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Chapter 1

Introduction

The aim of this thesis is to investigate how the entropy of a self-gravitating
system evolves with time. From classical thermodynamics we know that
gases that are inhomogeneous evolve towards being more homogeneous. This
is explained by the second law of thermodynamics, which states that the
entropy of a closed system tends towards a maximum. For a gas the entropy
is maximal when it is homogeneous.

Consider a cosmological gas. If we introduce an inhomogeneity to such a
gas, the pull of gravity will result in matter streaming away from the regions
in the gas that are under-dense and towards the over-dense regions. This
means that the gas becomes more inhomogeneous, which appears to contra-
dict the second law of thermodynamics. The reason for this is that the effects
of gravity are not taken into account when one calculates the classical en-
tropy. By adding an additional term to the classical entropy that takes such
effects into account, one imagines that the evolution of this general entropy
quantity would be in accordance with the second law of thermodynamics.
The classical entropy would then have to be replace by a total entropy quan-
tity which is a sum of the ordinary entropy and a gravitational entropy. One
of the first physicists who suggested this idea was Roger Penrose. He pos-
tulated a measure of the gravitational entropy in form of a mathematical
quantity that was determined by the geometry of the space-time.

Our task in this thesis is to investigate how this postulated measure of
gravitational entropy evolves with time for a perturbed Friedmann-Robertson-
Walker (FRW) model. We introduce a localized inhomogeneity to an oth-
erwise flat and homogeneous universe model and investigate how the total
entropy evolves with time when this perturbation grows. As far as we know,
no one has made such an analysis in terms of perturbed FRW models. We
hope therefore that our analysis from this viewpoint will contribute to give
a better understanding of the concept of gravitational entropy.

1



2 Chapter 1. Introduction

This thesis is diveded in two parts. The first part deals with perturbation
theory while the second deals with gravitational entropy. In order to make
the proposed analysis of perturbed FRW models we will need to have a
good understanding of the theory of cosmological perturbations. We start
therefore by introducing this theory in chapter 2. We look at important
concepts such as the classification of the perturbations into scalar, vector
and tensor perturbations and gauge dependence, and conclude the chapter
by finding the equations that determine the perturbations. In chapter 3
we look at some special solutions for the perturbations for one-component,
ideal gases. In chapter 4 we introduce Penrose’s measure for gravitational
entropy and also further motivation for why the concept of gravitational
entropy is important. Finally, in chapter 5 we use the results from the first
three chapters to determine the time evolution of both the classical and the
gravitational entropy in a perturbed flat matter dominated FRW model for
a special type of perturbations. We end this thesis with a summary and
conclusions in chapter 6.



Part I

Cosmological Perturbation
Theory
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Chapter 2

Theory of cosmological
perturbations

In this chapter we will present a thorough treatment on the theory of cosmo-
logical perturbations. Important topics such as gauge invariance and gauge
choices are presented and explained.

We start by looking at the most general forms of gauges and perturba-
tions. Later we’ll specialize to the conformal Newtonian gauge, which is the
most relevant one.

2.1 Introduction

The idea of the theory of cosmological perturbations is to describe the phys-
ical universe as a FRW universe plus a small perturbation.

The FRW universes are homogeneous and isotropic and give therefore a
good description of the Universe at a large scale. But a homogeneous and
isotropic Universe cannot explain the formation of structures such as stars
and galaxies.

Cosmological perturbation theory is a theory which explains how such
structures can be formed from very small inhomogeneities in an otherwise
homogeneous universe. One assumes the universe to be homogeneous and
isotropic to the zeroth order, i.e. that it obeys the Friedmann-Robertson-
Walker line element to this order,

ds2 = a2(η)(dη2 − δijdx
idxj) , (2.1)

where η is conformal time and we have used units so that the speed of light
c = 1. The conformal time relates to the usual comoving time, t, in the

5



6 Chapter 2. Theory of cosmological perturbations

following way

a2(η)dη2 = dt2 ⇒ t =

∫ η

0

a(η′)dη′ . (2.2)

In the expression above, we have assumed a flat FRW universe. The rea-
son for us not including the open and the closed FRW universes, is that
recent experimental cosmological observations have pretty much confirmed
that the geometry of the Universe is indeed flat to a high degree of accuracy.
Data from the BOOMERanG balloon experiment [1], and also from the more
recent WMAP satellite [2] both support this conclusion.

Inhomogeneities are introduced as a first order perturbation to this met-
ric, δgµν . Thus, the physical, inhomogeneous line element can be written
as

ds2 = ((0)gµν + δgµν)dx
µdxν , (2.3)

where (0)gµν is the flat FRW metric.
The theory of cosmological perturbations was studied first by Lifshitz [3]

in 1946. A comprehensive review of his work in English can be found in [4].
Our approach in this thesis will be based, first and foremost, on [5], [6] and
[7]. Futher useful and more recent references on cosmological perturbations
are [8], [9] and especially [10], which is based on the standard reference [5].

2.2 Classification of the metric perturbations

The line element (2.3) can be split into a time-time part, a time-space part
and a space-space part,

ds2 = a2(η)
{
(1 + 2φ)dη2 − 2widηdx

i − (δij − hij)dx
idxj

}
. (2.4)

This line element is split further into parts which are called scalar, vector and
tensor components. The names given to the components tell us how they can
be obtained. The scalar components can be obtained from a scalar function,
the vector components from a vector function, while the tensor components
cannot be obtained from either.

2.2.1 Decomposition of vectors and tensors

The decomposition of the perturbations into scalar, vector and tensor com-
ponents is based on the mathematical fact that any three-vector can be split
into a divergence-free part and a non-rotational part. Let V be some three-
vector. Then we can write this as

V = V‖ + V⊥ where ∇×V‖ = ∇·V⊥ = 0 . (2.5)
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Since V‖ has a vanishing curl, we can write it as the divergence of some
scalar field, φV . Thus, any vector field can be written as the sum of a part
which can be obtained from a scalar field and a part which cannot,

V = ∇φV + V⊥ . (2.6)

The scalar part is also called the longitudinal part of the vector, while the
divergence-free part is called the transverse or the vector part. The latter
is called the vector part since it can be obtained as the curl of some vector
potential.

One can perform a similar splitting of a trace-less, symmetric tensor. Let
Sij be such a tensor, then it can be written as [7, 11]

Sij = S
‖
ij + S⊥ij + ST

ij , (2.7)

where the different parts satisfy the following constraints

εijk∂j∂lS
‖
lk = 0 , ∂i∂jS

⊥
ij = 0 , ∂iS

T
ij = 0 . (2.8)

We will not give a mathematical proof for either the splitting or the con-
straints, but we see immediately that they have a form which we would
expect by applying the results we obtained for the three-vector on both of
the indices of the tensor Sij. This tells us that we should expect the tensor to
be split into three different parts, namely one in which both indices are longi-
tudinal (S‖), one in which one index is longitudinal and the other transverse
(S⊥), and finally into one in which both indices are transverse (ST ).

Using the constraints (2.8), S‖ and S⊥ can be written as

S
‖
ij = (∂i∂j −

1

3
δij∇2)µ ,

S⊥ij = ∂iAj + ∂jAi , ∂iAi = 0 ,
(2.9)

where µ is a scalar, while Ai is a vector quantity. The last term in the
splitting (2.7), ST , cannot be obtained from either a scalar nor a vector.
This is therefore called the tensor part, hence the superscript “T”. The first
two parts are understandably called the scalar and vector parts.

2.2.2 Scalar, vector and tensor perturbations

We can now use the general results (2.6) and (2.9) for vectors and traceless
tensors to decompose the metric (2.4) into scalar, vector and tensor pertur-
bations. Such a decomposition was first proposed by Lifshitz [3].
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The time-time component of the perturbation is already written as a
scalar, so we can just leave it as it is. The time-space components are given by
some three-vector, wi. Using (2.6), we can split this into a scalar component
and a vector component,

wi = ∂iB + Si , (2.10)

where B is some scalar functions and Si is a divergence-free vector field.
In order to use the results in (2.9) on the space-space components of the

metric perturbation, we must first separate these into a traceless part and a
trace part,

hij =
1

3
hδij + htl

ij , (2.11)

where h = Trh =
∑

i hii and htl
ij is traceless. (The superscript ’tl’ stands for

’traceless’.) We can now use (2.7) and (2.9) on htl
ij,

htl
ij = (∂i∂j −

1

3
δij∇2)µ+ ∂iFj + ∂jFi + hT

ij , (2.12)

where µ is some scalar function, Fi some divergence-free vector field and
∂ih

T
ij = 0. The total space-space component of the metric perturbations is

hij =
1

3
(h−∇2µ)δij + µ,ij + Fi,j + Fj,i + hT

ij . (2.13)

In order to be in agreement with the standard reference [5], we define two
new scalar functions, ψ and E,

1

3
(h−∇2µ) ≡ 2ψ and µ ≡ −2E . (2.14)

Thus, the scalar metric perturbations are

δgscalar
µν = a2(η)

(
2φ −B,i

−B,i 2(ψδij − E,ij)

)
, (2.15)

the vector perturbations are

δgvector
µν = −a2(η)

(
0 Si

Si Fi,j + Fj,i

)
, (2.16)

while the tensor perturbations are

δgtensor
µν = a2(η)

(
0 0
0 hT

ij

)
(2.17)
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How many degrees of freedom are there in the total metric perturbation?
In the scalar perturbations there are four scalar functions and therefore four
degrees of freedom. The vector perturbations have four degrees of freedom
since they consist of two divergence-free three-vectors, and finally, there are
two degrees of freedom in the tensor perturbations, since they are made up
of a symmetric three-tensor of rank two with a vanishing three-divergence.
Thus, there are ten degrees of freedom in all, just as we would expect.

Now that we’ve completed the decomposition of the perturbations into
scalar, vector and tensor perturbations, one might ask why we do this. There
are two good reasons for doing so, one is mathematical while the other is
physical.

Considering the mathematical first, it turns out that the perturbed Ein-
steinian equations decouple into a scalar equation, vector equations and ten-
sor equations. Each part evolves independently of the others, at least to the
first order, and we need therefore only consider one at a time. If, for ex-
ample, we are interested in how the scalar part of the perturbations evolve,
we can simply set the vector and tensor perturbations equal to zero and get
equations which determine the scalar functions completely.

Physically, there is also the advantage that the scalar, the vector and
the tensor perturbations have different physical interpretations. The scalar
perturbations are the only ones which affect the dynamics of the energy
in the universe, and they are the only ones which can give gravitational
collapse. The physical effect of the vector perturbations is that they give
rise to vorticity. In an expanding universe they will always decay with time.
Finally, the tensor perturbations give rise to gravitational waves.

Since our ultimate goal is to examine the gravitational entropy of a col-
lapsing gas, we are only interested in those perturbations that yield gravita-
tional collapse. Thus, we can disregard the vector and tensor perturbations.
The perturbed metric of interest to us is therefore the perturbed scalar met-
ric,

ds2 = a2(η)
{
(1 + 2φ)dη2 − 2B,idηdx

i − [(1− 2ψ)δij + 2E,ij]dx
idxj

}
.

(2.18)

2.3 Gauge dependence and transformations

In cosmological perturbation theory one deals with two different space-times
or manifolds, one being the unperturbed background space-time, while the
other is the perturbed, physical space-time. The quantities which we seek
to find, namely the perturbed metric, the perturbed energy density and the
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pb

N

M
DD̃

D(pb)

D̃(pb)
εµ

Figure 2.1: A gauge transformation induces a coordinate transformation in
the physical space-time N

perturbed four-velocity are expressed as differences in quantities in these two
space-times. In order to relate quantities defined in these two different space-
times, we must first define how points in the physical space-time relate to
points in the background space-time. Such a definition of a correspondence
of points in the background space-time to points in the physical space-time
is called a choice of gauge. Mathematically, choosing a gauge means defining
a diffeomorphism between the two manifolds which represent the two space-
times. Equipped with such a diffeomorphism, we can now define what is
meant by a perturbation of a quantity defined on these two manifolds.

Let M be the unperturbed space-time and N the perturbed space-time.
Furthermore, let xµ

b be a set of coordinates defined on M. Any diffeo-
morphism from M into N , D :M 7→ N , will induce a set of coordinates,
xµ = D(xµ

b ), on N .
Let pb ∈ M and Q some physical quantity defined in N . Define (0)Q to

be the same physical quantity in M, then, per definition, the perturbation
of Q is

δQ(pb) = Q(p)−(0)Q(pb) , p = D(pb) . (2.19)

If we choose a different diffeomorphism, D̃: M 7→ N , we’ll induce a new set
of coordinates on N . The perturbation will also be different,

δQ̃(pb) = Q̃(p̃)−(0)Q(pb) , p̃ = D̃(pb) . (2.20)

In figure 2.1 we have illustrated such a change in diffeomorphism, which
is usually called a gauge transformation. We see that this transformation
induces a coordinate transformation in N ,

xµ → x′µ = xµ + εµ . (2.21)
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This can in turn be viewed as a coordinate transformation in M for a fixed
diffeomorphism. Assume that we have chosen the diffeomorphism D as the
correspondence between the two manifolds, i.e. xµ = D(xµ

b ). A coordinate
transformation in M will result in a coordinate transformation in N ,

xb → x′b = xb + εb ⇒ x→ x′ = D(xb + εb) ≈ x+ εbD′(xb) ≡ x+ ε . (2.22)

Thus, if we want to study gauge transformations we need simply to look at
infinitesimal coordinate changes in the unperturbed space-time M, without
having to bother with dealing with diffeomorphisms between different space-
times.

The change in the perturbed quantity δQ under the coordinate transfor-
mation (2.21) is

∆δQ(pb) = δQ̃(pb)− δQ(pb) = Q̃(pb)−Q(pb) ≡ −LεQ , (2.23)

where Lε denotes the Lie derivative along the vector εµ. The minus sign in
(2.23) arises from the fact that the Lie derivative is defined to be the change
in a tensor quantity under the inverse coordinate transformation to (2.21),

xµ → x̃µ = xµ − ξµ ⇒ Q→ Q+ LξQ . (2.24)

In appendix A we calculate the Lie derivative of a general tensor of rank two.
This is an expression which we will need a little later.

2.3.1 Scalar coordinate transformations

Since we restrict ourselves to studying scalar perturbations, we must make
sure that the gauge transformations (2.21) only induce scalar changes in the
metric. The infinitesimal change in coordinates, εµ, can be written as

εµ = (ε0, εi) , (2.25)

where εi is some three-vector that can be decomposed into a scalar and a
vector part,

εi = ∂iε+ ε
‖
i . (2.26)

The coordinate transformation (2.21) induces a change in the metric that
is linear in εµ and partial derivatives of this (A.8). Thus, if we want the
metric to preserve its scalar property after such a transformation, we must
demand that ε

‖
i = 0. This leaves us with the following general scalar metric

transformation

η → η′ = η + ε0(η, x) , xi → x′i = xi + δijε,j(η, x) , (2.27)
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where ε0 and ε are general, infinitesimal scalar functions. The new perturbed
metric induced by this coordinate transformations is

δg̃µν = δgµν − Lεgµν , (2.28)

where

Lεgµν = gµλε
λ
,ν + gλνε

λ
,µ + gµν,λε

λ . (2.29)

The components are calculated in appendix B. The values are

[Lεg]00 = 2a2ε̇0 + 2aȧε0 (2.30)

[Lεg]0i = a2
(
ε0 − ε̇

)
,i

(2.31)

[Lεg]ij = −2a2(ε,ij +
ȧ

a
ε0δij) , (2.32)

Inserting these components into (2.28) with µν = 00, 0i and ij respectively,
we get

2a2φ̃ = 2a2φ− 2a2ε̇0 − 2aȧε0 (2.33)

− a2B̃,i = −a2B,i − a2
(
ε0 − ε̇

)
,i

(2.34)

2a2(ψ̃δij − Ẽ,ij) = 2a2(ψδij − E,ij) + 2a2(ε,ij +
ȧ

a
ε0δij) . (2.35)

Integration of these three equations yields the transformation of the scalar
components of the metric under a scalar coordinate transformation. The
result is the following transformation equations

φ̃ = φ− ε̇0 − ȧ

a
ε0 , B̃ = B + ε0 − ε̇ , ψ̃ = ψ +

ȧ

a
ε0 , Ẽ = E − ε (2.36)

In deriving these equations, we have set all integration constants equal to
zero, which means physically that we choose the two coordinate systems to
coincide at the initial time.

From the gauge dependent quantities which appear in (2.36), we can
construct two gauge independent quantities, Φ and Ψ,

Φ = φ+
1

a

∂

∂η
[(B − Ė)a] , Ψ = ψ − ȧ

a
(B − Ė) . (2.37)

The gauge independence of these quantities can be easily verified by using
the transformation rules in (2.36).
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2.3.2 Freedom of gauge choice

In the scalar metric (2.18) there are four perturbing functions, φ, ψ, B and
E. But these are not all uniquely determined. As we have shown above,
these change when we perform a scalar coordinate transformation (2.27).
Since the functions that appear in this coordinate transformation, ε0 and
ε, are arbitrary, we can put two constraints on the metric perturbations by
choosing the coordinate transformation appropriately. Different gauges are
characterized by different choices of constraints on the metric perturbations.
Later we will discuss two such gauges, namely the synchronous gauge and
the conformal Newtonian gauge.

There is an other approach to cosmological perturbation theory which
doesn’t require one to choose a gauge. Instead, one works directly with
gauge invariant quantities. The reason for doing this is that the metric per-
turbations are generally gauge dependent. This is analogous to potentials in
electromagnetism: The potential φ and vector potential A are gauge depen-
dent, while the magnetic field, B, and the electric field, E, which are derived
from these potentials, are gauge independent. The reason for this is that the
electric and the magnetic field are physical quantities, while the potentials
are not. All quantities that correspond to some physical, measurable prop-
erty must be gauge independent. In cosmology, the metric perturbations do
not constitute some physical property, and are therefore gauge dependent.
But by arranging the metric perturbations appropriately into quantities that
can be interpreted physically, we get quantities that are gauge independent.
In gauge invariant perturbation theory one works therefore only with quanti-
ties that have a physical interpretation. This guarantees that they are gauge
independent and that the results one gets are unique.

There have been several attempts to formulate a gauge invariant pertur-
bation theory over the past fourty year, e.g. by Hawking [12] and Olson [13].
But it was Bardeen [6] who first formulated the complete theory of gauge
invariant cosmological perturbations in 1980.

When doing gauge invariant perturbation theory, one must find a suffi-
cient set of gauge invariant quantities and then reformulate the equations
using only these quantities. Any solution of this new set of equations will
then automatically be gauge invariant.

So, how does one find these gauge invariant quantities? They are quanti-
ties that remain unchanged when we make the infinitesimal coordinate trans-
formation (2.21). Using our definition of the Lie derivative, we know that a
general tensor quantity is changed by a quantity equal to the Lie derivative
along the vector field −εµ under the coordinate transformation (2.24). This
leads us to Stewart’s lemma: A general tensor quantity is gauge invariant
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if and only if it has a vanishing Lie derivative along every infinitesimal vector
field.

Two such gauge invariant quantities are the Bardeen potentials, ΦA and
ΦH . These quantities were introduced by Bardeen in [6], and are, up to a
minus sign, equal to the quantities we introduced in (2.37),

Φ = ΦA and Ψ = −ΦH . (2.38)

We shift now our attention to the gauge dependent theory and take a
closer look at two particular gauges.

2.3.3 The synchronous gauge

This was the gauge used by Lifshitz and the first cosmologists who dealt with
the theory of cosmological perturbations. It is defined by the following two
constraints on the scalar perturbations

φ = B ≡ 0 . (2.39)

The drawback of this gauge is that it is not uniquely defined by this require-
ment. There is still the freedom to make a further transformation and still
stay within this gauge. In other words, the metric perturbations are not de-
fined uniquely in this gauge. Thus, it is not clear what metric perturbations
are real, physical perturbations and what are simply coordinate artifacts.

We shall now show this coordinate dependence explicitly. Let (η, xi) and
(η̃, x̃i) be two sets of synchronous coordinates. The synchronous gauge is
determined uniquely if and only if these two sets of coordinates are equal.

The first constraint of the synchronous gauge requires that φ and φ̃ are
equal to zero. Inserting this into (2.36) gives

ȧ

a
ε0 = −ε̇0 ⇒ −da

a
=
dε0

ε0
.

Integration of this expression yields

ε0 =
C1(x)

a
, (2.40)

where C1(x) is an arbitrary function of spatial coordinates only. The second

constraint dictates that we put B = B̃ = 0 in (2.36), which gives the following
expression

ε̇ = ε0 ⇒ ε =

∫
ε0dη .
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We insert ε0 from (2.40) and get

ε = C1(x)

∫
dη

a
+ C2(x) , (2.41)

where, again, C2(x) is an arbitrary function of spatial coordinates only. Thus,
the relation between the two sets of coordinates, (η, xi) and (η̃, x̃i), is

η̃ = η +
C1(x)

a
, x̃i = xi + δij

[
C1,j(x)

∫
dη

a
+ C2,j(x)

]
. (2.42)

This shows that the two sets of coordinates are not necessarily equal, and
that by making an appropriate coordinate transformation we get another set
of synchronous coordinates from an already existing one. This proves our
claim that the synchronous gauge is not defined uniquely.

2.3.4 The conformal Newtonian gauge

The conformal Newtonian gauge is defined by the two constraints

B = E ≡ 0 . (2.43)

Is this gauge uniquely defined or is it possible, just as in the synchronous
gauge, to make a further coordinate transformation within it? To answer this
question, we again define two sets of coordinates, (η, xi) and (η̃, x̃i), and take

these to be conformal Newtonian coordinates. The constraint E = Ẽ = 0
determines ε uniquely,

ε = 0 , (2.44)

while the other constraint, B = B̃ = 0, gives us

ε0 = ε̇ = 0 . (2.45)

Thus, the two sets of coordinates are identical,

η̃ = η , x̃i = xi . (2.46)

The Newtonian coordinates, and hence also the metric perturbations, are
determined uniquely. This means that there are no coordinate effects in the
resulting perturbations. All solutions found when working in this gauge are
pure, physical solutions. This can also be seen directly by realizing that
the two remaining metric perturbations, φ and ψ, are equal to the gauge
independent quantities Φ and Ψ in this gauge. Because of this property of
invariance of metric perturbations, we will be using the conformal Newtonian
gauge from now on. The line element which we will be using will then take
the following form

ds2 = a2(η)
{
(1 + 2Ψ)dη2 − (1− 2Φ)δijdx

idxj
}
. (2.47)
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2.4 The energy-momentum tensor

So far we have only considered perturbations in the metric tensor, i.e. geo-
metric perturbations. However, geometry and energy are closely related to
each other via Einstein’s field equations of general relativity,

Gµ
ν = 8πGT µ

ν , (2.48)

where T µ
ν is the energy-momentum tensor, and Gµ

ν = Rµ
ν − 1

2
gµ

νR is the
Einstein tensor. Thus, a perturbation in the metric must be matched by a
similar perturbation in the energy-momentum tensor. Or, in other words, a
perturbation in the geometry of space must be matched by a perturbation
in the matter or energy that occupies that space.

The energy-momentum tensor that is used in cosmology is that of a hy-
drodynamical medium. For a perfect fluid without any anisotropic stress,
this can be written as

T µ
ν = (ρ+ p)uµuν − pδµ

ν , (2.49)

where ρ is the energy density, p the pressure and uµ is the four-velocity of the
medium. Since the metric is just the FRW-metric to the zeroth order, which
is co-moving to the medium, the spatial components of the four-velocity
vanish to this order,

(0)ui = 0 . (2.50)

The zeroth component of the unperturbed four velocity can be obtained from
the line element (2.47) by setting dxi = 0 and Φ = Ψ = 0, which gives us

(0)u0 =
dη

ds
= a−1 . (2.51)

We can use the Krönecker delta to write the total unperturbed four-velocity
into one expression,

(0)uµ = a−1δµ
0 . (2.52)

The total four-velocity can be written as a perturbation to this non-perturbed
velocity,

uµ = a−1δµ
0 + δuµ . (2.53)

This expression has to satisfy the four-velocity identity, gµνu
µuν = 1, which

puts a constraint on the perturbed components. Insertion into the four-
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velocity identity gives

gµνu
µuν = gµν(a

−1δµ
0 + δuµ)(a−1δν

0 + δuν)

= gµν(a
−2δµ

0 δ
ν
0 + a−1δµ

0 δu
ν + a−1δν

0δu
µ)

= a−2g00 + a−1goνδu
ν + a−1gµ0δu

µ = a−2g00 + 2a−1gµ0δu
µ

= a−2g00 + 2a−1g00δu
0 + 2a−1g0iδu

i = a−2g00 + 2a−1g00δu
0

= 1 + 2Φ + 2aδu0 !
= 1

Thus, the constraint on the four-velocity reads

δu0 = −a−1Φ . (2.54)

This expression doesn’t involve the spatial components of the four-velocity,
which therefore remain as parameters that have to be determined by use of
Einstein’s field equations. Finally, we are left with the following expression
for the total four-velocity

u0 = a−1(1− Φ) and ui = δui . (2.55)

Equipped with the four-velocity of the energy/matter content of the Uni-
verse, we can easily calculate the components of the energy-momentum ten-
sor. Keeping only terms up to the first order, the time-time component
becomes

T 0
0 = (ρ+ p)u0u0 − p = (ρ+ p)u0g0µu

µ − p

= (ρ+ p)a−1(1− Φ)g00u
0 − p

= (ρ+ p)a−1(1− Φ)a2(1 + 2Φ)a−1(1− Φ)− p

= (ρ+ p)a−1(1− Φ)a(1 + Φ)− p = ρ .

The time-space components are

T 0
i = (ρ+ p)u0ui = (ρ+ p)a−1(1− Φ)giµu

µ

= (ρ+ p)a−1(1− Φ)giju
j

= (ρ+ p)a−1(1− Φ)
[
−a2 ((1− 2Φ)δij + 2E,ij) δu

j
]

= −(ρ+ p)a(1− Φ)δui = −(ρ+ p)aδui

= −(ρ0 + p0)aδu
i ,

where we again have kept terms only up to the first order, and ρ0 and p0 are
the unperturbed energy density and pressure, respectively.
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Finally, the space-space components are

T i
j = (ρ+ p)uiuj − pδi

j = (ρ+ p)δuiδuj − pδi
j ' −pδi

j .

In summary, the energy-momentum tensor split in zeroth and first order
parts is

(0)T 0
0 = ρ0 , δT 0

0 = δρ (2.56)
(0)T 0

i = 0 , δT 0
i = −(ρ0 + p0)aδu

i (2.57)
(0)T i

j = −p0δ
i
j , δT i

j = −δpδi
j . (2.58)

2.4.1 The equation of state

The pressure, which appears in the energy-momentum, is determined by the
equation of state of the medium. This is an equation which gives the pres-
sure as a function of other physical quantities. In a general hydrodynamical
medium, the pressure is a function of two quantities, namely the energy
density, ρ, and the entropy per particle, S,

p = p(ρ, S) . (2.59)

Fluctuations in the pressure will then arise from fluctuations in the energy
density and the entropy per particle,

δp =
∂p

∂ρ
δρ+

∂p

∂S
δS

def.
= c2sδρ+

∂p

∂S
δS , (2.60)

where c2s = ∂p
∂ρ

is interpreted as the speed of sound in the medium when
∂p
∂ρ
> 0.
In a one-component ideal gas there are no perturbations in the entropy

per particle. Such perturbations arise only as a result of interactions between
different components of a multi-component gas. In this thesis we will only
consider one-component ideal gases, namely either pure matter universes,
pure radiation universes or a universe with only vacuum energy. We can
therefore put δS = 0. These types of perturbations where the entropy per
particle doesn’t change are called adiabatic perturbations or, sometimes, cur-
vature perturbations. Perturbations which arise from perturbations in the
entropy per particle are called entropy perturbations or isocurvature per-
turbations. The latter form of perturbations will generally be present in a
multi-component fluid.

The equation of state of an ideal gas is

p = wρ , (2.61)
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where w takes the values 0, 1
3

and −1 for matter, radiation and vacuum
energy, respectively. Since there are no entropy perturbations, the speed of
sound is simply c2s = w, and the pressure perturbation is

δp = wδρ . (2.62)

2.5 Einstein’s field equations

2.5.1 The Einstein tensor

In order to use Einstein’s field equations to get the desired differential equa-
tions that govern the evolution of the perturbed quantities, we must first
calculate the Einstein tensor. The Einstein tensor is expressed through the
Ricci tensor Rµ

ν , which in turn is expressed through the Christoffel symbols
Γµ

νλ. The definitions of these two quantities are

Rµν = Γλ
µν,λ − Γλ

µλ,ν + Γλ
µνΓ

σ
λσ − Γλ

µσΓσ
λν , (2.63)

and

Γµ
νλ =

1

2
gµσ(gνσ,λ + gλσ,ν − gνλ,σ) . (2.64)

We see that there are a lot calculations involved if we want to determine
the Einstein tensor. Instead of doing this be hand, we will let a computer
program do that for us. The program we will use for this is “Maple” with
an additional package called “GRTensorII”1. This package is developed es-
pecially for performing calculations in general relativity. In appendix C the
reader is guided through the steps taken in order to determine the compo-
nents of the Einstein tensor up to the first order, in a universe described by
a conformal Newtonian metric.

The computer program gives us the following zeroth order components

(0)G0
0 =

3

a2
H2 , (2.65)

(0)G0
i = 0 , (2.66)

(0)Gi
j =

1

a2

[
H2 + 2Ḣ

]
δi
j (2.67)

where H is a “Hubble type” parameter,

H =
ȧ

a
. (2.68)

1http://grtensor.phy.queensu.ca/
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The first order components are

δG0
0 =

2

a2

[
∇2ψ − 3H(Ψ̇ + ΦH)

]
. (2.69)

δG0
i =

2

a2

[
Ψ̇ +HΦ

]
,i
. (2.70)

δGi
j = − 2

a2

[(
[H2 + 2Ḣ]Φ + Ψ̈ + 2HΨ̇ +HΦ̇ +

1

2
∇2D

)
δi
j −

1

2
D,ij

]
. (2.71)

where D = Φ−Ψ.

2.5.2 Simplification of the equations, Φ = Ψ

The tensor components we have calculated above can be simplified greatly
by realizing that the two metric perturbations Φ and Ψ are equal. We will
show that this will always be the case when the spatial part of the perturbed
energy-momentum tensor is diagonal, i.e. when δT i

j ∝ δi
j, which is the case

when there is no shear in the hydrodynamical medium.
Consider the ij component of perturbed Einstein tensor (2.71) with i 6= j.

According to Einstein’s field equations, this must be proportional to δT i
j ,

which vanishes for i 6= j. The off-diagonal elements of the spatial part of the
perturbed Einstein tensor are δGi

j ∝ D,ij (i 6= j). Thus, we get the following
equation for D,

D,ij = 0 . (2.72)

The solution to this homogeneous partial differential equation can be ex-
panded in Fourier modes,

D(x) =

∫
d3k

(2π)3
D(k)e−ikx . (2.73)

Double differentiation with respect to the coordinates xi and xj yields

∂2D(x)

∂xi∂xj
=

∫
d3k

(2π)3
D(k) (−kikj) e

−ikx . (2.74)

This expression vanishes if and only if each of the Fourier modes vanishes,

−kikjD(k)
!
= 0 , (2.75)

which implies that

D(k) = 0 . (2.76)
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Insertion back into the expression (2.73) leads us to the desired result,

D(x) = 0 . (2.77)

Thus, we get the important result that

Φ(x, η) = Ψ(x, η) . (2.78)

2.5.3 Simplified Einstein tensor

With the result (2.78), the line element can be written by use of only one
perturbing function,

ds2 = a2(η)
{
(1 + 2Φ)dη2 − (1− 2Φ)δijdx

idxj
}
. (2.79)

The same goes for the perturbed Einstein tensor, which now simplifies to

δG0
0 =

2

a2

{
∇2Φ− 3H(Φ̇ +HΦ)

}
, (2.80)

δG0
i =

2

a2

{
Φ̇ +HΦ

}
,i
, (2.81)

δGi
j = − 2

a2

{
(H2 + 2Ḣ)Φ + Φ̈ + 3HΦ̇

}
δi
j. (2.82)

2.5.4 The Einstein equations

We now have everything we need in order to compute the Einstein equa-
tions for our model. The energy-momentum tensor is listed in (2.56)-(2.58),
while the components of the Einstein tensor can be found in (2.65)-(2.67)
and (2.80)- (2.82). Using Einstein’s field equations (2.48), we get the differ-
ential equations that govern the evolution of the energy density and metric
perturbations.

We start with the zeroth order equations, which should simply yield the
Friedmann equations. The time-time component is

H2 =
8

3
πGa2ρ0 . (2.83)

The space-space components are

H2 + 2Ḣ = −8πGa2p0 = −8πGa2wρ0 , (2.84)

where we have expressed the pressure in terms of the energy density through
the equation of state (2.61).
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Next, we consider the first order Einstein equations. The time-time com-
ponent is

∇2Φ− 3H(Φ̇ +HΦ) = 4πGa2δρ . (2.85)

If we take the Newtonian limit of this equation, i.e we let a→ 1 and H → 0,
it reduces to

∇2Φ = 4πGδρ . (2.86)

We recognize this equation as the Poisson equation for ordinary Newtonian
gravity, where Φ is the gravitational potential due to the mass-inhomogeneity
δρ. This explains why this gauge is called the conformal Newtonian gauge.

Instead of using the perturbed energy density, it is often more convenient
to use the quantity known as the density contrast, δ. This quantity is defined
as

δ =
δρ

ρ0

. (2.87)

In terms of the density contrast, the time-time component of the Einstein
equations can be written as

∇2Φ− 3H(Φ̇ +HΦ) = 4πGa2ρ0δ . (2.88)

We can use the zeroth order equation (2.83) to eliminate the unperturbed
energy density and the scale factor from the right hand side of this equations.
This leaves us with the following equation

∇2Φ− 3H(Φ̇ +HΦ) =
3

2
H2δ . (2.89)

The time-space components are{
Φ̇ +HΦ

}
,i

= −3

2
H2(1 + w)aδui , (2.90)

while the space-space components are

(H2 + 2Ḣ)Φ + Φ̈ + 3HΦ̇ =
3

2
H2wδ . (2.91)

2.5.5 Solutions to the zeroth order equations

In order to solve the first order equations, which are the equations that really
are of interest to us, we must first find the zeroth order quantities H, a and
ρ0. These are determined by the zeroth order equations (2.83) and (2.84),
which are simply the Friedmann equations for a flat universe model expressed
in conformal time. We will now solve these equations.
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A linear combination of (2.83) and (2.84) eliminates H2 from these equa-
tions,

Ḣ = −4

3
πGρ0a

2(1 + 3w) . (2.92)

Further, we can use (2.83) to express the right hand side of this equation in
terms of only H,

Ḣ = −1

2
H2(1 + 3w) . (2.93)

An integration of both sides of this equation yields

H−1 =
1

2
(1 + 3w)η + C0 , (2.94)

where C0 is a constant of integration which will be determined below.
The next step is to determine the scale factor, a. This is done by use of

(2.94) along with the defining equation for H, (2.68). An integration of the
latter gives us the scale factor,∫

da

a
=

∫
Hdη . (2.95)

This is a rather simple separable first order differential equation, which yields

a = C1

(
1

2
(1 + 3w)η + C0

) 2
1+3w

, (2.96)

where, again, C1 is some constant of integration. These constants can be
determined by imposing appropriate normalization and boundary condition.
For a Universe model where w 6= −1, we can impose the condition that a
vanishes at η = 0. This implies that C0 = 0. Furthermore, we impose the
normalization that a = 1 when η = η0. This allows us to write the scale
factor and the “Hubble parameter” in the following simple form

a =

(
η

η0

) 2
1+3w

and H =
2

1 + 3w

1

η
, w 6= −1 . (2.97)

We can use these two expressions along with equation (2.83) to find the
unperturbed energy density ρ0. The result is

ρ0(η) =
3η

4
1+3w

0

2πG
η−

6(1+w)
1+3w . (2.98)

It is often more common to express cosmological quantities such as these
in co-moving time rather than conformal time. We will therefore derive an
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expression that relates the co-moving time to conformal time. This expression
is given by the integral equation in (2.2),

t =

∫ η

0

a(η′)dη′ = η
− 2

1+3w

0

∫ η

0

η′
2

1+3w dη′ =
1 + 3w

3(1 + w)
η
− 2

1+3w

0 η
3(1+w)
1+3w . (2.99)

The comoving time that corresponds to η0 is

t0 =
1 + 3w

3(1 + w)
η0 . (2.100)

Using this expression, we can write (2.99) as

t = t0

(
η

η0

) 3(1+w)
1+3w

, (2.101)

or, if we instead want to express the conformal time as a function of comoving
time,

η = η0

(
t

t0

) 1+3w
3(1+w)

. (2.102)

We insert this expression into (2.97) and arrive at an expression for the scale
factor expressed in comoving time,

a(t) =

(
t

t0

) 2
3(1+w)

. (2.103)

Having used expression (2.97), these results are valid only for Universe
models where w 6= −1, i.e. they are not valid for a Universe which is domi-
nated by vacuum energy. For such models we have to go back to expression
(2.96), and choose an other value for C0. We can no longer demand that
a(η = 0) = 0. Setting w = −1 in (2.96) gives the following scale factor

a =
C1

C0 − η
, (2.104)

while H becomes

H =
1

C0 − η
. (2.105)

If we divide (2.105) with (2.104) we will get a constant. According to equation
(2.83), this implies that ρ0 is constant. Define the following constant

HΛ =

√
8πGρ0

3
. (2.106)
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Equation (2.83) can now be written as

ȧ = a2HΛ . (2.107)

This is a fairly simple equation to integrate. Again, we choose the normal-
ization condition a(η0) = 1. The result is

a =
1

1−HΛ(η − η0)
. (2.108)

Next, we find the relation between conformal and comoving time. This is
given by the integral ∫ t

t0

dt′ =

∫ η

η0

a(η′)dη′ . (2.109)

Inserting from (2.108) for a(η) and performing the integration, we get the
following result

t− t0 = − 1

HΛ

ln (1−HΛ(η − η0)) . (2.110)

Inverting this expression, we arrive at

1−HΛ(η − η0) = e−HΛ(t−t0) . (2.111)

Finally, we insert this expression into (2.108), which gives us the following
scale factor for a vacuum dominated universe expressed in comoving time

a(t) = eHΛ(t−t0) . (2.112)

We can summerize the results for the three universe models which we consider
in this thesis into the following simple expressions. The relation between
conformal and comoving time is

η =

η0 + 1
HΛ

(
1− e−HΛ(t−t0)

)
for w = −1

η0

(
t
t0

) 1+3w
3(1+w)

for w = 0 , 1
3

(2.113)

The scale factor is

a(t) =

eHΛ(t−t0) for w = −1(
t
t0

) 2
3(1+w)

for w = 0 , 1
3

(2.114)



26 Chapter 2. Theory of cosmological perturbations

2.6 Conservation of four-momentum

In addition to the field equations (2.89)- (2.91), it is often useful to find the set
of equations that define the conservation of four-momentum. However, the
Einstein equations automatically satisfy four-momentum conservation. Thus,
the latter set of equations is not a new set of dynamic equations that have to
be satisfied in addition to the Einstein equations. The reason that we want to
derive these equations is that their form is simpler than that of the Einstein
equations. This allows us to substitute some of the Einstein equations with an
appropriate amount of four-momentum conservation equations, which results
in a simpler set of equations to solve. Also, we can use these equations to
verify whether a calculated solution to the Einstein equations is correct.

The condition for four-momentum conservation is stated by the require-
ment that the energy-momentum tensor must be divergence-free,

T ν
µ;ν = 0 . (2.115)

We can write out the left hand side of this equation by using the familiar
formula for the covariant derivative of a tensor of rank two,

T ν
µ;ν = T ν

µ,ν + T λ
µ Γν

λν − T ν
λ Γλ

µν . (2.116)

The Christoffel symbols are calculated using the GRTensorII package for the
computer program Maple. A transcript of these calculations can be found in
appendix D.

2.6.1 Conservation of energy

The zeroth component of (2.115) is the conservation equation for energy,

T ν
0;ν = T ν

0,ν + T λ
0 Γν

λν − T ν
λ Γλ

0ν ≡ T1 + T2 + T3 . (2.117)

The first term of this expression is

T1 = T ν
0,ν = T 0

0,0 + T i
0,i . (2.118)

Using (2.56)-(2.58) and (2.61)-(2.62), we write this as

T1 = ρ̇0(1 + δ) + ρ0δ̇ + aρ0(1 + w)δui
,i . (2.119)

The second term in (2.117) is

T2 = T λ
0 Γν

λν = T 0
0 Γ0

00 + T 0
0 Γi

0i + T i
0Γ

0
i0 + T i

0Γ
j
ij . (2.120)
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The last two terms in this expression are of order two, and we can therefore
disregard them. We end up with

T2 = T 0
0 Γ0

00 + T 0
0 Γi

0i

= ρ0(1 + δ)(H + Φ̇) + 3(1 + δ)(H− Φ̇)

= 2ρ0(2H + 2Hδ − Φ̇) (2.121)

The third term in (2.117) is

T3 = −T ν
λ Γλ

0λ = −
{
T 0

0 Γ0
00 + T 0

i Γi
00 + T i

0Γ
0
0i + T i

jΓ
j
0i

}
. (2.122)

The terms in the middle of this expression can be disregarded since they are
of second order. Thus, we are left with the following expression

T3 = −
{
T 0

0 Γ0
00 + T i

jΓ
j
0i

}
= −

{
ρ0(1 + δ)(H + Φ̇)− wρ0(1 + δ)δi

jδ
j
i (H− Φ̇)

}
= −ρ0(H +Hδ + Φ̇) + 3wρ0(H +Hδ − Φ̇) . (2.123)

Finally, we arrive at the expression for energy conservation by adding the
three terms calculated above

T ν
0;ν =ρ̇0(1 + δ) + ρ0δ̇ + aρ0(1 + w)δui

,i

+ ρ0(3H + 3Hδ − 3Φ̇) + 3wρ0(H +Hδ − Φ̇) = 0 . (2.124)

The zeroth order part of this equation is

ρ̇0 + 3Hρ0(1 + w) = 0 , (2.125)

while the first order part is

δ̇ + a(1 + w)δui
,i − 3Φ̇(1 + w) = 0 . (2.126)

We recognize the zeroth order equation as the energy conservation equation
for the FRW models, as we would expect.

2.6.2 Conservation of momentum

The spatial components of equation (2.115) express conservation of momen-
tum. We divide this expression into three terms and calculate each term
independently,

T ν
i;ν = T ν

i,ν + T λ
i Γν

λν − T ν
λ Γλ

iν ≡ T̃1 + T̃2 + T̃3. (2.127)
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The first term in this equation is

T̃1 = T ν
i,ν = T 0

i,0 + T j
i,j , (2.128)

which, when written out, produces the following expression

T̃1 = −(1 + w)(ρ̇0aδu
i + ρ0ȧδu

i + ρ0a ˙δu
i
)− wρ0δ,i

= −(1 + w)a(ρ̇0δu
i + ρ0Hδui + ρ0

˙δu
i
)− wρ0δ,i . (2.129)

Next, we calculate the second term in (2.127). Symbolically, this can be
written as

T̃2 = T λ
i Γν

λν = T 0
i Γ0

00 + T 0
i Γj

0j + T j
i Γ0

j0 + T j
i Γk

jk . (2.130)

We insert the explicit components of the energy-momentum tensor and the
Christoffel symbols into this expression, which yields

T̃2 = −ρ0a(1 + w)δui(H + Φ̇)− 3ρ0a(1 + w)δui(H− Φ̇)

− wρ0(1 + δ)δj
i Φ,j − wρ0(1 + δ)δj

i (Φ,jδjk − Φ,jδkk − Φ,kδkj)

= 2wρ0Φ,i − 4ρ0aH(1 + w)δui . (2.131)

The last term in (2.127) is

−T̃3 = T ν
λ Γλ

iν = T 0
0 Γ0

i0 + T 0
j Γj

i0 + T j
0 Γ0

ij + T j
kΓk

ij . (2.132)

When we write out this expression, we get

−T̃3 = ρ0(1 + δ)Φ,i − ρ0a(1 + w)δujδj
i (H− Φ̇)

+ aρ0(1 + w)δujδij(H− 4HΦ− Φ̇)− wρ0δ
j
k(Φ,kδij − Φ,iδkj − Φ,jδik)

= ρ0Φ,i + 3wρ0Φ,i . (2.133)

Going back to equation (2.127), we can write the equation for momentum
conservation as the sum of the three terms calculated above. This gives us
an expression where all terms contain a common factor that is either the
zeroth order density or the derivative of this. If we use the zeroth order
energy conservation equation, we can write the derivative of the zeroth order
density in terms of the zeroth order density and the Hubble parameter. Thus,
we get a common factor, ρ0, in the expression for momentum conservation,

T ν
i;ν = −(1 + w)a

{
ρ0H(2− 3w)δui + ρ0

˙δu
i
}

− (1 + w)ρ0Φ,i − wρ0δ,i = 0 . (2.134)
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We see that this expression is a pure first order expression. Momentum
conservation is satisfied trivially to the zeroth order.

The common factor ρ0 can be factored out, which allows us to write the
momentum conservations in a little more compact form,

aH(1 + w)(2− 3w)δui + a(1 + w) ˙δu
i
+ (1 + w)Φ,i + wδ,i = 0 . (2.135)
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Chapter 3

Solutions of the first order
equations

In the previous chapter we derived the differential equations that determine
the perturbed quantities δ, Φ and δui in the conformal Newtonian gauge.
This was done in a general sense, i.e. no symmetries were assumed for the
perturbations. The three perturbed quantities mentioned above are deter-
mined by the three coupled partial differential equations (2.89)-(2.91). Our
goal in this chapter is to solve these differential equations.

We shall consider three types of hydrodynamical media. These are media
which consist of only dust/matter, only radiation energy or only vacuum
energy. We’ll obtain the differential equations equivalent to (2.89)-(2.91) for
each of these cases and solve them analytically where possible.

3.1 General solutions in the case of a dust

dominated model

Although the solutions to the equations (2.89)-(2.91) will generally depend
on the symmetries imposed on the perturbations, it turns out that in the case
of the dust dominated model, a general solution can be found regardless of
any symmetries. We will therefore start out by considering a dust dominated
model, i.e. a model in which w = 0. This gives us the following scale factor
and Hubble parameter

a =

(
η

η0

)2

and H =
2

η
. (3.1)

We see immediately that the differential equation (2.91) decouples from the
other differential equations, and we are left with a homogeneous differential

31
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equation for only the metric perturbation Φ. Inserting for for a and H, the
equation simplifies to

Φ̈ +
6

η
Φ̇ = 0 . (3.2)

First, we integrate this differential equation with respect to Φ̇,∫
dΦ̇

Φ̇
= −

∫
6
dη

η
. (3.3)

The solution to this integral equation is

Φ̇ = −5C2(x)
1

η6
, (3.4)

where is C2(x) is an integration constant with respect to η. A further inte-
gration of this expression yields the desired result

Φ(x, η) = C2(x)
1

η5
+ C1(x) , (3.5)

where, again, C1(x) is an integration constant with respect to η.
Next, we use (2.89) to determine the density contrast. For a dust domi-

nated universe, this expression can be written as

δ =
η2

6

(
∇2Φ− 6

η
Φ̇− 12

η2
Φ

)
. (3.6)

When we insert the expression (3.5) for Φ, we get the following result

δ(x, η) =
1

6

(
1

η3
∇2C2(x) +

18

η5
C2(x) + η2∇2C1(x)− 12C1(x)

)
. (3.7)

The remaining perturbed quantity, δui, is determined by using the expression
(2.90),

δui = −η
2
0

6

[
Φ̇ +

2

η
Φ

]
,i

. (3.8)

This gives us the following expression for the perturbed four-velocity

δui = η2
0

[
1

2

∂C2(x)

∂xi

1

η6
− 1

3

∂C1(x)

∂xi

1

η

]
. (3.9)

If we now look at the expression for the density contrast (3.7), we see that
this consists of two types of solutions. The first type is those in which C2

is zero, while C1 is not. These solution grow with time, and hence, are
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called growing solutions, or the growing modes if we expand the solutions
into Fourier modes and look at each mode separately.

The other type of solutions is those in which C1 = 0 and C2 6= 0. These
decay with time, and are therefore called the decaying solutions, or decaying
modes. Since we are interested mainly in perturbations that produce grav-
itational clustering, we need only consider the growing modes. Thus, the
solutions that are of interest to us simplify to the following

Φ(x, η) = C1(x) , (3.10)

δ(x, η) =
1

6
∇2C1(x)η2 − 2C1(x) , (3.11)

δui(x, η) = −η
2
0

3

∂C1(x)

∂xi

1

η
. (3.12)

We can at this point draw a very important conclusion: The first of these
expressions tells us that in a matter dominated model in which there is a
clustering of matter or energy, the metric perturbation is constant in time.
Since we have shown that the metric perturbation can be interpreted as
the gravitational potential due to clustering, we can state equivalently that
the gravitational potential remains constant when matter clusters together.
This can also be seen from examining the acceleration, g, of an object falling
freely under the influence of gravity. In the Newtonian limit, the value of
this quantity is given by the following Christoffel symbol [14]

gi = −Γi
00 . (3.13)

Inserting from (D.5), we get

gi = −Φ,i . (3.14)

Thus, a constant Φ leads to a vanishing gravitational acceleration and there-
fore; a constant gravitational potential.

Let’s examine what these solutions look like when expressed in co-moving
time instead of conformal time. We use the relation (2.113) and find that
in a dust dominated universe, the co-moving time relates to the conformal
time in the following manner: η ∝ t

1
3 . Inserted into expression (3.11), we

find that the growing solution of δ increases proportionally to t2/3.

3.1.1 Fourier decomposition

Often one is only interested in perturbations of a length scale that is either
much smaller or much lager than the Hubble length. These two extremes
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can be examined by decomposing the solutions into Fourier modes and then
limit one self to those modes which have a wavelength that is either much
larger or much smaller than the Hubble length. The Hubble length in a dust
dominated FRW model is

LH = H−1 =
η

2
∼ η . (3.15)

Consider the expression (3.11). We expand both the density contrast and
the function C1(x) into Fourier modes,

δ(x, η) =

∫
d3k

(2π)3
δk(η)e

−ikx (3.16)

and

C1(x) =

∫
d3k

(2π)3
Cke

−ikx , (3.17)

where k is the wave vector.

Using these expansions, the expression (3.11) can be written as a series
of expressions for each of the Fourier modes. For a given mode k, the Fourier
mode for the density contrast is

δk(η) = −2Ck

[
1 +

k2

12
η2

]
. (3.18)

The wavenumber k is inversely proportional to the co-moving wavelength of
the mode,

k =
2π

λ
∼ λ−1 . (3.19)

From equation (3.15) and (3.19) we see that

kη ∼ LH

λ
. (3.20)

This tells us that the length scales of the Fourier modes are given by the
expression kη. We see that kη � 1 is equivalent to LH � λ and similarly
kη � 1 implies that LH � λ. This means that modes with a large kη are
well inside the Hubble length, and conversely, modes with small kη are much
larger than the Hubble length.

Consider modes that are much smaller than the Hubble length. These will
have a kη that is much larger than unity. The expression in the brackets in
(3.18) tends to ∼ η2 for these modes. While for modes that are much larger
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than the Hubble length, for which kη � 1, the same expression tends to a
constant. Thus, the density contrast has the following asymptotic behaviour

δk(η) ∝

{
constant , for kη � 1 (λ� LH)

η2 = t2/3 , for kη � 1 (λ� LH)
, (3.21)

while the metric perturbation is constant for all scales,

Φk(η) ∝ constant, ∀ kη . (3.22)

3.1.2 Time evolution of a particular mode

We will now illustrate how a particular mode of the density contrast evolves
with time. Consider a mode with a wave number k and which at a time η0

is a pure sine wave,
δ(x, η0) = δ0 sinkx . (3.23)

To simplify matters somewhat, we shall restrict ourselves to a plane symmet-
ric wave, i.e. we let x → x. The results we get apply also to e.g. cylindrical
and spherical waves if we instead let x → r. We assume that we can write
C1(x) on a similar form,

C1(x) = Ak sin kx . (3.24)

The constant Ak is determined by use of the expression (3.7) with η equal to
η0, which gives us

Ak = − δ0

2(1 + k2

12
η2

0)
. (3.25)

Finally, we arrive at the expression for the time evolution of the density
contrast in this particular case by reinserting the expressions (3.24) and (3.25)
into (3.11). The answer is

δ(x, η) =
δ0

1 + k2

12
η2

0

[
1 +

k2

12
η2

]
sin kx . (3.26)

We can find a two-dimensional plot of this density perturbation in figure 3.1.
The constants chosen in order to obtain this plot were δ0 = 10−5 for the
amplitude of the density perturbation, and kη0 = 10 for the length scale.
This choice of length scale insures that the solution is a time growing one,
and not constant.

The metric perturbation that corresponds to the density perturbation
(3.26) is

Φ(x, η) = − δ0

2(1 + k2

12
η2

0)
sin kx . (3.27)

This too is plotted in figure 3.1.
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Figure 3.1: (a) A plot of the evolution of the density contrast in a matter
dominated universe. The initial perturbation is a plane wave with amplitude
δ0 = 10−5 and kη0 = 10. (b) The corresponding metric perturbation
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3.2 Pure vacuum energy perturbations

For vacuum energy, the ratio of pressure to energy density is w = −1. The
zeroth order parameters that will appear in the Einstein equation (2.89)-
(2.91) are

a =
1

1−HΛ(η − η0)
, (3.28)

H = − HΛ

1−HΛ(η − η0)
, (3.29)

and

Ḣ =
H2

Λ

(1−HΛ(η − η0))
2 . (3.30)

The three Einstein equations can now be written as

1

H2
Λ

(1−HΛ(η − η0))
2∇2Φ− 3

HΛ

(1−HΛ(η − η0)) Φ̇− 3Φ =
3

2
δ , (3.31)

∂

∂xi

(
Φ̇− HΛ

1−HΛ(η − η0)
Φ

)
= 0 , (3.32)

and

1

H2
Λ

(1−HΛ(η − η0))
2 Φ̈− 3

HΛ

(1−HΛ(η − η0)) Φ̇ + 3Φ = −3

2
δ . (3.33)

We can in principle solve these coupled differential equations, but in this
particular case there is a much easier way to obtain the solutions. We know
that any solution to these equations must also solve the equations for the
four-momentum conservation. For a pure vacuum model these equations
take a particularly simple form. The energy conservation equation (2.126)
becomes

δ̇ = 0 , (3.34)

while the momentum conservation equation (2.135) reduces to

δ,i = 0 . (3.35)

Equation (3.34) tells us that the density contrast cannot depend on time.
Using the second equation (3.35), we must conclude that the density contrast
cannot depend on spatial coordinates either. Thus, it must be a constant in
both time and space,

δ(x, η) = δ0 . (3.36)
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The total energy density, which can be written as

ρ(x, η) = ρ0(η)(1 + δ(x, η)) , (3.37)

must then be homogeneous. In other words, the solution is the same as the
vacuum dominated FRW model. The conclusion we are left with, is that
there cannot be any inhomogeneous perturbations to the first order in a
homogeneous universe model which contains only vacuum energy.

3.3 Perturbations of a radiation dominated

universe model

In this section we turn our attention to the radiation dominated model. The
equation of state for radiation expressed as a hydrodynamic fluid states that
w = 1

3
. This value of w gives us the following zeroth order parameters

a =
η

η0

, H =
1

η
, Ḣ = − 1

η2
. (3.38)

Next, we insert these parameters into the general Einstein equations (2.89)-
(2.91). The time-time component can be written as

η2∇2Φ− 3ηΦ̇− 3Φ =
3

2
δ , (3.39)

while the space-time components are

∂

∂xi

(
ηΦ̇ + Φ

)
= − 2

η0

δui . (3.40)

Finally, the space-space components are

η2Φ̈ + 3ηΦ̇− Φ =
1

2
δ . (3.41)

These equations cannot be solved generally in a closed, analytical form. We
must instead expand the solutions into Fourier modes and study each mode
separately. In terms of time-dependent Fourier modes, the three perturba-
tions δ, Φ and δui are

δ(x, η) =

∫
d3k

(2π)3
δk(η)e

−ikx , (3.42)

Φ(x, η) =

∫
d3k

(2π)3
Φk(η)e

−ikx , (3.43)

δui(x, η) =

∫
d3k

(2π)3
δui

k(η)e
−ikx . (3.44)
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We insert these into equations (3.39) -(3.41), which gives us the following
equations for the Fourier modes

−η2k2Φk − 3ηΦ̇k − 3Φk =
3

2
δk , (3.45)

ikiηΦ̇k + ikiΦk =
2

η0

δui
k , (3.46)

η2Φ̈k + 3ηΦ̇k − Φk =
1

2
δk . (3.47)

These equations in momentum space are simple ordinary differential equa-
tions which can be solved analytically. The first and the third equation can
be combined into a differential equation for Φk only. This new equation can
be written as

Φ̈k +
4

η
Φ̇k + ω2Φk = 0 , (3.48)

where we have defined the constant ω as

ω2 =
k2

3
. (3.49)

The differential equation (3.48) can be solved analytically, either by hand or
by using a computer algebra program such as Maple. The latter gives the
following general solution

Φk(η) =
C1

η3
(ωη cosωη − sinωη) +

C2

η3
(ωη sinωη + cosωη) , (3.50)

where C1 and C2 are integration constants.
With Φk determined, we can simply use equations (3.47) and (3.46) to

determine the Fourier components of the density contrast and the perturbed
velocity. The density contrast is

δk(η) =
4

η3
C1

{
(ω2η2 − 1) sinωη + ωη(1− 1

2
ω2η2) cosωη

}
+

4

η3
C2

{
(1− ω2η2) cosωη + ωη(1− 1

2
ω2η2) sinωη

}
, (3.51)

while the perturbed velocity can be written as

δui
k =− iη0ki

η3
C1

{
ωη cosωη + (

1

2
ω2η2 − 1) sinωη

}
− iη0ki

η3
C2

{
(1− 1

2
ω2η2) cosωη + ωη sinωη

}
. (3.52)
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If we look at the expression for the density contrast (3.51), we see that this
consists of terms that are proportional to 1, η−1, η−2 and η−3, times a trigono-
metric function. In contrast to when we had a matter dominated model, it
is generally not possible to classify the solutions in growing and decreasing
modes. Such a distinction can, however, be made in the asymptotic limits of
the wavelength.

Consider a solution in which C2 = 0 and C1 6= 0. Call this solution δ+,

δ+ =
4

η3
C1

{
(ω2η2 − 1) sinωη + ωη(1− 1

2
ω2η2) cosωη

}
. (3.53)

The product ωη is a measure of the length scales of the Fourier modes, just
as kη was for matter dominated model. If we use the fact that ω ∼ k ∼ λ−1

and that the Hubble length in a radiation dominated universe is of the same
order as that in a matter dominated universe, LH ∼ η, we can write

ωη ∼ kη ∼ LH

λ
. (3.54)

In the long wavelength limit, i.e. when ωη � 1, we can expand this solution
in polynomials of ωη. The lowest non-vanishing order in this expansion is
found to be the third, which gives the following leading term behaviour

δ+ ' 2

3
C1ω

3 . (3.55)

The solution δ+ is, in other words, constant in the long wavelength limit, or
equivalently: it is constant for scales that are much larger than the Hubble
length.

Now, consider the “opposite” solution, i.e. the solution in which C1 = 0
and C2 6= 0. This we call δ−,

δ− =
4

η3
C2

{
(1− ω2η2) cosωη + ωη(1− 1

2
ω2η2) sinωη

}
. (3.56)

Just as we did for δ+, we examine how this solution behaves in the long
wavelength limit by expanding it in polynomials of ωη, and keeping only
those terms which are of the leading non-vanishing order. Carrying out this
expansion, we see that the lowest non-vanishing order is the zeroth. This
allows us to write the solution as

δ− =
4

η3
C2 . (3.57)

In physical time, we can write this as

δ− ∼ C2t
− 3

2 , (3.58)
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Figure 3.2: A plot of the both types of solutions, δ+ and δ−, for kη > 10,
i.e. inside the Hubble length. These solutions have been normalized to an
amplitude of order one.

where we have used (2.113), which gives the relation between physical and
conformal time. For radiation this states that η ∼

√
t. Thus, we conclude

that the the set of solutions which we call δ− behave as decreasing solutions
in the long wavelength limit, while the solutions δ+ are non-decreasing so-
lutions in the same limit. In the small wavelength limit and for scales up
to the order of the Hubble length, neither of the solutions exhibit any par-
ticular behaviour that distinguishes them from each other. They will both
be oscillating solutions. This is seen in figure 3.2, which is a plot of both
δ+
k (η) and δ−k (η) for kη > 10. In summary, the two solutions behave in the

following way

δ+ ∼

{
constant , for ωη � 1 (λ� LH)

oscillating , otherwise
, (3.59)

and

δ− ∼

{
η−3 , for ωη � 1 (λ� LH)

oscillating , otherwise
. (3.60)

These expressions lead us to the important conclusion that in a radiation
dominated universe model, perturbations in the density of radiation do not
grow with time. Outside the Hubble horizon they either remain constant or
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Figure 3.3: A plot of the two types of metric perturbations inside the Hubble
length. The graphs have been scaled to a maximal amplitude of order one.

decrease with time, while inside the Hubble horizon they oscillate. With this
information in hand, we make the choice to work with only δ+ from now on,
since the other solution is either decaying (long wavelength limit) or more or
less the same (small wavelength limit and up to the Hubble scale).

Next, we investigate how the corresponding metric perturbations Φ+ and
Φ− behave. In the long wavelength limit, i.e. when ωη � 1, we make a
Taylor expansion of the two solutions and keep only those terms that are of
the leading order, just as we did when considering the density contrast. The
result is the following

Φ+ ∼ constant , and Φ− ∼ η−3 . (3.61)

In the small wavelength limit, Φ+ and Φ− will both be oscillating, decreasing
functions. This is illustrated in fig 3.3, which shows a plot of both solutions
for kη > 10.

In summary, the Fourier modes of the metric perturbation behave in the
following way

Φ+ ∼

{
constant, for ωη � 1 (λ� LH)

oscillating and decreasing, otherwise
, (3.62)
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and

Φ− ∼

{
η−3 , for ωη � 1 (λ� LH)

oscillating and decreasing, otherwise
(3.63)

3.3.1 A particular solution

We will now look at a particular solution of the type δ+ with a given spatial
configuration at a given time. Just as we did in the case of the matter
dominated model, we consider a solution that is a pure sine wave with wave
vector k at a time η0 with amplitude δ0,

δ(η0,x) = δ0 sinkx . (3.64)

For simplicity, we choose to examine perturbations that are plane symmetric.
The results we obtain below will be equally applicable to perturbations that
are not plane symmetric. This simplification allows us to skip the vector
notation in the spatial part of the perturbations,

sin(kx) → sin(kx) . (3.65)

Since the “sum” in the Fourier expansion (3.42) spans over both positive and
negative values of the wave vector k, there are two terms that contribute to
a wave with a certain wave number k = ‖k‖,

δ(η, x) = δk(η)e
−ikx + δ−k(η)e

ikx . (3.66)

In order to get a pure sine wave, the following condition must be satisfied

δk(η) = δ−k(η) . (3.67)

If we, in addition, demand that (3.64) is satisfied, we end up with the fol-
lowing solution for the density contrast

δ(η, x) = δ0

(
η0

η

)3 (ω2η2 − 1) sinωη + ωη(1− 1
2
ω2η2) cosωη

(ω2η2
0 − 1) sinωη0 + ωη0(1− 1

2
ω2η2

0) cosωη0

sin kx .

(3.68)
The metric perturbation that corresponds to this density contrast is obtained
by use of (3.50) with C2 = 0, and adding the two terms that contribute to
the sine wave. The result is

Φ(η, x) =
δ0
4

(
η0

η

)3
ωη cosωη − sinωη

(ω2η2
0 − 1) sinωη0 + ωη0(1− 1

2
ω2η2

0) cosωη0

sin kx .

(3.69)
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Both the density contrast and the metric perturbation for this sine solution
are plotted in figure 3.4. In this plot we have chosen kη0 = 10, which means
that the perturbation is inside the Hubble length and oscillating. Further-
more, the amplitude of the perturbation is chosen to be δ0 = 10−5. These
values are the same as those which were chosen for the earlier considered
matter dominated solution, which allows us to compare the two sets of solu-
tions.

We choose a fixed spatial coordinate in our solution and examine how
the density contrast and the metric perturbation evolve at this particular
point, compared to the same point in the corresponding perturbations in the
matter dominated model. A plot showing this comparative behaviour of the
two universe models can be seen in figure 3.5.
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Figure 3.4: (a) Time evolution of the density contrast in a radiation dom-
inated universe. The initial perturbation is a plane wave with amplitude
δ0 = 10−5 at an initial conformal time kη0 = 10. (b) The corresponding
metric perturbation.
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Figure 3.5: A comparison of The time evolution of the density contrast (a)
and the metric perturbation (b) at a fixed point in space for the dust dominated
model versus the radiation dominated model.
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Chapter 4

The Weyl Curvature
Hypothesis

In this chapter we will the discuss the need to introduce a quantity which
must account for an intrinsic entropy of the gravitational field in addition to
the usual thermodynamic entropy.

This quantity along with a specific choice of initial conditions imposed on
the Universe, known as the Weyl Curvature Hypothesis, appears to explain
a number of fundamental physical questions.

4.1 Introduction

Today there is a broad consensus among cosmologists that the initial config-
uration of energy in the early Universe was very homogeneous and isotropic.
The “gas” which initially filled up space was very hot and with almost the
same temperature throughout. In terms of thermodynamics, this translates
into the statement that the Universe was in (almost) thermal equilibrium.
Using the usual definition of entropy in thermodynamics, this means that
the Universe must have been in a state of (near) maximal entropy.

This claim is strengthened further by considering the quantity which mea-
sures entropy per baryon in the Universe. This quantity is related directly to
the ratio of photon density to baryons density in the Universe, and is there-
fore measurable. The measured value of the latter is ∼ 109. MacCallum [15]
argues that this value imposes a strong constraint on the degree of anisotropy
and inhomogeneity in the early Universe, and therefore also on the entropy
of the initial state of the Universe. The ratio has remained constant since the
creation-annihilation of matter and anti-matter finished [16], and constitutes
the largest contribution to entropy in the Universe. Penrose [17] argues that
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this numeric value is very high and that this in turn points toward a high
entropy initial Universe.

Furthermore, Penrose [17] notes that if the initial matter in the Universe
was not in thermal equilibrium, we could not reproduce theoretically the
correct helium abundance in the Universe.

Thus, we are led to the conclusion that the initial state of the Universe
was one of maximal entropy. According to the second law of thermodynam-
ics, which states that a physical system evolves toward a state of maximal
entropy, the Universe cannot evolve beyond the initial isotropic and homo-
geneous state since any such evolution would mean a reduction in entropy.
But, nevertheless, we know that the matter eventually “breaks up” due to
gravitational attraction and ends up forming structures such as galaxies,
stars, planets, planetary clouds etc. The temperatures of these objects varies
over a wide range, which means that the Universe no longer is in thermal
equilibrium, which in turn means that the entropy must have reduced in
contradiction to the second law of thermodynamics.

It appears, therefore, as if the evolution of the Universe breaks the second
law of thermodynamics, which is considered a fundamental law in physics.
How can this be? One of the most plausible explanation to this problem was
suggested by Penrose [18] in 1977 in terms of a hypothesis which goes under
the name The Weyl Curvature Hypothesis and which introduces the concept
of gravitational entropy.

4.2 Time Asymmetry

Penrose argued that a series of outstanding issues within cosmology and
physics generally could be solved by postulating an initial Universe of very
low entropy instead of high entropy. He argues [18, 17, 19] that such an initial
Universe, among other things, presents a possible answer to the question
of the arrow of time. The issue of this so-called arrow of time has been
discussed by a whole host of authors over the years, and it relates to the
time direction in which the entropy of a physical system grows. We can
state the problem as follows: the laws of physics are stated via mathematical
equations which are symmetric in time. For every solution of these equations,
we get another solution by substituting the time parameter, t, with −t. But,
nevertheless, all macroscopic observations are time-asymmetric. Evolution of
any macroscopic, physical state is always in the direction of increasing time.

The time direction in which the entropy of a physical state grows defines
the arrow of time. Since the physical laws are time symmetric, we would
not expect there to be any arrow of time. We would, in other words, expect
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there not to be any preferred time direction in which the entropy grows. But
Nature, for some unknown reason, seems to have chosen a specific arrow of
time, namely that entropy grows with increasing time. For extensive treat-
ments of the topic of time asymmetry and the arrow of time, the interested
reader is referred to a couple of works by P.C.W Davies [20, 21].

Penrose notes that by imposing an initial state of the Universe which has a
much lower entropy than the “final state”, the arrow of time is automatically
explained. Since the “final state” of the Universe has higher entropy than the
initial state, this must mean that entropy grows with time. This solves the
question of the arrow of time, according to Penrose, by imposing boundary
conditions on the Universe. What Penrose has done is, in effect, to move the
focus point away from the laws of physics themselves and over to boundary
conditions imposed on the very same laws. It still remains an open question
as to why the initial state of the Universe must be a low-entropy state.

4.3 Gravitational Entropy

We have seen that by imposing a particular initial condition on the Universe,
namely that of a low-entropy initial state, the arrow of time “falls out” as a
direct consequence. But, contrary to this, as we explained at the start of this
chapter, it looks as if the initial state was one of very high entropy instead
of low. This problem is cured by postulating an additional entropy quantity
which we call gravitational entropy. The ordinary entropy quantity, which
is the thermodynamical entropy, doesn’t account for gravitational forces. It
applies only for physical systems where gravity has no effect, i.e. over time
periods which are small compared to the relaxation time of the gravitation
forces between the different constituents of the physical system. Therefore,
for an ordinary laboratory system this additional entropy quantity can be
disregarded. Whereas for large systems in which gravity plays an effect, such
as the Universe itself, it must be considered.

4.3.1 Black hole entropy

The proposition of intrinsic entropy in gravitational fields is not a new one.
Such a quantity was already proposed by Bekenstein for the special case
of a black hole [22, 23, 24]. After works by Floyd and Penrose [25] and
Christodoulou [26] it was already known that the area of black holes in-
creased under most transformations. Later Hawking [27] proved generally
that the area cannot decrease under any transformation of the black hole.
This prompted Bekenstein to draw a comparison between the surface area of
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black holes and entropy in thermodynamics. He postulated a quantity which
he called the entropy of black holes. This quantity is now referred to as the
Bekenstein-Hawking formula for black hole entropy and reads as follows

SBH = A
kBc

3

8π~G
ln 2 , (4.1)

where kB is Boltzmann’s constant, c is the speed of light in vacuum, G is
Newton’s gravitational constant, and A is the area of the horizon of the black
hole.

Penrose used this expression to illustrate that the initial entropy of the
Universe must indeed have been much smaller than that at late stages. He
considers a closed universe and argues that it is plausible to assume that the
natural course of all matter in this universe is to be collected together in a
final, gigantic black hole. This is a state in which there cannot be any further
gravitational clumping, and we can therefore used it as a possible final state
of the Universe. Now, by using the Bekenstein-Hawking formula for black
hole entropy, he arrives at a final entropy of ∼ 10123.

On the other hand, the entropy in the initial state of this universe can
be calculated using the measured value of entropy per baryon. The initial
state is a state of thermal equilibrium with no black holes. Thus, there is
no contribution to the entropy from black holes, and the initial entropy is
simply the thermodynamical entropy. Assuming there to be ∼ 1080 baryons
in this closed universe, one arrives at an initial entropy of the order of ∼ 1089.
The derivation which gives us this value can be found in e.g. [28]. This value
is, obviously, much smaller than the value which was found for the possible
final state. This shows that when one takes into consideration some measure
of gravitational entropy in addition to the usual thermodynamical entropy,
the initial state can still be one of very low entropy even if it has maximal
thermal entropy.

4.3.2 Gravitational entropy and the Weyl curvature
hypothesis

The formula for gravitational entropy which we used in the previous section
is valid only for black holes. What we seek is a quantity which applies for
any gravitational field. Through the nature of gravity and the requirement
that the total entropy must increase with time, we can deduce qualitatively
how this entropy of gravitational fields must behave. It is clear that the
more clumping of matter there is, the greater the gravitational entropy must
be. This means that it must be minimal for isotropic and homogeneous
distributions of matter, and that it must increase the farther away the matter
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distribution moves from homogeneity and isotropy. A candidate for such a
quantity is the Weyl tensor. Penrose notes in [29] the following properties of
the Weyl tensor:

“...In terms of spacetime curvature, the absence of clumping cor-
responds to the absence of Weyl conformal curvature (since ab-
sence of clumping implies spatial-isotropy, and hence no gravi-
tational principal null-directions). When clumping takes place,
each clump is surrounded by a region of nonzero Weyl curvature.
As the clumping gets more pronounced owing to gravitational
contraction, new regions of empty space appear with Weyl cur-
vature of greatly increased magnitude..”

Thus, the Weyl tensor has the desired properties which one would want in
a quantity which describes gravitational entropy. But in order for the initial
entropy to be small, the initial gravitational entropy must be very small or
vanish. This would then allow for a minimal initial entropy, since if the
gravitational entropy grows faster than the thermodynamical decreases due
to gravitational collapse, the initial total entropy will be minimal even if the
thermodynamical is maximal. This is the very essence of the Weyl Curvature
Hypothesis, which can now be stated rather precisely as:

The universe models that describe the evolution of our Universe
are those that have a vanishing initial gravitational entropy.

If we by gravitational entropy understand Weyl tensor, then this hypothesis
tells us that we can only allow for those universe models which have a Weyl
tensor which tends to zero as time goes to zero. The hypothesis is, in other
words, a hypothesis of boundary conditions.

4.4 The Weyl tensor

It has become evident over the previous sections of this chapter that the
Weyl tensor will play an important role in this topic. In this section we will
examine this mathematical quantity more closely, and seek to understand
the geometric meaning of it.

The Weyl tensor is a tensor of rank four, and is related to the curvature
of a space-time manifold. It is defined for manifolds of dimension higher than
two, however, for a three dimensional manifold it vanishes identically. Fol-
lowing Weinberg [30], we write the Weyl tensor for an n-dimensional manifold
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as follows

Cµναβ = Rµναβ +
2

2− n

(
gµ[αRβ]ν − gν[αRβ]µ

)
+

2

(n− 1)(n− 2)
Rgµ[αgβ]ν ,

(4.2)
where the brackets are understood to mean anti-symmetric combination of
the bracketed indices. The other symbols have their usual meaning.

Because of its close relation to the Riemann tensor, the symmetries which
are present in the latter are also present in the Weyl tensor. Thus, the Weyl
tensor satisfies the following three symmetries

Cµναβ = Cαβµν

Cµναβ = −Cµνβα

Cµναβ = −Cνµαβ ,

(4.3)

and also the the Bianchi identity

Cµναβ + Cµβνα + Cµαβν = 0 . (4.4)

But in addition to these symmetries, the Weyl tensor also satisfies the fol-
lowing symmetry

Cµ
νµβ ≡ 0 . (4.5)

Using this symmetry along with (4.3) and (4.4), we can deduce that the Weyl
tensor must vanish for any pair of contracted indices. Thus, we say that the
Weyl tensor is the “trace-less” part of the Riemann tensor.

The additional symmetry of vanishing trace reduces the number of inde-
pendent components of the Weyl tensor compared to the Riemann tensor.
For an n-dimensional manifold, the number of independent components of
the Weyl tensor, Cn, is

Cn =
1

12
N(N + 1)(N + 2)(N − 3) . (4.6)

For a four-dimensional space-time, the number of independent components
is ten, which is half the number of independent components of the Riemann
tensor in the same space-time.

The Weyl tensor is the part of the Riemann tensor which gives curvature
in empty space. Consider a section of space-time in which there is no energy
density, e.g. the exterior Schwarzschild solution of the Einstein equations.
Although there is no energy density there, space-time is nevertheless curved
outside such a solution. Absence of energy density translates via the field
equations of gravity to a vanishing Ricci tensor. From (4.2) we can write the
Riemann tensor in vacuum as

Rvac
µναβ = Cµναβ . (4.7)
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Thus, one often says that it is the Weyl tensor which allows gravity to prop-
agate through empty space.

A very important property of the Weyl tensor is its invariance under
conformal transformations. In fact, it was introduced by Weyl [31] as an aid
in studying conformal Riemannian manifolds and it was referred to as the
conformal curvature tensor by Weyl.

A conformal transformation of an manifold is a transformation which
leaves the metric unchanged up to a conformal factor. Let gµν be the metric
in the non-transformed manifold. Under a conformal transformation the
metric transforms to a new metric ḡµν , which can be written as

ḡµν = Ω2gµν , (4.8)

where Ω(x) is a non-vanishing, differentiable function of space-time. Geomet-
rically, a conformal transformation is a transformation that preserves angles
between vectors. As mentioned above, the Weyl tensor is invariant under
such a transformation, i.e.

C̄µναβ = Cµναβ , (4.9)

where the bar denotes the components of the conformally transformed tensor.
Thus, if a space-time is conformally flat, i.e. conformal to the Minkowski
space-time, it will have a vanishing Weyl tensor. In fact, the converse can
also be shown to be true, which leads us the following theorem:

Theorem. A space-time is conformally flat if and only if it has a vanishing
Weyl tensor.

A consequence of this theorem is that all the FRW models have a van-
ishing Weyl tensor, in agreement with the Weyl curvature hypothesis, since
the FRW models are homogeneous and isotropic.

4.5 Measures of gravitational entropy

As we have seen in the previous sections, the Weyl tensor satisfies the prop-
erties which one would assign qualitatively to a quantity which measures
gravitational entropy. But entropy is a scalar quantity, which means that if
we wish to construct a measure of entropy from the Weyl tensor, we have
to use some scalar composition of it. In this section we will consider three
such candidates. The first one is after B.L. Hu [32] and is the simplest scalar
expression which can be obtained from the Weyl tensor alone. Due to the
extensive amount of symmetries which are present in the Weyl tensor, there
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are just four non-vanishing, independent scalar expressions which can be ob-
tained from the Weyl tensor alone. The simplest is the “square” of the Weyl
tensor, which is defined as

C2 ≡ CµναβC
µναβ . (4.10)

By using the definition of the Weyl tensor, we can write this quantity in a
simple form in terms of the Ricci and the Riemann tensor,

C2 = RµναβR
µναβ − 2RµνR

µν +
1

3
R2 . (4.11)

This quantity depends on the space-time coordinates and must therefore be
interpreted as an entropy density. In order to obtain the total gravitational
entropy, one must perform an integration of (4.10) over the whole Universe.
The gravitational entropy can thus be written as

SG =

∫
d3x

√
|h|C2 , (4.12)

where h is the determinant of the spatial projection of the metric, and dV =
d3x

√
|h| is the spatial integration measure.

Another quantity which has been used as a measure of gravitational en-
tropy is the quantity which was proposed by Goode et al. in 1985. They
proposed [33] that one use the ratio of the square of the Weyl tensor to the
square of the Ricci tensor as a measure of the entropy,

P 2 =
CµναβC

µναβ

RλσRλσ
. (4.13)

A further analysis on the behaviour of this quantity can be found in an article
by the same authors [34] and Coley from 1991.

In fact, the possibility of using such a quantity was proposed by Penrose
himself in [17]. Penrose notes that requiring the Weyl tensor to vanish at
the initial singularity might be too strict a constraint, and he goes further
on to suggest that it might suffice to let the Weyl tensor be dominated by
the Ricci tensor.

The quantity (4.13) has a spatial dependence and must again be inter-
preted as a local entropy or entropy density. The total gravitational entropy
is the integral of this quantity over the whole space. Grøn and Hervik sug-
gested in [35, 36] that one consider the square root of the quantity (4.13)
integrated over a small co-moving volume as a more appropriate measure of
entropy,

S =

∫
V

P
√
|h|d3x . (4.14)
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When the integration volume is sufficiently small, the integrand can be taken
to be constant, which yields the following measure of gravitational entropy
in a small comoving volume

S =

∫
V

P
√
|h|d3x ≈ P

√
|h| . (4.15)

It is the quantity (4.14) which will be of greatest interest to us, and which will
be devoted the most attention in the next chapter where we examine how the
gravitational entropy evolves in our previously introduced perturbed FRW
model.
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Chapter 5

Cosmological Entropy

In this chapter we will examine how both the thermodynamic and the grav-
itational entropy evolve with time in a perturbed, flat matter dominated
FRW model. We will look specifically at perturbation which have a Gauss-
like form. In order to simplify the expressions and the actual calculation of
the quantities mentioned above, we will impose certain symmetries on these
perturbation in addition to having this special form. The symmetries which
we consider are plane symmetries, cylindrical symmetries and spherical sym-
metries.

5.1 Thermodynamic entropy of a cosmologi-

cal ideal gas

The universe model which we consider is that of a matter dominated, flat
FRW, or a so-called Einstein-de Sitter model. The medium in such a model is
a pressureless hydrodynamical gas. Since there is no pressure in this medium,
there is also no interaction between the different particles of which the gas
consists. This is equivalent to the ideal gas in thermodynamics, which per
definition is a non-interacting gas. Thus, we can use the well-known expres-
sion for the entropy of an ideal gas as the entropy in our cosmological gas.
This expression can be found in most introductory textbooks on thermody-
namics such as [37]. For an ideal gas which consists of N particles it reads
as

Sideal = kBN ln

[
V

N

(
mkBT

2π~2

)3/2

e5/2

]
, (5.1)

where m is the mass of the gas particles, V is the volume occupied by the gas,
and T is the temperature of the gas. This expression is valid for a gas which
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consists of distinct particles. However, we wish to use an expression which
applies for a continuous gas distribution, instead of a distinct distribution.
Consider an ideal gas within a small volume element dV . The number of
particles dN within this volume element can be written as the total mass
within the volume element divided by the mass of of each individual particle,

dN =
ρdV

m
. (5.2)

We can use expression (5.1) to calculate the entropy dS within this volume
element,

dS = kB
ρ

m
ln

[
m

ρ

(
mkBT

2π~2

)3/2

e5/2

]
dV ≡ STdV , (5.3)

where ST can be interpreted as the entropy density of the ideal, continuous
gas,

ST = kB
ρ

m
ln

(
m

ρ
κT

)
. (5.4)

The parameter κT is defined as

κT =

(
mkBT

2π~2

)3/2

e5/2 . (5.5)

The energy density which appears in these formulas is the the sum of the
homogeneous, unperturbed and the perturbed, inhomogeneous energy den-
sities, ρ = ρ0(1 + δ). We substitute this expression for the density into the
expression for the entropy density (5.4), which gives us

ST = kB
ρ0

m
(1 + δ) ln

(
mκT

ρ0(1 + δ)

)
≈ kB

ρ0

m
(1 + δ) ln

(
mκT

ρ0

(1− δ)

)
. (5.6)

Keeping terms only up to the first order, we can write this as

ST ≈ kB
ρ0

m

{
ln
mκT

ρ0

+ δ

(
ln
mκT

ρ0

− 1

)}
. (5.7)

In arriving at this expression we have made use of the following formula

ln (1− δ) = −δ +O(2) . (5.8)

For a flat, matter dominated universe model, the energy density is that which
we get from expression (2.98) with w = 0. This reads

ρ0(η) =
3η4

0

2πG
η−6 . (5.9)
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We wish to write this expression in physical or co-moving time t instead of
conformal time η. According to (2.113), the relation between conformal and
physical time in a matter dominated universe is

η2 = η2
0

(
t

t0

)2/3

, (5.10)

where t0 is the physical time that corresponds to η0. It is the initial time of
the perturbations. If we assume that the perturbations which we describe
are the actual initial perturbations in our physical universe, then the value
of t0 is constrained by observations. It is the time when the universe became
transparent. According to the latest data from measurements of the CMB
anisotropies, which currently are the WMAP data, it is equal to t0 ≈ 380 000
years after Big Bang.

We introduce a new dimensionless time parameter τ , which measures time
after t0 relative to t0, i.e.

τ =
t− t0
t0

. (5.11)

Thus, the square of the conformal time as a function of this new time pa-
rameter is

η2 = η2
0(1 + τ)2/3 . (5.12)

Next, we insert this expression into (5.9), which allows us to write the un-
perturbed energy density as a function of τ ,

ρ0(τ) =
3

2πGη2
0

(1 + τ)−2 . (5.13)

Finally, we wish to substitute the physical initial time t0 for η0 in this ex-
pression. According to (2.100), t0 and η0 relate to each other in the following
manner

t0 =
η0

3
. (5.14)

The final expression for the unperturbed energy density is then

ρ0(τ) =
1

6πGt20
(1 + τ)−2 . (5.15)

Using this expression, we can write the thermodynamic entropy density (5.7)
as

ST =
kBα0

(1 + τ)2

{
ln
κT (1 + τ)2

α0

+ δ

(
ln
κT (1 + τ)2

α0

− 1

)}
, (5.16)
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where we have defined the following constant

α0 =
1

6πGt20m
. (5.17)

Boltzmann’s constant kB appears in this expression as a multiplicative con-
stant, just as it does in most quantities that measure some kind of entropy.
Instead of carrying this constant in all our calculations, we define an entropy
density relative to Boltzmann’s constant,

σT ≡
ST

kB

=
α0

(1 + τ)2

{
ln
κT (1 + τ)2

α0

+ δ

(
ln
κT (1 + τ)2

α0

− 1

)}
. (5.18)

The constant κT depends on the temperature of gas, which in turn depends
on the scale factor. In a matter dominated universe it can be shown [20] that
the temperature varies like

T ∝ a−2 . (5.19)

With the value of a0 chosen earlier to be equal to unity, we can write the
temperature as

T = T0a
−2 = T0(1 + τ)−4/3 , (5.20)

where T0 is the temperature of the gas at the initial time t0. We insert this
expression for the temperature into the definition of the parameter κT (5.5),

κT =

(
mkBT0(1 + τ)−4/3

2π~2

)3/2

= κT0(1 + τ)−2 . (5.21)

We see immediately that the explicit time dependence inside the parenthesis
in expression (5.18) cancels out,

σT =
α0

(1 + τ)2

{
ln
κT0

α0

+ δ

(
ln
κT0

α0

− 1

)}
. (5.22)

The thermodynamic entropy inside a small volume element dV is equal
to the entropy density inside the same volume element times the volume
element itself,

dsT = σTdV , (5.23)

where we use a small instead of a capital “s” as a symbol for the entropy
to mark that it is an entropy relative to kB. The expression for the volume
element is determined by the spatial metric via the usual expression

dV =
√
|gsp|

3∏
i=1

dxi . (5.24)
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The superscript “sp” marks that the determinant must be taken over only
the spatial components of the metric. We use the line element (2.47) to
calculate this determinant. The result is

|gsp| = a6(1− 6Φ) . (5.25)

Substituting for a and η from (3.1) and (5.12), the volume element can be
written as

dV = (1 + τ)2(1− 3Φ)
∏
i=1

dxi . (5.26)

Multiplication of this quantity with the entropy density in (5.22) yields the
thermodynamic entropy element,

dsT = α0

[
(1− 3Φ) ln

κT0

α0

+ δ(ln
κT0

α0

− 1)

]∏
i=1

dxi . (5.27)

For the unperturbed model the thermodynamic entropy inside a co-moving
volume V is

sunpert
T =

∫
V

α0 ln
κT0

α0

∏
i=1

dxi = α0V ln
κT0

α0

. (5.28)

We see that using (5.27) as a measure of thermodynamic entropy density
of the cosmological gas, the entropy inside a co-moving volume in a non-
perturbed matter dominated FRW universe is constant. This is what we
would expect, since it is common knowledge that the thermodynamic entropy
inside co-moving regions of space is constant in all FRW models. Thus, we
conclude that (5.27) appears to be a good measure of thermodynamic entropy
for a pressureless cosmological gas.

5.2 Gravitational entropy of a perturbed flat

FRW model

As a measure of entropy density we will use the quantity P which is defined
in (4.13). To determine this quantity, we will need to calculate both the
Weyl tensor and the Ricci tensor. We let GRTensor perform these calcula-
tion for plane symmetric, cylindrically symmetric and spherically symmetric
perturbations. The results can be written as

P =
1

3
√

3
Q[Φ]η2 , (5.29)
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where Q[Φ] is a functional of the metric perturbation Φ and which depends
on the symmetries of the geometry,

Q[Φ] =


∂2Φ
∂x2 for plane symmetry

1
r

√
(∂Φ

∂r
)2 − r ∂Φ

∂r
∂2Φ
∂r2 + r2(∂2Φ

∂r2 )2 for cylinder symmetry
∂2Φ
∂r2 − 1

r
∂Φ
∂r

for spherical symmetry

(5.30)

The quantity P is dimensionless. If we want to use it as a measure of gravita-
tional entropy density, we must therefore multiply it with some appropriate
constants in order to get the right dimensions. Since entropy has dimen-
sion equal to Boltzmann’s constant, we must therefore multiply it with kB

times some arbitrary constant χ, which has dimension equal to inverse length
cubed,m−3. Thus, the gravitational entropy density of a perturbed, flat FRW
model can be written as

SG =
kBχ

3
√

3
|Q[Φ]| η2 . (5.31)

Note that we have taken the absolute value of the expression on the left hand
side in order to insure that the gravitational entropy remains positive.

We see from the definition of Q[Φ] that the right hand side of (5.31) van-
ishes to the zeroth order, i.e. Q[Φ] ∼ O(1). This means that the unperturbed
FRW model has a vanishing gravitational entropy. This is exactly what we
would expect, since SG is constructed to measure deviations form homogene-
ity, and we know that the FRW models are isotropic and homogeneous at all
times.

Just as we did in the previous section in the case of thermodynamic en-
tropy, we can define a new entropy density quantity σG which measures grav-
itational entropy density relative to Boltzmann’s constant. Furthermore, we
use relation (5.12) to express the time dependence through the dimensionless
time parameter τ ,

σG =
χ

3
√

3
|Q[Φ]| η2

0(1 + τ)2/3 . (5.32)

The gravitational entropy dsG inside a small volume dV can now be cal-
culated by multiplying σG with the volume element which can be found in
(5.26). When discarding all terms of order higher than one, we can write the
result as

dsG =
χ

3
√

3
|Q[Φ]| η2

0(1 + τ)8/3
∏

i

dxi . (5.33)

The gravitational entropy inside a co-moving region of space is the integral
of this expression over the volume of that region. Since Φ and hence also
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Q[Φ] are time independent, we can write the gravitational entropy as

sG ∝ (1 + τ)8/3 . (5.34)

5.3 Gauss-like density perturbations

So far we have not specified any special form on the perturbations. We
have demanded that they posses certain symmetries, but we have not said
anything on their functional form. We are free to choose any form on either
the density perturbation or the metric perturbation at a certain time, as long
as they evolve according to equations (3.10) and (3.11).

We choose to limit ourselves to density perturbations that are localized
around the origin of our coordinate system at the initial time t0, and which
vanish quickly as we move away from the origin. A possible function which
has this behaviour is the Gauss function. Furthermore, we wish that the total
mass of the universe at the initial time to be equal to that in the unperturbed
universe. By demanding this, we say effectively that we don’t introduce any
new mass at the time t0. We simply rearrange the mass which we already
have present. In order for this to be satisfied, the initial density perturbation
must satisfy the following integral∫

V

δ(x, η0)dV = 0 . (5.35)

It is clear that the Gauss function alone cannot satisfy this relation since it
is positive everywhere. We will therefore modify it slightly by multiplying it
with a polynomial. The choice of polynomial depends on whether the den-
sity perturbation is plane symmetric, cylindrically symmetric of spherically
symmetric. We will call such perturbations for Gauss-like perturbations.

5.3.1 Plane symmetric density perturbations

By a plane symmetric perturbation we understand a perturbation which
depends on only one spatial coordinate. We choose this coordinate to be the
x coordinate. In this case we can use the following form on the initial density
perturbation

δ(x, η0) = δ0

[
1− 2

(x
L

)2
]
e−( x

L
)2 . (5.36)

The constant δ0 is the amplitude of the initial density perturbation. Ac-
cording to CMB measurements, the amplitude of the real, physical density
perturbations around the time when the universe became transparent is of
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the order ∼ 10−5. We will therefore choose δ0 = 10−5. The second constant
L is a measure of the length scale of the perturbation. For |x| >> L the size
of the perturbation is effectively zero.

Define a new dimensionless coordinate x̂,

x̂ ≡ x

L
. (5.37)

When we use this coordinate, the initial density perturbation can be written
as

δ(x̂, η0) = δ0(1− 2x̂2)e−x̂2

. (5.38)

To calculate how this perturbation evolves with time we must use equation
(3.11). Expressed using the coordinates (5.37) and (5.11), we can write this
equation as

δ(x̂, τ) =
1

6

(η0

L

)2

(1 + τ)2/3d
2Φ(x̂)

dx̂2
− 2Φ(x̂) . (5.39)

If we know the metric perturbation Φ, we can use this equation to determine
δ at all times τ . Since Φ is time independent it can be determined by con-
sidering equation (5.39) at the time τ = 0, which is the time when we know
δ. We get the following non-homogeneous second order differential equation
for Φ

1

6

(η0

L

)2 d2Φ(x̂)

dx̂2
− 2Φ(x̂) = δ0(1− 2x̂2)e−x̂2

. (5.40)

This equation cannot be solved analytically in a closed form. We will there-
fore have to solve it numerically. But before we can do this, we must first
specify the order of the length scale L. In chapter 2 we showed that density
perturbations of a size that is much larger than the Hubble length LH will
remain almost constant. We, on the other hand, are interested in density
perturbations that grow over the time period which we consider. We must
therefore choose the length scale of the perturbations to be smaller than the
Hubble length. Since LH ∼ η we must choose η0

L
> 1. Let therefore L be

such that η0

L
= 10.

The differential equation (5.40) is solved using a standard finite element
method. The interested reader is referred to [38] for a presentation of such
numerical methods.

In appendix E.1.1 the reader can find the source code for a C++ program
which implements a finite element algorithm to solve this explicit differential
equation. The solution for Φ which the program outputs is valid in the range
−10 < x̂ < 10, i.e. |x| < 10L. Outside this range the function (5.38) will
have decreased sufficiently that we can assume that both Φ and δ(x̂, τ) are
identically zero.



5.3 Gauss-like density perturbations 67

−10L    0          10L 
−1

−0.5

0

0.5

1

1.5

2
x 10−5

x

δ

τ=0
τ=1/2
τ=1

Figure 5.1: A plot of the Gauss-like, plane symmetric density perturbation at
three different times.

We can now insert this solution for Φ into equation (5.39) in order to
obtain the solution for δ(x̂, τ). This too is done by the computer program in
appendix (E.1.1). In figures 5.1 and 5.2 we can see a plot of respectively the
density and the metric perturbation. The density perturbation is plotted at
three different times τ = 0, 1

2
, 1 to illustrate how it changes with time. The

metric perturbation is constant in time so it suffices to plot it for τ = 0.

Now that both the density and the metric perturbations are determined
we can move on to our main target, which is to determine the time evolution
of the thermodynamic and the gravitational entropy. These quantities are
given by the volume integrals of the expressions in (5.27) and (5.33). The
Cartesian volume element which appears in these will because of the plane
symmetry reduce to ∏

i

dxi → Adx , (5.41)

where A is a constant which arises from the integration over the two spatial
coordinated of which the perturbations do not depend. This constant doesn’t
contain any interesting physics and we will therefore set it equal to unity.

Using the definition in (5.30) and the dimensionless spatial coordinate
x̂, we see that the function Q[Φ], which appears in the expression for the
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Figure 5.2: A plot of the metric perturbation which yields the density pertur-
bation in figure 5.1

gravitational entropy, can be written as

Q[Φ] =
1

L2

∂2Φ

∂x̂2
. (5.42)

Finally, we can now write down the formal expression for the two entropy
types. These are

sT = α0

∫ {
(1− 3Φ) ln

κT0

α0

+ δ(ln
κT0

α0

− 1)

}
dx̂ , (5.43)

for the perturbed thermodynamic entropy, and

sG =
χ

3
√

3

(η0

L

)2

(1 + τ)8/3

∫ ∣∣∣∣∂2Φ

∂x̂2

∣∣∣∣ dx̂ , (5.44)

for the gravitational entropy. The limits in the integrals run formally from
−∞ to ∞. However, since the perturbations are almost identically equal to
zero outside the range −L < x̂ < L, the contribution from these integrals
outside this range is simply a constant. In our analysis we are not really
interested in absolute entropies, but merely in relative entropies. We will
therefore disregard such constant shifts of the entropies, and thus carry out
the integrals over the finite range defined above instead of over the infinite
range.
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In the expression for the thermodynamic entropy in (5.43) there are two
constants, α0 and κT0 , which need to be determined before we can get a
numerical result. α0 is defined in (5.17). It depends on the initial time of the
perturbations t0 and on the mass of the particles of which the gas consists.
We have already given a numerical value for t0, namely t0 = 380 000 years.
In regards to the particle type, it is natural to assume that the gas consists
of protons, i.e. m = 1.67 · 10−27 kg. This gives the following value for α0

α0 = 3.32 · 109 m−3 . (5.45)

The second constant, κT0 , which is defined in (5.5), depends on the tempera-
ture in the gas at the initial time. It is a well-known fact that the temperature
in the background radiation in the universe today is about 2.7 K. This corre-
sponds to a temperature of the order ∼ 3.0·103 K at the time of transparency.
Using this value for the temperature in our ideal gas at the initial time gives
the following value for κT0

κT0 = 3.79·1032 m−3 . (5.46)

We substitute these values into the expression (5.44) and perform the inte-
gration numerically using the computer program MATLAB. A transcript of
the MATLAB code with does this can be found in appendix E.2.1.

As stated earlier, we are only interested in relative entropies, i.e. entropies
relative to the unperturbed entropy. In analogy with the density contrast,
we will therefore define a dimensionless quantity ∆ which we shall refer to as
the entropy contrast, and which measures entropy relative to the unperturbed
entropy,

∆ ”=”
entropy - unperturbed entropy

unperturbed entropy
. (5.47)

In figure 5.3 we can find a plot of the thermodynamic entropy contrast ∆T .
We see that it does indeed decrease with time, just as we argued from a
physical point of view in the previous chapter. The question is whether the
total entropy contrast ∆tot, which is the entropy contrast we get when we
consider both the thermodynamic and the gravitational entropy, grows with
time. The gravitational entropy in itself will of course grow with time since it
was constructed to do just that, and which can also be seen from the general
expression (5.34). However, the sum of this and the thermodynamic entropy
will only grow with time if the growth in sG is sufficiently large to overcome
the decrease in sT . This in turn depends on the hitherto unspecified constant
χ.

We calculate sG numerically using MATLAB (see appendix E.2.1) and
find that the total entropy contrast will grow when χ is larger than a certain
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Figure 5.3: The thermodynamic entropy contrast which results from the
Gauss-like, plane symmetric density perturbation.

minimal value,

χplane > 2.0 · 109 m−3 . (5.48)

The subscript ”plane” is to indicate that this value is calculated for the
Gauss-like, plane symmetric density perturbation. Later, when we consider
other symmetries, we will find that the values of the minimal χ are slightly
different.

Thus, we can conclude that the total entropy will indeed grow with time
and hence ”rescue” the second law of thermodynamics if we choose an ap-
propriate value for χ. We have illustrated this in figure 5.4 by plotting the
total entropy contrast for χ = 5.0·109 m−3, which is a value which produces
a growing entropy contrast.

5.3.2 Cylindrically symmetric density perturbations

In this section we turn our attention to density perturbations that are cylin-
drically symmetric. Using cylinder coordinates (r, θ, z) instead of Cartesian
coordinates allows us to write the perturbations as a function of only the
radial coordiante r. An initial density perturbation which satisfies (5.35) is

δ(r, η0) = δ0

[
1− (

r

L
)2

]
e−( r

L)
2

. (5.49)
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Figure 5.4: The total entropy contrast for the Gauss-like, plane symmetric
density perturbation with χ = 5.0·109 m−3.

We use dimension-less coordinates r̂ and τ just as we did in the previous
section. τ is defined in the same way as earlier, while r̂ is

r̂ ≡ r

L
. (5.50)

The equation which determines the time evolution of the density perturbation
(3.11) expressed in these coordinates is

δ(r̂, τ) =
1

6

(η0

L

)2

(1 + τ)2/3

{
d2Φ(r̂)

dr̂2
+

1

r̂

dΦ(r̂)

dr̂

}
− 2Φ(r̂) . (5.51)

To solve this equation we follow the same procedure as in the last section.
That is, we find Φ by solving the differential equation we get by putting
τ = 0, and then reinserting this solution back into equation (5.51). This was
done numerically (see appendix E.1.2). In figure 5.5 we can find a plot of
the density perturbation at three different times, while in figure 5.6 we have
plotted the metric perturbation for the same solution. Next, we move on to
determine the thermodynamic and the gravitational entropy. The Cartesian
volume element which appears in the integrals (5.27) and (5.33) reduces to∏

i

dxi → rdr , (5.52)
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Figure 5.5: Illustration of the time evolution of the Gauss-like, cylindrically
symmetric density perturbation. The plot shows the form of the density per-
turbation at three different times.
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Figure 5.6: The metric perturbation that produces the Gauss-like, cylindri-
cally symmetric density perturbation.
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when we disregard any constants due to the cylindrical symmetry. The func-
tion Q[Φ] will in this case be

Q[Φ] =
1

L2

1

r̂

√
(
∂Φ

∂r̂
)2 − r̂

∂Φ

∂r̂

∂2Φ

∂r̂2
+ r̂2(

∂2Φ

∂r̂2
)2 . (5.53)

Thus, the expression for the thermodynamic entorpy will be

sT = α0

∫ {
(1− 3Φ) ln

κT0

α0

+ δ(ln
κT0

α0

− 1)

}
r̂dr̂ , (5.54)

while the expression for the gravitational entropy becomes

sG =
χ

3
√

3

(η0

L

)2

(1+τ)8/3

∫ ∣∣∣∣∣
√

(
∂Φ

∂r̂
)2 − r̂

∂Φ

∂r̂

∂2Φ

∂r̂2
+ r̂2(

∂2Φ

∂r̂2
)2

∣∣∣∣∣ r̂dr̂ . (5.55)

We use the same values for the constant α0, κT0 and η0

L
as we used for the

plane symmetric perturbations, and determine these integrals numerically
using MATLAB (see appendix E.2.2). The results for the first integral are
illustrated in figure 5.7, which shows a plot of the thermodynamic entropy
contrast. As expected, this is a decreasing quantity, just as it was in the plane
symmetric case. The gravitational entropy will of course always increasing
with time, but the sum of the thermodynamic and the gravitational entropy
will only increase for those χ which satisfy the follwing relation

χcyl > 1.8·109 m−3 . (5.56)

In figure 5.8 illustrate such a growing entropy contrast by plotting ∆tot for
χ = 5.0 ·109 m−3.

5.3.3 Spherically symmetric perturbations

Spherically symmetric perturbations are perturbation that depend on only
the radial coordinate r when expressed in spherical coordinates. As the initial
density perturbation we can choose the following function

δ(r, η0) = δ0

[
1− 2

3

( r
L

)2
]
e−( r

L)
2

, (5.57)

which satisfies the integral equation (5.35). We follow the same procedures
as in the previous sections and introduce a dimensionless spatial coordinate,

r̂ ≡ r

L
. (5.58)
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Figure 5.7: A plot of the time evolution of the thermodynamic entropy con-
trast for the Gauss-like, cylindrically symmetric density perturbation.
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Figure 5.8: A plot of the time evolution of the total entropy contrast for the
Gauss-like, cylindrically symmetric density perturbation. The value of χ is
chosen to be χ = 5.0·109 m−3.
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Figure 5.9: The Gauss-like, spherically symmetric density perturbation plot-
ted at three different times, τ = 0, τ = 0.5 and τ = 1.0.

Furhermore, we use the dimensionless time coordinate τ instead of conformal
time. Equation (3.11) takes the following form in this case

δ(r̂, τ) =
1

6

(η0

L

)2

(1 + τ)2/3

{
d2Φ(r̂)

dr̂2
+

2

r̂

dΦ(r̂)

dr̂

}
− 2Φ(r̂) . (5.59)

We solve this equation numerically for Φ at the initial time τ = 0, and
then reinsert the solution into the same equation for general τ in order to
obtain the time evolution of the density perturbation. The source code for
the numerical program can be found in appendix E.1.3. Again, we illustrate
the time evolution of the density perturbation by plotting it in figure 5.9 for
three different values of τ . The corresponding metric perturbation can be
found in figure 5.10.

The volume element which appears in the integrals which define the ther-
modynamic and the gravitational entropy, will in spherically symmetric co-
ordinates be ∏

i

dxi → r2dr (5.60)

up to a multiplicative constant. The function Q[Φ] can in this case be written
as

Q[Φ] =
1

L2

{
∂2Φ

∂r̂2
− 1

r̂

∂Φ

∂r̂

}
. (5.61)



76 Chapter 5. Cosmological Entropy

0    5L    10L
−7

−6

−5

−4

−3

−2

−1

0
x 10−7

r

Φ

Figure 5.10: Plot of the metric perturbation that corresponds to the Gauss-
like, spherically symmetric density perturbation.

Substituting (5.60) and (5.61) into the definitions (5.27) and (5.33), we end
up with the expressions

sT = α0

∫ {
(1− 3Φ) ln

κT0

α0

+ δ(ln
κT0

α0

− 1)

}
r̂2dr̂ (5.62)

for the thermodynamic entropy, and

sG =
χ

3
√

3

(η0

L

)2

(1 + τ)8/3

∫ ∣∣∣∣∂2Φ

∂r̂2
− 1

r̂

∂Φ

∂r̂

∣∣∣∣ r̂2dr̂ (5.63)

for the gravitational entropy. These integrals were calculated numerically
using MATLAB in a similar way as in the two previous cases. The physical
constant α0, κT0 and η0

L
were chosen as earlier. The script which performs

the necessary numerics can be found in appendix E.2.3.
The time evolution of the thermodynamic entropy can be seen in figure

5.11. As expected, it decreases with time as the density perturbation grows.
The sum of the thermodynamic entropy and the gravitational entropy in-
creases when χ is chosen so that

χsphere > χ = 5.9·108 m−3 . (5.64)

In figure 5.12 we can find a plot of such a growing total entropy with χ =
5.0·109 m−3.
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Figure 5.11: An illustration of the time evolution of the thermodynamic en-
tropy contrast for the Gauss-like, spherically symmetric density perturbation.
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Figure 5.12: A plot of the total entropy contrast for the Gauss-like, spherically
symmetric density perturbation. The value of χ is chosen to be χ = 5.0 ·
109 m−3.
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Chapter 6

Conclusion and summary

The main objective of this thesis was to consider the concept of gravitational
entropy from a perturbative point of view. A flat, matter dominated universe
model was subjected to a linear perturbation, and the entropic properties of
the resulting universe were investigated.

We confirmed that the classical thermodynamic entropy of such a universe
decreases with time as the perturbation grows, which appears to be a breach
of the second law of thermodynamics (SLT). According to the Weyl curvature
hypothesis, this can be rectified by adding an extra term to the entropy called
the gravitational entropy. This term arises from the geometry of space-time
and takes into account the attractive nature of the gravitational force. The
sum of the classical thermodynamic and the gravitational entropy defines a
general entropy. It is this general entropy quantity, and not the classical
entropy alone, that must satisfy the SLT.

We considered a special type of perturbations which were products of
second order polynomials and Gauss functions, and showed that the SLT is
indeed satisfied if the constant χ, which appears in the expression for the
gravitational entropy, is chosen larger than a certain value. However, this
minimal value appears to depend on the form of the perturbations. There
does not appear to exist a definite value of χ which makes the entropy of
all types of perturbations grow. We saw for example that if we chose 5.9 ·
108m−3 < χ < 2.0 ·109m−3 the total entropy of the spherically symmetric
perturbation would grow, whereas the total entropy of the plane symmetric
perturbation would not. Thus, since the minimal value of χ which makes
the total entropy grow seems to depend on the perturbation, it is natural to
assume that for every value of χ we can construct a perturbation for which
the total entropy doesn’t grow. There is, in other words, no χ which preserves
the SLT for all types of perturbations.

Our conclusion is therefore that adding (5.31) as a measure of gravi-
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tational entropy to the classical entropy doesn’t preserve the SLT in the
general case. But if we accept that χ can take different values depending on
the perturbations, then the SLT is preserved individually for each type of
perturbation.

The cosmological fluid which was used in our calculations in this thesis
was the simples possible fluid, i.e. a one-component, pressureless fluid. This
simplified the calculations greatly and allowed us to write simple expression
for the various quantites which had to be determined. For a more realistic
model we would have had to include radiation in equilibrium with the matter.
In addition to the entropy quantities which we calculated in this thesis, we
would then have had to include entropy due to the radiation. Since radiation
contributes to entropy in the universe with a factor that is about ∼ 107

greater than the contribution of baryonic matter, it is quite possible that
the behaviour of the entropy quantities could differ greatly from that in the
model which was considered. But a similar analysis of such complex models
would certainly be much more difficult and time consuming than for the
simple model which we considered. Therefore we will not pursue this idea
any further, and instead conclude this thesis here.



Appendix A

The Lie derivative of a tensor
of rank two

Let Aµν(x) be some covariant tensor of rank two. Consider the infinitesimal
coordinate transformation

xµ → x′µ = xµ − ξµ . (A.1)

The transformation matrices between the two sets of coordinates are

∂x′µ

∂xν
= δµ

ν −
∂ξµ

∂xν
, (A.2)

and

∂xν

∂x′µ
= δν

µ +
∂ξν

∂x′µ
= δν

µ +
∂ξν

∂xλ

∂xλ

∂x′µ
= δν

µ +
∂ξν

∂xλ

{
δλ
µ +

∂ξλ

∂xσ

∂xσ

∂x′µ

}
= δν

µ +
∂ξν

∂xµ
+O(2) .

Up to first order, the last expression can be written as

∂xν

∂x′µ
= δν

µ +
∂ξν

∂xµ
. (A.3)

The coordinate transformation (A.1) changes the tensor A relative to the
new coordinates x′µ. The new tensor is related to the old one via the usual
transformation rule for tensors,

A′
µν(x

′) = Aλσ(x)
∂xλ

∂x′µ
∂xσ

∂x′ν
. (A.4)

Next, we make a Taylor expansion of A′
µν(x) about A′

µν(x
′),

A′
µν(x) = A′

µν(x
′+ξ) ' A′

µν(x
′)+

∂A′
µν(x

′)

∂x′λ
ξλ ' A′

µν(x
′)+

∂A′
µν(x

′)

∂xλ
ξλ . (A.5)

81



82 Appendix A. The Lie derivative of a tensor of rank two

In this expression, we can rewrite A′
µν(x

′) in terms of Aµν(x) and ξµ by using
(A.4) and (A.3),

A′
µν(x

′) = Aλσ(x)

(
δλ
µ +

∂ξλ(x)

∂xµ

) (
δσ
ν +

∂ξσ(x)

∂xν

)
' Aµν(x) + Aµλ(x)

∂ξλ(x)

∂xν
+ Aλν(x)

∂ξλ(x)

∂xν
. (A.6)

We insert this expression into the right hand side of (A.5) and keep terms
up to the first order, which yields

A′
µν(x) = Aµν(x) + Aµλ(x)

∂ξλ(x)

∂xν
+ Aλν(x)

∂ξλ(x)

∂xµ
+
∂Aµν(x)

∂xλ
ξλ (A.7)

Thus, using the defintion of the Lie derivative (2.24), we get

LξAµν(x) = Aµλ(x)ξ
λ
,ν + Aλν(x)ξ

λ
,µ + Aµν,λ(x)ξ

λ . (A.8)
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The Lie derivative of the scalar
metric

Using (2.29), we get

[Lεg]00 = g0λε
λ
,0 + gλ0ε

λ
,0 + g00,λε

λ = 2g0λε
λ
,0 + g00,λε

λ

= 2g00ε
0
,0 + 2g0iε

i
,0 + g00,0ε

0 + g00,iε
i

= 2a2(1 + 2φ)(ε0)′ − 2a2B,i∂
iε′ + [a2(1 + 2φ)]′ε0 + 2a2φ,i∂

iε

' 2a2(ε0)′ + [2aa′(1 + 2φ) + 2a2φ′]ε0

' 2a2(ε0)′ + 2aa′ε0 , (B.1)

[Lεg]0i = g0λε
λ
,i + gλiε

λ
,0 + g0i,λε

λ

= g00ε
0
,i + g0jε

j
,i + g0iε

0
,0 + gjiε

j
,0 + g0i,0ε

0 + g0i,jε
j

= a2(1 + 2φ)ε0
,i − a2B,j∂

jε,i − a2B,i(ε
0)′

− a2[(1− 2ψ)δij + 2E,ij]∂
jε′ − (a2Bi)

′ε0 − a2Bi,j∂
jε

= a2(ε0 − ε′),i , (B.2)

[Lεg]ij = giλε
λ
,j + gλjε

λ
,i + gij,λε

λ

= gi0ε
0
,j + gikε

k
,j + g0jε

0
,i + gkjε

k
,i + gij,0ε

0 + gij,kε
k

= −a2B,iε
0
,j − a2[(1− 2ψ)δij + 2E,ik]ε,kj − a2B,jε

0
,i

− a2[(1− 2ψ)δkj + 2E,kj]ε,ki −
(
a2[(1− 2ψ)δij + 2E,ij]

)′
ε0

−
(
a2[(1− 2ψ)δij + 2E,ij]

)
,k
ε,k

' a2ε,ij + a2ε,ji + 2aa′ε0δij = 2a2

(
ε,ij +

a′

a
ε0δij

)
. (B.3)
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Appendix C

Calculation of the Einstein
tensor using Maple

C.1 Maple commands and output

The command ’grtw()’ loads the GRTensorII package in Maple in the
computers at the theory group. This is a special function which is written
spesifically for use at the theory group. In an ordinary computer the
package can be loaded by typing the following two commands: ’readlib(
grii ):’ and ’grtensor()’.

> grtw():

GRTensorII Version 1 .79 (R4 )

6 February 2001

Developed by Peter Musgrave, Denis Pollney and Kayll Lake

Copyright 1994 − 2001 by the authors .

Latest version available from : http : //grtensor .phy .queensu.ca/

The GRTensorII package is now loaded. We must then spesify which
metric we want to use. There is a whole host of metrics that are pre-
defined and which can be loaded into the memory by using the ’qload’
command. For example, if we wish to use the Kerr metric, we simply type
’qload(kerr):’. In our case, we wish to define a new metric, namely the
metric for conformal Newtonian perturbations. Then we must use the
’makeg’ command, which tells Maple that we wish to construct our own
metric. We give the name of the metric as argument to this command.

> makeg(conf_newt):
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Makeg 2.0: GRTensor metric/basis entry utility

To quit makeg, type ’exit’ at any prompt.

Do you wish to enter a 1) metric [g(dn,dn)],
2) line element [ds],
3) non-holonomic basis [e(1)...e(n)], or
4) NP tetrad [l,n,m,mbar]?

There are several ways in which we can type in the metric. We choose
to type in the line element.

> 2:

Enter coordinates as a LIST (eg. [t,r,theta,phi]):

> [eta,x,y,z]:

Enter the line element using d[coord] to indicate differentials.

(for example, r^2*(d[theta]^2 + sin(theta)^2*d[phi]^2)

[Type ’exit’ to quit makeg]

ds^2 =
> a(eta)^2*((1+2*alpha*phi(eta,x,y,z))*d[eta]^2-(1-2*alpha
*psi(eta,x,y,z))*(d[x]^2+d[y]^2+d[z]^2)):

If there are any complex valued coordinates, constants or functions
for this spacetime, please enter them as a SET ( eg. { z, psi } ).

Complex quantities [default={}]:

> {}:
The values you have entered are :

Coordinates = [η, x, y, z]

Metric :

ga b =


a(η)2 + 2 a(η)2 αφ(η, x, y, z) 0 0 0

0 %1 0 0
0 0 %1 0
0 0 0 %1


%1 := −a(η)2 + 2 a(η)2 αψ(η, x, y, z)
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You may choose to 0) Use the metric WITHOUT saving it,
1) Save the metric as it is,
2) Correct an element of the metric,
3) Re-enter the metric,
4) Add/change constraint equations,
5) Add a text description, or
6) Abandon this metric and return to Maple.

> 1;

Information written to: "grii/conf_newt.mpl"
Do you wish to use this spacetime in the current session?
(1=yes [default], other=no):

> 1;

Initializing: conf_newt

Calculated ds for conf_newt (0.000000 sec.)

Default spacetime = conf newt

For the conf newt spacetime :

Coordinates

x(up)

x a = [η, x, y, z]

Line element

ds2 = (a(η)2 + 2 a(η)2 αφ(η, x, y, z)) d η2 + %1 d x2 + %1 d y2 + %1 d z2

%1 := −a(η)2 + 2 a(η)2 αψ(η, x, y, z)

makeg() completed.

The construction of the metric is now finished and we are ready to calcu-
late the components of any tensor we want. Notice that in our definition
of the metric we have included a parameter ’alpha’ wherever there is a
first order quantity. This is done so that we can expand the quantities
we calculate to the first order in this parameter and thereby getting rid
of all terms with an order higher that this. The tensor we wish to calcu-
late is the Einstein tensor with mixed components, with the first index
contravariant (’up’) and the second covariant (’dn’).

> grcalc(G(up,dn)):

Created definition for G(up,dn)
Calculated detg for conf_newt (0.000000 sec.)
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Calculated g(up,up) for conf_newt (.019000 sec.)
Calculated g(dn,dn,pdn) for conf_newt (.010000 sec.)
Calculated Chr(dn,dn,dn) for conf_newt (0.000000 sec.)
Calculated Chr(dn,dn,up) for conf_newt (.011000 sec.)
Calculated R(dn,dn) for conf_newt (.070000 sec.)
Calculated Ricciscalar for conf_newt (.010000 sec.)
Calculated G(dn,dn) for conf_newt (.069000 sec.)
Calculated G(up,dn) for conf_newt (.030000 sec.)

CPU Time = .289

The tensor is now caluculated, but Maple doesn’t display it unless we tell
it to do so explicitly. The command that makes Maple display calculated
quantities is ’grdisplay’. But if we were to display the Einstein tensor
now, it will be done so to an arbitrary order. We will therefore first tell
Maple to expand the components to first order. This is done by first
making a Taylor expansion to first order, and then telling it to convert
the answer to a polynomial. Finally, we put the expansion parameter
’alpha’ equal to one. The commands that we use are the standard Maple
commands ’taylor’, ’convert’, ’polynom’ and ’subs’. But these must be
used in junction with the GRTensorII command ’grmap’, which tells
Maple to apply the ordinary Maple commands to all components of the
tensor.

> grmap(G(up,dn),taylor,’x’,alpha=0,2);

Applying routine taylor to G(up,dn)

> grmap(G(up,dn),convert,’x’,polynom);

Applying routine convert to G(up,dn)

> grmap(G(up,dn),subs,alpha=1,’x’);

Applying routine subs to G(up,dn)

> grmap(G(up,dn),simplify,’x’);

Applying routine simplify to G(up,dn)

The result is now displayed by typing the command ’grdisplay’.

> grdisplay(G(up,dn));

For the conf newt spacetime :

G(up, dn)

G(up, dn)
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G η
η = (3 ( ∂

∂η
a(η))2 + 2 ( ∂2

∂x2 ψ(η, x, y, z)) a(η)2 + 2 ( ∂2

∂z2 ψ(η, x, y, z)) a(η)2

− 6 ( ∂
∂η

a(η)) a(η) ( ∂
∂η
ψ(η, x, y, z)) + 2 ( ∂2

∂y2 ψ(η, x, y, z)) a(η)2

− 6φ(η, x, y, z) ( ∂
∂η

a(η))2)
/

a(η)4

G x
η = −2

( ∂
∂x
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂x ∂η
ψ(η, x, y, z))

a(η)3

G y
η = −2

( ∂
∂y
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂y ∂η
ψ(η, x, y, z))

a(η)3

G z
η = −2

( ∂
∂z
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂z ∂η
ψ(η, x, y, z))

a(η)3

G η
x = 2

( ∂
∂x
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂x ∂η
ψ(η, x, y, z))

a(η)3

G x
x = (−( ∂

∂η
a(η))2 + 2 a(η) ( ∂2

∂η2 a(η)) + 2φ(η, x, y, z) ( ∂
∂η

a(η))2

− 4 a(η) ( ∂2

∂η2 a(η))φ(η, x, y, z)− 2 a(η)2 ( ∂2

∂η2 ψ(η, x, y, z))

+ ( ∂2

∂z2 ψ(η, x, y, z)) a(η)2 − ( ∂2

∂y2 φ(η, x, y, z)) a(η)2 + ( ∂2

∂y2 ψ(η, x, y, z)) a(η)2

− 4 ( ∂
∂η

a(η)) a(η) ( ∂
∂η
ψ(η, x, y, z))− ( ∂2

∂z2 φ(η, x, y, z)) a(η)2

− 2 a(η) ( ∂
∂η
φ(η, x, y, z)) ( ∂

∂η
a(η)))

/
a(η)4

G y
x = −

−( ∂2

∂y ∂x
φ(η, x, y, z)) + ( ∂2

∂y ∂x
ψ(η, x, y, z))

a(η)2

G z
x = −

( ∂2

∂z ∂x
ψ(η, x, y, z))− ( ∂2

∂z ∂x
φ(η, x, y, z))

a(η)2

G η
y = 2

( ∂
∂y
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂y ∂η
ψ(η, x, y, z))

a(η)3

G x
y = −

−( ∂2

∂y ∂x
φ(η, x, y, z)) + ( ∂2

∂y ∂x
ψ(η, x, y, z))

a(η)2
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G y
y = (−( ∂

∂η
a(η))2 + 2 a(η) ( ∂2

∂η2 a(η)) + 2φ(η, x, y, z) ( ∂
∂η

a(η))2

− 4 a(η) ( ∂2

∂η2 a(η))φ(η, x, y, z)− 2 a(η)2 ( ∂2

∂η2 ψ(η, x, y, z))

+ ( ∂2

∂z2 ψ(η, x, y, z)) a(η)2 − ( ∂2

∂x2 φ(η, x, y, z)) a(η)2 + ( ∂2

∂x2 ψ(η, x, y, z)) a(η)2

− 4 ( ∂
∂η

a(η)) a(η) ( ∂
∂η
ψ(η, x, y, z))− ( ∂2

∂z2 φ(η, x, y, z)) a(η)2

− 2 a(η) ( ∂
∂η
φ(η, x, y, z)) ( ∂

∂η
a(η)))

/
a(η)4

G z
y =

( ∂2

∂z ∂y
φ(η, x, y, z))− ( ∂2

∂z ∂y
ψ(η, x, y, z))

a(η)2

G η
z = 2

( ∂
∂z
φ(η, x, y, z)) ( ∂

∂η
a(η)) + a(η) ( ∂2

∂z ∂η
ψ(η, x, y, z))

a(η)3

G x
z = −

( ∂2

∂z ∂x
ψ(η, x, y, z))− ( ∂2

∂z ∂x
φ(η, x, y, z))

a(η)2

G y
z =

( ∂2

∂z ∂y
φ(η, x, y, z))− ( ∂2

∂z ∂y
ψ(η, x, y, z))

a(η)2

G z
z = (−( ∂

∂η
a(η))2 + 2 a(η) ( ∂2

∂η2 a(η)) + 2φ(η, x, y, z) ( ∂
∂η

a(η))2

− 4 a(η) ( ∂2

∂η2 a(η))φ(η, x, y, z) + ( ∂2

∂y2 ψ(η, x, y, z)) a(η)2

+ ( ∂2

∂x2 ψ(η, x, y, z)) a(η)2 − ( ∂2

∂x2 φ(η, x, y, z)) a(η)2 − ( ∂2

∂y2 φ(η, x, y, z)) a(η)2

− 4 ( ∂
∂η

a(η)) a(η) ( ∂
∂η
ψ(η, x, y, z))− 2 a(η)2 ( ∂2

∂η2 ψ(η, x, y, z))

− 2 a(η) ( ∂
∂η
φ(η, x, y, z)) ( ∂

∂η
a(η)))

/
a(η)4

C.2 Simplified expressions

We now wish to simplify the expressions that Maple yields for the Einstein
tensor. The time-time component is

G0
0 =

2

a2

[
3

2
H2 +∇2Ψ− 3HΨ̇− 3ΦH2

]
.
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The zeroth and first order parts of this component are

(0)G0
0 =

3

a2
H2 , (C.1)

δG0
0 =

2

a2

[
∇2ψ − 3H(Ψ̇ + ΦH)

]
. (C.2)

Since the line element is symmetric in the spatial coordinates, we need only to
consider the ’0x’ component when we wish to find the general expression for
the ’0i’ components of the Einstein tensor. According to the Maple output
above, the ’0x’ component is

G0
x =

2

a3

[
aΨ̇,x + ȧΦ,x

]
=

2

a2

[
Ψ̇ +HΦ

]
,x
.

Thus, the general time-space components of the Einstein tensor are

G0
i =

2

a2

[
Ψ̇ +HΦ

]
,i
.

We see that these components vanish to the zeroth order,

(0)G0
i = 0 , (C.3)

δG0
i =

2

a2

[
Ψ̇ +HΦ

]
,i
. (C.4)

The remaining components that we have to consider are the space-space com-
ponents. Again, we can collect all the space-space components that Maple
has calculated into one expression by using the symmetry of the line element
with respect to the spatial components. But before we can do this, we must
first consider the Gi

j components with i = j and with i 6= j separately. The
Gx

x component is

Gx
x = − 1

a4

[
ȧ2 − 2aä− 2Φȧ2 + 4aäΦ + a2(Φ−Ψ),yy + a2(Φ−Ψ),zz+

2a2Ψ̈ + 4aȧΨ̇ + 2aȧΦ̇
]
.

Defining D = Φ−Ψ and using the del operator, we can rewrite this as

Gx
x = − 1

a4

[
ȧ2 − 2aä− 2Φȧ2 + 4aäΦ + a2∇2D − a2D,xx

2a2Ψ̈ + 4aȧΨ̇ + 2aȧΦ̇
]
.
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This expression leads us to the more general Gi
j,

Gi
j = − 1

a4

[
ȧ2 − 2aä− 2Φȧ2 + 4aäΦ + a2∇2D − a2D,ij

2a2Ψ̈ + 4aȧΨ̇ + 2aȧΦ̇
]
, for i 6= j .

If i 6= j we can consider, for example, the Gx
y component. This is simply

Gx
y =

1

a2
D,xy ,

or more generally

Gi
j =

1

a2
D,ij .

This can be combined with the result above to give us the general space-space
component of the Einstein tensor,

Gi
j =

1

a2

[{
H2 + 2Ḣ − 2

(
[H2 + 2Ḣ]Φ + Ψ̈ + 2HΨ̇ +HΦ̇ +

1

2
∇2D

)}
δi
j

+D,ij

]
.

The two first terms in this expression are zeroth order, while the remaining
are first order,

(0)Gi
j =

1

a2

[
H2 + 2Ḣ

]
δi
j , (C.5)

δGi
j = − 2

a2

[(
[H2 + 2Ḣ]Φ + Ψ̈ + 2HΨ̇ +HΦ̇ +

1

2
∇2D

)
δi
j −

1

2
D,ij

]
. (C.6)
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Calculation of the Christoffel
symbols

> restart:

> grtw():

GRTensorII Version 1 .79 (R4 )

6 February 2001

Developed by Peter Musgrave, Denis Pollney and Kayll Lake

Copyright 1994 − 2001 by the authors .

Latest version available from : http : //grtensor .phy .queensu.ca/

Instead of defining the metric from scratch, we simply load the previously
defined metric by using the ’qload’ command.

> qload(conf_newt):

Calculated ds for conf_newt (0.000000 sec.)

Default spacetime = conf newt

For the conf newt spacetime :

Coordinates

x(up)

x a = [η, x, y, z]

Line element

ds2 = (a(η)2 + 2 a(η)2 αφ(η, x, y, z)) d η2 + %1 d x2 + %1 d y2 + %1 d z2

%1 := −a(η)2 + 2 a(η)2 αφ(η, x, y, z)
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We wish to calculate the Christoffel symbols. There is a built-in definition
of the Christoffel symbols in the GrTensorII package, but this differs
from the usual definition of the Christoffel symbols. For example, the
built-in Christoffel symbols are not symmetric in the two lower indices.
Instead, we must define our own Christoffel symbols. We use the built-in
function grdef, which defines tensors from pre-existing ones, and
call the ’new’ Christoffel symbols Gamma.

> grdef(‘Gamma{^a b c} := 1/2*g{^a ^d}*(g{b d, c}
+g{c d, b}-g{b c, d})‘);

Created definition for Gamma(up,dn,dn)

> grcalc(Gamma(up,dn,dn)):

Calculated detg for conf_newt (0.000000 sec.)
Calculated g(up,up) for conf_newt (0.000000 sec.)
Calculated g(dn,dn,pdn) for conf_newt (0.000000 sec.)
Calculated Gamma(up,dn,dn) for conf_newt (.010000 sec.)

CPU Time = .010

> grmap(Gamma(up,dn,dn),taylor,’x’,alpha=0,2);

Applying routine taylor to Gamma(up,dn,dn)

> grmap(Gamma(up,dn,dn),convert,’x’,polynom);

Applying routine convert to Gamma(up,dn,dn)

> grmap(Gamma(up,dn,dn),subs,alpha=1,’x’);

Applying routine subs to Gamma(up,dn,dn)

In order to simplify the answers, we tell the program to replace 1
a(η)

da(η)
dη

with the Hubble parameter H.

> grmap(Gamma(up,dn,dn),subs,’diff(a(eta),eta)=
a(eta)*H(eta)’,’x’);

Applying routine subs to Gamma(up,dn,dn)

> grmap(Gamma(up,dn,dn),simplify,’x’);

Applying routine simplify to Gamma(up,dn,dn)

> grdisplay(Gamma(up,dn,dn));

For the conf newt spacetime :

Gamma(up, dn, dn)

Γη
η η = H(η) + ( ∂

∂η
φ(η, x, y, z))
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Γx
η η = ∂

∂x
φ(η, x, y, z)

Γy
η η = ∂

∂y
φ(η, x, y, z)

Γz
η η = ∂

∂z
φ(η, x, y, z)

Γη
x η = ∂

∂x
φ(η, x, y, z)

Γx
x η = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γη
y η = ∂

∂y
φ(η, x, y, z)

Γy
y η = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γη
z η = ∂

∂z
φ(η, x, y, z)

Γz
z η = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γη
η x = ∂

∂x
φ(η, x, y, z)

Γx
η x = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γη
x x = H(η)− 4 H(η)φ(η, x, y, z)− ( ∂

∂η
φ(η, x, y, z))

Γx
x x = −( ∂

∂x
φ(η, x, y, z))

Γy
x x = ∂

∂y
φ(η, x, y, z)

Γz
x x = ∂

∂z
φ(η, x, y, z)

Γx
y x = −( ∂

∂y
φ(η, x, y, z))

Γy
y x = −( ∂

∂x
φ(η, x, y, z))

Γx
z x = −( ∂

∂z
φ(η, x, y, z))

Γz
z x = −( ∂

∂x
φ(η, x, y, z))

Γη
η y = ∂

∂y
φ(η, x, y, z)

Γy
η y = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γx
x y = −( ∂

∂y
φ(η, x, y, z))

Γy
x y = −( ∂

∂x
φ(η, x, y, z))

Γη
y y = H(η)− 4 H(η)φ(η, x, y, z)− ( ∂

∂η
φ(η, x, y, z))

Γx
y y = ∂

∂x
φ(η, x, y, z)

Γy
y y = −( ∂

∂y
φ(η, x, y, z))

Γz
y y = ∂

∂z
φ(η, x, y, z)
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Γy
z y = −( ∂

∂z
φ(η, x, y, z))

Γz
z y = −( ∂

∂y
φ(η, x, y, z))

Γη
η z = ∂

∂z
φ(η, x, y, z)

Γz
η z = H(η)− ( ∂

∂η
φ(η, x, y, z))

Γx
x z = −( ∂

∂z
φ(η, x, y, z))

Γz
x z = −( ∂

∂x
φ(η, x, y, z))

Γy
y z = −( ∂

∂z
φ(η, x, y, z))

Γz
y z = −( ∂

∂y
φ(η, x, y, z))

Γη
z z = H(η)− 4 H(η)φ(η, x, y, z)− ( ∂

∂η
φ(η, x, y, z))

Γx
z z = ∂

∂x
φ(η, x, y, z)

Γy
z z = ∂

∂y
φ(η, x, y, z)

Γz
z z = −( ∂

∂z
φ(η, x, y, z))

These componets can be summerized in the following seven expressions

Γ0
00 = H + Φ̇ (D.1)

Γi
00 = Φ,i (D.2)

Γ0
0i = Φ,i (D.3)

Γi
j0 = (H− Φ̇)δi

j (D.4)

Γ0
ij = (H− 4HΦ− Φ̇)δij (D.5)

Γi
jk = Φ,iδjk − Φ,jδik − Φ,kδij (D.6)



Appendix E

Numerical calculations

E.1 C++ source code

This part of this appendix contains the source code for the C++ programs
which were written to determine the perturbations δ(x̂, τ) and Φ(x̂) and also
the function Q[Φ].

E.1.1 Plane symmetry

----------------------------------------------------------------

#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>

const double d0 = 1E-5;
const double x range = 10.0;
const double t range = 1.0;
const int Nx = 500;
const int Nt = 500;
const double dx = x range/Nx;
const double dt = t range/Nt;
const double eta0L = 10.0;

double phi[Nx];
double delta[Nx][Nt];
double Q[Nx];
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void findpert();
void writetofile();
void findQ();
double initial delta(double x);

using namespace std;

int main(){
findpert();
findQ();
writetofile();
return 0;

}

void findpert(){
double x,t;
phi[Nx-1]=0.0;
phi[Nx-2]=0.0;
for(int i=Nx-1;i≥0;i--){

x = i∗dx;
if(i>0&&i<(Nx-1)){

phi[i-1]=2∗phi[i]-
phi[i+1]+6∗dx∗dx∗(initial delta(x)+2∗phi[i])/(eta0L∗eta0L);

}
for(int j=0;j<Nt;j++){

t = j∗dt;
delta[i][j]=(initial delta(x)+2∗phi[i])∗pow(1+t,2.0/3.0)-2∗phi[i];

}
}

}

void findQ(){
for(int i=0;i<Nx;i++){

double x=i∗dx
Q[i]=6.0∗(initial delta(x)+2∗phi[i])/(eta0L∗eta0L);

}
}

double initial delta(double x){
return d0∗(1-2∗x∗x)∗exp(-x∗x);

}
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void writetofile(){
ofstream fut1("delta plane.dat");
ofstream fut2("phi plane.dat");
ofstream fut3("pos plane.dat");
ofstream fut4("time plane.dat");
ofstream fut5("Q plane.dat");

for(int i=0;i<2∗Nx;i++){
for(int j=0;j<Nt;j++){

if(i<Nx){
fut1 � delta[Nx-i-1][j] � " ";

}
else{

fut1 � delta[i-Nx][j] � " ";
}

}
fut1 � endl;

}
fut1.close();

for(int i=0;i<2∗Nx;i++){
for(int j=0;j<Nt;j++){

if(i<Nx){
fut2 � phi[Nx-i-1] � " ";

}
else

fut2 � phi[i-Nx] � " ";
}
fut2 � endl;

}
fut2.close();

for(int i=0;i<2∗Nx;i++){
double x = i∗dx-x range;
fut3 � x � endl;

}
fut3.close();

for(int j=0;j<Nt;j++){
double t = j∗dt;
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fut4 � t � endl;
}
fut4.close();

for(int i=0;i<2∗Nx;i++){
if(i<Nx){

fut5 � Q[Nx-i-1] � endl;
}
else{

fut5 � Q[i-Nx] � endl;
}

}
fut5.close();

}

----------------------------------------------------------------

E.1.2 Cylinder symmetry

----------------------------------------------------------------

#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>

const double d0 = 1E-5;
const double r range = 10.0;
const double t range = 1.0;
const int Nr = 1000;
const int Nt = 500;
const double dr = r range/Nr;
const double dt = t range/Nt;
const double eta0L = 10.0;

double phi[Nr];
double delta[Nr][Nt];
double Q[Nr];

void findpert();
void writetofile();
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void findQ();
double initial delta(double);

using namespace std;

int main(){
findpert();
findQ();
writetofile();
return 0;

}

void findpert(){
double r,t;
phi[Nr-1]=0.0;
phi[Nr-2]=0.0;
for(int i=Nr-1;i≥1;i--){

r = i∗dr;
if(i>1&&i<(Nr-1)){

phi[i-1]=(2∗dr∗dr∗r/(2∗r-
dr))∗((6.0/(eta0L∗eta0L))∗(initial delta(r)+2.0∗phi[i])

+2.0∗phi[i]/(dr∗dr)-
(2∗r+dr)∗phi[i+1]/(2∗dr∗dr∗r));

}
for(int j=0;j<Nt;j++){

t = j∗dt;
delta[i][j]=(initial delta(r)+2∗phi[i])∗pow(1+t,2.0/3.0)-2∗phi[i];

}
}

}

void findQ(){
double r, diffphi, diff2phi;
diffphi=(phi[2]-phi[1])/dr;
diff2phi=(phi[3]+phi[1]-2∗phi[2])/(dr∗dr);
Q[1]=sqrt(diffphi∗diffphi-dr∗diffphi∗diff2phi+

dr∗dr∗diff2phi∗diff2phi)/dr;
for(int i=2;i<(Nr-1);i++){

r=i∗dr;
diffphi=(phi[i+1]-phi[i-1])/(2.0∗dr);
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diff2phi=(phi[i+1]+phi[i-1]-2.0∗phi[i])/(dr∗dr);
Q[i]=sqrt(diffphi∗diffphi-dr∗diffphi∗diff2phi+

dr∗dr∗diff2phi∗diff2phi)/r;
}
int k=Nr-1;
r=k∗dr;
diffphi=(phi[k]-phi[k-1])/dr;
diff2phi=(phi[k]-2∗phi[k-1]+phi[k-2])/(dr∗dr);
Q[k]=sqrt(diffphi∗diffphi-dr∗diffphi∗diff2phi+

dr∗dr∗diff2phi∗diff2phi)/r;
}

double initial delta(double r){
double tmp=d0∗(1-r∗r)∗exp(-r∗r);
return tmp;

}

void writetofile(){
ofstream fut1("delta cyl.dat");
ofstream fut2("phi cyl.dat");
ofstream fut3("pos cyl.dat");
ofstream fut4("time cyl.dat");
ofstream fut5("Q cyl.dat");

for(int i=1;i<Nr;i++){
for(int j=0;j<Nt;j++){

fut1 � delta[i][j] � " ";
}
fut1 � endl;

}
fut1.close();

for(int i=1;i<Nr;i++){
for(int j=0;j<Nt;j++){

fut2 � phi[i] � " ";
}
fut2 � endl;

}
fut2.close();

for(int i=1;i<Nr;i++){
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double r = i∗dr;
fut3 � r � endl;

}
fut3.close();

for(int j=0;j<Nt;j++){
double t = j∗dt;
fut4 � t � endl;

}
fut4.close();

for(int i=1;i<Nr;i++){
fut5 � Q[i] � endl;

}
fut5.close();

}

----------------------------------------------------------------

E.1.3 Spherical symmetry

----------------------------------------------------------------

#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>

const double d0 = 1E-5;
const double r range = 10.0;
const double t range = 1.0;
const int Nr = 1000;
const int Nt = 500;
const double dr = r range/Nr;
const double dt = t range/Nt;
const double eta0L = 10.0;

double phi[Nr];
double delta[Nr][Nt];
double Q[Nr];
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void findpert();
void writetofile();
void findQ();
double initial delta(double);

using namespace std;

int main(){
findpert();
findQ();
writetofile();
return 0;

}

void findpert(){
double r,t;
phi[Nr-1]=0.0;
phi[Nr-2]=0.0;
for(int i=Nr-1;i≥1;i--){

r = i∗dr;
if(i>1&&i<(Nr-1)){

phi[i-1]=(dr∗dr∗r/(r-dr))∗((2.0/(dr∗dr))∗phi[i]-
phi[i+1]∗(1/(dr∗dr)+1/(dr∗r))+

6.0∗(initial delta(r)+2.0∗phi[i])/(eta0L∗eta0L));
//cout � i-1 � " " � r � " " � phi[i-1] � endl;

}
for(int j=0;j<Nt;j++){

t = j∗dt;
delta[i][j]=(initial delta(r)+2∗phi[i])∗pow(1+t,2.0/3.0)-2∗phi[i];

}
}

}

void findQ(){
double r=0;
Q[1]=(phi[3]-3∗phi[2]+2∗phi[1])/(dr∗dr);
for(int i=2;i<(Nr-1);i++){

r=i∗dr;
Q[i]=(phi[i+1]+phi[i-1]-2∗phi[i])/(dr∗dr)

-(phi[i+1]-phi[i-1])/(2∗dr∗r);
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}
int k=Nr-1;
r=k∗dr;
Q[k]=(phi[k-2]-2∗phi[k-1]+phi[k])/(dr∗dr)

-(phi[k]-phi[k-1])/(r∗dr);
}

double initial delta(double r){
double tmp=d0∗(1-(2.0/3.0)∗r∗r)∗exp(-r∗r);
return tmp;

}

void writetofile(){
ofstream fut1("delta sphere.dat");
ofstream fut2("phi sphere.dat");
ofstream fut3("pos sphere.dat");
ofstream fut4("time sphere.dat");
ofstream fut5("Q sphere.dat");

for(int i=1;i<Nr;i++){
for(int j=0;j<Nt;j++){

fut1 � delta[i][j] � " ";
}
fut1 � endl;

}
fut1.close();

for(int i=1;i<Nr;i++){
for(int j=0;j<Nt;j++){

fut2 � phi[i] � " ";
}
fut2 � endl;

}
fut2.close();

for(int i=1;i<Nr;i++){
double r = i∗dr;
fut3 � r � endl;

}
fut3.close();
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for(int j=0;j<Nt;j++){
double t = j∗dt;
fut4 � t � endl;

}
fut4.close();

for(int i=1;i<Nr;i++){
fut5 � Q[i] � endl;

}
fut5.close();

}

----------------------------------------------------------------

E.2 MATLAB code

This part of the appendix contains scripts for the computer program MAT-
LAB. These scripts read the data for the perturbations that was produced
by the C++ programs in the last section of this appendix, and calculates the
perturbed and unperturbed thermodynamic entropy and the gravitational
entropy.

E.2.1 Plane symmetry

----------------------------------------------------------------

%% The data which was created by the C++ program is read into
%% MATLAB and renamed into more appropriate names
load delta plane.dat
load phi plane.dat
load pos plane.dat
load time plane.dat
load Q plane.dat
x=pos plane;
t=time plane’;
delta=delta plane;
phi=phi plane;
Q=Q plane.dat;
clear pos plane;
clear time plane;
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clear delta plane;
clear phi plane;
clear Q plane;
%% The constants are given numerical value, and the integrals are
%% carried out using the trapezoidal algorithm for numerical intgration.
M=length(x);
K=length(t);
alpha0=3.32E9;
chi=5E9;
eta0=3.3E4;
lnKTdivA0=53.09;
Q=abs(Q);
dST=alpha0∗(lnKTdivA0∗(1-3∗phi)+delta∗(lnKTdivA0-1));
dSTun=alpha0∗lnKTdivA0∗ones(M,K);
dSG=chi/3/sqrt(3)∗eta0L∗eta0L∗(Q∗(1+t).∧(8/3));
for i=1:K

ST(i)=trapz(x,dST(:,i));
STun(i)=trapz(x,dSTun(:,i));
SG(i)=trapz(x,dSG(:,i));

end
%% ST is the thermal entropy, STun is the unperturbed thermal
%% entropy, while SG is the gravitational entropy.

----------------------------------------------------------------

E.2.2 Cylindrical symmetry

----------------------------------------------------------------

load delta cyl.dat
load phi cyl.dat
load pos cyl.dat
load time cyl.dat
load grfunc cyl.dat
x=pos cyl;
t=time cyl’;
delta=delta cyl;
phi=phi cyl;
Q=Q cyl;
clear pos cyl;
clear time cyl;
clear delta cyl;



108 Appendix E. Numerical calculations

clear phi cyl;
clear Q cyl;
M=length(x);
K=length(t);
alpha0=3.32E9;
chi=5E9;
eta0L=10;
lnKTdivA0=53.09;
Q=abs(Q);
dST=2∗pi∗alpha0∗(x∗ones(1,K)).∗(lnKTdivA0∗(1-
3∗phi)+delta∗(lnKTdivA0-1));
dSTun=2∗pi∗alpha0∗lnKTdivA0∗(x∗ones(1,K));
dSG=2∗pi∗eta0L∗eta0L∗chi/3/sqrt(3)∗(Q.∗x)∗((1+t).∧(8/3));
for i=1:K

ST(i)=trapz(x,dST(:,i));
STun(i)=trapz(x,dSTun(:,i));
SG(i)=trapz(x,dSG(:,i));

end

----------------------------------------------------------------

E.2.3 Spherical symmetry

----------------------------------------------------------------

load delta sphere.dat
load phi sphere.dat
load pos sphere.dat
load time sphere.dat
load Q sphere.dat
x=pos sphere;
t=time sphere’;
delta=delta sphere;
phi=phi sphere;
Q=Q sphere;
clear Q sphere;
clear pos sphere;
clear time sphere;
clear delta sphere;
clear phi sphere;
M=length(x);
K=length(t);
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alpha0=3.32E9;
chi=5E9;
eta0L=10;
lnKTdivA0=53.09;
Q=abs(Q);
dST=4∗pi∗alpha0∗((x.∗x)∗ones(1,K)).∗(lnKTdivA0∗(1-
3∗phi)+delta∗(lnKTdivA0-1));
dSTun=4∗pi∗alpha0∗lnKTdivA0∗((x.∗x)∗ones(1,K));
dSG=4∗pi∗eta0L∗eta0L∗chi/3/sqrt(3)∗(Q.∗x.∗x)∗((1+t).∧(8/3));
for i=1:K

ST(i)=trapz(x,dST(:,i));
STun(i)=trapz(x,dSTun(:,i));
SG(i)=trapz(x,dSG(:,i));

end

----------------------------------------------------------------
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