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ABSTRACT: The assumptions underpinning the adiabatic Born−Oppenheimer (BO) approximation are broken for molecules
interacting with attosecond laser pulses, which generate complicated coupled electronic-nuclear wave packets that generally will have
components of electronic and dissociation continua as well as bound-state contributions. The conceptually most straightforward way
to overcome this challenge is to treat the electronic and nuclear degrees of freedom on equal quantum-mechanical footing by not
invoking the BO approximation at all. Explicitly correlated Gaussian (ECG) basis functions have proved successful for non-BO
calculations of stationary molecular states and energies, reproducing rovibrational absorption spectra with very high accuracy. In this
Article, we present a proof-of-principle study of the ability of fully flexible ECGs (FFECGs) to capture the intricate electronic and
rovibrational dynamics generated by short, high-intensity laser pulses. By fitting linear combinations of FFECGs to accurate wave
function histories obtained on a large real-space grid for a regularized 2D model of the hydrogen atom and for the 2D Morse
potential, we demonstrate that FFECGs provide a very compact description of laser-driven electronic and rovibrational dynamics.

■ INTRODUCTION
With the advent of new technology for manipulating atoms
and molecules with intense ultrashort (attosecond and
femtosecond) laser pulses, there is an urgent need for further
development of accurate and reliable quantum-dynamics (QD)
tools for simulations of events involved in such manipulations.
Such simulations are needed both to guide the design of
experiments and to ensure the correct interpretation of
observations. Atomic and molecular QD simulations involving
interaction of these systems with ultrashort intense laser pulses
can be carried out by integrating the time-dependent
Schrödinger equation (TDSE) on a real-space grid or by
using an expansion of the wave function of the system in terms
of basis functions whose linear and nonlinear parameters are
adjusted along with the number of basis functions during the
propagation. The focus of this work is an analysis of the
necessary features such basis functions must possess to be
effective for simulating laser-induced dynamics of an atomic or
molecular system.

The dynamics induced by the interaction of intense
electromagnetic radiation with nuclei and electrons of a
molecule necessitate an accurate account of the coupling of
these two types of particles. The broad intensity distribution in
the frequency domain of ultrashort laser pulses implies that a
large number of bound and continuum states are involved in
the dynamics, including rovibrational, electronic, and collective
states, where the motions of both nuclei and electrons are
simultaneously excited. To describe such an intricate situation,
the separation of the nuclear and electronic motions�a
hallmark of the adiabatic Born−Oppenheimer (BO) approx-
imation1,2�must not be assumed and, ideally, all particles
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forming the system should be treated on an equal footing. Such
an approach is tested in this work using two simple 2D models.
Also, an extension of the approach to simulate the laser-
induced dynamics of attosecond atomic and molecular events
involved in attosecond experiments3−5 is discussed.

The coupled nuclear-electronic motion is highly correlated,
as the electrons, particularly the core electrons, generally follow
the nuclei very closely, and the nuclei stay apart from each
other due to their strong Coulomb repulsion and large masses.
The situation is markedly different for the electrons whose
wave functions, due to much lower masses, more significantly
overlap. To best describe these effects using a basis-set
approach, one needs to expand the wave function in terms of
functions that explicitly depend on nucleus−nucleus, nucleus−
electron, and electron−electron distances, i.e., the explicitly
correlated functions (ECFs). In the first part of this work, we
review the ECFs used in the atomic and molecular calculations
of stationary bound states, and we discuss the features of these
functions that may make them particularly useful in QM
calculations of atomic and molecular systems. We particularly
focus on Gaussian ECFs (ECGs), as these are the most
popular functions used in non-BO atomic and molecular
calculations.6−20 In the second part, two-dimensional time-
propagation calculations are performed for two model systems
involving Coulomb and Morse potentials using a grid
approach. Next, the time-dependent grid wave functions are
fitted with ECGs that are chosen to best represent the key
features that appear in the wave function due to the interaction
of the system with ultrashort intense laser pulses.

Single-particle Gaussians have been extensively used as basis
functions in both electronic-structure theory21 and vibrational
dynamics.22−24 In electronic-structure theory the Gaussians are
real-valued functions centered at the atomic nuclei and
contracted to form atomic orbitals which, in turn, form a
nonorthogonal basis for the expansion of molecular orbitals�
see, e.g., ref 21 for a detailed account. Such Gaussians have also
been used for the study of many-electron dynamics,25−27

although important highly nonlinear phenomena such as
ionization processes and high harmonic generation cannot be
properly accounted for. The latter can to a certain extent be
ameliorated by augmenting the standard basis with Gaussians
fitted to continuum (Bessel, Coulomb, or Slater-type)
functions; see the recent review by Coccia and Luppi and
references therein for more details.28

The core idea of Heller’s approach22−24 to vibrational
dynamics is to use complex-valued Gaussians (Gaussian wave
packets), which are exact solutions for harmonic potentials.
Unlike in electronic-structure theory, the Gaussian parameters
are now time-dependent variational parameters. For anhar-
monic potentials, however, the equations of motion for the
Gaussian parameters quickly become ill-conditioned and one
resorts to locally harmonic approximations of the potential,
which is a reasonable approach as long as the wave packet is
sufficiently localized�see, e.g., ref 29 for a recent review of the
so-called thawed Gaussian approach. Complex-valued Gaus-
sians have also been used in the context of the multiconfigura-
tional time-dependent Hartree (MCTDH) method.30−33 In all
cases, however, the ill-conditioned equations of motion are a
serious obstacle. In this work, we investigate the ability of
complex-valued Gaussians to represent complicated dynamics
of electrons and nuclei by fitting to accurate grid-based
solutions of the time-dependent Schrödinger equation.

■ NON-BO HAMILTONIAN
The total nonrelativistic all-particle non-BO molecular
Hamiltonian describing the interaction of a neutral molecule
with a uniform, time-dependent electric field defining the x-
axis of a laboratory-fixed coordinate frame can be rigorously
separated into a center-of-mass (COM) kinetic-energy
operator and the internal Hamiltonian,6,8,34 H t( ). The
separation is accomplished by transforming the total
Hamiltonian from Cartesian laboratory coordinates, Ri, i = 1,
..., N (N is the total number of particles in the molecule) to a
new Cartesian coordinate system, parallel to the laboratory
frame, where the first three coordinates are the coordinates of
the COM and the remaining coordinates are internal
coordinates. The origin of the internal frame is chosen at a
reference particle, typically the heaviest nucleus, which is taken
to be particle number 1 such that ri = Ri+1 − R1 for i = 1, ..., n
with n = N − 1. The internal Hamiltonian then takes the
following form (using atomic units throughout):6
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where t( ) is the time-dependent electric-field strength, M1 is
the mass of the reference particle (particle 1), qi = Qi+1 (i = 0,
..., n), μi = M1Mi+1/(M1 + Mi+1) (i = 1, ..., n) with Qi and Mi, i =
1, ..., N, the charge and mass of particle i, rij = |ri − rj| = |Ri+1 −
Rj+1|, ri = |ri|, and the prime denotes vector/matrix trans-
position. The Hamiltonian (1) represents n interacting
particles with masses equal to the reduced masses moving in
the central Coulomb potential of the reference particle. We
refer to these particles as pseudoparticles because, while they
have the same charges as the original particles, their masses are
different. For t( ) 0= the Hamiltonian (1) is fully symmetric
(isotropic or atom-like) with respect to all rotations around the
center of the internal coordinate system and its eigenfunctions
transform as irreducible representations of the fully symmetric
group of rotations. When t( ) 0, however, the symmetry is
reduced to cylindrical about the field direction, here the x-axis.

For a diatomic system, after separation of the center of mass
motion, the internal Hamiltonian used in the non-BO time-
evolution calculations represents a motion of the second
nucleus and the electrons (with their masses replaced by the
respective reduced masses) in the field of charge of the first
nucleus (the reference nucleus) located in the center of the
internal coordinate system. The potential acting on the second
nucleus that results from the interaction of this nucleus with
the charge of the reference nucleus and the electrons can
effectively be represented by a Morse-like potential. An
important effect that also determines the electronic-nuclear
dynamics of the system is the electrostatic attractive interaction
of each of the electrons with the reference nucleus located at
the center of the coordinate system. Thus, the Coulombic and
Morse interactions investigated in this work are central to
understanding the molecular dynamics. The interactions,
which are present in the internal Hamiltonian but are not
investigated in this work, are two particle interactions involving
the second nucleus and the electrons and the interelectron
interactions. To represent these types of interactions, models
involving more than two dimensions would be needed, and
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thus, they are not investigated in this work. However, based on
our ECG stationary-state calculations, we expect that FFECGs
should perform very well in describing these interactions.

■ ECGS USED IN VERY ACCURATE NON-BO
CALCULATIONS OF STATIONARY STATES OF
SMALL ATOMS AND MOLECULES

To achieve the high accuracy needed in the computations, we
will use an approach that is both adaptive in space and time.
Mesh-free complex explicitly correlated Gaussian (CECG)
functions, which are free to warp and roam in space, will be the
main tool. The Adamowicz group has used various types of
ECGs and CECGs in very accurate non-BO atomic and
molecular calculations of stationary bound states for more than
two decades. Various forms of explicitly correlated all-particle
Gaussian functions (ECGs) with real and/or complex
nonlinear parameters have been used in non-BO calcula-
tions.6−9 The simplest ECG with real nonlinear parameters
used to calculate an S state of an n-electron atom (S-ECG) is

r r Ar( ) exp= [ ] (2)

where r is vector of 3n internal Cartesian coordinates of the
electrons and A is a 3n × 3n real symmetric positive-definite
matrix of the nonlinear parameters. A has the following block
structure: A = a ⊗ I3, where a is a n × n real dense symmetric
positive-definite matrix and I3 is a 3 × 3 identity matrix, while
symbol ⊗ denotes the Kronecker product. Such a
representation of matrix A ensures that the exponential part
of the basis function is invariant with respect to 3D rotations.

S-ECGs can alternatively be represented as

r r r r

r r r

( ) exp ...

exp ...
n n

n n n n

1 1
2

1 2
2 2

12 12
2

13 13
2

( 1) ( 1)
2

= [ ]
× [ ]

(3)

where the first factor is a product of n orbitals and the second
factor is a product of n(n + 1)/2 pair functions explicitly
dependent on the squares of all interelectron distances, rij

2.
The methods allow for very accurate calculations of the spectra
of small atoms and molecules when the leading relativistic and
QED corrections are also included in the calculations.

The non-BO ECG calculations for S, P, D, and F states of
atomic systems with 2−5 electrons35−47 are among the most
accurate in the literature. As the ECGs explicitly depend on the
distances between the particles (electrons and nuclei), they
very efficiently represent the coupled nucleus-electron motions
and allow very accurate accounting of the interparticle
correlation effects. These effects are indispensable in non-BO
calculations because, as mentioned, the Coulomb interactions
make particles with alike charges avoid each other and particles
with opposite charges follow each other. This effect can also be
very effectively described with the ECGs.

A challenge in non-BO ECG calculations of stationary
ground and excited states of small atoms and molecules is to
accurately describe radial and angular oscillations of the non-
BO wave functions of highly excited states. Three types of
ECGs were used to describe these features. These are as
follows:

a molecular ECGs with pre-exponential multipliers in the
form of powers of the internuclear distances. The
functions are called “power” ECGs (PECGs) and they
have the following form:

r rr r Ar( ) exp
i

i
m

i j
ij
m

i ij= [ ]
> (4)

where mi and mij are even non-negative integers, and A,
as defined before, is a real symmetric positive-definite 3n
× 3n matrix. PECGs have been used in molecular non-
BO calculations for small molecules;44,48−53

b complex single-center ECGs. The works that are
particularly relevant to this project concern implementa-
tion of algorithms for performing very accurate
calculations on bound states of small molecules that
employ complex ECGs (CECGs):

r A B rexp ( i )[ + ] (5)

where A, as defined before, is a real symmetric matrix
and B is also a real symmetric matrix with the same
structure as A (i.e., B = b ⊗ I3, where b is a real dense
symmetric n × n matrix). It was shown that CECGs can
very effectively describe high-frequency radial oscilla-
tions of the wave function of highly vibrationally excited
states. The angular oscillations can be described by
adding Cartesian spherical harmonics as pre-exponential
multipliers to the Gaussians. CECGs have been used in
non-BO calculations of molecular Σ, Π, and Δ bound
rovibrational states54−57 It has been shown that CECGs
are equally, if not more, efficient as PECGs in describing
radially and angularly oscillating wave functions of states
located near the dissociation threshold;

c real ECGs with shifted centers (SECGs) of the form:

r r q A r q( ) exp ( ) ( )= [ ] (6)

where q is 3n real vector of the Gaussian shifts and A, as
defined before, is a real symmetric matrix of the
nonlinear parameters. SECGs have been used in non-
BO calculations of some small diatomic and triatomic
molecules and in non-BO calculations of the dipole
moments, polarizabilities, and hyperpolarizabilities of
isotopologues of the H2 molecule.58−65 Including real
shifts in the Gaussians enables one to describe radial and
angular polarization of the wave function. These types of
deformations can also be described by linear combina-
tions of spherical-harmonics factors, though the shifts
may be a more effective way for the task.

The purpose of this work is to develop and test an ECG
basis set to be employed in quantum-dynamics simulations of
molecular systems exposed to an ultrashort laser pulse within
the semiclassical electric-dipole approximation. The proposed
basis is tested by fitting wave packets obtained as solutions of
the time-dependent Schrödinger equation with a grid-based
method for two two-dimensional (2D) model systems. The
models represent two main features that need to be described
in a QD simulation of a molecule, i.e., the electrostatic
interaction represented by a Coulombic potential and the
rovibrational interaction represented for a diatomic molecule
by a Morse potential. In the next section, before the ECG basis
functions for QD molecular simulations are introduced, grid-
based calculations of the two models are described and
discussed.
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■ 2D MODEL CALCULATIONS USING A GRID
APPROACH

O u r u l t i m a t e g o a l i s t o s o l v e t h e T D S E ,
t H t ti ( ) ( ) ( ) 0= , for the non-BO internal Hamiltonian

(1) representing a molecule interacting with a short intense
laser pulse. For a diatomic molecule, there are two major
interactions that must be described. The first is the repulsive
interaction of the pseudonucleus with the charge of the
reference nucleus located in the center of the coordinate

system, and the second is the attractive Coulomb interaction of
a pseudoelectron with the charge of the reference nucleus. Due
to the screening effect of the former interaction by the
electrons, the interaction potential is not Coulombic but is
more appropriately represented by a Morse-type potential.
Thus, at the very minimum, in selecting an ECG basis set for
solving the non-BO TDSE, one should verify whether the
chosen basis is capable of describing the laser-induced
dynamics of a single particle interacting with the charge of

Figure 1. Shape of the laser pulse used in the simulation of the Coulomb model (left) and of the Morse model (right).

Figure 2. Snapshots illustrating the time evolution of the Coulomb model wave function during the grid-based simulation in the time interval from
t = 0.0 to t = 54.0 au As the time advances, the wave function becomes progressively more complicated, with nonlinear phase, amplitude
oscillations, and localized features. To facilitate visualization, the wave function values have been rescaled so that the maximum value remains
constant across all timeframes, matching the maximum value at t = 0.
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the reference particle with the Morse and Coulomb potentials.
For the verification, we use an elementary 2D model
Hamiltonian of the form:

H t
x y

V x y qx t( )
1

2
( , ) ( )

2

2

2

2

i
k
jjjjj

y
{
zzzzz= + + +

(7)

For the electron we use the soft Coulomb potential,
V x y x y( , ) ( 1/2)2 2 1/2= + + , which mimics the nuclear
potential of a hydrogen-like atom, and the Morse potential is
given by V x y D x y r( , ) 1 exp( (( ) ))e e

2 2 1/2 2= [ + ] ,
with De = 0.17449, re = 1.4011, and α = 1.4556. The charge
and (reduced) mass are set to q = −1, μ = 1 for the Coulomb
model, and q = 1, μ = 1605.587 for the Morse model. The
electric-field strength is nonzero only in the time interval t0 < t
< t1, where it is equal to

t
t t
t t

t t t
t t

( ) sin cos( ( ))
20

2 0

1 0

0 1i
k
jjjjj

y
{
zzzzz= =

+

(8)

where 0 denotes the maximum electric field amplitude. In our
calculations for both models, we set t0 = 0. For the Coulomb
model we set ω = 0.25 au, t1 = 60 au, and 0.4 a.u.0 = , which
corresponds to a laser pulse of wavelength 182 nm, consisting
of 2.5 optical cycle. For the Morse model we set ω = 0.0 au, t1
= 20 au and 2.0 a.u.0 = , corresponding to a short, delta-like
pulse (relative to the time-scale of the nuclear motion). Our
laser pulse parameters are chosen not for their significance in
relation to any experiment but rather such that it generates
complicated ionization and dissociation dynamics. We

consider the dynamics for times 0 ≤ t ≤ 100 au for the
Coulomb model and 0 ≤ t ≤ 300 au for the Morse model,
including periods of free evolution after the laser pulse. The
laser pulses used in the QD simulations of the Coulomb and
Morse models are shown in Figure 1.

Highly accurate reference QD calculations with the
Coulomb and Morse potentials are performed by spatially
discretizing the real xy plane using a grid with ngrid = 1024
equidistant points in the interval [−L, L] = [−150, 150] for
the Coulomb model and [−20, 20] for the Morse model, in
both directions. The kinetic-energy operator is approximated
using the standard Fast Fourier Transform (FFT), which
introduces artificial periodic boundary conditions. These have
a negligible effect due to the large domain. The time evolution
can be approximated in a number of ways, but we choose the
common second-order split-operator scheme66 with time step
h = 0.01 au for the Coulomb model and h = 0.05 au for the
Morse model, respectively. This method has accuracy of order

h( )3 locally in time, and is sufficiently accurate for our
purposes. The calculations are initiated with the corresponding
ground-state wave functions, which are fully symmetric with
respect to all rotations around the center of the internal
coordinate system in the xy plane. The ground-state wave
function is obtained using inverse iterations using the
conjugate-gradient method for the solution of large sparse
linear systems. In the case of the Coulomb potential the
ground-state wave function approximates a 2D 1s orbital and,
in the case of the Morse potential, the ground-state wave
function has a “torus” shape and is practically zero at the
coordinate center, peaks at re, and then again goes to zero at
larger distances. In Figures 2 and 3, some snapshots of the time

Figure 3. Same as in Figure 2 but for the Morse model in the time interval from t = 0.0 au to t = 270.0 au.
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evolution of the wave functions are shown for the Coulomb
and Morse simulations, respectively. For each case, the real and
imaginary parts of the wave function, as well as the wave
function absolute value, are plotted. In both cases, the
respective wave functions become increasingly more compli-
cated with many features, more deformed and oscillatory, and
more diffused.

It is interesting to know to what extent the time-evolving
wave packets for the two considered models involve
contributions from higher angular momenta. For both systems,
at t = 0, the initial wave packets, i.e. the corresponding wave
functions, are fully rotationally symmetric, i.e., for both
L (0) 0z = , where L iz = is the angular momentum
operator in 2d and θ is the angular coordinate in planar polar
coordinate system. Moreover, H t L( ), 0z[ ] = before and after
the pulse begins and after it ends. The nonvanishing of the
commutator for t0 < t < t1 implies that ψ(t) is not, in general,
an eigenfunction of Lz.

In Figure 4, the angular momentum probability distributions
are shown for both model systems. Clearly, the pulse induces
high angular moments in the wave function.

Fitting of the wave functions obtained in the Coulomb and
Morse simulations with ECGs is described in the next section.
Based on the analysis of the simulation results, it is clear that
Gaussians used in the fitting need to be capable of describing
the ground-state wave function, the cylindrical deformation
and oscillation of the function due to the interaction with the
field, the diffusion of the function associated with possible
ionization or/and dissociation of the system, and the coupling
of the motion of all particles forming the system including the
non-BO coupling of the motions of the electrons and the
nuclei. Most of these features appear in the calculations of
molecular static ground and excited states, and an excellent
performance of the ECGs has been well documented in those
calculations. The features that do not appear in the static
calculations are ionization and dissociation. It necessitates that
the wave function is allowed to acquire some plane-wave
character. This can be achieved by allowing the shift vector and
parameter matrix A in Gaussian (5) to become complex. Such
Gaussians, named by us the fully flexible explicitly correlated
Gaussians (FFECGs), have the following form:

r r q p A B r q p( ) exp ( i ) ( i ) ( i )= { [ + ] + [ + ]}
(9)

or alternatively the following form:

r r q A B r q

p r q

( ) exp ( ) ( i )( )

i ( ) ( i )

= [ +
+ + + ] (10)

where A and B, as defined before, are real symmetric 3n × 3n
matrices, and p and q are 3n vectors. The FFECGs are fully
flexible complex multiparticle Gaussians that can provide a
basis set for expanding a time-evolving non-BO wave packet of
a molecular system interacting with a short fast-varying intense
laser pulse. As shown in the next section, a linear combination
of FFECGs can be used to very accurately represent the
ground-state wave functions of the two models considered in
this work. It can also describe the time-dependent oscillations
of the time-evolving wave packet. Also, due to the fact that the
Gaussian shift vectors are complex, the ionization and
dissociation processes can be described. And finally, FFECGs
can very effectively represent the coupled and highly correlated
motions of the electrons and nuclei forming the system. They
allow the electrons and the nuclei to be treated on equal
footing in the calculation.

■ FITTING THE GRID-BASED WAVE PACKET WITH
FFECGS

The 2D wave packet obtained in the time-dependent grid
calculation at each particular time step for each of the two
models is fitted with a linear combination of FFECGs. In this
case, an FFECG has the following form:
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where p = (px, py)′ and q = (qx, qy)′. Thus, in the 2D case ϕ(r),
is dependent on six real nonlinear parameters, a, b, px, py, qx,
and qy. As the time-dependent calculations for both models are
initiated with the corresponding ground-state wave functions,
which are real and spherically symmetric, appropriate FFECGs
need to be used. For the hydrogen model, these FFECGs are

Figure 4. Left: Angular momentum probability distribution of the Coulomb model wave function at t = 45. Right: Same for the Morse model at t =
20 au While the Morse model is bimodal with strong peaks around |m| = 13, the Coulomb model is unimodal, with standard deviation σm = 6.9.
The spectra are computed by first sampling the grid wave function at a polar coordinate grid using high-order spline interpolation, and then Fourier
decomposing the result along the angular coordinate, resulting in ψ(t) = ∑m(2π)−1/2eimθf m(r, t). The probabilities plotted are defined as
P t f r t rdr( ( )) ( , )m m0

2= | | , and are computed using numerical quadrature.
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simple spherical Gaussians centered at qx = qy = 0 with a ≠ 0
and b = px = py = 0. A linear combination of FFECGs of this
kind can fit the ground-state wave function obtained in the grid
calculation with very good accuracy. For the Morse model, one
needs to use only FFECGs with a ≠ 0, b ≠ 0, and px = py = qx =
qy = 0 to generate a good fit to the ground-state wave function
obtained in the grid calculation. Additionally, for each FFECG
pair used, the two Gaussians need to have the same a, but their
b’s should be b and −b, so they can be “contracted” to form the
following real function:

b b
K a x y b x y

K ar br

( ) ( )
2i

exp( ( ))sin( ( ))

exp( )sin( ),

2 2 2 2

2 2

+ = + +

= (11)

where K is a constant. A linear combination of such contracted
FFECGs provides a very accurate fit to the ground-state wave
function for the Morse model.

The fitting of the grid ground-state wave functions with
FFECGs is done using the standard least-squares implementa-
tion from the SciPy Python library.67 The method is also used
to fit the wave functions obtained in consecutive time steps in
the grid simulation. First, the number of FFECGs used is the
same as that for the ground state, but the parameters frozen at
zero for the ground-state wave function are now unfrozen and

optimized. For both models we set the threshold for the least-
squares cost function equal to 10−5. When the assumed
accuracy of the fitting cannot be achieved, additional FFECGs
are added to the basis set. Each addition includes a group of
FEECGs with the following parameters:

a b p p q q

a b p p q q

a b p p q q

a b p p q q

( 1, 0, 1, 0, 1, 0)

( 1, 0, 1, 0, 1, 0)

( 1, 0, 1, 0, 1, 0)

( 1, 0, 1, 0, 1, 0)

x y x y

x y x y

x y x y

x y x y

= = = = = =

= = = = = =

= = = = = =

= = = = = =

The fitting that involves optimization of all linear and
nonlinear parameters of the enlarged FFECG basis set
continues for some number of the following time steps until
it is determined that the fitting process is no longer successful.
At that point, new FFECGs are added to the basis set, and the
wave packet is refitted. The fitting for the Coulomb and Morse
models is shown in Figures 5 and 6. In the figures, the wave
packets obtained in the grid calculations are compared with the
corresponding FFECG fits for some selected time points.

Also, in Figure 7 the changes of the cost function
representing the accuracy of the fitting, as well as the time-

Figure 5. FFECG fits to the selected time frames extracted from the grid-based simulation trajectory of the Coulomb model. The error represents
the difference in either the absolute value, the real part, or the imaginary part between the grid wave function and the optimized linear combination
of Gaussian functions.
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resolved size of the basis set, are plotted for the Coulomb and

Morse models. Figures 5−7 show that the fitting accuracy is

satisfactory for both models despite the wave function

becoming increasingly more complicated. Naturally, as this

happens, the number of FFECGs has to be constantly
increased.

In general, the Morse model seems to be somewhat more
difficult to represent using FFECGs than the Coulomb model.
The reason for this behavior can be attributed to the maximum

Figure 6. Same as Figure 5 but for the Morse model.

Figure 7. Evolution of the cost function and FFECG basis set size over time during the fitting process for the Coulomb model (left) and for the
Morse model (right). A new set of functions is added to the total basis set whenever the cost function reaches the predetermined threshold of 10−5,
ensuring the maintenance of the desired level of accuracy.
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of the density of the second nucleus in the Morse model being
shifted away from the reference nucleus by some distance (in
the ground state, this distance is approximately equal to the

equilibrium internuclear distance). This type of shifting does
not happen in the Coulomb model. The shifting of the density
maximum away from the reference nucleus required the

Figure 8. Left: Time-resolved observables computed for the Coulomb model, with the reference grid wave function (dashed lines), and with the
fitted Gaussian wave function (solid lines). Right: Differences between grid and Gaussian observables. From top to bottom: expectation value of the
field-free Hamiltonian, projection of the wave packet onto the ground-state wave function (the initial state), dipole moment expectation value,
expectation value of the squared z-component of the angular momentum.
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inclusion of more ECGs in the wave function. However, if this
is done, the ECG expansion of the wave packet in the Morse
model should be equally accurate as it is for the Coulomb
model.

The least-squares fitting of a linear combination of ECGs to
a grid wave function produces a wave packet that provides a
representation of the grid function with uniform spatial quality.
ECG representations obtained by minimization of energy-

Figure 9. Same as Figure 8 but for the Morse model. The insets display the evolution of the observables over the duration of the laser pulse (0−20
a.u).
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based functionals (e.g., the variational Rayleigh−Ritz func-
tional or Rothe variational functional) usually are more
accurate in some spatial domains than the others. It is difficult
to a priori determine which imperfections of the representation
of the wave function will be amplified and which will be
suppressed when a particular observable is calculated.

To better elucidate the accuracy of the FFECG fits obtained
in this work, we compare time-resolved observables obtained
for the grid wave packet and the fitted wave packet. The
calculated observables are the expectation value of the field-
free Hamiltonian, the ground-state survival probability (i.e., the
square of the autocorrelation function), the dipole moment
expectation value, and the expectation value of the squared z-
component of the angular momentum. The comparison is
shown in Figure 8 for the Coulomb model and in Figure 9 for
the Morse model. On the left-hand side of each figure, the
time-resolved plots of each of the four observables for the grid
and FFECG wave packets are shown together in four separate
frames. As one can see, within the left-hand-side plots, the
curves corresponding to the two wave packets for all four
observables for both models are practically indistinguishable.
The right-hand-side plots do indicate some error fluctuations,
but these are of similar magnitude as the fluctuations in the
fitting error and, therefore, are acceptable.

We note that the ground-state survival probability of the
final state is small or zero for both models and that the angular-
momentum expectation value indicates involvement of highly
excited rotational states. The final energy for the Coulomb
model is positive, indicating an unbound (i.e., ionized) state.
For both models, the increase of the dipole moment during the
dynamics indicates the large, asymmetric spreading of the wave
packet. It is quite remarkable that so few FFECGs are required
to accurately reproduce such complicated dynamics.

■ CONCLUSION
The grid approach is used to obtain solution of the time-
dependent Schrödinger equation for two 2D model systems
that represent features which appear in quantum-dynamics
time-propagation of the wave packet representing a diatomic
neutral molecule interacting with a short intense laser pulse
and performed without assuming the Born−Oppenheimer
approximation. The grid wave functions obtained in consec-
utive time steps are fitted with a combination of Gaussian
functions that are 2D versions of the more general fully flexible
explicitly correlated Gaussians (FFECGs) with complex
exponential parameters and complex shifts of the Gaussian
centers. The fitting procedure employs the least-squares
method and involves growing the basis set of the Gaussians
to provide a uniformly good fit for a representative set of time
points obtained from the grid time propagation. The two
models considered in the calculations involve a single-particle
in the central potential represented by an attractive Coulomb
interaction and a Morse potential. Based on the results
obtained in the calculations, we can expect that FFECGs will
provide a good basis set for laser-induced non-BO dynamics of
a diatomic molecule. Work on implementing FFECGs in
molecular QD simulations is in progress.

Finally, this work represents a preliminary step in the
application of FFECGs to describe the coupled electronic-
nuclear dynamics in atomic and molecular systems. In the
future work involving FFECGs and the non-BO nuclear-
electronic quantum dynamics, the Rothe method68−70 will be
employed to propagate the wave packet. The approach, also

known as the adaptive method of time layers,71 relies on
reformulating the time-dependent variational principle into a
series of minimizations of the Rothe functional at consecutive
time steps. This is an alternative to the standard real-time
propagation techniques based on the Dirac−Frenkel varia-
tional principle and propagated using, e.g., Runge−Kutta
methods. The ECG optimization protocol developed in the
present work to fit a linear combination of ECGs to the grid-
based wave packet will be applied to minimize the Rothe
functional with respect to the linear and nonlinear parameters
of the ECGs. In our works on the variational calculations of
molecular stationary states with real and complex ECGs we
have developed procedures for the variational minimization of
the energy functional, which employs the analytical energy
gradient determined with respect to the ECG nonlinear
parameters. The use of the gradient has significantly expedited
the functional minimization and enabled non-BO energies and
the corresponding wave functions whose accuracy by far
exceeds the results obtained by others. The gradient-based
approach will also be used in the optimization of the ECG
parameters carried out through the minimization of the Rothe
functional. The high efficiency of the computer code for the
optimization of the ECGs in the stationary-state calculations
has been also achieved by deriving the algorithms for
calculating the necessary N-particle matrix elements (i.e., the
overlap, Hamiltonian, and gradient matrix elements) using the
matrix differential calculus and by coding them using highly
parallel, vectorized, and GPU-enabled strategies. These
strategies will be used in the Rothe time-propagation
calculations.
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