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Summary 

The premise of this thesis can be summarized in three statements: (1) Socioeconomic position runs in families; 
(2) Mental health runs in families; and (3) Mental health and socioeconomic position are correlated. The goal 
of this thesis is to advance our understanding of why these variables are associated. Three scientific papers 
spring from this work, each addressing a particular facet of the overarching research question.  

In the first paper, titled "The ADHD deficit in school performance across sex and parental education", I 
investigated the relationship between ADHD and school performance. I analysed register data on practically 
every Norwegian junior high school student born between 1997 and 2002 (N = 344,152) and found a large 
difference in school performance between children with and without ADHD. This difference was partly due 
to ADHD being more prevalent in groups that typically perform worse in school, such as boys and children 
of less educated parents. When I adjusted for potential confounders, including unobserved familial 
confounders by comparing siblings, the difference was reduced but remained relatively large. Performance 
differences related to ADHD was not stable across social background: The differences was larger among 
children with highly educated parents, despite ADHD being less common in these groups. Finally, I also 
found that ADHD was associated with large performance differences across all school subjects, indicating that 
ADHD is associated with general factors shared across these subjects. 

In the second paper, titled "Parental income and mental disorders from age 10 to 35", I studied the relationship 
between parental income rank and prevalence of mental disorders using register data on practically every 
Norwegian resident aged 10 to 35 between 2006 and 2018 (N = 2,112,355). I found large differences in the 
prevalence of mental disorders across parental income quartiles, with higher prevalences in the lower income 
quartiles throughout the entire age-range. Applying an extended children-of-twins model, I found evidence 
suggesting a small, direct effect of parental income among adolescents, but genetic similarity accounted for 
most of the correlation. In terms of variance explained, high heritability was evident for both income rank 
(30–40%) and mental disorders (47–70%), with minimal variance explained by shared environmental factors. 

Finally, in the third paper, titled "Genetic similarity between relatives provides evidence on the presence and 
history of assortative mating", I used path analysis to investigate the expected impact of assortative mating (i.e., 
non-random matching of partners with similar traits) on genetic similarity within families. I found that 
assortative mating will have a greater impact on similarity between distant relatives compared to close relatives, 
indicating that genetic variants associated with assorted traits will concentrate in extended families, potentially 
increasing inequality. I then correlated polygenic scores between 47,135 partner pairs and 1,213,258 dyads of 
related individuals in the Norwegian Mother, Father, and Child Cohort Study (MoBa) cohort study, and 
found empirical evidence of assortative mating for several traits including educational attainment, height, 
intelligence, and body mass index. Surprisingly, I did not find genetic evidence of assortative mating for mental 
disorders, which could either suggest other causes of phenotypic partner similarity or that the polygenic scores 
are severely limited. For some of the traits that showed evidence of assortative mating, such as educational 
attainment, my analysis suggested that genetic variance and similarity in families are still increasing across 
generations, leading to increasing differences. However, most of the genetic consequences of assortment had 
already manifested. 



viii 

In the thesis introduction, I discuss the nature of causality, differences between genetic and environmental 
influences, and the challenges posed by inferring causality from observational data. This exploration sets the 
groundwork for the analyses carried out in the research. In the concluding chapters, I further address 
methodological considerations and potential biases, and provide a general discussion on the potential 
implications of these findings. 

Overall, the findings across these papers reiterates that there is a strong association between socioeconomic 
position and mental disorders. As to whether this association is causal, the answer depends on whether we are 
looking at this across generations or within individuals. Across generations, it appears that the association 
cannot entirely be blamed on confounding factors, but a large part of the association seems attributable to a 
genetic correlation. Within individuals, the answer remains uncertain, but when my findings are seen in the 
light of other studies, bidirectional influences between mental health and socioeconomic position seem 
plausible. Finally, assortative mating seems to increase and maintain the differences caused by 
intergenerational transmission of socioeconomic differences. 
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Chapter 1: Introduction 

The premise of this thesis can be summarized in three statements: (1) Socioeconomic position runs in families; 
(2) Mental health runs in families; and (3) Mental health and socioeconomic position are correlated. These 
statements can be illustrated as in Figure 1.1, where bidirectional arrows indicate associations between mental 
health and socioeconomic position in both the parental generation and the offspring generation. The close 
relationship between socioeconomic position and mental health signals that mental health could be a key for 
understanding how socioeconomic position are transmitted through generations. Likewise, socioeconomic 
position could be a key for understanding mental health. The goal of this thesis is therefore to advance our 
understanding of why these four variables are associated within and across generations.  

The rest of this chapter is devoted to laying out the premises for this thesis. Chapter 2 explores causality and 
what previous research says about causal associations between mental health and social differences. In chapter 
3, I describe the aims of this thesis, which will be limited to excerpts of Figure 1.1 in a Norwegian context. 
This is followed by a descriptions of the data and materials (chapter 4) followed by a thorough explanation of 
the statistical approaches with particular emphasis on the underlying logic and assumptions (chapter 5). In 
chapter 6, I summarize the main findings, before discussing the implications of this work along with more 
assumptions and complications in chapter 7. 

1.1 What is socioeconomic position? 
Socioeconomic position (aka. socioeconomic status) refers to an individuals’ access to or accumulation of 
various social and economic resources, including income, education, occupational opportunities, and 
subjective perceptions of social status and class (Diemer et al., 2013; Muntaner et al., 2004). The different 
dimensions of socioeconomic position are highly correlated, meaning factors associated with income are 
typically also associated with education, and vice versa. This can make it hard to distinguish which dimension 
of socioeconomic position are most important, a task that is beyond the scope of this thesis (but see section 
7.6). This also makes socioeconomic position an ontologically fuzzy concept, because it is not clear what we 
are measuring (Braveman et al., 2005). The individual papers in this thesis will use and discuss specific 

 
Figure 1.1: Intergenerational associations between socioeconomic position and mental health 
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measures of socioeconomic position, like education or income, but because it will be unclear which dimension 
is important in the grand scheme of things, I will use the term socioeconomic position in general discussions. 

The socioeconomic position of offspring is not separate from the socioeconomic position of their parents 
when the offspring are still children. One useful indicator of the child’s later socioeconomic position is their 
early school performance: Children who perform well in school often grow up to be well-educated, employed, 
and healthy, whereas children who do poorly risk unemployment and social exclusion (Bachman & O'Malley, 
1977; Borghans et al., 2016; Moffitt et al., 2011). A Norwegian report estimated that each additional grade 
point on a scale from 1 to 6 was associated with 55 000 NOK (roughly 5000 USD) higher annual income at 
age 30 (Markussen et al., 2020). 

1.2 Socioeconomic position runs in families. 
School performance is highly correlated with parental socioeconomic position: Children of highly educated 
parents typically outperform children of less educated parents (OECD, 2016; Sirin, 2005; Statistics Norway, 
2020). Figure 1.2 shows the distribution of grade point averages (GPA) among Norwegian 16-year-olds by the 
highest achieved education of either parent. Whereas 34.7% of children of highly educated parents (green line) 
achieved a grade point average of 50 or more, only 3.7% of children of parents with compulsory education 
(purple line) achieved similarly high results. Conversely, whereas 42.9% of children of parents with 
compulsory education achieved a grade point average less than 34 points, only 5.5% of children of highly 
educated parents had similarly low performance.  

A similar pattern emerges when we look at the socioeconomic position of offspring as adults (Figure 1.3). 
Children of less educated parents are far less likely to complete tertiary education: Among parents where 
neither has more than compulsory education, only 16% of their offspring completed tertiary education, 

 
Figure 1.2: Offspring GPA and parental education.  

Distribution of GPAs among offspring of parents where neither has completed more than compulsory education (purple line) and among 
offspring of parents where at least one has a Master’s degree or equivalent (green line). Figure is based on numbers from table 11689 from 

Statistics Norway (2020) 
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compared to 62% among parents where at least one parent had a master’s degree or equivalent (Statistics 
Norway, 2022). The report mentioned earlier found that offspring of highly educated parents had on average 
30% higher annual income (~120 000 NOK) at age 30 than offspring of less educated parents (Markussen et 
al., 2020). This association largely disappeared when they adjusted for the offspring’s own school 
performance, suggesting that parental socioeconomic position’s effect on offspring socioeconomic position is 
mediated through offspring school performance.  

1.3 What is mental health? 
Mental health is a broad term that encompasses numerous dimensions of psychological well-being (WHO, 
2022). The dimension I will focus on here is mental disorders. Mental disorders (aka. mental illnesses, aka. 
psychiatric conditions) are significant disturbances in cognition, emotion, or behaviour that reflect a 
dysfunction in the processes underlying mental functioning. Crucially, they are usually associated with 
significant distress or disability in daily life (APA, 2013)  

Mental disorders come in many forms with different severities and symptoms and are typically classified 
according to diagnostic manuals such as DSM-V (APA, 2013) or ICD-10 (WHO, 1992). Some of the more 
common disorders include (1) attention-deficit hyperactivity disorders (ADHD), which are characterized by 
a lack of control over attention and impulses; (2) depressive disorders, which are characterised by persistent 
feelings of sadness and hopelessness accompanied by a general lack of interest in activities; and (3) anxiety 
disorders, which are characterised by excessive fear or worries that debilitates daily life.  

Mental disorders are treated as categorical for practical reasons. In reality, most mental disorders likely 
represent the ends of continuous distributions (Cuthbert, 2014; Haslam et al., 2012; Plomin et al., 2009; 
Verhoef et al., 2019). According to this view, the mental state of every individual lies on a continuum of, for 
example, “depressivity”, and depressive disorder is the name we give to mental states at the end of this 

 

Figure 1.3: Educational attainment by parental educational attainment.  
Numbers are based on table 12935 from Statistics Norway (2022), and is a cross-sectional view of the entire population in 2019. 
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continuum (Figure 1.4). A useful analogy is whom we consider to be “very tall”. To parallel the definition of 
mental disorders, we could define it as being so tall that it becomes a problem in daily life. Where is the cut-
off? It is obvious that there is no absolute height at which someone goes from being tall to being very tall, but 
it still makes perfect sense to describe someone as very tall. The same goes for mental disorders. An individual 
may be easily distracted, but not so much that it warrants an ADHD diagnosis. Others may have an anxious 
character, creating a slight hindrance in daily life but not a debilitating hindrance. There is no set point where 
an anxious character struggles so much that it becomes a major problem, but rather a gradual change.  

There are three important corollaries: First, the differences between cases that are just below or just above a 
threshold for a given disorder will be insignificant. Second, any changes in the threshold (across age, sex, social 
group, or time) may give the impression that the disorder is becoming more or less common despite a constant 
underlying distribution. Third, there may be large variation in severity among those we consider as having the 
disorder. Someone could be barely above the threshold, others could be far above it. Despite this, it is 
sometimes practical to speak of mental disorders as categorical. This should not hide the underlying 
continuous nature of mental disorders. Whenever I refer to a diagnostic category, I therefore urge you to think 
about it as if I had said “very tall”. This is also reflected in how mental disorders are modelled in Paper 2, which 
uses a liability threshold model. More on that later (section 5.5.7). 

The historical origin of the current diagnostic categories was mostly motivated by the administrative needs of 
health care systems, and not by a rigorous scientific consensus (Horwitz, 2021). It is therefore not surprising 
that there are many concerns about the validity and reliability of the categories despite its use (Hyman, 2010). 
For example, mental disorders often lack external heterogeneity and internal homogeneity: the same diagnosis 
is indicated by a wide range of symptoms and severities, while symptoms can overlap significantly among 
different diagnoses. Furthermore, it is common for different disorders to co-occur, with shared risk factors 
and overlapping treatment options (Fried et al., 2022; Kessler et al., 2005; Kotov et al., 2017; Krueger & Eaton, 
2015; Mcgrath et al., 2020; Newson et al., 2020; Plana-Ripoll et al., 2019). This is not to deny the reality or 
diversity of mental disorders, but we need to remain agnostic on how to best understand the different 
manifestations of mental disorders. There are several proposals that address these issues, such as the 
hierarchical taxonomy of psychopathology (Kotov et al., 2017), the p-factor (Caspi & Moffitt, 2018), or the 
network theory of mental disorders (Borsboom, 2017), but for now, the jury is still out (Aristodemou et al., 
2023; Lahey et al., 2021). In the meantime, it is generally accepted to group mental disorders into externalizing 

 

Figure 1.4: Illustration of the continuous nature of mental disorders  
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and internalizing dimensions, especially when speaking of children (Caspi & Moffitt, 2018). Externalizing 
disorders include behavioural disorders such as ADHD whereas internalizing disorders include emotional 
disorders such as depression and anxiety. The goal of this thesis is not to solve these ontological issues, but, as 
with any scientific work about mental disorders, it must take a position on it. Throughout most of this thesis, 
I will use conventional diagnostic categories or dimensions where appropriate or practical, but otherwise refer 
to mental disorders as one heterogeneous phenomenon.  

1.4 Mental health runs in families 
One of the strongest predictors of mental disorders is a family history of mental disorders (Fristad & Clayton, 
1991; Steinhausen et al., 2009). Compared to the general population, individuals with an affected first-degree 
relative are at significantly higher risk of having the same disorder. Some studies estimate the risk to be 
increased more than twofold for major depression (Sullivan et al., 2000), fivefold for anxiety disorders 
(Hettema et al., 2001), fivefold for ADHD (Musser et al., 2014), and sixfold for schizophrenia (Chou et al., 
2016; Hilker et al., 2018). Notably, this heightened risk is not confined to the specific disorder diagnosed in 
the family member but extends to other disorders as well (Steinhausen et al., 2009). For example, a study that 
investigated first-degree relatives of people with schizophrenia found they also had a threefold increase in the 
risk for mood disorders like depression (Chou et al., 2016). Another line of evidence comes from behaviour 
genetic studies, which indicate that most mental disorders are highly correlated between family members 
(Polderman et al., 2015).  

1.5 Mental health and socioeconomic position are correlated. 
Socioeconomic position and health are robustly associated both within and across generations (Bor et al., 
2017; Davies et al., 2018; Evensen et al., 2021; Kinge et al., 2019; Kinge et al., 2021). This health gradient is 
apparent for mortality (Kinge et al., 2019), COVID-19 infections (Liao & De Maio, 2021), somatic health 
(Evensen et al., 2021), and, crucially, mental health. (Fryers et al., 2003; Hackman et al., 2010; Jenkins et al., 
2008; Kinge et al., 2021; Lorant et al., 2003; Luo & Waite, 2005; Macintyre et al., 2018; Peverill et al., 2021; 
Weich et al., 2001). The association between mental health and socioeconomic position is persistent across 
various facets of socioeconomic position, such as unemployment (Paul & Moser, 2009), debt (Jenkins et al., 
2008), income (Meng et al., 2020), parental income (Kinge et al., 2021), and educational attainment (Tambs 
et al., 2012). Several studies also document a robust association between mental health and educational 
performance in adolescence. A Norwegian study concluded that, among all health conditions, mental 
disorders had the largest educational burden of disease (Nordmo et al., 2022). Other studies from Denmark 
(Dalsgaard et al., 2020) and Sweden (Shen et al., 2016) also show a large association between mental health 
and school performance. ADHD in particular seems important in this regard (see Paper 1): Having ADHD 
is negatively associated with several later socioeconomic outcomes  (Jangmo et al., 2021). 

Why do these associations exist? This is actually two subtly different questions: (1) Why do socioeconomic 
position and mental health correlate within the same individuals, and (2) why do socioeconomic position and 
mental health correlate between family members, such as between parent and offspring. The difference 
between intergenerational correlations and within-individual correlations can be easy to miss, but they may 
end up having completely different explanations. In the next chapter, I discuss what could cause these 
associations.  
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Chapter 2: Causality 

The premise of this thesis is that there are associations between socioeconomic position and mental health 
across generations. The goal of this thesis can therefore not be to simply reiterate that such associations exist 
but must instead be to illuminate the underlying causal structure. A thorough discussion of causality is 
therefore warranted. In this chapter, I will discuss (1) what it means for something to cause something else, 
(2) what could explain the observed associations that form the premises of this thesis, and (3) what prior 
research says about causality on this matter. Before that, however, I must introduce a useful tool that I will use 
throughout this thesis, namely path diagrams. 

2.1 How to illustrate causality? 
Path diagrams, first introduced over a century ago by Sewall Wright (1921, 1934), illustrates hypothesised 
causal relationships between a set of variables. They exist in a variety of forms, each with slightly different 
applications, limitations, and strengths. These include directed acyclic graphs (DAGs), which are usually used 
to find out the consequences of conditioning on certain variables, and structural equation models (SEMs), 
which are used to estimate parameters in path diagrams (Pearl & Mackenzie, 2018; Rohrer, 2018). For now, 
we will simply use path diagrams to visualise different ways two variables can be associated. Later, in section 
5.2, I will explain path analysis more thoroughly.  

All path diagrams are composed of nodes and edges, where nodes represent variables and edges (arrows) 
represent the causal relationships between those variables. Figure 2.1 shows a very simple path diagram that 
illustrates that we think one variable called X causes another variable we call Y. The diagram does not consider 
other causes of X or Y; it merely posits that the association between X and Y is exclusively because X causes Y.  
Using these building blocks, it is possible to build intricate causal diagrams that would illustrate hypothetical 
explanations for observed associations.  

 

2.2 What is causality?  
Now that we have a way of illustrating causal relationships, we can ask what it means that X causes Y. We are 
now on the precipice of a deep philosophical pit which we will do our utmost not to fall into. Suffice to say 
that any meaningful definition of a cause must involve making a difference. In this context, we say that a causal 
variable is a difference maker, meaning that a change in the causal variable brings about a change in the 
outcome variable (e.g., Waters, 2007; Wright, 1921). This distinguishes the idea of causality – where making 
a difference in X makes a difference in Y – from mere association – where observing a difference in X is 
associated with an observed difference in Y.  This definition also neatly captures different aspects of causality 
that we might encounter if we had fallen into the philosophical pit, such as concerns about interventions, time 

 

Figure 2.1: Example of a simple path diagram 
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directionality, and counterfactuals (Pearl & Mackenzie, 2018). To assert that X causes Y means that a truly 
random change in X would result in a change in Y as well.  

At least on average. In complex systems, causation is intrinsically probabilistic (e.g., Kaplan & Turkheimer, 
2021), and we must abandon concepts such as necessary and sufficient conditions. For example, 
socioeconomic position of parents could heighten the risk of mental disorders in their offspring, but we would 
not expect it to be necessary (not everyone with mental disorders comes from a low socioeconomic 
background) nor sufficient (not everyone from a low socioeconomic background develops mental disorders). 
Multiple factors act together to create outcomes, often through mediators and conditional on moderators, 
rendering relationships between causes and effects probabilistic, not deterministic. This is inherent in complex 
systems, not just a product of our ignorance (Gleick, 1987; Palmer, 2022). This means when we assert that X 
causes Y, we're asserting that changing X shifts the probabilities for various outcomes of Y, not that it 
guarantees a particular outcome. 

2.3 The consequences of causation depend on variation 
A goal of this thesis is to illuminate causes of observed variation and associations. As such, we must distinguish 
between potential causes and actual causes of differences (Waters, 2007). It could be the case that changing X 
sufficiently would bring about a change in Y (thus satisfying our criteria for causation) but that the change in 
X needed would be far greater than the existing variation in X (i.e., the cause is practically invariant). In other 
words, the observable consequences of causation depend on variation in the difference makers. Consider a 
mundane hypothetical example where gravity during development influences adult height (Gravity → 
Height). While this may be true, everyone experiences similar gravity. Gravity’s effect on height can therefore 
not explain why people differ in height or why height correlates with other variables. In other words, claiming 
that X is or isn’t a cause of observable differences in Y is not the same as claiming that X would invariably or 
never cause observable differences in Y. In this thesis, I am using the former interpretation of “cause”. 

With this in mind, it is important to note that the current population under study has comparatively little 
inequality (OECD, 2022; The World Bank, 2022). The findings may not generalize to contexts with more 
variance in the putative causes. I discuss these issues further in section 7.3 and 7.4.  

2.4 What can cause an association?  
Now that we understand what causality means, we can ask: What could cause the observed associations 
illustrated in Figure 1.1?  

The first reason is that there really is no association at all. This could come about through random sampling 
variation or if the sample is constructed in a way that inadvertently conditions on a collider variable (see section 
7.5). This is not likely to be an important explanation, although the specific point estimates are likely to be 
influenced somewhat.  

Correlation does not imply causation directly, but if there really is a true association in the population, some 
form of causal process is implied. Let us narrow down to just one association in Figure 1.1, namely that 
between parental socioeconomic position and offspring mental health. What could give rise to an association 
here? There are three explanations (visualised in Figure 2.2): First, parental socioeconomic position could 
directly cause an increased risk of mental disorders in offspring (i.e., direct causation, or X → Y). For now, it 
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does not matter whether this is mediated or not as it would still be correct to call it a causal effect (see section 
2.5). Second, mental disorders in offspring could cause differences in parental socioeconomic position (i.e., 
reverse causation, or X ← Y). Finally, the association could be confounded by other variables, such as shared 
genetic factors, which influence both parental socioeconomic position and offspring mental health (i.e., X ← 
U → Y). Note that confounding still implies a causal process, just not between the variables of interest, and 
therefore require similar care and rigour as when concluding direct causation.  

 

Correlations could also arise through extrinsic processes, such as when students are sorted into classes based 
on performance or when prospective partners match based on similar traits, but those are not likely to explain 
within-individual correlations or intergenerational correlations. It will become important when attempting to 
understand assortative mating, though (see section 5.6.1). 

Even though the list of causal processes that could give rise to an association between any two variables is short, 
the causal processes may be operating simultaneously, dynamically, and to varying degree on the six 
associations in Figure 1.1. This also applies to each separate indicator of socioeconomic position and mental 
health. These complexities make a comprehensive disentanglement of the associations between 
socioeconomic position and mental health within individuals and across generations an extremely challenging 
task. This task is beyond the scope of this thesis. I will therefore limit the scope to illuminate selected aspects 
of these associations, with varying degree of causal inference. More on that in chapter 3. 

2.5 Mediation is causation 
A special version of causation is mediation, where the causal effect of one variable on another variable is 
mediated – that is, it “goes through” – a third variable (i.e., X → Z → Y). For example, it could be that parental 
socioeconomic position causally influences offspring socioeconomic position, and offspring socioeconomic 
position influences the risk of offspring mental disorders. In this example, it would be correct to say that 
parental socioeconomic position causes an increased risk of offspring mental disorders, because a random 
change in the cause would bring about a change in the outcome. There is initially no substantive difference 
between a direct effect and a mediated effect. 

 

 

 

Figure 2.2: Possible causes of an association 
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This has three corollaries: First, it is possible to speak of causation without knowing the underlying 
mechanism, meaning we can claim that X causes Y without knowing how. Most causal claims are probably 
versions of X → ? → ? → ? → Y. Second, the question of how a causal effect is mediated only becomes relevant 
after the causal effect has already been established. The mechanism, while relevant for future research, is not 
relevant to the initial question of whether X causes Y, and the initial causal claim that X causes Y is agnostic 
to mechanism. Third, one should be careful adjusting for plausible mediators as this would adjust away part 
of the true causal effect (Rohrer, 2018). It is often unclear whether a variable is a confounder or a mediator 
(or both), but this distinction has important implications for how the result should be interpreted. One 
example, discussed in Paper 1, is whether poor early school performance (Z) is a confounder or mediator in 
the association between ADHD (X) and later school performance (Y). If it is the case that early school 
performance increases the risk of being diagnosed with ADHD (X ← Z → Y), then it acts as a confounder, 
and should be adjusted for. On the other hand, if ADHD also influences early school performance (X → Z 
→ Y), then it acts as a mediator, and adjusting would remove part of the causal effect. 

2.6 Social causation versus social selection 
Is socioeconomic position a cause or an effect? These two fundamental hypotheses are referred to as social 
causation and social selection, respectively (Kröger et al., 2015). Here, we must contrast the subtle differences 
between within-individual correlations and intergenerational correlations. For within-individual correlations, 
social causation would be that an individual’s own socioeconomic position caused differences in their mental 
health, whereas social selection would be either a causal effect of their mental health on their socioeconomic 
position or that there were third variables that caused both. Note that social selection includes both reverse 
causation and confounding. For intergenerational associations, social causation would be that their parents’ 
socioeconomic position caused differences in their own mental health, whereas social selection would be that 
there were shared third variables – either genetic or environmental – that independently caused both the 
parent’s and offspring’s phenotype, or that the offspring’s mental health influenced their parents’ 
socioeconomic position. For intergenerational correlations, it would also be possible to talk about effects on 
offspring’s own socioeconomic position, with similar possible explanations.  

These subtle differences mean that intergenerational correlations and within-individual correlations could 
have different explanations. For example, it could be that parental socioeconomic position don’t cause 
differences in mental health among their children (intergenerational social selection), but that the children’s 
own socioeconomic position cause differences in their mental health (within-individual social causation). A 
crucial implication of this is that finding evidence of within-individual social causation cannot be taken as 
evidence for social causation across generations. Likewise, evidence of social selection across generations 
cannot be taken as evidence for social selection within individuals. 

2.7 Matthew effects 
Named after a biblical passage about how the spiritually rich get richer and the poor get poorer, Matthew 
effects describe situations of double (dis)advantage (Merton, 1968). These include feedback loops where 
current advantage influences future advantage, or situations where good (or bad) things tend to co-occur. 
Here, I use the term to describe situations where there are correlations between different causes. When causes 
are correlated, the differences caused by both causes will be more than the sum of their individual effects. (see 
also section 5.5.1).  
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One such process is assortative mating, which is the non-random matching of partners with respect to their 
traits. If one parent is, for example, highly educated, then the other parent is likely to be highly educated too 
(Torvik et al., 2022). To the extent that high parental education benefits children, assortative mating creates a 
Matthew effect whereby children who benefit from having one highly educated parent are likely to benefit 
from having two highly educated parents (and vice versa). This will occur regardless of whether the 
intergenerational association is due to social causation or social selection. Considering that partners tend to be 
similar when it comes to socioeconomic position and mental health (Horwitz et al., 2023; Nordsletten et al., 
2016), this process is highly plausible. Assortative mating is the topic of Paper 3 and indirectly in Paper 2. 

A correlation between causes can also arise if intergenerational social causation and social selection operate 
simultaneously. They are, after all, not mutually exclusive. If this is the case, then it is likely that children 
exposed to beneficial (or detrimental) causal effects tend to also be exposed to beneficial (or detrimental) 
confounding factors. For example, it could be that children benefitting directly from their parents (social 
causation) simultaneously benefit from inherited genetic variants that lead to traits that benefit them in the 
current society (i.e., social selection). Such gene-environment correlations cause Matthew effects because the 
differences caused by the two causal pathways will be more than the sum of their individual effects.  

Assortative mating and gene-environment correlations could also be operating simultaneously, which would 
increase differences even further. Within individuals, the co-occurrence of social selection and social causation 
could form a feedback-loop, which would also lead to a form of Matthew effect. 

2.8 Previous studies on causal effects between socioeconomic position and mental health  
Causal inference is very difficult. Not in a way where a sufficiently skilled researcher could do it, but in a way 
that makes it near impossible simply because of all the obstacles that are being faced (Eronen & Bringmann, 
2021; Rohrer, 2018). This is especially true for the issues raised in this thesis, where experimental designs are 
neither practical nor ethical. In the absence of good methods for inferring causality, many observational 
studies use theoretical justifications of varying soundness to infer causality. One often cited study, published 
in Science, purported to separate social causation and social selection by comparing rates of disorders in 
different ethnic groups, claiming that a consistently higher rate of mental disorders in disadvantaged ethnic 
groups across all socioeconomic strata would suggest social causation, whereas a concentration of disorders in 
the lower socioeconomic strata of advantaged groups would indicate selection (Dohrenwend et al., 1992). 
While the logic is not entirely unreasonable, the paper “appear to fall far short of the standards necessary for 
even cautious causal inference” (Goldman, 1994, p. 1255). Several other studies have attempted to tackle the 
causation-selection question with longitudinal designs, but with varying quality and mixed results (Lorant et 
al., 2007; Meng et al., 2020; Ritsher et al., 2001). 

The evidence is also mixed among studies using more innovative designs. A regression discontinuity design on 
participants in the UK biobank found evidence for a causal effect of longer schooling on various health 
outcomes, but not mental health (Davies et al., 2018). Two studies comparing discordant identical twins 
found no evidence of causal associations (Fujiwara & Kawachi, 2009; Halpern-Manners et al., 2016). On the 
other hand, a recent Dutch study using sibling comparisons and mendelian randomization concluded that 
educational attainment appears to causally decrease the risk of several psychiatric disorders, but also that 
ADHD seems to causally affect educational attainment (Demange et al., 2023).  
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A systematic review of studies on the causation-selection issue for health in general found no preference for 
either hypothesis, but noted that more statistically rigorous studies tended to favour the social selection 
hypothesis (Kröger et al., 2015). A large meta-analysis of longitudinal associations between unemployment 
and mental health, on the other hand, concluded that there was evidence of both social causation (Job Loss 
→ Distress) and social selection (Distress → Job Loss) (Paul & Moser, 2009). Finally, a recent meta-analysis 
concluded that income changes likely has a modest causal effect on mental health, but there were considerable 
study heterogeneity and the largest effects were observed in studies most susceptible to bias (Thomson et al., 
2022). Overall, the results suggest that social causation may play a role, but that the alternative hypothesis, 
social selection, likely accounts for a large proportion of the associations. 

The studies discussed so far has all concerned the within-individual correlation. What about the 
intergenerational correlation? Here, the evidence is also mixed. One of the more convincing studies used a 
natural experiment where a casino opened in an American Indian reservation which gave income supplements 
to the local population. Based on structured interviews, they found that children whose family moved out of 
poverty had significantly fewer symptoms of externalizing disorders, but not internalizing disorders (Costello 
et al., 2003). Using questionnaires in a follow-study up on the same cohort, they found positive changes in 
both behavioural and emotional problems (Akee et al., 2018).  

A Norwegian study investigated the association between parental income and adolescent mental disorders in 
a subsample of adoptees. They found that the association was substantially smaller than in the overall 
population, but still statistically significant (Kinge et al., 2021). This would suggest that social selection plays 
a large role, although social causation also plays a part. Other studies with diverse methods also find evidence 
of non-zero social causation for ADHD, for example by comparing siblings (Larsson et al., 2014), comparing 
children of twins (Torvik et al., 2020), and comparing parental and offspring polygenic scores to the offspring 
phenotype (Eilertsen et al., 2022). 

However, there are also studies failing to find evidence of intergenerational social causation, especially among 
adults. A Norwegian twin study on young adults found the association between educational attainment and 
mental disorders to be primarily caused by a genetic correlation, which would suggest limited influence of 
familial characteristics beyond genetics (Tambs et al., 2012). Most twin studies of mental disorders also find 
them to be highly heritable with no or limited familial environmental influences (Polderman et al., 2015). A 
Swedish register study exploiting longitudinal variation in income compared siblings and concluded that 
family income during childhood had no causal effect on adult mental health issues (Sariaslan et al., 2021). This 
last study has sparked fervent discussions about what sibling designs can and cannot tell us (Biele et al., 2022; 
Keyes & Susser, 2022; Ledberg et al., 2022; Rod et al., 2021; Sariaslan et al., 2022).  

In short, the question of causality in the reproduction of social differences and mental health across 
generations remains open. Additionally, causal processes connecting mental health and socioeconomic 
position are likely to be culturally dependent, making generalizability to the Norwegian population uncertain. 
We are far from being able to conclude “no more research is needed”. 
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Chapter 3: Research Aims 

As mentioned in section 2.4, a full disentanglement of the causal structure underlying the reproduction of 
mental health and social differences across generations would be an unrealistic aim of a single thesis. I will 
instead limit my task to illuminate selected “excerpts” from Figure 1.1. I will also limit the scope to 
illuminating these association as they appear in Norway.  

3.1 Paper 1: ADHD and school performance 
The first paper investigated school performance among adolescents with and without ADHD (Figure 3.1). 
Even though ADHD and school performance was known to be associated, the precise nature of this 
association across sex, parental education, and school subjects remained unclear. In paper 1, I attempt to 
remedy this with an accurate description of the ADHD deficit in school performance across these variables. 
A secondary aim was to investigate this association while adjusting for plausible confounders such as 
unobserved family characteristics and earlier school performance.  

3.2 Paper 2: Parental income and mental disorders 
The second paper investigated the association between parental income and mental disorders (Figure 3.2). 
The aim was to accurately describe how the association persists into adulthood, and to attempt to disentangle 
direct effects of parental income (social causation) from the confounding factor of shared genetic influences 
(social selection) using children of twins. 

3.3 Paper 3: Assortative mating and genetic similarity in families 
The third paper investigated assortative mating for numerous traits and its consequences for familial 
resemblance (Figure 3.3). As mentioned in section 2.7, assortative mating could increase the differences caused 
by intergenerational transmission regardless of whether it is social causation or social selection. The aim of this 
paper was therefore to clarify the theoretical consequences of assortative mating on resemblance within 
families and investigate which traits, such as socioeconomic position and mental health, show genetic evidence 
of assortative mating (via correlations between partner’s polygenic scores). Another aim was to use genetic 
similarity in families to infer whether assortative mating have been stable for many generations, as this would 
decide whether assortative mating increases or maintains increased differences. 
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Figure 3.1: Paper 1 is about ADHD and school performance. 

 

 
Figure 3.2: Paper 2 is about parental income and mental disorders in offspring. 

 

 
Figure 3.3: Paper 3 is about assortative mating’s consequences for familial resemblance. 
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Chapter 4: Data and Materials 

The three papers in this thesis use two data sources: The first two papers use data from Norwegian 
administrative registers and the final paper uses data from the Norwegian Mother, Father and Child Cohort 
Study (MoBa). The measures are described in more detail within the relevant papers. Here, I will briefly 
summarize the parts relevant for the overall thesis. 

4.1 The Norwegian population register 
The Norwegian national population register was started in 1967 and contains basic information such as births, 
deaths, and parentage on all Norwegian citizens and residents since then (some 8 million individuals). Because 
it also includes a unique ID-number for every individual, it forms the backbone of many other administrative 
registries, such as tax registries and health registries. This ID-number (or rather, a de-identified version of it) 
allowed me to accurately link information on the same individual from different registries. Because the register 
also contains information on who’s whose parents, it is straightforward to link together siblings and other 
family members.   

I had access to complete data up to and including 2018.  

4.2 Socioeconomic indicators from Statistics Norway (SSB) 
Socioeconomic indicators used in this thesis were provided by Statistics Norway (SSB), and include 
educational attainment, educational performance in primary education, and yearly taxable income.  

The first paper used two of the indicators: educational performance during childhood and educational 
attainment as adults. Educational performance was assessed using grade point average (GPA) from the end of 
junior high school when children were approximately 16 years old, converted to z-scores to ease 
communicability for international readers. Parental educational attainment was assessed using the highest 
achieved education of either parent at time of graduation. It was recoded into four levels and treated as a 
categorical variable.  

The second paper used yearly taxable income. Parental income was assessed from offspring age 10 to 18. As 
income varies by parental age and sex, not to mention from tax year to tax year, the income of either parent 
was ranked within the parent’s sex and birth year, as well as within tax year. The yearly income ranks from 
offspring ages 10 to 18 was then averaged.  

4.3 Health indicators from the Norwegian Control and Payment of Health 
Reimbursements Database (KUHR) 
Paper 1 and Paper 2 use a health register called the KUHR-database. The KUHR-database is an administrative 
database set up to facilitate subsidies to primary care (e.g., general practitioners). Health services are heavily 
subsidized in Norway, but the health care providers still need to cover their expenses. Anytime someone uses 
primary care services, the service provider sends a bill to the Norwegian Directorate of Health, who in turn 
reimburses the provider according to fixed rates. These bills are indexed in the KUHR-database. Because both 
public and private service providers are covered by this scheme, cases are unlikely to go unreported. The 
database contains several pieces of information, including patient ID number, date, and reason for encounter. 
The reason for encounter is coded according to the International Classification of Primary Care, version 2 
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(ICPC-2, WONCA, 2005). The ICPC-2 consists of many chapters that in turn consist of different types of 
codes, including process codes, symptom codes, and diagnostic codes. In this thesis, the diagnostic codes from 
the psychological chapter (i.e., the “P”-chapter) were the most relevant (i.e., code P70 to P99). This includes 
codes such as P74 Anxiety Disorder, P76 Depressive Disorder, and P81 Hyperkinetic Disorder (i.e., ADHD). 
The first paper in this thesis primarily used P81, whereas the second paper used all the psychological diagnostic 
codes. See the supplementary figures in Paper 2 for prevalences. 

The KUHR-database includes entries from 2006 and onwards, meaning I had access to 13 years of data from 
2006 to 2018. In both papers, I coded diagnoses dichotomously, where individuals were coded as having the 
diagnosis if they had at least one entry with the relevant diagnostic code within a given time frame. In the first 
paper (Figure 4.1, left), the time frame was between age 10 and 16. In the second paper (Figure 4.1, right), the 
time frame was each calendar year (and later, for five-year intervals).  

The second paper investigated mental health from age 10 to 35. Even though it would be preferable to follow 
the same individuals for 35 years, the multiple years of available health data allowed me to create something 
akin to an accelerated longitudinal design whereby each birth cohort was observed for up to 12 years starting 
in either 2006 or at age 10. This also maximised the sample size, which was needed for the children-of-twins 
models described later. 

4.4 Zygosity information from the Norwegian Twin Register (NTR) 
The second paper used an extended children-of-twins model that exploits that monozygotic twins are 
genetically identical (described in section 5.5). Finding twins in the population register is straightforward 
(shared mother and same birth month), but the register does not contain information about whether the twins 
are monozygotic or dizygotic. To find out which pairs were monozygotic twin pairs, we linked the data to 
zygosity information obtained from the Norwegian Twin Registry (Nilsen et al., 2012).  

The Norwegian Twin Registry is not really a register per se, but the result of a merging of three consent-based 
twin panels. The sample size is therefore somewhat limited compared to the total number of twins in Norway. 
Furthermore, the panels are limited by the birth years of the recruited cohorts, with no twins born between 
1960 and 1967, as well as no twins born after 1992.  

 
Figure 4.1: The subject's ages during the observation period. 



 17 

4.5  Genetic data from the Norwegian Mother, Father, and Child Cohort Study (MoBa) 
The third paper used genetic data from MoBa, which is a population-based pregnancy cohort study 
conducted by the Norwegian Institute of Public Health (Magnus et al., 2016). Pregnant women from all over 
Norway were invited to participate between 1999 and 2008. The women consented to participation in 41% 
of the pregnancies. The cohort includes approximately 114,500 children, 95,200 mothers and 75,200 fathers. 
The establishment of MoBa and initial data collection was based on a license from the Norwegian Data 
Protection Agency and approval from The Regional Committees for Medical and Health Research Ethics. 
The MoBa cohort is currently regulated by the Norwegian Health Registry Act. For less technical information 
about the cohort, see the cohort website: fhi.no/en/studies/moba/. 

Blood samples were obtained from both parents during pregnancy and from mothers and children (umbilical 
cord) at birth, which allowed most of the sample to be genotyped (Corfield et al., 2022). This allows figuring 
out who is related to whom, as well as the calculation of polygenic indices. 

4.5.1 What are polygenic indices? 
Polygenic indices (aka., polygenic risk score, aka., polygenic score) measure individuals’ genetic propensity for 
a given phenotype. They are constructed using summary statistics from published Genome-Wide Association 
Studies (GWAS), which attempt to estimate how variation at different loci (meaning positions within the 
genome) relate to phenotypic differences (Abdellaoui & Verweij, 2021; Abdellaoui et al., 2023; Uffelmann et 
al., 2021). Individuals have 0, 1 or 2 copies of a particular genetic variant at any given locus. By comparing the 
phenotypes – for example, height – of individuals with 0, 1 or 2 copies, researchers may find that individuals 
tend to be 0.5 mm taller for each additional copy they possess. A GWAS repeats this process for hundreds of 
thousands of loci, sometimes with a sample size in the millions. Once this is done, the resulting associations 
can be used to construct a measure of genetic propensity in a new sample, such as MoBa, by measuring the 
same loci, weighing them by their estimated association with the phenotype, and summing across the genome. 
This measure is called a polygenic index. Polygenic indices are crude and noisy measures – especially if the 
GWAS is small or the phenotype poorly defined – but they nevertheless give an indication of genetic 
propensity. Technical details about how the polygenic indices used in paper 3 were constructed are available 
in that paper’s methods section. 
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Chapter 5: Methodology and Statistical Approaches 

All three papers have large sections devoted to describing the associations (mean differences, prevalences, and 
correlations, respectively). These descriptions are complemented with different statistical approaches of 
varying complexity and with varying degrees of causal inference. The methods are thoroughly described 
within the papers themselves, and the technical details do not bear repeating here. In this chapter, I will (1) 
briefly discuss challenges related to causal inference in observational designs, (2) provide a thorough 
explanation of path analysis, and (3) use path analysis to describe the logic behind the methods applied in the 
three papers and to discuss complications, solutions, and limitations with these methods. Specifically, for the 
first paper, I discuss how regular statistical adjustments and sibling designs can and can’t inform us about 
causality. For the second paper, I explain how twins and children of twins can inform us about causal pathways 
linking parental and offspring phenotypes. For the third paper, I explain how assortative mating induces 
correlations among causes and how to apply path analysis correctly to account for this. 

I will assume the reader is familiar with elementary concepts commonly introduced in first-year methods 
courses, such as covariance and what it means to control for something. I will also temporarily set aside 
concerns about sampling variation, ascertainment bias, and similar sources of spurious correlations that might 
arise in a specific sample while not being true for the overall population (I discuss this in section 7.5). In this 
chapter, I will take for granted that associations are true for the population. 

5.1 Causality in observational designs 
The research questions discussed in this thesis do not lend themselves to experimental designs, as that would 
be both impractical and unethical. We must therefore rely on observational designs. It is often said that 
causality can only be inferred in experiments, but this is incorrect. Regardless of approach, causal inference 
always relies on underlying assumptions: There is no such thing as assumption-free causal inferences (Rohrer, 
2018). If the assumptions are well founded, then one can be reasonably confident in the causal conclusion 
regardless of whether the study is experimental or observational.  

Experimental designs are called the gold standard of causal inference, not because it has magical properties, 
but because researchers can make well founded assumptions. This is possible because researchers have 
complete control over at least one source of variation in the study and can take measures such as randomization 
to ensure this variation is entirely independent from other sources of variation. Given this independence, there 
are no alternative sources of covariance except for direct causation, thus allowing a causal conclusion. 
However, not even experiments are bulletproof. They must still make additional assumptions about factors 
such as representativeness, compliance, and ecological validity, which may or may not be well-founded. The 
distinction from observational designs is therefore not as stark as it appears: It is assumptions all the way down. 

Causal inference in observational designs rest on the same fundamental principle as in experimental designs: 
Find and employ methods to account for alternative causes of covariance (i.e., confounding factors or reverse 
causation), for example by exploiting natural sources of random variation or by adjusting for covariates. If this 
is done in a way that only makes well-founded assumptions, then a causal conclusion is warranted. It may be 
more difficult to do in an observational design, especially in social science (Eronen & Bringmann, 2021), but 
it is not impossible. The important thing is to be explicit about the assumptions so that the reader can judge 
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the conclusions for themselves (Grosz et al., 2020). It should never be necessary to simply trust the authors of 
a study. Large parts of this thesis are therefore devoted to clarifying explicit and implicit assumptions. To do 
that, the first thing to do is to get an overview of what different worlds could look like, and what the various 
implications for observed associations should be. That is, we need to know the consequences of different 
assumptions.  Enter: path analysis. 

5.2 Introduction to path analysis and path tracing rules 
In Chapter 2, I briefly introduced path diagrams to visualise potential causal relationships. While useful for 
such simple purposes, the true power of path diagrams comes from the ability to derive equations that describe 
the expected covariance between any two variables, thus providing a deeper understanding of what various 
causal relationships imply (Wright, 1921). As this will greatly help illustrate the strengths and weaknesses of 
various ways to do causal inference, a thorough explanation of path analysis is warranted. It is common to 
confuse path analysis with structural equation models (SEMs), but they are not the same thing: Path analyses 
are purely theoretical, whereas SEMs are applied to data. I will explain SEMs in more detail in section 5.5.3 
below. 

As a reminder, path diagrams are drawn to reflect the assumed causal relationships between variables of 
interest and are used to understand the implications of various hypotheses. They consist of nodes 
(representing variables) and edges with path coefficients (representing associations between variables). Single-
headed arrows represent causal effects and double-headed arrows represent exogenous sources of variance (if 
it connects a variable with itself) or covariance (if it connects two variables). By convention, it is common to 
illustrate observed variables using rectangles and unobserved variables using circles, but unlike in SEMs, this 
is just for aesthetic purposes. Assuming the associations are linear, the expected covariance between any two 
variables can be derived by applying path tracing rules to identify all valid chains of path coefficients. The 
covariance attributable to a single chain is the product of all path coefficients in the chain, and the total 
covariance is the sum of all valid chains connecting the two variables. Variance can be thought of as a variable’s 
covariance with itself and can be derived by similar rules (i.e., sum of all valid chains that lead back to itself).  

For a chain to be valid, it must start by traveling against the direction of the arrows (←), and it must include 
exactly one double headed arrow (↔). Once a double-headed arrow has been traversed, the direction changes 
so that – if one wishes to continue tracing – one must trace with the direction of arrows (→). (These rules 
imply that a chain consisting of a double-headed arrow only is a valid chain). A double-headed arrow must be 
included because it provides the scaling for the remaining path coefficients in the chain. One way to think of 
it is that the causal effect of a variable is weighted by its variance (ref. section 2.3). There is no limit to the 
number of arrows that can be included on either side of the double headed arrow as long as they do not change 
direction. That is, all arrows “before” the double-headed arrow must go backwards against the direction of 
arrows and all arrows “after” the double-headed arrow must go forwards with the direction of arrows.   

Figure 5.1 (left) shows an example of a path diagram where 𝑋 has a causal effect with magnitude 𝑏 on 𝑌. 
Applying path tracing rules, we find the following: 𝐶𝑜𝑣(𝑋, 𝑌) = 𝜎𝑥

2𝑏, 𝑉𝑎𝑟(𝑋) = 𝜎𝑥
2, and 𝑉𝑎𝑟(𝑌) =

𝜎𝑥
2𝑏2 + 𝜎𝜖

2. If we prefer thinking about correlations, we can divide the covariance by the geometric mean of 
the two variances. Alternatively, we can redraw the path diagram to have unit variances (i.e., all variables have 
a variance equal to 1), which means the covariances can be interpreted as correlations. In these situations, it is 
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common to not draw double-headed arrows to denote sources of variance, and instead exploit a shortcut 
enabled by standardized variables (Figure 5.1, right). 

 The shortcut relies on treating variables as double-headed arrows with a coefficient of 1. This makes it possible 
to change direction at a variable (i.e., trace backwards to that variable, and continue tracing forwards from 
that variable) as long as there is still only one change of direction in a given chain. By similar logic, it is also 
possible to begin a chain by tracing forwards with the arrows (which is equivalent to changing direction 
immediately). This shortcut is possible because changing direction at a variable would normally involve 
tracing all the valid chains from that variable back to itself, and for unit variance variables, these chains will 
always sum to 1. In other words, tracing all those chains will just be a convoluted way of multiplying the rest 
of the chain by 1. Needless to say, one cannot both change direction at a variable and include the chains that 
lead back to that variable, which is why path tracing with standardized variables includes the added rule that 
one can only trace through a given variable once in each chain. Applying these rules to Figure 5.1 (right) gives 
us 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝛽. 

The original description of path tracing rules by Sewall Wright (1921) was for this special case of standardized 
variables, and most later descriptions consider it valid to change direction at a variable. It is important to note, 
however, that these rules are just taking advantage of a shortcut that becomes possible in the special case of 
standardized variables and are therefore only applicable for these scenarios. The models I’ve drawn in this 
thesis mostly use standardized variables, but see the supplementary information to paper 3 for examples of 
unstandardized path diagrams. 

For assortative mating, there are special path tracing rules described in section 5.6.3 on page 38. For another 
description of path tracing rules, see Balbona et al., (2021).  

5.3 Estimates and estimands 
In this chapter, it can be useful to keep in mind the difference between the causal effect we want to estimate 
– called the estimand – from the estimate itself. The difficulties of causal inference in observational designs 
arises from the challenges in developing a procedure (an estimator) that provides an unbiased and reliable 
estimate of the estimand (Lundberg et al., 2021). When we discuss bias and methodological challenges, we're 
specifically referring to the discrepancies between the estimate and the estimand. Conversely, when we 
interpret what true causal effects mean, we are focusing on the estimand. 

 

Figure 5.1: Unstandardized and standardized path diagrams  
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5.4 Paper 1: ADHD and school performance 
On reading this paper for the first time, it might not appear that it is doing causal inference. This is deliberate: 
I don’t deem the underlying assumptions to be strong enough, so I downplayed the causal interpretation and 
highlighted the descriptive aspects instead. Here, I will explain the causal reasoning behind the analytical 
choices and explain what assumptions must be made to interpret it as causal. The question is whether ADHD 
affects school performance.  

A note on language: In the following paragraphs, I will often use the term ADHD to describe the variable 
ADHD, not the condition. For practical reasons, I will assume that it is normally distributed (which is a 
reasonable assumption, as discussed in section 1.3), and, although the specific equations might change when 
treating ADHD as a dichotomous diagnosis, the overall consequences should be the same. In the analyses 
done in the paper, though, it is treated as dichotomous. 

5.4.1 The problem 
There is a strong association between ADHD and school performance, as documented in the paper. One 
explanation could be that ADHD causes children to perform worse in school (direct causation). Another 
explanation could be that both ADHD and school performance are partly caused by the same things 
(confounders). Finally, children could be diagnosed with ADHD because they perform worse in school (reverse 
causation). All of these processes could be occurring simultaneously. How can we disentangle the estimand 
from these alternative explanations? 

5.4.2 Accounting for reverse causation 
Paper 1 uses a prospective design, where ADHD was measured in the years before school performance. 
Because causality imply a direction in time (the cause must come before the effect), it may be tempting to 
argue that longitudinal designs automatically account for reverse causation. However, this would be a mistake. 
Longitudinal designs do not offer a magic bullet to the problem of reverse causation, but it does allow us to 
reframe the problem: Reverse causation can be seen as confounding in a different guise, where school 
performance at some earlier stage could have caused ADHD. In other words, by using a longitudinal design, 
we have reduced the list of three explanations down to just two: direct causation and confounding. 

5.4.3 Accounting for confounding factors 
ADHD and school performance could be associated because they are caused by overlapping sets of variables. 
For example, they could both be caused by earlier school performance (as discussed in the previous section), 
or by other individual characteristics, such as sex or maturity. They could also both be caused by family 
characteristics, such as rearing environment or parental socioeconomic position. Note that the last example 
would imply that the within-individual correlation was confounded by intergenerational social causation. 
Figure 5.2 shows a hypothesised causal structure where ADHD has a causal effect on school performance 
(GPA), denoted 𝑎. This would be the estimand. At the same time, there are two sets of third variables that also 
has causal effects on both ADHD and GPA, namely individual-specific factors (𝑍) and familial factors (𝑈). If 
we apply path tracing rules to the correlation between ADHD and GPA, we find that it should be:  

𝐶𝑜𝑟𝑟(𝐴𝐷𝐻𝐷, 𝐺𝑃𝐴) = 𝑎 + 𝑏𝑐 + 𝑑𝑒 (5.1) 
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That is, the correlation should be the sum of (1) the causal effect of ADHD on GPA, (2) the product of the 
familial confounders’ causal effects on ADHD and GPA, and (3) the product of the individual confounders’ 
causal effects on ADHD and GPA. If we are interested in the causal effect of ADHD on GPA, we cannot just 
estimate the raw association because we would not know how much of it was due to 𝑎 and how much was 
due to 𝑏𝑐 + 𝑑𝑒. This is, mathematically speaking, what confounded means.  

Accounting for confounders is in theory straightforward. One simply adjusts for them, for example by 
including measures of 𝑈 and 𝑍 as covariates in a multiple regression (which would be equivalent to estimating 
𝑎, 𝑐, and 𝑒 simultaneously, which closes the door for 𝑏𝑐 and 𝑑𝑒). In practice, however, it is more complicated. 
First and foremost, there is always a strong assumption that the path diagram contains all relevant variables 
and paths (Rohrer, 2018). If there exist confounders that aren’t included or causal pathways not drawn, then 
the inferences may be invalid. Furthermore, adjusting for some confounders can inadvertently adjust for other 
undrawn variables that one shouldn’t adjust for, such as colliders and mediators. For example, it could be that 
ADHD caused early school performance rather than the other way around. If this is the case, adjusting for it 
would remove part of the true causal effect of ADHD on later school performance. Drawing the path diagram 
correctly is one of the major challenges in doing causal inference with observational data because it involves 
assuming what the causal structure of the world is, and lack of knowledge about the causal structure of the 
world is precisely what motivates the research in the first place. 

Assuming the path diagram is correctly drawn, though, it is straightforward figuring out what adjustments are 
needed to control for all relevant confounders while avoiding mediators and colliders (Pearl & Mackenzie, 
2018). The next problem is that the required covariates may not be available. That is, there could be unobserved 
confounders. Even if they are available in the data, they could have measurement error or otherwise be 
imperfect proxies for what we are trying to adjust for (Westfall & Yarkoni, 2016). That is, there could be 
residual confounding. (You can think of residual confounding as resulting from partly unobserved 
confounders).  

Figure 5.3 depicts a hypothesised causal structure where we assume that the only thing confounding the 
association between ADHD and GPA is early school performance (𝑍) and parental socioeconomic position 
(𝑈). We have not measured these directly but have instead access to proxy variables such as test scores from 
fifth grade and parental educational attainment (EA). When we are including these as covariates in a regression 

 

Figure 5.2: The causal effect of ADHD on GPA could be confounded  
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model to control for the confounders, we are implicitly assuming that these are perfectly correlated with the 
variables we are trying to adjust for. To the extent this is not the case, then adjusting for those variables will 
fail to adequately account for the confounding factors. We can see this if we derive the partial covariance 
between ADHD and GPA in Figure 5.3 conditional on test score and parental educational attainment:  

𝐶𝑜𝑣(𝐴𝐷𝐻𝐷, 𝐺𝑃𝐴 | 𝑇𝑒𝑠𝑡 𝑆𝑐𝑜𝑟𝑒, 𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝐸𝐴) = 𝑎 + (𝑏𝑐 − 𝑓2𝑏𝑐) + (𝑑𝑒 − 𝑔2𝑑𝑒) (5.2) 

Stated plainly, unless both 𝑔 and 𝑓 are 1, the partial covariance could still be confounded by these other 
pathways. 

5.4.4 Accounting for unobserved confounders: The sibling design 
Unobserved or residual confounders are two of the largest obstacles to causal inference in observational 
designs. We therefore need a way to completely cut off the confounding pathways without observing the 
confounders. This can involve exploiting sources of variation that should be independent of these pathways. 
In the case of familial confounding factors, one such possibility is sibling designs (aka. sibling-fixed effects, 
aka. sibling comparisons). Here, the idea is that familial confounding factors should influence both siblings 
equally, while the extent to which siblings differ should be random with respect to these factors. Figure 5.4 
illustrates this idea by splitting ADHD into two components: The familial mean, denoted  𝑋𝑓

̅̅ ̅, and an 
individual’s deviation from that mean, denoted 𝑋𝑖 − 𝑋𝑓

̅̅ ̅. To keep all variables at unit variances, they have each 
been weighted by the between- (𝜎𝑏) and within-family (𝜎𝑤) standard deviations, respectively. Because there 
are no valid chains between 𝑋𝑖 − 𝑋𝑓

̅̅ ̅ and 𝑌 that goes through 𝑈, we have been able to remove unobserved 
familial confounding factors without needing to know what those factors are.  

Despite being a powerful method, sibling designs have some important limitations. Some of these will become 
immediately apparent if we write out the correlation between 𝑋𝑖 − 𝑋𝑓

̅̅ ̅ and 𝑌 using path analysis:  

𝐶𝑜𝑟𝑟(𝑋𝑖 − 𝑋𝑓
̅̅ ̅ , Y) = 𝜎𝑤𝑎 + 𝑑𝑒 (5.3) 

Obviously, a sibling-fixed effect could still be confounded by individual-specific confounding factors (𝑍), as 
indicated by the chain 𝑑𝑒. This chain will also become a relatively larger part of 𝐶𝑜𝑟𝑟(𝑋𝑖 − 𝑋𝑓

̅̅ ̅, 𝑌) than 
𝐶𝑜𝑟𝑟(𝑋, 𝑌), which can complicate the interpretation. Individual-specific confounding factors can be 
conditioned on if they are observed, but it would still be limited by residual confounding as discussed above. 
I adjusted for early school performance in the sibling model in the paper, which should give our best guess of 
what the causal effect of ADHD on school performance is, but it is far from perfect. 

 

Figure 5.3: Confounders are measured by proxy variables   
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Another problem is that Figure 5.4 could be missing important causal pathways. As discussed above, one of 
the most difficult problems in using path diagrams is drawing them in a way that reflects reality. The model 
in Figure 5.4 assumes that the effects of both the sibling mean,  𝑋𝑓

̅̅ ̅, and the deviation from the sibling mean, 
𝑋𝑖 − 𝑋𝑓

̅̅ ̅, are fully mediated by measured 𝐴𝐷𝐻𝐷 and therefore represent the same causal mechanism. 
However, it is possible that the aspect captured by the deviation from the sibling mean differs from what is 
captured by the sibling mean itself, and these differences might exert different causal effects on Y (this would 
be equivalent to drawing direct arrows from 𝑋𝑖 − 𝑋𝑓

̅̅ ̅ and 𝑋𝑓
̅̅ ̅ to 𝑌). For example, the deviation from the sibling 

mean could largely reflect measurement error with no causal effects. The incommensurability of the familial 
mean and individual deviation is a common critique of sibling designs (Rod et al., 2021).  Finally, a third 
problem could be inadvertent selection bias as such analyses must always condition on multiple offspring and 
on siblings discordant for the exposure (Biele et al., 2022; Keyes & Susser, 2022). Overall, sibling designs are 
powerful ways to adjust for unobserved confounders but have their limitations.  

In this case, I am not too concerned about the potentially different effects of sibling mean and individual 
deviations, nor about selection bias. That is, I would consider them well-founded assumptions that would 
warrant a causal conclusion. However, residual confounding caused by an imperfect measure of early school 
performance is highly likely, and it could also be the case that early school performance is a mediator that 
shouldn’t be controlled for. These two concerns make a causal conclusion unwarranted, which is why I 
downplayed this interpretation in the paper.   

The limitations of sibling designs render them somewhat unsatisfactory. A key issue is that, while the sibling 
design does exclude intergenerational social causation for the remaining associations, it doesn’t quantify the 
degree and nature of confounding. In contrast, the next paper uses an intergenerational biometric model that 
allows explicit estimation of intergenerational genetic and environmental influences. 

 
Figure 5.4: Path diagram illustrating the sibling design.   

  
 



26 

5.5 Paper 2: Parental income and mental disorders 
Why is it that parents with lower income have offspring with increased risk of mental disorders? The first part 
of the paper provides detailed descriptions of this phenomenon by calculating age-by-age prevalences across 
sex and parental income quartiles. The second part of this paper attempts to explain why this association exist: 
social causation or social selection. To do this, I have used a variant of the children-of-twins model (Mcadams 
et al., 2018). As before, the technical details are described in the paper itself. Here I will provide a more 
thorough explanation of the logic behind this type of analysis. 

5.5.1 Introduction to quantitative genetics and twin models 
To better understand the model used in Paper 2, it is worth taking a slight detour to introduce key concepts 
within quantitative genetics and twin models (Knopik et al., 2017). Figure 5.5 illustrates a simple model for 
understanding causes of individual differences. Here, differences in a phenotype (𝑃) are thought to be caused 
by additive genetic factors (𝐴) and environmental factors (𝐸). Other genetic factors, such as dominant genetic 
factors, do not appear to play an important role in complex traits variation, so I have left them out 
(Pazokitoroudi et al., 2021). Using path tracing, we can describe the phenotypic variance as the sum of genetic 
causes, environmental causes, and the degree to which these causes tend to co-occur: 

𝑉𝑎𝑟(𝑃) = 1 = 𝑎2 + 𝑒2 + 2𝑎𝑒𝑟𝐺𝐸 (5.4) 

where 𝑎2 is the variance attributable to additive genetic differences (a.k.a., the heritability), 𝑒2 is the variance 
attributable to environmental differences, and 2𝑎𝑒𝑟𝐺𝐸 is the variance attributable to the correlation between 
genetic and environmental differences (see section 2.7 on Matthew effects). The heritability is often denoted 
ℎ2 (or 𝐻2 if it includes non-additive genetic factors), and specifically refers to cases where 𝑎2 is standardized 

(i.e., ℎ2 =
𝑎2

𝑉𝑎𝑟(𝑃)
). Because we are assuming unit variances, this distinction is not important here and I will 

use ℎ2 and 𝑎2 interchangeably.  

Note that the model in Figure 5.5 is completely agnostic about what mediates these effects, or what the specific 
genetic and environmental factors are (see section 7.3 for a discussion about how to interpret heritability). For 
now, we do not need to worry about that. Note also that we are here only concerned about population average 
effects. While it could be that environmental factors, such as traumatic events, have made a massive difference 

 
Figure 5.5: A simple model of phenotypic differences 
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to a few people, it may not affect the variance in the population that much. This nuance is missed in this way 
of thinking (see also section 7.4). 

The question is whether there is a way to estimate the parameters in the model. One way could be to measure 
genetic and environmental factors and include them in a regression, but this is unlikely to succeed. Polygenic 
indices, for example, only capture a fraction of the likely genetic effect (Young, 2019). We therefore want to 
find a way to estimate the parameters using phenotypic observations alone. A good place to start is genetically 
related individuals. If individuals who are more genetically similar are more phenotypically similar, then this 
could indicate that genetic factors make a difference. On the other hand, genetically similar people also tend 
to be exposed to similar environments, meaning related individuals could be similar for both environmental 
and genetic reasons. 

5.5.2 The classic twin design: The ACE model 
The classic twin design manages to overcome this by making a few simple assumptions (Knopik et al., 2017). 
First and foremost, it exploits the fact that twins come in two forms: monozygotic (i.e., genetically identical) 
and dizygotic (i.e., like regular full siblings). If one is willing to assume that exposure to environmental causes 
is equally correlated among monozygotic twins as dizygotic twins, then any difference in correlation must be 
attributable to increased genetic similarity. This is called the equal environments assumption (Knopik et al., 
2017). If one is further willing to assume that there are no gene-environment correlations (𝑟𝐺𝐸 = 0), then it is 
possible to estimate the relative contribution of genetic, shared environmental, and unique environmental 
factors on phenotypic differences. 

Figure 5.7 illustrates the logic by showing how genetic and environmental factors correlate between twins. 
The environmental factor is split into that shared by twins (𝐶) and that unique to each twin (𝐸), and 𝑓 
represents the correlation between the twins’ additive genetic factors (𝐴). The three factors give the model its 
name: the ACE model. Applying path tracing rules to the ACE model, we find that the phenotypic correlation 
between twins can be described as: 

𝐶𝑜𝑟𝑟(𝑇𝑤𝑖𝑛 1, 𝑇𝑤𝑖𝑛 2) = 𝑓𝑎2 + 𝑐2 (5.5) 

 
Figure 5.6: The ACE model.  

The parameter f denotes the genotypic correlation between twins.  
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Crucially, 𝑓 is known for monozygotic (mz) and dizygotic twins (dz): Their genotypic correlation should be 
1 and .50, respectively, assuming negligible de-novo mutations and assortative mating (but see Paper 3). This 

means that 𝑟𝑚𝑧 = 𝑎2 + 𝑐2 and 𝑟𝑑𝑧 =
𝑎2

2
+ 𝑐2. From this, it follows that the difference in correlation between 

monozygotic and dizygotic twins should reflect half the effect of genetic factors. The influence of genetic 
factors must therefore be twice this difference, and shared environmental factors must be whatever is left (see 
Figure 5.7). This is the logic that underlies Falconer’s well-known equations which allow back-of-the-envelope 
calculations of heritability (ℎ2), shared environmental effects (𝑐2), and unique environmental effects (𝑒2):  

ℎ2 = 2(𝑟𝑚𝑧 − 𝑟𝑑𝑧) (5.6𝑎) 
𝑐2 = 2𝑟𝑑𝑧 − 𝑟𝑚𝑧 (5.6𝑏) 

𝑒2 = 1 − 𝑟𝑚𝑧 (5.6𝑐) 

5.5.3 Structural equation models (SEMs) 
Falconer’s equations have been used extensively in twin research, but in the last few decades they have been 
superseded by SEMs that estimate the ACE model (Polderman et al., 2015). SEMs exploit a feature of a subset 
of path models, namely that it is possible to solve for all parameters in the model by comparing the observed 
covariances between the variables. (For some of these models, such as the ACE model, it is not even necessary 
to observe all the hypothesised variables, thus giving us the distinction between observed and latent variables). 
In short, SEMs can be applied to path models where all parameters are identified.  

Before a SEM can be estimated, the covariance matrix between the observed variables must be defined in terms 
of equations consisting of the parameters in the model. This is done using the path tracing rules described 
earlier. For simple models, the computer software can do this automatically, but for more complicated models 
(such as the children-of-twins model), this must be done manually. One then applies a fit function – usually 

 
Figure 5.7: The logic of the classic twin design.  

Assuming equally correlated environments, then heritability is the slope of genotypic to phenotypic similarity. If the genotypic correlation 
between dizygotic twins equals 0.5 (meaning random mating), then the difference between 𝑟𝑚𝑧 and 𝑟𝑑𝑧 is half the heritability.  
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maximum likelihood – to find values for the parameters that, when entered into these equations, produce an 
implied covariance matrix that matches the one we observe between the variables as closely as possible. If the 
implied covariance matrix matches the observed covariance matrix, then the model is said to have good fit. I 
used OpenMx (Neale et al., 2016) in R (R Core Team, 2022) to estimate the models used in paper 2. 

There are multiple advantages of using SEMs rather than Falconer’s equations. First, because SEMs are using 
maximum likelihood estimation, routine statistical procedures such as calculating confidence intervals, 
handling missing data, and testing for significance become easier. Second, the assumptions underlying the 
ACE model are explicit in the path diagram, such as equally correlated environments and no gene-
environment correlation. A person who is unfamiliar with the classical twin model but familiar with path 
analysis should be able to deduce the assumptions I mentioned before using Figure 5.6 alone. Third, and most 
importantly for Paper 2, they are easily extendable. That is, one can extend the ACE model with additional 
observed variables to account for some of the limitations or answer different questions. There are numerous 
possible extensions. In Paper 2, I extended the model by including partners and children, which allows relaxing 
some of the assumptions while modelling intergenerational transmission. 

5.5.4 Extending the ACE model 
Extending the ACE model works because increased genetic similarity between monozygotic twins also affects 
the similarity between other family members. For example, most children are half as related to their uncle or 
aunt as they are to their parents. Children of monozygotic twins, on the other hand, are equally related to their 
uncle or aunt as to their own parents. If we include the twin’s children in the ACE model, we can use this to 
decompose the parent-offspring correlation into genetic and environmental pathways. Furthermore, if we 
include the other parents of these children (i.e., the co-parents), then it is possible to account for assortative 
mating. Before I explain the details of this model, it can be worth taking a step back and ask: What are the 
possible causes of a parent-offspring correlation? 

5.5.5 Visualising explanations for the parent-offspring correlation 
A good place to start is to draw a path diagram that captures the different causal processes that could lead to 
an intergenerational association. Figure 5.8 visualises some of these possible explanations, with different 
colours for the different causal pathways. Just as in the ACE model, the parental phenotypes are imagined to 
be the weighted sum of genetic factors (𝐴1), shared environmental factors (𝐶1), and unique environmental 
factors (𝐸1). The offspring phenotype is similar, but here, the genetic and familial environmental factors are 
split into those associated with the parental phenotype (𝐴1

′  and 𝐹, respectively) and those unique to the 
offspring phenotype (𝐴2 and 𝐶2, respectively). Because the latter do not matter for the parent-offspring 
correlation, they are greyed out. 

The most intuitive hypothesis – the social causation hypothesis – would be that parental income directly 
causes an increased risk of mental disorders (direct phenotypic transmission, indicated in red). An alternative 
explanation is that there could be a correlation between the set of genes that causes variation in income and 
the set of genes that causes variation in mental disorders. Because offspring inherit their genes from their 
parents, an intergenerational association would emerge (passive genetic transmission, blue). By the same logic, 
if environmental factors that made a difference to parental income also make a difference for mental disorders 
among offspring, then this would also lead to an intergenerational association (passive environmental 
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transmission, orange). Finally, if parents resemble each other due to assortative mating, then parents may 
correlate with their offspring because their partner (i.e., the co-parent) is correlated with their offspring 
through the aforementioned pathways (teal). In summary, Figure 5.8 visualises four causal pathways that 
could result in a correlation between parents and offspring. Using path tracing, we can represent the 
correlation between a parent and their offspring by an equation consisting of the four components discussed 
in the previous paragraph: 

𝐶𝑜𝑟𝑟(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) = 𝑝 +
𝑎1𝑎1𝑝

2
+ 𝑐1𝑐1𝑝 + 𝜇 (𝑝 +

𝑎1𝑎1𝑝

2
+ 𝑐1𝑐1𝑝) (5.7) 

While it's plausible that additional causal processes could be influencing both the parent-offspring and parent-
co-parent correlations, there comes a point where we must limit the scope of the investigation. This is not 
because we deny the existence of other potential processes (e.g., reverse causation), but because we must accept 
that it is impossible to estimate all conceivable causal processes in one model. Remember, there are 
assumptions all the way down. If we are satisfied that the model captures likely causes of the correlations (or 
deem the biases that will arise if this is not the case as acceptable), then the next step is to find a way to estimate 
these parameters. 

5.5.6 The extended children-of-twins-and-siblings model 
When the ACE model is extended with partners and children (as in Figure 5.9), it becomes able to identify the 
parameters in Figure 5.8. Even though Figure 5.9 may look a bit complicated, the only difference between it 

 

Figure 5.8: Different causal processes that could lead to a parent-offspring correlation.  
All variables have unit variances except F, whose variance depends on the coefficients of the incoming paths (hence the unit effect size for 

outgoing paths instead).    
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and Figure 5.8 is that there are two nuclear families instead of one, each with two children instead of one. If 
you use path tracing to find the parent-offspring correlation, it will equal equation 5.7.  

Although every covariance is used when the parameters are estimated, the key contrast is between the parent-
offspring correlation and the avuncular correlation. If we assume a scenario with no assortative mating where 
the parent-offspring correlation was solely due to genetic similarity, then we would expect the parent-
offspring correlation to equal the avuncular correlation in monozygotic twin families, and be exactly twice the 
avuncular correlation in dizygotic twin families. On the other hand, if parents had a causal effect on their 
offspring, then we would expect the parent-offspring correlation to be higher than the avuncular correlation 
in monozygotic twin families, and more than twice the avuncular correlation in dizygotic twin families.  

While this verbal description should suffice, I think it will be beneficial to derive the avuncular correlation in 
Figure 5.9 so that we could compare it to equation 5.7. That way, we could see mathematically what I 
described verbally above. To simplify the equation a bit, let us denote 𝛿 as the phenotypic correlation between 
the twins (equation 5.5): 

𝐶𝑜𝑟𝑟(𝑈𝑛𝑐𝑙𝑒/𝐴𝑢𝑛𝑡, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) = 𝛿𝑝 +
𝑓𝑎1𝑎1𝑝

2
+ 𝑐1𝑐1𝑝 + 𝛿𝜇 (𝑝 +

𝑎1𝑎1𝑝

2
+ 𝑐1𝑐1𝑝) (5.8) 

The first thing to notice when comparing equation 5.8 with equation 5.7 is how similar they are. The passive 
environmental components (orange) are equal and the only thing that differs in the genetic components (blue) 
are that the avuncular correlation includes the genotypic correlation between twins, 𝑓. For monozygotic 
twins, where 𝑓 = 1, the only things that differ are the direct phenotypic transmission (red) and assortative 
mating (teal). If we temporarily assume no assortative mating (𝜇 = 0), then any difference between the parent-
offspring correlation and the monozygotic avuncular correlation must be attributable to direct phenotypic 
transmission. Differences between monozygotic and dizygotic avuncular correlations can give similar 
information about passive environmental transmission. Assortative mating complicates things a fair bit, 
meaning it is not straightforward to simply solve for genetic and environmental pathways with Falconer-like 
equations, but estimating the parameters is not a problem in a structural equation model. 

Another key quirk is that the genotypic correlation between cousins (denoted 𝑞) is different in monozygotic 
twin families and dizygotic twin families: In monozygotic twin families, cousins in the next generation are 
genetic half siblings. This gives more statistical power to differentiate genetic and environmental sources of 
sibling similarity that are independent of the parental phenotype. 

5.5.7 The liability threshold model 
As discussed in section 1.3, mental disorders are likely the ends of continuous distributions, but they are 
measured dichotomously in my data. To get around this, I modelled mental disorders with a liability threshold 
model. In such a model, the dichotomous measure is assumed to represent an unobserved, normally 
distributed liability to be diagnosed with a mental disorder. We then assume that diagnosed individuals are 
above a threshold and undiagnosed individuals are below the threshold. With these assumptions, we can easily 
calculate the correlation between the liability and other variables. For continuous variables, it would be a 
polyserial correlation, and for other dichotomous variables, it would be a tetrachoric correlation. These 
correlations are then used to estimate the parameters in the model. It is important to note that the correlation 
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being decomposed is between parental income rank and offspring liability to mental disorders, not mental 
disorders per se. 

5.5.8 Including full siblings 
Children-of-twins models require a large sample size to identify all parameters accurately, especially for small 
parent-offspring correlations like that in paper 2 (between –.10 and –.15). This is especially true for liability 
threshold models, because polyserial and tetrachoric correlations are less precise than regular product-moment 
correlations given the same sample size. To maximize statistical power, it is therefore common to also include 
full siblings. Genetically speaking, full siblings and dizygotic twins are the same. I therefore estimated the 
models with about 100 000 full sibling families (coupled with about 1000 monozygotic twin families). Given 
that most of the parameters in the model are identified with full sibling families alone, the gains in power are 
very large. (If you leave out 𝑐1𝑝, you would not actually need the children of monozygotic twins).  

Full siblings have larger age differences than dizygotic twins, which may reduce our confidence in the equal 
environment assumption. On the other hand, this may not be a big concern when they are adults. Using full 
siblings instead of dizygotic twins also relaxes other assumptions: Dizygotic twins may have issues with 
selection bias because, unlike monozygotic twins, they are not randomly distributed in the population 
(Bortolus et al., 1999). It is not clear which assumption is best, but given the need for statistical power, using 
full siblings seems preferable. It is possible to estimate or otherwise vary the environmental correlation 
between different types of relatives, thereby relaxing this assumption, but that would negate the increase in 
statistical power. 

Another way to increase power would be to include half-siblings in the parental generation, as that would add 
a third group with different genetic relatedness. This is not uncommon in children-of-twins-models (Torvik 
et al., 2020), and I initially intended to include them. However, the subset of the population with half-siblings 
are not representative of the population: In my sample, they had significantly lower income and their offspring 
had more mental disorders. Because I was not sure how this would impact the model (and because the gains 
in statistical power would be marginal), I decided to not include half-siblings. 

5.5.9 Variable parental phenotypes 
Parental income rank was calculated for the years the children were between 10 and 18 years old, meaning 
parental income rank would not be equal for two siblings. Which parental phenotype should be used in the 
model? While one could create an average, another approach is to model a variable parental phenotype as 
depicted in Figure 5.10 (Mcadams et al., 2018). This has the added benefit of increasing the statistical power 
of the model considerably, thus solving our first problem as well. 

Although the model in Figure 5.10 may seem overly complex, the underlying logic is very similar to the one in 
Figure 5.9 and most implied covariances – including the parent-offspring correlation – will remain the same. 
The difference is that the parental phenotype is observed at two time points, denoted 𝑃𝑡1 and 𝑃𝑡2, representing 
the average parental income rank for child 1 and child 2, respectively. These two observations are thought to 
represent the sum of an underlying, stable phenotype and deviations from that stable phenotype. This is very 
similar to the logic behind sibling designs discussed in section 5.4.4, only that we are here concerned with 
within-individual variation rather than within-family variation. One difference is that the stable characteristics 
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are modelled as a latent variable rather than as the observed mean between the observations. Genetic and 
shared environmental factors are assumed to influence the stable characteristics, whereas the unique 
environmental component (𝐸) is split into between-individual sources of variation (𝐸1𝑏) and within-
individual sources of variation (𝐸1𝑤). 

5.5.10 Advantages of the children-of-twins model over the ACE model 
The classical ACE model derives its strength from being agnostic to what the genetic and environmental 
factors are and how they work. This is also one of the major drawbacks. The children-of-twins model partly 
remedy this by distinguishing offspring factors that are associated with the parental phenotype – in this case, 
income rank – and  factors that are independent of parental phenotype. It is still agnostic to the specific 
mechanisms, but not as agnostic as the classic twin model.  

There are also other advantages. For example, whereas the classical twin model makes strong assumptions 
about no assortative mating or gene-environment correlations, the children-of-twins model relaxes these 
assumptions by modelling them explicitly. Because genetic and environmental transmission are modelled as 
separate pathways, gene-environment correlations are inherent in the design: It is simply what follows from 
both genetic and environmental pathways being non-zero. If you model the same phenotype across 
generations, you could even use this as a best-guess estimate of what the gene-environment correlation is in 
the parental generation, although that is not possible when the phenotypes differ. Assortative mating is 
modelled by allowing parents (and their effects on offspring) to correlate. Obviously, modelling these 
assumptions breeds more assumptions, such as the type of assortative mating – there are assumptions all the 
way down – but these assumptions are often less severe than the alternative. Don’t mistake a more complicated 
model for a model that makes stronger assumptions.  

5.5.11 What other assumptions underlie this model? 
Most assumptions are explicit in Figure 5.10 if one knows what to look for. For example, the model assumes 
no direct causal effects from the offspring to the parent, or from the uncle or aunt to the offspring. However, 
these assumptions are not as severe as they may sound because they will affect the model in predictable ways. 
For example, if offspring truly had a causal effect on their parents’ phenotype, then this would appear as a 
causal effect of the parent on the child (Mcadams et al., 2018). If the overarching aim is to distinguish genetic 
and environmental pathways, then this limitation is of little importance, although the causal effect itself must 
be interpreted with this in mind. Relatedly, if uncles or aunts truly had a causal effect on offspring mental 
disorders, then this should look like passive environmental transmission.  

Another assumption, still implicit in Figure 5.10, is the comparability of different groups. For example, the 
model assumes that the only thing that differs between monozygotic twin families and full sibling families are 
the values of 𝑓 and 𝑞. Inherent in this is an adapted version of the equal environment assumption where 
children of monozygotic twins do not have more contact with their parent’s twin than children of full siblings 
(at least not in a way that have causal consequences). 
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The more severe assumptions concerns the causes of partner similarity. The model assumes that they are 
matching on the phenotype and that they have done so for many generations (i.e., it is in equilibrium, see 
Paper 3). However, the partner correlation could have come about through other processes, such as matching 
on a secondary phenotype or mutual influence (Sjaarda & Kutalik, 2023). It appears that, by attempting to 
relax the assumption of no assortative mating, we have opened pandora’s box and ended up assuming much 
more. However, we have simply discovered that there are assumptions all the way down. Violating these new 
assumptions are likely to result in less severe biases than not accounting for partner similarity at all.  

A related assumption concerns interactions with sex. The model does not consider sex (although I did not 
include opposite-sex sibling pairs), but intergenerational effects could be specific to the sex of offspring or the 
sex of the parent, or the heritability could be sex-specific. Because income rank likely represents different 
aspects of men and women, such interactions are likely. Most of these will simply be averaged out and is 
therefore more of a limitation than an assumption. However, all dyads in the parent generation are sex specific: 
The partner correlations (e.g., Sibling 1 – Spouse 1) and in-law correlations (e.g., Sibling 1 – Spouse 2) always 
include opposite sex dyads, and the sibling correlation (Sibling 1 – Sibling 2) and co-in-law correlation (Spouse 
1 – Spouse 2) always include same sex dyads. It is therefore no longer trivial that the model assumes that the 
parental phenotype is the same across sex. This problem becomes more complicated with the assumption of 
primary phenotypic mating because sex-specific phenotypes can (and have) lead to higher correlations among 
co-in-laws than in-laws. This is impossible given the causal structure in Figure 5.10 and could bias the results 
in unpredictable ways.  

It is possible to model such sex differences and secondary assortative mating, but at some point I had to call it 
a day. (Wouldn’t you agree the model in Figure 5.10 is complicated enough?). While I intend to investigate 
these possibilities in the future, time constraints forced me to simply parse out sex-specific between-family 

 
Figure 5.11: Simulating the children-of-twins model. 

Based on the correlation structure on the left, the model is able to recreate the simulated parameters (red dots) on the right. 
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variation in income-rank from the model and move forwards (see details in the paper’s methods section). Sex 
differences in the ontology of income rank is for a later project to investigate.  

If the causal model in Figure 5.9 or Figure 5.10 accurately reflects the world, then the respective structural 
equation models will give correct estimates by comparing monozygotic twin families and full sibling families 
(sampling variation, notwithstanding). To confirm this (and to make sure the model was specified correctly 
in OpenMx), I simulated data with that causal structure. As we can see in Figure 5.11, the model is able to 
recreate the simulated parameters based on the observed variables alone. The scripts for simulating data and 
running the model are available at osf.io/6324g/. 

5.6 Paper 3: Assortative mating and genetic similarity in families 
Paper 3 is not directly inferring cause and effect, but it builds on a well-established causal relationship: a 
parental genotype has causal effect equal to .50 on their offspring’s genotype (Fisher, 1918). One would then 
think that the genotypic correlation between a parent and offspring should also equal .50, but this assumes 
that there are no other reasons for them to correlate. If the offspring inherit similar genetic variants from the 
other parent, for example because of assortative mating, then the genotypic correlation between parent and 
offspring will be larger. Paper 3 focuses on assortative mating and its consequences for genetic similarity in 
extended families. Between the thorough description of path analysis in section 5.2, the methods described in 
the paper itself, and the paper’s supplementary methods, there is not much to add here. The first part of the 
paper uses path analysis to understand the theoretical consequences of assortative mating, whereas the second 
part documents empirical correlations for numerous traits using polygenic scores. Here, I will describe why 
assortative mating creates these complications and how to use path analysis to understand them.  

5.6.1 Assortative mating induces correlations between antecedent variables 
Unlike with correlations that are due to shared causes of variation, which only induce correlations in 
descendent variables, sorting processes induce correlations between antecedent variables. It is similar to 
conditioning on a collider. If partners – consciously or as a side effect of something else – enter partnerships 
in part because of phenotypic resemblance (i.e., assortative mating), then all the causes of variation in the 
maternal phenotype will become correlated with all the causes of variation in the paternal phenotype. If the 
phenotype in question is heritable, then partners will tend to have genetic variants with similar effects on the 
phenotype. 

5.6.2 What are the genetic consequences of assortative mating? 
Assortative mating creates a dependency between the genetic variants an individual inherits from their mother 
and father (Bulmer, 1980; Fisher, 1918; Lynch & Walsh, 1998). Depending on how many generations of 
assortative mating there have been, numerous consequences follow including two that are important here: 
First, trait-related genetic variance will increase in the initial generations of assortment and thereafter be 
maintained at an equilibrium (see section 2.7 on Matthew effects). Second, the genetic variants an individual 
inherits from their mother is no longer independent from the genetic variants their sibling inherits from their 
father. This means that siblings and other relatives will be more genetically similar than normal for the trait in 
question (which is why the ACE model implicitly assumes no assortative mating). Just like for genetic 
variance, the genetic similarity will increase in the first few generations before stabilizing at an equilibrium. 
The questions this paper poses are: (1) how genetically similar do various relatives become (in theory), and (2) 
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how similar have relatives become (in practice)? Note that these consequences only applies to genetic variants 
that are correlated with the assorted trait, not to the entire genome. 

5.6.3 How to model assortment in path analysis 
A double-headed arrow implicitly assumes that the modelled correlation is due to a common cause, which is 
reflected in the path tracing rules described earlier in this chapter. It is therefore inappropriate to use a double-
headed arrow if the modelled correlation arose because of extrinsic reasons, such as a sorting process. Doing 
so would fail to correctly infer the correlations between the causes of the sorted variables. To get around this 
problem, correlations that arise from sorting processes can be specified with a co-path (—), which is an 
arrowless path indicating correlations that arise from extrinsic processes like assortment (Cloninger, 1980). 
The co-path was introduced with assortative mating in mind and comes with its own path tracing rules that 
can handle the special correlation structure that assortment would lead to (Balbona et al., 2021). It works by 
connecting two valid chains (per the rules described in section 5.2 on page 20), thus creating a single longer 
chain (e.g., ↔ — ↔). This allows all the chains that connect with one of the sorted variables to traverse the 
co-path and connect with all the chains that connect with the other sorted variable. An alternative description 
is that once a chain traverses the co-path, the path tracing rules described above are “reset”, so that one again 
must start tracing against the direction of arrows and include exactly one double-headed arrow. A particular 
co-path can only be traversed once in each chain, although a chain can include multiple, distinct co-paths. 

Because a co-path connects two valid chains, one can technically not end or start a chain with a co-path (with 
the corollary that the co-path coefficient is neither the covariance nor the correlation between the sorted 
variables). This is similar to how a valid chain cannot start by following an arrow but must instead always start 
by going against arrows. However, a similar shortcut exists for standardized variables: If all valid chains from 
the sorted variable leading back to itself sum to one, it is possible to trace as if it was possible to start or end a 
chain with a co-path. If the variables have unit variances, the co-path coefficient is equivalent to the correlation 
between the two variables attributable to assortment.  

In the supplementary information for this paper, I go into more detail about incorporating polygenic indices 
into the path diagram, as well as allowing variance to differ across generations (i.e., allow disequilibrium).  
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Chapter 6: Main Findings 

6.1 Paper 1: ADHD and school performance 
Using register data on practically every Norwegian junior high school pupil born between 1997 and 2002 (N 
= 344,152), the first paper documents a large difference in school performance – more than one standard 
deviation (–1.11) difference in grade point average – between children with and without ADHD. This was 
partly because ADHD is more common in groups that already tend to do worse in school, such as among boys 
and children of less educated parents. When I compared siblings while adjusting for within-family 
confounders, the difference was reduced but remained large (–0.60). Parental factors, including their 
socioeconomic position, are therefore unlikely to be the main cause of the association between ADHD and 
school performance. When I also adjusted for early school performance (which I did separately as this could 
be a mediator), the difference was –0.33 in the sibling models, which is not consistent with ADHD being the 
consequence rather than cause of poor school performance. (As discussed thoroughly in the previous chapter, 
I don’t think the assumptions underlying this conclusion warrant enough confidence to unapologetically 
assert that ADHD causes poor school performance, although the results are suggestive). 

When I compared the association between ADHD and school performance across parental education, I found 
that differences were larger among children with highly educated parents than less educated parents. ADHD 
is less common among children of highly educated parents, raising the question of why the difference was 
larger. It could be higher thresholds for getting a diagnosis or that unaffected children do relatively better and 
thereby makes the difference appear larger. Nevertheless, despite relatively larger differences associated with 
ADHD, children of highly educated parents generally outperformed children of less educated parents 
regardless of whether they had ADHD or not. Let me repeat that for clarity: Children without ADHD but 
with the least educated parents were outperformed by children with ADHD but with highly educated parents. 
In other words, social background is a much more potent predictor of school performance than mental health. 
I found similar results (albeit less dramatic) when comparing the association across sex, raising similar 
questions. The larger differences in groups with lower prevalence compensates for the lower prevalences, 
limiting the possibility that ADHD mediates the effect of parental education on offspring school 
performance.  

When I investigated school performance in individual school subjects, I found ADHD to be associated with 
large differences in all school subjects, including what are occasionally thought of as “ADHD-friendly” school 
subjects like sports (–0.60) and arts and crafts (–0.47). The differences were slightly larger in more theoretical 
school subjects like mathematics (–0.82) and English (–0.70), but not so large as to suggest that ADHD 
primarily impacts school performance through these school subjects. Instead, the results indicate that ADHD 
impacts (or at least is associated with) school performance through general factors that are shared across school 
subjects.  

6.2 Paper 2: Parental income and mental disorders 
Using register data on practically every Norwegian aged 10 to 35 between 2006 and 2018 (N = 2,112,355), the 
second paper documents large differences in the prevalence of mental disorders across parental income. These 
differences exist across the entire age range and are large for practically every mental disorder, for both men 
and women, and across both paternal and maternal income. Diagnosed mental disorders were 2.13 times more 
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common among 10-year-olds with fathers in the bottom income quartile compared with the top quartile. 
Among 35-year-olds, mental disorders were 1.62 times as common among those with fathers in the bottom 
quartile. 

The polyserial correlation between parental income and offspring mental disorders was –.15 among 10- to 14-
year-olds and –.10 among 30- to 34-year-olds. When I applied the children-of-twins model described in section 
5.5, I found that genetic similarity accounted for most of the correlation in all age groups. This suggests that 
social selection plays a large part in explaining why parental socioeconomic position and offspring mental 
disorders are correlated. However, among adolescents, I also found evidence consistent with a direct effect 
after genetic similarity was accounted for, making up 21-23% of the correlation. This suggests that social 
causation may play a minor role in explaining the parent-offspring correlation among adolescents.  

In terms of variance explained, high heritability was evident for both income rank (30–40%) and mental 
disorders (47–70%), with minimal variance explained by shared environmental factors. Shared environmental 
effects accounted for less than 0.5% of the variance in the offspring generation, which was less than variance 
explained by the co-occurrence of environmental and genetic effects (up to 1.7% among 15- to 19-year-olds, 
but negative in the older age-groups). Finally, partners were significantly correlated (.09–.18), which is 
consistent with assortative mating. 

6.3 Paper 3: Assortative mating and genetic similarity in families 
Using path analysis, the third paper describes how similar relatives become, genetically, if partners are 
matching based on similar phenotypes (i.e., assortative mating). I found that assortative mating has a relatively 
larger impact on similarity between distant relatives compared to close relatives. This would indicate that 
genetic variants that are associated with traits undergoing assortment, such as educational attainment, will 
concentrate in extended families, thereby increasing or maintaining inequality. 

Using genetic data on 47,135 partner pairs and 1,213,258 dyads of related individuals from the MoBa cohort 
study, I complemented the theoretical analysis with empirical correlations between the polygenic indices of 
partners and relatives. Unlike phenotypic correlations, which can arise through multiple other processes, 
genotypic correlations are much stronger evidence of assortative mating. I found that several traits showed 
evidence of assortative mating, including educational attainment, height, intelligence, and body mass index. 
These traits showed correspondingly increased similarity between relatives, as expected. Somewhat 
surprisingly, I did not find evidence of assortative mating on mental disorders despite prior studies showing 
substantial phenotypic correlations. This could be because the phenotypic correlations are caused by other 
processes, or it could be that the polygenic indices do not adequately measure the genetic propensity. 

For the traits that did show evidence of assortative mating, I used differences in variance across generations 
and discrepancy between the expected and observed parents-offspring correlation to infer whether assortment 
has been occurring over many generations or not (that is, whether it was in equilibrium). I found evidence 
suggesting that, while assortment on educational attainment appear to have been occurring for several 
generations, it was not consistent with equilibrium. This suggests that the genetic variance and similarity in 
families are still increasing, thus leading to increasing differences across generations (not just maintained 
differences).  
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Chapter 7: General discussion 

In this thesis, I have provided evidence that furthers our understanding of the intergenerational transmission 
of social differences and mental health. First and foremost, my findings reiterate that there are strong 
associations between social differences and mental health both across and within generations. While there was 
evidence of some causal influences from parents to offspring, the intergenerational association appears most 
consistent with social selection. This implies that the causal processes that are leading to within-individual 
correlations between socioeconomic position and mental health are likely repeating anew in each new 
generation, for example via poorer school performance among those with mental disorders. The direct causal 
effects of parents are coming atop of this, and differences in starting points are further increased by assortative 
mating, suggesting Matthew effects. In this chapter, I will briefly discuss the implications of the results before 
a lengthy discussion about the complications and caveats that underlie these conclusions. I will do that by first 
explaining what quantitative genetic models do and do not tell us, before discussing methodological 
considerations that were not thoroughly addressed in chapter 5.  

7.1 Intergenerational versus within-individual processes 
In the introduction, I differentiated between intergenerational correlations and within-individual 
correlations. Both Paper 1 and Paper 2 suggest a limited role of social causation for intergenerational 
correlations. In Paper 1, I observed that the strong association between ADHD and school performance 
persisted in sibling models, which controls for familial confounders under the assumption that siblings are 
equally influenced. This suggests that this association is not primarily caused by shared family environment 
or parental socioeconomic position. Paper 2 further supports this interpretation, attributing the majority (but 
not the entirety) of the association between parental income rank and offspring liability to mental disorders 
to genetic similarity. These findings imply that individual-level causal processes or exposure to third variables 
independent of the family are the primary contributors to the health gradient in Norway. In other words, the 
associations between socioeconomic position and mental health within individuals appear not to be 
confounded by parental socioeconomic position or other familial factors. 

Despite these insights, the results are largely agnostic as to why these traits co-occur in the same individuals. 
Paper 1 suggests a role of mental health on school performance, but the limitations of the design make it 
difficult to infer causality without making questionable assumptions. Indeed, causal inference for within-
individual associations is generally more challenging in quantitative genetic models due to limitations in the 
conclusions that can be drawn from comparing twins and other relatives (Duffy & Martin, 1994; Rasmussen 
et al., 2019). When these results are interpreted in light of the prior literature discussed in section 2.8, I find it 
plausible that there are bidirectional causal influences between mental health and socioeconomic position that 
occurs independent of parental socioeconomic position, but the jury is still out. Given these findings, future 
research should focus on exploring causal processes independent of the family, such as individual experiences 
and the societal structuring of opportunities and constraints for people with certain traits (Goldberg, 2001). 
It should then be possible to tell what kind of intervention would reduce the health gradient: decoupling 
socioeconomic position from health versus decreasing socioeconomic inequalities.  
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Note that these results may not generalize globally, and may hide effects that are specific to a subgroup of the 
population. It could also be the case that results would differ for other indicators of mental health and 
socioeconomic position (see section 7.4 and 7.6). 

7.2 Co-occurring causal pathways increases differences further 
Both Paper 2 and Paper 3 presents evidence suggesting that differences arising from intergenerational 
transmission is not merely the sum of the individual causal pathways. Assortative mating on socioeconomic 
traits, for example, appears to have resulted in correlations between the genetic variants inherited from either 
parent. This process have increased genetic variance across generations and appears to still be increasing for 
socioeconomic traits. The larger variance in genetic starting points may amplify consequences for later 
differences in socioeconomic position and mental health. Assortative mating may also amplify environmental 
pathways, as any causal effect of the parental phenotype is likely to co-occur with similar effects from the other 
parent.  

Paper 2 also highlights another source of correlated pathways: Here, I found that the correlation between 
genetic and environmental pathways contributed more to differences in liability to mental disorders than the 
environmental pathway alone. Furthermore, I found evidence of both assortative mating and gene-
environment correlations, which further exacerbate this phenomenon. For example, the genetic variants 
inherited from one parent will be correlated with the environmental effect of the other parent. A small but 
non-negligible portion of the parent-offspring correlation in Paper 2 could be ascribed to such cross-parent 
correlations. These findings imply that multiple processes act together when socioeconomic differences and 
mental health are reproduced across generations, and that the resulting differences are not just the sum of the 
individual causes (see section 2.7). This raises questions about whether individual processes can be fully 
understood in isolation. 

7.3 How to interpret findings from quantitative genetics 
Paper 2 suggests that genetic confounding plays a large role in the association between parental income and 
offspring mental disorders, and Paper 3 rests on the premise that genetic differences are important for 
differences in educational attainment and mental health. This adds to a long list of papers that provide 
evidence that genetic differences are important for differences in mental health and socioeconomic position 
(Polderman et al., 2015). Claims that social differences, whether in health or income, are related to genes are 
prone to be misinterpreted and misused (Harden, 2021; Meyer et al., 2023). Because a correct interpretation 
of what these findings imply is paramount, I want to provide a comprehensive explanation of what 
quantitative genetic models can and cannot tells us. 

7.3.1 The genetics of a single trait: What does heritability mean? 
The children-of-twins-model in Paper 2 indicated that income rank was about 40% heritable, with the rest 
being attributable to unique environmental factors. Money does not grow on trees, nor is it made of proteins. 
How is it then possible to claim that genetics play a role? The first thing to remember is that heritability is just 
a statistical concept that tells us how much phenotypic differences can be explained by genotypic differences, 
similar to what 𝑅2 tells you in a regression model. While it does have causal implications, a heritability estimate 
is completely agnostic to what mediates these effects. It is drawn as A → P in the models, but the true causal 
picture probably looks more like A → ? → ? → ? → P. Remember, mediation is causation (section 2.5).  
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What it does say something about, though, is why family members resemble each other (Turkheimer, 2000). 
It means that familial associations (i.e., parent-offspring correlations or sibling correlations) cannot be fully 
ascribed to family members having causal effects on other family members. Instead, family members tend to 
be similarly disposed and therefore undergo similar within-individual causal processes. Hypothetically, if 
employers consistently favoured taller individuals for higher-paying positions, then siblings would tend to 
have similar incomes because they were genetically similar, not because of some causal process within the 
family. Height is not likely to be the most important mediator, but we simply do not know what lies along the 
long causal path between genetic differences and income differences. Odds are high that many would call 
them environmental. 

A useful analogy could be the causal effect of sex at birth (which, incidentally, is 100% heritable). Because sex 
at birth is practically random, any association with sex cannot be attributed to confounders or reverse 
causation. Assuming there are no issues with collider bias or sampling bias, all true associations between sex 
and another variable must therefore be causal (in the sense described in chapter 2). For example, girls do better 
than boys in school: sex at birth explains roughly 7% of the variance (see paper 1). It would be foolish to say 
that school performance causes sex at birth or that, say, socioeconomic position causes both school 
performance and sex at birth. The only other explanation is that sex has a causal effect on school performance. 
This is so obvious that scientists rarely stop to think about it. Instead, they are busy asking the follow-up 
question, namely what mediates this association? Are teachers favouring girls (Terrier, 2020)? Are boys less 
self-disciplined (Duckworth & Seligman, 2006)? Do girls mature earlier, which in turn make them better at 
school (Torvik et al., 2021)? Few people are claiming that, because we know sex explains 7% of the variance in 
school performance, then 7% of school performance must be determined at birth and therefore immune to 
social policy. Heritability should be interpreted in the same vein. This is the next task for scientists: why do 
individuals with different genetic propensities exhibit corresponding phenotypes? 

Relatedly, population heritability depends on the relative importance of genetic and environmental variance 
to phenotypic differences in the population, all of which are likely to change across time and place. For 
example, the heritability of educational attainment in Norway increased among men born after the second 
world war, a change that was attributed to the introduction of favourable student loans (Heath et al., 1985). 
That is, the environmental variance contributed less to differences in education, increasing the heritability. 
Similar findings exist for Estonia after the fall of the Soviet Union (Rimfeld et al., 2018), but results are mixed 
for the western world in general (Silventoinen et al., 2020). Paper 2 adds to this literature as the heritability of 
parental income was slightly higher in the younger age groups (whose parents are presumably from later 
cohorts). It is also important to distinguish the true, population heritability at any given time – the estimand 
– from specific heritability estimates. It could be that estimates are inaccurate if the assumptions are violated 
or simply because of sampling variation. 

7.3.2 Are mental disorders genetic disorders? 
In my second paper, I corroborated existing findings demonstrating the high heritability of mental disorders, 
which I estimated to be between 47% and 70%. Does this suggest that mental disorders are genetic disorders? 
The first law of behavioural genetics posits that all traits are heritable, but this should not be misconstrued as 
implying that all traits are inherently “genetic”  (Turkheimer, 2000). The first law is intended to convey a sense 
of irony, as even behaviours with no apparent genetic basis – like the number of hours spent watching 
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television – are also heritable. Consequently, heritability alone does not suffice to classify a trait as genetic. 
The causal mechanisms linking genetic variance to differences in mental health outcomes remain as obscure 
as those contributing to income differences (Giangrande et al., 2022). It is plausible that some mental disorders 
could be genetically rooted – perhaps due to malfunctions in proteins that upset neural development – but 
heritability does not inherently imply this claim. What it does imply is that environmental causal processes 
shared by family members is not the primary reason for why mental disorders tend to run in families (although 
it may play a minor role). 

7.3.3 The genetics of multiple traits: What does genetic confounding mean? 
In addition to explaining why the same traits co-occur among related individuals, genetic factors may also 
explain why different traits co-occur among related individuals (or within the same individual). This occurs 
when there is a genetic correlation between traits, meaning genetic variants influencing one trait co-occur with 
those affecting another. Like heritability, genetic correlations are blind to the specific causal processes linking 
two traits. There are three primary processes that result in genetic correlations: The first two involve 
pleiotropy, where specific genetic variants influence both traits. In horizontal pleiotropy, these genetic 
variants independently affect each trait, leading to confounding, while in vertical pleiotropy, the variants 
influence one trait, which in turn affects the other, resulting in mediation. The third process, cross-trait 
assortative mating, leads to co-occurring genetic variants despite no causal relationship, mimicking the 
confounding effects of horizontal pleiotropy (Border et al., 2022).  

In Paper 2, a genetic correlation between income rank and mental disorders was the primary reason behind 
the association between parental income rank and offspring mental disorders. Insofar as this is correct, the 
genetic variants influencing income rank tend to co-occur with those associated with mental disorders, leading 
to correlations between related individuals such as parents and offspring. In other words, it rules out familial 
between-individual causal processes as the ultimate cause. However, it doesn't explain why income rank and 
mental disorders are correlated within the same individual. As mentioned, several scenarios could account for 
this, such as mental disorders leading to income differences, income differences affecting susceptibility to 
mental disorders, or a third factor causing both. All these scenarios would be consistent with a genetic 
correlation. A genetic correlation by itself does therefore not imply that a within-individual association is 
confounded. 

This agnosticism is the price we pay for an otherwise very powerful method. However, we could speculate on 
why there is a genetic correlation between income and mental health, or the very least provide examples that 
would be consistent with this finding. To link the findings from Paper 2 with the findings of Paper 1, if (1) 
propensity for mental disorders ran in families for genetic reasons (Polderman et al., 2015), and (2) the current 
school system disadvantaged individuals with a propensity for mental disorders (Nordmo et al., 2022; Shen et 
al., 2016; Sunde et al., 2022), and (3) lower school performance lowered their later salaries and chances on the 
job market (Nordmo et al., 2022; Sunde et al., 2022), then this would result in an intergenerational correlation 
between parental income rank and offspring mental disorders explained by genetic similarity. This is 
consistent with evidence that appears to support within-individual causal associations of income on mental 
health (Thomson et al., 2022).  
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The factors that link income and mental health will likely not be as ontologically neat and tidy as school 
performance (see also section 7.6). Furthermore, what these traits are will likely vary across time or place. A 
recent study indicated that the set of genes associated with educational attainment has shifted across 
generations, indicating that the traits associated with educational attainment have shifted as well (Baier et al., 
2022). A similar scenario is plausible for income and mental disorders, as well as the overlap between the two. 
Another study found that genetic correlations between different mental disorders are influenced by genes 
associated with socioeconomic position (Marees et al., 2021). Future research should attempt to map the 
relative importance of horizontal pleiotropy, vertical pleiotropy, and assortative mating, and identify what 
traits, if any, mediate the genetic correlation between income and mental disorders. In addition to improving 
our understanding of why socioeconomic position and mental disorders are associated, such a map can 
improve our understanding of mental disorders in general and why they tend to co-occur.  

7.4 Population-average effects hides interactions and dynamic associations 
In the first paper, I  found that the association between ADHD and school performance varied across parental 
education. A dynamic association like this suggests that the causal structure linking mental health and 
socioeconomic position is likely very complex. However, accurately modelling a dynamic causal structure in 
a way that identifies parameters without overfitting the data is practically impossible in social science. As a 
result, we must instead resort to linear models which at best can include rudimentary forms of non-linearity 
(e.g., linear interactions and quadratic effects). Importantly, though, linear models still hold value despite 
masking underlying complexity. We must simply keep in mind that they estimate effects averaged across the 
range of observations, and true marginal effects may vary. 

This is an important limitation in Paper 2. Parental income rank was associated with the prevalence of 
offspring mental disorders across the entire income spectrum. That is, offspring of parents in the second 
highest income quartile were more likely to have mental disorders than offspring of parents in the highest 
income quartile. However, the differences between the two lowest income quartiles were larger than between 
the other quartiles. This suggests that having parents at the lower end of the income distribution represents 
more than just general variation in income. When estimating the correlation between parental income rank 
and liability to mental disorders, though, this nuance is missed. As a result, the nuance is also missed in the 
children-of-twins model. 

This is a general limitation for most quantitative genetic models: They only estimate population-level effects. 
In other words, when Paper 2 attributes the parent-offspring correlation between parental income rank and 
offspring mental disorders to genetic confounding, it is doing so for the general variation across the entire 
income spectrum. As mentioned in section 5.5.1, there could be large effects for a small subgroup that, in 
practice, do not make a difference to the overall population average. The effects of poverty could be such an 
example. There is no straightforward way to account for this in twin models other than running the model 
separately for those with high and low parental income (cf. Azzolini et al., 2022). Unfortunately, I did not 
have enough statistical power to do this. Personally, I find it highly plausible that the population-average effect 
of parental income obscures a larger direct effect among those with parents in the lower quartiles. Future 
research should investigate the lowest income brackets, which may have a different causal structure than 
general variation in income rank. There are already several lines of evidence that suggests the effect of 
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socioeconomic position is particularly strong among those in the lower echelons of society (Costello et al., 
2003; Thomson et al., 2022). 

The same limitation also applies to all heritability estimates and estimates of genetic correlations. The 
heritability estimates in Paper 2 and the correlations between partners in Paper 3 could vary across social strata. 
There are several studies indicating that the heritability of intelligence, for example, is lower among those from 
lower socioeconomic positions, a phenomenon known as a Scarr-Rowe interaction (Paige Harden et al., 2007; 
Tucker-Drob & Bates, 2016). Other studies show that there is a stronger within-individual association 
between socioeconomic position and health among those whose parents had less education and less income 
(Luo & Waite, 2005). It is plausible that similar gene-environment interactions exist for mental health and 
socioeconomic position. For example, a recent Norwegian study found that the correlation between 
individuals’ polygenic score for ADHD and their school performance differed significantly between schools 
(Cheesman et al., 2022). On the other hand, the Scarr-Rowe interaction does not appear to be replicable in 
Europe (Tucker-Drob & Bates, 2016).  

There are two things here I want to call attention to. First, note how this relates to section 2.3, where I discuss 
how causation depend on variation. By looking at a subgroup of the population, one is limiting the variation, 
thus potentially changing the relative importance of different causes. The second thing to note is that this 
problem is mirroring the problem of generalizability. The findings discussed herein might not generalize to 
other contexts, such as the United States or Liberia, where the mean and variance of various causes could be 
different. The current population under study is among the countries with the least inequality worldwide 
(The World Bank, 2022), which is another way of saying that the variance in the putative cause is relatively 
small. Larger differences could mean that direct causal effects become more important. There is also some 
evidence suggesting that more inequality is itself associated with worse mental health, including among those 
who are well off (Patel et al., 2018; Weich et al., 2001). 

7.5 Selection bias 
A related but slightly different obstacle to human scientific research is that participants in studies may not be 
representative of the population that it tries to describe. There are two problems that result from this: First, 
the conclusions may not generalize to the population at large. Second, and more importantly, if participation 
is conditional on variables of interest, then this could result in spurious correlations in the sample resulting 
from collider stratification bias (Munafò et al., 2018). For example, it is common for participants in sample-
based studies, including large cohort studies like MoBa, to be healthier and more educated than the general 
population (Nilsen et al., 2009; Vejrup et al., 2022). Because all analyses will automatically condition on 
participation, the association between health and education will be biased. To get a sense of what would 
happen, we can for simplicity’s sake imagine that participation was a continuous variable. If 𝑎 is the true 
correlation between health and education, 𝑏 is the correlation between health and participation, and 𝑐 is the 
correlation between education and participation, then the observed correlation between health and education 

in the sample would be the partial correlation conditional on participation: 𝑎−𝑏𝑐

√(1−𝑏2)(1−𝑐2)
. If 𝑏𝑐 is positive, 

which is likely the case here, then the observed correlation will be biased downward. The health-education 
correlation is therefore likely underestimated in sample-based studies. 
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The first two studies in this thesis use register data on the entire population and are therefore practically 
immune to this bias. This is a major strength! The bias is not eliminated completely – there is always implicit 
conditioning on survival and data availability – but it is far less of an issue than in sample-based studies. We 
can therefore afford high confidence in the accuracy of the descriptive statistics that make up a large part of 
both Paper 1 and Paper 2. For the more complicated analyses, selection bias starts to creep back in. For 
example, in the sibling analyses in Paper 1, I am inadvertently conditioning on families with discordant siblings 
(i.e., one has ADHD and the other has not). In Paper 2, I am inadvertently conditioning on families where at 
least on parent has a twin or full sibling with children. Furthermore, I am conditioning on the offspring having 
cousins of roughly the same age (i.e., both have available data for a given age range). This may bias the results 
in unintuitive ways. I personally do not think this is a major problem, but it is worth having in the back of 
your mind. Paper 3 is perhaps the most susceptible to this bias, because the analyses are conditional on genetic 
data being available for both partners. The sign of the correlation with participation should be the same for 
either partner, meaning the observed correlations could be biased downward. In the context of this paper, 
where all observed correlations are positive, selection bias could have increased the likelihood of false negatives.  

7.6 Measurement validity 
It is important to not confuse a measure of something with the thing itself. Just as the pipe in René Magritte’s 
The Treachery of Images is not truly a pipe, the numbers representing an individual’s height, educational 
attainment, or mental health is not the same thing as their height, educational attainment, or mental health. 
A measure may or may not have construct validity, which is whether it measures what it is supposed to measure 
(Cronbach & Meehl, 1955). A measure may also be unreliable – inconsistent or noisy – despite being valid 
(Fried et al., 2022). More importantly, even if measures are reliable and valid, they are also unintended 
measures of something else. Someone’s height, for example, contains information on their weight, arm length, 
and sex. If you only know someone’s height as adults, you will correctly infer their sex 75% of the time 
(assuming 𝑑 = 1.70). In this sense, height is just an unreliable measure of sex. It is probably not uncommon 
to find psychological measures with comparable or worse overlap with the thing it is trying to measure (Flake 
& Fried, 2020), but even if the measure is perfectly valid, it will still unintentionally measure other things. 
Anything correlated with sex will correlate with height, all else equal. 

This problem is important, especially for causal inference, because you cannot always be sure what is doing 
the causing (or what is being caused). For sex and height, the problem is obvious, and you would simply adjust 
for the other variable. This is not possible for (1) ontologically diffuse concepts like mental health (Brick et al., 
2022), (2) variables with measurement error (see section 5.4.3), or (3) cases where you don’t have access to all 
relevant variables. Take income rank as an example. Paper 2 found that income rank was associated with 
mental disorders among adolescents even after accounting for genetic similarity. This suggests a causal effect, 
but what is doing the causing? Maybe it truly is the financial situation of the parents that are somehow 
influencing offspring mental health. On the other hand, maybe income rank is just an indirect measure of 
conscientiousness (similar to how height measures sex), and having conscientious parents directly decreases 
the risk of mental disorders. Numerous indicators of socioeconomic position are lumped together for precisely 
this reason: It is not straightforward to distinguish an effect of income from an effect of educational 
attainment, even if you have measured both. Complicating the matter further is that what income and 
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educational attainment is a measure of has likely changed across cohorts (Baier et al., 2022). This is likely 
especially true among mothers. 

All of this is to say that the problem of confounding factors is not really solved. Even if you have evidence of 
a causal effect, that does not mean that you truly know where to intervene. However, don’t be fooled, because 
we have made progress. The new confounding problem is less severe than the initial problem. For example, 
most of the association between parental income and offspring mental disorders could be ascribed to genetic 
similarity, and this conclusion does not depend on what is being measured by income rank.  

Another example is the measures of mental disorders used in Paper 1 and Paper 2. Although registered 
diagnoses in the health care system is a decent measure of mental disorders, it is also measuring health care use 
and treatment seeking. This must be considered when interpreting the results. For example, in Paper 1, I found 
that ADHD was more common among boys but the difference in school performance was larger for girls. If 
we replace “ADHD” with “being diagnosed with ADHD”, then the result is no longer as surprising. Maybe 
it is not differences in ADHD itself, but rather differences in diagnostic practices related to ADHD that are 
underlying this result.  

One of the weird results in Paper 2 is that adult offspring of parents with higher income appear to have a 
slightly increased risk of mental disorders after taking genetic similarity into account. This sounds implausible 
at first, but when phrased in terms of health care use, it may not be so unrealistic. If high-income parents cause 
their offspring to be more active users of the health care system, then this would look like an increased risk of 
mental disorders. This would normally be “hidden” by fewer health problems but might reappear once that 
is controlled for. I don’t know whether the weird result  stems from this or a violated assumption. Even though 
the latter may be more plausible, it should not be dismissed just because it initially sounds implausible. 

Finally, mental disorders may represent different things at different ages and for boys and girls. This is a crucial 
caveat for interpreting the different results for the different age groups in Paper 2. ADHD is more common 
among young adolescents, while depression and anxiety is more common among adults, and it could be that 
the different results for adolescents and adults in Paper 2 is really because the measures represent different 
disorders. Unfortunately, because specific disorders necessarily have lower prevalence than the prevalence of 
any disorder, and because lower prevalence lowers the statistical power considerably, I was not able to run the 
models separately for the different disorders. However, even if I were able to do that, the problem would still 
not be entirely solved, as ADHD among adolescents and ADHD among adults may still be different things.  

7.7 Future directions 
Reproduction of social differences and mental health across generations is a complex topic, and there are many 
future avenues to pursue to further understand this topic.  

One important avenue would be to clarify the various processes that could lead to partner similarity and 
assessing their consequences for intergenerational transmission. There is a growing body of evidence 
suggesting that partner correlations in educational attainment are partly attributable to secondary phenotypic 
assortative mating, evidenced by higher-than-expected environmental and genetic correlations between 
partners (Gonggrijp et al., 2023; Okbay et al., 2022; Torvik et al., 2022). Modelling these correctly could have 
important consequences for intergenerational transmission.  
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Another important avenue, highlighted in section 7.4, is potential differences in effects between overall 
variation in socioeconomic position and being especially disadvantaged. Future research should focus on the 
lower income brackets and poverty in particular. Because this group is usually underrepresented in sample-
based studies, register-based studies may be especially valuable in this regard.  

Finally, the overall results suggest that intergenerational correlations are largely (but not entirely) confounded 
by genetic similarity. Future research should attempt to identify non-familial factors that are causally related 
to both socioeconomic position and mental health, and to figure out what mediates the genetic effects on 
both.   
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Chapter 8: Concluding Remarks 

In this thesis, I have attempted to advance our understanding of why socioeconomic position and mental 
health are correlated within and across generations. It is worth reiterating that these associations are robust 
and relatively large: It is no surprise that I found similar associations in my studies. When it comes to the 
“why”, it is a bit more complicated. I have devoted large parts of this thesis to discussing assumptions and 
methodological considerations, as any interpretation of the findings could be misleading without 
understanding the crutches they stand on. It is these very assumptions that enable us to draw conclusions, so 
they must be taken seriously. By discussing these matters thoroughly, I hope I have made it possible for you – 
the reader – to evaluate the findings and the implications I describe without taking my word for it, and perhaps 
make up your own mind should some of the assumptions be a step to far. 

Given the assumptions and considerations laid out in Chapter 5 and 7, a key takeaway from this thesis is that 
the association between socioeconomic differences and mental health seems to be reproduced in each 
generation, not merely continued. Future research should therefore shift focus from the family environment 
to understanding why individuals with different characteristics and dispositions end up with different 
socioeconomic positions and mental health. As for policy implications, these depend on our objectives (the 
“ought”). If the aim is to reduce social differences and its correlation with mental health, then we must consider 
strategies that aim to minimize the influence of different starting points in life on later outcomes.  
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Abstract

Background: Attention‐Deficit Hyperactivity Disorder (ADHD) is associated with
impaired school performance, but the impact of ADHD may vary across sex, family

background, and school subjects. By using prospective population‐wide register
data, we describe impairment in academic performance related to ADHD across

different school subjects and investigate how this impairment differ across sex and

parental education.

Methods:We examined grades and Grade Point Averages (GPA) at age ∼16 among

344,152 Norwegian children born between 1997 and 2002. We linked grades with

diagnoses from publicly funded general practitioners and with demographic infor-

mation. Associations between ADHD diagnosed between age 10 and 16 and school

performance were estimated with linear models, including sibling‐models which
control for unobserved variables shared within families.

Results: Children with ADHD (4.0%) had −1.11 standard deviations lower GPAs

compared to children without ADHD. This difference remained substantial after

adjusting for demographic factors (−0.87), comorbid mental disorders (−0.82), early

school performance (−0.54), and when comparing full siblings (−0.60). The relative

ADHD deficit was 22% larger for girls than for boys and 39% larger for children

with highly educated parents than for children of parents without completed high

school, but the absolute deficit was smaller.

Conclusion: The ADHD deficit in school performance was large and not easily

attributable to other factors. Because the ADHD deficit was large in all school

subjects, interventions should ideally address factors that affect school performance

broadly, although targeting theoretical subjects specifically may be most effective

given limited resources.
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INTRODUCTION

Attention Deficit‐Hyperactivity Disorder (ADHD) is a heritable

neurodevelopmental disorder characterized by dysfunctional inat-

tention, impulsivity, and hyperactivity (APA, 2013). ADHD has sub-

stantial socioeconomic costs, both for individuals and society

(Faraone et al., 2021). Reduced school performance may be partially

responsible for this: ADHD is associated with impaired school per-

formance (Arnold et al., 2020; Daley & Birchwood, 2010; Kent

et al., 2011; Polderman et al., 2010; Sayal et al., 2015), which again is

an important determinant for adult education, employment, and in-

come (Jangmo et al., 2021; Markussen et al., 2020).

Attention‐Deficit Hyperactivity Disorder is substantially more

prevalent among boys than girls and among children of parents with

less education or less income (Kinge et al., 2021; Larsson

et al., 2014; Russell et al., 2016; Torvik et al., 2020). School per-

formance also varies with sex and social background, like ADHD

does. Girls generally outperform boys (OECD, 2015; Voyer &

Voyer, 2014), and children with highly educated parents or from

high income households generally outperform less advantaged

children (OECD, 2016; Sirin, 2005; Statistics Norway, 2020).

Different school performance in groups with different prevalence of

ADHD raises the question of how the impact of ADHD may differ

across groups. To the best of our knowledge, no study has inves-

tigated how the impact of ADHD varies by social background, and

the studies on sex differences have been small and underpowered

(e.g., DuPaul et al., 2006; Gershon, 2002). Furthermore, although

ADHD has been linked with both reading disabilities and arithmetic

difficulties (Taanila et al., 2012), little is known about to what

extent ADHD leads to general deficits in school performance versus

deficits specific to some school subjects. By investigating relative

performance in different school subjects, we can point out where

children are most affected by ADHD and hence where to target

potential interventions.

The association between ADHD and school performance could

be confounded by several factors that influence both (Polderman

et al., 2010). First, family characteristics such as parental education

are robustly associated with both school performance and ADHD

(Kinge et al., 2021; Sirin, 2005). We account for this by comparing full

siblings, which controls for unobserved variables shared within

families, such as social, geographic, and parental characteristics, as

well as half of the genetic risk (Taylor, 2021). Second, children with

ADHD often have comorbid mental disorders, which are also asso-

ciated with lower academic performance (Fröjd et al., 2008;

Lawrence et al., 2019). By adjusting for comorbid mental disorders,

we test whether reduced school performance is specific to ADHD.

Third, children may be diagnosed with ADHD because they perform

poorly in school, rather than the other way around. We therefore

control for early school performance to see how ADHD is associated

with progress.

To summarize, the aims of this study are to (1) accurately describe

the ADHD deficit in school performance, (2) describe how the ADHD

deficit in school performance varies across sex and parental educa-

tion, and (3) compare the ADHD deficit in different school subjects.

We do this using register data on all Norwegian children with

appropriate statistical controls, including sibling‐comparisons, which
should result in precise and representative analyses.

METHODS

Sample

This study comprises all Norwegian inhabitants born between 1997

and 2002 that were alive and living in Norway between age 10 and

16 (N = 359,492). The Norwegian national population register in-

cludes personal identification numbers of all inhabitants, which

allowed us to link data from separate sources. We linked data from

publicly funded health services with data on school performance,

parental education, and parentage from Statistics Norway. Norwe-

gian school is compulsory up to 10th grade (age 16), meaning the

resulting grades and GPAs are largely representative of the popula-

tion. We identified 344,523 (95.7%) individuals who had GPA regis-

tered within 1 year of normed time (age 16) which we included in the

main analyses (see Figure S1). Only an additional 14,969 (4.3%) in-

dividuals did not have a GPA registered within normed time, which

we included in sensitivity analyses. Relatedness data were used to

identify 145,051 full siblings nested in 69,765 sibships. The dataset

was constructed to maximize the number of children with health data

(born 1997 and later) and school performance data (born 2002 and

before).

Measures

Exposure: ADHD

Due to the subsidized nature of the Norwegian healthcare system,

general practitioners send reimbursement claims to the govern-

ment each time a patient uses primary care facilities. These data

are then indexed in the Norwegian Control and Payment of Health

Refunds Database. These claims include the reason for encounter,

which is documented with diagnostic codes or symptom codes

according to the International Classification of Primary Care

Key points

� Children with ADHD have substantially poorer school

performance than unaffected children. The ADHD deficit

is not easily attributable to other factors, which suggest

that interventions must target ADHD symptoms directly

independent of sex, parental education, early school

performance, and other psychiatric disorders

� The relative ADHD deficit is larger for girls and for

children of highly educated parents, but the absolute

deficit is smaller (i.e., girls with ADHD still outperform

boys with ADHD, and children with ADHD and highly

educated parents still outperform children with ADHD

and less educated parents with ADHD)

� The ADHD deficit is large in all school subjects, meaning

interventions should target factors that is shared across

different school subject, although the potential for

improvement appears to be largest in theoretical sub-

jects where the ADHD deficit is largest.

2 of 9 - SUNDE ET AL.



version 2 (ICPC‐2, WONCA, 2005). Just like ICD‐10 (WHO, 1992),
ICPC‐2 does not differentiate between different kinds of attention
disorders such as ADD and ADHD, but instead uses the term

Hyperkinetic Disorder (code P81). Henceforth, we treat ADHD and

hyperkinetic disorder as synonymous. We defined individuals as

diagnosed with ADHD if they, between the age of 10 and 16, had

at least one contact with the primary care system registered with

code P81.

Outcome: School performance

At the end of 10th grade, children – normally 16 years old – are

graded based on their whole‐year performance and take exams.

Grades are integers on a scale from one to six and the grade point

average (GPA) are the mean of all grades, including final exams

(M = 4.12, SD = 0.83). The higher the grade, the better the perfor-

mance. GPA was standardized to z‐scores (M = 0, SD = 1) before

analyses, meaning all coefficients can be interpreted as standard

deviations. For individual school subjects, we limited our analyses to

grades that most pupils share (e.g., excluding electives, see Table S1).

For these grades, we standardized using the combined mean and

standard deviation of all grades irrespective of school subject

(M = 4.17, SD = 1.08).

We also used scores from standardized national tests in math-

ematics and reading, which pupils take in fifth, eight, and ninth grade

(approx. 10, 13, and 14 years old, respectively). These were also

standardized to z‐scores.

Parental education and other demographic information

Statistics Norway provided information on parental education at

the time of the child's graduation (i.e., age 16), which we coded

into four categories reflecting the highest achieved education of

either parent: Master's degree or equivalent (n = 53,648), Bache-

lor's degree or equivalent (n = 130,155), high school (n = 116,920),

or not completed high school (n = 30,860), and a fifth category for

children with missing information (n = 12,569). Statistics Norway

also provided information on sex, parentage (for within‐family
analyses, see below), birth month, and parity (i.e., maternal birth

order).

Comorbid psychiatric disorders

Comorbid psychiatric disorders were defined in a similar way to

ADHD: at least one contact with the primary care system registered

with diagnostic codes for psychiatric disorders between the ages of

10 and 16. For each individual, we counted the total number of

unique psychological diagnostic codes (P70 and above, excluding

P81) from the ICPC‐2, and entered the count as a categorical vari-
able (truncated at three). In an alternative model, we used separate

indicator variables for all individual disorders with a prevalence

above 0.1% (see Table S2).

Statistical analyses

To estimate the ADHD deficit, we calculated bivariate and adjusted

associations between ADHD and GPA with linear regression models.

The covariates included in the adjusted models were sex, parental

education, birth year, parity (truncated at five), and birth month. All of

these were treated as categorical variables. The adjusted model only

included covariates where reverse causation (and hence potential

collider bias) is impossible or unlikely. Early school performance and

comorbid mental disorders were therefore included in separate

models. We used standardized test scores from fifth grade as a

measure of early school performance. This variable had 28,765

missing observations, which were not included in the analyses using

this variable. To investigate how the ADHD deficit varied across sex

and parental education, we allowed ADHD to interact with sex and

parental education in separate models. For comparison, we also esti-

mated a regression model with covariates only (i.e., without ADHD).

The models were then re‐estimated in within‐family models

(random‐intercept multilevel models with parents as grouping vari-
able) where we compared full siblings with and without ADHD. Only

children with full siblings in the sample were included in these models

(N = 145,051). Of the 69,765 sibships, 3952 (5.7%) included siblings

discordant on ADHD. Covariates that vary within families (sex, parity,

birth year, birth month) were included. As most full siblings will have

equally educated parents, only the interaction between ADHD and

sex was estimated with a within‐family model.
Finally, the adjusted and within‐family models with and without

interactions were re‐estimated with each individual school subject as
the dependent variable.

We performed sensitivity analyses with several alternative out-

comes. First, we re‐estimated all models with standardized tests from
eighth and ninth grade as dependent variables. Second, we included

the 14,969 individuals who did not have registered GPA within

normed time and used logistic regressions to re‐run the adjusted

models with missing GPA as the dependent variable.

Analyses were conducted in R 4.0.3 (R Core Team, 2021), using

tidyverse (Wickham et al., 2019), lme4 (Bates et al., 2015) and

emmeans (Lenth, 2021).

RESULTS

Of the 344,152 included children (51% boys), 13,800 (4.01%) were

diagnosed with ADHD (see Figure 1). The prevalence was more than

twice as high among boys (5.54%) than among girls (2.42%). The

prevalence was more than three times higher among children of

parents where neither had completed high school (6.87%) compared

with children where at least one parent had a Master's degree or

equivalent (1.91%).

The ADHD deficit in GPA

ADHD‐affected children's average GPAwas 3.24 (SD= 0.75) whereas
unaffected children's average GPA was 4.16 (SD = 0.82), meaning
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children with ADHD had on average −1.11 (95% CI: −1.12, −1.09)
standard deviations lower GPA than children without ADHD (see

Figure 2).When adjusting for covariates, the differencewas reduced to

−0.86 (−0.88, −0.85). In the within‐family model, children with ADHD
had on average −0.60 (−0.63, −0.58) standard deviations lower GPA
than their same‐sex siblings without ADHD.

The ADHD deficit was reduced but still substantial when ac-

counting for earlier school performance. Among pupils who did

equally well in fifth grade, those with ADHD had on average −0.54
(−0.56, −0.53) standard deviations lower GPA at the end of 10th

grade compared to those without ADHD. Among siblings who did

equally well in fifth grade, those with ADHD had on average −0.33
(−0.36, −0.30) standard deviations lower GPA.

Of the 13,800 individuals with ADHD, 2293 (19.8%) had at least

one other psychiatric diagnosis. When statistically controlling for

other diagnoses, the ADHD deficit was attenuated down from −0.86
to −0.82 (−0.83, −0.80) standard deviations in the adjusted model
and from −0.60 to −0.58 (−0.61, −0.55) in the sibling model. This is
still larger than the deficit associated with having three or more other

registered diagnoses. Entering each individual diagnosis as separate

indicator variables yielded similar coefficients (see Figure 2). The

ADHD deficit was substantially larger than deficits associated with

any other diagnoses (see Table S3‐S4).
The effects of covariates on GPA were only negligibly attenuated

compared to amodel where ADHDwas not included (see Table S3‐S4).
For example, in a model without ADHD, girls had on average

0.52 (0.52, 0.53) standard deviations higherGPA than boys, whereas in

a model with ADHD, the difference was 0.50 (0.49, 0.50).

The ADHD deficit across sex and parental education

The ADHD deficit was −0.17 (−0.20, −0.14) standard deviations

larger for girls than for boys. As seen in Figure 2, boys with ADHD

had on average −0.81 (−0.83, −0.80) standard deviations lower GPA

than boys without ADHD, whereas girls with ADHD had on average

−0.99 (−1.01, −0.96) lower GPA than girls without ADHD. That is a
22% bigger deficit. The within‐family model had similar results

(see Table S4).

Similarly, the ADHD deficit was substantially greater among

children of more educated parents, although it did not differ between

the two highest education levels as illustrated by the overlapping

confidence intervals in Figure 2. Among children of parents who did

not complete high school, those with ADHD had on average −0.70
(−0.74, −0.67) standard deviations lower GPA than those without

ADHD. Among children with at least one highly educated parent, the

deficit was 39% larger, or −0.26 (−0.33, −0.20) standard deviations:
Those with ADHD had on average −0.97 (−1.02, −0.92) standard
deviations lower GPAs than those without ADHD.

Which school subjects are most strongly affected
by ADHD?

We repeated the above analyses for each school subject, with similar

results (See Figure 3 and Tables S5–S9). Those with ADHD had lower

grades in all school subjects compared to those without ADHD.

Nonetheless, we found some variation, with the average ADHD

deficit varying from −0.47 (−0.48, −0.45) standard deviations in Arts
and Crafts to −0.82 (−0.84, −0.81) in Mathematics. To ease inter-
pretation, we can broadly categorize school subjects into three

groups: language subjects (i.e., Norwegian and English), theoretical

subjects (i.e., Mathematics and Social Studies), and practical subjects

(i.e., Sports and Arts/Crafts). The ADHD deficit was largest and most

consistent in the theoretical subjects (−0.82 to −0.80), slightly
smaller and more variable for language subjects (−0.70 to −0.62), and
smaller still for practical subjects (−0.60 to −0.47).

Similar interactions were also observed across each subject: The

ADHD deficit was consistently larger for girls than for boys in all

subjects. The deficit difference varied from −0.20 (−0.24, −0.17) in
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F I GUR E 1 (A) Prevalence of Attention‐Deficit Hyperactivity Disorder (ADHD) (with 95% CIs) across sex and parental education among
331,583 Norwegian children born between 1997 and 2002. ADHD were defined as at least one contact with the primary care system

registered with code P81 (hyperkinetic disorder) between age 10 and 16. (B) Standardized GPAs (with 95% CIs) at the end of 10th grade (∼age
16) across sex and parental education for the same sample
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Science to −0.04 (−0.07, −0.01) in Music. Regarding interaction ef-
fects between ADHD and parental education, we found few differ-

ences between the top three education levels, but the ADHD deficit

was consistently larger than for children of parents who had not

completed high school. The difference in ADHD deficit was particu-

larly pronounced in Mathematics, with the ADHD deficit being −0.40
(−0.48, −0.32) standard deviations larger for children of highly

educated parents compared to children of parents who had not

completed high school.

Neither the ADHD deficit, general sex differences, nor parental

educational differences are constant across school subjects, which

must be considered when interpreting the relative deficits. Figure 4

presents expected grades (z‐scores) for individuals with and without
ADHD across sex or parental education (see also Figure S2‐S3). In
some school subjects, the sex difference is almost as large as the

ADHD deficit. Thus, in school subjects with large sex differences such

as Norwegian (i.e., language skills), boys without ADHD barely out-

performed girls with ADHD, despite the ADHD deficit being larger
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F I GUR E 2 Coefficients (with 95% CIs) showing the Attention‐Deficit Hyperactivity Disorder (ADHD) deficit on GPA (z‐scores) bivariate
and adjusted for sex, parental education, birth year, parity, and birth month, and additionally adjusted for early school performance and
comorbid disorders. The lower panel shows the ADHD deficit by sex and parental education. As most full siblings will have equally educated

parents, we did not include parental education in the within‐family models (hence no interaction between parental education and ADHD in the
within‐family model)

F I GUR E 3 Coefficients (with 95% CIs) showing the relative Attention‐Deficit Hyperactivity Disorder (ADHD) deficit on grades in specific
subjects (z‐scores) stratified by sex (top) and parental education (bottom). All coefficients are adjusted for birth year, parity, and birth month,
in addition to parental education (top) and sex (bottom)
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for girls. Because grade differences by parental education are larger

than sex differences, this pattern becomes more pronounced for

parental education. Children with ADHD and highly educated parents

perform better in most school subjects than children without ADHD

but with parents who had not completed high school.

Sensitivity analyses

All analyses were repeated with standardized tests from eighth and

ninth grade as outcome variables, which yielded similar results

(Tables S10–S17 and Figures S4–S7). Missing GPA was also analyzed

with logistic regressions, again with similar results. Children with

ADHD were 4.28 (4.08, 4.49) times more likely than unaffected

children to not have GPA registered, adjusting for covariates (see

Table S18 and Figure S8). There were no statistically significant

interaction effects in this set of analyses.

DISCUSSION

Using large and representative register data, we have found: (1) that

the ADHD deficit in school performance is large and evident even

when comparing siblings and when adjusting for comorbid disorders

and early school performance, (2) that the relative ADHD deficit is

somewhat larger for girls and children of highly educated parents but

the absolute deficit is smaller, and (3) the ADHD deficit is largest in

theoretical school subjects, but still substantial in all school subjects.

In the sensitivity analyses, we also found that ADHD increased the

likelihood of not being registered with a GPA, meaning the deficit on

GPA is a conservative estimate of the association between ADHD

and poor school performance.

Even though children diagnosed with ADHD had substantially

lower GPAs than other children, with an overall deficit of −1.11
standard deviations, this was partly due to family confounding. When

comparing same‐sex siblings and therefore controlling for unob-

served family characteristics and genetic similarity, the ADHD deficit

was reduced to −0.60 standard deviations. The ADHD deficit remain

large after adjusting for potential confounders, but it would never-

theless be premature to conclude that the relationship is causal.

For example, siblings share only half of the genetic factors that vary

in the population, implying that residual genetic variation may still

influence both ADHD and school performance. However, despite

both ADHD and school performance being highly heritable (Far-

aone & Larsson, 2019), the attenuation of the ADHD deficit was

relatively small in the within‐family model compared to the fully

adjusted model, indicating that an association would plausibly exist

even with full adjustment for genetic factors.

A second caveat to causal interpretations is reverse causation:

ADHD and school performance pose a chicken and egg problem in

that children must show age‐inappropriate levels of inattention

and/or hyperactivity in at least two contexts to be eligible for

ADHD diagnosis (APA, 2013; WHO, 1992). For children, school will

likely be one of these contexts, meaning that many may have

received an ADHD diagnosis because they struggled in school.

While our data does not permit us to completely discount reverse

causation, controlling for early school performance should give an

indication: If poor early school performance was the primary reason

children were diagnosed with ADHD, then the association between

ADHD and later school performance should disappear or be sub-

stantially reduced when adjusting for early school performance.

Instead, we found that among children with similar performance in

fifth grade, those with ADHD still had on average −0.54 standard
deviations lower GPAs at the end of 10th grade compared to those

without ADHD. In other words, ADHD is not only associated with

poor school performance, but also with worsening school perfor-

mance relative to peers. This is not consistent with poor early

school performance being the primary reason children are diag-

nosed with ADHD.

Most of the ADHD deficit remained, but it was attenuated by

about a third from −0.86 down to −0.54. It can be tempting to

interpret this to mean that a third of the ADHD deficit is due to

selection bias. We caution against this interpretation, as we cannot

disentangle the degree to which the attenuation is caused by selec-

tion bias (poor early school performance → ADHD) or mediation

(ADHD → poor early school performance), and adjusting for media-

tors will underestimate the effect.

A third caveat is that ADHD often covaries with other mental

disorders, such as depression and anxiety, which might confound the

association between ADHD and school performance. We found that
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F I GUR E 4 Adjusted mean grades (z‐scores) for those with and without Attention‐Deficit Hyperactivity Disorder (ADHD) in a selection of
subjects stratified by sex (top) and parental education (bottom). See Supplementary Figures S2 and S3 for extended versions of these plots

with all school subjects
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adjusting for other mental disorders had only a negligible impact on

the ADHD deficit, meaning the ADHD deficit is generated indepen-

dently of other mental disorders. This mirrors earlier research finding

that ADHD impacts school performance independently of comorbid

conduct disorders (Daley & Birchwood, 2010). Overall, we find that

the ADHD deficit is not easily attributed to other factors, and that

ADHD therefore reflects an independent risk factor of poor school

performance.

The effect of covariates on GPA remained similar in models with

and without ADHD, suggesting their effect on GPA is not partly

mediated by ADHD diagnoses. Differences in school performance

across, e.g., sex and parental education must therefore be explained

by other factors.

The relative ADHD deficit was larger in groups with lower

prevalence of ADHD: It was 22% larger for girls than for boys, and

39% larger for children with highly educated parents compared with

children of parents who did not complete high school. Similar findings

were found for individual school subjects. There are at least two ways

of interpreting the larger relative deficit in low‐prevalence groups:
First, the threshold for receiving an ADHD diagnosis may be higher

for girls and for children of highly educated parents, which would

result in the average diagnosed case being more severe and conse-

quently would impact school performance more. Whether there are

true differences or merely different thresholds for receiving a diag-

nosis remain debated (e.g., Slobodin & Davidovitch, 2019), but one

representative study found sex differences to result from true dif-

ferences in mean and variance of ADHD symptom severity, not se-

lection bias (Arnett et al., 2015). The second and in our opinion more

likely interpretation is that girls and children of highly educated

parents appear more impacted by ADHD because their undiagnosed

peers have relatively higher grades. In fact, the differences in school

performance associated with parental education are often bigger

than the relative ADHD deficits, meaning that ADHD‐affected chil-
dren of highly educated parents on average outperform children

without ADHD with parents who did not complete high school (see

Figure 4). Likewise, in some school subjects (e.g., Norwegian), girls

with ADHD perform similarly to boys without ADHD. In terms of

absolute performance, then, girls and children of highly educated

parents are less impacted by ADHD.

We found that the ADHD deficit was large in all school subjects.

This mirrors Jangmo et al. (2019), who reported similar findings from

Swedish registers (see Appendix S1 for a more detailed comparison).

We also investigated interactions and found it particularly large

between ADHD and parental education in Mathematics. The inter-

action between sex and ADHD were mostly similar across school

subjects, despite varying sex differences. Large ADHD deficits in all

school subjects suggest that the effect of ADHD is largely mediated

through general factors shared across school subjects. We do not

know what these are, but they could relate to classroom size,

organisation of homework, or emotion regulation (e.g., Daley &

Birchwood, 2010; Rushton et al., 2020). Potential interventions

should therefore target general factors that impact school perfor-

mance in a way that is shared across school subjects. However, if

limited resources forces interventions to target specific school sub-

jects, then the potential for improvement appears to be largest in

theoretical subjects such as Mathematics or Science, where the

ADHD deficit was largest.

Strengths and limitations

Population‐wide register studies like this have numerous strengths
(Thygesen & Ersbøll, 2014). First, unlike clinic‐referred samples and
cohort samples, this study does not suffer from non‐random attrition

and is much less affected by selection bias. In addition to unrepre-

sentative results, selection bias can systematically bias estimates

when the investigated variables are associated with likelihood of

participation (i.e., collider bias: Munafò et al., 2018). The subsidized

and equal‐access nature of the Norwegian healthcare system means

cases are unlikely to go unregistered, and only a few children (4.3%)

did not have GPA registered (which we included in sensitivity ana-

lyses), meaning this study captures a representative picture of the

association between ADHD and school performance. Second, register

studies have very large sample sizes, which results in narrow confi-

dence intervals and consequently high statistical power. Even large

cohort studies can have few participants satisfying several criteria,

such as being girls with ADHD and highly educated parents, which

would result in low power and large confidence intervals even if the

original cohort sample was large (Button et al., 2013). The difference

in clinical consequences between the ends of large confidence in-

tervals can be considerable, and small but meaningful differences

may go undetected (Funder & Ozer, 2019; Götz et al., 2021;

Schönbrodt & Perugini, 2013). Large register studies, on the other

hand, can accurately estimate small differences in effects between

subgroups, even for relatively rare disorders.

Nevertheless, this study has some limitations. First, diagnoses

are all‐or‐none, meaning we are unable to attribute the ADHD

deficit to the different facets of ADHD (e.g., inattention vs. impul-

sivity) or different symptom severities. Second, we only have data on

primary health care visits, not medication use. Medication is common

among Norwegian children with ADHD (Karlstad et al., 2017) and

has been shown to have a positive effect on school performance

(Jangmo et al., 2019), meaning our analyses may underestimate the

size of the ADHD deficit. Third, physicians often register only one

diagnostic code per visit, meaning the data do not adequately cap-

ture concurrent comorbidity, only temporal comorbidity. Fourth, we

did not observe individuals before age 10. Nonetheless, because

parents would often need renewed medical certificates or pre-

scriptions for medications, it is unlikely that individuals who received

their first diagnosis before the observation period would not be re‐
registered in the observation period. Finally, some relevant variables,

such as cognitive ability, are not available in administrative register

data and could therefore only be accounted for indirectly – and

imperfectly – through early school performance (Borghans

et al., 2016).

CONCLUSION

We have found that the ADHD deficit in school performance is

large, apparent in all school subjects, and not easily attributable to

other factors. This strongly suggests that ADHD symptoms is an

important risk factor for poor school performance which must be

addressed directly independent of sex, parental education, early

school performance, and other psychiatric disorders. Because it

affects performance in all school subjects, ADHD must ideally be
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addressed by intervening on factors that affect school performance

broadly, although interventions targeting theoretical subjects like

Mathematics may be most effective given limited resources.
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Figure S1: Sample Determination Flowchart 

 

 

Figure S1: Sample Determination Flowchart 

  

Population register of Norway 
N = 8 423 884 

Other age group 
N = 8 011 738 

Born between 1997 and 2002 
N = 412 146 

Dead before graduation 
N = 2 174 

Alive at age 16 
N = 409 972 

Living abroad during observational period 
N = 50 480 

Living in Norway from 10 to 16 
N = 359 492 

Missing GPA 
N = 15 293 

Registered with GPA 
N = 344 199 

GPA not registered between age 15 and 17 
N = 47 

Registered with GPA between age 15 and 17 
N = 344 152 
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Figure S2: Adjusted Grades by Sex 

 

 

 

Figure S2: Adjusted mean grades (z-scores) for those with and without ADHD in a selection of 

subjects stratified by sex. 
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Figure S3: Adjusted Grades by Parental Education 

 

 

 

Figure S3: Adjusted mean grades (z-scores) for those with and without ADHD in a selection of 

subjects stratified by parental education (the most and least educated). 
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Figure S4: Mathematics, 8th Grade 

 

 

 

Figure S4: Coefficients (with 95% CIs) showing the ADHD deficit on standardized mathematics 

tests in 8th grade (z-scores) bivariate and adjusted for sex, parental education, birth year, parity, 

and birth month, and additionally adjusted for early school performance and comorbid 

disorders. The lower panel shows the ADHD deficit by sex and parental education. As most full 

siblings will have equally educated parents, we did not include parental education in the within-

family models (hence no interaction between parental education and ADHD in the within-family 

model). 
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Figure S5: Reading, 8th Grade 

 

 

 

Figure S5: Coefficients (with 95% CIs) showing the ADHD deficit on standardized reading tests 

in 8th grade (z-scores) bivariate and adjusted for sex, parental education, birth year, parity, and 

birth month, and additionally adjusted for early school performance and comorbid disorders. 

The lower panel shows the ADHD deficit by sex and parental education. As most full siblings will 

have equally educated parents, we did not include parental education in the within-family 

models (hence no interaction between parental education and ADHD in the within-family 

model). 
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Figure S6: Mathematics, 9th Grade 

 

 

 

Figure S6: Coefficients (with 95% CIs) showing the ADHD deficit on standardized mathematics 

tests in 9th grade (z-scores) bivariate and adjusted for sex, parental education, birth year, parity, 

and birth month, and additionally adjusted for early school performance and comorbid 

disorders. The lower panel shows the ADHD deficit by sex and parental education. As most full 

siblings will have equally educated parents, we did not include parental education in the within-

family models (hence no interaction between parental education and ADHD in the within-family 

model). 
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Figure S7: Reading, 9th Grade 

 

 

 

Figure S7: Coefficients (with 95% CIs) showing the ADHD deficit on standardized reading tests 

in 9th grade (z-scores) bivariate and adjusted for sex, parental education, birth year, parity, and 

birth month, and additionally adjusted for early school performance and comorbid disorders. 

The lower panel shows the ADHD deficit by sex and parental education. As most full siblings will 

have equally educated parents, we did not include parental education in the within-family 

models (hence no interaction between parental education and ADHD in the within-family 

model). 
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Figure S8: Registered GPA (Logistic Regressions) 

 

 

 

Figure S8: Odds Ratios (with 95% CIs) showing how much more likely children with ADHD are 

to not have registered GPA (i.e. registered GPA = 0, not registered GPA = 1), bivariate and 

adjusted for sex, parental education, birth year, parity, and birth month, and additionally 

adjusted for early school performance and comorbid disorders. The lower panel shows the odds 

ratios stratified by sex and parental education.  
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Overview of Supplementary Tables 
• Descriptive Statistics 

▪ Table S1: List of School Subjects and Grades 

▪ Table S2: Prevalence of Different Disorders 

• Regression Tables: 

o GPA 

▪ Table S3: Bivariate and Adjusted Models 

▪ Table S4: Sibling Models 

o Individual School Subjects 

▪ Table S5: Fully Adjusted Models 

▪ Table S6: Sibling Models 

▪ Table S7: Interaction with Sex (Adjusted Models) 

▪ Table S8: Interaction with Parental Education (Adjusted Models) 

▪ Table S9: Interaction with Sex (Sibling Models) 

o Standardized Tests 

▪ Table S10: Mathematics, 8th grade (Bivariate and Adjusted Models) 

▪ Table S11: Mathematics, 8th grade (Sibling Models) 

▪ Table S12: Reading, 8th grade (Bivariate and Adjusted Models) 

▪ Table S13: Reading, 8th grade (Sibling Models) 

▪ Table S14: Mathematics, 9th grade (Bivariate and Adjusted Models) 

▪ Table S15: Mathematics, 9th grade (Sibling Models) 

▪ Table S16: Reading, 9th grade (Bivariate and Adjusted Models) 

▪ Table S17: Reading, 9th grade (Sibling Models) 

o Registered GPA 

▪ Table S18: Bivariate and Adjusted Logistic Regression Models 

Table S3 through S18 are large html-tables, and therefore not included here.  

The can be downloaded here:  

https://acamh.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjcv2.120

64&file=jcv212064-sup-0001-suppl-data.zip 

Link to paper: 
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Table S1: List of School Subjects and Grades 

 

Table S1  
List of School Subjects and Grades* 

  Mean SD 

GPA 4.12 0.83 

   
Language   
Norwegian (Primary)* 3.88 1.02 

Norwegian (Secondary) 3.68 1.00 

Norwegian (Oral) 4.25 1.04 

English (Written) 3.97 1.08 

English (Oral) 4.25 1.04 

   
Theoretical   
Mathematics 3.58 1.23 

Science 4.14 1.15 

Social Studies 4.27 1.11 

Religion 4.24 1.13 

   
Practical   
Sports 4.57 0.92 

Food and Health 4.52 0.87 

Arts and Crafts 4.40 0.92 

Music 4.43 0.96 

   

Combined Mean** 4.17 1.08 

 
 

*This list only includes the school subjects that all pupils normally would have. The GPA also 

comprise school subjects that varies between pupils, such as electives and foreign language subjects. 

Some pupils take French, others take German. Additionally, grades from final exams are also included 

in the GPA. However, pupils only take two final exams (one written, one oral) in randomly selected 

subjects, meaning they vary between pupils. 

** Norway has two official written versions of Norwegian (“Bokmål” and “Nynorsk”), and pupils 

receive a grade in both. Which one is considered primary depends on the pupils main language form 

and/or geographical area. (Read more at Wikipedia) 

*** The mean and SD of all subjects combined were used for standardization. The SD is larger for the 

overall mean than for the GPA because the GPA will tend to regress towards the mean resulting in 

fewer extreme grades and consequently less variation around GPA. 
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Table S2: Prevalence of Different Disorders 

 

Table S2 

Prevalence of Different Disorders 

ICPC-2 Code Name Prevalence* Included** 

P70 Dementia 0.00 % No 

P71 Organic Psychosis Disorder 0.02 % No 

P72 Schizophrenia 0.01 % No 

P73 Affective Psychosis 0.05 % No 

P74 Anxiety Disorder / Anxiety State 1.09 % Yes 

P75 Somatization Disorder 0.30 % Yes 

P76 Depressive Disorder 2.43 % Yes 

P77 Suicide / Suicide Attempt 0.30 % Yes 

P78 Neuraesthenia / Surmenage 0.07 % No 

P79 Phobia / Compulsive Disorder 0.85 % Yes 

P80 Personality Disorder 0.13 % Yes 

P81 Hyperkinetic Disorder 4.01 % Yes 

P82 Post-Traumatic Stress Disorder 0.18 % Yes 

P85 Mental Retardation 0.06 % No 

P86 Anorexia Nervosa / Bulimia 0.19 % Yes 

P98 Psychosis NOS / Other 0.05 % No 

P99 Psychological Disorders, Other 1.26 % Yes 

 

* At least one registration between age 10 to 16 

 

** Disorders with a prevalence > 0.1% (marked in bold) are included as separate 

indicator variables in the analyses that adjusts for individual comorbid disorders. All 

diagnoses were included in the analyses that adjusts for number of comorbid disorders. 
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Just like our study, Jangmo et al (2019)1 compared the association between ADHD and grades 

across different school subjects among similarly aged Swedish adolescents, which they presented 

in Supplementary Table S3. The list of school subjects differs slightly from our study owing to the 

differences between the Norwegian and Swedish school systems. For example, Norway have 

gathered all the natural sciences into one school subject, whereas Sweden has separate school 

subjects for Biology, Chemistry, Physics, and Technology. To compare our result with those of 

Jangmo et al, we averaged the coefficients where multiple school subjects in one study matched 

onto a single school subject in the other (see R script at the end of this document). Jangmo also 

included weighted tests in their list, which we did not include in our comparison.  

 

The grading system also differs between Sweden and Norway, and because Jangmo et al did not 

standardize the outcome variables prior to analysis2, the coefficients are not directly comparable. 

However, they report means and standard deviations for the ADHD and non-ADHD group, as well 

as the observed prevalence of ADHD (4.4%). This allows us to easily calculate the combined 

standard deviations for each school subjects, and hence calculate what the coefficients would have 

been if they had used a z-score of the outcome variables instead (rounding errors 

notwithstanding). This allows for a direct comparison of their findings with our findings.  

 

To do this, one must first calculate the combined means, �̅�𝑐 , of the two groups (ADHD vs. Non-

ADHD) for each school subject. This is done my simply weighting the two means by the relative 

group size: 

 

�̅�𝑐 = 𝑝�̅�1 + (1 − 𝑝)�̅�2 

 

where p is the proportion of people who are in group 1 (i.e., prevalence of ADHD, 0.044) and �̅�1 

and �̅�2 are the means of each group. We can then calculate the combined standard deviations, 𝜎𝑐, 

for each school subject with the following equation: 

 

𝜎𝑐 = √𝑝(𝜎1
2 + (�̅�1 − �̅�𝑐)

2) + (1 − 𝑝)(𝜎2
2 + (�̅�2 − �̅�𝑐)

2) 

 

where 𝜎1 and 𝜎2 are the standard deviations of each group.  

 

 
1 Jangmo et al (2019). Attention-Deficit/Hyperactivity Disorder, School Performance, and Effect of Medication. Journal of the 

American Academy of Child & Adolescent Psychiatry, 58(4), 423-432. https://doi.org/10.1016/j.jaac.2018.11.014  

 
2 They did also report standardized coefficients, but not in a way that makes them directly comparable to our coefficients. 



The ADHD Deficit and school performance: SUPPLEMENTARY INFORMATION 

14 
 

In our study, we standardized using the mean and standard deviation for all grades regardless of 

school subject, which allowed us to retain information on relative performance in each school 

subject. To make the coefficients from Jangmo et al (2019) comparable, we first took the average 

standard deviation of the grades in all school subjects (excluding the weighted tests), before 

dividing the unstandardized adjusted coefficients by this average: 

 

𝛽𝑧𝑖 =
𝛽𝑖
�̅�𝑐

 

where 𝑖 is the different school subjects, 𝛽𝑖 is the original coefficient, 𝛽𝑧𝑖  is the new, standardized 

coefficient, and �̅�𝑐 is the average standard deviation of all grades regardless of school subject. 

 

We then plotted their transformed coefficients together with the corresponding coefficients in our 

study (reported in Supplementary Table S5).  We find that the associations are similar in strength, 

but with less systematic variation between school subjects.  

 

 

 

 

To reproduce this figure, see the R script in the accompanying supplementary materials (zip-file) 
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Summary 

Assortative mating – the non-random mating of individuals with similar traits – is known to increase trait-specific 

genetic variance and genetic similarity between relatives1-7. However, empirical evidence is limited for many traits, 

and the implications hinge on whether assortative mating has started recently or many generations ago. Here we 

show theoretically and empirically that genetic similarity between relatives can provide evidence on the presence 

and history of assortative mating. First, we employed path analysis to understand how assortative mating affects 

genetic similarity between family members across generations, finding that similarity between distant relatives is 

more affected than close relatives. Next, we correlated polygenic indices of 47,135 co-parents from the Norwegian 

Mother, Father, and Child Cohort Study (MoBa) and found genetic evidence of assortative mating in eight out of 

fifteen examined traits. The same traits show elevated similarity between relatives, especially distant relatives. 

Five of the eight traits, including educational attainment, showed greater genetic variance among offspring, which 

is inconsistent with stable assortative mating over many generations. These results suggest an ongoing increase in 

familial similarity for these traits. The implications of this research extend to genetic methodology and the 

understanding of social and economic disparities.  
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Introduction 

Assortative mating – the non-random pairing of individuals with similar traits – has long been a challenging topic 

of interest across various fields, including genetics1-5,8-11, sociology12-14, and economics15,16. Consequences of 

assortative mating are wide-ranging, affecting topics such as genetic research methods17,18, relationship 

quality12,19,20, and the perpetuation of social and economic inequalities12,15,16. Although partner similarity have been 

documented for numerous characteristics17,18,21, it remains uncertain to what extent these similarities result from 

assortative mating or other processes, such as convergence over time20,22. Hence, the genetic consequences are 

unknown. Recent advances in data availability have enabled empirical investigation into the genetic consequences 

of assortative mating, wherein two are of key interest: First, partners should exhibit genetic similarity for assorted 

traits; and second, genetic similarity between relatives should increase for the assorted traits in subsequent 

generations1,2,4. In this paper, we aim to: 1) clarify the theoretical consequences of assortative mating on genetic 

similarity in extended families; 2) use polygenic indices to assess trait-specific genetic similarity between partners 

for a range of psychosocial, anthropometric, and health-related traits; 3) investigate whether these traits also exhibit 

increased genetic similarity among relatives; and 4) use the observed genetic similarity in mother-father-child trios 

to investigate the stability of assortative mating over many generations. 

According to a recent meta-analysis, phenotypic correlations between partners exist for many traits17. The 

correlations are particularly high for cognitive and social traits like educational attainment (0.53) and political 

values (0.58), but moderate correlations exist for many diverse traits such as height (0.23), depression (0.14), and 

personality (0.08–0.21). Positive correlations between partners can arise from numerous processes, including 

convergence (partners becoming more alike over time due to mutual influence), common environments (partners 

originating from similar environments that affect their traits, but without influencing partner formation), and 

assortative mating (individuals tending to form partnerships with those having similar traits)20. If partner similarity 

arises because of assortative mating, then this will induce cross-partner correlations between the respective causes 

of the trait. If the trait is heritable – which most traits are23,24 – then partners will tend to carry genetic variants with 

similar effects on the trait. Genetic similarity between partners has been documented for some traits, including 

height and educational attainment9,21,25-27. For example, Yengo, et al. 27 investigated genetic similarity in partners 

from the UK Biobank across 32 complex traits, but lack of statistical power left the question unresolved for most 

traits.  

If assortative mating leads to genetic similarity between partners, then any resulting offspring are likely to inherit 

trait-specific genetic variants with similar effects from both parents. This has two important consequences: First, 

the trait-specific genetic variance in the population will increase because genetic variants with similar effects will 

tend to co-occur in the same individuals (i.e., variants will be in linkage disequilibrium)3,4,6,7. Second, trait-specific 

genetic similarity between relatives will increase because other family members are likely to inherit genetic 

variants with similar effects1-5. With no assortative mating, genotypic correlations between family members for a 

trait should correspond to the coefficient of relationship. For example, full siblings (not including monozygotic 

twins) and parent-offspring pairs are first-degree relatives, with a coefficient of 0.50; aunt/uncle-niece/nephew and 

grandparent-grandchild pairs are second-degree relatives, with a coefficient of 0.25; and first cousins are third-

degree relatives, with a coefficient of 0.125. If assortative mating occurs, however, then the trait-specific genotypic 
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correlations would be higher than the corresponding coefficients of relationship. Importantly, assortative mating 

only induces correlations between trait-associated loci and should not be confused with inbreeding, which induces 

correlations between all loci28. With successive generations of stable assortative mating, trait-specific genetic 

variance and genotypic correlations between relatives increase asymptotically towards an equilibrium, at which 

point they become constant across generations3,4,6,7. We describe this in more detail in the supplementary 

information.  

Whereas earlier theoretical papers have primarily focused on the consequences for phenotypic correlations at 

equilibrium, our focus is on genotypic correlations and correlations between polygenic indices at both equilibrium 

and disequilibrium. Our first aim is therefore to derive the expected genotypic correlations and polygenic index 

correlations using path analysis. In doing so, we establish a general formula for finding such correlations between 

any two extended family members under assortative mating at equilibrium. Our results imply that genetic similarity 

between distant relatives should be more affected by assortative mating than similarity between close relatives, 

which mirrors earlier work29,30. Our second aim is to document polygenic index correlations for various traits 

among partners from the Norwegian Mother, Father, and Child Cohort Study (MoBa)29,30. We found genetic 

evidence of assortative mating for eight out of fifteen investigated traits. Our third aim is to investigate whether 

genetic similarity between relatives was increased as predicted for these traits. We found that polygenic index 

correlations among relatives were increased in a way that broadly corresponded to the theoretical expectations. 

Trait-specific genetic similarity between partners and elevated genetic similarity between relatives indicate that 

many of the previously observed phenotypic correlations are partly attributable to assortative mating. Our final 

aim was to use mother-father-child trios to test whether the observations were consistent with equilibrium. 

Although some traits did not significantly deviate from equilibrium expectations, psychosocial traits like education 

attainment did. This would imply that that the genetic variance and genetic similarity between relatives for these 

traits are still increasing across generations. 
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Results 

Fig. 1 shows a theoretical model of similarity in extended families in the presence of assortative mating at 

intergenerational equilibrium. The model includes eight individuals (𝑖) in three generations (𝑔): two partners in 

the first generation, their two children in the second generation (who are each other’s full sibling) along with their 

respective partners, and two children in the third generation (who are each other’s first cousin). The phenotype 

that is assorted on is denoted with 𝑃𝑖𝑔, whereas trait-associated additive genetic factors and unique environmental 

factors are denoted with 𝐴𝑖𝑔 and 𝐸𝑖𝑔, respectively. The genotypic correlation between any two individuals is the 

sum of all valid chains of paths between their respective additive genetic factors and the value of a single chain is 

the product of its path coefficients31,32. Valid chains always begin by tracing backward (←) in relation to the 

direction of arrows, incorporating exactly one double-headed arrow (↔), after which tracing continues in a forward 

direction (→). Because the variables in Fig. 1 have unit variances, all valid chains connecting a variable to itself 

will sum to 1, allowing us to immediately trace in a forward direction (i.e., change direction at once). Copaths (—

), which are arrowless paths representing associations arising from assortment33, link together valid chains per the 

rules above, forming longer, valid chains. For a more detailed description of path tracing rules involving copaths, 

see Balbona, et al. 34 or Keller, et al. 35.  

Expected genotypic correlations in the nuclear family 

There is only one valid chain between partners’ respective additive genetic factors (e.g., 𝐴11 and 𝐴21): ℎ × 𝜇 × ℎ. 

The genotypic correlation between partners (denoted 𝜌𝑔) is thus the phenotypic correlation attributable to 

assortative mating, 𝜇, weighted by the trait’s heritability, ℎ2: 

𝜌𝑔 = 𝜇ℎ2 (1) 

Similarly, we can trace all valid chains between the additive genetic factors of a parent and their offspring (e.g., 

𝐴11 and 𝐴22). There are two valid chains: one directly from parental genetic factors to offspring genetic factors, 
1

2
, 

and one through the other parent via the assorted phenotype: ℎ × 𝜇 × ℎ ×
1

2
. The genotypic correlation between 

parent and offspring is therefore 
1

2
+

ℎ𝜇ℎ

2
. With no assortative mating (𝜇 = 0), this reduces to 

1

2
. For siblings (𝐴22 

and 𝐴23), there are four valid chains: 
1

4
+

1

4
+

ℎ𝜇ℎ

4
+

ℎ𝜇ℎ

4
, which can be rearranged so that it equals the genotypic 

parent-offspring correlation. Because they are equal, we can define a common denotation (𝑟𝑔1
) for first-degree 

relatives. We can also substitute ℎ × 𝜇 × ℎ with 𝜌𝑔 giving us: 

𝑟𝑔1
=

1 + 𝜌𝑔

2
(2) 

In other words, the genotypic correlation between first-degree relatives, 𝑟𝑔1
, is increased by half the genotypic 

correlation between partners at equilibrium. Note that the phenotypic correlation will not be the same for siblings 

and parent-offspring despite the same genotypic correlation4. An advantage of using path analysis is how easy path 

diagrams are to expand. In the supplementary information, we detail how including polygenic indices (section 1, 

4 and 5) and relaxing the assumption of equilibrium (section 2, 4, and 5) changes the correlations. During 
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disequilibrium, the true correlation will be less than what equation 2 suggests. For polygenic index correlations, 

one must include a term representing the imperfect correlation between the polygenic index and the true genetic 

propensity (Supplementary Fig. 1). The polygenic index correlation between partners should therefore be: 

𝜌𝑝𝑔𝑖 = 𝜇ℎ2𝑠2 (3) 

where 𝑠2 is the shared variance between the polygenic index and the true additive genetic factor (i.e., the genetic 

signal). If the genetic signal is low, the polygenic index correlation between partners will be biased towards zero 

compared to the true genotypic correlation21. For first-degree relatives, the equation becomes similarly altered, but 

because the error terms in the polygenic indices are correlated between relatives, the polygenic index correlation 

will be biased towards the coefficient of relatedness rather than zero: 

𝑟𝑝𝑔𝑖1
=

1 + 𝜌𝑝𝑔𝑖

2
(4) 

Expected genotypic correlations in the extended family 

The model in Fig. 1 has two properties that allow a general algorithm to find the expected genotypic correlation 

between any two members in extended families. First, all the chains that connect the genotypes of first-degree 

relatives can readily be continued without breaking path tracing rules. Second, all chains between the genotypes 

 
Fig. 1. Path diagram for a model of genetic similarity in extended families under phenotypic assortative mating at intergenerational equilibrium 
(i.e., equal variance across generations). The partner correlation attributable to assortment is denoted by 𝜇, the recombination variance is 
denoted by 𝑉𝐾, and ℎ and 𝑒 denote the effect of additive genetic (𝐴𝑖𝑔) and environmental factors (𝐸𝑖𝑔), respectively, on the phenotype (𝑃𝑖𝑔) of 

individual 𝑖 in generation 𝑔. All variables have unit variance, meaning 𝑒 = √1 − ℎ2 and 𝑉𝐾 =
1−𝜇ℎ2

2
. See the supplementary information for 

path diagrams representing disequilibrium and including polygenic indices. 
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of any two related individuals are mediated sequentially through the genotypes of first-degree relatives. The 

genotypic correlation between 𝑘𝑡ℎ-degree relatives, denoted 𝑟𝑔𝑘
, can thus be attained by raising the genotypic 

correlation between first-degree relatives to the degree of relatedness: 

𝑟𝑔𝑘
= 𝑟𝑔1

𝑘 = (
1 + 𝜌𝑔

2
)

𝑘

(5) 

For example, the expected genotypic correlation between third-degree relatives like first cousins is 𝑟𝑔1
3 . This can 

be verified by manually tracing all valid chains between 𝐴13 and 𝐴23 in Fig. 1. The genotypic correlation between 

non-blood relatives like in-laws, which will be non-zero under assortative mating, can be attained by linking 

together chains of 𝑟𝑔𝑘
 and 𝜌𝑔 (for example, 𝐶𝑜𝑟𝑟(𝐴12, 𝐴42) = 𝑟𝑔1

𝜌𝑔
2). As for polygenic index correlations, they 

can be attained by replacing 𝜌𝑔 with 𝜌𝑝𝑔𝑖  in equation 5 (see supplementary information, section 1). 

Fig. 2 shows how assortative mating transforms genotypic correlations between relatives at equilibrium. In Panels 

A and B, it is evident that assortative mating has a much larger effect on first cousins than full siblings. For 

 
 

Fig. 2. Assortative mating’s effect on genotypic correlations between various relatives. Top: The expected genotypic correlation (𝑟𝑔) at 

equilibrium between (A) full siblings (i.e., first-degree relatives) and (B) first cousins (i.e., third-degree relatives) under different 

combinations of assortment strengths (𝜇) and heritabilities (ℎ2). Bottom: The relative (C) and absolute (D) increase in genotypic 

correlation at equilibrium for various relatives and genotypic correlations between partners (𝑝𝑔). The reproducible code for this figure is 

available at https://osf.io/dgw4r/. 
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example, for a trait where 𝜇 = .50 and ℎ2 = 50% (meaning 𝜌𝑔 = .25), siblings (Panel A) will have a correlation 

of 𝑟𝑔1
= .625 whereas cousins (Panel B) will have a correlation of 𝑟𝑔3

= .244, reflecting increases of 25% and 

95%, respectively, compared to random mating. Panel C shows how this pattern extends to more distant relatives, 

with the genotypic correlation between second cousins 3.5 times higher than normal if 𝜌𝑔 = .25 (𝑟𝑔5
= .095 vs. 

. 031). The larger relative increase is not merely because the correlations are smaller to begin with: Panel D shows 

that the largest absolute increase typically occurs in second-degree relatives like uncles/aunts and nephews/nieces.  

The relatively greater increase in correlation between cousins is because third-degree relatives are affected by three 

assortment processes: Mother-father, uncle-aunt, and grandfather-grandmother partnerships are all correlated 

under assortative mating and contribute to the increased correlation (Fig. 1). For each additional degree of 

relatedness, there is an additional assortment process opening pathways for relatives to correlate. This pattern 

extends to unrelated individuals like siblings-in-laws, who would have a genotypic correlation of 𝜌𝑔𝑟𝑔1
= .157 if 

𝜌𝑔 = .25. It is evident that assortative mating has a relatively larger impact on the genotypic correlation between 

distant relatives compared to close relatives, and that heritable traits subject to strong assortment can produce 

significant genotypic correlations between family members who would otherwise be virtually uncorrelated. 

Empirical polygenic index correlations between partners and relatives 

Fig. 3 shows polygenic index correlations between family members for a range of traits. Eight out of fifteen traits 

were significantly correlated between partners (Panel A), including height (.07), body mass index (.05), 

intelligence (.04), and educational attainment (.14). When educational attainment was split into cognitive and non-

cognitive factors (GWAS-by-subtraction36), we find roughly equal partner correlations for both components. 

Psychiatric traits like ADHD, depression, cross-psychiatric disorder, and bipolar disorder exhibited no significant 

correlations between partners. Keep in mind that the correlations will be biased downwards to the extent the genetic 

signal is poor (ref. equation 3). 

Panels B, C, and D show polygenic index correlations between full siblings, parents and offspring, and first 

cousins, respectively (see Supplementary Fig. 9 for other relatives). The vertical dashed lines are the expected 

correlations under random mating and the black crosses are the expected correlations at equilibrium given the 

partner correlation. All traits with significant correlations between partners had significantly higher parent-

offspring correlations than would be expected under random mating, and we observed similar patterns for higher-

degree relatives. For example, the correlation between polygenic indices for educational attainment was 0.56 

(instead of 0.50) between full siblings and 0.20 (instead of 0.125) between first cousins.  

Testing intergenerational equilibrium 

We fitted structural equation models using mother-father-child to see if a model constrained to equal variance 

across generations (i.e., equilibrium) resulted in significantly worse fit (see supplementary information, section 6). 

Five out of eight traits were significantly different from equilibrium. We also investigated two consequences of 

disequilibrium, namely greater variance in the offspring generation (Fig 4A) and smaller-than-expected parent-

offspring correlations (Fig. 4B). During disequilibrium, the ratio of offspring polygenic index variance to parental 

polygenic index variance should be positive: 𝑄𝑝𝑔𝑖 =
𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 (see supplementary information, section 2 

and 4). However, this ratio is quite sensitive to the genetic signal of the polygenic index, and therefore provides 
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limited information about the history of assortative mating beyond demonstrating disequilibrium. An alternative 

measure that is less sensitive to the genetic signal is the observed increase in polygenic index correlation as a 

percentage of the expected increase21: 𝑈𝑝𝑔𝑖 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒
 (see supplementary information, section 3 and 5). 

This provides a measure of how close the trait is to equilibrium. By comparing 𝑈𝑝𝑔𝑖 to reference values under 

various heritabilities and assortment strengths, it is possible to infer the equivalent number of generations of stable 

assortative mating. If the parental generation was the first generation to mate assortatively, we would expect a 

𝑈𝑝𝑔𝑖 ≈ 70%, while we would expect 𝑈𝑝𝑔𝑖 = 100% if the trait was in equilibrium. 

Height and body mass index did not deviate from equilibrium: There was no significant difference between the 

parental and offspring variance nor between the observed and expected correlations. Psychosocial traits, on the 

other hand, deviated from equilibrium: For example, the polygenic index variance for educational attainment was 

2.4% greater in the offspring generation compared to the parental generation. The true genetic variance ratio is 

likely much larger: For example, if the polygenic index captures one third of the true genetic factor (𝑠2 = 1/3), 

 
Fig. 3: Polygenic index correlations for various traits between various family members: (A) partners, (B) full siblings, (C) parent-

offspring, and (D) first cousins. The vertical dashed lines are the expected correlation under random mating (i.e., the coefficient of 
relatedness), and the black crosses are the expected correlation at equilibrium given equation 5. Abbreviations: EA = educational 

attainment; BMI = body mass index; IQ = intelligence; ADHD = attention-deficit hyperactivity disorder. Error bars are 95% confidence 

intervals. The summary statistics and reproducible code for this figure is available at https://osf.io/dgw4r/. 
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then the true variance ratio would be approximately 7.2% (see supplementary information, section 4). The parent-

offspring polygenic index correlation was also slightly but significantly lower than expected at equilibrium 

(𝑈𝑝𝑔𝑖 = 90%, 95% CIs: 87– 93%), with similar results for the other psychosocial traits. When we compared this 

to calculations of what the observed increase would have been after successive generations of stable assortment, 

we found that 𝑈𝑝𝑔𝑖 = 90% is equivalent to approximately three generations of stable assortative mating (see 

supplementary information, section 3 and 5). 

  

 
Fig. 4: (A) Ratio of offspring polygenic index variance to parental polygenic index variance (𝑄𝑝𝑔𝑖, see supplementary information, section 

2 and 4). A value above 1 would indicate that the variance is greater in the offspring generation compared to the parental generation, as 

expected during disequilibrium. (B) Observed increase in parent-offspring correlation compared to expected increase at equilibrium (𝑈𝑝𝑔𝑖, 

see supplementary information, section 3 and 5). A value of about 70% would indicate that the parent generation was the first generation 
to assort on this trait, whereas 100% would indicate that the trait is in intergenerational equilibrium. Only traits with significant correlations 

between partners are shown. Abbreviations: EA = educational attainment; BMI = body mass index; IQ = intelligence. Error bars are 95% 

confidence intervals. The summary statistics and reproducible code for this figure is available at https://osf.io/dgw4r/.  
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Discussion 

In this study, our goal was to clarify the theoretical consequences of assortative mating on genetic similarity in 

extended families and assess empirical measures of genetic similarity to provide insights into the presence and 

history of assortative mating. We first employed path analysis to deduce the expected polygenic index correlations 

between relatives under assortative mating. We then presented empirical evidence that assortative mating is present 

for many traits, leading to significantly increased genetic similarity among relatives for those traits. Finally, we 

showed that – while assortative mating does not appear to be a recent phenomenon for most traits – genetic 

similarity is still increasing across generations for psychosocial traits. Here, we discuss the implications of our 

findings. 

Aim 1: Theoretical expectations 

Our first aim was to clarify the theoretical consequences of assortative mating. Our key finding is the stronger 

impact of assortative mating on genotypic correlations between more distant relatives. Although not a novel 

discovery – even Fisher mentioned it offhandedly in his seminal paper1 – this effect has been largely overlooked 

in the literature (cf. 37). This is despite important implications. A Swedish economics paper reported that nearly 

one-third of persistence in inequality across generations – traditionally attributable to parent-offspring 

relationships – is attributable to the extended family38. Assortative mating’s effects on similarity in extended 

families may be key to understanding these issues. Similar logic may also apply to environmentally mediated 

sources of similarity.  

Aim 2: Genetic similarity between partners 

The second aim of this study was to investigate which traits show genetic evidence of assortative mating. One key 

challenge when evaluating the pervasiveness of assortative mating is that phenotypic partner similarity can come 

about from multiple processes. Genotypic similarity, on the other hand, can more confidently be attributed to 

assortative mating. Most anthropometric traits and psychosocial traits had significant polygenic index correlations 

between partners. The largest correlation was for educational attainment (.14), which adds to the growing list of 

evidence that variants associated with educational attainment is undergoing assortative mating9,21,25,27,39.  

Somewhat surprisingly, psychiatric traits did not show evidence of assortative mating despite pervasive phenotypic 

partner correlations17,18. The findings are in line with a recent study that found no genetic partner similarity on 

general risk for psychopathology (i.e., the “p-factor”)40. This could indicate that phenotypic partner similarity are 

caused by processes other than assortative mating, such as convergence22. On the other hand, they could also be 

false negatives resulting from inadequate polygenic indices. As highlighted in equation 3, the polygenic index 

correlation between partners should be the product of the phenotypic correlation attributable to assortative mating 

(𝜇), the heritability (ℎ2), and the genetic signal (𝑠2). If the polygenic index fail to adequately measure the relevant 

genetic factors (meaning 𝑠2 ≈ 0), for example due to lack of statistical power or other measurement issues41 in the 

underlying genome-wide associations study (GWAS), then the polygenic index correlation will be biased towards 

zero. The highest observed correlations were for educational attainment and height, which are among the traits 

with the largest sample sizes in the underlying GWAS. A corollary is that the correlations reported here do not 

quantify the exact degree of assortative mating because it is confounded by the quality of the polygenic index. 
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Aim 3: Genetic similarity between relatives 

Our third aim was to investigate whether relatives were more genetically similar for traits that exhibit evidence of 

assortative mating. Our findings broadly correspond to theoretical expectations: Traits with significant polygenic 

index correlations between partners showed increased similarity between relatives, whereas traits with no 

correlations between partners broadly exhibit patterns as expected under random mating. These empirical patterns 

demonstrate the theoretical expectations derived earlier, meaning we should expect distant relatives to be highly 

correlated for traits under strong assortment. The correlations reported here are underestimated by the quality of 

the polygenic index, meaning the true genotypic correlations between relatives are likely much larger. Our findings 

have at least two implications. First, genetic variants associated with traits undergoing assortment, such as 

educational attainment, cluster in extended families, thus increasing or maintaining societal stratification by 

families38 (i.e. between-family variation); and second, genetic studies that unknowingly involve numerous 

distantly related individuals may be biased if the genotypic correlations between them are not negligible.  

Aim 4: Intergenerational equilibrium 

Our fourth aim was to investigate the history of assortative mating. Our findings differed across traits: Height and 

body mass index did not deviate from equilibrium expectations, whereas psychosocial traits such as educational 

attainment did. This was evident in both lower-than-expected parent-offspring polygenic index correlations and 

greater variance in the offspring generation. Whether or not a trait is in intergenerational equilibrium has important 

implications for the consequences of assortative mating because it decides whether differences are increasing 

across generations or merely maintained. We found that polygenic index variance was stable across generations 

for height and body mass index (as well as for traits not undergoing assortative mating). However, psychosocial 

traits have greater variance in the offspring generation, implying that the traits are in disequilibrium and that 

assortative mating is currently leading to increased genetic differences in these traits. Although the non-genetic 

consequences may differ, assortative mating may therefore play a key role in explaining recent increases in 

inequality12,15.  

Despite being in disequilibrium, the evidence does not suggest that the parental generation was the first to assort 

on educational attainment. Instead, it appears that the trait is quite near equilibrium. This would also explain the 

discrepancy between our conclusion and that in Torvik, et al. 21, who found no significant deviation from 

equilibrium using an earlier version of data from the same cohort. We attribute the change in result from an increase 

in statistical power, stemming from more genotyped individuals available in the current sample. In this paper, we 

estimate that the evidence for educational attainment corresponds to approximately three generations of stable 

assortative mating, but the exact history of assortment may be longer if the strength of assortment has varied over 

time or if the heritability increased for other reasons42.  

Methodological implications 

Many genetic research methods assume random mating, but our findings suggest that such assumptions are 

unwarranted for many traits. Accounting for assortative mating poses its own challenges, as the genetic 

consequences and corresponding methods needed depend on whether assortative mating started recently or has 

reached intergenerational equilibrium. Studies on the genetics of educational attainment especially – or the many 

traits that correlate with educational attainment43 – may therefore be biased unless this is properly accounted for. 
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Twin and family studies that account for assortative mating typically assume equilibrium35. Conversely, Kong, et 

al. 44, who investigated genetic nurture effects of educational attainment in an Icelandic sample, assumed no 

assortment prior to their parental generation. Our findings imply that, for some traits, neither of these assumptions 

are valid. Although the patterns and history of assortment may be different across populations, future research 

should investigate how the conclusions from Kong, et al. 44 and related papers depend on these assumptions45,46.  

Newer genetic methods that can account for disequilibrium are being developed34. When these methods are 

impractical, the potential biases induced by different assumptions must be considered on a case-by-case and 

method-by-method basis. Different methods will be biased in different ways. For example, assortative mating 

leads to underestimated heritability in classical twin designs35,47 and overestimated heritability in molecular 

designs48, with the corollary that the missing heritability problem may be larger than previously assumed49,50. 

Overall, researchers must carefully consider what impacts the presence and history of assortative mating would 

have on their results.  

Limitations and future directions 

Despite our large sample size, our results are limited by low-quality polygenic indices, which results in lower 

partner correlations and consequently less power to detect assortative mating. This is amplified for the tests of 

equilibrium, where smaller polygenic index correlations between partners result in less statistical power to detect 

deviations from equilibrium. Our tests for equilibrium are therefore less conclusive for traits with small polygenic 

index correlations, such as smoking.  

Another concern is that our results may be confounded by population stratification51, where (1) the trait in question 

happens to be more common within certain strata (e.g., subcultures or geographical areas), (2) some genetic 

variants are randomly present at higher frequencies in these strata, and (3) individuals are more likely to mate 

within these strata. The combination of the first two phenomena would result in a spurious correlation between 

those genetic variants and the trait, and when coupled with the third phenomenon, similar spurious correlations 

could emerge between partners. While we controlled for 20 principal components in our analysis, which is the 

standard method for addressing stratification52, this approach may not fully account for this phenomenon53. 

However, the evidence we present aligns well with predictions given assortative mating. It is also not obvious how 

population stratification could explain increased variance in the offspring generation. Consequently, our results 

should be considered indicative of assortative mating until a more compelling alternative explanation is offered. 

Future theoretical work should investigate how the consequences of assortative mating and population 

stratification differ so that they can better be distinguished in future research. 

There are several interesting research avenues that could follow from this work. First, we did not consider shared 

environmental effects or gene-environment correlations in our models, which may affect the genetic consequences 

of assortative mating. Second, there may be some selection bias in the cohort study our results are based on. Future 

work using population-wide phenotypic data might provide insights into how much this matters. Third, patterns 

of assortative mating are likely to vary between populations54,55, meaning that our empirical findings may not be 

universally generalizable. Replicating these results in other populations will therefore be beneficial. Fourth, future 

research may want to investigate which phenotypes mediate the polygenic index correlations between partners, as 

it may not always be attributable to the phenotype that the polygenic index supposedly measures.  
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Methods 

Sample 

We used data from the Norwegian Mother, Father and Child Cohort Study (MoBa)29. MoBa is a population-based 

pregnancy cohort study conducted by the Norwegian Institute of Public Health. Participants were recruited from 

all over Norway from 1999-2008. The women consented to participation in 41% of the pregnancies. Blood samples 

were obtained from both parents during pregnancy and from mothers and children (umbilical cord) at birth56. The 

cohort includes approximately 114,500 children, 95,200 mothers and 75,200 fathers. The current study is based 

on version 12 of the quality-assured data files released for research in January 2019. The establishment of MoBa 

and initial data collection was based on a license from the Norwegian Data Protection Agency and approval from 

The Regional Committees for Medical and Health Research Ethics. The MoBa cohort is currently regulated by the 

Norwegian Health Registry Act. The current study was approved by The Regional Committees for Medical and 

Health Research Ethics (2017/2205).  

For the correlations, the sample included 47,135 unique mother-father dyads (i.e., partners) where both had been 

genotyped and passed quality control 30. As described in Corfield, et al. 30, relatedness relationships in MoBa were 

inferred from genetic data by applying KING programs57 to a subset of single nucleotide polymorphisms (SNPs) 

with call rate < 98% and minor allele frequency (MAF) < 5%. KING accurately infers monozygotic twin or 

duplicate pairs (kinship coefficient > 0.3540), first-degree (parent-offspring, full siblings, dizygotic twin pairs; 

kinship coefficient range 0.1770 - 0.3540), second-degree (half siblings, grandparent-offspring, avuncular 

relationships; kinship coefficient range 0.0884 – 0.1770), and third-degree (first cousins; kinship coefficient range 

0.0442 – 0.0884) relationships. This method identified 117,041 parent-offspring dyads, 22,575 full sibling dyads, 

35,923 second-degree dyads (e.g., uncle-nephew), 28,330 third-degree dyads (e.g., first cousins), 9,392 fourth-

degree dyads, and 235,209 dyads of unrelated family members (e.g., in-laws, nephews–uncles’ spouses, partners, 

etc.,) where both members of the dyads had been genotyped and passed quality control. 

To test equilibrium, we used mother-father-child trios from MoBa. After randomly selecting one offspring from 

each nuclear family, we were able to construct a sample of 81,145 genotyped mothers, 54,550 genotyped fathers, 

and 71,544 genotyped offspring, resulting in a total of 93,767 families. Of these, 36,764 were complete trios, 

whereas 10,371 included only partners, 24,659 included only mother-offspring dyads, and 4,914 included only 

father-offspring dyads. 

Measures 

We used beta weights from large, publicly available up-to-date genome-wide association studies listed the 

supplementary information, section 8. Polygenic indices were calculated using LDPred58, a Bayesian approach 

that uses a prior on the expected polygenicity of a trait (assumed fraction of non-zero effect markers) and adjusts 

for linkage disequilibrium (LD) based on a reference panel to compute SNPs weights. Genotypes were coordinated 

with the summary statistics, with the number of overlapping SNPs reported in supplementary information, section 

8. LD adjustment was performed using the European subsample of the 1000 Genomes genotype data as LD 

reference panel59. The weights were estimated based on the heritability explained by the markers in the GWAS 

summary statistics and the assumed fraction of markers with non-zero effects. For each GWAS trait we created 
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LDpred PGI with the –score command in plink260. Prior to calculating correlations between partners and relatives, 

we residualised the polygenic indices by regressing out the first 20 principal components of genetic ancestry, as 

well as chip, imputation, and batch number.  

Statistics 

The polygenic index correlations were attained by correlating the residualised polygenic indices between partners 

and relatives using cor.test in R. 4.0.361. We tested whether the observed correlations were consistent with 

equilibrium by fitting structural equation models to mother-father-child trio covariance matrices, and testing 

whether a model constrained to equilibrium via equal variance across generations resulted in significantly worse 

fit. We describe this procedure in more detail in the supplementary information, section 6. 
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1. Polygenic index correlations at equilibrium 

 
Supplementary Fig. 1: Path diagram of associations between relatives’ polygenic indices (PGI). 

Supplementary Fig. 1 is an extension of Fig. 1 and represents the associations between various family members’ 
polygenic indices at equilibrium. The equilibrium assumption is instantiated via equal variances across 
generations. All variables have unit variances, and the variance terms (↔) are not drawn to remove clutter. We 
assume polygenic indices are composed of true genetic factors (𝐴) and noise (𝜖). The correlation between the 
true genetic factors and the polygenic indices is denoted 𝑠, meaning the genetic signal – the shared variance 
between the polygenic index and the true genetic factor – is 𝑠2. To keep all variables at unit variances, the 
effect of noise will be 𝑤 = √1 − 𝑠2 (similar to how 𝑒 =  √1 − ℎ2). Because the error in the polygenic index 
primarily results from misestimated effects and not mismeasured genotypes, the errors will be inherited just 
like the phenotype-related genotype (dashed lines). By path tracing, we see that the polygenic index correlation 
between partners (e.g., 𝑃𝐺𝐼11 and 𝑃𝐺𝐼21) should be:  

𝜌𝑝𝑔𝑖 = 𝑠 × ℎ × 𝜇 × ℎ × 𝑠 = 𝜇ℎ2𝑠2 (𝑆1.1) 

If one suspects that the genetic signal is poor, it is possible to do a back-of-the-envelope calculation to find the 
approximate value of 𝜌𝑔. For example, the polygenic index from the most recent genome-wide association 
study for educational attainment explained between 12% and 15% of the variance in holdout samples1, whereas 
a meta-analysis of twin studies on educational attainment2 estimated the mean heritability to be about 45%. 
Obviously, these values are likely to vary by population and cohort, but if we take these at face value, the 

polygenic index captures 𝑠2 =
15

45
= 33% of the true additive genetic variance. We observe a polygenic index 
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correlation of .14 between partners for educational attainment, but if that polygenic index has a genetic signal 

of about 33%, then the true genotypic correlation is likely somewhere around 𝜌𝑔 =
𝜌𝑝𝑔𝑖

𝑠2 =.42. (Remember 

that the confidence intervals would also be similarly inflated). If you think the genetic signal is higher or lower, 
you can repeat the calculation with numbers of your choice.  

The polygenic index correlation between any two relatives can be thought to be composed of two 
components: the error-related genotype and the phenotype-related genotype. The error term correlation 
should equal the coefficient of relatedness, whereas the phenotype-related genotypic correlation will equal the 
true genotypic correlation. These two components will be weighted by 𝑤2 and 𝑠2, respectively: 

𝑟𝑝𝑔𝑖𝑘
= 𝑤2 (

1

2
)

𝑘

+ 𝑠2 (
1 + 𝜌𝑔 

2
)

𝑘

(𝑆1.2) 

This can be verified by tracing all chains between any two relatives in Supplementary Fig. 1.  

Equation S1.2 simplifies to: 

𝑟𝑝𝑔𝑖𝑘
= (

1 + 𝜌𝑝𝑔𝑖

2
)

𝑘

(𝑆1.3) 
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2. Genetic variance across generations during disequilibrium 

 
Supplementary Fig. 2:  Path diagram illustrating genetic similarity in mother-father-child trios during disequilibrium. 

 

Because assortative mating will change genetic variance before equilibrium, we can no longer assume unit 
variances as we did in Fig. 1. Supplementary Fig. 2 therefore uses explicit variance components. This changes 
how we derive correlations, because tracing all valid chains between two variables will give us the covariance, 
not the correlation. To turn a covariance into a correlation, we need to divide by the geometric mean of the 
two variables’ variances. To find the variances, we must trace all valid chains leading from the two variables 
back to themselves. 

𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋) × 𝑉𝑎𝑟(𝑌)
(𝑆2.1) 

Before we understand how the correlation increases in successive generations under disequilibrium, we must 
first understand how the variance changes. The equations are available elsewhere3-5, but because we will be 
extending the model to see how polygenic indices are affected, it will be useful to re-derive them from first 
principles using path analysis. 

We let 𝑡 denote the number of prior generations of assortative mating, where 𝑡 = 0 is the generation where 
partners first match on the phenotype. Note that this would imply that partners in generation 𝑡 = 1 would 
be the second generation to assort on the phenotype. Supplementary Fig. 2 shows a mother-father-offspring 
trio (subscripted 𝑚, 𝑓, and 𝑜, respectively) where the parents are in generation 𝑡. The genetic variance in 
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generation 𝑡 is denoted 𝑉𝐴(𝑡), and the recombination variance is denoted 𝑉𝐾. The recombination variance 
will depend on the genetic variance in the base population (before assortative mating) and will be3-6:  

𝑉𝐾 =  
𝑉𝐴(0)

2
(𝑆2.2) 

The genetic and environmental effects are, for simplicity’s sake, assumed to be constant across generations and 
therefore set to 1. We are also assuming that the environmental variance, denoted 𝑉𝐸, is constant across 
generations. If you want to relax these assumptions, you can replace them by appropriate parameters (e.g., 
𝑉𝐸(𝑡)) and redo the path tracing with these changes.  

As always, the heritability in generation 𝑡 is the genetic variance over the phenotypic variance: 

ℎ2(𝑡) =
𝑉𝐴(𝑡)

𝑉𝐴(𝑡) + 𝑉𝐸

(𝑆2.3) 

The partner similarity is slightly more complicated because the co-path coefficient is neither the covariance 
nor the correlation between partners when variances are not equal to one. Instead, it is a special coefficient 
denoting the strength of assortment. Because we have already defined 𝜇 as the phenotypic correlation, the 
assortment strength in generation 𝑡 is now denoted 𝛿𝑡  to avoid confusion. We can use path tracing to find the 
phenotypic partner correlation: 

𝜇 =
𝛿𝑡(𝑉𝐴(𝑡) + 𝑉𝐸)2

𝑉𝐴(𝑡) + 𝑉𝐸
= 𝛿𝑡(𝑉𝐴(𝑡) + 𝑉𝐸) (𝑆2.4) 

We can apply similar logic to the genotypic correlation between partners: 

𝜌𝑔(𝑡) =
𝛿𝑡𝑉𝐴

2(𝑡)

𝑉𝐴(𝑡)
= 𝛿𝑡𝑉𝐴(𝑡) (𝑆2.5) 

Because heritability will change across generations, all else being equal, so will the genotypic correlation 
between partners – even when keeping 𝜇 constant. Note also that we can transform equation S2.5 using 
equation S2.3 and equation S2.4 and find that 𝜌𝐺(𝑡) = 𝜇ℎ2(𝑡), thus matching equation 1 in the main paper. 
Finally, to keep 𝜇 constant while 𝑉𝐴 increases, 𝛿𝑡  will have to decrease accordingly. It is an open question 
whether it is more realistic to keep 𝜇 or 𝛿𝑡  constant when investigating assortative mating across generations, 
but here we follow previous work and let 𝜇 be constant3,7. This does not affect the equations, but it would 
change the resulting figures somewhat. 

We are now ready to derive the genetic variance in the offspring generation. We do that by tracing all paths 
leading from 𝐴𝑜  back to itself: 

𝑉𝐴(𝑡 + 1) = 𝑉𝑎𝑟(𝐴𝑜) 

= 𝑉𝐾 +
𝑉𝐴(𝑡)

4
+

𝑉𝐴(𝑡)

4
+

𝛿𝑡𝑉𝐴
2(𝑡)

4
+

𝛿𝑡𝑉𝐴
2(𝑡)

4
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= 𝑉𝐾 + 𝑉𝐴(𝑡)
1 + 𝛿𝑡𝑉𝐴(𝑡)

2
(𝑆2.6) 

If we substitute S2.2 and S2.5 into S2.6, we get: 

𝑉𝐴(𝑡 + 1) =
𝑉𝐴(0)

2
+ 𝑉𝐴(𝑡) (

1 + 𝜌𝑔(𝑡)

2
) (𝑆2.7) 

This equation matches what is reported in other sources3-5.  

We will also define the intergenerational genetic variance ratio, 𝑄𝐴(𝑡), as we will refer to that later: 

𝑄𝐴(𝑡) =
𝑉𝐴(𝑡 + 1)

𝑉𝐴(𝑡)
(𝑆2.8) 

We can now apply equation S2.7 recurrently to see how genetic variance changes across generations under 
different scenarios. For simplicity’s sake, we will assume the heritability is 50% before assortment in all plots 
presented hereafter.  

 
Supplementary Fig. 3:Genetic variance in successive generations of assortative mating. 

In Supplementary Fig. 3, we see how the genetic variance (𝑉𝐴) increases in successive generations of assortative 
mating following equation S2.7 for three different phenotypic partner correlations. Panel A shows how the 
variance increases asymptotically towards equilibrium (indicated by the dashed lines), and Panel B shows the 
intergeneration variance ratio (𝑄𝐴). Overall, variance increases in the initial generations of assortment before 
reaching equilibrium after between 6 to 10 generations, practically speaking, depending on assortment 
strength. Larger partner correlations lead to more generations in disequilibrium in part because increased 
genetic variance leads to increased heritability (all else equal), which in turn leads to an increased genotypic 
correlation between partners, which in turn increases the variance further. 
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Note that we can simplify equation S2.8 further if we are interested in the first generation of assortment, where 
𝑉𝐴(𝑡) = 𝑉𝐴(0), or the equilibrium variance, where 𝑉𝐴(𝑡) = 𝑉𝐴(𝑡 + 1) = 𝑉𝐴(∞):  

𝑉𝐴(1) = 𝑉𝐴(0) (1 +
𝜌𝑔(0)

2
) (𝑆2.9𝑎) 

 

𝑉𝐴(∞) =
𝑉𝐴(0)

1 − 𝜌𝑔(∞)
(𝑆2.9𝑏) 

These simplifications match equations reported elsewhere3,8.  
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3. The genotypic correlation between parents and offspring under disequilibrium 

Because we have many more parent-offspring dyads in our data compared to other dyads, this correlation will 
be estimated with high precision. We will therefore only focus on the parent-offspring correlation under 
disequilibrium. To find the correlation, we must know the variance (which we derived in the last section) and 
the covariance. To find the covariance, we apply path tracing rules to find all valid chains between 𝐴𝑚 (or 𝐴𝑓) 
and 𝐴𝑜 in Supplementary Fig. 3, and simplify accordingly: 

𝐶𝑜𝑣(𝐴𝑚, 𝐴𝑜) =
𝑉𝐴(𝑡)

2
+

𝛿𝑡𝑉𝐴
2(𝑡)

2

= 𝑉𝐴(𝑡) (
1 + 𝜌𝑔(𝑡)

2
) (𝑆3.1)

 

Because the genotypic covariance is a function of the genetic variance in the parent generation, the genotypic 
covariance too will increase together with the variance in successive generations of assortative mating. To find 
the correlation, we divide the covariance by the pooled variance: 

𝑟𝑔(𝑡) = 𝐶𝑜𝑟𝑟(𝐴𝑚, 𝐴𝑜) =
𝑉𝐴(𝑡) (

1 + 𝜌𝑔(𝑡)

2 )

√𝑉𝐴(𝑡)𝑉𝐴(𝑡 + 1)
(𝑆3.2) 

The purple line Supplementary Fig. 4A shows how the genotypic correlation between parents and offspring 
increases with successive generations of assortative mating (assuming ℎ2(0) = 50% and 𝜇 = .50). Note that, 
because the parent-offspring correlation is an intergenerational correlation, the number of prior generations 
of assortative mating will not be the same for parents and offspring. We will keep denoting the parental 
generation as generation 𝑡 (and therefore the offspring generation as 𝑡 + 1). We see that the correlation 
increases immediately and keeps increasing towards an equilibrium just like how the variance increases. 

The green dotted line is the expected genotypic correlation if we assumed equilibrium and used equation 2 

from the main paper (𝑟𝑔 =
1+𝜌𝑔

2
). We see that it only matches the actual correlation when the trait is in 

equilibrium. Otherwise, it overestimates the correlation. A mismatch between the true correlation and 
expected correlation between relatives is therefore evidence of a trait in disequilibrium. 

The reason for this mismatch is directly attributable to different variances across generations. Equation two 
in the main paper implicitly assumes that the variance is equal across generations, but during disequilibrium, 
the pooled variance (the denominator) is slightly more than the variance in the parent generation (part of the 
numerator). This leads to a smaller correlation than equation 2 would predict. When we rearrange equation 
S2.8 and substitute that into the denominator of equation S3.2, the variance terms cancel out and we can 
express the correlation as: 

𝑟𝑔(𝑡) =
1 + 𝜌𝑔(𝑡)

2√𝑄(𝑡)
(𝑆3.3) 

The degree of mismatch depends on the number of generations since assortative mating began. It should 
therefore be possible to infer the history of assortment by quantifying the degree of mismatch in the parent-
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offspring correlation. Torvik, et al. 9 defined 𝑈 as the ratio of observed increase in correlation to the expected 
increase in correlation at equilibrium given the current genotypic correlation between partners. In other 
words, it is the observed increase as a percentage of the expected increase at equilibrium, where 100% would 
indicate equilibrium: 

𝑈(𝑡) =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒
=

𝑟𝑔(𝑡) − 0.5

(
1 + 𝜌𝑔(𝑡)

2 ) − 0.5

(𝑆3.4) 

Note that 𝑈 is specific to each relationship and will not be the same for full siblings or other relatives. Here, 
we are using it for the genotypic parent-offspring correlation. Panel B in Supplementary Fig. 4 plots how 𝑈 
develops in successive generations of assortative mating depending on the phenotypic correlation between 
partners. We see that it is approximately 72% after one generation, 84% after two generations, 90% after three 
generations, etc., For traits under stronger assortment, 𝑈 increases slightly slower (and vice versa), but the 
differences are not large. 

 
Supplementary Fig. 4:  The dynamics of the genotypic parent-offspring correlation during disequilibrium. 

By comparing an observed 𝑈-value with Supplementary Fig. 4B, it is possible to infer how the numbers of 
generations since assortative mating began. Obviously, this would involve making assumptions such as 
constant environmental variance and constant partner correlations (preceded by no partner correlation), 
which is unlikely to reflect reality. For this reason, we do not deem it worthwhile to develop a more accurate 
estimation of 𝑡 beyond looking up a rough estimate in the figure (although it is perfectly possible to calculate 
𝑈(𝑡) with other assumptions). A given 𝑈 can be said to be equivalent to an approximate 𝑡, which is to say that 
a population with no assortative mating prior to 𝑡 generations of constant assortment would yield a similar 𝑈 
value. It is important to note, though, that multiple other processes could give rise to the same 𝑈 value, such 
as changing assortment strengths or changes in environmental and genetic effects across generations.  
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Note that 𝑈 calculated with polygenic indices roughly tracks the true heritability and true genotypic partner 
correlation of the sorted phenotype (see section 5), not the polygenic index correlation between partners 
(which is confounded by 𝑠2). Given that educational attainment appears to be roughly 50% heritable2,10 and 
exhibits a strong phenotypic correlation between partners9,11, we can search for its observed U-value (𝑈 =

 90%) along the green line in Supplementary Fig. 4B. We find the U-value roughly matches what we would 
expect at 𝑡 = 2, indicating two prior generations of assortment. In other words, our result for educational 
attainment matches what we would expect if the parental generation was the third generation to mate 
assortatively on educational attainment.  
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4. Polygenic index variance during disequilibrium 

 
Supplementary Fig. 5: Path diagram illustrating polygenic index similarity under disequilibrium. 

Supplementary Fig. 5 extends Supplementary Fig. 2 by including polygenic indices. Because we are no longer 
assuming unit variances, the genetic signal is now indicated by the relative importance of true genetic variance, 
𝑉𝐴(𝑡), and error variance, 𝑉𝜖 (not to be confused with 𝑉𝐸!) in the polygenic index. Because the initial variance 
in the polygenic index is arbitrary, we will for simplicity’s sake not scale the variance. Applying path tracing 
rules, we find that the variance in the polygenic index is:  

𝑉𝑝𝑔𝑖(𝑡) = 𝑉𝑎𝑟(𝑃𝐺𝑆𝑚) = 𝑉𝐴(𝑡) + 𝑉𝜖 (𝑆4.1) 

Because genetic variance initially increases with successive generations of assortative mating, the variance in 
the polygenic index also increases. This has the slightly odd effect of making the genetic signal higher in 
successive generations (assuming the error term is constant). We must therefore give the genetic signal 
generation-specific notation: 

𝑠2(𝑡) =
𝑉𝐴(𝑡)

𝑉𝐴(𝑡) + 𝑉𝜖

(𝑆4.2) 

When using polygenic indices as proxies for the true genetic factor, we must understand how the genetic signal 
affects 𝑄 and 𝑈. We will consider 𝑈 in the next section. Let us first consider how the polygenic index variance 
changes across generations. Because we already know how the genetic variance changes, we can combine 
equation S4.1 and S2.7 and get: 



Supplementary information: Genetic similarity between relatives (…) 12 

𝑉𝑝𝑔𝑖(𝑡 + 1) = 𝑉𝐴(𝑡 + 1) + 𝑉𝜖 (𝑆4.3) 

Likewise, we change adapt equation S2.8 and obtain the intergenerational variance ratio for the polygenic 
index: 

𝑄𝑝𝑔𝑖(𝑡) =
𝑉𝑝𝑔𝑖(𝑡 + 1)

𝑉𝑝𝑔𝑖(𝑡)
(𝑆4.4) 

Because the polygenic index variance contains noise that presumably stays constant across generations, the 
intergenerational variance ratio for polygenic indices will always be closer to one than the true variance ratio, 
meaning it will underestimate the increased variance in the offspring generation under positive assortative 
mating: 

|1 − 𝑄𝑝𝑔𝑖| ≤ |1 − 𝑄𝐴| (𝑆4.5) 

Put another way, the polygenic index variance will not increase to the same extent as the true genetic variance. 
If the genetic signal is known, then it is possible to calculate the true intergenerational variance ratio (𝑄𝐴) given 
the variance ratio for polygenic indices (𝑄𝑝𝑔𝑖). Before that, we must do some rearranging. For simplicity’s 
sake, I will not use the generation-specific notation in the following equations if the parameter is from 
generation 𝑡. 

First, we rearrange equation S4.2 to give us the 𝑉𝜖 using 𝑠2: 

𝑉𝜖 = 𝑉𝐴

(1 − 𝑠2)

𝑠2
(𝑆4.6) 

We then rearrange equation S2.8 to give us 𝑉𝐴(𝑡 + 1) using 𝑄𝐴: 

𝑉𝐴(𝑡 + 1) = 𝑄𝐴𝑉𝐴 (𝑆4.7) 

We can now substitute S4.6 and S4.7 into equations S4.1 and S4.3 and simplify accordingly:  

𝑉𝑝𝑔𝑖 = 𝑉𝐴 + 𝑉𝐴

(1 − 𝑠2)

𝑠2

=
𝑉𝐴

𝑠2
(𝑆4.8𝑎)

 

𝑉𝑝𝑔𝑖(𝑡 + 1) = 𝑄𝐴𝑉𝐴 + 𝑉𝐴

(1 − 𝑠2)

𝑠2

= 𝑉𝐴 (𝑄𝐴 +
1

𝑠2
− 1) (𝑆4.8𝑏)

 

Which we in turn can substitute into S4.4 and simplify accordingly: 

𝑄𝑝𝑔𝑖 =
𝑉𝐴(𝑄𝐴 + 1/𝑠2 − 1)

𝑉𝐴/𝑠2
 

= 𝑄𝐴𝑠2 + 1 − 𝑠2 (𝑆4.9) 



Supplementary information: Genetic similarity between relatives (…) 13 

Solving for 𝑄𝐴 gives us: 

𝑄𝐴(𝑡) = 1 +
𝑄𝑝𝑔𝑖(𝑡) − 1

𝑠2(𝑡)
(𝑆4.10) 

We can continue using educational attainment as an example, where the polygenic index variance was 𝑄𝑝𝑔𝑖 =

1.024 times greater in the offspring generation than in the parental generation. If we keep assuming the 
genetic signal is 33% (see section 1), the true genetic factor has 1.072 times greater variance in the offspring 
generation than the parent generation.  
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5. The polygenic index correlation between parents and offspring under 
disequilibrium 

The polygenic index covariance between parents and offspring consists of two components: The true 
genotypic covariance and the covariance attributable to the shared error terms. Because we did not scale the 
variance, the polygenic index covariance is simply the sum of these two components: 

𝐶𝑜𝑣(𝑃𝐺𝐼𝑚, 𝑃𝐺𝐼𝑜) = 𝑉𝐴(𝑡) (
1 + 𝜌𝑔(𝑡)

2
) +

𝑉𝜖

2
(𝑆5.1) 

You can double-check this by tracing all valid chains in Supplementary Fig. 5. To get the correlation, we must 
divide by the pooled variance: 

𝑟𝑝𝑔𝑖(𝑡) = 𝐶𝑜𝑟𝑟(𝑃𝐺𝐼𝑚, 𝑃𝐺𝐼𝑜) =
𝑉𝐴(𝑡) (

1 + 𝜌𝑔(𝑡)

2
) +

𝑉𝜖
2

√𝑉𝑝𝑔𝑖(𝑡)𝑉𝑝𝑔𝑖(𝑡 + 1)
(𝑆5.2) 

Because the genetic signal changes from generation to generation, it is not straightforward to reduce S5.1 or 
S5.2 to simpler equations (nor is it necessary here). Instead, we can calculate what the observed correlation 
would be under various assumptions and see how it behaves compared to the true genotypic correlation.  It 
will also be useful to see how it behaves compared to the expected correlation given the polygenic index 
correlation between partners.  

The polygenic index correlation between partners will still equal equation S1.1 (i.e., 𝜌𝑝𝑔𝑖 = 𝜌𝑔𝑠2), which you 
can double check by tracing all valid chains between 𝑃𝐺𝑆𝑚 and 𝑃𝐺𝑆𝑚 and divide by the polygenic index 
variance:  

𝜌𝑝𝑔𝑖(𝑡) =
𝛿𝑡𝑉𝐴

2(𝑡)

𝑉𝐴(𝑡)/𝑠2(𝑡)
= 𝑠2(𝑡)𝛿𝑡𝑉𝐴(𝑡) = 𝜌𝑔(𝑡)𝑠2(𝑡) (𝑆5.3) 

We can also define the polygenic index equivalent of 𝑈 (i.e., the ratio of actual to expected increase): 

𝑈𝑝𝑔𝑖(𝑡) =
𝑟𝑝𝑔𝑖(𝑡) − 0.5

(
1 + 𝜌𝑝𝑔𝑖(𝑡)

2 ) − 0.5

(𝑆5.4) 

Supplementary Fig. 6A shows how various degrees of genetic signal (𝑠2) affects the polygenic index correlation 
between parents and offspring in successive generations of assortative mating (assuming ℎ2(0) = 50% and 
𝜇 = .50). The solid lines are the actual correlations, whereas the dotted lines are what you would predict using 
1+𝜌𝑝𝑔𝑖(𝑡)

2
. We see that less genetic signal (i.e., lower 𝑠2) results in a lower polygenic index correlation between 

parents and offspring. However, we see in Panel B that 𝑈𝑝𝑔𝑖  is almost unaffected by the genetic signal. There 
is a small change where lower 𝑠2 results in slightly higher 𝑈𝑝𝑔𝑖 , but overall, 𝑈𝑝𝑔𝑖  will approximately equal 𝑈.  

An important consideration, therefore, is that 𝑈𝑝𝑔𝑖  depends on the true genotypic partner correlation, not 
the polygenic index correlation. The latter will be confounded by 𝑠2, meaning one cannot use the observed 
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correlation to infer how many generations of assortment has occurred. In Supplementary Fig. 7, we show two 
scenarios that would be indistinguishable if one only had access to polygenic index correlations (𝜌𝑝𝑔𝑖 =

.157, 𝑟𝑝𝑔𝑖 = .575, 𝑈𝑝𝑔𝑖 = 95%). Without making assumptions about the true heritability and partner 
correlation, it would be impossible to say this indicated three or four generations since assortment began. To 
infer 𝑡 based on 𝑈, one must therefore make assumptions about the likely true heritability and true assortment 
strength and look at the relevant line in Supplementary Fig. 4 (or calculate it manually).   

 
Supplementary Fig. 6: Dynamics of polygenic score correlations with varying genetic signal strengths 
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Supplementary Fig. 7:  Similar polygenic index correlations can result from different processes.  
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6. Empirically testing intergenerational equilibrium 

 
Supplementary Fig. 8: Structural equation model used to test intergenerational equilibrium.  

Whether a trait is consistent with equilibrium can be quickly gauged by seeing if the confidence intervals for 
the correlations in Fig. 3 overlaps with the expected correlations (the black crosses). To perform a more formal 
test of equilibrium, we fitted structural equation models (Supplementary Fig. 8) to the mother-father-
offspring covariance matrix for each trait and used a log-likelihood test to check if constraining the model to 
equilibrium resulted in significantly poorer fit. This approach also allowed us to compute 𝑄𝑝𝑔𝑖  and 𝑈𝑝𝑔𝑖  with 
confidence intervals, which offer two alternative ways to check for equilibrium: First, whether the observed 
parent-offspring correlation was smaller than expected given the partner correlation (i.e., if 𝑈𝑝𝑔𝑖 ≠ 1, ref. 
equation S5.4). Second, whether the variance in the offspring generation was greater than in the parental 
generation (i.e., 𝑄𝑝𝑔𝑖 ≠ 1, ref. equation S4.4). Note that these are not independent tests, but rather 
transformations of each other that highlight different aspects of disequilibrium. The models were instantiated 
in OpenMx12 in R13. 

To avoid putting needless constraints on the model, the maternal and paternal variance (𝑉𝑚 and 𝑉𝑓, 
respectively) were allowed to differ. The partner covariance is therefore 𝑉𝑚𝛿𝑉𝑝, whereas the parent-offspring 

covariances are 𝑉𝑚+𝑉𝑚𝛿𝑉𝑝

2
 and 𝑉𝑓+𝑉𝑚𝛿𝑉𝑝

2
, respectively (For 𝑈𝑝𝑔𝑖  and 𝑄𝑝𝑔𝑖 , we used the pooled variance, see 

below). The offspring variance is slightly more complicated: 𝑉𝐾 +
𝑉𝑚

4
+

𝑉𝑓

4
+

𝑉𝑚𝛿𝑉𝑓

2
. Note that these 

equations are the same as those presented in section 2, only adapted for varying maternal and paternal variance. 

Both the parent-offspring correlations and the intergenerational variance ratio will depend on the 
recombination variance (𝑉𝐾). The recombination variance will be half the genetic variance in the parent 
generation in the absence of assortative mating (equation S2.2). For a trait at equilibrium, 𝑉𝐾 can be found by 
rearranging equation S2.9b and substituting it into equation S2.2. To estimate how much the recombination 
variance deviated from what would be expected at equilibrium, we added a new freely estimated parameter 
(𝑥) to this equation: 
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𝑉𝐾 =
√𝑉𝑓𝑉𝑚 + 𝑉𝑚𝛿𝑉𝑓 + 𝑥

2
(𝑆6.1) 

This parameter allows the variance in the offspring generation to differ from the parent generation. If 𝑥 is 
significantly different from zero, then the trait is not consistent with equilibrium. This can be tested by 
constraining 𝑥 to 0 and seeing if it results in significantly worse fit (see Supplementary Tables 1 through 15 
below).  

We also defined 𝑄𝑝𝑔𝑖  and 𝑈𝑝𝑔𝑖  in the model, which is how we obtained confidence intervals for these 
parameters. If 𝑥 > 0, then 𝑄𝑝𝑔𝑖 > 1 and 𝑈𝑝𝑔𝑖 < 1. To define 𝑈𝑝𝑔𝑖 , we also needed to define the partner 
correlation (𝜌𝑝𝑔𝑖) and the pooled parent-offspring correlation (𝑟𝑝𝑔𝑖). Note again that these equations are the 
same as those presented earlier, only adapted for varying maternal and paternal variance: 

𝜌𝑝𝑔𝑖 = √𝑉𝑚𝑉𝑓 × 𝛿 (𝑆6.2) 

𝑟𝑝𝑔𝑖 =
(√𝑉𝑚𝑉𝑓 + 𝑉𝑚𝛿𝑉𝑝)/2

√√𝑉𝑚𝑉𝑓 × 𝑉𝑎𝑟(𝑃𝐺𝐼𝑜)

(𝑆6.3) 

𝑈𝑝𝑔𝑖 =
𝑟𝑝𝑔𝑖 − 0.5

(1 + 𝜌𝑝𝑔𝑖)/2 − 0.5
(𝑆6.4) 

𝑄𝑝𝑔𝑖 =
𝑉𝑎𝑟(𝑃𝐺𝐼𝑜)

√𝑉𝑚𝑉𝑓

(𝑆6.5) 

We report 𝑈𝑝𝑔𝑖  and 𝑄𝑝𝑔𝑖  for traits with significant partner correlations in Fig. 4 in the main paper. 

We also used this modelling approach as an alternative test for significant partner similarity (i.e., assortative 
mating) by testing whether constraining 𝛿 to 0 resulting in significantly worse fit (after construing the model 
to equilibrium). None of the models contradicted the results reported in the main paper. We further 
compared a model where we constrained 𝑉𝑓 to equal 𝑉𝑚 (i.e., sex invariant variance). Significant differences 
would indicate that men and women have different selection bias into the sample. We found this to be the 
case for chronotype (p = .005), smoking (.022), IQ (<.001), and EA (cognitive) (.005). 

 
 

Supplementary Table 1: Model Comparisons for ADHD 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 553,901.6 207,235    

Full Equilibirium 3 553,902.0 207,236 0.333 1 0.5637 

Equilibirium No_Assortment 2 553,902.0 207,237 0.002 1 0.9668 
No_Assortment Sex_Invariant 1 553,903.0 207,238 1.077 1 0.2995 
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Supplementary Table 2: Model Comparisons for Bipolar Disorder 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,059.5 207,235    

Full Equilibirium 3 554,065.0 207,236 5.470 1 0.0193 
Equilibirium No_Assortment 2 554,067.3 207,237 2.304 1 0.1291 

No_Assortment Sex_Invariant 1 554,067.5 207,238 0.256 1 0.6130 
 

Supplementary Table 3: Model Comparisons for BMI 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 551,232.0 207,235    

Full Equilibirium 3 551,232.3 207,236 0.302 1 0.5829 
Equilibirium No_Assortment 2 551,440.7 207,237 208.388 1 0.0000 

No_Assortment Sex_Invariant 1 551,440.8 207,238 0.117 1 0.7327 
 

Supplementary Table 4: Model Comparisons for Chronotype 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 552,232.4 207,235    

Full Equilibirium 3 552,245.0 207,236 12.575 1 0.0004 
Equilibirium No_Assortment 2 552,359.3 207,237 114.305 1 0.0000 

No_Assortment Sex_Invariant 1 552,367.3 207,238 8.051 1 0.0045 
 

Supplementary Table 5: Model Comparisons for Smoking 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 553,115.7 207,235    

Full Equilibirium 3 553,115.7 207,236 0.025 1 0.8752 
Equilibirium No_Assortment 2 553,129.9 207,237 14.205 1 0.0002 

No_Assortment Sex_Invariant 1 553,135.2 207,238 5.282 1 0.0216 
 

Supplementary Table 6: Model Comparisons for EA (Cognitive) 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 552,280.5 207,235    

Full Equilibirium 3 552,294.0 207,236 13.483 1 0.0002 
Equilibirium No_Assortment 2 552,407.8 207,237 113.825 1 0.0000 

No_Assortment Sex_Invariant 1 552,415.6 207,238 7.729 1 0.0054 
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Supplementary Table 7: Model Comparisons for Cross-Psychiatric 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,911.1 207,235    

Full Equilibirium 3 554,914.3 207,236 3.197 1 0.0738 
Equilibirium No_Assortment 2 554,914.5 207,237 0.228 1 0.6329 

No_Assortment Sex_Invariant 1 554,916.1 207,238 1.596 1 0.2065 
 

Supplementary Table 8: Model Comparisons for EA 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 546,524.6 207,235    

Full Equilibirium 3 546,562.0 207,236 37.394 1 0.0000 
Equilibirium No_Assortment 2 547,761.8 207,237 1,199.877 1 0.0000 

No_Assortment Sex_Invariant 1 547,763.8 207,238 2.007 1 0.1565 
 

Supplementary Table 9: Model Comparisons for Height 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 550,305.2 207,235    

Full Equilibirium 3 550,305.4 207,236 0.202 1 0.6531 
Equilibirium No_Assortment 2 550,666.1 207,237 360.636 1 0.0000 

No_Assortment Sex_Invariant 1 550,666.5 207,238 0.406 1 0.5239 
 

Supplementary Table 10: Model Comparisons for IQ 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 551,813.9 207,235    

Full Equilibirium 3 551,820.1 207,236 6.253 1 0.0124 
Equilibirium No_Assortment 2 551,970.7 207,237 150.579 1 0.0000 

No_Assortment Sex_Invariant 1 551,983.1 207,238 12.431 1 0.0004 
 

Supplementary Table 11: Model Comparisons for EA (Non-cognitive) 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 551,402.0 207,235    

Full Equilibirium 3 551,408.7 207,236 6.762 1 0.0093 
Equilibirium No_Assortment 2 551,605.0 207,237 196.313 1 0.0000 

No_Assortment Sex_Invariant 1 551,605.8 207,238 0.722 1 0.3954 
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Supplementary Table 12: Model Comparisons for Depression 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,680.7 207,235    

Full Equilibirium 3 554,680.8 207,236 0.065 1 0.7990 
Equilibirium No_Assortment 2 554,682.7 207,237 1.932 1 0.1645 

No_Assortment Sex_Invariant 1 554,682.9 207,238 0.132 1 0.7162 
 

Supplementary Table 13: Model Comparisons for Diabetes (Type 1) 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,096.4 207,235    

Full Equilibirium 3 554,097.4 207,236 1.045 1 0.3068 
Equilibirium No_Assortment 2 554,097.4 207,237 0.000 1 0.9948 

No_Assortment Sex_Invariant 1 554,097.5 207,238 0.081 1 0.7759 
 

Supplementary Table 14: Model Comparisons for Diabetes (Type 2) 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,656.5 207,235    

Full Equilibirium 3 554,659.9 207,236 3.347 1 0.0673 
Equilibirium No_Assortment 2 554,659.9 207,237 0.003 1 0.9535 

No_Assortment Sex_Invariant 1 554,659.9 207,238 0.000 1 0.9976 
 

Supplementary Table 15: Model Comparisons for Well-Being Spectrum 

Base Comparison k -2LL df Δ2LL Δdf p 

Full  4 554,631.7 207,235    

Full Equilibirium 3 554,632.6 207,236 0.889 1 0.3459 
Equilibirium No_Assortment 2 554,633.3 207,237 0.670 1 0.4131 

No_Assortment Sex_Invariant 1 554,633.7 207,238 0.393 1 0.5305 
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7. Polygenic index correlations between other relatives 

 

Supplementary Fig. 9: Polygenic index correlations between second-degree, fourth-degree, and unrelated family members  

Supplementary Fig. 9 shows the polygenic index correlations (95% CIs) among relatives that were not included 
in Fig. 3 in the main paper. Unrelated family members include all dyads in extended families that are not 
genetically related (i.e., relations that are mediated by a partner, such as in-laws, non-genetic uncles/aunts, 
partners, etc.).  

The summary statistics and reproducible code for this figure is available at https://osf.io/dgw4r/. 
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8. Information about the polygenic indices 

 

Supplementary Table 16: Polygenic indices 
Trait GWAS sample size Overlapping SNPs 

Educational Attainment (EA)1 765283 908380 
Non-Cognitive EA14 510795 879419 
Cognitive EA14 257700 879419 
Intelligence15 269867 911938 
Well-Being Spectrum16 2311180 800700 
Height17 4080687 1041747 
Body Mass Index (BMI)18 695648 802341 
Cigarettes per day (Smoking)19 245876 907384 
Type 1 Diabetes20 520580 911412 
Type 2 Diabetes21 659316 827710 
Cross-Psychiatric Disorders22 734126 688620 
Bipolar Disorder23 413466 912724 
Broad Depression24 500199 256913 
ADHD25 225534 902783 
Chronotype26 697828 879419 

 

Overlapping SNPs refers to the number of single nucleotide polymorphisms (SNP) that were available in both 
the GWAS summary statistics and in the genotype data in MoBa. It is therefore the number of SNPs used to 
calculate the polygenic indices. Non-cognitive EA and cognitive EA are based on GWAS-by-subtraction as 
described here14. In short, the polygenic index for educational attainment is split into that related to 
intelligence and that unrelated to intelligence.  
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