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Summary

Industrial processes are monitored by an array of measurements.
The purpose is to ensure safe and optimal operations. Modern data
acquisition and storage technologies have made it possible to collect
and distribute large quantities of measurement data in real-time.
This ever-increasing stream of information will eventually overwhelm
a human analyst, and the need for automated data processing and
interpretations will eventually emerge. Data interpretation can take
many forms. In this thesis, we are interested in a mathematical
“expert commentator” that can provide us with an estimate of
unobserved states in a system, based on the real-time information
we have available.

The states we are primarily interested in are the quantities of
gas, oil, and water that flow through a choke valve. Essentially
a speedometer for gas and liquids. This by itself is nothing new.
Traditional solutions to this problem typically take one of two forms,
both resulting in mathematical models that attempt to predict flow
rates based on available measurements. One form is grounded
in universal laws of physics, which are used to derive equations
that describe the systems of interest. The other is to collect a
lot of data from a single system and use it to create an empirical
description of the system’s behavior. These traditional approaches
face different challenges. The flow of gas and liquid mixtures is
a complex phenomenon, and the resulting physical equations can
quickly become intractable. Additionally, the system is continuously
changing, which renders an empirical model outdated.

The presented innovation is to learn a universal empirical model.
The foundation is data collected from several similar choke valves.
Because none of these choke valves are identical, this data set contains
descriptions of many variations of the same underlying physics. The
strategy is to train joint models that benefit from all these data
points. This enables the model to learn fundamental aspects of the
system in a purely data-driven fashion.

The proposed mathematical model possesses many beneficial
properties. For instance, good predictions and robustness toward
changes in the system. While the main focus has been flowrate
measurements, other applications have also been explored with
promising results.
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Sammendrag

Industrielle prosesser blir overvåket av mange måleinstrumenter.
Formålet er å sikre trygg og best mulig drift. Moderne datainnhenting
og lagringssystemer har gjort det mulig å samle og tilgjengeliggjøre
store mengder måledata i sanntid. En stadig økende datamengde
vil til slutt overvelde en menneskelig analytiker, og behovet for
automatisk prosessering og tolkning av data vil melde seg. En
tolkning av data kan være så mangt. I denne avhandlingen er
vi interessert i en matematisk “ekspertkommentator” som kan gi
oss et estimat på umålte tilstander i et system, basert på den
sanntidsinformasjonen vi har tilgjengelig.

Tilstanden vi er ute etter er hvor mye gass, olje, og vann som
strømmer gjennom en ventil. I praksis et speedometer for gass og
væske. Dette er i seg selv ikke noe nytt. Tradisjonelle løsninger på
problemet baserer seg på to strategier. Begge metodene resulterer
i matematiske modeller som forsøker å predikere strømningsratene
basert på de målingene vi har tilgjengelig. Den ene strategien tar
utgangspunkt i universelle fysiske lover, og utleder ligninger som
beskriver systemene vi er interessert i. Den andre er å samle en
betydelig mengde data fra et enkelt system, og bruke disse til å lage
en empirisk beskrivelse av systemets oppførsel. Disse strategiene har
hver sine utfordringer. Strømning av gass og væske blandinger er
et komplekst fenomen, og de resulterende fysiske relasjonene kan
fort bli uhåndterlige. Samtidig er systemet i stadig endring, så en
empirisk modell vil raskt gå ut på dato.

Nyskapningen vi legger frem er en universell empirisk modell.
Utgangspunktet er data som er samlet fra mange liknende systemer.
Siden ingen av systemene er identiske, så vil disse dataene beskrive
mange ulike varianter av den samme underliggende fysikken. Strate-
gien går ut på å trene felles modeller som deler på disse datapunktene.
Dette gjør det mulig å lære fundamentale aspekter ved problemet
kun ved hjelp av data.

Den foreslåtte matematiske modellen har flere gunstige egen-
skaper, blant annet gode prediksjoner og robusthet overfor endringer
i systemet. Hovedfokuset har vært anvendelser knyttet til estimering
av strømning gjennom ventiler, men andre problemstillinger har også
blitt utforsket med lovende resultater.
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Chapter 1

Introduction

Soft sensors are real-time systems that utilize mathematical models in
combination with physical instrumentation to predict quantities of interest
in industrial assets (Jiang et al., 2021). Soft sensing can be an economical
alternative to installing additional physical measurements (Lu et al., 2019), and
they can be used to predict quantities that are infeasible to measure by physical
devices due to the hostility of the environment or lack of access to the locations
of interest.

In recent years, industrial assets have seen a steady increase in data
collection, improved data infrastructure, and increased computing power
(Isaksson, Harjunkoski, and Sand, 2018), which are essential ingredients in most
soft sensing schemes. This, combined with significant advances within statistical
and machine learning methodology (Gelman and Vehtari, 2021; Schmidhuber,
2015), has made data-driven soft sensing an active research area (Jiang et al.,
2021; Kadlec, Gabrys, and Strandt, 2009; Sun and Ge, 2021).

In this thesis, we explore a particular soft sensing case for oil and gas
production networks. The oil and gas industry is still seen as being in the early
stages of digitalization. The industry has the data and computing infrastructure
but lacks the intelligent systems needed to leverage the large quantities of data
being collected daily (Lu et al., 2019). A broad range of data-driven applications
has been researched, but the adoption rate is low (Balaji et al., 2018).

Our focus is on virtual flow meters. Flow meters are the speedometers
of the oil field. Knowledge of flow rates throughout the asset is essential in
modern operations and production planning. Production optimization (Foss,
Knudsen, and Grimstad, 2018), reservoir management (Kanshio, 2020), and flow
assurance (Jamaluddin and Kabir, 2012) all rest on knowledge about the flow
rates from each well. The value of such rates is clear, but they can still be too
costly and challenging to acquire (Hansen, Pedersen, and Durdevic, 2019). With
decreasing profit margins, there is an increasing interest in the cost-efficient
solutions that virtual flow metering promises (Lu et al., 2019). Data-driven
virtual flow metering is thus a compelling application.

This project seeks to answer questions related to data-driven virtual flow
metering. We are interested in exploring the limitations and possibilities that lie
in purely data-driven models. Historically, virtual flow metering has, in practice,
been dominated by first principle models, while data-driven methods have been
restricted to research applications. We are interested in why this is the case
and wish to uncover challenges faced by data-driven methods in practice and
attempt to propose a solution to these challenges.

The data at our disposal is well-tests, which are pairs of measurements taken
locally at the well and corresponding flow rates observed at a test separator.
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1. Introduction

These are our main sources of information, as it pairs the measured state of the
well with the flow rates we wish to predict. A second source of information is
production data, which measures the joint production of all wells simultaneously.
As such, it pairs the measured state from all the wells with their combined
flow rates. well-tests are highly informative, but sparsely distributed in time.
Production data is less informative but continuously available.

The proposed strategy is comprised of two components. One static and one
dynamic. One for well-tests and one for production data. The static component
is a model that predicts the well flow rates based on the available measurements
and assumed knowledge about the flow composition. A single model will be shared
between all wells, which allows it to learn from all the well-tests. The knowledge
assumed by the first component is provided by the second. The second component
is a dynamic state-space model that estimates how the flow composition develops
over time. To achieve this, it utilizes the continuously available data from the
production separator to monitor the collective development of all the producing
wells.

1.1 Contributions

The research contributions of this project are presented in four papers. Three of
these are directly addressing data-driven virtual flow metering. They attempt to
shed light on the topics of model uncertainty, model generalization, and model
calibration respectively. Uncertainty is studied with Bayesian neural networks,
generalization by multitask learning, and calibration through sequential Monte
Carlo. Of these three branches, most research efforts were put into multitask
learning, and the fourth paper is dedicated solely to a deep dive into the proposed
multitask learning architecture.

The papers are briefly summarized as follows. Paper I is a large-scale study
of data-driven virtual flow meters where both conventional and probabilistic
neural networks are applied. It concludes with a series of data-related challenges
faced by traditional data-driven virtual flow meter strategies. Paper II is a
similar study, but with multitask learning being introduced to address the
challenges identified in Paper I. The results are favorable toward the proposed
architecture. Paper III is a theoretical deep-dive into the multitask neural network
architecture introduced in Paper II. It establishes the proposed architecture as a
valid alternative to the classical multitask learners and studies its performance
on several public data sets from different domains. Paper IV explores the time-
varying aspect of virtual flow meter models. It presents a calibration strategy
that attempts to keep model performance up to date after the initial construction.
The strategy has a quite general state-space formulation at its core, which makes
it, almost, agnostic to the virtual flow meter model.
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Outline

1.2 Outline

The remainder of this thesis is outlined as follows. Chapter 2 provides theoretical
background on statistics and machine learning and gives an introduction to the
virtual flow metering domain. Chapter 3 provides an outline of the modeling
strategy. Chapter 4 explores the data used in the research and illustrates the
challenges they present. Chapter 5 elaborates on the publications in light of the
data challenges and the overall modeling strategy. Finally, Chapter 6 discusses
the research findings and concludes. The papers are provided in full length at
the end.
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Chapter 2

Background

This chapter introduces methodical and domain background which is the basis
for the research. We focus our attention gradually, by first presenting statistical
and machine learning frameworks for inference Section 2.1. Then a discussion of
the the broader theme of soft sensing is given in Section 2.2. Finally, the domain
specifics of virtual flow metering are treated in Section 2.3.

2.1 Statistical and machine learning methodology

The goal of this thesis is to learn how to predict future events from past
observations. Our learning methods are rooted in theory from statistical inference
and machine learning. Statistical inference draws conclusions about unobserved
quantities from the data (Gelman, Carlin, et al., 2013). Machine learning is
concerned with computer algorithms that extract knowledge and patterns from
data (Goodfellow, Bengio, and Courville, 2016). These domains have many
aspects in common but with different historical developments. Therefore we
find similar concepts denoted by different names and different concepts that
have similar names. In the following, we reconcile notation and theoretical
frameworks that give the background for this project, clarifying the statistical
and machine learning aspects when required. We start with a brief review of
notation and general concepts from statistical modeling. The link between the
data-generating process and the models is then given, followed by a description
of different statistical models of interest. We then proceed with a discussion
on how we can formulate learning problems that yield models with desirable
properties. Finally, the actual methods for inference and learning are presented.

The discussions on statistical modeling and inference are primarily based on
Hastie, Tibshirani, and Friedman (2009) and Gelman, Carlin, et al. (2013), while
Goodfellow, Bengio, and Courville (2016) gives the machine learning aspect.
Discussions on computer algorithms are primarily based on Givens and Hoeting
(2012) and Nocedal and Wright (2006).

2.1.1 Learning problems

Consider a sequence of n observations, y1, y2, . . . , yn, that are identically
distributed with probability density p(y). We wish to use the observations
to learn about the process that generated them. Our goal may be to understand
some aspect of the process or to predict future observations. For some processes,
we have access to additional quantities, x1, x2, . . . , xn, which are paired with our
primary observations, (yi, xi), i = 1, . . . , n. These are identically distributed
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2. Background

according to their joint distribution, p(y, x), which can be factorized as

p(y, x) = p(y|x)p(x). (2.1)

We may wish to limit our study to the conditional distribution p(y|x), if the
quantities x1, . . . , xn are not considered to be random.

Supervised learning is concerned with the conditional distribution p(y|x), and
seeks to learn the relationship between the explanatory variables, x, and the
response, y. In the context of machine learning, these are also referred to as
features and labels respectively. The goal is to construct a model that can predict
a future response given a set of new explanatory variables. The learning problem
is called a regression problem if the response is quantitative, or continuous, and
a classification problem if it is qualitative, or discrete (Hastie, Tibshirani, and
Friedman, 2009). Unsupervised learning is concerned with general patterns in
the data, for instance, if it is organized in clusters. It might be interpreted as
if there is no response variable in the data (Hastie, Tibshirani, and Friedman,
2009). In Equation (2.1), unsupervised learning techniques may, for instance, be
used to study p(x). Supervised and unsupervised learning are well-established
concepts in the literature. But there are other emerging paradigms, such as
semi-supervised learning (Engelen and Hoos, 2019) and reinforcement learning
(Kaelbling, Littman, and Moore, 1996), that are emerging. Our discussion of
statistical models is focused on supervised learning and the case of regression
models. Identifying the quantities of interest from a given dataset is known as
training in the machine learning context and inference in the statistical context.

2.1.2 Data, model, and likelihood

We consider a dataset of observations

D = {(xi, yi)}ni=1, (2.2)

with vector of explanatory variables x ∈ X , and response y ∈ Y. The response
can also be a vector, but we consider it a scalar for simplicity. Our observations
are identically distributed as presented in Equation (2.1). We consider supervised
learning and the special case of regression, and model the conditional distribution,
p(y|x), as

y = f(x) + e, (2.3)

where e is a random variable with E [e] = 0. Our model is then the conditional
expected value of the response given the explanatory variables, f(x) = E [y|x].
The additive term e is often referred to as a noise or error term. In general, the
model is a function f ∈ F , where F is the model space.

We primarily consider models where the predictions are determined by a
set of parameters, θ ∈ Θ, where Θ is the parameter space. To emphasize the
dependence on the parameters, we rewrite Equation (2.3) as

y = f(x; θ) + e, (2.4)
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Statistical and machine learning methodology

and the conditional density for this model is p(y|x, θ). If we also need parameters
to describe the statistical properties of the error term, e, we can incorporate this
along with θ as necessary. The information that the dataset carries about θ is
summarized in the likelihood function,

L(θ) = p(D|θ), (2.5)

which is the conditional density viewed as a function of θ. Consider the case
where we study the response given the explanatory variables for all possible
values of the parameters. Further, it is common to assume that the observations
are independent when the parameters are given. This allows for the simplification

L(θ) =
n∏
i=n

p(yi|xi, θ), (2.6)

by introducing the parameters, θ, into the marginal density in Equation (2.1).
The likelihood function plays an important part in model inference, which will
be discussed in Section 2.1.8. The likelihood presented in Equation (2.5) and
Equation (2.6) are general expressions, and not limited to the special case of
regression.

In addition to the model parameters θ, some models also have hyperparameters.
The hyperparameters may, for instance, control the model space F or the
parameter space Θ. In machine learning, hyperparameters also frequently
include parameters of the learning algorithm used for model inference.

2.1.3 Function approximation

One of the main challenges of statistical regression models is to construct a
suitable model space for Equation (2.3). Aspects to consider are the properties
we require of our model, and how much information we have available from our
data. A property of particular interest to us is universal approximation, which,
informally, means that our model is able to approximate the desired target
arbitrarily well (Hastie, Tibshirani, and Friedman, 2009). More formally, let X
be a compact subspace of Rd, and the target a continuous function f⋆ : X → R.
Our model is a universal approximator if for every ϵ > 0 there exists an f ∈ F
such that

sup
x∈X
||f(x)− f⋆(x)|| < ϵ. (2.7)

The existence of such a model does not mean we are able to identify it. The
statement above only considers a scalar response. In the case where the response
is multidimensional, we apply the argument for one dimension at a time.

The degree to which a particular model, or class of models, is able to
approximate arbitrary functions is sometimes called approximative power. We
generally do not explicitly quantify the approximative power of individual models
but will use the concept to order different models in terms of being more or less
powerful. In the context of models such as Equation (2.4), we generally have
that an increasing number of parameters yields a more powerful model.
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2. Background

2.1.4 Regression models

We now proceed by reviewing a selection of statistical models and describing
them with a uniform notation. For all the statistical models presented below
we have x ∈ Rd and y ∈ R, data as defined in Equation (2.2), and a model as
defined by Equation (2.4). While we limit our discussion to regression problems,
many of the models considered below can easily be extended to classification
problems.

The most commonly applied statistical model is the linear regression model
(Gelman, Carlin, et al., 2013). Let θ = {α, β}, where α ∈ Rd and β ∈ R. The
linear regression model is a scaled sum of the explanatory variables,

f(x; θ) =β + α⊤x (2.8)

=β +
d∑
k=1

αkxk. (2.9)

Here we explicitly specify an intercept term, β, but it can also be implicitly
included in the explanatory variables, for instance as xd+1 = 1.

Moving beyond linear models opens up for a variety of function classes,
many of which use Equation (2.9) a building block. We first consider basis
expansions. Let θ ∈ R and hk : Rd → R for k = 1, . . . ,K. Additionally,
collect the parameters and basis function in vectors, θ =

[
θ1 . . . θK

]⊤ and
h(x) =

[
h1(x) . . . hK(x)

]⊤. The basis expansion can then be represented by
two equivalent forms,

f(x; θ) =θ⊤h(x) (2.10)

=
K∑
k=1

θkhk(x). (2.11)

The basis expansion is similar to the linear model, except that the explanatory
variables are replaced by a set of K new transformed variables. The basis
functions can be constructed to span a particular function space, such as the
space polynomials or degree K with hk(x) = xk, or crafted manually through
application-specific feature engineering. In the case of a generated basis, the
number of elements, K, can be seen as a hyperparameter. Once the basis
expansion has been fixed, Equation (2.11) becomes a linear regression problem
identically to Equation (2.9).

Another class of nonlinear extensions is additive models. Additive models is a
sum of contributions from each explanatory variable, as in the linear model, but
each variable is subject to arbitrary nonlinear transformation. Given unspecified
unspecified hk : R → R, k = 1, . . . , d, and a set of unspecified parameters
θ = {θ1, . . . , θd}, the additive model is

f(x; θ) =
d∑
k=1

hk(xk; θk). (2.12)

8



Statistical and machine learning methodology

While Equation (2.12) allows for significant flexibility in the choice of hk, it is not
a universal approximator. For instance, bi-linear terms such as x1x2 cannot be
represented. The advantage of this limitation is that the effect of the explanatory
variables can be studied individually, which can be a desirable trait.

Projection pursuit takes the additive concept further, by allowing arbitrary
projections of all explanatory variables before the nonlinearities are applied.
Let αk ∈ Rd, βk ∈ B, and hk : R → R for k = 1, . . . ,K, and θ =
{(α1, β1), . . . , (αK , βK)}. Projection pursuit is then given by

f(x; θ) =
K∑
k=1

hk(α⊤
k x;βk). (2.13)

The nonlinearities, hk, are estimated along with the projections and can take
parameters of their own. If we allow for arbitrarily many terms K combined
with an appropriate choice of hk, the projection pursuit model is a universal
approximator (Hastie, Tibshirani, and Friedman, 2009).

Shallow neural networks take a similar form, but with the same, predeter-
mined, nonlinearity, h : R → R, applied in all K terms,

f(x; θ) =
K∑
k=1

γkh(α⊤
k x+ βk). (2.14)

where θ = {(αk, βk, γk)}Kk=1 with γk, βk ∈ R and αk ∈ Rd. For an appropriately
chosen nonlinearity, h, and arbitrarily large K, Equation (2.14) is also a universal
approximator (Cybenko, 1989). While seemingly similar to projection pursuit,
there are key differences between the two. In projection pursuit, the additive
terms are constructed one by one, until a stopping criterion is reached, and the
nonlinearities can be adapted to the different projections. In neural networks,
the type of nonlinearity and the number of additive terms are chosen first, and all
the parameters are then learned simultaneously. Neural networks are discussed
further in Section 2.1.5.

Tree based methods represent another strategy for generating flexible sets of
basis functions that are capable of universal approximation. We only consider
regression trees. Recall our model definition, f : Rd → R. A regression tree
partitions the domain into regions, Rk ⊂ Rd, k = 1, . . . ,K, such that regions
are disjoint and the union of all regions covers the entire domain. Let αk ∈ R
and βk ∈ B for k = 1, . . . ,K, and θ = {(α1, β1), . . . , (αK , βK)}. Further, let
I(x ∈ Rk) be an indicator function equal to one if the condition is true and
zero otherwise, and let the unspecified parameters βk describe the region Rk to
enable the mapping Rk = R(βk). The predictions of a regression tree can then
be written

f(x; θ) =
K∑
k=1

αkI(x ∈ R(βk)). (2.15)

9
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The splits are generated recursively on one explanatory variable at a time, leading
to a decision tree with one region for each leaf node (Hastie, Tibshirani, and
Friedman, 2009).

Finally, we consider the mixtures of experts model,

f(x; θ) =
K∑
k=1

gk(x;α)hk(x;β), (2.16)

where θ = {α, β)} with α and β unspecified. The mixtures of experts model is a
weighted sum of expert functions, hk : Rd → R, where the weights are given
by gate functions, gk : Rd → [0, 1]. It is common to restrict the weights to sum
to one,

∑K
k=1 gk(x) = 1. Both the expert functions and gate functions can take

arbitrary sets of parameters. The expert functions can take any form, including
all the statistical models discussed above (Yuksel, Wilson, and Gader, 2012).
For instance, both the expert and the gate functions can be neural networks
(Fedus, Zoph, and Shazeer, 2022).

The abovementioned regression models all have their strengths and weak-
nesses. Choosing an appropriate model for a particular problem is part of model
selection (Claeskens and Hjort, 2008). Model selection covers many aspects. For
instance, choosing between a linear or non-linear regression model, or the number
of basis terms in the basis expansion from Equation (2.11). Additionally, it may
include feature selection, which is to select a subset of the available explanatory
variables to use in the actual model, or other dimensionality reduction techniques.

2.1.5 Deep neural networks

Neural networks are a large class of models with a long and winding history
(Schmidhuber, 2015). Colloquially, the term neural networks has come to include
such a diverse set of computations that it is challenging to define it properly.
Originally, the name referred to constructions such as the shallow neural network
in Equation (2.14), but the current state of the art has grown far beyond this
function form. We use the term architecture to mean how a particular neural
network is configured to compute the response as a function of the explanatory
variables. We limit our discussion to feedforward neural networks (Goodfellow,
Bengio, and Courville, 2016). For convenience, we sometimes refer to such
models only as networks.

Feedforward neural networks are functions f : Rd → Rr, that are composed
of K nonlinear transforms,

f(x; θ) = (gK ◦ gk−1 ◦ · · · ◦ g2 ◦ g1)(x), (2.17)

where each function, gk : Rdk → Rdk+1 , in the composition is known as a layer.
Each layer is a transform that builds on the previous step,

zk+1 = gk(zk; θk). (2.18)

10
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The first layer, also known as the input layer, g1, takes x = z1 as its input,
making the dimension d1 = d. The last layer, also known as the output layer, gK ,
produces f(x; θ) = zK+1 as its output, which makes the dimension dK+1 = r.
The other steps, zk ∈ Rdk , k = 2, . . . ,K, are intermediate computations that are
not directly observed. The layers that produce these unobserved computations
are referred to as hidden layers.

We refer to the dimensions dk+1 as the size of the kth layer. A common
design choice is to let all hidden layers have the same size. This is then referred
to as the width of the neural network, and the number of layers, K, is the depth.
Both the width and depth are considered hyperparameters. We consider a neural
network with more than two layers to be a deep neural network.

The layers are made up of two components. The first is an affine mapping,
which takes a set of parameters, θk = {Wk, bk}, consisting of a matrix
Wk ∈ Rdk+1×dk and a vector bk ∈ Rdk+1 . The second is a nonlinear activation
function, hk : R → R. The rectified linear unit,

hk(·) = max(0, ·), (2.19)

is a common choice for activation for hidden layers, k = 1, . . . ,K − 1, while
the activation on the last layer, k = K, depends on the learning problem
(Goodfellow, Bengio, and Courville, 2016). For regression problems, we use the
identity function as activation in the last layer. We now specify Equation (2.18),

gk(zk; θk) = hk(Wkzk + bk). (2.20)

The activation function hk has a scalar domain, and is applied element wise to
its vector argument.

Feedforward neural networks are flexible models with a potentially large
number of parameters. They are universal approximators, granted that the
network is sufficiently wide and deep (Kidger and Lyons, 2020). Yet, there are
many neural network models that extend the simple feedforward scheme outlined
above. These changes may be motivated by a need to reduce the number of
parameters without significantly limiting the approximation power of the model
or to capture properties known to be present in the problem. An example
is convolutional neural networks, which assumes and exploits translational
invariance of the input-output relationship (LeCun et al., 1989), which is common
in, for instance, images. Another example is recurrent neural networks, where
the input can have arbitrary size and is sequentially processed (Goodfellow,
Bengio, and Courville, 2016). These share similarities with state-space models,
which we will discuss in Section 2.1.7.

Other changes to the original feedforward architecture can be motivated by a
need to make the network easier to train (Balduzzi et al., 2017). An example is
residual skip connections (He et al., 2015). Skip connections augment the layer
transform in Equation (2.18) by adding the layer input to the output,

zk+1 = hk(Wkzk + bk) + zk, (2.21)
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This requires that the layers involved have the same dimensions, dk+1 = dk.
Skip connections can be added to some, or all, of the layers in the network.
Equation (2.21) illustrates a skip connection that skips over one layer, but the
skip connection can span multiple layers.

2.1.6 Repeated measurements and multitask learning

The models discussed so far assume that our data is such that all observations
have an identical distribution. Many problems are faced with data that is
collected from similar, yet different, subjects. A model may be required to
capture aspects these subjects have in common and their uniqueness at the same
time.

Consider m subjects, each with a dataset Dj = {(xij , yij)}nji=1, where
xij ∈ Rd, and yij ∈ R. Similarly to Equation (2.3), the data is modeled
according to

yij = fj(xij) + eij , (2.22)

with E[eij ] = 0. Note that we include the indices, i and j, throughout this
discussion, in order to highlight which components that vary with the subjects and
their observations, and it is implied that the indices take the values j = 1, . . . ,m
and i = 1 . . . , nj .

This type of observed data is referred to as repeated measurements in the
statistical literature, and the model in Equation (2.22) may be referred to as
hierarchical models, multi-level models, or mixed models (Demidenko, 2004;
Raudenbush and Bryk, 2002).

In the machine learning context, Equation (2.22) is a case of multitask learning
(Zhang and Yang, 2021). We use the multitask learning nomenclature in our
discussion and refer to the individual learning problems, consisting of a function,
fj : Rd 7→ R, and a dataset, Dj , as a task. The task functions, fj , j = 1, . . . ,m,
are assumed to have some aspects in common. We also assume that the tasks
are homogeneous, which means that the explanatory variables and responses
represent the same quantities for all tasks (Zhang and Yang, 2021). If the tasks
are treated individually, without any information being shared between them, we
refer to it as single task learning. When two or more tasks are trained together
in a way that allows information to be shared between them, it is a multitask
learning problem.

As an example, consider an industrial plant with multiple installations of the
same equipment, and we require a model that predicts the same quantity for all
installations. If we assume that the installations are identical, we could apply
the models from Section 2.1.4 directly. If, instead, the different installations
have been exposed to different wear and tear, or they have slightly different, but
unknown, properties, we would like to capture these differences to create better
predictions for each installation. We would consider this a homogeneous problem
if the installations have the same measurements available as explanatory variables
and responses. If this is not the case, and they have different measurements or
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we wish to predict different quantities as the response, it would be considered a
heterogeneous multitask learning problem.

One strategy for dealing with multitask learning problems is to construct
models where a subset of the parameters are shared among all task and some
parameters are task specific. The simplest example is the linear varying intercept
model (Demidenko, 2004). Let α ∈ Rd and β0 ∈ R be shared parameters,
βj ∈ R, j = 1, . . . ,m be task parameters, and θ = {α, β0, β1, . . . , βm}. The
varying intercept model is then given by

fj(xij ; θ) = α⊤xij + β0 + βj . (2.23)

This allows each task to learn its own intercept, while the slope is the same for
all of them.

Equation Equation (2.23) can be rewritten to an alternative form. Let
β =

[
β1 . . . βm

]⊤ be a vector of the task parameters, I(k = j), k, j ∈ N be
an indicator function equal to one if the condition is true and zero otherwise,
and

cj =

 I(1 = j)
...

I(m = j)

 . (2.24)

We refer to cj as the context vector, which is a one-hot encoding of the task
number. We can now rewrite Equation (2.23) in terms of the context vector,

fj(xij ; θ) = α⊤xij + β⊤cj + β0. (2.25)

This view presents the model as if the task information is part of the explanatory
variables, and hides the individual task parameters to some extent. We can take
the concept one step further by defining

x̃ij =
[
xij
cj

]
=



xij,1
...

xij,d
I(1 = j)

...
I(m = j)


. (2.26)

and

α̃ =
[
α
β

]
=



α1
...
αd
β1
...
βm


. (2.27)
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Which allows us to simplify Equation (2.23) to

fj(xij ; θ) = α̃⊤x̃ij + β0. (2.28)

With this notation, it is only the indexing that reveals that this model is any
different from the ordinary linear regression model in Equation (2.9).

The parameter sharing concept illustrated in Equation (2.23) can be extended
to all the nonlinear models discussed in Section 2.1.4. We limit our discussion to
multitask neural networks (Zhang and Yang, 2021), focusing our attention on
simple augmentation of the feedforward neural networks. Let h : Rd → Rr be a
feedforward neural network with K > 1 layers, parametrized by θ = {Wk, bk}Kk=1,
where the dimensions and computations follow the outline from Section 2.1.5.

The first multitask neural network to consider is the classic architecture of
Caruana (1997), which is simply a neural network with one output for each task,
h : Rd → Rm. Upon evaluation of a particular datapoint, xij , the network
simultaneously computes the response of all m tasks, and we select the jth output
as the response of interest. In combination with the context vector defined in
Equation (2.24), we can write the model of the jth task as

fj(xij ; θ) = c⊤
j h(xij ; θ). (2.29)

Let h̃ : Rd → RdK be the neural network comprised of the first K− 1 layers of h
and θ̃ be the corresponding parameters. Further, let the last activation function
gK be the identity function. This allows us to write Equation (2.29) as

fj(xij ; θ) = c⊤
j

(
WK h̃(xij ; θ̃) + bK

)
, (2.30)

= c⊤
j WK h̃(xij ; θ̃) + c⊤

j bK . (2.31)

We can further deconstruct the computation in the last layer. Let βj,1 ∈ RdK

and βj,0 ∈ R for j = 1, . . . ,m, such that

WK =

β
⊤
1,1
...

β⊤
m,1

 , bK =

β1,0
...

βm,0

 . (2.32)

This is makes c⊤
j WK = β⊤

j,1 and c⊤
j bK = β⊤

j,0, and Equation (2.31) can now be
rewritten as

fj(xij ; θ) = β⊤
j,1h̃(xij ; θ̃) + βj,0. (2.33)

This form is identical to the basis expansion in Equation (2.10), where the basis
expansion, h̃ is shared between tasks. This has the interesting interpretation that
a basis expansion is learned from the joint data from all tasks, and that each
task performs a linear regression on this basis.

Another strategy is to augment the network input to include the context
vector cj (Silver, Poirier, and Currie, 2008). This model is then a neural network
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h : Rd+m → R, where the input is given in Equation (2.26). This is known as a
context sensitive neural network, and the task models are given by

fj(xij ; θ) = h(xij , cj ; θ). (2.34)

This is equivalent to letting each task have its own intercept parameters in the
first layer of the network. To see this, recall from Equation (2.18), that the first
layer is given by z2 = g1(W1x̃+ b1), where we now focus on the affine mapping,

vij = W1x̃ij + b1. (2.35)

Let αk ∈ Rd2 , k = 1, . . . , d, and βk ∈ Rd2 , k = 1, . . . ,m, be the columns of
W1 ∈ Rd2×d+m,

W1 =
[
α1 . . . αd β1 . . . βm

]
. (2.36)

We now see that Equation (2.35) can be written as

vij =
d∑
k=1

αkxij,k +
m∑
k=1

βkI(k = j) + b1. (2.37)

Collecting parameters from the first summation,

A =
[
α1 . . . αd

]
, (2.38)

and noting that there is only one non-zero term in the second summation, we
can simplify further

vij = Axij + βj + b1. (2.39)

We recognize this structure from the linear varying intercept model from
Equation (2.23). In conjunction with the rectified linear unit as the activation
function, given in Equation (2.19), this can be interpreted as each task being
allowed to adjust its own threshold of activation in the first layer of the network.
The adjustments of these changes are then potentially propagated through all
the layers of the network to produce the desired adaptation of the response.

In both the classic architecture of Caruana (1997) and the context sensitive
architecture of Silver, Poirier, and Currie (2008) there are parameters within
the neural network that are implicitly task specific. The number of implicit task
parameters is given by the size of the second to last layer, dK , and the first layer,
d2, respectively. These dimensions can be large, and adjusting them also affects
other properties of the network, such as the approximative power of the neural
network. The context adaptation concept of (Zintgraf et al., 2019) introduces
explicit trainable task parameters as input to the neural network. Let βj ∈ Rp

for j = 1, . . . ,m, and the augmented input vector be

x̃ij =
[
xij
βj

]
. (2.40)

15



2. Background

Collecting all parameters in θ̃ = {θ, β1, . . . , βm}, the context adaptation model
is then a neural network h : Rd+p → R,

fj(xij ; θ̃) = h(xij , βj ; θ). (2.41)

We refer to this architecture as learned context neural networks. To highlight
the difference between the learned context and the context sensitive network,
we repeat the exercise from Equations (2.35) to (2.39), but with lk ∈ Rd2 , k =
1, . . . , p, as the columns of L =

[
l1 . . . lp

]
, we get W1 =

[
A L

]
, with A given

by Equation (2.38). The affine transform in the first layer of learned context
neural networks then becomes

vij = Axij + Lβj + b1. (2.42)

The columns of L can be interpreted as latent tasks and each task is identified
as a linear combination of these tasks. In general, L will be a tall matrix, with
significantly more rows than columns.

To study the difference between the first layer for learned context and context
sensitive networks, given in Equation (2.42) and Equation (2.39) respectively,
we study the rank of matrices consisting of the first layer intercepts. Let

B(cs) =
[
β

(cs)
1 . . . β

(cs)
m

]
, (2.43)

be a matrix with columns equal to the context sensitive task intercepts from
Equation (2.39). Similarly, for the learned context, we collect the intercepts
from Equation (2.42),

B(lc) = Lb(lc) = L
[
β

(lc)
1 . . . β

(lc)
m

]
. (2.44)

We have B(cs), B(lc) ∈ Rd2×m, L ∈ Rd2×p, and b(lc) ∈ Rp×m, where d2 is the size
of the first layer, m is the number of tasks, and p is the number of task parameters
in the learned context network. We have that rank(B(cs)) ≤ min(d2,m) and
rank(B(lc)) ≤ min(rank(L), rank(b(lc))) ≤ min(d2,m, p). Indicating that when
p < m, the first layer task intercepts for learned context networks may seem
like a low-rank variation of the context sensitive equivalent. Additionally, the
number of parameters associated with the task intercepts is d2m for the context
sensitive and p(d2 +m) for the learned context. For a moderate example with
layer size d2 = 200 and m = 50 tasks, we get d2m = 10000, of which each
task is responsible for a number of parameters equal to d2. Compared with
p(d2 + m) = 250p for the learned context, where each task is responsible for
only p parameters, which we can freely control to be a small number. This may
lead us to believe that the learned context has less flexibility than the context
sensitive alternative, but for sufficiently wide and deep neural networks this is
not necessarily the case (see Paper III).

Figure 2.1 illustrates the difference between the three multitask neural
networks discussed. While deceptively similar, the architectures have some
important differences. The difference between context sensitive networks and
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learned context networks is that in the learned context case, the entire matrix
W1 is used for all tasks, while in the context sensitive case, parts of the matrix
are task specific. Context sensitive networks have implicit task parameters in
Rd2 , the width of the neural network, while learned context networks have
explicit task parameters in Rp. In the classic shared basis architecture, the task
parameters enter at the end of the network, which gives them less opportunity to
influence the computations. This makes the difference between tasks limited to
linear combinations of the same basis, while more complex, nonlinear differences
are possible with the input augmentations.

c)

Rd+m → R

d)

Rd+p → R

a)

Rd → Rm

b)

Rd → Rp

xij

cj
yij

xij

βj
yij

xij yij·

cj

xij yij·

βj

Figure 2.1: Illustration of different MTL neural network strategies. Each box
represents a neural network with the dimensions of the domain and co-domain as
indicated. The neural networks are shared between tasks. The circles represent
the dot product operation. Illustrations a and b are two different views of the
same architecture, namely the shared basis neural network of Caruana (1997),
given in Equations (2.29) and (2.33). Illustration c is the context sensitive
neural network of Silver, Poirier, and Currie (2008), given in Equation (2.34).
Illustration d is the learned context neural network, presented as a meta-learning
solution by Zintgraf et al. (2019), given in Equation (2.41). This figure originally
appeared in Paper III.

The multitask models we have discussed all make use of hard parameter
sharing. This means that there are some parameters that are used directly
in all task models with the exact same value. An alternative strategy is soft
parameter sharing. With soft sharing, the parameters are free to take different
values for each task, but other mechanisms are introduced to make them similar
to each other. This can for instance be done by forcing the parameters to be
similar, or by having the resulting computations be correlated with each other
S. Yan and X. Yan (2020). Soft parameter sharing can often be formulated
with hyperparameters that control the extent of the similarity between tasks,
with hard parameter sharing at one extreme and completely independent task
parameters at the other.

Part of the motivation for multitask learning is that the task can learn from
each other. However, it is not guaranteed that hard, or soft, parameter sharing
is beneficial for all tasks. If the model lacks the approximative power to adapt
to all tasks simultaneously, then some tasks may see a poorer performance than
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if they were treated as a single task learning problem. This is referred to as
negative transfer.

Multitask learning considers all tasks simultaneously and results in models
for all tasks. Other learning strategies propose slight variations on this. Transfer-
learning is a strategy where the emphasis is on one particular target task, and the
data from all other tasks are only used to improve its performance (Hospedales
et al., 2022). This can be achieved by first training a model on all the support
tasks and then adjusting it with the data from the target task as if it were a
single-task learning problem. Meta-learning is a strategy where the goal is to
find an optimal learning procedure. The procedure should be able to learn models
for new tasks quickly and with potentially few data points (Hospedales et al.,
2022). In practice, these learning paradigms can lead to similar architectures.

2.1.7 State-space models

For both the conventional data and the repeated measurements data, the ordering
of the samples is irrelevant, meaning that the order of the observations and tasks
can be permuted without any consequences. This is known as exchangeability
(Gelman, Carlin, et al., 2013), and is an essential, but often unstated, assumption
for many statistical models. There are, however, cases where the observations
are not exchangeable and the order of the data is essential, such as when the
data is generated by repeatedly sampling from a system that develops over time.
This creates a dependency between the observations. State-space models are a
class of models designed to address this type of dependency in the likelihood. In
these cases we use subscript t instead of i, to emphasize the time dependence.
Each time step, t, is associated with an unknown state, zt, and the inference of
these states is called state estimation.

It is common to assume that the system has the Markov property, which is
that the likelihood and transition only depend on the current state. In other
words, this means that all information about the system up until the current
time t, is contained in the current state, zt, and the history of how we arrived at
this state is irrelevant. This simplifies analysis.

Consider a sequence of time steps t = 1, . . . , n, with corresponding unknown
states zt ∈ Z, response yt ∈ Y, and additional explanatory variables xt ∈ X .
The state-space model takes the form

zt+1 = g(zt, xt) + ϵt, (2.45)
yt = f(zt, xt) + et, (2.46)

where et and ϵt are random variables with expected values equal to zero.
Equation (2.45) is known as the transition or state equation, and Equation (2.46)
is known as the likelihood or output equation. These equations are considered
for all steps, t = 1, . . . , n. The initial state, z1, is treated differently and may be
assumed known or modeled by an appropriate probability distribution.
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2.1.8 Maximum likelihood and least squares

Section 2.1.2 introduced the relationship between a statistical model, observed
data, and the likelihood function. We now discuss the role of the likelihood
function in model inference, compare it to the concept of least squares, which is
common in the machine learning literature, and show how the two are related.
We limit our discussion to the regression setting, although some statements have
a broader applicability.

Recall the setup from Section 2.1.2, with explanatory variables x ∈ X and
response y ∈ Y, from which we have observations D = {(xi, yi)}ni=1, that are
related by a function f : X → Y taking parameters θ ∈ Θ, according to
y = f(x; θ) + e, where e is a random variable with E [e] = 0.

The likelihood function L(θ), given in Equation (2.5), summarizes all
information the data contains about the parameters of our model. We assume
that the observations are independent when conditioned on the parameters,
which allow us to work with Equation (2.6). The maximum likelihood estimate
of θ is defined as the parameters that are the most likely to have generated the
observed data. Formulated in terms of mathematical optimization, we write

arg max
θ∈Θ

L(θ), (2.47)

which reads as “find a value of θ, among the candidates in the parameter space Θ,
that maximizes the function L(θ).” Formally, θ⋆ is a solution to Equation (2.47)
if L(θ⋆) ≥ L(θ) for all θ ∈ Θ.

The log-likelihood function, l(θ) = logL(θ), is equivalent to the likelihood in
terms of maximization. This is because the logarithm is strictly monotone, and
the two functions therefore take on their maximum value at the same function
arguments. With the independence assumption used in Equation (2.6), the
log-likelihood is the sum,

l(θ) =
n∑
i=n

log p(yi, xi|θ). (2.48)

For a common class of statistical models, the log-likelihood can be further
simplified, by removing terms and factors that do not influence the solution.
Consider the case where e ∼ N (0, σ2). We initially consider σ to be unknown
and include along with θ. The conditional density terms are then given by

p(yi|xi, θ, σ) = 1
σ
√

2π
e

− 1
2

(
yi−f(xi;θ)

σ

)2

. (2.49)

Inserting this into Equation (2.48) and yields

l(θ, σ) = −n log
√

2π − n log σ − 1
2σ2

n∑
i=n

(yi − f(xi; θ))2
. (2.50)
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With focus on θ, we note that maximizing the log-likelihood in Equation (2.50)
is equivalent to minimizing the residual sum of squares,

RSS(θ) =
n∑
i=1

(yi − f(xi; θ))2
. (2.51)

The maximum likelihood estimate is therefore in this case equivalent to the
minimum residual sum of squares (Hastie, Tibshirani, and Friedman, 2009). The
residual sum of squares is also known as the least squares estimate. It is the
most common regression problem in machine learning, which we will return to
in Section 2.1.9.

The linear regression model in Equation (2.9) is well studied in the maximum
likelihood setting. We now show its derivation, by solving Equation (2.51), as
this is equivalent with respect to the optimal parameters. We do not include an
explicit bias term, and let the parameters be defined by θ ∈ d, our model be
defined by

yi = θ⊤xi + ei, (2.52)
ei ∼ N (0, σ2). (2.53)

where the observations are

D = {(yi, xi)}ni=1, (2.54)

with yi ∈ R, and xi ∈ Rd for i = 1, . . . , n. We collect the observations in vector
and matrix form,

y =

y1
...
yn

 , X =

x
⊤
1
...
x⊤
n

 , (2.55)

which allows us to write Equation (2.51) as

RSS(θ) = (y−Xθ)⊤ (y−Xθ) . (2.56)

To find the minimum of this expression we differentiate with respect to θ and
set this equal to zero,

∂

∂θ
RSS(θ) = −2X⊤y + 2X⊤Xθ = 0, (2.57)

which rearranged yields the solution

θ̂ =
(
X⊤X

)−1 X⊤y. (2.58)

The variance of this estimate is

Var[θ̂] =
(
X⊤X

)−1
σ2. (2.59)
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If the noise variance, σ2, is unknown, it can be estimated by

σ̂2 = 1
n− d− 1RSS(θ̂). (2.60)

This is an adjusted version of the maximum likelihood estimator, σ̂2 = RSS(θ̂)/n.
The maximum likelihood estimate is biased, and underestimates the variance
in this case, because parts of the error terms have, unintentionally, been fitted
by the model parameters. In Equation (2.60), the denominator is adjusted to
ensure that E[σ̂2] = σ2 (Hastie, Tibshirani, and Friedman, 2009).

Consider now a slight variation of the linear regression problem above, where
the noise terms are not identically distributed, but given by ei ∼ N (0, σ2

i ), i =
1, . . . , n, with σi > 0 being known. From Equation (2.50), we are now have a
factor 1/σ2

i in the least squares loss,

WLS(θ) =
n∑
i=1

1
σ2
i

(yi − f(xi; θ))2
, (2.61)

which is known as weighted least squares. The matrix form of the loss is

WLS(θ) = (y−Xθ)⊤ Σ−1 (y−Xθ) , (2.62)

where Σ is a diagonal matrix with Σii = σ2
i . Following the same derivation yields

the weighted least squares estimate,

θ̂ =
(
X⊤Σ−1X

)−1 X⊤Σ−1y. (2.63)

For the linear regression variations studied above we are able to derive our
results analytically. However, for most models, we are unable to do so and must
approximate the solutions numerically. This is discussed further in Section 2.1.11.

Under certain regularity conditions, maximum likelihood estimates have
desirable limiting properties. This means, that as the number of observations
increases without bounds, the estimates will display asymptotic behaviors. One
of the key properties is consistency (Gelman, Carlin, et al., 2013). Consistency
means that if the observations are generated by p(y|x, θ⋆) and our estimated
model is p(y|x, θ̂), then the estimate of θ̂ will converge, in probability, to θ⋆

as the number of observations increases without bounds. Another property
is that the estimates are asymptotic normal, which means the distribution
of θ̂ converges to a normal distribution with expectation equal to the true
value, θ⋆. Of the regularity conditions we highlight identifiability, which is
that θ⋆ ≠ θ is equivalent to p(· |θ⋆) ̸= p(· |θ). This means that different
parameters cannot yield “the same” function. A trivial example that violates
this is p(y|x, α, β1, β2, σ) = N (α⊤x+ β1 + β2, σ

2), where two intercept terms, β1
and β2, can be varied without affecting the response y as long as they sum to a
fixed value. Notably, neural networks are not identifiable.
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2.1.9 Loss, regularization, and generalization

Maximum likelihood and minimum residual sum of squares, discussed in
Section 2.1.8, are examples of optimization problems that attempt to describe
model parameters with particularly desirable properties. In the two cases
mentioned, this property is related to having a good fit to the observed data.
However, there are other aspects to consider than just the fit to data. In
general, we want to combine fit to data with other desirable model properties, in
order to identify the best possible model for our application. Formulating such
optimization problems and then applying numerical methods to address them is
a common strategy for many statistical and machine learning problems.

In terms of optimization, maximizing a function is equivalent to minimizing
its negation, and we therefore limit our discussion to minimization problems. In
the context of machine learning, we often refer to the function being minimized
as the loss function, We now discuss the concept of loss functions, and their
construction, with more generality. Methods for finding solutions to these
optimization problems are discussed in Section 2.1.11.

Let θ ∈ Θ be the parameters of a statistical model, such as the one described
by Equation (2.4). Let the loss function be L : Θ→ R. We write the general
minimization problem as

arg min
θ∈Θ

L(θ). (2.64)

For the maximum likelihood problem we would have L(θ) = −L(θ) from
Equation (2.47), and for the residual sum of squares we would take L(θ) = RSS(θ)
from Equation (2.51).

The loss functions discussed so far are only concerned with how well the model
fits with the data, as they capture the difference between the observed response
and model predictions. As discussed in Section 2.1.8, these loss functions display
a desirable limiting behavior. However, we will never have infinite data, and a
complex model may not be identifiable. Therefore, it is common to augment the
loss function with terms that only depend on the parameters, and not the data.
This is called parameter regularization. Regularization is often introduced to
create identifiable problems, find solutions with desirable properties, or to avoid
overfitting (Hastie, Tibshirani, and Friedman, 2009).

The case of overfitting is particularly relevant in our discussion. Recall the
model from Equation (2.4), where the predictions are subject to an additive
error term e. If the structure of f is flexible enough, such as the universal
approximators discussed in Section 2.1.4, it is possible to find parameters that
adapt too well to the specific dataset such that the errors also are fitted. This
leads to a model that can have a good fit to the data, but fail to capture the
underlying function. This leads to poor generalization, which is a model’s ability
to perform prediction on new, unseen data points.

Regularization is introduced by adding a function J : Θ → R to the loss
function. As an example, let λ ≥ 0 and our fit to data be captured by the
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residual sum of squares, then the total loss is given by

L(θ) = RSS(θ) + λJ(θ), (2.65)

where the factor λ determines the balance between the two forces. We can
consider λ as a hyperparameter that controls the balance between the model’s
ability to fit the underlying function and overfitting to noise. Its purpose is to
trade between the performance on training data with the ability to generalize
to new data. In the case of λ = 0, Equation (2.65) reduces to the residual sum
of squares, and the model attempts to fit the data, including the error terms,
as best as possible. As λ → ∞, the parameters are forced toward zero. It is
natural to expect there to be an optimal value for λ somewhere in between the
two extremes. We will return to this question at the end of the section.

In learning problems with many parameters, a common strategy is to force
the parameters towards zero. For instance, the squared norm,

J(θ) = ||θ||22, (2.66)

can be used to ensure that no single parameter takes an overly dominating role in
the solution. Regularization with the squared norm is known as ridge regression
when combined with a linear regression model and the least squares loss (Hastie,
Tibshirani, and Friedman, 2009).

As an example, consider the the linear regression model from Equations (2.52)
to (2.54). We now augmenting the loss function in Equation (2.56) with the
squared norm of the parameters,

L(θ) = (y−Xθ)⊤ (y−Xθ) + λθ⊤θ, (2.67)

and find the solution to the ridge regression problem as

θ̂ =
(
X⊤X + λI

)−1 X⊤y. (2.68)

We see that the effect of this regularization is to add a positive diagonal to the
matrix being inverted. For an appropriate choice of λ > 0 this can ensure that
the inverse exists even when the original equations are underdetermined. Its
effect is that it shrinks the values of θ towards zero as λ increases. The ridge
regression solution has an interesting interpretation in terms of the weighted
least squares problem from Equation (2.62). If we pretend to have a second set
of observations, 0 = θk + ek, with ek ∼ N (0, σ2/λ), for k = 1, . . . , d, we can
augment the matrix form of the weighted least squares problem to become

y⋆ =
[
y
0

]
,X⋆ =

[
X
I

]
,Σ⋆ =

[
σ2I 0
0 σ2/λI

]
, (2.69)

which multiplied out yields an estimate identical to Equation (2.68). This can
be interpreted as having observed the values of θ to be zero with the given
uncertainty.
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A fundamental question is how to quantify a model’s ability to generalize to
new data, because we naturally do not have access to such data. An underlying
assumption is that the new data is drawn from the same distribution as the
data we use during model training. A common solution is to simulate the
scenario by splitting our actually observed data into two disjoint sets. One set
is denoted the training set and the other the test set. The purpose of the test
set is to play the role of new data, it is therefore kept untouched during model
development. The training data is used to develop and train a model, and its
ability to generalization is quantified using the test data (Hastie, Tibshirani, and
Friedman, 2009).

Formulating a loss function, such as Equation (2.65), allows us to find the
model parameters θ. But, before this can be done, we have to actually specify the
model structure and the regularization factor. As an example, consider the basis
expansion regression, given in Equation (2.11), with squared norm regularization
as in Equation (2.66). We must find suitable values for the number of basis
functions, K ∈ N, and the regularization factor λ ∈ R+. Ideally, we would
want to select these such that the prediction errors on future data are as small
as possible. In the machine learning literature, identifying these parameters is
referred to as hyperparameter optimization (Bergstra and Bengio, 2012).

To make the concept of hyperparameter optimization more precise, let ϕ ∈ Φ
be the hyperparameters of the model and θ ∈ Θϕ be the parameters of the model
given a particular set of hyperparameters. For the example above, we would
have ϕ = (K,λ) and Φ = N×R+. The notation Θϕ is to emphasize that the
parameter space can change with hyperparameters such as K. It is not trivial to
jointly optimize both parameters and hyperparameters, due to the interaction
between hyperparameters and the model parameter space. The problem can be
seen as a bilevel optimization problem,

arg min
ϕ∈Φ

Lv

(
arg min
θ∈Θϕ

Lϕ(θ)
)
. (2.70)

which consists of an inner and an outer problem (Bengio, 2012). The inner
optimization problem is the standard learning problem from Equation (2.64),
given a set of hyperparameters, while the outer problem is concerned with the
selection of the hyperparameters. The loss function of the inner problem, Lϕ,
may change depending on the hyperparameters, such as in Equation (2.67). The
result of the inner optimization is validated by the validation loss Lv(θ). The
validation loss is formally defined as

Lv :
⋃
ϕ∈Φ

Θϕ → R, (2.71)

meaning that it takes values from the union of all possible parameter spaces
generated by the hyperparameters as its argument.

The validation loss is constructed to quantify the different models’ ability
to generalize, and can be viewed as a model selection criterion. We create the
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validation loss by splitting the training data again. One part called validation
data, is used in the validation loss, while the remaining training data is used for
in the inner optimization problem as normal. As an example, let V ⊂ {1, . . . , n}
be the indices of the data selected as validation data, and θϕ denote the result
of the inner optimization problem given a particular set of hyperparameters ϕ.
If we choose the residual sum of squares from Equation (2.51) as our validation
loss, we may compute it as Lv(θϕ) = 1

|V|
∑
i∈V(yi − f(xi; θϕ)2.

The hyperparameter optimization can also be susceptible to overfitting.
Therefore, once a final set of hyperparameters has been selected, we train a final
model on all training data and evaluate this model on the test data set to get a
final estimate of the generalization error. Let T ⊂ {1, . . . , n} be the indices of
the data selected as test data, and recall that the observations used as test data
are not used during model training. We may then estimate the variance of the
generalization error as the mean residual sum of squares,

σ̂2 = 1
|T |

∑
i∈T

(yi − f(xi; θ̂))2, (2.72)

where θ̂ is the final parameter estimate. The estimate from Equation (2.72) is
unbiased, because the test data is unused during training, and the parameters
have therefore not been given the opportunity to fit these error terms. This
is in contrast to the maximum likelihood estimator of the noise variance,
discussed in Section 2.1.8, which is biased toward underestimating the variance.
Equation (2.60) gave a corrected version of the maximum likelihood estimator,
making it unbiased by taking the overfitting into account.

The framework discussed above rests on the assumption that future data will
be generated from the same distribution as the observations used for training and
testing. In some situations, this is not the case. For instance, the explanatory
variables may be distributed differently as time passes. This is known as a
covariate shift (Quinonero-Candela et al., 2009). Such phenomena make it
difficult to quantify the generalization error (Ovadia et al., 2019).

2.1.10 The Bayesian view

We discuss methods to learn from data. We are interested in expressing and
updating our belief about some quantity, θ ∈ Θ, given the data, D, we have
observed. This fits naturally into the Bayesian view of inference, which allows
us to study the world through the conditional density p(θ|D). This conditional
density is best understood by the factorization

p(θ|D) = p(D|θ)p(θ)
p(D) , (2.73)

which is the famous Bayes’ rule (Gelman, Carlin, et al., 2013). We recognize
p(D|θ) as the likelihood from Equation (2.5). The next term is the prior belief,
p(θ), which captures our knowledge before any data has been provided. The
final term is the marginal data probability, p(D). This is often omitted in
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practice when it is sufficient and convenient to study the unnormalized posterior
distribution

p(θ|D) ∝ p(D|θ)p(θ). (2.74)

With the data as defined in Equation (2.2) and the independence assumptions that
led to the likelihood function in Equation (2.6), we can factorize Equation (2.74)
as

p(θ|D) ∝ p(θ)
n∏
i=n

p(yi|xi, θ). (2.75)

A study of the posterior distribution can take many forms. The choice of
methodology depends on our needs and computational feasibility.

Consider the regression model as described by Equation (2.4). We may wish
to use our model to predict a new response y0 given a new observation of the
explanatory variables x0. In this case, we have two unknown variables, the
parameters and the new data point. We can augment the posterior distribution

p(y0, θ|x0,D) = p(y0|x0, θ,D)p(θ|x0,D), (2.76)

for which we can integrate out the parameters to get the posterior predictive
distribution, p(y0|x0,D). A common assumption is that the new data point is
independent of the past observations when conditioned on the parameters, which
gives the convenient form

p(y0|x0,D) =
∫
p(y0|x0, θ)p(θ|D)dθ. (2.77)

Analytical posterior densities can be derived for several combinations of
likelihoods and priors (Gelman, Carlin, et al., 2013). For instance, revisit the
linear regression model from Equations (2.52) to (2.54). We now extend this
model with a prior distribution on the parameters,

θ ∼ N (µ, σ2/λI), (2.78)

where λ > 0 is a scalar factor that represents the difference in uncertainty
between the prior and the observations. In this case, the posterior distribution
then takes the same form as the prior,

θ|D ∼ N (θ̂, Vθ), (2.79)

with mean and covariance given by

θ̂ =
(
X⊤X + λI

)−1 (X⊤Y + λµ
)
, (2.80)

Vθ = σ2 (X⊤X + λI
)−1

. (2.81)

Equations (2.80) and (2.81) is found by repeating the construction from
Equation (2.69), but now with the parameters observed to be equal to the
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prior mean µ with uncertainty equal to the prior variance (Gelman, Carlin, et al.,
2013). The observations are again stacked in y and X as in Equation (2.55). If
our prior expectation is equal to zero, then Equation (2.80) is identical to the
ridge regression from Equation (2.68). We see that as λ is increased from zero,
the solution changes from the ordinary least squares solution, in Equation (2.58),
to become closer and closer to the prior.

The form of the posterior mean is recognized from the discussion on ridge
regression and maximum likelihood in Sections 2.1.8 and 2.1.9. Recall the
weighted least squares interpretation of ridge regression from Section 2.1.9,
which was equivalent to having “observed” the parameters being equal to zero.

When the posterior distribution is not available in closed form, we must
approach the problem differently. We consider three different strategies, point
estimates of the posterior, fitting analytical distributions to the posterior, and
sampling from the posterior.

We first consider point estimates of the posterior. In particular, the point
estimate where the posterior takes its maximum value. We refer to this as
the maximum a posteriori (MAP) estimate. This is similar to the maximum
likelihood method studied in Section 2.1.8. Formulated as the minimization
problem in Equation (2.64), we get the loss function

L(θ) = −p(θ|D). (2.82)

Similarly to maximum likelihood, it is convenient to consider the unnormalized
log posterior, which yields an equivalent loss function

L(θ) = − log p(D|θ)− log p(θ). (2.83)

We recognize the first term as the log-likelihood, and the second term is the log
prior. We can work with the unnormalized posterior because the normalization
term, p(D), does not include the parameters θ and does not influence the
optimization.

Recall how we in Section 2.1.8 derived the connection between maximum
likelihood and least squares estimates, by making some assumptions about the
model. We now repeat this exercise for the MAP estimate. Again consider
the linear regression model in Equations (2.52) to (2.54). We consider the
prior θ ∼ N (0, σ2/λI), with λ > 0. We can follow the same derivations
as in Section 2.1.8, which again results in the log-likelihood from equation
Equation (2.50). Similarly, we find

log p(θ) = p log
√

λ

2πσ2 −
λ

2σ2 θ
⊤θ. (2.84)

for the log-prior. Inserting Equation (2.50) and Equation (2.84) into Equa-
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tion (2.83) we get

log p(θ|D) = −n log
√

2π − n log σ − 1
2σ2

n∑
i=n

(yi − f(xi; θ))2

+ p log
√

λ

2πσ2 −
λ

2σ2 θ
⊤θ, (2.85)

which, when we focus on θ, yields the equivalent loss function

L(θ) =
n∑
i=n

(yi − f(xi; θ))2 + λθ⊤θ, (2.86)

when all the factors and terms independent of θ are removed. We recognize
this as the regularized loss function from Equation (2.65), with λ from the prior
appearing as the tuning factor. This gives us the connection between the normal
prior that leads to Equation (2.85) and the squared norm regularization from
Equation (2.66), and more generally the connection between the MAP estimate
from Equation (2.83) and the regularized maximum likelihood estimate.

If we need to capture more of the posterior distribution than what is provided
by the point estimate, we can attempt to fit an approximate distribution to match
it. The simplest approach is to take a normal approximation at the posterior
mode, by taking the MAP solution as the expected value and the negative inverse
second derivative at this point as the variance (Gelman, Carlin, et al., 2013). An
alternative approximation is variational inference, which is frequently used in
machine learning. Variational inference constructs a parametric approximation of
the posterior, q(θ) (Gelman, Carlin, et al., 2013). The parametric approximation
belongs to a class of candidate densities Q, and we seek the best approximation,

arg min
q∈Q

L(q), (2.87)

according to some loss function L : Q → R. The loss is often taken to be the
Kullback-Leibler divergence (Blei, Kucukelbir, and McAuliffe, 2017),

L(q) = KL(q||p) = Eq [log q(θ)]−Eq [log p(θ|D)] . (2.88)

Note that the Kullback-Leibler divergence is not symmetric, and the expectation
is with respect to q. An important factor of this optimization problem is the
class of densities Q. The mean-field variational family is a common choice when
the dimension of θ is large. The mean-field family approximates the density
as the product of marginal distributions, q(θ) =

∏K
k=1 qk(θk). The marginals

themselves can be any suitable distribution, with the Normal distribution being
a common choice for continuous variables. Variational inference can be scaled to
problems with a large number of parameters, for instance, deep neural networks.
Such neural networks are often referred to as Bayesian neural networks.

Point estimates and fitted distributions are both optimization problems that
attempt to capture the shape of the distribution directly. Simulation methods
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take a different approach. Simulation methods exploit the fact that it is often
feasible to generate samples from a distribution that otherwise is challenging
to study analytically. The intuition behind simulation methods is that the
histogram of a set of samples from a density can for many considerations be a
good representation of the density itself, and the samples can be used to estimate
quantities of interest such as moments or percentiles (Gelman, Carlin, et al.,
2013). These quantities can be represented as the expected value of a function of
the random variable in question. Let θ(1), . . . , θ(s) be s samples simulated from
the posterior distribution p(θ|D), We can then find the Monte Carlo estimate of
the expected value of θ as the sample mean

µMC = 1
s

s∑
i=1

θ(s), (2.89)

which converges to the true expected value, µ =
∫
θp(θ|D)dθ, as s→∞ (Givens

and Hoeting, 2012). Similarly, quantities such as variance and percentiles are
easily computed from the set of samples. In fact, we can change θ(s) with any
transform h(θ(s)) we might be interested in to approximate its expected value
E[h(θ)]. There is a vast range of methods to generate samples, and the choice
of methods is highly dependent on the structure of the model (Givens and
Hoeting, 2012). Section 2.1.12 gives a brief review of the methods relevant to
our application.

2.1.11 Numerical optimization

So far the discussion has been focused on problems we want to solve, without
concern for how they can be solved. Many of the problems we have discussed
ultimately take the form of an optimization problem. Examples are maximum
likelihood and least squares estimates discussed in Section 2.1.8, and the MAP
and distributional approximations to the posterior distribution discussed in
Section 2.1.10. In section Section 2.1.8 we saw an example of least squares
regression where we were able to derive an analytical expression for the minimum,
but this is an exception rather than the norm. For most problems we are
interested in, we must approximate the solutions to these optimization problems
numerically. This is known as numerical optimization. We now review the most
relevant numerical optimization techniques The discussion is based on Nocedal
and Wright (2006) and Givens and Hoeting (2012).

Our problems originate from learning problems for statistical models. We
formulate our general optimization problem using the notation established in
Section 2.1.2 and Section 2.1.9, which differs slightly from the notation usually
found in the numerical optimization literature. As such, we wish to optimize
a quantity θ ∈ Θ, according to a loss function L : Θ → R. In numerical
optimization, we refer to the loss, L, as the objective function, which in our case
describes the properties we wish our model to have, for instance, the negated
log-likelihood Equation (2.48). Further, the parameter space Θ is referred to as
the search space, and the elements of Θ as candidate solutions. Any restrictions
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on the search space are referred to as constraints. Without loss of generality, we
only consider minimization problems, which we write as

arg min
θ∈Θ

L(θ). (2.90)

This is a very general problem statement, and significant complexity can be
hidden in the objective function and the formulation of the search space.

Let θ be a vector of p elements, θ =
[
θ1 . . . θp

]
. An optimization problem

is called continuous if θ is real-valued, θ ∈ Rp, discrete if θ is integer-valued,
θ ∈ Np, and a mixed integer problem if it is a combination of integer and
real-valued elements. An optimization problem is unconstrained if there are no
limitations on the search space, for instance if Θ = Rp, and constrained if we
have restrictions on the values θ can take. For instance, if θ ∈ Rp, but with the
additional constraint

∑p
k=1 θk = 0, it would be a equality constrained problem,

or if we require that θk ≥ 0, k = 1, . . . , p, it would be an inequality constrained
problem.

We now consider continuous, unconstrained optimization problems, with
θ ∈ Rp. How hard the problem in Equation (2.90) is to solve depends on
the structure of L(θ). There may be one or more minima. A point θ⋆ is a
global minimizer of Equation (2.90) if L(θ⋆) ≤ L(θ) for all θ ∈ Θ, and a local
minimizer if the same condition holds for all θ in a neighbourhood around θ⋆.
For some problems, we can prove that there is at most one local minimum, which
then coincides with the global minimum. This is, for instance, the case if L is
convex (Boyd and Vandenberghe, 2004), which means that for any two points
θ(a), θ(b) ∈ Θ, we have

L(αθ(a) + (1− α)θ(b)) ≤ αL(θ(a)) + (1− α)L(θ(b)), (2.91)

for all α ∈ [0, 1]. To effectively recognize a local minima we assume that the
objective function is twice continuously differentiable. Let θ⋆ ∈ Θ be a candidate
point. The first necessary condition for θ⋆ to be a minimum is that it is a critical
point,

∂

∂θ
L(θ⋆) = 0. (2.92)

The secondary necessary condition is that its second derivative is positive semi-
definite,

∂2

∂θ2L(θ⋆) ≥ 0. (2.93)

We get a sufficient condition if Equation (2.93) is changed to a strict inequality,
meaning that the second derivative is positive definite.

As an example, Let θ ∈ R and L(θ) = x2. We have one critical point at θ = 0,
because ∂

∂θL(θ) = 2θ is zero for θ = 0. This point also satisfies the secondary
sufficient condition, because ∂2

∂θ2L(θ) = 2 > 0. We therefore can conclude that
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θ = 0 is a local minimum of this function. If we instead consider L(θ) = x3, we
still have a critical point at θ = 0, but it is not a local minimum. It satisfies the
secondary necessary condition, but not the sufficient condition. Further, consider
L(θ) = x4. This also has a critical point at θ = 0 that satisfies the secondary
necessary condition, but not the sufficient condition. However, this time it is a
local minimum. These examples illustrate how the necessary conditions can be
too relaxed and the sufficient condition can be too strict. When L is convex it
is sufficient that θ⋆ is a critical point. This was the case for the least squares
estimate with a linear regression model from Equation (2.58), which is why it
was sufficient to find a point that satisfied Equation (2.92). In the examples
above, x2 and x4 are convex, while x3 is not. This is one of the reasons why
convexity is such an important concept in optimization.

For problems without an analytical solution, the solution can be approximated
by numerical optimization algorithms. These algorithms are iterative procedures,
that incrementally improve a best guess θ(k) ∈ Θ over a sequence of steps
k = 1, 2, . . . , until sufficient accuracy or a maximum number of steps is reached.
Just as the diversity in optimization problems is great, we have great variety
in the available algorithms. The choice of optimization algorithm depends on
the problem at hand. Generally, a closer coupling between the problem and
the algorithm will lead to solutions with better properties and faster run times
(Givens and Hoeting, 2012). The algorithms differ in the type of information
they utilize during the iterations. In addition to the objective function, L(θ),
some algorithms also utilize the gradient,

G(θ) = ∂L

∂θ
(θ), (2.94)

which takes values in Rp, and the Hessian,

H(θ) = ∂2L

∂θ2 (θ), (2.95)

which takes values in Rp×p. Evaluating these quantities can be computationally
expensive, and the choice of including this information is a tradeoff between the
quality of each iteration and the speed at which iterations can be performed.

An important class of optimization algorithms is based on the update equation

θ(k+1) = θ(k) + α(k)v(k). (2.96)

The update consists of a search direction v(k) ∈ Rp and a step length α(k) ∈ R,
with α(k) > 0. In machine learning, the step length is sometimes referred
to as the learning rate. It is common to take v(k) to be a descent direction,
which means that its inner product with the gradient of the objective function
is negative, G(θ(k))⊤v(k) < 0. Gradient decent takes the descent direction to
be the negative of the gradient itself, which trivially satisfies this condition,
−G(θ(k))⊤G(θ(k)) < 0. Second order methods also incorporate second-order
derivatives, such as Newton’s method, which find the search direction as the
solution of H(θ(k))v(k) = −G(θ(k)), which is v(k) = −H(θ(k))−1G(θ(k)) if
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the inverse Hessian exists. Augmentations to the Hessians exist to ensure
positive definiteness. Incorporating exact second-order information can be
computationally infeasible for large problems.

After finding a search direction, the algorithm needs to determine how far
it should go before a new direction is selected at the next iteration. This is
just as essential as the choice of the direction. We illustrate the importance
with a simple example. Consider again the case θ ∈ R with objective function
L(θ) = θ2, with an arbitrary starting point θ(0) ∈ R. Gradient descent gives us
the updated equation

θ(k+1) = θ(k) − α(k)G(θ(k)) (2.97)
= θ(k) − 2α(k)θ(k) (2.98)
= (1− 2α(k))θ(k). (2.99)

If we choose a fixed value for the step length, αk = a, we can get three different
dynamics. For a = 1 the iterates will alternate between θ(0) and −θ(0), for
instance, θ(0) = 1, θ(1) = −1, θ(2) = 1, and so on, without any progress. For
a > 1 the iterates will diverge, meaning that the iterations will take on larger and
larger values, for instance with a = 2 we get θ(0) = 1, θ(1) = −2, θ(2) = 4, . . . ,
θ(k) = (−2)k. And lastly, a < 1 the iterates will converge towards zero, at the
rate θ(k) = (1− 2a)kθ(0). The choice a = 1/2 is particularly interesting, as this
makes the iterations converge in one step, regardless of starting the initial value,
θ(0) = 1, θ(1) = 0, θ(2) = 0, and so on. Compare this with the Newton’s method,
where the update equation becomes θ(k+1) = (1−α(k))θ(k), for which the optimal
step length is α(k) = 1. Consider now a different objective function, L(θ) = θ4.
The gradient descent iterations now become θ(k+1) = θ(k) − α(k)4(θ(k))3, for
which the ideal choice of step length depends on the value of θ(k).

The examples above illustrate the importance of selecting the appropriate
step length, and that this choice is sensitive to both the choice of search direction
and the objective function. Given a search direction, the optimal step length
would be

arg min
α(k)∈R

L(θ(k) + α(k)v(k)), (2.100)

but solving this problem would generally be too expensive to do each iteration.
Instead, strategies such as back-tracking line search start with an initial guess of
the step length and iteratively reduce it in size until a sufficient decrease in the
objective is found.

However, for many large-scale machine learning problems, the sheer number
of data points and parameters makes a careful selection of search direction and
step length computationally impractical. Stochastic gradient descent is a class
of methods that attempts to overcome this Bottou, Curtis, and Nocedal (2018).
They use an estimate of the gradient, based on a sub-sample of data, to reduce
the computations involved in selecting the search direction. This means that v(k)

is a random variable with E[v(k)] = G(θ(k)). Additionally, stochastic gradient
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descent usually employs a predefined step length sequence, α(k), k = 1, 2, . . . , to
further reduce the number of function evaluations. If the sequence is constructed
such that

∞∑
k=1

α(k) =∞, (2.101)

∞∑
k=1

(α(k))2 <∞, (2.102)

then the stochastic gradient descent converges to a local minimum with
probability one (Blum, 1954). Robbins and Monro (1951) suggested the sequence
α(k) = a/k, a > 0 as a sequence that satisfies Equations (2.101) and (2.102).
It is a dramatic contrast between the examples that converged in one step and
the potentially unbounded sequence of stochastic gradient descent. However,
empirically, these methods have proved to be quite efficient and reliable, and
they have been particularly useful in the context of training neural networks
(Goodfellow, Bengio, and Courville, 2016). A part of the success is due to
the computational speed of these stochastic gradient methods, which makes it
feasible to perform many iterations on limited hardware, Another reason may be
their ability to escape local critical points due to the randomness is the search
direction. The benefit of such randomness in the updates is well established for
other optimization algorithms such as simulated annealing (Givens and Hoeting,
2012).

The methods above make use of the gradient of the objective function. We
have seen examples where these gradients are trivial to provide, but this is
not always the case. For instance, for neural networks, we could provide these
gradients through back-propagation, which is the repeated application of the
chain rule of calculus (Goodfellow, Bengio, and Courville, 2016). This makes
the gradients for a layer the product of partial derivatives from layers above it.
For deep neural networks, this can be problematic for the first layers, because a
single partial derivative can make the gradients very close to zero or arbitrarily
large. This is known as vanishing and exploding gradients (Nalisnick, Smyth,
and Tran, 2023). Several measures can be taken to alleviate this problem, for
instance, the use of suitable activation functions, such as the rectified linear
unit, or skip connections, as discussed in Section 2.1.5. However, to effectively
compute gradients in practice, we would implement these models in software
libraries that support automatic differentiation of computational graphs (Paszke
et al., 2019), which significantly simplifies the effort needed to apply gradient
descent methods.

Derivative-free algorithms is an alternative to the gradient-based methods
discussed above (Conn, Scheinberg, and Vicente, 2009). In derivative-free
optimization the next iteration is decided based on the sequence of points seen
so far, meaning that we find θ(k) = gk

(
(θ(k−1), L(θ(k−1)), . . . , (θ(1), L(θ(1))

)
, for

an appropriate sequence of functions, gk, k = 1, 2, . . . . One approach that is
common in hyper-parameter optimization is random search, where candidate
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points are randomly drawn from the search space (Bergstra and Bengio, 2012).
Random search makes no assumptions about the objective function, which
makes it easy to use. The downside is the lack of any guarantees on the
result. Malherbe and Vayatis (2017) presents a derivative-free method capable
of approximating a global solution, by assuming that the objective function has
a finite Lipschitz constant. This means that for any θ1, θ2 ∈ Θ, the function
satisfies ||f(θ1)− f(θ2)|| ≤ c||θ1− θ2|| for a Lipschitz constant c ≥ 0. This allows
the algorithm to maintain a lower bound on the solution over the entire search
space Θ, and compare this to the currently best seen candidate point. The
iterations are based on selecting the next point as one that has a lower bound
on the objective function than the current best point. Derivative-free methods
will generally converge slower than gradient-based methods (Conn, Scheinberg,
and Vicente, 2009).

Other global optimization methods also require assumptions on the objective
function to guarantee that a global optimum has been found with sufficient
accuracy. For instance, the method of Grimstad and Sandnes (2016) assumes
that the functions involved are represented by splines, and use the properties of
splines to generate increasingly tight lower bounds of the solution until it can be
confirmed that the best local minimum seen is also the best global minimum.

The algorithms discussed above have focused on continuous optimization
problems. However, it is often the case that we need the solution to take on
discrete, integer values. This is for instance the case with many of the hyper-
parameters in the models we discussed in Section 2.1.7, such as the number
of basis terms in Equation (2.11) or the width and depth of a neural network.
Methods based solely on a decent strategy will not be able to satisfy integer
constraints directly. However, other methods may be augmented to do so.
For instance, the random search of Bengio (2012) is trivially augmented to
discrete values, as the random candidates can be drawn directly from a discrete
distribution. The method of Malherbe and Vayatis (2017) can also in practice
be augmented to discrete candidates (King, 2009).

2.1.12 Monte Carlo methods

In Section 2.1.10 we discussed the posterior distribution of θ ∈ Θ given a
dataset D, p(θ|D), and presented various methods for studying this distribution.
Among these were Monte Carlo methods. Monte Carlo methods approximate
the quantities of interest by the use of random samples simulated from the
distribution in question. While we are interested in the posterior distribution,
the Monte Carlo method can be used to study any distribution of interest.

The essence of the Monte Carlo approach is that samples, θ(1), . . . , θ(s),
simulated from the posterior can be used in inference such as the expectation in
Equation (2.89). This section gives a brief introduction to sampling methods,
with emphasis on methods for state-space models.

Let p(θ|D), as defined above, be the target distribution that we want to
sample from. Simulation methods can be both exact and approximate (Givens
and Hoeting, 2012). Exact methods simulate samples from the true target
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distribution. This is for instance the case for all familiar standard distributions,
such as uniform and Normal distributed values, which are easily generated
by most statistical software libraries. However, most of the time we are not
able to sample directly from p(θ|D). We may, instead, be able to evaluate the
density, or an unnormalized version of the density, for given values of θ. This
is often exploited in conjunction with a proposal distribution, q(θ), which is
easier to sample from. For instance, Rejection sampling simulates from the
proposal distribution and then accepts or rejects the samples randomly, such
that the relative frequency of the accepted samples is equal to that of the target
distribution. Rejection sampling is exact but can be slow if the rejection rate is
high.

Sampling from exact methods is of course ideal, but it can be computationally
infeasible for non-trivial distributions. For some cases, it is therefore beneficial
to generate many samples from an inexact method, instead of a few samples
from an exact method. Similar to rejection sampling, approximate methods
simulate their samples from a proposal distribution, q(θ), and proceed to adjust
or discard the generated samples to make them resemble the target distribution.
However, in contrast to rejection sampling, this adjustment is not exact.

Sampling importance resampling (SIR) is an approximate sampling method
(Givens and Hoeting, 2012). It first generates m candidate samples, θ(1), . . . , θ(m),
from a proposal distribution q(θ), and the computed weights corresponding to
each sample. For the SIR algorithm, the weights are computed as

w(k) = p(θ(k)|D)/q(θ(k))∑s
i=1 p(θ(i)|D)/q(θ(i))

, (2.103)

for k = 1, . . . ,m, which is referred to as standardized importance weights. The
approximate sample is then obtained by resampling s samples, with replacement,
from the candidates, with probabilities equal to the importance weights. The
distribution of the final s samples converges to the target distribution as m→∞.
It is generally beneficial to have s < m (Givens and Hoeting, 2012).

Sequential Monte Carlo is an adaptation of SIR that is especially suited
for state-space models. Recall from our discussion of state-space models from
Section 2.1.7 that these models are recursively defined, and we wish to infer a
sequence of hidden state variables, zt ∈ Z, for t = 0, 1, . . . , n, given a sequence
of observed data Dt for t = 1, . . . , n.

We use the notation za:b = {za, za+1, . . . , zb−1, zb} to indicate subsets of the
states, and similarly Da:b for the observations. The model consists of the initial
state p(z0), a transition equation p(zt+1|zt), an a likelihood p(Dt|zt) (Doucet,
De Freitas, and Gordon, 2001). The goal is to obtain samples from the posterior
distribution p(z0:t|D1:t). The posterior distribution can be factorized recursively
as,

p(z0:t|D1:t) = p(z0:t−1|D1:t−1)p(Dt|zt)p(zt|zt−1)
p(Dt|D1:t−1) , (2.104)

which is exploited by the sequential Monte Carlo algorithm to efficiently process
the data from each time step successively. Samples are simulated from a proposal

35



2. Background

distribution, q(zt|zt−1), and assigned the unnormalized importance weights

wt = w̃twt−1, (2.105)

where the increments are given by

w̃t ∝
p(Dt|zt)p(zt|zt−1)

q(zt|zt−1) . (2.106)

A set of s samples, z(1)
0:t , . . . , z

(s)
0:t , can be generated one by one or in parallel

(Givens and Hoeting, 2012). These can then be resampled similarly to the SIR
algorithm. It is common to generate all samples in parallel, processing one
observation at a time. Resampling can be done at each time step or when
necessary. Note that in the SIR algorithm, the resampling is done after all the
samples are generated, while in sequential Monte Carlo the resampling occurs
during the generation at various time steps. The purpose of this resampling is to
ensure that the samples do not degenerate, which happens when the weights place
all the importance on a small subset of the samples. This typically happens when
the sequence of steps is long. After resampling, the unnormalized importance
weights are reset to one, and the sampling procedure is continuous. While
resampling alleviates the degeneracy of the samples at the current time step, it
will cause deterioration of the past state estimates, by reducing the variability
of these quantities. Care must therefore be taken when designing an sequential
Monte Carlo procedure to ensure that the resulting estimates are suitable for
the problem at hand.

The main challenge with sequential Monte Carlo, apart from formulating the
state space model itself, is to construct a well-behaved proposal distribution.
Desirable properties are that it is easy to sample from and that the resulting
sample weights have a low variance. This is achieved by making the proposal
distribution as close to the product of the likelihood and transition distribution
as possible. An often trivial proposal distribution is the transition distribution,
q(zt|zt−1) = p(zt|zt−1). This is known as the Bootstrap filter (Doucet, De Freitas,
and Gordon, 2001). This makes the weights equal to the likelihood, p(Dt|zt),
by canceling the factors in Equation (2.106). The Bootstrap filter can suffer
from poor performance if the likelihood is very informative. The problem is
that this leads to a large number of proposals with very low importance weights,
which leads to a degenerate set of samples, as discussed above. In such cases,
it is beneficial to construct proposals that also take part of the likelihood into
consideration.

2.2 Soft sensing

Soft sensing is real-time utilization of mathematical models to augment existing
physical sensors in an industrial process (Fortuna et al., 2007). The exact
definitions vary in the literature (Jiang et al., 2021), but the essence is the
application of software-based methods to compute quantities of interest in an
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industrial process. There has been an increasing interest in soft sensing, which
has partially been fueled by the increasing amount of hardware-based sensor
data that has been made available in real-time. Additionally, their popularity
is motivated by lower cost, ease of installation, and the possibility to estimate
hard-to-measure quantities (Jiang et al., 2021).

Applications of soft sensing include backup of physical measuring devices,
reducing the need for hardware installed in potentially hostile environments,
and estimation for monitoring and control (Fortuna et al., 2007). Additionally,
the models derived for soft sensor purposes can be utilized in what-if studies
(Fortuna et al., 2007), a synergy that further improves their economic viability
when compared to installing additional hardware-based measuring devices.

Soft sensors are based on either mechanistic or data-driven models, or a
combination of the two (Fortuna et al., 2007; Jiang et al., 2021). Data-driven
methods have seen a surge in popularity recently, due to the fact that many
industrial processes are too complex to accurately model from first principles
(Fortuna et al., 2007). The methods applied in data-driven soft sensing models
cover a broad range of statistical inference and machine learning techniques
(Sun and Ge, 2021). Harrou et al. (2021) compares ten different statistical and
machine learning models, ranging from linear least squares regression to dynamic
neural networks on an industrial application. The models achieve comparable
performance, and they conclude that for a case with moderate quantities of data,
the simpler model types are at an advantage when compared to deep learning
methods. However, deep learning methods have seen an increase in popularity
for soft sensing, due to their synergy with increasing data quantities and the
complex nonlinearities involved in the processes (Sun and Ge, 2021).

The industrial process being modeled is, generally, a dynamic system, with
components that may be placed far away from each other. It is therefore not
uncommon to have significant delays between the time a change is measured
at one location and the effect in the response is detected at another location,
either due to transport delays, reaction times, or other phenomena. This can
complicate the design of soft-sensing models (Qiao, Zhou, and Meng, 2023).

Consider a process that is observed over a sequence of time steps, t = 1, 2, . . . ,
for which we always have a corresponding set of measurements xt ∈ X available.
Let yt ∈ Y be the quantity of interest, and that this quantity is not always
available. For simplicity, assume that we historically have observed pairs of data
D = {(xt, yt)}nt=1, and that for a future time step t = T we only have access to
xT . We wish to study yT through the posterior predictive distribution

p(yT |xT ,D). (2.107)

Consider first the case where the measurements available at time t, xt, conveys
enough information about the process’ current state to predict yt. This allows
us to consider static models, p(yT |xT , θ) (Jiang et al., 2021). In this case, we
may use the historical data to infer a set of model parameters, and then only
consider the parameters, and not the data, when performing future predictions.
This enables the use of the statistical models discussed in Section 2.1.4. An
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example of this is the feedforward neural network presented by (Gonzaga et al.,
2009) for monitoring and control of an industrial process. Qiao, Zhou, and Meng
(2023) presents a static model where the explanatory variables are time delayed
versions of the actual measurements. The time delays were found individually
for each measurement. This allows the static model to predict a response with a
fixed time delay from the measurement location of the explanatory variables.

While static models can be convenient, they have natural limitations, for
instance, if the response is related to the rate of change of one of the measured
quantities. A trivial example is that we wish to predict the speed of an object,
but only have access to a positional measurement, in which case we would need a
sequence of measurements to succeed. A solution is to consider a model that takes
a window of past observations, p(yT |xT , xT−1, . . . , xT−k, ), as its explanatory
variables. The moving window convolutional neural network model of Shi et al.
(2021) is an example of this approach. It was motivated by a time delay between
the explanatory variables being measured and the effect being observable in the
response.

If the dynamic aspects of the process are significant and a fixed sequence of
measurements fails to provide sufficient information about the system state,
a dynamic model, as discussed in Section 2.1.7, would be necessary. For
instance, recurrent neural networks have been considered for several soft-sensing
applications (Harrou et al., 2021; Huang et al., 2023).

While the amount of data collected from industrial processes is increasing,
data-driven methods for soft sensing have two fundamental problems. The
first is that labeled data is still scarce, which means that we actually have a
response yt to pair with the explanatory variables xt. This is because acquiring
labeled data may be time-consuming, involve expensive experiments, or disrupt
stable operations (Curreri, Patanè, and Xibilia, 2021). The second is that
working conditions change over time, which means that the data distributions
are subject to change (Curreri, Patanè, and Xibilia, 2021), and there is limited
relevant information in the available historical data to describe current and
future operating conditions (Jiang et al., 2021). Consider the prediction of a
new data point as in Equation (2.107), which is based on past observations. The
problem of relevant information means the predictive performance of the model
may improve if we base the inference on a subset of the full dataset, because
older, and outdated, observations may guide our inference toward a behaviour
that is no longer present in the system. This may make it difficult to acquire
enough data to train a satisfactory model in practice.

Transfer learning, multitask learning, and similar strategies are presented
as a way to address these data issues, as it may allow us to incorporate more
relevant data into the model training, but this has only been an active research
area for a few years (Curreri, Patanè, and Xibilia, 2021). We consider two types
of knowledge transfer between soft sensors. Between similar systems and between
different operating conditions and states from the same system. Maschler and
Weyrich (2021) refers to these as cross-entity and cross-state respectively. The
strategies found in the soft sensing literature approach multitask learning from
different angles, and no standards have emerged yet.
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Recall classic multitask neural network of Caruana (1997), given in
Equation (2.33), where we have m tasks, j = 1, . . . ,m. This architecture
learns a shared set of basis function h : X → Rp, and each task performs
a regression on this basis to find task parameters β ∈ Rp. This lead to the
predictions fj(xtj) = h(xtj)⊤βj , given datapoint t from task j. Several multitask
learning strategies for soft sensing are variations on this architecture. For
instance, S. Yan and X. Yan (2020) presents a variation with soft parameter
sharing, where each task is given its own neural network, hj : X → Rp, with
predictions fj(xtj) = hj(xtj)⊤βj , and the output of the individual task networks,
hj , are forced to be correlated through a parameter regularization mechanism
where the degree of regularization bridges the gap from completely independent
to fully correlated basis expansions. Qiao, Zhou, and Meng (2023) suggests
a strategy where measurements from each task are used as input to separate
networks, hj : X → Rp, and the output of these individual networks are
concatenated together to provide a shared set of basis functions for all tasks.
Similar to the shared basis approach, the tasks have additional parameters
βj ∈ Rmp, which enters as fj(xt,1, . . . , xt,m) =

[
h1(xt,1)⊤ . . . hm(xt,m)⊤]βj .

This architecture assumes a tight coupling between the tasks, as they must
all provide measurements in order to evaluate the model. In the example of
Qiao, Zhou, and Meng (2023), the tasks are time lagged versions of the same
measurements.

Both of the strategies above have an individual neural network for each
task, and the multitask aspect is how the outputs of these networks are tied
together. This enables us to consider tasks with different domains, Xj , with
neural networks hj : Xj → Rp for j = 1, . . . ,m. When the networks are not
forced to consider the same inputs we can model tasks with different levels of
instrumentation.

Finding the optimal level of knowledge transfer is challenging. The closer the
tasks are tied together, the higher the risk of negative transfer and performance
deterioration. Huang et al. (2023) presents a solution to negative transfer where
each task is allowed to learn how much it is influenced by different sources of
information, by the use of a multitask extension to the mixture of experts model.
Here, each task is given its own gating function, which creates a unique expert
weighting for each task. This combination of experts is then used as inputs to a
task-specific neural network. Essentially, this allows each task to have multiple
task-specific layers, as opposed to the single layer in Equation (2.33). Pan et al.
(2023) further extends this methodology by also allowing dynamic weighting of
the individual tasks in the loss function during training.

Some of the architectures above can grow large in terms of parameters,
especially when there are many tasks involved. This can be an issue if the soft
sensors must run on limited hardware in a distributed, edge computing setting.
Zhai et al. (2023) presents a strategy to cope with this based on knowledge
distillation, where they first train a large shared multitask neural network, and
then allow individual tasks to train smaller networks that are regularized towards
the predictions of the shared network.

Regardless of the modeling strategy, the models require maintenance to avoid
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performance decline. Since there is no wear and tear on soft sensors, the driving
forces behind model maintenance are changes to the system that is being modeled
or changes to its operating points. As discussed above, unless the historical data
used during model creation contained information about all possible future states
of the system, it is unlikely that the model will retain its performance when
changes occur, regardless of how well it was constructed (Kadlec, Grbić, and
Gabrys, 2011). Updating existing models as new data arrives is often referred to
as (re-)calibrating or (re-)tuning the models (Fortuna et al., 2007; Jiang et al.,
2021). This typically involves a subset of the steps taken during the initial model
creation (Jiang et al., 2021).

2.3 Flow rate measurements in oil and gas production
networks

Our soft sensing application is the measurement of flow rates in oil and gas
production networks. This section gives a brief introduction to such networks,
the commonly used measuring techniques, and the value of such measurements.

An oil and gas asset can be viewed as a network of wells, pipelines, and a
processing facility. Wells are drilled into a reservoir which contains a mixture of
oil, gas, and water. This gas and liquid mixture is transported via a network
of pipelines up to the surface and into a processing platform, where gas, oil,
and water are physically separated into three individual streams. A simplified
network is illustrated in Figure 2.2. The components of a fluid mixture are
commonly referred to as phases. A fluid with only one component, for instance,
pure gas, is called a single-phase flow. A mixture of two or more phases, for
instance, oil and water, is called multiphase flow.

1 2 3 J

Oil
Gas

Water

Figure 2.2: Asset with J wells connected to the same pipeline leading to a single
separator. Here, the wells are represented by their choke valve, which is further
illustrated in Figure 3.1. At the broken lines, the wells extend into a reservoir
with a mixture of gas, oil, and water. The choke valve controls the flow from
each well into the shared separator. This figure originally appeared in Paper II.

The end product of the asset described in Figure 2.2 is the separated single-
phase flow of oil and gas. The economic incentive is to maximize these flow
rates, both in terms of instantaneous and cumulative production. Knowledge
of flow rates throughout the system is key to addressing these optimization
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problems. On the cumulative side, such knowledge leads to better-calibrated
reservoir models, which enables planning of development and recovery. On the
instantaneous side, it enables the optimization of bottlenecks in the production
system, such as limitations on water processing or gas lift allocations. Flow rates
are also crucial in flow assurance operations, which are concerned with keeping
the system operating in a safe and maintainable state. While the flow rates
throughout the entire system can be of interest, the flow rates from individual
wells are often the most sought after, because it gives the most complete picture
of the production state. We therefore focus our attention on well flow rates.

2.3.1 Physical measuring devices

The most reliable way to measure flow rates is after separation. Single-phase
measurements are the most precise, with errors as small as 0.25% for oil and 1%
for gas (Thorn, Johansen, and Hjertaker, 2012). Water may be less accurately
measured, and is highly asset dependent. The single-phase measurements taken
after separation provide a continuous measure of the combined production from
all wells routed to the separator. To measure an individual well this way, it can
be routed to a second, smaller separator, where it is left alone. This solitary
measurement is known as a well-test and is the gold standard for measuring the
flow from a well. However, each test may take several hours, making well-tests a
sparse source of information (Monteiro et al., 2020).

Limitations to well-testing create an incentive to measure flow rates before
separation. Multiphase flow is significantly more challenging to measure than a
single phase, due to its complex dynamics and uncertain fluid properties (Jansen,
2015). Sensors for multiphase flow are divided into two main classes, multiphase
flow meters and virtual flow meters (Bikmukhametov and Jäschke, 2020).

Multiphase flow meters are physically installed on-site. They are complex
devices that rely on several measurement principles to infer flow rates. A properly
calibrated multiphase flow meter can be expected to achieve 5% error for gas, oil,
and water rates (Thorn, Johansen, and Hjertaker, 2012), but they are subject to
drift and will require re-calibration if operating conditions change (Corneliussen
et al., 2005). Due to the need for a physical device to be installed in the well,
multiphase flow meters can be quite expensive to acquire and maintain.

2.3.2 Virtual flow meters

Virtual flow meters are a soft sensor alternative to multiphase flow meters.
virtual flow meters use mathematical models to infer flow rates from existing
measurements (Toskey, 2012). Because of this, the models can vary significantly
in terms of explanatory variables and responses. With enough information,
they can attempt to infer all three flow phases, but often they are limited to a
single phase or the sum of all phases (Bikmukhametov and Jäschke, 2020). In
scenarios with limited information, it is possible to assume knowledge of the
flow composition, for instance, how much of the flow is gas.
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2. Background

As with all soft sensing models, virtual flow meters can be based on
mechanistic models, data-driven models, and hybrid models (Mathilde, Bjarne,
and Imsland, 2020), where all model types can have dynamic or steady-state
formulations. Solle et al., 2017 expands on the different model types.

The literature presents many candidates for data-driven models. This
includes linear regression (Bello, Ade-Jacob, and Yuan, 2014), regression
trees (Bikmukhametov and Jäschke, 2019), and neural networks (Shaban and
Tavoularis, 2014). Variations on neural networks are the most common in the
recent literature (Bikmukhametov and Jäschke, 2020). Several of the mentioned
examples make use of dimensionality reduction techniques as part of model
inference. The reason is that many of the available explanatory variables are
co-linear. Common for all these data-driven strategies is that they build one
model for each well, without sharing information between them.

The performance of virtual flow meters is naturally highly reliant on the
quality and quantity of data available for calibration. In the literature, we
frequently find errors in the range of 2–6% being reported for different data-driven
methodologies (Bikmukhametov and Jäschke, 2019; AL-Qutami et al., 2017;
AL-Qutami et al., 2018). However, it is optimistic to expect the performance
seen on static datasets to carry over to real-time applications in practice, due to
the nature of the data and process being modeled. Chapter 4 expands on this
and explores why it is difficult to properly quantify the expected performance of
these models. The uncertainty stems from both the model and the measurements
(Hüllermeier and Waegeman, 2021). Proper estimation and reduction of these
uncertainties has been highlighted as an important research direction for virtual
flow meters (Bikmukhametov and Jäschke, 2020) and would be important for
engineers in their decision-making.
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Chapter 3

Virtual flow meter modeling
strategy

This chapter describes the proposed strategy for a data-driven virtual flow meter
model. First, Section 3.1 gives an introduction to the available measurements
and the assumptions that are made. Then, Section 3.2 presents the architecture
of the virtual flow meter models. Finally, Section 3.3 gives an outline of the
proposed solution, and how the conducted research takes steps towards this.

3.1 Setup

We focus our attention on modeling flow through the well choke valve. The
primary purpose of the choke valve is to control the flow rates from each
well. Choke valves are chosen because they have a quite consistent set of
instrumentation across the assets from which our data originates. The particular
setup we consider is illustrated in Figure 3.1. The measurements are temperature,
choke opening, and pressure on both sides of the choke. These are continuously
measured and are our primary explanatory variables.

p1, T u p2

q

Figure 3.1: Topology of a well with instrumentation. The measurements are
located at both sides of the choke valve and consist of upstream pressure p1,
downstream pressure p2, temperature T , and choke opening u. The flow rate q
is a mixture of gas, oil, and water, and is generally unknown. Figure originally
appeared in Paper II.

The gas, oil, and water rates through the choke, denoted q⊤ =
[
qG, qO, qW

]
,

are unknown, except when measured by a well-test. Ideally, the virtual flow
meter would be able to estimate all three rates at all times. However, it is
generally not possible to infer all three based on a single pressure drop, such as
a choke valve. Therefore, we focus on the sum of all rates,

y = qG + qO + qW . (3.1)
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3. Virtual flow meter modeling strategy

Additionally, it is assumed that the flow composition, ϕ = q
y , is known to

the virtual flow meter. Following the formulation of regression models in
Equation (2.3), a virtual flow meter for a given well is then any function

y = f(x, ϕ) + e, (3.2)

where y ∈ R is the sum of the flow rates, x ∈ R4 is the measured choke position,
pressures, and temperature, and ϕ ∈ [0, 1]3, is the flow composition. The error
term, e ∈ R, captures the process and measurement noise. The individual
flow rates are found as q = yϕ = ϕf(x, ϕ). Equation (3.2) is a static model
formulation, in the sense that we do not consider any dynamics of the system,
and the model is simply a mapping from the inputs to the output (Solle et al.,
2017).

The flow composition, ϕ, is primarily a function of the reservoir state, which
is slowly changing over time. In many cases, the composition evolves slowly
enough that it can be assumed constant between well-tests. However, if the
frequency of testing is low, a dynamic model of its development is proposed.

Flow composition is typically represented by two quantities. It is convenient
if these quantities are in the unit interval and do not depend on each other.
Therefore, we choose to use the gas fraction,

γ = qG
qG + qO + qW

, (3.3)

(3.4)

which is found as the gas rate divided by the sum of all three flow rates, and the
oil factor,

λ = qO
qO + qW

, (3.5)

which is the oil rate divided by the sum of oil and water rates. These are related
to the composition vector by

ϕ =

 γ
(1− γ)λ

(1− γ)(1− λ)

 . (3.6)

The flow composition quantities are undefined when the flow rates involved are
zero. We define λ = 0 when qO = qW = 0, and similarly for γ. This has no
practical consequences.

3.2 Model architecture

Our task is to identify the function f in Equation (3.2), using our prior knowledge
about the process itself and the available data, and be able to provide it with
the necessary flow composition, ϕ.
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Inference problem

This research has been investigating the use of multitask learning to create
virtual flow meter models. For this, we consider a set of m wells, indexed by
j = 1, . . . ,m. Each well has well-test data

Dj = {(xij , qij)}
nj
i=1, (3.7)

with xij ∈ R4—containing choke opening, pressures, and temperature—and
qij ∈ R3 being the flow rates. From the flow rates we derive the sum of flow, yij ,
as in Equation (3.1), and composition, ϕij , as in Equation (3.6). Note that the
composition, ϕij , is available to us in this data set, but is generally an unknown
quantity.

With this dataset, the virtual flow meter in Equation (3.2) is viewed as
the multitask regression model from Equation (2.22). We use a multitask
neural network as our model. Specifically, we use the learned context neural
network from Equation (2.41). The inputs to the neural network are the vector
of measurements xij and the composition ϕij , represented by γij and λij , in
addition to the well specific task parameter vector βj ∈ Rp. Further, let α denote
the set shared neural network parameters required for the layers described by
Equation (2.20). The virtual flow meter model is then

yij = f(xij , ϕij ;βj , α) + eij . (3.8)

In this formulation, we have assumed that both the shared and well-specific
parameters are constant. For the shared parameters this is a reasonable
assumption because they should capture universal aspects about all wells in
all stages of operations. The well-specific parameters are likely to be slightly
time-varying, because the state of the system may change, but we make the
simplifying assumption that they are constant over the time periods of our data
sets.

3.3 Inference problem

In practice, we would use the virtual flow meter in Equation (3.8) to predict the
flow rates given a new observation of the measured variables. This would lead
us to the posterior predictive distribution from Equation (2.76). For instance,
the posterior predictive distribution for an arbitrarily chosen well j, for which
we have a new observation of the explanatory variables, x0,j , take the form

p(y0,j , ϕ0,j , βj , α|x0,j ,D) =
p(y0,j |ϕ0,j , βj , α, x0,j ,D)p(ϕ0,j |βj , α, x0,j ,D)p(βj , α|x0,j ,D), (3.9)

where D is the joint data from all wells.
The factors of the posterior predictive distribution can be studied individually.

Starting with the third factor in Equation (3.9), which simplifies to p(βj , α|D).
This is the posterior distribution of the parameters of the multitask learning
model in Equation (3.8). It is based on the assumption that the composition is
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3. Virtual flow meter modeling strategy

known, which is true for the given dataset. A full probabilistic treatment of this
multitask problem is extensive. Instead, it is investigated in two steps. Paper I
explores a full probabilistic treatment of the single-task version of the problem,
using Bayesian neural networks, and Paper II explores a MAP estimate of the
multitask formulation. The multitask learning model used in Paper II is studied
from a theoretical perspective in Paper III.

The second factor of Equation (3.9), p(ϕ0,j |βj , α, x0,j ,D), is the problem of
estimating the composition over time given the parameters of a virtual flow
meter. A variation of this problem is addressed by sequential Monte Carlo in
Paper IV.

The first factor in Equation (3.9) simplifies to p(y0,j |ϕ0,j , βj , α, x0,j) by the
same arguments that lead to Equation (2.77). This is the evaluation of our
virtual flow meter given all the unknowns. We do not study this distribution
any further here. The results of the papers are elaborated in Chapter 5.
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Chapter 4

Data and challenges

The majority of the research has been on virtual flow metering using proprietary
data. The exception is Paper III, which studies the proposed method on publicly
available data from a wide range of domains. These datasets are described in
detail in Paper III and are not discussed further here.

This chapter gives a deep dive into the properties of well-test data. We
illustrate how well-tests are generated, and highlight statistical learning challenges
related to time dependency and correlation between explanatory variables.
Additionally, we study how the statistical properties of the data change when
all wells are considered simultaneously as opposed to individually. The purpose
is to provide some information about the data, as it is not publicly available,
and enable the discussions in Chapter 6. All visualization and computations are
done with values that are scaled to lie approximately the unit interval.

4.1 Data description

Our data is a collection of well-tests. They consist of the measurements described
in Section 3.1. Recall that we consider m wells where choke opening, temperature,
and pressures are measured. The flow rates, gas, oil, and water, are measured at
a test separator. From the flow rates we derived the gas fraction and oil factor as
described by Equation (3.3) and Equation (3.5). Each data points is associated
with a timestamp τij , and are ordered such that τi,j < τi+1,j .

A well-test is an average value for a set of measurements, taken over a period
with stable production. The test period can be detected automatically or set
manually. The duration of a well-test is on the scale of hours, while sampling
frequency is on the scale of seconds. This means that a typical well-test data
point is found as the average of a few thousand samples from each measurement
type. The signal-to-noise ratio of these averages is generally quite high. The raw
measurements and averaged data for a well-test are illustrated in Figure 4.1. The
figure illustrates the gas rate, oil rate, upstream pressure, and choke opening.
Downstream pressure, temperature, and water rate are found in the same way.
The distance between the location of the well choke valve and the separator can
be significant. The measured flow rates are a delayed and smoothed version of
the actual flow through the well choke. The exact delay is not known. It is
therefore essential to let all measurements involved stabilize before the average
values are collected.
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Figure 4.1: Data from a single well-test. Raw data measurements are plotted in
black and averaged wells test values are plotted in light brown. well-test values
are computed from the samples inside the dotted lines. The well is first routed
to the test separator, then the choke is adjusted to reach the desired operating
pressure. The well-test period begins when the flow rates and pressures have
settled. It last until enough data is collected to ensure a sufficiently accurate
average.
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Exploratory analysis

4.2 Exploratory analysis

This study in this section is done on a large collection of well-test from a selection
of 200 wells. The figures are either examples using a single well that is selected
for illustrative purposes, or aggregations of values from all wells. The wells
included here have a median of 20 well-tests per year, ranging from less than
two to several hundred tests per year.

4.2.1 Time development

The lifetime of a well spans several years, and the collected data is a result of
operational practice and reservoir development. The time dependency originates
at the reservoir, which is a batch process that generally moves from high pressure
to low pressure, and from high oil content to low oil content. Operation
of the asset usually aims to produce at maximum capacity for as long as
possible, and then attempt to reduce the decline in production as the reservoir
is depleted. This leads to measurements being correlated and having time-
dependent trends. Additionally, operational practice favors the stability of the
process over informative experiments.

The correlations between our variables are summarized in Figure 4.2. We
see that for many wells the explanatory variables are either highly correlated
or subject to little change. The explanatory variables with the most variation
are upstream pressure, choke, and oil factor. These are also highly correlated
with each other and have a clear time-dependent trend. This is typical behavior
for a well. Downstream pressure and temperature have little variation for many
wells. Downstream pressure can be heavily influenced by the separator pressure,
which is subject to automatic control and can therefore be almost constant. A
benefit of multi-task learning is that the joint data from many tasks can increase
the variation in individual signals and reduce the correlations. This is also
illustrated in Figure 4.2. We see an increase in variance for all measurements
compared to the average well. Measurements with low variance individually see
an increase in correlation with other measurements. In particular, the correlation
between upstream and downstream pressure becomes significantly stronger when
considering data from all wells simultaneously. This is because wells with low
upstream pressures must have a low corresponding downstream pressure, while
wells with a higher upstream pressure can operate at a broader range of values.
Among the most important aspects revealed by Figure 4.2 is that a joint dataset
yields a significant reduction in the correlation between choke opening and
upstream pressure.

Figure 4.2 indicated a significant time dependency for several explanatory
variables. This is explored further in Figure 4.3. For the highlighted well, there
is almost no overlap between the upstream pressure values seen in the different
years, because the system is constantly moving in the same direction over time.
Thus the explanatory variables will drift over time, and predictions made in the
future will present a set of explanatory variables that has previously not been
observed by the well. When the other wells are superimposed with random start
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Figure 4.2: Correlation and standard deviation of all measurements and time.
Diagonals are the standard deviation of individual measurements. The lower
triangle is the correlation between all pairs of measurements. The top plot is
the mean of the values found for each well individually. The bottom plot is the
values found when merging the data from all wells into one dataset.
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times, the picture changes dramatically. The other wells are distributed such
that in the years from zero to five there are always multiple wells in all stages
of development. This makes the complete set of pressure measurements seen
during these years relatively stable, even though no individual well has a stable
operation on their own. The set of explanatory variables needed in the future
to predict a well may be observed by another well in the past. Thus we will
get data coverage in the space of explanatory variables. As long as new wells
are appearing regularly, the distribution stays the same. If, hypothetically, all
wells started operating at the same time, the benefit of a joint data set would be
reduced.

4.2.2 Data splits

Recall our discussion on model generalization and test data in Section 2.1.9. Test
data is a subset of our dataset that is set aside during model development in
order to fairly assess the models ability to generalize to new data. The properties
highlighted in Figure 4.2 and Figure 4.3 indicate that it may be challenging to
create a fair and independent test set. This will influence the choices made for
model validation. The standard approach is to randomly split the data into
training and test sets. This is based on the assumption of independent samples.
However, the nature of our problem means that test errors computed using
the assumption of independence would be too optimistic for future data. A
time-dependent split may give a better indicator of how the model will perform
in practice. The difference between a random split and a time-based split is
illustrated in Figure 4.4. Here, the frequency of well-tests is high enough to
make neighboring samples almost identical. The random split produces a test
set that is almost equal to the training data when marginalized to only consider
this single measurement. When the split is made by removing the most recent
data points, the difference between training and test densities becomes dramatic.
In this particular case, there is almost no overlap between the range of training
values and test values.

Figure 4.5 compares the two data splitting strategies on all wells. For most
of the wells a split based on time yields a greater distance between training
and test data than a random split. The effect becomes more pronounced with
increased data collection frequency, which is natural when samples close in time
are correlated with each other.

4.2.3 Flow composition

As described in Section 2.3, many virtual flow meters make assumptions about
the flow composition to estimate the total mass flow. The simplest strategy is to
assume the composition is constant between well-tests, but the validity of such
assumptions is, of course, highly dependent on the testing frequency. Figure 4.6
illustrates how gas fraction and oil factor develop over several years for one well.
The oil factor is steadily decreasing each year. The linear regression line is a
good fit, indicating an average change of -0.08 per year. However, while the
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4. Data and challenges

Figure 4.3: Development of upstream pressure over time. A single well is
highlighted in blue and compared to the other wells in grey. The highlighted
well is given a start time at year zero, while the other wells are given random
start times in the range of -5–5. The top plot illustrates the data as time series,
where the first data point from each well is a back dot and the last is a black
cross. The bottom plot is the same data, but as box plots grouped by year.
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Figure 4.4: Two different data splits illustrated on upstream pressure from
a single well. On the left is a scatter plot of the measurements against the
datapoint index. On the right is the distribution of values in the different subsets.
The sets DA and DB are a random split of the datapoints, where DA, plotted in
blue, contains 2/3 of the data points and DB , in orange, contains the remaining
1/3. The other split is on time, marked with a dashed line. DL contains the 2/3
of the values to the left of the split and DR contains the 1/3 to the right. The
quantitative difference between these two splitting procedures is highlighted in
Figure 4.5.

long-term trend is clear, there can be significant jumps between neighboring
points, indicating the presence of other disturbances that act on top of the
reservoir development. For gas fraction, the development is less significant, and
the average change over a year is quite small. The changes from one test to the
next are on the same level as the oil factor.

Figure 4.7 aggregates the development in compositions for all wells. The
same patterns are present for many of the wells. The average developments are
quite similar to the well used as an example in Figure 4.6, but the spread is
significant, with some wells seeing over twice the rate of change. Gas fraction is
less sensitive and many wells see no general trend in its development. It should
be noted that this stability in gas fraction can partially be attributed to the use
of gas-lift being increased when the reservoir gas is depleted.

4.3 Challenges

We pursue a data-driven virtual flow meter that can provide real-time estimates.
The data itself is naturally an essential part of this problem. The overarching
theme of our data challenges stems from the desire to keep a naturally evolving
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Figure 4.5: Comparison of training and test data distributions for upstream
pressure. Consider the two splitting procedures illustrated in Figure 4.4. For
both of these splits, the absolute difference in expected value between the training
and test data is computed. The differences are plotted against each other and is
colored by the number of samples per year, rounded down to the nearest value
seen in the legend. The result on the data in Figure 4.4 is marked with a green
square.
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superimposed.
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Figure 4.7: Distribution of change in composition as a function of change in
time. For each well, the difference in composition is computed for all pairs of
well-tests, up to a maximum time span of five years into the future. The results
are aggregated and visualized as the mean and 5–95 percentile bands for both
quantities.

process as stable as possible. This leads to three main discussion points, lack of
excitation, correlated explanatory variables, and a non-stationary process. As
discussed in Section 2.2, this is a common problem for soft sensing applications
in general.

The desire to keep a process stable results in explanatory variables having
low levels of excitation. Downstream pressure is particularly exposed, as it is
often closely connected to the operating pressure of the separator facility, which
is under automatic control. This means that for many wells the downstream
pressure can be nearly constant, as evident from Figure 4.2. As long as the
constant explanatory variables remain constant, this is not a significant issue,
but the models will struggle as soon as operating conditions change.

The desire for stability also leads to a negative correlation between upstream
pressure and choke opening. Generally, an increase in these explanatory variables
will increase the flow rate. Therefore, as the pressure declines, the choke opening
is increased to keep flow rates at a fixed level. Also note that the pressure will
change as a function of the choke opening itself, so the relationship between
these explanatory variables can be quite complex. This correlation is revealed
by Figure 4.2. The correlation makes it challenging to isolate the effects of the
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individual explanatory variables with a data-driven model. The joint data set
provides a significant reduction in the correlation between these explanatory
variables.

The development in the reservoir has a second, and potentially more severe
effect. It results in a time-varying distribution of the explanatory variables.
Figure 4.3 and Figure 4.5 illustrates the marginal covariate shift in pressure,
which generally follows the expected pattern of declining with time. Figure 4.7
illustrates the development of the flow fractions. Both of these are related to
the state of the reservoir. These effects are challenging because the wells require
models that can be used outside the range of their historical data. Additionally,
it makes it hard to quantify the expected performance using the framework
outlined in Section 2.1.9.

The asset itself can also change over time. This could be wear and tear,
accumulation of solids in the pipeline, or replacement of entire components. Such
effects are not directly addressed by the methods proposed here, but a possible
future direction is discussed in Chapter 6.

The strategy presented in Chapter 3 relies on multi-task learning to overcome
the presented challenges. The joint dataset is able to reduce the severity of these
challenges, by increasing variability, changing the correlation structure, and
reducing the time dependency of the explanatory variables. This is promising.
Other strategies to address these challenges are hybrid models, which introduce
known physical relationships to parts of the model. Such models are better
suited to extrapolate outside of the training data, making them robust towards
the covariate shifts. Additionally, they are likely to have fewer parameters and
less flexibility, which makes them able to cope with less excitation in the data.
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Chapter 5

Summary of papers

This section gives a brief summary of the four papers produced during this
project. They are listed chronologically in the order they were first submitted to
their respective journals. Paper I is a large study of the classic single-task neural
network virtual flow meter. It provides a baseline for performance and sets the
tone for the research direction of this thesis. Paper II innovates on the traditional
virtual flow meter architecture by introducing multitask learning. Paper III gives
a theoretical deep-dive into the architecture presented in Paper II, and assess its
viability in other domains. Paper IV applies Sequential Monte Carlo to estimate
time-varying flow composition and tuning parameters for virtual flow meters.

5.1 Paper I: Bayesian neural networks for virtual flow
metering: An empirical study

This work provides a large-scale study of data-driven virtual flow meters trained
on data from single wells. It explores the use of Bayesian neural networks for
this purpose. Additionally, it introduces and discusses a series of data-related
challenges that all data-driven virtual flow meters face. Many of these challenges
were presented in detail in Chapter 4.

The study compares four single-task variations of the virtual flow meter
model in Equation (3.2), all based on the standard feedforward neural network
presented in Section 2.1.5. One is a MAP estimate of the parameters, while
the other three are probabilistic models based on variational inference. The
probabilistic models differ in how the noise terms are modeled.

There are 60 wells used in the study, which is a significantly higher number
than what is usually presented in the existing literature. Other works usually
contain studies on fewer wells, which allow for a higher degree of tailoring toward
each well. We are interested in applying the same architecture to all wells
because this would scale better in practice. The consequence is that the models
under investigation have excellent performance on some wells and rather poor
performance on others.

The performance was tested on both historical and future test data. The
four architectures are comparable in their performance on historical data, which
was in general quite good for all wells. The performance on future data was
significantly worse, with the percentage errors being approximately twice as high.
In the future data case, the probabilistic models with a learned noise model had
the best performance on the most challenging wells. Additionally, an experiment
on the number of training data points illustrated that older data points are less
valuable to future predictions.
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The performance issues were discussed in the light of identified data challenges
and the proposed solutions lead to two directions of research. One approach
is hybrid modeling, which attempts to strengthen the model by introducing a
combination of derived physical relationships and data-driven elements. The
other is to strengthen the model by introducing more data from similar systems.
Our focus is on the latter. For the former approach see (Mathilde, Bjarne, and
Imsland, 2020).

The calibration of the probabilistic models proved challenging, and it is
difficult to set sensible priors. The reason is that neural network parameters
do not have any physical interpretation, and are just assumed to be distributed
around zero. The width of this distribution essentially becomes a hyper-
parameter.

The performance of the Bayesian neural networks where promising, and the
possibility of quantifying uncertainty is essential in a real use case. However, in
the work that followed we decided to use non-probabilistic neural networks for
simplicity. We discuss how the probabilistic networks can be combined with the
other results in Chapter 6.

5.2 Paper II: Multi-task learning for virtual flow metering

This work attempts to use multitask learning to address the data challenges
identified in Paper I. A multitask neural network architecture is proposed and
benchmarked against two traditional single-task learners. The empirical results
are based on a study of 55 wells from four assets. Two levels of knowledge
transfer were explored, between wells from the same asset and between all wells.

The proposed architecture is composed of two functions, a well-specific
domain adaptation, g : R4 → R4, and a learned context neural network as in
Equation (2.41). The composition is

yij = f(g(xij ; γj), ϕij ;βj , α) + eij , (5.1)

which, apart from the domain adaptation, is equal to the Equation (3.8). In this
study, the domain adaptation was used to map the choke opening in percent to
a quantity intended to reflect the choke geometry.

Equation (5.1) is composed of two task adaptation mechanisms, the domain
adaptation of g and the learned context of the multitask neural network. The
impact of the two task adaptation mechanisms was compared, and both were
found to be useful. However, in practice, one may favor keeping only the context
parameters, as this significantly simplifies the workflow surrounding the model.
The context parameters were shown to display sensible behavior in terms of
values assigned to wells that are known to be similar and in an analysis of their
impact on model predictions. Paper III further explores context parameter
architecture with a more theoretical perspective.

The two levels of knowledge sharing, between all wells and between wells
from the same asset, were benchmarked against the two single-task learners in
an extensive empirical study. The predictive performance was first compared on
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a well-by-well basis and then averaged over wells from the same asset. In general,
we observed a significant improvement in prediction errors for the two multitask
models. However, an element of negative transfer was observed, indicating that
not all data was beneficial to all other wells. For instance, one asset performed
better without the inclusion of data from the other three assets. The impact
of sharing data is the most apparent on the more challenging wells. For the
percentiles of wells with low errors, the single-task and multitask neural networks
are very close in performance. This indicates that it is hard to improve the
performance of a well with a 2% mean absolute prediction error by adding data
from more wells. However, for the wells in the percentiles of high errors, the
inclusion of more data had a clear benefit. This is in line with the results from
Paper I.

The performance of the four models where compared as a function of time
since the models were trained. For the first week, the average prediction is often
equal to the last seen well-test, which makes all models equally good. As the
time since training increased, the benefit of multitask learning became greater.
This is related to the non-stationarity of the underlying process, as illustrated in
Chapter 4.

In addition to increased predictive performance, the multitask models also
see an increased adherence to physical expectations. A study was conducted on
the sensitivity of the model toward changes in upstream pressure. It revealed
that the multitask learners have a better chance of discovering the expected
relationship that an increase in pressure should increase the flow rate.

5.3 Paper III: Multi-task learning by learned context neural
networks

This paper is a theoretical and empirical deep-dive into the multitask learning
architecture used in Paper II. It isolates the learned context neural network in
Equation (5.1), to study the function yij = f(xij ;βj , α) + eij . The interesting
aspect lies in the learnable parameters βj , which allows the neural network to
adapt the response to different tasks.

Theoretical properties of the task adaptation mechanism are investigated.
Qualitative examples are provided to illustrate how the task parameter interacts
with the shared parameters. We proved its flexibility by showing that,
theoretically, only one task parameter is needed for adaptation to all tasks.
Conversely, the more classical architecture is shown to require one parameter for
each task to provide the same guarantee. An empirical study illustrates that in
practice the optimal number of task parameters varies with the problem and
amount of data.

The performance of the architecture is evaluated on ten publicly available
datasets. It is compared to similar architectures, namely the classic multitask
neural network of Caruana (1997), given in Equation (2.29), the context-sensitive
neural network of Silver, Poirier, and Currie, 2008, given in Equation (2.34),
and a linear mixed model, such as in Equation (2.23). The learned-context

59



5. Summary of papers

architecture is shown to have competitive performance with the other neural
network architectures. It seems favorable in cases with few data points, and in
situations where few task parameters are desired. The linear model has strong
performance on two of the datasets, but the learned context can achieve similar
performance despite being heavily over-parametrized for those cases.

In addition to theoretical properties and test performance, the architecture is
explored using hold-out tasks. A hold-out task is a task that has not been seen
during training of the shared parameters. For these tasks, we only train the task
parameters using data from the tasks themselves. Results show that identifying
parameters for hold-out tasks without updating the shared model is possible
given that the properties of the hold-out task are covered by the original tasks.

The study supports the findings in Paper II. The architecture seems fit
for the original purpose, but also for similar modeling challenges from other
domains. In particular, its ability to manage with few task parameters combined
with a well-behaved parameter space facilitates efficient model maintenance.
Performance-wise there is still no free lunch, and the compared architectures
have individual strengths and weaknesses, but in scenarios with few data points
or there is a desire for few task parameters, the proposed architecture is a strong
alternative.

5.4 Paper IV: Sequential Monte Carlo applied to virtual flow
meter calibration

This paper studies the application of sequential Monte Carlo to calibrate virtual
flow meters. The parameters being inferred are the flow composition, using the
parametrization from Equation (3.6), and a multiplicative tuning factor. The
paper presents a state-space model to describe the evolution of the tuning factor
and composition over time and studies its viability in a case with ten wells. The
method attempts to utilize data from the production separator, which means
that the observed flow rates are a sum of the contributions from, potentially, all
ten wells. Well-test data is also available, and the performance of the methods
is tested both with and without the inclusion of the well-tests. It reveals that
the production data is quite informative and that it is able to provide quite
reasonable estimates of the parameters. However, it is also revealed that it is
challenging to find a proper balance for the level of noise in the likelihood, and
it will likely require significant tuning to achieve satisfactory performance in
practice.

The virtual flow meters themselves are taken to be quite simple mechanistic
models. However, the state-space model and sampling procedure do not make
any assumptions about the virtual flow meter, apart from the ability to be
evaluated freely with arbitrary input values. As such, the architectures from
Paper I or Paper II could be considered for future experiments.
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Chapter 6

Discussion
Data-driven virtual flow metering is not new. The existing literature is extensive
and the proposed methods are diverse. Still, there have been very few commercial
applications. This led us to investigate the underlying problems, starting with
the data itself and the uncertainty of the models. The findings lead us down the
path of multitask learning, first for virtual flow meters and then for a broader
scope. It culminates in a two-stage strategy for data-driven virtual flow metering.
We briefly discuss the findings below.

6.1 Data-driven virtual flow metering

A modeling strategy for data-driven virtual flow metering has been presented.
The strategy is comprised of two main components, a static multitask neural
network, and a dynamic state space model. The multitask neural network is a
mapping from measured and unmeasured state variables to the flow rates through
a choke valve. The state-space model provides an estimate of the unknown state.
The necessity of a two-stage procedure in combination with multitask learning
is due to a continuously changing system with sparse instrumentation.

6.1.1 The available data

Paper I initiated a discussion of challenges related to the data and the system
we are trying to model. These challenges are fundamental to the problem itself
and will impact any proposed learning strategy. In particular, it concludes that
it is unlikely for a single-task learner to generalize to future data with the same
performance it achieved on historical data. It also finds that collecting more
historical data from the same well has diminishing returns and that it will not
amend the problem of a time-varying system. Paper II expands the data study
along the same lines. It finds that the explanatory variables are highly correlated
and time-varying. Chapter 4 took a deep dive into these data challenges. It
explored how changing the dataset to include multiple wells has a beneficial
impact on the statistical properties of the data, which can lead to a better-posed
learning problem. For instance, the problems caused by each well continuously
moving towards lower operating pressures are mitigated by the inclusion of data
from other wells that have operated at a broader range of pressures historically.
This data was exploited by multitask learning.

6.1.2 multitask learning

Paper II proposes a virtual flow meter based on multitask learning. The
underlying idea is that each well is facing the same fundamental modeling
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problem and that wells have many aspects in common. A multitask learning
formulation allows us to learn model parameters using the joint dataset discussed
above. This leads to better performance on future data and better adherence to
physical expectations. Increasing the number of wells in the dataset was observed
to be beneficial in general, but an element of negative transfer was observed
for some wells. The classification of which wells are best learned together is a
problem for future research.

The most interesting task adaptation was the learned context parameters,
which were studied further in Paper III. However, the domain adaptation
mechanism also has its strengths. It can serve as an additional tool to incorporate
prior knowledge. While only choke geometry was considered for adaptation in
this study, the method could also be used to correct other measurements, such
as bias or drift in pressure and temperature sensors.

6.1.3 Probabilistic models

Quantifying uncertainty is an important aspect of building trust in data-driven
models. Paper I studied the application of Bayesian neural networks to study the
full effect of uncertain network parameters. The method results in reasonably
well-calibrated models when testing on historical data. On future test data, the
uncertainty assessment becomes more difficult. A full probabilistic treatment of
neural networks is quite excessive, and the limited data from individual wells
makes it challenging to properly tune these models. It is possible that these
shortcomings can be addressed if the Bayesian neural network is combined with
the multitask learning approach. Additionally, the mean-field approximation can
be problematic, and other alternatives should be investigated. We leave these as
directions for future work.

The application of sequential Monte Carlo to estimate tuning factors and
composition parameters represents another probabilistic approach explored in
this research. The sampling procedure is able to infer reasonable parameters, but
we are again faced with the challenging task of finding parameters to properly
tune the model. This is particularly challenging when well-test and production
data are combined, because well-tests are usually very accurate and informative,
but can occasionally be quite wrong. This makes it difficult to properly describe
the uncertainties involved.

6.1.4 Calibration and time varying parameters

All virtual flow meters require some level of maintenance. The model presented in
Paper II assumes that the flow composition is known, even though it is changing
over time. This will make the virtual flow meter outdated if the composition
is not updated. If the frequency of well-testing is high, this is often not a
problem. Especially for wells with slow and steady development, such as the case
illustrated in Figure 4.6. However, as seen in Figure 4.7, the composition can
change quite substantially over a short time frame. To address this, Paper IV
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proposed a method based on monitoring the production separator, in an attempt
to capture changes in wells early.

While the procedure is able to perform reasonably, it relies heavily on
the properties of the asset. For instance, it requires that all wells can be
simultaneously modeled and that there are few enough wells that each one has a
significant impact on the observed commingled flow. This is not always the case,
and alternative calibration strategies should be investigated in future research.

In Paper II it is assumed that each well has a fixed task parameter that
describes its behavior over the entire period. However, in practice, wells likely
change over time. This could be due to wear and tear on the equipment, material
accumulating in the pipeline, or maintenance operations. Paper III studied the
properties of the task parameters empirically using several different datasets. The
findings indicate that the task parameter space is well-behaved, for instance by
facilitating the estimation of new tasks that have not been seen during training.
This means that it should be possible to incrementally update and adjust the
task parameters as new data arrives. This is an opportunity for very efficient
workflows regarding model maintenance.

6.1.5 Neural networks

Neural networks were chosen as our modeling framework. The choice was made
due to their properties and the ecosystem that surrounds them. Modeling of
multi-phase flow results in complex, continuous, nonlinear relationships, and we
desired to find these relationships by utilizing large quantities of measurement
data. The combination of the learning capacity of neural networks and the
benefits of stochastic gradient descent is able to meet this requirement. Neural
networks are also easily augmented to multitask learning, and the main innovation
in this project relies on the sharing of data between wells. Other methods could
have been considered, but evidence points to neural networks being a robust
choice for our problem. For instance, Silver, Poirier, and Currie (2008) compares
the use of context-sensitive inputs in neural networks, decision trees, and support
vector machines. While all three model types are able to train on large data
sets to infer non-linear relationships, the empirical study indicates that neural
networks are much more capable of utilizing shared information.

There is also a significant interest in neural networks in general. This has led
to several mature software packages for implementing and manipulating neural
network architectures, which is highly beneficial when conducting the kind of
experiments presented here. The continuously increasing understanding of both
theoretical and practical aspects of neural networks works to our advantage, and
has allowed us to implement and train large and complex models with little
effort.

6.1.6 Practical considerations

The three virtual flow meter papers address different aspects of the strategy
outlined in Chapter 3. Combining all these aspects into a single model is a
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significant challenge. The compartmentalized research allows the results to
be incrementally introduced to a real application, which is beneficial from an
engineering viewpoint.

The multitask architecture is also beneficial from a maintenance point of
view. Paper II briefly discusses the reduction in overall training time, compared
to using single-task neural networks for each well individually. Reducing the
number of models also reduced the effort required by data scientists to assess
and manage the models. Additionally, Paper III provides evidence that the task
parameters can be adjusted incrementally over time.

6.2 Generalization to other domains

Paper III explores the learned-context neural network outside of the virtual flow
meter domain. The architecture is shown to have beneficial properties when
a low-dimensional task parameter space is desired or when there are limited
amounts of data. The architecture is therefore likely to be successful in other
domains with similar data challenges as those explored here, and it could be a
strong contender for other soft-sensor applications.

6.3 Conclusion

Data-driven virtual flow meters face challenges caused by limited data, lack
of excitation, and correlated time-dependent explanatory variables. multitask
learning takes a significant step to amend these problems, and results in models
that generalize better to new data. The presented multitask neural network is
also shown to perform well on data from several other domains, which makes it
an interesting candidate for soft-sensing applications in general.

However, even with multitask learning, it is essential to keep the models up
to date. A calibration procedure based on sequential Monte Carlo was explored
for this purpose, but it is unlikely to be a universal solution, and calibration
must likely be tailored to individual assets.

The uncertainty of the virtual flow meters can be assessed by Bayesian neural
networks, but they were only studied for the single-task case. An exciting future
development would be to combine them with multitask learning and explore the
potential of learned context Bayesian neural networks.
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I

Abstract

Recent works have presented promising results from the application of
machine learning (ML) to the modeling of flow rates in oil and gas wells.
Encouraging results and advantageous properties of ML models, such as
computationally cheap evaluation and ease of calibration to new data,
have sparked optimism for the development of data-driven virtual flow
meters (VFMs). Data-driven VFMs are developed in the small data
regime, where it is important to question the uncertainty and robustness
of models. The modeling of uncertainty may help to build trust in models,
which is a prerequisite for industrial applications. The contribution of this
paper is the introduction of a probabilistic VFM based on Bayesian neural
networks. Uncertainty in the model and measurements is described, and
the paper shows how to perform approximate Bayesian inference using
variational inference. The method is studied by modeling on a large and
heterogeneous dataset, consisting of 60 wells across five different oil and
gas assets. The predictive performance is analyzed on historical and future
test data, where an average error of 4-6% and 8-13% is achieved for the
50% best performing models, respectively. Variational inference appears
to provide more robust predictions than the reference approach on future
data. Prediction performance and uncertainty calibration is explored in
detail and discussed in light of four data challenges. The findings motivate
the development of alternative strategies to improve the robustness of
data-driven VFMs.

I.1 Introduction

Knowledge of multiphase flow rates is essential to efficiently operate a petroleum
production asset. Measured or predicted flow rates provide situational awareness
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and flow assurance, enable production optimization, and improve reservoir
management and planning. However, multiphase flow rates are challenging to
obtain with great accuracy due to uncertain subsurface fluid properties and
complex multiphase flow dynamics (Jansen, 2015). In most production systems,
flow rates are measured using well testing. While these measurements are
of high accuracy, they are intermittent and infrequent (Monteiro, Duque, et
al., 2020). Some production systems have multiphase flow meters (MPFMs)
installed at strategic locations to continuously measure flow rates. Yet, these
devices are expensive, and typically have lower accuracy than well testing. An
alternative approach is to compute flow rates using virtual flow metering (VFM).
VFM is a soft-sensing technology that infers the flow rates in the production
system using mathematical models and ancillary measurements (Toskey, 2012).
Many fields today use some form of VFM technology complementary to flow
rate measurements. There are two main applications of a VFM: i) real-time
prediction of flow rates, and ii) prediction of historical flow rates. The second
application is relevant to the prediction of missing measurements due to sensor
failure or lacking measurements in between well tests.

VFMs are commonly labeled based on their use of either mechanistic or
data-driven models (Bikmukhametov and Jäschke, 2020). Both model types can
be either dynamic or steady-state models. Mechanistic VFM models are derived
from prior knowledge about the internal structure of the process (Solle et al.,
2017). Physical, first-principle laws such as mass, energy, and momentum-balance
equations, along with empirical closure relations, are utilized to describe the
relationship between the system variables. Mechanistic modeling is the most
common approach in today’s industry and some commercial VFMs are Prosper,
ValiPerformance, LedaFlow, FlowManager, and Olga (Amin, 2015).

In contrary to mechanistic models, data-driven models exploit patterns in
process data and attempt to find relationships between the system variables with
generic mathematical models. In other words, data-driven models attempt to
model the process without utilizing explicit prior knowledge (Solle et al., 2017). In
recent years, there has been an increasing number of publications on data-driven
VFMs (Bikmukhametov and Jäschke, 2020). The developments are motivated
by the increasing amount of sensor data due to improved instrumentation of
petroleum fields, better data availability, more computing power, better machine
learning tools and more practitioners (Balaji et al., 2018). Additionally, data-
driven VFMs may require less maintenance than a mechanistic VFMs (AL-
Qutami, Ibrahim, Ismail, and Ishak, 2017c). Even so, commercial data-driven
VFMs are rare. This is arguably due to the following data challenges, which
must be overcome by data-driven VFMs:

1. Low data volume

2. Low data variety

3. Poor measurement quality

4. Non-stationarity of the underlying process
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The first two challenges are due to data-driven methods, especially neural
networks, being data-hungry, and require substantial data volume and variety to
achieve high accuracy (Mishra and Datta-Gupta, 2018). Petroleum production
data do not generally fulfill these requirements. For petroleum fields without
continuous monitoring of the flow rates, new data is obtained at most 1-2
times per month during well testing (Monteiro, Duque, et al., 2020), yielding
low data volume. For fields with continuous measurements, the data volume
may be higher, yet, the second challenge of low variety remains. Low data
variety relates to the way production systems are operated and how it affects
the information content in historical production data. The production from a
well is often kept fairly constant by the operator, in particular during plateau
production, i.e., when the production rate is limited by surface conditions such
as the processing capacity. When a field later enters the phase of production
decline, the operator compensates for falling pressures and production rates by
gradually opening the production choke valves. This can introduce correlations
among the measured variables which are unfortunate for data-driven models.
A common consequence of modeling in the small data regime is overfitting
which decreases the generalization ability of the model, that is, the models
struggle with extrapolation to unseen operating conditions (Solle et al., 2017).
Nonetheless, one should be able to model the dominant behavior of the well
and make meaningful predictions close to the observed data if care is taken to
prevent overfitting (AL-Qutami, Ibrahim, and Ismail, 2018).

The third challenge, poor measurement quality, highly influences the predic-
tive abilities of data-driven VFMs. Common issues with measurement devices in
petroleum wells include measurement noise, bias, and drift. Additionally, equip-
ment or communication failures may lead to temporarily or permanently missing
data. Common practices to improve data quality include device calibration, data
preprocessing and data reconciliation (Câmara et al., 2017). In model develop-
ment, methods such as parameter regularization and model selection techniques
prevent overfitting of the model in the presence of noisy data. However, some of
the above issues and practices may be challenging to handle in a data-driven
model.

Lastly, the underlying process in petroleum production systems, the reservoir,
is non-stationary. The pressure in the reservoir decreases as the reservoir is
drained and the composition of the produced fluid changes with time (Foss,
Knudsen, and Grimstad, 2018). Time-varying boundary conditions make it
more difficult to predict future process behavior for data-driven VFMs as they
often struggle with extrapolation. As mentioned above, methods to prevent
overfitting to the training data in model development may (and should) be
utilized to improve extrapolation abilities to the near future, and frequent model
updating or online learning would contribute to better predictive abilities for
larger changes in the underlying process.

As the above discussion reflects, data-driven VFMs are influenced by
uncertainty. Both model (epistemic) uncertainty and measurement (aleatoric)
uncertainty are present (Hüllermeier and Waegeman, 2021). The first type
originates from the model not being a perfect realization of the true process

75



I. Bayesian neural networks for virtual flow metering: An empirical study

and there are uncertainties related to the model structure and parameters.
The latter type is a cause of noisy data due to imprecision in measurements
(Gal, 2016). Accounting for uncertainty is important to petroleum production
engineers as they are often concerned with worst- and best-case scenarios. Further,
information about the prediction uncertainty may aid the production engineers
to decide whether the model predictions may be trusted. According to a recent
survey (Bikmukhametov and Jäschke, 2020), uncertainty estimation must be
addressed by future research on VFM.

The motivation of this paper is to address uncertainty by introducing a
probabilistic, data-driven VFM based on Bayesian neural networks. With
this approach, epistemic uncertainty is modeled by considering the weights
and biases of the neural network as random variables. Aleatoric uncertainty
can be accommodated by a homoscedastic or heteroscedastic model of the
measurement noise. This allows the modeler to separately specify priors related
to the two uncertainty types. This can be beneficial when having knowledge of
the measurement devices that produced the data modeled on.

Historically, the difficulty of performing Bayesian inference with neural
networks has been a hurdle to practitioners. We thus provide a description
of how to train the model using variational inference. Variational inference
provides the means to perform efficient, approximate Bayesian inference and
results in a posterior distribution over the model parameters (Blei, Kucukelbir,
and McAuliffe, 2017). The method has shown promising results in terms of
quantifying prediction uncertainty on other problems subject to small datasets
and dataset shift (Ovadia et al., 2019). We also consider maximum a posteriori
estimation, which serves as a non-probabilistic reference method. Although
it computes a point estimate of the parameters, as opposed to a posterior
distribution, it more closely resembles the maximum likelihood methods used
in the majority of previous works on data-driven VFM. The reference method
enables us to investigate if a probabilistic method, i.e. variational inference, may
improve robustness over a non-probabilistic method. We test the proposed VFM
by performing a large-scale empirical study on data from a diverse set of 60
petroleum wells.

The paper is organized as follows. In Section I.2 we briefly survey related
works on data-driven VFM, with a focus on applications of neural networks.
This section also gives some relevant background on probabilistic modeling. In
Section I.3 we describe how flow rates are measured and the dataset used in
the case study. The probabilistic model for data-driven VFM is presented in
Section I.4 and in Section I.5 we discuss methods for Bayesian inference. The
case study is presented in Section I.6 and discussed in Section I.7. In Section I.8
we conclude and give our recommendations for future research on data-driven
VFM based on our findings.
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I.2 Related work

I.2.1 Traditional data-driven modeling

In literature, several data-driven methods have been proposed for VFM modeling,
for instance, linear and nonlinear regression, principal component regression,
random forest, support vector machines and the gradient boosting machine
learning algorithm (Bello, Ade-Jacob, and Yuan, 2014; Bikmukhametov and
Jäschke, 2019; Xu et al., 2011; Zangl, Hermann, and Christian, 2017). One
of the most popular and promising data-driven methods for VFM are neural
networks (NN). In Zangl, Hermann, and Christian (2017), the oil flow rate from
three wells was modeled using NNs, and an error as low as 0.15% was reported.
However, well-step tests were used to generate data with sufficient variety, and
the time-span of the data covered only 30 hours. The three studies, Ahmadi et al.
(2013), S. M. Berneti and Shahbazian (2011), and Hasanvand and S. Berneti
(2015), investigated NNs for the oil flow rate from a reservoir using data samples
from 31-50 wells. All used a neural network architecture with one hidden layer
and 7 hidden neurons. In the two first, the imperialist competitive algorithm
was used to find the NN weights. All of the three studies reported a very small
mean squared error, of less than 0.05. Yet, the data was limited to a time-span
of 3 months and did not include measurements of the choke openings of the
petroleum wells. This will strongly affect the future model performance when
reservoir conditions change and the choke openings are adjusted.

A particularly noticeable series of studies on VFM and NN, using historical
well measurements with a time-span of more than a year, are AL-Qutami,
Ibrahim, and Ismail (2018), AL-Qutami, Ibrahim, Ismail, and Ishak (2017a), AL-
Qutami, Ibrahim, Ismail, and Ishak (2017b), and AL-Qutami, Ibrahim, Ismail,
and Ishak (2017c). In AL-Qutami, Ibrahim, Ismail, and Ishak (2017a), the oil
and gas flow rates were modeled using two individual feed-forward NN, with
one hidden layer and 6 and 7 neurons respectively, and with early stopping to
prevent overfitting. An error of 4.2% and 2.3% for the oil and gas flow rates
were reported. In AL-Qutami, Ibrahim, Ismail, and Ishak (2017c), a radial
basis function network was utilized to model the gas flow rate from four gas
condensate wells, and the Orthogonal Least Squares algorithm was applied to
find the optimal number of neurons (≤ 80) in the hidden layer of the network.
The study reported an error of 5.9%. In AL-Qutami, Ibrahim, and Ismail (2018)
and AL-Qutami, Ibrahim, Ismail, and Ishak (2017b), ensemble neural networks
were used to excel the learning from sparse data. In the first, the neural network
architecture was limited to one hidden layer but the number of hidden neurons
was randomly chosen in the range 3-15. Errors of 1.5%, 6.5%, and 4.7% for gas,
oil, and water flow rate predictions were achieved. The second paper considered
1-2 hidden layers with 1-25 neurons. Errors of 4.7% and 2.4% were obtained for
liquid and gas flow rates respectively.
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I.2.2 Probabilistic modeling

A common approach in today’s industry and literature is to study the sensitivity
of the model to changes in parameter values, thus to a certain extent approaching
epistemic uncertainty, e.g. Bieker, Slupphaug, and Johansen (2007), Fonseca,
Gonçalves, and Azevedo (2009), Monteiro, Chaves, et al. (2017), Monteiro, Duque,
et al. (2020), and Zangl, Hermann, and Christian (2017). By approximating
probability distributions for some of the model parameters from available process
data and using sampling methods to propagate realizations of the parameters
through the model, a predictive distribution of the output with respect to the
uncertainty in the parameter may be analyzed.

Probabilistic modeling offers a more principled way to model uncertainty, e.g.
by considering model parameters and measurement noise as random variables
(Ghahramani, 2015). With Bayesian inference, a posterior distribution of the
model output is found that takes into account both observed process data and
prior beliefs of the model parameters (Hastie, Tibshirani, and Friedman, 2009).
The result is a predictive model that averages over all likely models that fit the
data and a model that offers a natural parameter regularization scheme through
the use of priors. This is in contrast to traditional data-driven modeling where
the concern is often to find the maximum likelihood estimate (Ghahramani,
2015). Although probabilistic models and Bayesian inference are well-known in
other fields of research, probabilistic VFMs are rare, yet existent (Bassamzadeh
and Ghanem, 2018; Lorentzen, Stordal, Luo, et al., 2016; Lorentzen, Stordal,
Nævdal, et al., 2014; Luo et al., 2014).

The following series of studies, Lorentzen, Stordal, Luo, et al. (2016),
Lorentzen, Stordal, Nævdal, et al. (2014), and Luo et al. (2014), constructed
a mechanistic, probabilistic model of the flow rate in petroleum wellbores.
A method for probabilistic, data-driven models is Bayesian neural networks
(BNNs). BNNs are similar to traditional neural networks but with each parameter
represented with a probability distribution (Hastie, Tibshirani, and Friedman,
2009; Polson and Sokolov, 2017). Bayesian methods have shown to be efficient
in finding high accuracy predictors in small data regimes and in the presence of
measurement noise without overfitting to the data (Snoek, Larochelle, and Adams,
2012). Further, Bayesian methods lend themselves to online model updating and
could quickly improve the model’s predictive ability when introduced to new
operating regions. Yet, there are disadvantages with probabilistic modeling and
Bayesian inference. Except in special cases, inferring the posterior probability
distribution of the model consists of solving intractable integrals and inference
is slow for large datasets (Blei, Kucukelbir, and McAuliffe, 2017). However,
methods for approximation of the posterior distribution exist such as Markov
Chain Monte Carlo (MCMC) sampling and variational inference (VI). Comparing
these two approximation methods, VI has shown to scale better to large datasets
and inference tends to be faster. Additionally, it simplifies posterior updating in
the presence of new data. Nevertheless, the approximation with VI is in most
cases bounded away from the true distribution, whereas MCMC methods will in
principle converge towards the true distribution (Blei, Kucukelbir, and McAuliffe,
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2017). A challenge for data-driven probabilistic models, such as Bayesian neural
networks, is that the model parameters are generally non-physical, and setting
the parameter priors is nontrivial. Despite neural networks being among the
more popular data-driven methods for VFM modeling, to the extent of the
authors’ knowledge, there has been no attempt at using BNNs for VFM. There
are, however, examples of BNNs being used for data-driven prediction in similar
applications (Humphrey et al., 2016; Liu et al., 2012).

I.3 Flow rate measurements and dataset

A petroleum production well is illustrated in Figure I.1. Produced fluids flow
from the reservoir, up to the wellhead, and through the choke valve. The choke
valve opening (u) is operated to control the production from the well. The fluids
thereafter enter the separator which separates the multiphase flow into the three
single phases of oil, gas, and water q = (qoil, qgas, qwat). On well-instrumented
wells, pressure (p) and temperature (T ) is measured upstream and downstream
the choke valve.

To separator

Choke valve
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MPFMP/T sensor P/T sensor

Gas

OilWater

Test separator

Figure I.1: Sensor placement in a typical production well. A MPFM measures
multiphase flow rates in the well. During well testing, single phase flow rates are
measured with high accuracy after fluid separation.

The two main devices to measure multiphase flow rates in a well are the
multiphase flow meter (MPFM) and test separator, both illustrated in Figure I.1.
MPFMs are complex devices based on several measurement principles and
offer continuous measurements of the multiphase flow rate. Unfortunately,
MPFMs have limited operation range, struggle with complex flow patterns, and
are subject to drift over time (Corneliussen et al., 2005). Additionally, PVT
(pressure-volume-temperature) data are used as part of the MPFM calculations
and should be accurate and up-to-date for high accuracy MPFM measurements.
On the other hand, well-testing is performed by routing the multiphase flow to
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a test separator whereby the separated flows are measured using single-phase
measurement devices over a period of time (typically a few hours). Compared
to the MPFM, well tests are performed infrequently, usually 1-2 times a month
(Monteiro, Duque, et al., 2020).

Normally, measurements of the multiphase flow rate obtained through well-
testing have higher accuracy than the measurements from the MPFMs. This is
due to the use of single-phase measurement devices in well-testing. According
to Corneliussen et al. (2005) and Marshall and Thomas (2015), the uncertainty,
in terms of mean absolute percentage error, of well tests, may potentially be as
low as 2% and 1% for gas and oil respectively, whereas MPFM uncertainty is
often reported to be around 10%. The error statistics are calculated with respect
to reference measurements. For measurements of pressure, temperature, and
choke openings, we assume that the sensors’ accuracy is high, typically with an
uncertainty of 1% or less, and measurement error in these measurements are
therefore neglected.

The flow rates are often given as volumetric flow rates under standard
conditions, e.g. as standard cubic meter per hour (Sm3/h). Standard conditions
make it easier to compare to reference measurements or measurements at other
locations in the process as the volume of the fluid changes with pressure and
temperature. Flow rates may be converted from actual conditions to standard
conditions using PVT data (Krejbjerg et al., 2019). If the density of the fluid at
standard conditions is known, the standard volumetric flow rate may be converted
to mass flow rate, and the phasic mass fractions, η = (ηoil, ηgas, ηwat), may be
calculated. We assume steady-state production, frozen flow, and incompressible
liquid such that the phasic volumetric flow rate and mass fractions are constant
through the system, from the reservoir to the separator.

I.3.1 Dataset

The dataset used in this study consists of 66 367 data points from 60 wells
producing from five oil and gas fields. The dataset was produced from raw
measurement data using a data squashing technology (Grimstad et al., 2016).
The squashing procedure averages raw measurement data in periods of steady-
state operation to avoid short-scale instabilities. The resulting data points, which
we refer to as measurements henceforth, are suitable for modeling of steady-state
production rates.

For each well we have a sequence of measurements in time. The time span
from the first to last measurement is plotted for each well in Figure I.2a. The
figure shows that the measurement frequency varies from a handful to hundreds
of measurements per year. There are 14 wells with test separator measurements,
for which the average number of measurements is 163. The other 46 wells have
MPFM measurements, and the average number of measurements is 1393. The
60 wells are quite different from each other in terms of produced fluids. Figure
I.2b illustrates the spread in mass fractions among the wells.

In the following, we model the multiphase flow through the production
choke valve, a crucial component in any VFM. We consider ideal conditions,
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Figure I.2: The number of measurements is plotted against the time span from
the first to last measurement in (a). The average gas and water mass fraction is
shown for all wells in (b).

in the sense that all measurements required by a reasonable choke model are
available (Mathilde, Bjarne, and Imsland, 2020). For each well, we collect
the corresponding measurements in a dataset D = {(xi, yi)}Ni=1. We will only
consider one well at the time and simply refer to the dataset as D. The target
variable is the total volumetric flow rate, yi = qoil,i+qgas,i+qwat,i ∈ R, measured
either by a test separator or a MPFM. The explanatory variables,

xi = (ui, p1,i, p2,i, T1,i, T2,i, ηoil,i, ηgas,i) ∈ R7,

are the measured choke opening, the pressures and temperatures upstream
and downstream the choke valve, and the mass fractions of oil and gas. No
experimental set-up was used to affect the data variety; for example, we did not
consider step well tests as in Zangl, Hermann, and Christian (2017).
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I.4 Probabilistic flow model

Consider the following probabilistic model for the total multiphase flow rate:

yi = zi + ϵi

zi = f(xi,ϕ)
si = g(zi,ψ)
ϵi ∼ N (0, s2

i )

 i = 1, . . . , N,

ϕ ∼ p(ϕ) =
Kϕ∏
i=1
N (ϕi | ai, b2

i ),

ψ ∼ p(ψ) =
Kψ∏
i=1
N (ψi | ci, d2

i ),

(I.1)

where yi is a measurement of the multiphase flow rate zi subject to additive
measurement noise ϵi. The nonlinear dependence of zi on xi is approximated
by a Bayesian neural network f(xi,ϕ) with weights and biases represented by
latent (random) variables ϕ. The neural network is composed of L functions,
f = f (L) ◦ · · · ◦ f (1), where f (1) to f (L−1) are called the hidden layers of f , and
f (L) is the output layer (Goodfellow, Bengio, and Courville, 2016). A commonly
used form of a hidden layer l is f (l)(x) = ReLU(W (l)x+b(l)), where the rectified
linear unit (ReLU) operator is given as ReLU(z)i = max{zi, 0}, W (l) is a weight
matrix, and b(l) is a vector of biases. For regression tasks the output layer
is usually taken to be an affine mapping, f (L)(x) = W (L)x + b(L). The layer
weights and biases are collected in ϕ = {(W (l), b(l))}Ll=1 to enable the compact
notation f(xi,ϕ). With a slight abuse of this notation, an element ϕi of ϕ
represents a scalar weight or bias for i ∈ {1, . . . ,Kϕ}, where Kϕ is the total
number of weights and biases in the neural network. The distinguishing feature
of a Bayesian neural network is that the weights and biases, ϕ, are modeled as
random variables with a prior distribution p(ϕ).

We assume the noise to be normally distributed with standard deviation
g(zi,ψ) > 0, and we consider different functions g of zi and latent variables ψ.
We discuss the priors on the latent variables, p(ϕ) and p(ψ), in the subsequent
sections. The probabilistic model is illustrated graphically in Figure I.3.

Given ϕ, ψ and explanatory variables x, the conditional flow rate z = f(x,ϕ)
and a measurement y is generated as

y | z,ψ ∼ N (y | z, g(z,ψ)2). (I.2)

The flow rate measurement y is subject to epistemic (model) uncertainty in
f(x,ϕ) and aleatoric (measurement) uncertainty via g(z,ψ). We differ between
homoscedastic and heteroscedastic measurement noise. Heteroscedasticity is
when the structure of the noise in a signal is dependent on the structure of the
signal itself and is more difficult to capture (Woodward, Alsberg, and Kell, 1998).
Homoscedasticity is the lack of heteroscedasticity.
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Samples

Figure I.3: A probabilistic graphical model for flow rates. Random variables
are inscribed by a circle. A gray-filled circle means that the random variable is
observed. The dependence zi → ϵi indicates that the noise is heteroscedastic,
while the dependence ψ → ϵi indicates that the noise model is learned from
data.

The flow model in (I.1) is a quite generic regression model, but it restricts
the modeling of the measurement noise. The model allows the noise to be
heteroscedastic, with the noise level being a function of the flow rate z, or
homoscedastic for which the noise level is fixed. In the latter case, g(z,ψ) = σn,
where σn is a fixed noise level. If the noise level is unknown, it can be learned
with the following homoscedastic noise model:

g(zi,ψ) = exp(ψ1),
ψ1 ∼ N (c1, d

2
1),

(I.3)

where ψ1 is a normally distributed latent variable and the noise level is log-normal.
The exponential ensures that g(zi,ψ) > 0.

The homoscedastic noise model in (I.3) may be unrealistic for flow meters
with a heteroscedastic noise profile. As described earlier, the uncertainty of the
flow rate measurement is often given in relative terms. To model this property
of the data, we augment (I.3) with a multiplicative term to get the following
heteroscedastic noise model:

g(zi,ψ) = exp(ψ2) · |zi|+ exp(ψ1),
ψ1 ∼ N (c1, d

2
1),

ψ2 ∼ N (c2, d
2
2),

(I.4)

where ψ1 and ψ2 are normally distributed latent variables1. Both exp(ψ1) and
exp(ψ2) are log-normal, and are hence strictly positive. It follows from |z| ≥ 0
that the noise standard deviation g(z,ψ) > 0.

1We assume that we have one flow rate instrument for each well. Yet, several instruments
may be handled by having separate noise models for each instrument.
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I.4.1 Prior for the noise model, p(ψ)
The prior for the noise model is assumed to be a factorized normal

p(ψ) =
Kψ∏
i=1
N (ψi | ci, d2

i ), (I.5)

where Kψ = 1 for the homoscedastic noise model in (I.3) and Kψ = 2 for the
heteroscedastic noise model in (I.4).

The accuracy of an instrument measuring flow rate is commonly given as
a mean absolute percentage error (MAPE) to a reference measurement. More
precisely, the expected measurement error is specified as

Ey | z

[
|y − z|
|z|

]
= Er, (I.6)

where y is the measurement, z > 0 is the reference measurement, and Er is the
MAPE, e.g. Er = 0.1 for a MAPE of 10%. We wish to translate such statements
to a prior p(ψ).

Assuming a perfect reference measurement z, normal noise ϵ, and an additive
noise model y = z + ϵ, we obtain from (I.6) a noise standard deviation
g(z) =

√
π/2Er|z|. We recognize this as the first term in the heteroscedastic

noise model (I.4). We derive prior parameters of ψ2 ∼ N (c2, d
2
2) that correspond

to a log-normal distribution exp (ψ2) with mean
√
π/2Er by solving:

c2 = log(
√
π/2Er)− d2

2/2, (I.7)

where we can adjust the variance d2
2 to express our uncertainty in the value of

Er.
The specification of a relative measurement error Er cannot be translated

directly to a fixed noise level, as required by the homoscedastic noise model in
(I.3). However, we can obtain a reasonable approximation by using the above
procedure. If we set z = z̄, where z̄ is the mean production of a well, we can
calculate prior parameters for ψ1 as follows:

c1 = log(
√
π/2Er z̄)− d2

1/2. (I.8)

We express our uncertainty about the noise level by adjusting the variance d2
1.

I.4.2 Prior for the neural network weights, p(ϕ)
We encode our initial belief of the parameters ϕ with a fully factorized normal
prior

p(ϕ) =
Kϕ∏
i=1
N (ϕi | ai, b2

i ), (I.9)

where Kϕ is the number of weights and biases in the neural networks f . We
assume a zero mean for the weights and biases, that is ai = 0, as is common
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practice for neural networks. One interpretation of the prior standard deviations
is that they encode the (believed) frequencies of the underlying function, with
low values of b inducing slow-varying (low frequency) functions, and high
values inducing fast-varying (high frequency) functions (Gal, 2016). While
this interpretation can give us some intuition about the effect of the prior, it is
not sufficiently developed to guide the specification of a reasonable prior. We
refrain from learning the prior from the data (as with empirical Bayes) and
therefore treat b as hyperparameters to be prespecified.

For deep neural networks it is common practice to randomly sample the
initial weights so that the output has a variance of one for a standard normal
distributed input (Glorot and Bengio, 2010; He et al., 2015). For example,
He-initialization (He et al., 2015) is often used for neural networks with ReLU
activation functions. With He-initialization, the weights of layer l are drawn
from the distribution N (0, σ2

l ) with σl =
√

2/nl, where nl is the number of layer
inputs. The weights in the first hidden layer are initialized with σl =

√
1/nl

since no ReLU activation is applied to the network’s input. With layer biases
set to zero, this initialization scheme yields a unit variance for the output.

The objective of weight initialization is similar to that of prior specification;
a goal in both settings is to find a good initial model. In this work, we use the
standard deviations bi = σl as a starting point for the prior specification (for
weight i in layer l of a ReLU network). We call this the He-prior. The resulting
standard deviations can then be increased (or decreased) if one believes that the
underlying function amplifies (or diminishes) the input signal.

Figure I.4 shows the effect of b on the predictive uncertainty of a Bayesian
neural network. With a common prior standard deviation (same for all weights),
the output variance is sensitive to the network size (depth and width). This
sensitivity complicates the prior specification, as illustrated for different network
depths in the figure. The He-prior retains a unit output variance for different
network sizes.
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Figure I.4: Prediction uncertainty (two sigma) for different priors bi = σ̄ on a
neural network’s weights. Two networks are trained on a dataset D = {(0, yi)}100

i=1,
where yi ∼ N (0, σ2

n) and the noise level σn = 0.1 is known. The figure shows that
the epistemic (model) uncertainty is explained away for x = 0 and increasing
with the distance to x = 0. Away from the data, the increase in epistemic
uncertainty depends on the prior variance and network depth.

I.4.3 A fully factorized normal prior on the latent variables

The prior of model (I.1) is a fully factorized normal distribution, p(ϕ)p(ψ). To
simplify the notation in the rest of this paper we collect the latent variables in
θ = (ϕ,ψ) ∈ RK , where K = Kϕ +Kψ. This allows us to state the prior on θ
as p(θ) = p(ϕ)p(ψ), where

p(θ) =
K∏
i=1
N (θi | µ̄i, σ̄2

i ), (I.10)

with means µ̄ = (µ̄1, . . . , µ̄K) = (a1, . . . , aKϕ , c1, . . . , cKψ) ∈ RK and standard
deviations σ̄ = (σ̄1, . . . , σ̄K) = (b1, . . . , bKϕ , d1, . . . , dKψ) ∈ RK . The total
number of model parameters (µ̄ and σ̄) is 2K.

I.5 Methods

We wish to infer the latent variables θ of the flow rate model in (I.1) from
observed data. With Bayesian inference, the initial belief of θ, captured by the
prior distribution p(θ) in (I.10), is updated to a posterior distribution p(θ | D)
after observing data D. The update is performed according to Bayes’ rule:

p(θ | D) = p(D |θ)p(θ)
p(D) , (I.11)
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where p(D) is the evidence and the likelihood is given by

p(D |θ) =
N∏
i=1

p(yi |xi,θ). (I.12)

The log-likelihood of the model in (I.1) is shown in I.A.1.
From the posterior distribution, we can form the predictive posterior

distribution

p(y+ |x+,D) =
∫
p(y+ |x+,θ)p(θ | D)dθ (I.13)

to make a prediction y+ for a new data point x+.
The posterior in (I.11) involves intractable integrals that prevents a direct

application of Bayes’ rule (Blei, Kucukelbir, and McAuliffe, 2017). In the
following sections, we review two methods that circumvent this issue, namely
maximum a posteriori (MAP) estimation and variational inference. With MAP
estimation inference is simplified by considering only the mode of p(θ | D), and
with variational inference the posterior distribution is approximated. In the latter
case, we can form an approximated predictive posterior distribution by replacing
the posterior in (I.13) with its approximation. Statistics of this distribution,
such as the mean and variance, can be estimated using Monte-Carlo sampling
(Gal, 2016).

I.5.1 MAP estimation

With maximum a posteriori (MAP) estimation we attempt to compute:

θ̂MAP = arg max
θ

p(θ | D), (I.14)

where θ̂MAP is the mode of the posterior distribution in (I.11). For the model in
(I.1) with a fixed and constant noise variance σ2

n and σ̄2
i is the (prior) variance

of θi, we have that

θ̂MAP = arg max
θ

log p(D |θ) + log p(θ)

= arg min
θ

1
2σ2

n

N∑
i=1

(yi − f(xi,θ))2 +
K∑
i=1

1
2σ̄2

i

θ2
i ,

(I.15)

From (I.15), we see that MAP estimation is equivalent to maximum likelihood
estimation with L2-regularization (Hastie, Tibshirani, and Friedman, 2009).

While MAP estimation allows us to incorporate prior information about the
model, it provides only a point estimate θ̂MAP and will not capture the epistemic
uncertainty of the model. To obtain a posterior distribution of θ we consider
the method of variational inference.
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I.5.2 Variational inference

With variational inference, the posterior in (I.11) is approximated by solving
an optimization problem, cf. Blei, Kucukelbir, and McAuliffe (2017). Consider
a variational posterior density q(θ |λ), parameterized by a real vector λ. The
objective of the optimization is to find a density q⋆ = q(θ |λ⋆) that minimizes
the Kullback-Leibler (KL) divergence to the exact posterior, i.e.

λ⋆ = arg min
λ

DKL (q(θ |λ) ∥ p(θ | D)) . (I.16)

A direct approach to solve (I.16) is not practical since it includes the
intractable posterior. In practice, the KL divergence is instead minimized
indirectly by maximizing the evidence lower bound (ELBO):

L (λ) := log p(D)−DKL (q(θ |λ) ∥ p(θ | D)) (I.17)
= Eq [log p(D|θ)]−DKL (q(θ |λ) ∥ p(θ)) , (I.18)

where the expectation Eq [·] is taken with respect to q(θ |λ). From the ELBO
loss in (I.18), we see that an optimal variational distribution maximizes the
expected log-likelihood on the dataset, while obtaining similarity to the prior
via the regularizing term DKL (q(θ |λ) ∥ p(θ)).

I.5.2.1 Stochastic gradient variational Bayes

Stochastic gradient variational Bayes (SGVB) or Bayes by backprop is an efficient
method for gradient-based optimization of the ELBO loss in (I.18), cf. Blundell
et al. (2015) and Kingma and Welling (2014).

Suppose that the variational posterior q(θ |λ) is a mean-field (diagonal)
normal distribution with mean µ and standard deviation σ. Let the variational
parameters be λ = (µ,ρ) and compute σ = log(1 + exp(ρ)), where we use an
elementwise softplus mapping to ensure that σi > 0.

The basic idea of SGVB is to reparameterize the latent variables to
θ = h(ζ,λ) = µ+ log(1 + exp(ρ)) ◦ ζ, where ◦ denotes pointwise multiplication
and ζ ∼ N (0, I). With this formulation, the stochasticity of θ is described
by a standard normal noise ζ which is shifted by µ and scaled by σ. The
reparameterization allows us to compute the gradient of the ELBO (I.18) as
follows:

∇λL (λ) = ∇λEq [log p(D|θ)]−∇λDKL (q(θ |λ) ∥ p(θ))
= Eζ [∇θ log p(D |θ)∇λh(ζ,λ)]−∇λDKL (q(θ |λ) ∥ p(θ)) (I.19)

The expectation in (I.19) can be approximated by Monte-Carlo sampling the
noise: ζi ∼ N (0, I) for i = 1, . . . ,M . If we also approximate the likelihood by
considering a mini-batch B ⊂ D of size B ≤ N , we obtain the unbiased SGVB
estimator of the ELBO gradient:

∇λL (λ) ≃ ∇λL̂(λ) := N

B

1
M

M∑
i=1
∇θ log p(B |θ)∇λh(ζi,λ)

−∇λDKL (q(θ |λ) ∥ p(θ)) .

(I.20)

88



Case study

An advantage with the SGVB estimator in (I.20) is that we can utilize the
gradient of the model ∇θ log p(B|θ) as computed by back-propagation. When
both the variational posterior and prior are mean-field normals, as is the case for
our model, DKL (q(θ |λ) ∥ p(θ)) can be computed analytically as shown in I.A.2.

In Algorithm 1 we summarize the basic SGVB algorithm for mean-field
normals and Monte-Carlo sample size of M = 1. We finally note that for
variables representing weights of a neural network, we implement the local
reparameterization trick in Kingma, Salimans, and Welling (2015) to reduce
gradient variance and save computations (not shown in Algorithm 1).

Algorithm 1 Basic implementation of SGVB for mean-field normals (M = 1)
Require: data D, model p(D,θ) = p(D |θ)p(θ), parameters λ = (µ,ρ),

learning rate α.
1: repeat
2: Sample mini-batch B from D
3: Sample ζ ∼ N (0, I)
4: θ ← µ+ log(1 + exp(ρ)) ◦ ζ
5: Compute ∇λL̂(λ) using (I.20)
6: λ← λ+ α∇λL̂(λ)
7: until no improvement in ELBO
8: return λ

I.6 Case study

The goal of the case study was to investigate the predictive performance and
generalization ability of the proposed VFM. The study was designed to test
the predictive performance on historical data and on future data, which reflect
the two main applications of a VFM. If the models generalize well, a similar
performance across all wells for each model type should be expected on both
historical and future data. To cast light on the data challenges in Section I.1, the
results differentiate between wells with test separator and MPFM measurements,
which have different measurement accuracy and frequency. The prediction
uncertainty of the models was also analyzed and the effect of training set size on
prediction performance was investigated.

The probabilistic flow rate models in Section I.4 were developed using the
dataset described in Section I.3.1. The conditional mean flow rate, f(x,ϕ),
was modeled using a feed-forward neural network. Three different noise models
were considered: a homoscedastic model with fixed noise standard deviation
g(z,ψ) = σn = const., a homoscedastic model with learned noise standard
deviation (I.3), and a heteroscedastic model with learned noise standard deviation
(I.4). For each of the three model types and the 60 wells in the dataset, the neural
network was trained using the SGVB method in Section I.5.2.1. These models
will be referred to by the label VI-NN. For comparison, a neural network for each
of the 60 wells was trained using the MAP estimation method in Section I.5.1.
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For these models we considered the measurement noise to be homoscedastic with
a fixed noise standard deviation (σn). We label these models as MAP-NN. The
He-prior was used for the hidden layers to initialize and regularize the parameters,
see Section I.4.2. For the noise models, we set the priors as described in Section
I.4.1, differentiating between wells with MPFM and test separator measurements.

(a) Architecture of BNN

(b) Composition of f(x,ϕ)

Figure I.5: The architecture of the BNNs used in this study is illustrated in
(a). Probabilistic computations are colored grey. Variables ϕ and ψ are drawn
from the approximate posterior and used to compute the conditional mean flow
rate, f(x,ϕ), and noise standard deviation, g(z,ψ). The composition of f(x,ϕ)
with four layers (three hidden) and ϕ = {(W (l), b(l))}4

l=1 is shown in (b). Fully
connected blocks perform the operation FCl(x) = W (l)x+ b(l).

A schematic representation of the Bayesian neural network is shown in Figure
I.5. The network architecture was fixed to three hidden layers, each with 50
nodes to which we apply the ReLU activation function (Glorot, Bordes, and
Bengio, 2011). Using practical recommendations in (Bengio, 2012), the network
architecture may be large as long as regularization is used to prevent overfitting.
The Adam optimizer (Kingma and Ba, 2015) with the learning rate set to 0.001
was used to train all networks. Early stopping with a validation dataset was
used to determine an appropriate number of epochs to train the models to avoid
overfitting (Goodfellow, Bengio, and Courville, 2016). The hyper-parameters
were chosen by experimentation and using best practices. The models were
implemented and trained using PyTorch (Paszke et al., 2019).

I.6.1 Prediction performance on historical data

To examine the predictive performance on historical data, a three months long
period of contiguous data located in the middle of the dataset, when ordered
chronologically, was set aside for testing. The rest of the data was used to train
the models. During model development, a random sample of 20% of the training
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data was used for model validation. The performance of each model type across
the 60 wells was analyzed. Table I.1 shows the P10, P25, P50 (median), P75, and
P90 percentiles of the MAPE across all wells. Detailed results which differentiate
between test separator and MPFM measurements are reported in I.B, Table I.4.

Table I.1: Prediction performance in terms of mean absolute percentage error on
historical test data. The percentiles show the variation in performance among
all wells.

Method and model P10 P25 P50 P75 P90

MAP-NN fixed homosc. 1.8 2.8 5.1 8.3 16.0
VI-NN fixed homosc. 1.4 2.6 4.8 8.5 12.8
VI-NN learned homosc. 1.3 2.4 5.3 8.4 13.3
VI-NN learned heterosc. 1.7 3.5 5.9 9.7 11.5

The results show that the four model types achieve similar performance to
each other for the 75th and lower percentiles. The median MAPEs (P50) lie in
the range 4-6%. A comparison of the 90th percentile performance indicates that
models trained by variational inference are more robust in terms of modeling
difficult wells. Regardless of the model type used, there are large variations
in the performance on different wells, as seen by comparing the 10th and 90th
percentiles. The best performing model achieved an error of 0.3% for one of
the wells. Yet, some models obtain an unsatisfactory large error. The overall
worst-performing model (MAP-NN) achieved an error of 72.1% for one of the
wells.

The cumulative performance of the four models is plotted in Figure I.6. The
cumulative performance plot shows the percentage of test points that fall within
a certain percent deviation from the actual measurements (Corneliussen et al.,
2005). The figure shows that the models perform better on wells with MPFM
measurements than on wells with test separator measurements. Again, similar
performance of the four model types is observed.
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Figure I.6: Cumulative performance of the four models on historical test data.
The cumulative performance is shown for wells with (left) MPFM and (right)
test separator measurements.

I.6.2 Prediction performance on future data

The last three months of measurements were used to test the predictive
performance on future data. The rest of the data was used to train the models.
During model development, a random sample of 20% of the training data was
used for model validation. Table I.2 shows the percentiles of the MAPE for the
different models on all 60 wells. Detailed results which differentiate between
MPFM and test separator measurements are given in I.B, Figure I.5.

Table I.2: Prediction performance in terms of mean absolute percentage error
on future test data. The percentiles show the variation in performance among
all wells.

Method and model P10 P25 P50 P75 P90

MAP-NN fixed homosc. 3.7 5.6 12.4 24.1 40.0
VI-NN fixed homosc. 4.0 5.6 9.6 18.2 29.3
VI-NN learned homosc. 4.0 6.0 8.9 22.5 32.5
VI-NN learned heterosc. 4.0 5.0 9.2 15.7 24.3

Similarly to the case with historical test data, the performance of the four
model types is comparable for the 50th and lower percentiles. The median
MAPEs (P50) lie in the range 8-13%. For all model types, the 25% best-
performing models achieved a MAPE of less than 6%. The best performing
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model obtained a MAPE of 1.1% on one of the wells. This is in line with some
of the best reported results in the literature; see Section I.2.1. Nevertheless, for
each model type there is a large variation in performance among wells. The
overall worst performing model achieved a MAPE of 48.7%.

Comparing the performance for either the 75th or 90th percentile again
indicates that models trained by variational inference are more robust in terms
of modeling difficult wells. In this regard, the heteroscedastic VI-NN performs
particularly well compared to the other model types.

As seen from the cumulative performance plot in Figure I.7, the four model
types have similar performance to each other. The exception is the heteroscedastic
VI-NN, which outperforms the other model types for wells with test separator
measurements. As seen in the case of historical test data, the models perform
better on wells with MPFM measurements than on well with test separator
measurements.
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Figure I.7: Cumulative performance of the four models on future test data. The
cumulative performance is shown for wells with (left) MPFM and (right) test
separator measurements.

I.6.3 Comparison of performance on historical and future data

A comparison of the MAPEs on historical and future data is illustrated in Figure
I.8. The plots differentiate wells with MPFM and test separator measurements.
In general, the prediction error is larger on future test data than on historical
test data. There is also a larger variance in the performance on future test data.
This indicates that it is harder to make predictions on future data, than on
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historical data. Further, observe that the errors are smaller for the wells with
MPFM measurements than for the wells with test separator measurements in
both the historical and future test data case.
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Figure I.8: Comparison of performance on historical and future data for the
different models. The box plots differentiate between wells with multiphase flow
meter and test separator measurements. The boxes show the P25, P50 (median),
and P75 percentiles. The whiskers show the P10 and P90 percentiles.

I.6.4 Uncertainty quantification and analysis

In contrary to the MAP-NN models, the VI-NN models quantify the uncertainty
in their predictions. To study the quality of the prediction uncertainty, we
generated a calibration plot for the three different noise models using the test
datasets from Section I.6.1 and I.6.2; see Figure I.9. The plot shows the frequency
of residuals lying within varying posterior intervals. For instance, for a perfectly
calibrated model, 20% of the test points is expected to lie in the 20% posterior
interval centered about the posterior mean. In other words, the calibration curve
of a perfectly calibrated model will lie on the diagonal gray line illustrated in
the figures. The calibration of a model may vary across wells. To visualize the
variance in model calibration, we have illustrated the (point-wise) 25th and 75th
percentiles of the calibration curves obtained across wells.

On historical data, the models trained on test separator measurements seem
to be best calibrated. The models trained on MPFM measurements overestimate
the uncertainty in their predictions. On future data, the results are reversed.
The models trained on MPFM measurements are better calibrated and the
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(c) MPFM, future
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(d) Separator, future
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(e) MPFM, historical
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(g) MPFM, future
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(h) Separator, future
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(i) MPFM, historical
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(k) MPFM, future
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Figure I.9: Calibration plots for fixed homoscedastic noise (a-d), learned
homoscedastic noise (e-h), and learned heteroscedastic noise (i-l). Wells are
grouped by measurement device, multiphase flow meter or test separator, and the
calibration on historical test data (Section I.6.1) and future test data (Section
I.6.2) are shown. The median frequency is shown as a dashed line for each
posterior interval (x-axis). The 25th and 75th percentiles (colored bands) show
the variation in calibration across wells. A perfectly calibrated model would lie
on the diagonal line y = x.

models trained on test separator measurements all underestimate the prediction
uncertainty. Overall, the calibration improves when the noise model is learned.
This is seen clearly when comparing the fixed homoscedastic noise to the learned
heteroscedastic noise model. The results are summarized in Table I.3, which
shows the coverage probabilities for the 95% posterior interval (using the point-
wise median in the calibration plots).
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Table I.3: Coverage probability (95%)

Case Method and model Test sep. (%) MPFM (%)

Future prediction VI-NN fixed homosc. 37.5 99.5
VI-NN learned homosc. 81.0 87.7
VI-NN learned heterosc. 92.3 90.0

Historical prediction VI-NN fixed homosc. 92.4 100.0
VI-NN learned homosc. 98.5 99.1
VI-NN learned heterosc. 100.0 97.2

I.6.5 Effect of training set size on prediction performance

When analyzing the prediction performance of the four model types in Section
I.6.1 and I.6.2, it was noticed that the prediction error tended to decrease as the
training set size increased. This is illustrated in Figure I.10, which shows the
MAPEs for the different models and corresponding regression lines with negative
slopes. This tendency is generally expected of machine learning models. On the
other hand, previous studies such as AL-Qutami, Ibrahim, and Ismail (2018),
indicate that model performance does not necessarily improve when including
data that is several years old. To closer inspect this effect, we compared models
developed on successively larger training sets.
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Figure I.10: The plot shows the mean absolute percentage error of the four
models on historical and future test data for all wells. A regression line for each
model shows the tendency of the error as the number of training points varies.
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To allow for an interesting range of dataset sizes a subset of 21 wells with
1200 or more MPFM measurements was considered. In a number of trials, a
well from the subset and an instant of time at which to split the dataset into
a training and test set, were randomly picked. Keeping the test set fixed, a
sequence of training sets of increasing size was generated. The training sets were
extended backwards in time with data preceding the test data. The following
training set sizes were considered: 150, 200, 300, . . ., 1100, where the increment
is 100 between 300 and 1100. A MAP-NN model was developed for each of
these training sets, using early stopping and validating against the last 100 data
points. The test set size was also set to 100 data points, spanning on average 90
days of production.

Denoting the test MAPE of the models by E150, E200, E300, ..., E1100, we
computed relative MAPEs

Rk = Ek
E150

, for k ∈ {150, 200, 300, . . . , 1100}. (I.21)

The relative errors indicate how the performance develops as the training set
size increases, with a baseline at R150 = 1. The result of 400 trials is shown in
Figure I.11.
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Figure I.11: Relative test errors of the MAP-NN model for increasing training
set sizes. Shown are the medians and 50% intervals of 400 trials.

I.7 Discussion

In Section I.1 some of the challenges faced by data-driven VFMs were discussed.
These were: (1) low data volume, (2) low data variety (3) poor measurement
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quality, and (4) non-stationarity of the underlying process. Here we discuss the
results in light of these challenges. All results are discussed in terms of MAPE
values.

No widely used standard exists for VFM performance specification or
requirements. Thus, the following performance requirements have been set
by the authors to assess the commercial viability of a VFM: 1) predictive
performance in terms of mean absolute percentage error on test data of 10% or
less, and 2) robustness in terms of achieving the above predictive performance for
at least 90% of wells. While these simple requirements lack a specification of the
test data, we find them useful in the assessment of VFM performance. A VFM
failing to meet these requirements would not be practical to use in industrial
applications.

I.7.1 Performance on historical and future test data

First, we discuss the concern about the non-stationarity of the underlying process.
This means the distribution of values seen during training is not necessarily the
same as the distribution of values used for testing. The effect of this is best
observed when comparing the performance on historical and future data, see
Table I.1 and I.2 and Figure I.8. Looking at the upper and lower percentiles,
we see the different models achieve performance in the range of 1-16% error
on historical data and 3-40% error on future data. Since the strength of data-
driven models lies with interpolation, rather than extrapolation, it is natural
that the performance is worse on the future data case. Considering the VFM
performance requirement of 10% MAPE for 90% of the wells, the performance is
not acceptable for the historical or for the future data case. This indicates that
the robustness of the models is inadequate for use in a commercial VFM. For real
time applications, frequent model updates are likely required to achieve the VFM
performance requirement. This raises the technical challenge of implementing a
data-driven modeling approach.

The study on dataset size in Section I.6.5 further explores the development of
data distributions and the effect older data has on future prediction errors. The
result, seen in Figure I.11, indicates that additional data is only valuable up to
a certain point, after which older data will no longer be useful when predicting
future values. The point where this happens will naturally vary between wells.
For the wells included here, this happens at 600 data points on average, for which
the additional data is approximately 18 months or longer into the past. Looking
at Figure I.10, we again see the trend that wells with more data perform better,
but only up to a certain point. We remark that insufficient model capacity would
have a similar effect on the performance. However, we find this to be unlikely in
this case study due to the high capacity and low training errors of the neural
networks used.

At this point we remark that, for two observations D1, D2 ∈ D, we model
conditional independence (D1 ⊥⊥ D2 | θ). While the observations result
from preprocessing measurement data in a way that removes transients and
decorrelates observations, we cannot guarantee independence due to the non-
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stationary process. With dependant observations, the modeling assumption
of conditional independence is not satisfied since the models lack temporal
dependencies. This is also true for most, if not all published models for data-
driven VFM. Models that include temporal dependencies may be better suited
to learn from past data.

A second concern raised was related to small data regimes, both in terms of
data volume and data variety. The results mentioned above also illustrate the
effect of small data. Looking at Figure I.10, higher variance in performance is
seen among wells with less than 700 data points. This is concerning because
many of the wells, in particular those with test separator measurements as their
primary source of data, have very few data points. Based on the median MAPE
values in Figure I.8, also given in Table I.4 and I.5, models trained on MPFM
data outperforms the models trained on test separator data. This indicates
that data quantity may outweigh data quality in the small-data regime. The
difference in performance is also evident in the cumulative performance plots,
see Figure I.6 and I.7.

The wells that lie in the top quarter of performance achieved MAPE values
comparable to the earlier works discussed in Section I.2.1. However, this
performance seems difficult to achieve for the full set of wells. The difficulty in
generalizing a single model architecture to a broad set of wells is troublesome
for the potential commercialization of data-driven VFM.

I.7.2 Noise models

The last concern raised was poor data quality. In particular uncertainty in flow
rate measurements, and potential gross errors in MPFM measurements.

The three different noise models perform similarly in terms of MAPE, on both
historical and future data. The only exception being the learned heteroscedastic
noise model, which performed better than the others on historical and future test
data case when judged by the 90th percentile. This is believed to be because the
heteroscedastic error term gives the objective function some added robustness
towards large errors.

From the calibration plots in Figure I.9, we see that learning the noise model
improves the calibration. The calibration curves for models trained on MPFM
data generally lie above the curves for models trained on test separator data,
both for historical and future predictions. This means that models trained on
MPFM measurements are less confident in their predictions, even though they
are trained on more data. It was suspected that models trained on MPFM
data would reflect the increased uncertainty present in these measurements, but
this is difficult to observe from the results. It is worth noting that the MPFM
models are tested on MPFM data, so any systematic errors present in the MPFM
measurements themselves will not be detected.

Because the models have potentially large prediction errors, especially for
future data, it is desirable that the model can assess its performance. The
coverage probabilities reported in Table I.3 give us some confidence in the
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uncertainty estimates for the learned noise models, especially for the historical
cases.

Neither the homoscedastic or heteroscedastic noise models in (I.3) and (I.4),
respectively, can capture complex noise profiles that depend on the flow conditions
x. As most flow meters are specialized to accurately measure flow rates for
certain compositions and flow regimes, this is a potential drawback of the models.
We leave it to later works to address such limitations, but note that with few
adjustments the flow model in (I.1) can accommodate heteroscedasticity of a
rather general form.

I.7.3 Bayesian neural networks

As stated in Section I.1, setting the priors on the parameters in the model is
not a trivial task. In several papers, the Kullback-Leibler divergence term of
the ELBO loss in (I.18) is down-weighted to improve model performance due to
poor priors (Wenzel et al., 2020). This remains a research question, however, in
Section I.4.2 one way of approaching prior specification in BNNs is described.
The difficulty of setting priors combined with small data sets may make it difficult
to successfully train models of this complexity. Still, the results are reasonable
in the historical data case, and the estimated uncertainty is still better than only
relying on point estimates.

I.8 Concluding remarks

MAP estimation and VI for a probabilistic, data-driven VFM was presented
and explored in a case study with 60 wells. The models achieve acceptable
performance on future test data for approximately half of the studied wells. It is
observed that models trained on historical data lack robustness in a changing
environment. Frequent model updates are therefore likely required, which pose
a technical challenge in terms of VFM maintenance.

Of the presented data challenges, the non-stationary data distribution is
the most concerning. It means that models must have decent extrapolating
properties if they are to be used in real-time applications. This is inherently
challenging for data-driven approaches, and limits the performance of all the
models considered in this paper. Of the models explored here, VI provided more
robust predictions than MAP estimation on future test data.

The BNN approach is promising due to its ability to provide uncertainty
estimates. Among these models, the heteroscedastic model had the best
performance, indicating that a heteroscedastic model can be advantageous
for flow rate measurements. However, it is challenging to obtain well-calibrated
models due to the difficulty of setting meaningful priors on neural network
weights, and the fact that priors play a significant role in small data regimes. As
a result, the uncertainty estimates provided by the BNNs should be used with
caution.
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I.8.1 Recommendations for future research

We would suggest future research on data-driven VFM to focus on ways
to overcome the challenges related to small data and non-stationary data
distributions. Advances on these problems are likely required to improve the
robustness and extrapolation capabilities of models to be used in real-time
applications. We believe promising avenues of research to be: i) hybrid data-
driven, physics-based models that allows for stronger priors; ii) data-driven
architectures that enables learning from more data, for instance by sharing
parameters between well models; iii) online learning to enable frequent model
updates; and iv) modeling of temporal dependencies, for example using sequence
models, to better capture time-varying boundary conditions.
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Appendix I.A Derivations

I.A.1 Log-likelihood of the flow rate model

The log-likelihood of the flow model in (I.1) with parameters θ = (ϕ,ψ) on a
dataset D = (X,y) = {(xi, yi)}Ni=1 is given by

log p(y |X,θ) =
N∑
i=1

log p(yi |xi,θ)

=
N∑
i=1

logN (yi | f(xi,ϕ), g(f(xi,ϕ),ψ)2)

= −N2 log(2π)−
N∑
i=1

log g(f(xi,ϕ),ψ)− 1
2

(
yi − f(xi,ϕ)
g(f(xi,ϕ),ψ)

)2
.

(I.22)
With a homoscedastic noise model g(z,ψ) = σn = const., the log-likelihood

simplifies to:

log p(y |X,θ) = −N2 log(2πσ2
n)− 1

2σ2
n

N∑
i=1

(yi − f(xi,ϕ))2
. (I.23)

I.A.2 Kullback-Leibler divergence term, DKL (q(θ |λ) ∥ p(θ))

Let the approximation q(θ |λ) and prior p(θ) be mean-field normal distributions
of the random variables θ ∈ RK . Assume that the approximation is
parameterized with λ = (µ,ρ), where µ is the mean and σ = log(1 + exp(ρ)) is
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the standard deviation of q. Then, the Kullback-Leibler divergence is given as:

DKL (q(θ |λ) ∥ p(θ)) = Eq [log q(θ |λ)− log p(θ)]

= Eq

[
K∑
i=1

log q(θi |λi)− log p(θi)
]

= 1
2Eq

[
K∑
i=1
− log(2πσ2

i )−
(
θi − µi
σi

)2
+ log(2πσ̄2

i ) +
(
θi − µ̄i
σ̄i

)2
]

= 1
2

 K∑
i=1
−2 log σi

σ̄i
− 1
σ2
i

Eqi

[
(θi − µi)2]︸ ︷︷ ︸

=σ2
i

+ 1
σ̄2
i

Eqi

[
(θi − µ̄i)2]


= 1

2

K∑
i=1

[
−1− 2 log σi

σ̄i
+ 1
σ̄2
i

Eqi

[
(θi − µ̄i)2]]

= 1
2

K∑
i=1

[
−1− 2 log σi

σ̄i
+
(
µi − µ̄i
σ̄i

)2
+
(
σi
σ̄i

)2
]

(I.24)

Appendix I.B Results

Table I.4: Prediction performance on historical test data for each well group.
Reported values are the P10, P25, P50, P75, and P90 percentiles for the statistics
root mean square error (RMSE) and mean absolute percentage error (MAPE).

Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.4, 0.7, 1.1, 1.7, 3.0 1.8, 2.8, 5.1, 8.3, 16.0
VI-NN fixed homosc. 0.3, 0.5, 1.0, 2.1, 3.0 1.4, 2.6, 4.8, 8.5, 12.8
VI-NN learned homosc. 0.3, 0.5, 1.0, 2.0, 3.0 1.3, 2.4, 5.3, 8.4, 13.3
VI-NN learned heterosc. 0.4, 0.6, 1.2, 1.9, 3.0 1.7, 3.5, 5.9, 9.7, 11.5

Test sep. MAP-NN fixed homosc. 0.4, 0.8, 1.5, 1.7, 3.0 3.1, 5.7, 7.2, 11.1, 16.2
VI-NN fixed homosc. 0.5, 0.8, 1.6, 2.2, 4.3 2.8, 4.9, 7.9, 11.3, 13.2
VI-NN learned homosc. 0.6, 1.1, 1.7, 2.1, 3.1 3.9, 5.8, 8.1, 12.3, 16.4
VI-NN learned heterosc. 0.5, 1.0, 1.7, 2.1, 3.9 3.7, 5.1, 9.5, 11.4, 12.2

MPFM MAP-NN fixed homosc. 0.3, 0.6, 1.0, 1.6, 2.8 1.8, 2.4, 4.5, 8.1, 14.3
VI-NN fixed homosc. 0.3, 0.4, 1.0, 1.9, 2.9 1.3, 2.3, 4.1, 7.7, 11.5
VI-NN learned homosc. 0.3, 0.4, 0.7, 1.6, 3.0 1.2, 2.0, 4.1, 7.3, 11.7
VI-NN learned heterosc. 0.4, 0.5, 1.2, 1.5, 2.9 1.3, 3.1, 5.1, 8.6, 10.8
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Table I.5: Prediction performance on future test data for each well group.
Reported values are the P10, P25, P50, P75, and P90 percentiles for the statistics
root mean square error (RMSE) and mean absolute percentage error (MAPE).

Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.8, 1.2, 2.1, 4.0, 6.1 3.7, 5.6, 12.4, 24.1, 40.0
VI-NN fixed homosc. 0.6, 1.1, 1.8, 3.5, 5.2 4.0, 5.6, 9.6, 18.2, 29.3
VI-NN learned homosc. 0.7, 1.2, 1.9, 3.3, 5.5 4.0, 6.0, 8.9, 22.5, 32.5
VI-NN learned heterosc. 0.6, 1.1, 1.7, 3.1, 4.5 4.0, 5.0, 9.2, 15.7, 24.3

Test sep. MAP-NN fixed homosc. 0.8, 1.0, 1.6, 3.0, 6.7 3.9, 6.2, 18.1, 28.8, 41.1
VI-NN fixed homosc. 0.3, 1.0, 2.1, 3.2, 8.0 5.2, 9.5, 14.6, 31.4, 40.9
VI-NN learned homosc. 0.6, 1.3, 1.9, 3.6, 5.9 6.6, 7.8, 15.5, 31.6, 35.9
VI-NN learned heterosc. 0.4, 1.2, 1.6, 2.3, 2.9 5.1, 6.0, 10.6, 18.6, 21.6

MPFM MAP-NN fixed homosc. 0.9, 1.2, 2.4, 4.2, 5.7 3.7, 6.2, 12.2, 23.0, 30.2
VI-NN fixed homosc. 0.8, 1.3, 1.8, 3.5, 4.6 4.0, 5.3, 8.3, 15.0, 24.6
VI-NN learned homosc. 0.7, 1.1, 1.9, 3.1, 5.2 3.4, 4.9, 8.0, 17.5, 28.1
VI-NN learned heterosc. 0.7, 1.0, 1.8, 3.3, 4.6 3.8, 4.7, 8.9, 14.9, 24.5
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IIAbstract

Virtual flow metering (VFM) is a cost-effective and non-intrusive
technology for inferring multiphase flow rates in petroleum assets.
Inferences about flow rates are fundamental to decision support systems
that operators extensively rely on. Data-driven VFM, where mechanistic
models are replaced with machine learning models, has recently gained
attention due to its promise of lower maintenance costs. While excellent
performances in small sample studies have been reported in the literature,
there is still considerable doubt about the robustness of data-driven VFM.
In this paper, we propose a new multi-task learning (MTL) architecture
for data-driven VFM. Our method differs from previous methods in that
it enables learning across oil and gas wells. We study the method by
modeling 55 wells from four petroleum assets and compare the results with
two single-task baseline models. Our findings show that MTL improves
robustness over single task methods, without sacrificing performance. MTL
yields a 25-50% error reduction on average for the assets where single-task
architectures are struggling.

II.1 Introduction

Knowledge of gas, oil, and water flow rates in a petroleum asset is highly
valuable in operations and production planning but challenging to obtain
(Hansen, Pedersen, and Durdevic, 2019). There is a large economic incentive
for operators to maintain high production rates and avoid operational problems.
Flow rates from individual wells support many important operational decisions,
such as production optimization (Foss, Knudsen, and Grimstad, 2018), reservoir
management (Kanshio, 2020), and flow assurance (Jamaluddin and Kabir, 2012).

Most assets consist of a set of wells that produce to a shared processing
facility, as illustrated in Figure II.1. The joint flow from all wells is continuously
measured after being physically separated into its main phases, gas, oil, and
water. These can be accurately measured by single phase flow sensors. Flow
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rates from individual wells are conventionally measured by routing the flow to a
dedicated test separator. The resulting observations, known as well tests, are
of high quality (Corneliussen et al., 2005). However, the frequency of well tests
is low since the test separator accommodates one well at a time and requires
several hours to measure the flow. It is therefore desirable to measure well flow
rates before separation.

1 2 3 J

Oil
Gas

Water

Figure II.1: Asset with J wells sharing a single separator.

There are two main strategies for measuring multiphase flow, multiphase flow
meters (MPFM) and virtual flow meters (VFM) (Bikmukhametov and Jäschke,
2020). MPFMs are complex and expensive measurement devices physically
installed in the well. VFM is a soft sensing technology that makes inferences
about flow rates from existing sensor data and mathematical models implemented
in software. VFM is often seen as complementary to MPFMs. Multiphase flow
measurements have higher uncertainty than single phase measurements. Single
phase measurements have errors around 0.25% for oil and 1% for gas rates
(Thorn, Johansen, and Hjertaker, 2012). The quality and availability of water
measurements are more varying. A calibrated MPFM is expected to have
approximately 5% error for all phases(Thorn, Johansen, and Hjertaker, 2012).
However, they are specialized to certain operating conditions and must be
re-calibrated as conditions change(Corneliussen et al., 2005).

VFMs can be categorized based on their use of mechanistic or data-driven
models (Bikmukhametov and Jäschke, 2020). A mechanistic VFM is derived
from first principles and utilizes empirical correlations sparingly. A data-driven
VFM is based on a machine learning method that fits a generic mathematical
model to data. The generic models do not offer a physical interpretation of the
parameters, as opposed to mechanistic models where parameters are related to
physical properties. Most VFM solutions today are based on mechanistic models
implemented in multiphase flow simulators (Amin, 2015). There are few, if any,
commercially available data-driven VFM solutions. However, there has been an
increasing interest in their development (Bikmukhametov and Jäschke, 2020),
which is likely motivated by several factors. First, both instrumentation and
data availability have improved. Second, the tooling for machine learning has
improved considerably and the number of practitioners has increased. Third, oil
and gas profit margins have decreased, leading to a search for more cost-efficient
solutions. Data-driven VFM is attractive in terms of cost efficiency due to
the promise of low maintenance requirements and high scalability. Data-driven
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VFMs are expected to be easier to develop and maintain since they only require
flow rate observations to be calibrated (AL-Qutami, Ibrahim, Ismail, and Ishak,
2018). This is in contrast to mechanistic models, which can be challenging to
maintain due to high model complexity (Stenhouse, 2008). Calibration demands
flow rate observations and experiment data, such as fluid samples, to attain
physically meaningful parameters values. Furthermore, calibration often requires
personnel with asset experience and expert knowledge of multiphase flow physics
and the VFM software.

A diverse set of methods, models, and experiment setups for data-driven VFM
have been presented in the literature. The recent survey in (Bikmukhametov and
Jäschke, 2020) tabulates a selection of the proposed solutions, where architectures
based on neural networks are the most frequent. Neural networks have been
researched extensively and have been successfully applied in other domains,
such as image analysis (Hong, Yu, Wan, et al., 2015; Yu et al., 2019), medicine
(Hannun et al., 2019), and natural language processing (Vaswani et al., 2017),
which motivates its popularity in VFM applications. Representative works on
neural network based VFMs include (AL-Qutami, Ibrahim, Ismail, and Ishak,
2017; AL-Qutami, Ibrahim, Ismail, and Ishak, 2018), which report 2.2–4.2%
errors and 2.4–4.7% errors respectively. A hybrid solution of neural networks
and regression trees is presented in (AL-Qutami, Ibrahim, and Ismail, 2017),
reporting errors in the range of 1.5–6.5%. Gradient boosted trees are explored
as an alternative to neural networks in (Bikmukhametov and Jäschke, 2019),
achieving errors of 2–6% in different scenarios. In all approaches, the VFM
model is trained on data from a single well.

Several of the proposed solutions rival the expected performance of
conventional MPFMs, but commercially viable alternatives have yet to emerge.
The recent study in (Grimstad, Hotvedt, et al., 2021) applied Bayesian neural
networks to data-driven VFM. The authors questioned if a robust data-
driven method can be obtained by individually modeling wells from historical
observations. Several challenges facing any data-driven VFM were highlighted.
To reiterate, there are usually few data points for each individual well, making
it difficult to identify complex models. Additionally, the underlying process
is non-stationary, which makes past data less relevant for future predictions.
Finally, the operational practices on most assets may result in low data variety
and create highly correlated explanatory variables.

Challenges related to insufficient data are common in machine learning. A
solution is to utilize data collected from other related problems (Lu et al., 2015;
Y. Zhang and Yang, 2021). There are several ways such data could be combined.
One approach is Multi-Task Learning (MTL), where models for all problems
are jointly optimized (Goodfellow, Bengio, and Courville, 2016; Y. Zhang and
Yang, 2021). In MTL, the problem is given as a set of tasks, {T1, . . . , TJ}, where
each task Tj has a set of observations (yij , xij), i = 1, . . . , Nj . MTL attempts to
jointly learn models for each task, utilizing the knowledge from other tasks to
improve performance. Tasks are assumed to share some common structure that
enables the transfer of knowledge. Several mechanisms have been suggested to
facilitate knowledge sharing. One approach is to have a set of parameters shared
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between the task models.

Methods that combine MTL and deep learning have been successfully applied
to several domains, e.g., image analysis (Hong, Yu, J. Zhang, et al., 2019), natural
language processing (Sigtia et al., 2020), and speech processing (Majumder et al.,
2019). It has also been applied to problems in the energy sector, such as solar
and wind power (Dorado-Moreno et al., 2020; Wu, Li, and Xia, 2021). Multi-task
neural networks have been presented in a wide range of complexities, from simple
feed forward networks (Caruana, 1997) to more complex recent architectures that
utilize both recurrent and convolutional network components (Jin et al., 2020).
Some architectures, such as Cross-stitch networks, use a deep neural network for
each task and are not designed to scale to numerous tasks (Misra et al., 2016).
On the opposite side, context-sensitive networks use a task encoding as input to
a network with all parameters being shared(Silver, Poirier, and Currie, 2008). A
related approach is context adaptation, in which context parameters are learned
and used as inputs to a shared neural network(Zintgraf et al., 2019). While
much work has centered around neural networks, other learners such as support
vector machines (Mei and Xu, 2020a; Mei and Xu, 2020b), and Gaussian process
regression (Zhou et al., 2021) have also been successfully explored.

Even though knowledge sharing has been successful in many cases, it is not
guaranteed that all tasks will benefit from each other (Standley et al., 2020).
Negative transfer refers to the phenomenon where the performance of one task
is reduced when another task is introduced. Deciding which task that should
be learning together, and how to best avoid negative transfer, is still an open
problem.

We present a multi-task learning based data-driven VFM. Our key insight is
that knowledge can be shared among wells in a data-driven model, similarly to
how knowledge is encoded and reused in mechanistic models. In the context of
VFMs, we consider modeling the flow rate from one well as a learning task. Task
domains have different data distributions (domain shift) and the tasks must learn
different discriminative models. Our MTL architecture, which resembles that of
(Zintgraf et al., 2019), is specialized for data-driven VFM, for which there is a
large number of tasks with few observations. It utilizes well-specific parameters
to adapt the domains and tasks. Domain adaptation is performed by learning
domain-specific feature mappings, which transform input features to abstracted
domain features. Task adaptation is enabled by learning task-specific parameters.
The domain features and task parameters are fed to a shared discriminator, to
predict flow rates. Because our architecture efficiently scales to many tasks, all
wells can be modeled simultaneously.

The framing of data-driven VFM as an MTL problem enables us to learn
from more data. While previous methods are limited to small datasets with
observations from individual wells, our method scales learning to datasets with
observations from any number of wells. To test the proposed method, we perform
a study of 55 wells from four assets.
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II.2 Problem description

The system of interest is the well choke valve. Choke valves are adjustable
restrictions that are used to control the flow rate from the well. We only consider
measurements that are commonly available for oil and gas wells. These are the
pressure (p1) and temperature (T ) upstream the choke, the pressure downstream
the choke (p2), and the choke opening (u). In addition, flow rates (q) are
measured by a separator (well testing) or an MPFM. A single choke valve is
illustrated in Figure II.2.

p1, T u p2

q

Figure II.2: Choke valve with instrumentation.

Flow rates are represented as a vector qT =
[
qG, qO, qW

]
of gas, oil, and

water rate. The rates are customarily given in volumetric flow pr. day, at
standard conditions (AIME and Society of Petroleum Engineers, 1984). However,
due to the large magnitude of volumetric gas rates, qG is scaled down by a
factor of 1000 to represent liquid equivalents. We denote the total flow rate
by Q = qG + qO + qW , and the flow composition fractions by ϕ = q/Q. Flow
composition ϕ is dependent on reservoir conditions and is slowly time varying.
It can be estimated or assumed fixed between well tests. Here we consider ϕ to
be known.

We consider the problem of modelling Q given u, p1, p2, T , and ϕ. The gas,
oil, and water flow rates are then found as q = Qϕ.

II.2.1 Insights from mechanistic modelling

The system in question poses some challenges that are best explored by a simple
mechanistic example. For single phase flow, an analytic model

Q = AC

√
p1 − p2

ρ
, (II.1)

can be derived from the Bernoulli equation (White, 2008). Here, A is the
choke opening area, C is a choke specific flow factor, and ρ is the fluid density.
Equation II.1 is the result of generic assumptions and simplifications, and appears
in multiple domains. Multiphase extensions to Equation II.1 are usually domain
specific. Multiplier models are one class of such extensions for oil and gas
flows. They introduce additional factors to Equation II.1 to correct errors in
the pressure drop calculation due to multiphase flow. Additionally, the single
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phase density is replaced by a mixture density. There are several variations of
multiplier and density computations, some of which are explored in (Schüller,
Solbakken, and Selmer-Olsen, 2003). These computations often rely on flow
composition and fluid properties such as single phase densities.

Equation II.1 contains choke area A as one of the observed variables, and
flow factor C as a given constant. However, these quantities are rarely measured
directly. In the measurement setup considered here, the choke position is given
in percent of full travel. Choke position is not directly comparable between wells,
because they have different choke valve designs. It is common to describe choke
valves by a CV curve (Grace and Frawley, 2011). The CV curve is a mapping
between a choke opening and a flow factor, which captures the effect opening
area and geometry have on an idealized flow rate. All mechanistic simulators
include CV curves or similar mappings. Data-driven approaches often circumvent
this by modeling directly on u, which means the mapping is implicit within a
black box model.

To utilize a shared discriminator, it is necessary to adapt the observed values
to universally comparable quantities and to capture the unique aspects of each
well, such as fluid properties and choke geometries.

II.3 Data

Our data is a set of observations (Qij , xij), i = 1, . . . Nj , j = 1, . . . , J . Each data
point is one observation from one well, indexed as data point i from well j. The
total flow rate Qij is a scalar. Variables xij is a vector,

x⊤
ij =

[
uij , pij,1, pij,2, Tij , ϕij,G, ϕij,O, ϕij,W

]
, (II.2)

of choke opening, pressure upstream choke, pressure downstream choke,
temperature, and flow composition fractions. Observations are taken at time
tij , given in days since the first observation for each well. Time is used for
visualization and splitting datasets. We are interested in the steady state
behaviour of the flow rates. All observation are therefore averages taken over
3-9 hour intervals of stable production (Grimstad, Gunnerud, et al., 2016).
Observations are shifted and scaled to lie approximately in the unit interval
before model training and evaluation.

II.3.1 Data exploration

The nature of the underlying process and operational practice can create datasets
that are challenging for machine learning models to deal with. For instance,
it is common to see reservoir pressure decline as a well develops. As pressure
declines, operators will increase the choke opening to keep flow rates stable at a
given target. Some assets attempt to reduce the decline, for instance by injecting
water into the reservoir (Sheng, 2014). Another remedy is to inject gas into
the well flow, which makes the flow composition lighter(Guet and Ooms, 2006).
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Figure II.3: Scatter plot of choke opening and upstream pressure for all wells.
Observations from a single well is highlighted and coloured by days since first
observation. Choke is continuously adjusted to counteract the declining reservoir
pressure.

Either way, future operating points will generally not be drawn from the same
distribution as the training data.

Figure II.3 illustrates the relationship between choke and pressure from all
wells, with one well highlighted and colored by time. The systematic development
in pressure and operational practice is clear. Models trained on such data are
vulnerable to changes in operational practice. A similar pattern can be found in
the flow composition, which typically develops into a higher water content with
time.

All models trained on data from a single well are vulnerable to correlated
explanatory variables and how data change with time. Training on data from
multiple wells is one way to overcome these issues. A joint data set has several
benefits. The dependencies between explanatory variables become weaker, and
the variability within each explanatory variable becomes greater. This is because
different wells have different operating regions and operating patterns. The
reservoir development also becomes less important. Because, while a single
well may move away from its previous operation region, other wells have likely
operated under similar conditions before.

The joint data set contains data from 55 wells from four assets. These
wells differ in design, operational practice, and reservoir conditions. Figure II.4
explore how the distribution of upstream pressure vary between wells and assets.
Many wells have observations in the same range, but one asset is operating at a
significantly higher pressure.
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Figure II.4: Box plot of pressure upstream observations for each well. The dotted
vertical lines and coloring indicate which wells are from the same asset.

II.4 Model formulation

We propose a data driven virtual flow meter with signature

Qij = f(xij ; γj , βj , α). (II.3)

It takes input variables xij , as described in Equation II.2, and is parameterized
by three sets of parameters. Two of these parameter sets, γj and βj , are well
specific, while α is shared between all wells. The model is based on a shared
neural network. The well specific parameters are used in feature adaptation and
task differentiation. The model in Equation II.3 is composed of two steps. A
feature adjustment step

zij = g(xij ; γj), (II.4)

and a flow computation step

Qij = h(zij ;βj , α). (II.5)

The composition is illustrated in Figure II.5.

II.4.1 Feature adjustment

As discussed in Section II.2.1, the observed choke opening is not directly
comparable between wells. We are interested in a mapping from u for a universally
comparable quantity ψ, which is analog to a CV curve. A piecewise linear
mapping is chosen for this purpose. It has with mg break points, u∗

1, . . . , u
∗
mg ,

and is parametrized by γj =
[
γj,0, . . . , γj,mg

]
. It is formulated as

ψij = (1 + γj,0)
(
uij +

mg∑
k=1

γj,k max(0, uij − u∗
k)
)
, (II.6)
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xij

βj

g(xij ; γj)
zij

h(zij ;βj , α) Qij

Figure II.5: Block diagram of the model architecture. The model is composed of
two functions. A task specific domain adaptation g, and a flow computation h,
which takes both task parameters and shared parameters.

which becomes an identity mapping if all parameters are zero. A monotonic
mapping can be enforced by restricting γj , but this is not done here. In the
examples below we use mg = 4 and set breakpoints to u∗

k = 0.2k. Recall that
uij is mapped to the unit interval.

The adjusted feature vector z⊤
ij =

[
ψij , pij,1, pij,2, Tij , ϕij,G, ϕij,O

]
is then used

to evaluate the flow computation. Note that only two of the flow composition
fractions are included. This is because the fractions sum to one, and the last
component is therefore redundant.

II.4.2 Flow computation

The flow rate approximation h in Equation II.5 is modelled by a residual feed
forward network. The skip connection of the residual blocks spans two hidden
layers with pre-activation (He et al., 2016). There are ml layers, and all hidden
layers have dimension mh. Linear transforms are parameterized by weights
α = {(Wk, bk)|k = 1, . . . ,ml}. The rectifier function Φ(zkij) = max(0, z(k)

ij ),
where the max operation is performed elementwise, is used for activation
(Goodfellow, Bengio, and Courville, 2016). There is no activation on the final
layer. Adjusted features zij and task parameters βj are stacked in a vector before
the network is evaluated:

z1
ij =

[
zij
βj

]
, (II.7)

z2
ij = W1z

1
ij + b1, (II.8)

zk+2
ij = zkij +Wk+1Φ

([
WkΦ

(
zkij
)

+ bk
])

+ bk+1,

k = 2, 4, . . . ,ml − 2,
(II.9)

Qij = Wmlz
ml
ij + bml . (II.10)

The residual blocks in the neural network is illustrated in Figure II.6.

II.4.3 Model comparison

The effect of multi-task learning is explored by comparing four different models
on the given data. Two conventional single-task learning models are used as
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zkij A L A L
zk+1
ij

zk+2
ij+

Figure II.6: Diagram of a neural network residual block as described in Equation
II.9. The skip connection span two sets of activation (A) and linear layers (L).

a baseline. These are compared to two versions of the proposed multi-task
architecture.

Both multi-task model formulations are identical, as described above, but
they differ in how many tasks are included. The first option is trained on wells
from the same asset. There are four such models because the dataset contains
wells from four assets. These are referred to as "MTL-Asset" models. The second
option is trained on all wells and is referred to as the "MTL-Universal" model.
The two multi-task alternatives are selected to explore the degree of positive
and negative transfer between tasks. These models are collectively referred to as
the MTL models.

Gradient boosted trees and conventional neural networks are selected as
the single-task baselines, as these represent the current state of the art. They
are referred to as "STL-GBT" and "STL-ANN" respectively. Gradient boosted
trees are based on the description given in (Bikmukhametov and Jäschke, 2019).
The neural network models are based on the residual architecture described
in Section II.4.2, but without the task parameters. Both baseline models take
all observations except water fraction as input, and total flow as output. An
individual copy of each baseline model is identified for each well. These models
are only trained and evaluated on data from a single well.

II.5 Method

Parameters and hyperparameters are found through experimentation and
optimization. The dataset is divided into development and test sets. Development
data is used to identify hyperparameters and train a final set of models. Test
data is only used to evaluate the performance of the final models.

II.5.1 Data splits

We split the data into subsets used for model development and testing. The
development dataset is split further into training and validation sets. Data splits
are visualized in Figure II.7.

Test data is selected to reflect how models are used in practice. Meaning
that they are trained on all values observed up to a certain point, and then
used for weeks or months before they are updated again. For each well, test
data is selected such that it comes after development data in time, and the
maximum distance between test and development is 120 days. The number of
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Figure II.7: Training, validation, and test data split for each well. Each mark is
one data point. For some wells, the time between observations can be significant.
This can be due to long periods with missing measurements, or because the well
was closed. Wells from the same asset are grouped by the dotted lines.

points selected is less than 20% of the observation for that well, and less than
500.

Development data is split further into training and validation. Data points
are partitioned into blocks of up to 100 consecutive days. Blocks are randomly
divided between training and validation, such that the validation set is 10-20%
of the total.
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II.5.2 Loss and minimization

Model parameters are found by minimizing a standard loss function of prediction
error and parameter regularization (Hastie, Tibshirani, and Friedman, 2009). All
four model types use weighted mean square error with weights wij as prediction
loss.

For the three neural network models (STL-ANN, MTL-Asset, MTL-Universal)
the network parameters are regularized by a L2 norm scaled by a factor λ. We
regularize all parameters except the first neural network bias term. For the two
MTL models, the task specific parameters are regularized by a L2 norm scaled
by a factor λT .

The loss is minimized with the AdamW optimizer (Kingma and Ba, 2015).
The learning rate is set to 10−3, with a decay rate of 0.5 every 100 of the last
500 epochs. Each optimization runs for 3000 epochs during hyperparameter
searches. An additional 1000 epochs are used in the final training. There are
three batches pr epoch. Implementation and training are done with PyTorch
(Paszke et al., 2019).

STL-GBT models are regularized by penalizing the number of leaves and the
squared leaf weight values (Bikmukhametov and Jäschke, 2019). Implementation
and training are done with XGBoost (Chen and Guestrin, 2016).

II.5.3 Model evaluation metrics

We use absolute percentage error as the primary performance metric. For data
point ij with observed flow rate Qij and predicted flow rate Q̂ij,M from model M ,
we find percentage error as eij,M = 100(Q̂ij,M −Qij)/Qij . For all observations
we have Qij > 0. Model subscripts M indicate which of the four model types
the error relates to, e.g., MTL-Asset. Root mean squared error is used as a
secondary metric.

The mean absolute percentage error (MAPE) for well j with model M is
denoted by Ej,M . Because of the heavy tails of the error distributions, we use
a trimmed mean where 5% of the largest errors are removed when computing
average errors for individual wells (Wilcox, 2010).

In addition to the test set performance, we will explore how the models
adhere to the expected physical behavior. We expect an isolated increase in
upstream pressure to increase flow rate, as indicated by Equation II.1. For any
datapoint xij we have model predictions Q̂ij,M . This is compared to Q̂+

ij,M ,
which is the same model evaluated on the same data point, with the exception
that pij,1 is increased by 10 bar. We compute a binary score

sij,M =
{

0 if Q̂+
ij,M − Q̂ij,M > 0,

1 otherwise,
(II.11)

to indicate whether this significant increase in pressure also produces an increase
in flow rate. The average well score is found as Sj,M = 1

Nj

∑Nj
i=1 sij,M . A perfect

score, Sj,M = 0, corresponds to a correct sensitivity to changes in upstream
pressure for all data points.
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Table II.1: Summary statistics of absolute percentage error, |eij,M |. Statistics
are computed on all test data from all wells. Reported is the mean and a set of
percentiles.

Model Mean P05 P25 P50 P75 P95
STL-GBT 17.8 0.5 2.9 7.5 16.3 62.3
STL-ANN 20.6 0.4 2.0 4.5 11.2 44.8
MTL-Asset 10.5 0.4 1.8 4.2 9.6 42.1
MTL-Universal 12.8 0.5 2.0 4.4 8.6 33.1

II.5.4 Hyperparameter selection

Hyperparameters related to model complexity and regularization are optimized
for each model individually. E.g., for the STL-ANN models we conduct 55
individual searches. Optimization is done by grid search(Bergstra and Bengio,
2012). In case multiple configurations have similar performance, the one with
fewer task or network parameters is preferred.

Neural network models are controlled by the number of hidden layers ml,
hidden layer dimension mh, and regularization factor λ. Additionally, MTL
models require task parameter dimension mβ and task parameter regularization
factor λT . These parameters are found by grid search, where candidate values
are restricted based on the number of data points available for each model type.

STL-GBT models are tuned by the number of leaves, leaf weight, and the
number of boosting iterations. These are all found by grid search.

Sample weight wij is set to 0.1 for multiphase meter observations and 1 for
separator observations. This is motivated by the high uncertainty in multiphase
meters, as discussed in Section II.1. Since most of the data is from multiphase
meters, the results are not particularly sensitive to these values. These weights
are used for all four model types.

II.6 Results and discussion

II.6.1 Test error overview

We first explore how the models generalize by looking at prediction errors across
all wells. The results are summarized in Table II.1. The performance is quite
similar for the three neural network models, but multi-task models are more
robust towards large errors. The neural network models outperform STL-GBT.
The distribution of prediction errors is heavy tailed, with a few outliers skewing
the mean errors. These outliers motivate the use of trimmed mean when results
are reported on a well by well basis.

Figure II.8 illustrates how prediction errors develop with time. As expected,
the performance degrades with time for all model types. All model types have
great performance in the first few weeks. The benefit of multi-task learning
becomes apparent after six weeks.
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Figure II.8: Box plot of absolute percentage error, grouped by weeks since the
last training datapoint. Errors are computed on all test data for all wells.

Table II.2: Mean prediction errors are computed as trimmed MAPE and RMSE
for each well. This yields 55 error estimates for each combination of model and
metric, which are summarized by their mean and a set of percentiles.

Metric Model Mean P05 P25 P50 P75 P95

EMAPE
j,M

STL-GBT 14.5 2.3 5.8 8.6 10.8 53.9
STL-ANN 10.4 1.4 3.8 5.7 11.1 34.5
MTL-Asset 8.2 1.4 3.5 6.2 9.0 22.2
MTL-Universal 7.5 1.6 3.5 5.0 9.2 19.8

ERMSE
j,M

STL-GBT 9.6 2.0 3.7 6.3 11.0 27.0
STL-ANN 7.2 1.2 2.5 4.1 8.9 22.4
MTL-Asset 5.7 1.2 2.5 4.1 7.5 14.1
MTL-Universal 5.5 0.8 2.5 3.7 6.9 17.1

II.6.2 Well by well performance

Wells have a different number of data points, and the errors reported in Section
II.6.1 will naturally be dominated by the wells with many data points. We now
explore the test set errors for individual wells. Trimmed MAPE and RMSE values
for each well is summarized in Table II.2. The three neural network models have
similar performance for the best half of the wells, with performance comparable
to conventional multiphase meters. Multi-task models are significantly better
on the more challenging wells. Neural network models generally outperform
STL-GBT. MAPE and RMSE reveal similar patterns. The remainder of the
analysis will focus on MAPE values.
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Table II.3: Model performance grouped by assets. Reported is the average
trimmed MAPE for wells from the same asset, for the four model types. The
best model type is highlighted.

Model A. 1 A. 2 A. 3 A. 4
STL-GBT 15.6 13.5 10.4 18.3
STL-ANN 10.9 13.8 5.9 10.5
MTL-Asset 8.1 10.2 6.5 7.9
MTL-Universal 7.3 11.3 5.7 4.9

II.6.3 Asset performance

The two MTL models are trained on wells from the same asset and on all wells.
To explore the degree of positive and negative knowledge transfer, performance is
explored on the four assets. The results are summarized in in Table II.3. Apart
from Asset 3, which has great performance for all neural network models, there
is a clear benefit of shared data. For assets 1, 2, and 4, the best multi-task model
offers a 25-50% error reduction compared to STL-ANN. However, it is an open
question to decide which level of data sharing is best suited for a given well or
asset. All model types struggle with Asset 2, which could be due to the limited
excitation seen in Figure II.4. Apart from Asset 2, MTL model performance is
close to that expected from conventional multiphase meters.

II.6.4 Sensitivity analysis

Models with great test set performance can still suffer from the data challenges
presented in Section II.3.1. Correlated explanatory variables make it difficult
to isolate the effect of individual variables. Figure II.9 illustrates the issue for
Well 7. We expect the response to an increase in upstream pressure to be an
increase in flow rate, as indicated by the mechanistic model in Equation II.1.
For well 7, both STL-ANN and MTL-Universal models have low test errors,
with trimmed MAPE being 2.2% and 1.6% respectively. There is however a
significant difference in how they have interpreted the explanatory variables. In
this case, the MTL-Universal model was able to identify the expected response,
while the STL-ANN was not.

The observations from Figure II.9 are generalized using the sensitivity metric
described in Section II.5.3. The results are given in Table II.4. A large majority
of wells remain unchanged or achieve a better sensitivity score by sharing data
with other wells. The advantage of transfer learning is clear in this comparison.
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Figure II.9: Comparison of model sensitivity for well 7. Each model is evaluated
by taking a subset of 30 test data points (black dots) and varying upstream
pressure in a neighborhood around the observed value. The response of STL-
ANN is given in blue and MTL-Universal in orange.

Table II.4: Mean sensitivity error Sj,M for the four model types. Zero is the
best score, which means a model had the correct sensitivity for each data point
for a given well.

Model Error
STL-GBT 0.56
STL-ANN 0.28
MTL-Asset 0.14
MTL-Universal 0.07

II.6.5 Ablation study

An ablation study is conducted to better understand the improvements seen
in the proposed architecture (Lipton and Steinhardt, 2019). The proposed
model extends the current state-of-the-art with multi-task learning. Two task
adaptation mechanisms are included. These are task parameters βj , and domain
adaptation parameterized by γj . To explore the effect of the task adaptation,
the MTL-Universal model is trained with one or both elements removed. When
both elements are removed, the model is reduced to a single-task neural network
trained on data from all wells. New hyperparameters are found for each ablation.
The results is given in Table II.5. On average, both adaptation mechanisms have
a similar impact. The inclusion of both is beneficial for overall performance, but
with diminishing returns, as they are potentially overlapping.
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Table II.5: Summary of ablations conducted on the MTL-Universal model.
Average trimmed MAPE is computed on all wells. Value for the complete model
is repeated from Table II.2.

Ablation Error
Remove γj and βj 10.5
Remove βj 8.8
Remove γj 8.4
Complete model 7.5

II.6.6 Model complexity

A multi-task model is more complex than an isolated single-task model. However,
as the number of tasks grows, there are several aspects to multi-task learning that
leads to overall less complexity. Table II.6 summarizes the number of parameters
and training time for the four model types presented. STL-GBT is a separate
class of models and is much faster to compute than neural networks. For neural
network models, the larger models require more time for each model, but less
time overall.

In the universal model, the number of well parameters is significantly smaller
than the number of parameters needed in an individual well model. On average,
an MTL-Asset model requires almost the same number of parameters as MTL-
Universal. Indicating that model size does not need to grow significantly with
the number of tasks.

Table II.6: Summary of model complexity, judged by the number of parameters
and time required to train models for all wells. E.g., it took 21 minutes and 25
seconds to train the four MTL-Asset models, and they have 711389 parameters
in total. All models are trained on a single GPU.

Model Models Time Parameters
STL-GBT 55 00:57 -
STL-ANN 55 56:06 450455
MTL-Asset 4 21:25 711389
MTL-Universal 1 12:38 203851

In terms of manual work and maintenance, the MTL-Universal formulation
scales better with additional wells than conventional model formulations, because
it is only one neural network that must be curated. This is highly advantageous
for the practical application and commercialization of the results.

II.6.7 Qualitative properties

The selected hyperparameter configuration has two task parameters for each
well, βTj =

[
βj,1, βj,2,

]
. Figure II.10 illustrates the identified parameters for all

wells. Asset 3 has two types off wells, oil producers and gas producers, which
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Figure II.10: Plot of βj from the universal model. Asset 3 has two distinct
classes of wells, oil producers and gas producers, which are highlighted by triangle
markers.

have different choke geometries and fluid properties. These wells are separated
in space according to their classes, which indicates that task parameters capture
physical properties, rather than being proxies for the well index. To further
support this, Figure II.11 illustrates how changes in task parameters alter the
shape and magnitude of the model response in a consistent fashion.

II.7 Conclusion

A multi-task learning architecture for data driven virtual flow metering was
proposed and explored in a study of 55 wells from four assets. The proposed
architecture successfully addresses the identified data challenges, while generally
improving model performance. Sharing data between wells improves robustness
towards changes in operational practice and makes the model adhere better to the
expected physical relationships. In terms of prediction errors, all assets benefit
from some level of data sharing. Two of the assets saw average errors reduced
by 30–50% when data was shared between all assets. One asset saw a reduction
of 24% when data was shared within the asset, but only 16% improvement
when data is shared between all assets. This indicates that issues related to
negative transfer could be present in the VFM problem. The final asset saw no
significant improvements because the single task architectures already performed
well. Overall, the MTL architecture is a promising step towards a data driven
virtual flow meter solution.
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Figure II.11: Effect of βj on model predictions. The universal model is evaluated
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and 0.9. Each subplot has a fixed value for βj,2, given in the title. Each curve
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II.7.1 Future work

All wells explored here have many data points. It is expected that wells with fewer
observations will see a greater benefit from the knowledge sharing architecture.
Exploring these opportunities is left as future work. Additionally, it is desirable
to further explore task synergies and negative transfer in the VFM context.

In the proposed model, task specific parameters are constants. In practice,
these are likely time varying, since both the well and reservoir will develop over
time, e.g., changes in fluid properties, or equipment wear and tear. These aspects
are topics for future research.
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