We
perform statistical analysis on the final data sets to draw our conclusions. We
employed Welch’s t-test [Wel38], Grubb’s outlier test [Gru69], and Yuen’s t-
test [Yue74] to determine whether the differences between the means of the
compared results from vanilla and adaptive ZGC are statistically significant.
Welch’s t-test and Yuen’s t-test are particularly useful in cases where we can
not make assumptions about the shape of data distribution and the variances
of the compared groups are not equal. We believe these tests are safer to use
instead of relying on a non-verifiable assumption about the normality of our
data distribution.

We used Grubb’s outlier test to check if the data set has statistical outliers. If
so, we use Yuen’s t-test instead of Welch’s t-test. Yuen’s test involves trimming a
fixed proportion of the extreme values from each data set, we used 10%, to reduce
the influence of outliers. To determine whether the results exhibit significant
differences, we used the p-value obtained from Welch’s t-test (with a significance
level of 0.05). If the resulting p-value is greater than 0.05, we conclude that the
data sets do not exhibit significant differences.

To help provide an overview, we color code the results if statistical significance
was found. Red means the adaptive approach is worse than the vanilla ZGC;
green means the opposite. White indicates the results are statistically the same.
We also highlight a bigger than 5 % negative impact of our approach with a
darker shade of red (Table III.2, Table III.3).

III.5.5 Energy Measurements

Energy consumption was measured using the Running Average Power Limit
(RAPL) [Int09] interface available on recent Intel architectures. This interface
allows machine-specific registers (MSRs) to be read, which contain energy scores.
To calculate the final energy score, we report the sum of the package and
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DRAM domains, following the method used by Shimchenko et al. [SPW22].
Our approach for measuring energy consumption is similar to that used for
measuring throughput and latency. For DaCapo benchmarks, warmup iterations
were excluded, and statistics were aggregated across 5 JVM instances for the
last 5 iterations in each run. For the Hazelcast benchmark, we report energy
consumption for the entire run, as it is a longer-running benchmark where the
warmup period is a small fraction of the total run time.

III.5.6 Baseline Heap Sizes

If the Xmx option is not specified by the user when starting the JVM, the JVM
will default the maximum heap size to 25% of the physical memory available
on the system.4 Research papers that involve measurements across multiple
garbage collectors use other collectors like G1 [Cai+22] or Serial GC to pick
the minimum heap size [Sah+16] and then employ a scaling factor to provide
additional headroom (additional memory space) for other collectors. However, it
is not at all clear if such an approach reflects the actual heap sizes chosen by
developers for production systems. For example, developers often tend to choose
heap sizes that are powers of two [Eva20].

Proper configuration of a concurrent collector should avoid allocation stalls
as these introduce jitter and hurt latency. Thus, we decided to adopt a manual
heap size adjustment strategy for our baseline (vanilla ZGC), where we pick
the smallest power-of-two heap size with which the application runs reliably
without stalling. We use this value for each benchmark as Xmx for a baseline
configuration in vanilla ZGC; also, we explicitly set Xms to 16MB, which is the
same as its default value according to the ZGC codebase. Finally, we had to
manually pick heap sizes as there is no “best option”. We pick baseline values
not in order to “beat” something but explain the behavior of our system.

III.5.7 GC Targets

To investigate the implications of our proposed design, we studied the impact of
GC targets on latency and throughput using varying percentages of GC CPU
target overhead. Specifically, we examined the following GC targets: 5%, 10%,
15%, and 20%. To assess if the picked list of GC targets is representative, we
found the actual GC CPU Overheads without the heap size adjustment for
memories picked according to Table III.2. Looking at Table III.2’s GC CPU
overheads, the actual GC CPU overheads have a big variation from less than
1 % (Sunflow) to 23 % (Fop). Given that having a closer GC target to the actual
GC overhead might better reveal the effect of our adaptive solution, we only
evaluated our strategy with a 5% GC target for the benchmarks with actual
GC overheads below 5%. This required running additional iterations to reach a
steady state, adding time to benchmarking.

Methodologically, testing very small GC targets on short-running benchmarks
is challenging since it takes time to grow the heap from the initial 16MB to a

4https://docs.oracle.com/en/java/javase/19/gctuning/ergonomics.html
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size that sustains the required GC target. If this time exceeds the benchmark’s
run-time, it never reaches a steady state, causing the results inconclusive. Very
high GC targets do not represent a real deployment. This said we believe that a
picked range of GC targets is sufficient to demonstrate how our system behaves
and showcase main trends.

III.6 Results

We now compare the performance of running the vanilla ZGC with manually
selected heap sizes against our adaptive technique, which leverages different
values of GC CPU overhead. Throughout the experiments, we closely examined
various metrics, including memory usage, execution time, latency, and energy
consumption. We sought to identify the advantages and drawbacks of each
approach. Additionally, we propose an optimal default value for the GC CPU
overhead that strikes a balance between efficient resource utilization and overall
system performance.

Prior to presenting our results, we would like to address the absence of 3
benchmarks, Batik, Jython, and Pmd, from our study. These benchmarks have
actual GC targets of 80 %, 76 %, and 170 %, respectively, using the maximum
memory available on the SandyBridge machine. Therefore, we were unable
to allocate additional memory to lower the GC targets for these benchmarks.
Nevertheless, our methodology remains valid, and we were able to obtain results
for these benchmarks by running them with the maximum available memory on
the machine. As a result, the GC CPU overhead of these benchmarks remained
similar to their actual values. Note that failing to attain a CPU target does not
result in the failure of benchmark execution. The observed outcome is merely a
disparity in real CPU overhead when compared to the requested target. If the
target is set lower than the actual value and insufficient memory is available to
elevate it, the application will persist in running without reaching the target.
This situation remains unchanged unless the entire machine’s memory suffices
to prevent OOM issues, a scenario shared by Vanilla ZGC. Conversely, when the
target surpasses the real CPU overhead and reducing memory fails to rectify it,
this signifies an absence of substantial GC work. Irrespective of these scenarios,
the application continues to function without interruption.

Memory Usage Memory usage for different GC targets is presented in
Table III.2, normalized to the vanilla ZGC with the chosen heap size as described
in Section III.5.6. Memory represents the average used memory before a GC for
the last 5 stable iterations. Despite comparing memory maximums, normalization
yielded similar results. Results show that overall memory usage decreases if the
tested GC target is higher than the default GC CPU overhead. For instance,
Hazelcast_100 has, by default, a GC CPU overhead of 21 %. Therefore, the
memory used grows with 5 %, 10 %, and 15 % GC targets but is on par for a
20 % GC target. The biggest observed reduction is 96 % for Sunflow with 15 %
and 20 % GC targets.
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Table III.2: Execution time, memory, energy (all three normalized), the number
of minor and major collections as well as GC CPU overheads in vanilla ZGC
and adaptive ZGC for various benchmarks (BMs). Heap size (MB) (Z) is the
minimum stall-free heap size for each benchmark. CPU Utilised shows the
number of CPU cores used by the application (out of 32 cores available on
SandyBridge). White cells show no statistical significance according to the
methodology explained in Section III.5.4. Different shades of red represent
highlights where the adaptive approach is worse than the default. Darker red
indicated the CV above 5 %. We write (Z) for vanilla ZGC and (A) for our
adaptive approach.
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5 0.76 0.8 0.22 1.51 1.65 1.9 0.86 0.52 0.09 0.72 0.66 1.41 0.6
10 0.67 0.82 0.2 1.69 1.18 1.73 0.74 0.15 0.05 0.37 0.33 0.93 0.56
15 0.66 0.43 0.19 1.36 0.93 1.15 0.61 0.14 0.04 0.44 0.32 0.92 0.49Memory
20 0.65 0.18 0.18 1.03 0.82 0.9 0.54 0.13 0.04 0.48 0.31 0.86 0.43
5 1.01 1.01 1.04 1.01 0.98 0.96 2.05 1.05 1.17 1.0 1.09 1.04 1.02
10 0.99 1.01 1.02 1 1 0.96 1.02 1.05 1.15 1.02 1.06 0.61 1.01
15 0.97 1.01 1 1 0.99 0.97 1.01 1.05 1.16 1.04 1.15 0.43 1.01Execution Time

20 0.95 1.02 1 1 0.99 1.01 1.02 1.05 1.15 1.06 1.15 0.44 1.02
5 0.99 0.62 1.01 0.95 0.95 0.95 1.84 0.99 1.12 1.0 1.08 1.35 1.02
10 0.98 0.83 1 0.95 0.99 0.96 1.12 1.09 1.14 1.02 1.08 0.74 1.02
15 0.96 0.82 1 0.93 1.01 0.97 1.09 1.13 1.15 1.03 1.15 0.64 1.02Energy
20 0.93 0.8 1.01 0.95 1.02 1.01 1.15 1.19 1.14 1.05 1.17 0.66 1.03

Minor (Z) 0 142 11 1213 443 798 4296 356 38 315 146 41 9
5 82 174 450 151 170 195 12412 1187 38 482 676 51 18
10 84 175 657 136 192 239 16134 6503 1269 3783 949 50 24
15 146 428 1649 202 437 493 18979 9730 1529 6394 1335 62 38Minor (A)

20 221 3338 2790 560 782 885 25941 14239 1661 10308 1649 82 44
Major (Z) 44 20 90 108 49 57 2952 16 7 64 9 7 3

5 86 25 126 38 35 31 3931 36 7 67 89 23 3
10 88 23 240 33 37 34 5987 213 90 350 117 23 7
15 95 27 330 49 55 48 6813 375 157 576 167 26 8Major (A)

20 91 45 383 86 69 68 9804 572 202 932 215 30 11

GC CPU OH (%) (Z) 1 3 1 21 12 17 4 4 0.2 3 3 9 2
5 5 5 3 10 9 10 5 5 5 5 5 5 6
10 11 11 6 11 10 12 10 10 10 11 10 11 10
15 16 13 9 15 15 15 17 15 14 15 15 16 17GC CPU OH (%) (A)

20 21 19 11 20 21 20 22 20 18 21 20 20 18

Heap Size (MB) (Z) 1024 8192 16384 2048 4096 4096 256 4096 16384 2048 1024 256 2048

CPU Utilised/32 0.9 1.07 5.45 15 19.2 27 1.25 12.32 30.22 21.06 21 2.5 21

Moreover, the reduction in memory usage correlates with a higher number of
minor and major collections, which simply means that GC works more to keep a
tighter heap. As expected, in terms of reducing memory footprint, 20 % leads to
the smallest heap size across all the benchmarks.

Execution Time The results show that adjusting the heap size dynamically
with 15 % and 10 % GC targets had a minimal negative impact on execution
time, except for Xalan and Sunflow. However, Avrora, Hazelcast_400, and Fop
have a reduction in execution time. For instance, Avrora showed a 3 % and 5 %
improvement in execution time for 15 % and 20 % GC targets, respectively. This
improvement can be attributed to the collector compacting live objects close
together, improving cache locality [YÖW20b], and making memory accesses
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Table III.3: The 99th-percentile metered latency from the adaptive approach
normalized to vanilla ZGC. The color coding is the same as in Table III.2. H is
for Hazelcast.

Target Tomcat Spring H_100 H_250 H_400
10 0.68 1 0.4 0.91 0.69
15 0.84 1.06 0.47 0.96 0.74latency
20 0.96 1.18 0.73 1.14 1.16

easier to prefetch. However, Sunflow experienced a significant 15 % degradation
in execution time. Additional profiling revealed more stalling in the instruction
pipeline backend, which is often an indication of memory stalls [Int20]. It is
possible that the 96 % memory reduction resulted in too many GC cycles, which
interfered with the mutator accesses. To improve our technique in the future, we
will consider the cache effects of too many GC cycles. From prior work, we also
know that Sunflow is very sensitive to keeping allocation order during relocation
and it is possible that this order is kept less well with so frequent GC cycles.

Energy As per our initial hypothesis (Table III.2), we expected energy changes
to exhibit an opposite trend to memory. We anticipated that if a benchmark
consumed more CPU during GC than the baseline, then we would see a decrease
in memory usage and an increase in energy consumption. This is because CPU
usage incurs higher energy costs than DRAM [Hor14]. As expected, the 20 %
GC target yields on average worse energy results compared to 10 % and 15 % GC
targets. However, it is apparent that the relationship between reduced memory
and increased energy is not always linear. For instance, the Graphchi benchmark
with 20 % GC target has a 82 % reduction in memory usage but only 1 % increase
in energy consumption. At a single-program granularity, opting for high GC
targets has an increased energy cost. However, in a cloud setting, where CPU
is typically highly overcommited [Ope22] and memory is the limiting factor for
consolidating virtual machines and containers, significant memory reductions
lead to fewer physical nodes and ultimately lower energy consumption [Bas+21].

Latency In our evaluation, latency results were available only for a subset of
benchmarks, which we report in Table III.3. Our adaptive approach has no
negative impact on 99th-percentile latency and can even reduce it. For instance,
in CPU-intensive workloads such as Tomcat and Hazelcast_400, where there is
high competition for CPU resources between the collector and mutator threads,
lower GC targets (, i.e., 10 %) lead to using more memory and positively affect
latency by allowing GC to run less frequently, thereby reducing the impact on
mutator performance. While increasing Xmx could achieve a similar effect, our
approach reduces latency while also decreasing memory usage. Because, with
the fixed memory level, GC CPU overhead can vary drastically throughout
execution, leading to high numbers. Our technique keeps the GC CPU overhead
more stable, aiming to fluctuate around a certain GC target. It ensures that GC
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does not take up a lot of space, allowing mutators to deliver stable low latency
without frequent drops. With a 20 % GC target and the smallest heap size,
Spring showed a notable increase in latency. However, it is important to note
that this benchmark has less than half of the capacity of the machine’s average
CPU utilization, but at times it spikes quite high, becoming CPU intensive.
Higher GC targets in CPU-intensive workloads can reduce latency by mitigating
contention between GC and mutator threads, as explained above. However, due
to the limited number of latency-oriented workloads tested and the high variance
in DaCapo benchmarks, we cannot make definitive conclusions about the positive
impact of our technique on latency. Nonetheless, our findings suggest that it
does not have a statistically significant negative effect.

Picking the Default GC Target Different GC targets can yield opposite trends
for different optimization goals. While the highest GC target of 20 % provided
the best results for memory, energy optimization requires the lowest GC target.
Meanwhile, too many or too few GC cycles can harm performance. Thus,
choosing the best GC target for each program may require manual selection.
However, upon examining the benchmarks as a whole, we found that a 15 %
GC target achieved a 51 % memory reduction, with only a 3 % execution time
degradation and a 3 % increase in energy (calculated as the geometric mean
across all benchmarks, following [FW86]). Therefore, a 15 % GC target may
be a good default choice for optimizing the trade-off between memory usage,
execution time, and energy consumption.

III.7 Related Work

Language runtimes that host managed languages—such as Java, Python, and
JavaScript—maintain a garbage collected heap to manage live application objects
(unreachable objects are collected by the garbage collector). Determining the
heap size is challenging as it involves a tradeoff between application pause time,
GC CPU, and memory utilization. Various heuristics have been proposed to
achieve this goal by minimizing pause time, GC utilization, and memory usage.

III.7.1 Heap Size Adjustment Algorithms

A number of studies have been conducted for STW collectors, aiming to improve
execution time [Bre+01], avoid paging [Grz+07] or both [Yan+04]. Brecht et
al. [Bre+01] propose an adaptive technique to increase the heap size aiming to
reduce execution time in the STW Boehm-Demers-Weiser GC [BW88]. The
authors suggest increasing the heap size aggressively without collecting garbage
if sufficient memory is available. Only when memory is scarce GC becomes more
frequent, and the heap size stabilizes. This approach prioritizes reducing the GC
target overhead to improve the application throughput.

Yang et al. [Yan+04] introduced an analytical model to adjust the heap size in
the multi-program environment. In their approach, an operating system’s virtual
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memory manager monitors an application’s memory allocation and footprint.
Then, it periodically changes the heap size to closely match the real amount of
memory used by the application. A model is used to minimize GC overhead by
giving it enough heap size but also to minimize paging by avoiding large heaps.
The model is offered for Appel and semi-space collectors [App89]. Zhang et
al. [Zha+06] propose a novel approach to memory management called Program-
level Adaptive Memory Management (PAMM). PAMM uses the program’s
repetitive patterns (phases) information to manage memory adaptively. The
authors believe the behavior of the phase instances is quite similar and repetitive,
so they can represent the memory usage cycle in the application. PAMM monitors
the program’s current heap usage and the number of page faults to adjust a
softbound as a GC threshold. When the threshold is reached, PAMM triggers
GC to collect and free unused memory. They evaluate PAMM with three STW
and generational collectors (Mark-Sweep, CopyMS, and GenCopy). PAMM
relies on a specific phase detection algorithm, which may not be applicable to
all types of programs.

Grzegorczyk et al. [Grz+07] propose the Isla Vista heap size adjustment
strategy to avoid GC-induced paging. Their strategy is to grow the heap when
more physical memory is available and shrink it by triggering GC when there
is not enough physical memory. Thus, it trades more GC for less paging by
communicating between OS and VM and triggering the heap size adjustment
logic on relocation stalls.

Controlling the ratio of GC time to overall execution time also has been
addressed within HotSpot’s collectors, using -XX:GCTimeLimit5. However, this
strategy may not be suitable for concurrent collectors, as they are designed to
operate concurrently with the mutator and outside of the program’s critical
path.

In a closely aligned study, White et al. [Whi+13] propose a PID (Proportional-
Integral-Derivative) controller that monitors GC overhead (the percentage of
total execution time spent on GC) and adjusts the heap resize ratio to maintain a
target GC overhead level set by the user. They utilize the Jikes Research Virtual
Machine (RVM), the Memory Management Toolkit (MMTk) as the experimental
platform, and the FastAdaptiveMarkSweep collector.

More recently, Bruno et al. [Bru+18] propose a vertical memory scalability
approach to scale JVM heap sizes dynamically. To do this, the authors introduce
a new parameter: CurrentMaxMemory. Contrary to the static memory limit
defined at launch time, CurrentMaxMemory can be re-defined at run-time, similar
to our soft max capacity. In addition to the new dynamic limit, this work also
proposed an automatic trigger to start heap compaction whenever the amount
of unused memory is large. This technique allows returning memory to the
Operating System as soon as possible.

5https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gc-ergonomics.html
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III.7.2 Heap Size Adjustment in State-of-the-Art GC

Immix [BM08] is a collector suitable for high-performance computing. Immix
does not require the maximum heap size to be known in advance. It continuously
monitors the amount of free memory available in the heap and adjusts memory
allocation accordingly. When the amount of free memory falls below a certain
threshold (which may vary between implementations), Immix triggers a GC cycle
to reclaim unused memory. If the free space is still insufficient after collection,
Immix may allocate additional memory blocks to meet the application’s memory
needs. Immix also considers the rate of object allocation as a metric. If
the allocation rate exceeds a certain threshold, it indicates a high memory
consumption and the potential need for more memory to avoid out-of-memory
errors. Immix also uses heuristics to estimate the size of the working set or the set
of objects that are actively being used by the application. Since Immix is a STW
collector, this dynamic heap resizing brings many disadvantages. For example,
the application may experience brief pauses or slowdowns during the resizing
process, which in turn makes it more difficult to reason about the memory usage
and performance characteristics of an application.

Cheng et al.[CB01] introduce a parallel, concurrent, real-time garbage
collector for multi-processors. GC work is proportional to the allocation rate,
so it indirectly scales up and down with program CPU utilisation. It aims to
provide bounds on pause times for GC while also scaling well across multiple
processors. Using the concept of Minimum Mutator Utilisation (MMU), they
capture the percentage of time in a given time window the mutators have access
to the CPU. They showed that their proposed collector keeps higher MMU
results compared to non-incremental GC. However, they do not assess GC CPU
or utilize MMU-based actions.

Degenbaev et al. [Deg+16] propose scheduling GC during detected idle periods
in the application to reduce GC latency. It uses knowledge of idle times from
Chrome’s scheduler to opportunistically schedule different GC tasks like minor
collections and incremental marking. This allows adapting GC based on real-time
application behavior and available idle cycles. While not directly adjusting heap
size, scheduling GC during idle periods allows for reducing memory usage and
footprint when the application becomes inactive and based on the real-time
needs of the application.

The G1 [Det+04] (Garbage First) garbage collector requires knowledge of the
maximum memory needed for an application in advance. If it is not explicitly
provided, it uses a default value. G1 uses a dynamic heap size adjustment
strategy to adjust the memory usage during runtime based on the current usage
pattern of the application [Ora21]. G1 divides the heap into regions of equal
size and groups them into two generations: young and old. When the young
generation fills up, G1 performs a young collection, during which live objects are
copied to a new region while unused regions are reclaimed. G1 also performs
periodic concurrent marking of live objects in the old generation. When the old
generation fills up, G1 performs a mixed collection, which collects both young
and old regions that have been marked as garbage. During a mixed collection,
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G1 dynamically sizes the heap by using the occupancy of the old generation as
a target and adjusts the heap size to meet that target.

Heap size adjustment in .NET is difficult because of the prevalence of object
pinning which can make it impossible to uncommit memory. .NET offers a
ConserveMemory interface to the garbage collector that allows “conserving
memory at the expense of more frequent garbage collections and possibly longer
pause times” [War+23]. This setting works by controlling the fragmentation
tolerance in old generations, before triggering a full, compacting GC cycle.

III.7.3 Discussion

Previous works, adjust the amount of heap size by estimating the amount of
memory that is necessary to keep the application running without incurring
high latency and CPU overheads. Instead of estimating the amount of memory
needed by the application, we adjust the heap size to meet a specific GC target.
Our CPU-driven heap size adjustment is particularly important for concurrent
collectors like ZGC, which compete with the mutator for CPU resources to
collect memory, unlike the STW collectors used in prior studies. Dissimilar to
fixed-size heap headroom used in STW collectors, a concurrent GC requires
variable headroom depending on the available CPU for collection. If the mutator
consumes most of the CPU, a large headroom is necessary for a concurrent
collector, while a small headroom suffices for collection when the mutator has
minimal CPU usage. In sum, rather than directly controlling the heap headroom
as in previous works for STW collectors, we specify the desired GC target and
adjust the heap headroom accordingly.

III.8 Conclusion

This paper explores an adaptive approach for automatically adjusting heap
size based on CPU overhead for GC work as a tuning knob. Our evaluation
demonstrates that this technique does not negatively impact latency, which is
the main goal of fully concurrent collectors. In addition, we offer insights into
optimizing energy and performance by tuning GC targets. Our ongoing work
focuses on seamlessly integrating and refining this approach within the ZGC
framework to unlock its full potential in real-world applications.
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Abstract

Memory management is responsible for allocating and releasing the memory
used by applications (e.g., in the Java Virtual Machine-JVM). There
are several garbage collectors (GCs) each designed to target different
performance metrics, making it very hard for developers to decide which
GC to use for a particular application. We start with a review of existing
GC algorithms. Then, we intend to evaluate throughput, pause time, and
memory usage in existing JVM GCs using benchmark suites like DaCapo
and Renaissance. The goal is to find the trade-offs between the above
mentioned performance metrics to have a better understanding of which
GC helps fulfill certain application requirements.
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I.1 Introduction

An important feature of memory management is the GC, which is responsible
for automatically collecting unused objects in memory. GC plays an important
role especially when applications process, store, and analyze massive amounts of
data (i.e., Big Data and/or Cloud Services [CML14]).

Several GC algorithms try to optimize a combination of different performance
metrics: throughput, pause time, and memory usage. This makes it hard to
choose the best GC for a particular application. In this paper, we investigate
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Figure I.1: Average Memory usage before and after GC in H2 benchmark

performance metrics in the most relevant GCs provided in OpenJDK HotSpot
JVM [07], the most widely used JVM implementation. As depicted in Figure I.1,
choosing different GC algorithms can have a significant impact on memory usage
for the same exact application with the same heap limits. In this particular
example, H2 benchmark (included in DaCapo benchmark suite) leads to more
than 2x increased memory utilization after GC when Shenandoah [Flo+16] is
utilized compared to G1 [Det+04] or CMS [Jon96].

Figure I.2 represents how different GCs perform in terms of pause time in
the akka-uct benchmark (included in Renaissance benchmark suit). While
ZGC [Per18a] handled pause times significantly better than other GCs,
Shenandoah decreased pause time more than 3x in comparison with G1 and
CMS.

We use benchmark suites (DaCapo [Bla+06] and Renaissance [Pro+19])
which provide various programs in different contexts. All these help us to provide
further information on which GC should be selected if a particular performance
metric is targeted and the trade-offs involved.

The rest of the paper presents a description of the GC algorithms we use
(Section I.2), the architecture of our solution (Section I.3) and finally a conclusion
(Section I.4).
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Figure I.2: 90th percentile of pause times in akka-uct benchmark

I.2 Related Work

There are many GC algorithms, with different designs and implementations. All
the GCs consider throughput, pause time, and memory usage as crucial
performance metrics. Throughput indicates the proportion of time or memory
spent in the application process, not the garbage collection. Pause time is the
time an application must stop to let the GC execute. Finally, the amount of
memory used in a process, in which GC is responsible for evacuating dead objects,
indicates memory usage.

GC algorithms use different approaches to collect dead objects and manage
the heap. To do so, the heap is partitioned into multiple partitions or sub-
heaps [UJ88]. In the most well-known partitioning technique, objects are
segregated based on their estimated lifetime[UJ88]. This results in generational
GCs that can have a young generation containing newly created objects and an
old generation that contains objects that survived previous garbage collections.

In the garbage collection process, some GCs use the stop-the-word (STW)
technique. This technique stops the application process, collects the dead objects,
and evacuates live objects to other parts of the heap space. Another approach is
a concurrent GC in which there are multiple threads to run the application and
GC code. So, garbage collection happens while the application is running and
creating new objects in the heap.
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The aforementioned approaches try to find live objects in an object tree
(starting from the root) and do the evacuation of live objects either through
copy or compaction. Copying allows an application to group live objects by
moving them from multiple memory segments into a single segment. Thus, live
objects will not be scattered across the heap. Compaction moves all live objects
to the start of the memory segment when the cost of copying objects to another
segment is high for large amounts of live objects [BF18].

There are many GC algorithms that can be used in the JVM, ranging from
the most commonly used older GCs, including Concurrent Mark and Sweep
(CMS) GC, and Garbage-First (G1) GC, up to the latest experimental ones like
ZGC, and Shenandoah GC [PGM19]. In the following, we briefly explain some
existing GC solutions.

The Concurrent Mark/Sweep collector (CMS) is a generational GC. It
uses a monolithic STW copying collector to manage all the objects in the young
generation. The old generation is managed by a mostly concurrent mark and
sweep collector without compaction. When objects can no longer be promoted
to the old generation or concurrent marking fails, it falls back to a monolithic
STW compaction of the old generation. CMS can cause memory fragmentation
and use more processing power than any other GCs [GMR18].

The Garbage-First (G1) is a fixed-sized, concurrent, and generational GC,
that groups all objects whose life cycles are similar in separate regions. It uses a
STW copying approach to manage the young generation. For the old generation,
it uses a mostly concurrent marker, while applying STW pauses to catch up on
application changes and reference processing [ZB20].

The Z Garbage Collector (ZGC) is an experimental scalable low-latency
GC. Its main goal is that its pause time does not increase with the heap or
live-set size. It handles heaps ranging from relatively small to huge multi-
terabyte sizes. There is no generational separation of the heap; the heap is
internally divided into many small regions, and we can choose to compact a
subset of those, typically one that contains the most garbage. ZGC uses "colored
pointers" to store some important metadata to hold information about the object
itself or about the object that it points to, and marking and relocation-related
information [PGM19].

Every object has an additional reference field (a forward pointer) that points
to the object itself, or, as soon as the object gets moved to a new location, to
that new location [BF18].

I.3 Architecture of the Solution

Choosing the best GC solution is an essential part of memory management,
mainly when dealing with massive amounts of objects in memory (i.e., Big Data
environments and Cloud Services). So, we must know application requirements
regarding throughput, latency, and memory usage.

We intend to use OpenJDK 13 to evaluate the G1, Shenandoah, ZGC, and
CMS using DaCapo and Renaissance benchmark suites. In addition, we will
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also develop a small application to investigate performance metrics in GCs. We
run our application and benchmarks included in both DaCapo and Renaissance
on the same machine with the same configuration. Our application occupies
the heap with different amounts of read and write operations and applies one of
the previously mentioned GCs at a time for each instance; meanwhile, records
the GC logs and the throughput of the application. Furthermore, the result set
from several executions of benchmarks in DaCapo and Renaissance using their
maximum input size plus the GCs’ log files helps us to calculate the desired
performance metrics.

To define throughput, we use the execution time to make it comparable
with two other benchmarks which do not provide us with other metrics like the
number of operations during the application’s execution time. In the case of
pause time, it matters how long it takes for an application to get input and
respond to it. Using different GCs because of the various approaches they apply
for garbage collection, directly affects the pause time. We extract pause times
from GCs’ log files and calculate the 90th percentile of them. This will represent
the frequent pause time that happened during garbage collection. Regarding
memory usage, it is important to consider the amount of memory an application
is allowed to use and shall not exceed that amount. We measure the average
heap usage before and after garbage collection happens. Then, we measure how
much a specific GC aims to reduce heap usage.

Specifying the characteristics of a given application is another significant
step in choosing the best GC solution. For example, we must determine whether
an application is CPU-intensive or I/O intensive (also including networking) and
which of the throughput, pause time, or memory usage are more essential to
consider accordingly. Moreover, the main requirement of an application is an
important factor that directly prioritizes GC solutions, e.g., if high responsiveness
is expected for an application, a GC that performs better in terms of pause time
should be selected. The results obtained will allow us to find the best-matched
GC solution that makes a trade-off between the desired performance metrics
and specific application requirements.

Once we have done the evaluation of the GCs, we intend to develop an
application that, based on application requirements and characteristics, will
help the user to decide which GC to use. Then, we also plan to evaluate the
possibility of automatizing this process requiring no intervention from the user.

I.4 Conclusion

Due to recent developments, new GC algorithms providing efficient memory
utilization, ultra-low latency, and high throughput have become more complex.
Thus, selecting the correct GC for a particular application, especially in big
data and cloud environments, is not trivial since each GC provides different
trade-offs. In our work, we study how current GCs perform regarding specific
metrics, in particular, pause time, throughput, and memory usage, to better
understand their trade-offs. We use widely used benchmarks like DaCapo and
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Renaissance benchmark suites to measure performance metrics in GC solutions.
In addition, we also developed an application to examine different GCs in JVM
and investigate the desired metrics. Knowing the characteristics of a given
application alongside the result from our experiences help us to propose the best
GC solution for an application.
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Abstract

Garbage collection (GC) solutions are widely used in programming
languages like Java. Such GC solutions follow prioritized goals and
behave differently regarding crucial performance metrics like pause time,
throughput, and memory usage. Consequently, running an application
using each GC would have an evident impact on the application’s
performance, especially on those dealing with massive data and tons
of transactions. Nevertheless, it is challenging for a user/developer to
pick a GC solution that fits an application’s performance goals. However,
surprisingly, there is no tool to help a user/developer on this matter. In this
study, we follow an effective methodology to build a heuristic combining
throughput and pause time, with diverse heap sizes available, to score
four production GCs (G1, Parallel, Shenandoah, and ZGC). Then we
propose a system, BestGC, which offers the most suitable GC solution for
a user application taking into account the performance goals of the user
application.
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II.1 Introduction

A significant portion of today’s applications use managed runtime languages like
Java and, therefore, take advantage of automatic memory management, also
commonly known as Garbage Collection (GC). GC is a key attribute in managed
runtimes as it eliminates developers’ effort to manually allocate and deallocate
the objects in memory, thus improving developer productivity.
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(a) heap size = 4096 MB (b) heap size = 256 MB

Figure II.1: Normalized average execution time and normalized average 90th

percentile of GC pause times for Philosopher workload. Lower is better.

Several GC algorithms are available in different Java versions attempting to
improve performance metrics like throughput, pause time, and memory footprint.
Figures II.1a and II.1b show the average execution time (which we use to report
throughput) and 90th percentile of pause times (normalized by G1) for the
Philosopher workload (from Renaissance [Pro+19] benchmark suite) with heap
sizes of 4096MB and 256MB. Results demonstrate that GC algorithms behave
differently considering throughput and pause time. ZGC performs significantly
better than other garbage collectors regarding pause time in both heap sizes,
while it sacrifices throughput when heap size is reduced to 256MB. However, G1
outperformed other collectors considering execution time with a 256MB heap.

As such, GC algorithms may significantly affect application performance
goals, especially those dealing with large data (which may focus on throughput)
and substantial transaction rates (which may focus on pause time). However,
choosing an algorithm that best suits an application’s performance demands is
hard for a user/developer who might not be a GC expert.

Due to its importance, extensive research analyzed, characterized, and
proposed new GC algorithms [Fra+07; Oss+02; Piz+07; PPS08]. Several studies
also compared GC solutions regarding performance metrics like throughput,
pause time, and memory usage [Ber+22; GMR18; Jon96; PGM19; Tav20; ZB20;
ZBM22]. As these performance metrics are the most common, we consider them
to be the most critical metrics that highly affect the user’s applications. However,
there is still no tool to help users and developers to overcome the challenges of
selecting a suitable GC solution for their applications. Also, to the best of our
knowledge, other studies have not proposed a performance-based approach to
score recent collectors and, accordingly, a system to offer a proper GC.

Thus, the goal of this work is to propose a solution and a system that
automatically determines the most suitable GC according to users’ preferences
(regarding pause time and throughput) and use it right away to run the user’s
application.

This study follows a simple yet effective methodology to compare and analyze
recent collectors’ throughput, pause time, and memory usage. We do so while
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aiming at the following goals:

• evaluating four well-known collectors in a production JVM implementation
considering execution time and pause time, while the memory available to
collectors changes;

• conducting experiments and drawing results based on a set of workloads,
including CPU-intensive and latency-sensitive ones, that represent existing
real-world applications to reveal the costs of the collectors; and

• proposing an approach to recommend a suitable collector for a user’s
application while letting the user decide on his performance priority.

We evaluate G1 [Det+04], ZGC [Per18b], Parallel [Ora20], and Shenan-
doah [Flo+16], the most relevant GC implementations available in OpenJDK 15.
We use workloads from two widely-used benchmark suites, DaCapo [Bla+06] and
Renaissance [Pro+19]. These two benchmarks include diverse workloads that
mostly need CPU, which is also a critical resource for GC. Moreover, using a
specific version of DaCapo (DaCapo-Chopin) provides us with latency-sensitive
workloads in which requests will be queued when the latency increases. Thus, it
allows us to measure also the concurrency overhead of ZGC and Shenandoah on
our performance metrics [Cai+22].

We measure throughput and pause time due to their undeniable importance
while providing different heap sizes for the collectors. Modifying the heap size
allows us to investigate collectors’ behavior when they have to scan a large heap
area to find the unused objects; or when they are trying to manage a small heap
to deliver high throughput while imposing low pause times.

Thus, our main contribution is developing a system, BestGC, using the results
obtained from our extensive evaluations; it frees the user from the complicated
process of selecting a GC that fits his application’s performance goals. BestGC
asks for the user’s preferences for throughput (wt) and pause time (wp) and
afterward runs the user’s application with the collector that best matches the
desired performance goals:

wp ∈ [0, 1]

wt ∈ [0, 1]

wp + wt = 1

BestGC captures the max heap size used by the application and accordingly
scores the four collectors. It uses results it maintains for each heap configuration,
based on the experiments, in matrices. Each matrix holds the values
corresponding to the GCs in the rows and throughput and pause time in the
columns. Therefore, the calculation is done using a formula:

scoregc = wp ×matrix[heap]<gc,P auseT ime>

+wt ×matrix[heap]<gc,T hroughput>

(II.1)
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heap ∈ {8192, 4096, 2048, 1024, 512, 256}

gc ∈ {G1, Parallel, Shenandoah, ZGC}

Finally, BestGC picks the GC with the best score (a lower score is better)
and executes the user’s application with the selected GC and suggested heap
size.
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