
UNIVERSITY OF OSLO
Department of Physics

MEMS Inertial
Navigation System

Paal Alexander
Nerholm

December 19, 2011

Summary

In this thesis a inertial navigation system is in focus where the basis for this
system is an Micro-Electro-Mechanical sensor. Micro-Electro-Mechanical
sensor are today widely available and affordable providing inertial measure-
ments of various types. Among them are accelerometer, and gyroscopes
which are the most important sensors in an inertial navigation system. Mod-
ern smart phones have gyroscopes magnetometers accelerometers and GPS
sensors integrated providing various interface and navigation features. Being
able to utilize these sensors for navigation purposes both for autonomous
robots and humans are becoming a reality as MEMS technology improves.

In this thesis the performance of basis navigation algorithm with magne-
tometer as an aiding sensor is reviewed. First an analysis of mathematical
solutions to the rotation matrix is done.This part considers the approaches
using quaternions, 321 euler and 9-element rotation matrix. Further more
the integration methods, euler forward and Heuns is analysed where the He-
uns method combined with the 9-element rotation matrix yielded the lowest
error. As a result the Kalman filter is able to reduce the stationary drift
from about 400m to about 2m. Though some indications of errors in the
implementation were discovered.

When using MEMS inertial sensors the drift results are high and unsta-
ble in the long term. Short therm navigation in the seconds region yields
acceptable results which points to the necessity of long term stable aiding
measurement for position and attitude.

Preface

This thesis is the final work done to achieve a masters degree at the faculty of
physics at the University of Oslo. The assignment was given by Devotek AS,
i have been sitting approximately one third of my time in Kongsberg and the
rest at Kjeller. The assignment was conducted with two supervisors, namely
Oddvar Hallingstad and Gunnar Holm. I would like to thank Gunnar for his
contribution of the sensor and facilities for mechanical tasks together with
many helpful discussions.

Especial gratitude goes to my lecturer and supervisor Oddvar Hallingstad.
He has supported my work once every week for half a year, without him the
assignment would have been much harder.

Paal Alexander Nerholm
Kjeller, 19 Des 2011

Contents

1 Introduction 1
1.1 Problem Description . 2

2 Mathematical Background 5
2.1 Vectors . 5

2.1.1 Euclidean Norm . 5
2.1.2 Scalar Product . 6
2.1.3 Cross product . 6
2.1.4 Skew symmetric form 6

2.2 Euler angles . 7
2.2.1 Simple rotations . 7
2.2.2 Rotation matrix derivative 8
2.2.3 Euler 321 direct cosine matrix 9
2.2.4 Quaternions . 10

2.3 Coordinate Frames . 10
2.3.1 Earth frame (e-frame) 11
2.3.2 Navigation frame (NED-frame) 12
2.3.3 Inertial frame (i -frame) 12
2.3.4 Body frame (b-frame) 12
2.3.5 Simplifications to n-frame 12

3 Strapdown Inertial Navigations Systems 15
3.1 321 Euler angle DCM . 16
3.2 Quaternion . 17
3.3 9 Element matrix . 17
3.4 Path generator . 18
3.5 Integration Routines . 20
3.6 Strapdown Simulation . 22

3.6.1 Euler Simulation . 23
3.6.2 Heuns Simaulation . 24
3.6.3 Methods Analysis . 25

4 Hardware 27
4.1 Data Acquisition (DAQ) . 27

4.1.1 Mbed . 27
4.1.2 ADIS . 28
4.1.3 Serial Peripheral Interface Bus 29
4.1.4 Data files . 35

4.2 Software . 36
4.2.1 Micro-controller . 36
4.2.2 Computer . 38

5 Sensors 43
5.1 Noise . 43

5.1.1 Aliasing: . 44
5.1.2 Non-orthogonality . 44
5.1.3 Bias . 44
5.1.4 Allan Variance . 46

5.2 Accelerometer . 47
5.3 Gyroscope . 48

5.3.1 Magnetometer . 49

6 Kalman Filter 51
6.1 Linearised Kalman Filter . 51
6.2 Discretisation . 53
6.3 Kalman error equations . 56
6.4 Aiding sensors . 57

6.4.1 Magnetometer Aid . 57
6.5 Initial Alignment . 60
6.6 LKF Pseudo . 60

7 Results 63
7.1 Drift Results . 63
7.2 Spiral . 73

8 Conclusion 81

9 Further work 83

A Code 87
A.1 Navigation Analysis Matlab Software 87

A.1.1 NavSim.m . 87
A.1.2 fmatrix.m . 91
A.1.3 feul.m . 92

A.1.4 fquat.m . 93
A.1.5 q2e.m . 93
A.1.6 R2e.m . 94

A.2 Sensor Data Analysis Matlab Software 95
A.2.1 CalcAlan.m . 95

A.3 Kalman Filter . 97
A.3.1 RunLKF.m . 97
A.3.2 k2dS.m . 102
A.3.3 skew.m . 102
A.3.4 fmatrix.m . 102
A.3.5 DCM.m . 103

A.4 C++ Code MCU & PC . 104
A.4.1 mbed.cpp . 104
A.4.2 DCM.m . 104
A.4.3 Decode.cpp . 105

B Oddvar Hallingstad Lecture Notes 107

List of Figures

2.1 Euler Angles [3] . 7
2.2 Relations between Earth-, NED-, Inertial-, and Body- frame . 11

3.1 Block Diagram of Strapdown Inertial Navigation System . . . 15
3.2 Euler vs Heun . 21
3.3 Integration Method Comarison Euler, Heun, analytical Solution 22
3.4 Euler Simulation with 10 Hz (∆t = 0.1) 23
3.5 Euler Simulation with 100 Hz (∆t = 0.01) 24
3.6 Heuns Simulation with 10 Hz (∆t = 0.1) 24
3.7 Heuns Simulation with 100 Hz (∆t = 0.01) 25

4.1 Mbed pinout [mbed.org] . 27
4.2 ADIS 16407 Sensor axis [1] . 28
4.3 ADIS 16407 Sensor and Mbed 29
4.4 SPI Timing Diagram . 30
4.5 SPI Connection Diagram [1] 31
4.6 Burst read mode [1] . 31
4.7 Signal conditioning ADIS . 34

5.1 Noise Errors Classifications [15] 43
5.2 Allan Variance Classifications[IEEE Std.952-1997] 46
5.3 Accelerometer AVAR plot . 47
5.4 Gyroscope AVAR plot . 48
5.5 Magnetometer Apex . 49

7.1 Raw Accelerometer measurements 63
7.2 Raw Gyroscope measurements 64
7.3 Raw Magnetometer measurements 65
7.4 Apex magnetometer . 65
7.5 10 seconds Drift result Position 66
7.6 The standard deviation of the X Position is converging and

the kalman filter is trusting the measurements almost correctly 67

7.7 In this plot of the Y position the predicted value is outside the
standard deviation around 1/3 of the time which is correct . . 68

7.8 The kalman filter is trusting the measurements correctly but
the estimate is to stable, this is the case for all the standard
deviation plots presented above. 68

7.9 The velocity estimate in the x-axis is much better than the
position as the estimate is varying 69

7.10 Velocity estimate in the y-axis is also converging correctly . . 69
7.11 The standard deviation of the covariance is also converging for

the velocity z-axis the Kalman filter is trusting the measure-
ments sufficiently and correctly as the estimate is outside the
±σ one third of the time . 70

7.12 ±σx converges and does not diverge after 30 seconds as all the
previous plots this is correct as the magnetometer measure-
ment is always present . 70

7.13 ±σy converges as in the x case but here the Kalman filter is
trusting the measurement to much 71

7.14 ±σz converges as in the x and y case but this result is similar
to the x case . 71

7.15 Bias converges for the accelerometer 72
7.16 Bias for the gyroscopes converges 72
7.17 Plot of the estimated value of the position in three dimensions.

This spiral is plot very similar to the execution done by the
author. There is no accurate way of determining how accurate
the position is since the true position is unknown. The y axis
has seamingly a big bias as the spiral drifts in the y direction . 73

7.18 Standard Deviation vs X position plot 74
7.19 Standard Deviation vs Y position plot 74
7.20 Standard Deviation vs Z position plot 75
7.21 Standard Deviation vs X Velocity plot 75
7.22 Standard Deviation vs Y Velocity plot 76
7.23 Standard Deviation vs Z Velocity plot 76
7.24 Standard Deviation vs εx Angulation plot 77
7.25 Standard Deviation vs εy Angulation plot 77
7.26 Standard Deviation vs εz Angulation plot 78
7.27 Accelerometers Bias . 78
7.28 Gyroscope Bias . 79

List of Tables

3.1 Performance Summary 10Hz samplings frequency ∆t = 0.1 . . 25
3.2 Performance Summary 100Hz samplings frequency ∆t = 0.01 . 25

4.1 Abrivations . 30
4.2 Mode selection SPI.format . 31
4.3 Data received burst mode . 32
4.4 Raw Logg Data Order . 35
4.5 Logged datasets . 35

5.1 Accelerometer Stochastic variables 48
5.2 Gyroscope Stochastic variables 48
5.3 Magnetometer Calibration . 49

6.1 Error Definitions INS . 52
6.2 Physical, Mechanisation and Error equations 52
6.3 Variable Description . 53
6.4 Variable Description . 57

7.1 Apex mean max min . 66

Chapter 1

Introduction

In modern context, navigation is a term used for finding your way. Every
single day we rely on the most basic form of navigation. The most basic type
of navigation relies on the observation and recognition of known features or
fixed objects in our surroundings and moving between them. These objects
may be mountains, buildings, monuments or other land fixed objects that are
specific for a geographical location. An extension of this type of navigation
is following directions using a map. More advanced forms of navigation
have been developed over the centuries. An example is the ancient and well
established technique of using the stars as the relative object. Tools such as
the marine sextant has been used by navigators to explore the world by sea.

After the introduction of inertial measurements, navigation has become
a task for a computer. The laws of classical mechanics as formulated by Sir
Isaac Newton are important in inertial navigation systems. Newtons laws
describe the relationship between the motion of a body and external forces.
Successive mathematical integration of accelerometers produce a measure-
ment of the objects velocity and position, which is the target variables in
an INS. Accelerometers usually consist of tree orthogonal measurement axis
able to measure acceleration. In order to navigate with respect to the inertial
frame the orientation of the accelerometers axis must be known. Gyroscopes
measure rotation of the same three axis as the accelerometer and mathemat-
ical integration of these measurement yield the desired orientation. Inertial
Navigation Systems (INS) are therefore based on accelerations and rotation
velocities.

Modern sensor technology provides the means for measuring many en-
vironmental phenomena such as, acceleration, magnetic flux, pressure, tem-
perature and rotation velocity. Expensive mechanical sensor platforms has
been developed for inertial navigation systems in the aerospace and mili-
tary community. Micro-Electro-Mechanical-Systems (MEMS) are today an

2 Introduction

emerging technology that has the potential for a multitude of uses. These
sensors are low cost high volume production units that are easily available.
This has introduced a new wave of applications for inertial navigation sys-
tems as the automotive industry and hobbyist are able to afford it. There are
many internet communities with hobbyist from all over the world develop-
ing autonomous quad copters planes and boats. These low cost, mechanical,
silicone based sensors are prone to errors due to the manufacturing process.
This is a problem that needs to be addressed to be able to use them.

Because of the successive mathematical integration involved in the navi-
gation equations small errors in the measurement cause large errors over time
in the position and attitude. This means that the system has a sort-term
error stability. Aiding sensors such as magnetometer and GPS are long-term
stable and may be used to stabilize the system. Combining these two types
of measurements it is possible to achieve long term stability with rapid po-
sitioning updates. Because of the availability and low cost of the MEMS
sensors and the increasing power available in microcontrollers the task at
hand is to review how the basis system performs. Where this system will
consist of accelerometers, gyroscopes and magnetometers.

1.1 Problem Description
Kongsberg Devotek performs advanced product development in many busi-
ness areas and some of the systems to be developed will need - or benefit
of usage of an inertial navigation system. Until recently, inertial navigation
systems have been reserved sophisticated and high cost products, but is to-
day more actual in low cost solutions as MEMS technology develops, and the
accuracy of the available sensors are improving. Objectives of the thesis:

1. Study and describe strap down inertial navigation algorithms

2. Study and describe INS error model (1st order)

3. Study and describe INS error model (1st order)

4. Study and describe performance parameters of the accelerometer and
gyroscope of the ADIS 16407 and relate these to inertial sensor error
models.

5. Make a prototype IMU by the above identified sensors and perform
calibration.

6. Analyse sensor readout and compare with specification

1.1 Problem Description 3

7. implementation of Kalman filter for alignment and possible sensor bias
estimation

8. Study and discuss various aiding sensor and principles

9. Implement sensor error models and inertial error model in matlab for
analysis of navigation accuracy

4 Introduction

Chapter 2

Mathematical Background

In this chapter fundamental mathematical knowledge for this thesis is pre-
sented. Most of the material presented in this chapter is found in [6].

2.1 Vectors

A vector is is a mathematical term which describe length and direction. A
vector can both be described as geometrical or algebraic. When a vector
is algebraic it is represented as a column matrix. Given the tree dimen-
sional coordinate system with basis vectors bi, the geometric vector can be
represented as a linear combination of the basis vectors in the space <n:

~v =
3∑
i=1

vi~bi (2.1)

Where the algebraic vector is represented as a column matrix:

~v =

v1

v2

v3

 (2.2)

2.1.1 Euclidean Norm

Length of a vector is defined as the eucledian norm:

||v|| =
√
v2

1 + v2
2 + v2

3 (2.3)

6 Mathematical Background

2.1.2 Scalar Product

Scalar product is also called the inner product or dot product. The scalar
product of two geometric vectors is defined as:

< ~v, ~u >= |~v||~u|cos6 ~v~u (2.4)

The scalar product can be used to determine orthogonality, the scalar product
becomes zero in that case.

2.1.3 Cross product

In geometrical form the cross product between two vectors are defined as:

|~v × ~u| = n|~v||~u|sin 6 ~v~u (2.5)

Where n is a unit vector perpendicular to the plane that spans out from ~v
and ~u.

2.1.4 Skew symmetric form

The skew symmetric form is found by calculating the scalar products of:

spij =< (ω1
~P1 + ω2

~P2 + ω3
~P3)× ~Pj, ~Pi > (2.6)

Where P is the basis vectors that create the cartesian (orthogonal) coordinate
system. The skew symmetric form of a vector then becomes:

S(ωP) = ωP× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 where ~ω = ω1
~P1 + ω2

~P2 + ω3
~P3 (2.7)

It is possible to rearragne this to:

a− × b− = −b−× a−
S(a−)b− = −S(b−)a−

2.2 Euler angles 7

2.2 Euler angles

Figure 2.1: Euler Angles [3]

Euler angles are a common way of describing the angle differentiation between
two Cartesian reference frames. In this thesis the notation roll pitch yaw will
be used. Euler angles gives clear physical interpretation as shown in Figure
(2.1).

2.2.1 Simple rotations

Multiple coordinate frames is essential in the modelling of navigation systems.
The most important tool is the direct cosine matrix. A direct cosine matrix
can rotate a vector from one frame to another when the angle between the
frames is known. There are 3 simple rotations, a simple rotation is a rotation
around one axis. Angles are given in radians; φ, θ and ψ, where these angles
correspond to roll pitch and yaw.

1: Rotation around X (Pitch) Below the rotation matrix that rotates
any vector around the x axis is shown.

x ≡ x′
y

z

y′

z′

R(φ)x =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

2: Rotation around Y (Roll) Below the rotation matrix that rotates
any vector around the y axis is shown.

8 Mathematical Background

x y ≡ y′

z

x′

z′

R(θ)y =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

3: Rotation around Z (Yaw) Below the rotation matrix that rotates
any vector around the z axis is shown.

x y

z ≡ z′

x′

y′
R(ψ)z =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

2.2.2 Rotation matrix derivative

A navigation system is a time variant system. The differential equation
describing rotation matrix is given as:

Ṙ = S(ω)R (2.8)

A direct cosine matrix is an orthogonal matrix:

RRT = I (2.9)

The time derivation when using the product rule yields:

ṘRT +RṘT = 0 (2.10)

ṘRT + (ṘRT)T = 0 (2.11)

S is then defined as:
S = ṘRT (2.12)

S is a skew symmetric matrix because (2.11) is zero:

S + ST = 0; (2.13)

This means that there exists a relationship between the derivative and the
skew symmetric matrix:

R−1 = RT ⇔ RRT = I (2.14)

S = ṘRT (2.15)

S = ṘR−1 (2.16)

Ṙ = SR (2.17)

2.2 Euler angles 9

S must then have the form:

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.18)

where ω is rotation velocity. The derivative of a rotation matrix then be-
comes:

Ṙ = S(ω)R (2.19)

2.2.3 Euler 321 direct cosine matrix

It is common to reduce the three simple rotation matrices into one direction
cosine matrix. There are multiple ways to do this:

R123 = RxRyRz (2.20)
R132 = RxRzRy (2.21)
R231 = RyRzRx (2.22)
R213 = RyRxRz (2.23)
R312 = RzRxRy (2.24)
R321 = RzRyRx (2.25)

There are 6 different orders of multiplication of the simple rotation ma-
trices. Each order of multiplication gives different results in range definitions
about the axis. The 321 DCM is the preferred way for an aircraft because
the yaw and roll angles are defined from −180◦ to 180◦ and the pitch angle is
defined in the range −90◦ to 90◦. The aircraft’s velocity is defined along the
x-axis of the body coordinates system. Since a aircraft seldom has its nose
pointing straight up or down is a rational explanation of why just these rage
definitions are chosen.

R(ψ, θ, φ) = R(ψ)R(θ)R(φ) (2.26)

R(ψ, θ, φ) =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

 (2.27)

where this matrix can be expressed as:

R(ψ, θ, φ) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.28)

10 Mathematical Background

2.2.4 Quaternions

In this thesis the properties of quaternion algebra is used to describe attitude
between two three dimensional coordinate systems [14]. The advantage of
using quaternions is the ability to describe the attitude with four numbers.
When comparing this way of describing attitude with euler angles the sin-
gularity problem becomes solved. The euler DCM requires trigonometrical
functions which the quaternions does not require. This reduces the compu-
tational requirements of quaternion DCM compared to the 321 Euler DCM.
Special consideration is required as the covariance matrix in a Kalman filter
becomes singular when quaternions are implemented as a rotation opera-
tor [16]. Quaternions are defined as:

q̄ = q4 + q1i + q2j + q3k (2.29)

Quaternions must satisfy:

ii = jj = kk = −1 (2.30)
−ij = ji = k (2.31)
−jk = kj = i (2.32)
−ki = ik = j (2.33)

Quaterions can be written as a four dimentional column matrix:

q̄ =
[
q1 q2 q3 q4

]T (2.34)

Quaternion multiplication in matrix form is defined as:

q ⊗ p =

q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4

p1

p2

p3

p4

 (2.35)

The DCM matrix is defined as:

C =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 (2.36)

2.3 Coordinate Frames
For navigation purposes on earth, multiple reference frames are needed to
describe the navigation system. A basic navigation system consists of at least

2.3 Coordinate Frames 11

Figure 2.2: Relations between Earth-, NED-, Inertial-, and Body- frame

four frames, earth-, inertial-, navigation-, and body-frame. Accelerometers
and gyroscopes measure the acceleration and angular velocity between the
inertial- and body-frame. The goal of a navigation system is to describe the
position, velocity and attitude of the body frame in respect to the navigation
frame. To achieve this the measured accelerations and angular velocities need
to be processed in such a way that they describe movement in the navigation
frame. In this section reference frames are presented and a final definition of
the frames used in this thesis is described.

2.3.1 Earth frame (e-frame)

Planet earth is a spherical star in our constellation and to be able to navigate
in relation to this star a reference frame attached to earth has to be defined.
In [13] this frame is called the Earth-centred earth-fixed frame (ECEF). This
coordinate system has its origin at the center of the earth and rotates with
the earth. Throughout this thesis e will be the suffix designated to the
earth coordinate system. e is placed at the center of earth where the z axis
points north and xy axis lays at the equatorial plane. Earth rotates around
z axis one time per day, because of this fact x is defined to point toward the

12 Mathematical Background

Greenwich median.

2.3.2 Navigation frame (NED-frame)

This coordinate system is often defined as the NED or local level frame. NED
is an abbreviation for North East Down coordinate system. This reference
frame is always tangential to the surface on earth. The D-axis is pointing
at the center of e, N-axis is pointing north, E-axis is pointing east. NED
corresponds to XYZ when compared to Cartesian suffix. This is the frame
which the object of interest is desired to be related. Which means that this
frame is the frame one wants to represent velocity and attitude of an object.

2.3.3 Inertial frame (i-frame)

An inertial frame is a coordinate frame in which Newton’s laws of motions
apply. It is preferable to place this coordinate system’s origin in the same
origin as the e-frame. The difference between the i - and e-frame then be-
comes only a simple rotation. This frame should not be confused with the
ideal inertial frame since the gravity force applies.

2.3.4 Body frame (b-frame)

The body coordinate system is often defined in the same way as the NED
system to make the relation between the two frames simple. The body frame
is associated with the platform where the sensors are mounted. The body
coordinate system has its origin placed at the center of gravity of the platform
it is mounted on. The sensor’s internal axis and the platform’s axis should
be aligned perfectly, if this is not the case a new coordinate system has to
be defined to describe the difference between the body and sensor axis.

2.3.5 Simplifications to n-frame

Sensors used in this thesis are not accurate enough to measure the earth’s
rotation, as a result the earth can be simplified to have a fixed position and
attitude in space. More specifically this results in i being fixed in reference to
e, thus equal. The scope of the platform developed is to be able to navigate
accurately in the minutes time region at non sonic speeds. The curvature
of the earth becomes much less than the bias and noise characteristics of
the accelerometers. Because of this the the curvature of the earth can be
neglected making it flat an non rotating. The reference frames e, NED and
i can therefore be reduced to one frame. In this thesis the n will be the

2.3 Coordinate Frames 13

navigation frame used as a Cartesian fixed position reference frame. Also
this frame is defined as z pointing upwards as opposed to the NED, this is
also the case for the b-frame. Through out this thesis there will therefore
be only two Cartesian frames, namely the body frame and the navigation
frame. Gravity will be a positive constant in the n-frame resulting in z
pointing upwards.

14 Mathematical Background

Chapter 3

Strapdown Inertial Navigations
Systems

Gyroscope

Accelerometer

Attitude

Initial

Attitude

Integrator

Integrator IntegratorDCM
Gravity

Correction

Initial

Velocity

Initial

Position

PositionVelocityDynamic

Acceler.

Figure 3.1: Block Diagram of Strapdown Inertial Navigation System

Before strapdown systems were used gimbal mechanical systems were used
instead. Where the attitude could be directly read from the position of the
internal platform. The internal platform is stabilized with a spinning wheel
which in essence uses the gyro forces to stabilise the inner platform.

A strapdown INS system consist of multiple sensors, among them the
two most important are the gyroscope and accelerometer. A accelerome-
ters signals correspond to acceleration along the three internal axis of the
accelerometer. To translate these accelerations to position a double integra-
tion process is all that is needed. This is the case if a representation in the
b-frame is the scope. In a INS system the representation on the n-frame is
the scope. This requires the knowledge of the Direct Cosine Matrix (DCM)
which translates the acceleration vector from the b-frame to the n-frame.
The DCM transforming the acceleration vector from the b-frame to the n-
frame is found by integrating the gyroscope velocity vector. This results in
three differential equations:

16 Strapdown Inertial Navigations Systems

ṗn = vn (3.1)

v̇n = Rn
b f̃

b − gn (3.2)

Ṙn
b = Rn

bS(ω̃nbb) (3.3)

Where ṗn represents position in the n-frame, v̇n represent the velocity in
the navigation frame and Ṙn

b represent the transformation matrix between
the b-frame and the n-frame. There are multiple ways of calculating this
transformation matrix, in this thesis quaternion, 321 euler and 9 element
rotation matrix will be reviewed.

3.1 321 Euler angle DCM
The 321 DCM is found by solving the differential equation with respect to
euler angles. Euler angles are defined as the angle difference between two
Cartesian coordinate systems. Consider two reference frames consisting of
the basis vectors ni and bi. Roll (φ) is defined as the angular difference
between n2 and b2. Pitch (θ) becomes the angular difference between the
basis vectors n3 and b3. Yaw (ψ) becomes the difference between the n1 and
b1. The inertial navigation systems differential equations can be expressed
as [5, 6]:

ṗn = vn (3.4)

v̇n = Rn
b (Θn

b)f̃ b − gn (3.5)

Θ̇
n

b = D(Θn
b)ω̃nbb (3.6)

where:
Θn
b =

[
φ θ ψ

]T (3.7)

Where the 321 rotation matrix is given as [6]:

D(Θn
b) =

 1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

 (3.8)

The DCM; Rn
b (Θ) is defined as:

Rn
b (Θ) =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

 (3.9)

3.2 Quaternion 17

3.2 Quaternion
Attitude can be expressed in the form of quaternion algebra, this has its
advantages as singularities and trigonometrical functions are avoided. The
inertial navigation differential equations becomes [14]:

ṗn = vn (3.10)

v̇n = Cn
b f̃

b − gn (3.11)

q̇n = Ω(ω̃nbb)q (3.12)

Where:

Ω(ω̃nbb) =
1

2

0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (3.13)

The DCM Cn
b is defined as:

Cn
b =

(q2
1 + q2

2 − q2
3 − q2

4) 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) (q2

1 − q2
2 + q2

3 − q2
4) 2(q3q4 + q1q2)

2(q2q4 − q122) 2(q3q4 + q1q2) (q2
1 − q2

2 − q2
3 + q2

4)

(3.14)

Quaternions has no clear physical interpretation therefore converting them to
euler angles are important to be able to analyse the result. This conversion
introduces singularities. The conversion is given by:

φ = atan2
(
2(q0q1 + q2q3, 1− 2(q2

1 + q2
2)
)

(3.15)
θ = asin (2(q0q2 − q3q1)) (3.16)
ψ = atan2

(
2(q0q3 + q1q2), 1− 2(q2

2 + q2
3)
)

(3.17)

where these angles are given in radians.

3.3 9 Element matrix
A DCM is in essence a square matrix consisting of 9 elements. As explained,
it is possible to translate this linear rotation operator to/from either quater-
nions or euler angles. In the case of quaternions, multiple multiplications is
required. In the euler case, sine and cosine multiplication is required. These

18 Strapdown Inertial Navigations Systems

calculation operators reduce the algorithm efficiency. Derivation of the ro-
tation matrix gives an interpretation that can be implemented. As euler
and quaternions express rotations they are converted to a DCM. The whole
process can be simplified, the inertial navigation differential equations then
become:

ṗn = vn (3.18)

v̇n = Rn
b f̃

b − gn (3.19)

Ṙn
b = Rn

bS(ω̃nbb) (3.20)

where R is a DCM consisting of 9 elements:

Rn
b =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.21)

and skew symmetric form of the angular velocity:

S(ω̃nbb) =

 0 −ω̃3 ω̃2

ω̃3 0 −ω̃1

−ω̃2 ω̃1 0

 (3.22)

The DCM Rn
b can be converted to euler angles by [6]:

φ = atan2

(
r32

cos(θ)
,
r33

cos(θ)

)
(3.23)

θ = asin

(
−r31,

√
(r2

11 + r2
21)

)
(3.24)

ψ = atan2

(
r21

cos(θ)
,
rq11

cos(θ)

)
(3.25)

3.4 Path generator
To be able to validate the performance of the navigation algorithm, a deter-
ministic solution for a given path is necessary. For this purpose a circular
path has been chosen. This is because a circular path is easy to implement
and requires high accuracy from the integration routine. If r corresponds to
the radius of a circle, the parametric equation is [9]:

pnx(t) = cos(ω(t))r (3.26)
pny (t) = sin(ω(t))r (3.27)
pnz (t) = 0 (3.28)

3.4 Path generator 19

Velocity equations then becomes a partial derivative of (3.27) with respect
to time:

vnx(t) = −sin(ω(t))ω̇(t)r (3.29)
vny (t) = cos(ω(t))ω̇(t)r (3.30)
vnz (t) = 0 (3.31)

Acceleration equations are also found by the partial derivatives:

anx(t) = −r(ω̇2(t)cos(w(t)) + ω̈(t)sin(w(t)) (3.32)
any (t) = r(−ω̇2(t)sin(w(t)) + ω̈(t)cos(w(t)) (3.33)
anz (t) = 0 (3.34)

These equations describe the position, velocity and acceleration in the nav-
igation frame and is dependent on the angular position(ω) and the rotation
velocity(ω̇). Where ω is an time dependent and defines start and stop angular
position. If the scope is to simulate one circle iteration of the particle ω(t0)
would become zero and ω(tmax) would become 2π. For one circle iteration
the angular position, velocity and acceleration becomes:

ωn(t) =
2πt

tmax
(3.35)

ω̇n(t) =
2π

tmax
(3.36)

ω̈n(t) = 0 (3.37)

The input to the INS is acceleration and rotation velocity in the body frame.
The path generator described above is represented in the navigation frame.
To convert the acceleration to the body frame it is possible to find Rb

n(t) and
use this to rotate the an.

ab(t) = Rb
n(t) ∗ an(t) (3.38)

The x-axis of the body frame is defined tangential to the circle which this
results in the body y-axis always pointing towards the center of the circle.
The dependency of a rotation operator is not wanted because it is subject
to review. Therefore the acceleration in the body axis is simplified. As the
centripetal force formulas are adequate to describe both the constant force
and initial velocity in the body frame.

F = ma =
mv2

r
= mrω2 (3.39)

20 Strapdown Inertial Navigations Systems

Rearranging these to acceleration and angular velocity yields:

vb(t0) =
√
r2ω2 (3.40)

ab(t) =
r2ω2

r
(3.41)

The initial conditions then become:

pn(t0) =

r0
0

 vn(t0) =

 0√
r2ω2

0

Rn
b (t0) =

0 −1 0
1 0 0
0 0 1

 (3.42)

The path generator is simplified to:

pn(t) =

cos(ω(t))r
sin(ω(t))r

0

 vn(t) =

−sin(ω(t))ω̇(t)r
cos(ω(t))ω̇(t)r

0

 an(t) =

−rω̇2(t)cos(w(t))
−rω̇2(t)sin(w(t))

0

(3.43)

The specific force and rotation velocity in the body frame becomes constant:

ab(t) =

 0
r2ω2

r

0

wnbb (t) =

 0
0
2π
tmax

 (3.44)

3.5 Integration Routines
An integration routine is a tool for solving Ordinary Differential Equations
(ODE’s). The most basic way of solving such a problem numerically is by
using the Euler forward or backward method [2]. Given the ODE:

ẋ = f(t, x) = x+ t (3.45)

Linearisation of (3.45) is done by the Taylor expansion of the function f ,
where the time step is given as Ts.

x(tk) =
∞∑
i=0

x

t!
(x− a)n (3.46)

x(tk) = x(tk−1) + Tsẋ(tk−1) +
1

2
Ts2ẍ(tk−1) + (3.47)

Euler backward method is found by only including the first order approxi-
mation in the term (3.47), this yields:

xk = xk−1 + Tsf(tk−1, xk−1); (3.48)

3.5 Integration Routines 21

1 2

1

2

0

(a) Euler

1 2

1

2

0

(b) Heun

Figure 3.2: Euler vs Heun

Euler backwards and forward can then be written as:

yk = yk−1 + Tsf(tk−1, yk−1) (3.49)
yk+1 = yk + Tsf(tk, yk) (3.50)

Eulers method may also be referred to as the rectangular rule [9] Figure (3.2a)
shows a function and the sampling of this function. Euler’s method assumes
that the function is constant in the time interval. With this assumption
the solution is found by the integral of each of the blue boxes. It is clearly
illustrated that this results an error, and that decreasing the sampling interval
would reduce this error. Another approach is to assume that the original
signal can be interpolated with a straight line between the sampling points
as shown in Figure (3.2b). This method is called the trapezoid or Heun’s
method. Which in fact is just an expansion of Euler’s method. Heuns [9]
method is given by:

y′k+1 = yk + Tsf(t, y) (3.51)

yk+1 = yk +
Ts

2
(f(tk, yk) + f(tk+1, y

′
k+1) (3.52)

In this thesis the Euler and Euler-Heuns integration method will be com-
pared to make a basis on which integration method that is best suited for
the INS system. Euler’s weakness lies in the fact that the accuracy improves
linearly with the step time. This means that a high step time is required to
yield acceptable results. Euler-Heun method is a modification to the euler
method which result in the accuracy improving quadratically with the step

22 Strapdown Inertial Navigations Systems

time compared to Euler. A simple simulation of equation (3.45) shows that
Heuns is better compared to its counterpart. Figure (3.3) shows the differ-
ence between the analytical solution and the numerical integration routines.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

Seconds

y

Euler
Heuns
Analytical

Figure 3.3: Integration Method Comarison Euler, Heun, analytical Solution

3.6 Strapdown Simulation
In this section the analysis of how the different approaches to the strapdown
INS equations together with integration routine is reviewed. First Euler’s
forward is used to solve the strap down differential equations, both for 321
Euler angles, quaternions and 9 element matrix method. After this the He-
uns method is used to solve the differential equations. Lastly a comparison
between the combinations of methods is reviewed.

In all simulations and plots following in this section 321 euler angles
is displayed as red, 9 element matrix is displayed as green, quaternions as
blue and analytical as black. All simulations are based on the same angular
velocity:

ωnbb =

 0
0
π
25

 (3.53)

The simulations also have a constant centripital acceleration:

f b =

 0
6.3152m

s2

0

 (3.54)

These constants are result of the path generator previously discussed. The
result of these parameters create a perfect circular path. Throughout the

3.6 Strapdown Simulation 23

simulations shown in this section the simulation time is held constant at 50
seconds where only the ∆t (time step) is varied.

3.6.1 Euler Simulation

−100 −50 0 50 100

−100

−50

0

50

100

x

y

(a) Simulation ∆t = 0.1

0 10 20 30 40 50

−10

0

10

20

sec

E
rr
or

in
M
et
er

(b) Error ∆t = 0.1

Figure 3.4: Euler Simulation with 10 Hz (∆t = 0.1)

In Figure (3.4) two plots are shown, (3.4a) represent the position in the
x, y plane. Figure (3.4b) represent the error or deviance from the actual
path. All units are in meters and seconds, where the circle radius is 100m.
Two sampling intervals are are analysed, namely 10 and 100 Hz. The Euler
integration routine is applied to 321-, Quaternion,- and Matrix differential
equations in Figure (3.4) with a time step of ∆t = 0.1. The simulation shows
that the euler method has problems finding the correct solution with such a
low time step. The error is growing to 10 meters or more in all cases. More
precisely the quaternion have a error of 0.04525 meters at 25 seconds while
the matrix have 8.177meters, and euler 321 have −7.925 meters. The point
mass should at the 25 second mark exactly have one revolution as the angular
velocity in the body z axis is π

25
radians. Increasing the sampling rate should

increase the accuracy of the simulation. Therefore a new simulation with 100
hz sampling rate is performed. The angular velocity, centripetal acceleration
and simulation time is the same as before.

24 Strapdown Inertial Navigations Systems

−100 −50 0 50 100
−100

−50

0

50

100

x

y

−100 −50 0 50 100
−100

−50

0

50

100

x

y

(a) Simulation ∆t = 0.01

0 10 20 30 40 50

−1

0

1

sec

E
rr
or

in
M
et
er

(b) Error ∆t = 0.01

Figure 3.5: Euler Simulation with 100 Hz (∆t = 0.01)

In Figure (3.5) the time step has been increased to 100 Hz. This yields a
tenfold improvement in the simulation, which is expected. The error trend
is the same as with the 10 Hz simulation. Quaternion is periodically the
solution which almost returns the state to the initial position in both of the
two revolutions.

3.6.2 Heuns Simaulation

−100 −50 0 50 100
−100

−50

0

50

100

x

y

(a) Simulation ∆t = 0.1

0 10 20 30 40 50
−6

−4

−2

0

2

4

·10−2

sec

E
rr
or

in
M
et
er

(b) Error ∆t = 0.1

Figure 3.6: Heuns Simulation with 10 Hz (∆t = 0.1)

In Figure (3.6) the changes are dramatic as the simulation proves that Heuns
is more precise than the Euler simulation. This is a fact even when the
Euler simulation has ten times higher sampling frequency. The error trend

3.6 Strapdown Simulation 25

continues to be the same, but is now reduced to the ±4 cm region as opposed
to ±10 meters.

−100 −50 0 50 100
−100

−50

0

50

100

x

y

(a) Simulation ∆t = 0.01

0 10 20 30 40 50

−2

−1

0

1

·10−2

sec

E
rr
or

in
M
et
er

(b) Error ∆t = 0.01

Figure 3.7: Heuns Simulation with 100 Hz (∆t = 0.01)

In Figure (3.7) the Heuns integration routine is run at 100Hz. In all the
simulations 9-element rotation matrix has had a linear error growth. When
Heuns is applied the 9-element method error is the lowest and is seemingly
equal to zero. Quaternions is showing odd results as both 321-Euler and
9-element have significanly lower errors in the Heuns 100Hz case.

3.6.3 Methods Analysis

Integration of all the error plots are shown in the table below:

Table 3.1: Performance Summary 10Hz samplings frequency ∆t = 0.1

||e321|| ||equat|| ||eR||

Euler 272.113006 205.411400 415.322753
Heun 1.084616 0.474931 0.062191

Table 3.2: Performance Summary 100Hz samplings frequency ∆t = 0.01

||e321|| ||equat|| ||eR||

Euler 27.402799 19.739167 39.670262
Heun 0.010847 0.396758 0.000062

26 Strapdown Inertial Navigations Systems

In Table (3.2) and (3.1) the error is integrated over the 50 seconds of
simulation. This is done by:

||e|| =
n∑
i=1

|ei|∆t (3.55)

Where e is the deviance from the analytical position which is plotted in
Figures (3.4b),(3.5b), (3.6b) and (3.7b). The 9-element Rotation Matrix
method is has the best overall performance when Heuns at 100Hz is applied.
The best numerical methods for solving the system is then the combination of
Heuns and 9-Element Rotation matrix. This combination is therefore chosen
as the preferred methods in this thesis and will be used in the Linerized
Kalman Filter.

Chapter 4

Hardware

In this thesis an Analog Devices ADIS 16407 has been used. This sensor
has; accelerometer, gyroscope, magnetometer, barometer and temperature
MEMS sensors. Some of these instruments are the basis for the INS system,
noise and data acquisition is in focus in this chapter.

4.1 Data Acquisition (DAQ)
DAQ involves measuring signals from a real world physical system and digi-
tizing the measurements for storage, analysis and presentation. In this thesis
a Mbed micro-controller (MCU) was used as a digital bridge between a Linux
computer and the ADIS 16407 module.

4.1.1 Mbed

Figure 4.1: Mbed pinout [mbed.org]

Mbed is a micro-controller development board made by Mbed.org. It is a
rapid prototyping platform featuring a NXP LPC1768 MCU running at 96

28 Hardware

MHz with 512KB FLASH, 32KB RAM. The NXP LPC1768 features a ARM
Cortex-M3 core and many peripherals such as; Ethernet, USB Host and
Device, CAN, SPI, I2C, ADC, DAC, PWM and other I/O interfaces.

As previously mentioned the Mbed platform acts as a bridge between
the computer and ADIS module. The features that is utilised in the Mbed
board are the USART and SPI interface. The USART serial bus is tunnelled
through a USB interface which provides power to both the ADIS module and
the NXP MCU. The SPI interface is utilized to sample data from the ADIS
module where as the USART is used to transmit this data to the computer.

4.1.2 ADIS

The ADIS 16407 module embeds multiple micro-electro-mechanical sensors.
Because of the mechanical nature of MEMS sensors the actual raw measure-
ments are electrical. This involves the utilization of a analogue to digital
converter. Signal conditioning is therefore a necessity and is conveniently
embedded into the module. The ADIS module is therefore a complete in-
ertial system capable of measuring everything required in a semi aided INS
system.

Figure 4.2: ADIS 16407 Sensor axis [1]

Mechanically the ADIS module is a square box with a ribbon cable con-
nected to it. Figure (4.2) illustrates how the MEMS sensors measurements
are polarized and the axis systems for each sensor. Mounting the ADIS mod-
ule requires only two screws and two alignment pins. For precise alignment to
a platform the alignment holes provides accurate placement and are essential.
The ADIS module is primarily placed in a aluminium box to protect it but
also to be able to accurately orientate the sensor in reference to the gravity
vector. The aluminium box was accurately milled out on an CNC machine

4.1 Data Acquisition (DAQ) 29

which drilled out both screw holes and alignment holes. The finished DAQ
unit including the alumineum housing is shown in the Figure (4.3).

Figure 4.3: ADIS 16407 Sensor and Mbed

4.1.3 Serial Peripheral Interface Bus

SPI is a synchronous serial data link bus used for communication between a
peripheral device and a master device. This bus allows multiple slave devices
to connect to it by the use of chip select lines. Each slave device on the bus
needs one separate IO line which is used by the master to communicate with
the selected slave. A description of each pin is given in the Table (4.1).

The c++ library accompanying the Mbed platform is what make it ex-
tremely useful in a rapid prototyping process. The code necessary to initialise
and use SPI and USART is only 8 lines. Initialisation of the SPI bus is 4
lines:

First MISO MOSI and CLK pins are defined, then the chip select pin is
chosen. format is a member of the SPI Mbed class is used to define mode
and number of bytes per data frame. Mode defines the phase and polarity
of the bus clock in reference to the bits on the bus lines. Phase is a boolean

30 Hardware

Table 4.1: Abrivations

Abbreviation Description

MOSI Master Output, Slave Input
MISO Master Input, Slave Output
SS Slave Select
CS Chip Select
SCLK Serial Clock
DIN (Serial)Data in
DOUT (Serial) Data Out
IRQ Interrupt request

Listing 4.1 SPI initialization Mbed c++
1 /* Init SPI Mbed */
2 SPI ADIS16407(p5, p6, p7); // SPI class, MISO MOSI SCK
3 DigitalOut CS(p8); // Chip select
4 ADIS16407.format(16,3); // 16bit frame Mode 3
5 ADIS16407.frequency(1000000); // SCK freq 1MHz

variable defined as CHPA, similarly is the polarity variable defined as CPOL. A
timing diagram of this process is shown in Figure (4.4). The ADIS module
data sheet states that the module utilises SPI mode 3 and has a 16 bit data
frame.

CPOL=0
CPOL=1

Cycle # 1 2 3 4 5 6 7 8

MISO z 1 2 3 4 5 6 7 8 z

MOSI z 1 2 3 4 5 6 7 8 z

Cycle # 1 2 3 4 5 6 7 8

MISO z 1 2 3 4 5 6 7 8 z

MOSI z 1 2 3 4 5 6 7 8 z

SCK
SS

CPHA=0

CPHA=1

Figure 4.4: SPI Timing Diagram

4.1 Data Acquisition (DAQ) 31

Table 4.2: Mode selection SPI.format

Mode CPOL CPHA

0 0 0
1 0 1
2 1 0
3 1 1

Table (4.2) illustrates the different modes and the resulting polarities and
phases.

The SPI bus is used to connect the MCU and ADIS module together for
data Acquisition. Figure (4.5) shows the connection diagram.

Figure 4.5: SPI Connection Diagram [1]

According to [1] the ADIS module has a maximum serial clock of 1.0MHz
when reading data in burst mode. Burst mode is a feature of the ADIS
module where only one bit sequence is needed to initiate a transfer of all
sensor data, Figure (4.6) shows this progress [1].

Figure 4.6: Burst read mode [1]

The module also has the option to read a single sensor, i.e. read just the
gyroscopes x axis. SPI is a full duplex bus, this means the master and slave
always talk simultaneously. I.e. when the master sends a bit sequence out

32 Hardware

it simultaneously receives the same amount of bits. If a single axis of the
gyroscope sensor is to be read the controller would first request a read of
the memory address that contains this value. To receive the actual value a
new sequence of bits is sent where the received bits are the gyroscope value.
In this thesis the burst read mode has been used. Table (4.3) lists the data
received when reading in burst mode.

Table 4.3: Data received burst mode

Number Register Address Measurement

1 SUPPLY_OUT 0x02 Power supply
2 XGYRO_OUT 0x04 Gyroscope, x-axis
3 YGYRO_OUT 0x06 Gyroscope, y-axis
4 ZGYRO_OUT 0x08 Gyroscope, z-axis
5 XACCL_OUT 0x0A Accelerometer, x-axis
6 YACCL_OUT 0x0C Accelerometer, y-axis
7 ZACCL_OUT 0x0E Accelerometer, z-axis
8 XMAGN_OUT 0x10 Magnetometer, x-axis
9 YMAGN_OUT 0x12 Magnetometer, y-axis
10 ZMAGN_OUT 0x14 Magnetometer, z-axis
11 BARO_OUT 0x16 Barometer/pressure, higher
12 BARO_OUTL 0x18 Barometer/pressure, lower
13 TEMP_OUT1 0x1A Internal temperature
14 AUX_ADC 0x1C Auxiliary ADC

All the data received are in twos complement from, but the sign bit place-
ment slightly varies depending on which register that is read. Where as the
received 16 bit integers have their sign bit misplaced. For the gyroscopes,
accelerometers, magnetometer and barometer the two most significant bits
are flags that indicate new data and error. Twos complement is the most
common method of representing signed integers on computers. A 16 bit in-
teger is able to represent the values in the region: 0 to 216 − 1 which is 0
to 65, 535, in signed form it becomes: −215 to 215 − 1 which is −32, 768 to
32, 767. To be able to represent the actual numerical measurement value the
two most significant bits needs to be removed and the 14th bit needs to be
moved. This is because the computer treats all 16 bit signed integers in the
same way thus making the flags a part of the numerical value which is wrong.
Because of this the actual numerical range of the measurements is reduced
to 14 bits with yields the new range; 213 − 1 to −213 which becomes 8191 to
−8192. Where the 14th bit represent the plus minus sign.

4.1 Data Acquisition (DAQ) 33

As mentioned the maximum clock frequency on the SPI bus is 1MHz, this
yields:

SPIbps = 1Mbs (4.1)

SPIKBs =
1000000

8
= 125KBs (4.2)

The micro controller is connected to the computer using USB. Through
the USB-bus a serial USART bus is tunnelled. The Mbed micro-controller
supports a baud rate of 115200bps which yields

USARTbps = 115, 2Kbs (4.3)

USARTKBs =
115200

8
= 14, 4KBs (4.4)

This means that 14400 bytes can be transferred per second, taking into ac-
count that a single axis measurement from the ADIS module is 16bit, 2bytes,
a total of 7200 measurements can be transferred per second. According to
Table (4.3) 15 measurements make one data frame which is 30 bytes. The
maximum samplings frequency then becomes:

fmax =
14400

30
= 480Hz (4.5)

This calculation leaves no room for overhead bytes required by a commu-
nications protocol with CRC. Implementation has shown that the Mbed USB
USART tunnel is robust and a protocol is unnecessary. Raw data transfer of
the 30byte data frame is the assumption made in Equation (4.5).

Matlab has no feature to import binary files, but it is capable of import-
ing structured ASCII files. A conversion from binary to ASCII is therefore
necessary, this conversion can either be done on the micro-controller or on
the computer. An attempt to do the conversion on the micro controller was
initially done. This causes problems where ASCII has a much larger bit foot-
print thus reducing the maximum possible transfer rate. ASCII is a character
encoding scheme based in the American Standard Code for Information In-
terchange. ASCII describes digits and characters with 1 byte. In ASCII the
number 127 would require 3 bytes, −128 would require 4 bytes, both these
numbers can be expressed by a singe raw byte. Transferring ASCII data
over the bus would therefore increase the total bit count per second, which
again reduces the maximum data transfer rate. Transferring raw binary data
through the USB USART tunnel is therefore more efficient. This method of
transfer requires a conversion on the computer side, a C++ program were
therefore written to convert the binary files to ASCII for Matlab integration.

34 Hardware

As previously mentioned methods for signal conditioning is embedded
into the ADIS module. This includes a hardware low pass filter with a cutoff
at 330Hz. Since the internal clock of the ADC in the ADIS module is 819.2
Hz and the cut off frequency needs to satisfy the Nyquist theorem it has to
be lower than:

LPFcutoff <=
819.2

2
= 409.6 (4.6)

A cut off frequency of 409.6 is the highest possible to be able to reproduce
the frequency in the sampled signal and avoid aliasing. 330Hz is then a more
suitable cutoff as the signal is adequately sampled to reproduce both shape
and frequency.

Figure 4.7: Signal conditioning ADIS

Figure (4.7) is a block diagram of the internal signal condition functions
embedded into the ADIS module. As previously mentioned the maximum
sampling frequency which is possible over the USB USART tunnel is 480Hz.
Therefore it is impossible to avoid utilizing the internal average/Bartlett-
window functions as aliasing would occur. Physical test have shown that
Windows is not capable of a continuous 100Hz ∗30Byte over a longer period
of time. Linux has proven more fruitful as 200Hz ∗ 30Byte is possible over
a long period of time. As a general rule of thumb problems arise when
the theoretical maximum transfer rate is approached. Thus keeping the bus
flow at 200

480
= 41.6% leaves room for the buffer at the computer side to not

overflow. The average decimation filter is therefore utilized. According to
the datasheet, the average decimation filter output frequency is devided by
a factor of 2 which yields:

AVGfreq =
819, 2

2x
(4.7)

4.1 Data Acquisition (DAQ) 35

Where x is a user provided integer, this was set to be 2:

AVGfreq =
819, 2

22
= 204, 8Hz (4.8)

With this setting the module can be sampled at 200 Hz by the Mbed con-
troller as the 5Hz difference is neglect-able.

4.1.4 Data files

The data files have the order and unit as displayed in Table(4.4).

Table 4.4: Raw Logg Data Order

Number Description Unit

1 Time Milli seconds
2 Module Power volt
3 Gyro X Degrees pr Sec
4 Gyro Y Degrees pr Sec
5 Gyro Z Degrees pr Sec
6 Accelerometer X meter pr sec2

7 Accelerometer Y meter pr sec2

8 Accelerometer Z meter pr sec2

9 Magnetometer x Gauss
10 Magnetometer x Gauss
11 Magnetometer x Gauss
12 Barometer High Bar
13 Barometer Low Bar
14 Temperature Celsius
15 ADIS External ADC Volt

Tree datasets were captured and is listed in Table (4.5)

Table 4.5: Logged datasets

File Name Duration Description

DriftTest.mat 87.25 sec Sensor is placed on the ground and not moved
MagSphere.mat 67.79 sec Sensor is moved in a spiral upwards

7nov3.mat 20803.95 sec Sensor is placed on the ground and not moved
AnglesTest.mat 72.865 sec All axis experience ±9.81m

s2

36 Hardware

4.2 Software
In this section the hardware and data acquisition C++ code is in focus. The
configuration and initialization of the ADIS module and the timers interrupts
is covered here.

4.2.1 Micro-controller

As described in the DAQ section only eight lines of code is necessary for the
initialisation and use of both UASART and SPI. This illustrates the rapid
prototyping nature of the Mbed library. This is beneficial is because the user
is separated from the internal workings of the Cortex-M3 and vendor specific
registers which reduces development time. In this section the Mbed firmware
code will be described. First the Mbed library is included:

1 #include "mbed.h" // Mbed Library Header

Then the definition of io pins are done:

2 SPI ADIS16407(p5, p6, p7); // MISO MOSI SCK
3 DigitalOut SS(p8); // Slave Select
4 DigitalOut RST(p9); // ADIS Reset pin
5 Serial pc(USBTX, USBRX); // USB USART tunnel
6 DigitalOut L1(LED1); // Debug Led
7 DigitalOut L2(LED1); // Debug Led

To be able to sample the sensor in a timed interval a timer interrupt object
is created. To be able to confirm the sample rate in Matlab a time-stamp
object it also created.

8 Ticker timerINT; // Ticker timer interrupt obj
9 Timer timestamp; // Timer timestamp obj

Since the USART bus uses 8 bit data frames and the SPI bus uses 16 bit
data frames a conversion from int16 into two int8 is necessary.

10 union ByteSplit{
11 int16_t int16;
12 int8_t int8[2];
13 };

Writing to the USART bus is done in a function where the 16 to 8 bit
array conversion is done. A ByteSplit object called split is created. The
actual conversion is done when writing to the union member int16. The
8 bit array is then sent over the USART bus by the Serial class member
putc().

4.2 Software 37

14 void WriteSerialINT(int16_t temp){
15 ByteSplit split; // Create ByteSplit object
16 split.int16 = temp; // Insert temp into int16
17 pc.putc(split.int8[1]); // Write MSBs of int16 to USART
18 pc.putc(split.int8[0]); // Write LSBs of int16 to USART
19 }

Sampling data from the SPI bus is done by the function ReadData. First
slave select (SS) is set low to "select" the ADIS module. The boolean flag
Reading is making sure that multiple read sequences is not executed simul-
taneously (error detection). L1 is one of the blue leds on the mbed, this
led changes state every time a frame is read. The time stamp is written to
USART with ms accuracy. .write() is a member of the SPI class and is
responsible for the full duplex transmission. A for loop cycles 14 times to
receive one sample from each sensor on the ADIS device.

20 bool Reading=0;
21 void ReadData() {
22 if (!Reading) { // Error detection
23 Reading=1; // Detection Flag
24 SS=0; // Slave Select (Active Low)
25 L1= !L1; // Toggle LED1
26 WriteSerialINT(timestamp.read_ms()); // Timestamp
27 ADIS16407.write(0x4200); // Initiate ADIS Burst Read
28 for (int i=1; i<=14; i++){ // Read ADIS
29 tmp=ADIS16407.write(0x0000);
30 WriteSerialINT(tmp); // Transmit Measurement data
31 }
32 SS=1; // Realease Slave
33 Reading=0; // Ready for new Sample frame
34 }
35 }

The ADIS module average decimation filter need to be set. The ADIS
module has several registers, SMPL_PRD is the one controlling the decimation
filter. The base address of this register is 0x3A, since the object is to write to
this address the MSB is set high wich yields: 0xBA. Writing to the Decimation
rate is the bits 8:12 meaning the address is over 2 bytes which yields: 0xBB.
Setting the decimation rate then becomes writing 0xBB and the value for the
register 0x02 to the SPI bus.

36 void ConfADIS() {
37 SS=0; // Slave Select (Active Low)
38 wait_us(1); // Waiting for device receive SS
39 ADIS16407.write(0xBB02); // 204.8Hz decimation
40 SS=1; // Release Salve
41 wait_ms(1); // Wait for ADIS process
42 }

38 Hardware

General initialisation of classes and method is done in the function Initalize.
A sequence of 15 0xFF00 is written to the USB USART bus. This marks the
start of the file, this is necessary because the computers USB USART buffer
may not be empty upon start of the logging process. The program HxD was
used to remove unwanted buffers from the binary file.

42 void Initalize() {
43 pc.baud(115200); // Set baud rate
44 ADIS16407.format(16,3); // Set SPI bus with and Mode
45 ADIS16407.frequency(1000000); // Set SPI bus freq
46

47 SS=1; // Initial Slave select (Active Low)
48 RST=1; // Reset (Active Low)
49

50 // Writing 0xFF00 to PC for start of transmission mark
51 for(int j=0;j<15;j++){
52 WriteSerialINT(0xFF00);
53 }
54 ConfADIS(); // Setup ADIS
55

56 // Timer interrupt setup
57 timerINT.attach(&ReadData,0.005); // Ts=0.005->200Hz
58

59 // Timestamp reset and start
60 timestamp.reset(); // Reset timer
61 timestamp.start(); // Start timer
62 }

The main function is only responsible for executing the initialisation func-
tion and running no-operations while waiting for next timer interrupt.

63 int main() {
64 Initalize(); // Run init
65 while (1); // noop on free time =)
66 }

4.2.2 Computer

To receive the samples from the USB USART tunnel, logically the USB
cable is attached to a computer. In the case of this thesis a Linux operating
system was utilized. Linux, regardless of distribution, ships with cat. cat is a
command line function that enables the user to concatenate files, or standard
input, to standard output. Where as standard input may be the USB tunnel
and standard output may be a binary file. When connected the Mbed USB
USART tunnel is identified with the standard input /dev/ttyACM0. USART
has some configuration options such as; baud rate, stop bit, data bit(frame),
hardware/software flow control and parity.

4.2 Software 39

stty -F /dev/ttyACM0 cs8 115200 ignbrk -brkint -imaxbel -opost
-onlcr -isig -icanon -iexten -echo -echoe -echok -echoctl
-echoke noflsh -ixon -crtscts

Using cat to save binary files is done by writing:

cat /dev/ttyACM0 > data.bin

This results in a binary file saved on the harddrive, this binary file need
to be converted to ASCII for Matlab integration. mingw, minimal GNU for
windows was utilized to compile the program for Windows, similarly GNU
can be used to compile the same code on Linux. This is because the use of
windows specific headers are avoided:

1 #include <iostream> //Standard Input / Output Streams Library
2 #include <fstream> // Input/output file stream class

std is a namespace and needs to be defined to avoid writing std:: in
front of all standard functions such as cout cin ect. A pointer called memblock
is created to store the read binary file. The conversion from singed integers
to float are defined in a float array.

2 using namespace std; // Namespace declaration
3 ifstream::pos_type size; // Type def for file pos & buffer (fstream)
4 char * memblock; // Declare char array pointer
5 float convert[]={0.002418, // Voltage
6 0.05, 0.05, 0.05, // Gyro
7 0.0326673, 0.0326673, 0.0326673, // Acc
8 0.0005, 0.0005, 0.0005, // Mag
9 0.00008, 0.0000003125, // Baro H+L

10 0.136, 0.0008059}; //etc

ByteSplit has the same task here as in the MCU.

11 union ByteSplit{
12 int16_t int16;
13 int8_t int8[2];
14 };

Main function holds the full functionality of the conversion algorithm.
First the binary file is read from the disk with the binary specific read func-
tionality embedded in c++. The binary file is placed in memory with the
memblock pointer.

40 Hardware

15 int main (int argc, char *argv[]) {
16

17 // Define input, read mode, pointer at end
18 ifstream inFile ("data.bin", ios::in|ios::binary|ios::ate);
19

20 if (inFile.is_open()) // Make shure file is open
21 {
22 size = inFile.tellg(); // Get size
23 memblock = new char [size]; // Allocate char array
24 inFile.seekg (0, ios::beg); // Set pointer pos at beginning
25 inFile.read (memblock, size); // Bin file -> memory
26 inFile.close(); // Close file
27 } else {
28 cout << "Unable to open file";
29 return 1;
30 }

A output file is then created to be able to write the converted binary data
to a ASCII text file. C++ has embedded functionality to write in ASCII to
file, fopen fprint is utilised for this purpose. The imported binary file has
a "start of file" frame with 15 0xFF00’s, this makes the starting position 30.
tellg() returns a size with the type ifstream::pos_type and needs to be
typecasted to integer to be able to use it.

40 // Output file
41 FILE * OutFile; // Dype def FILE pointer
42 OutFile = fopen ("data.txt","w"); // Open/create data.txt
43

44 // Conversion algorithem
45 int filesize = (int)size; // Typecast to int
46 int start = 30; // Start of file
47 int l = 0; // Conversion list counter
48 ByteSplit splitter; // Byte split object
49 int16_t temp; // Temporary storage

The first for loop starts at the binary files 30th bit, the backwards con-
version to a signed integer is done with the splitter object. Since the first 2
bits are the power supply there is not necessary to convert to a sing. Accord-
ing to the data sheet the 4 most significant bits are to be neglected which
results in the bitwise AND with 0x0FFF. The next for loop cycles trough the
rest of the 30 bit data frame. Each bulk of 2 bits are converted to singed
integers, these integers also have their sign bit misplaced. The bitwise AND
with 0x3FFF ensures the two most significant bits are removed. The if state-
ment checks if the sing bit is present and moves it if necessary. Additionally
the the barometer(k=20) and low barometer(k=22) measurements are de-
fined as unsigned integers, meaning a sing movement is unnecessary. Lastly

4.2 Software 41

the temperature measurement is a singed integer with the 4 most significant
bits defined as flags or not used. The else if statement handles both the
masking and conversion of this.

40 for(int j=start; j<filesize; j=j+30){
41 if(start+j>filesize) break; // Break if no data
42 splitter.int8[1]=(unsigned char)memblock[(j)];
43 splitter.int8[0]=(unsigned char)memblock[(j+1)];
44

45 fprintf(OutFile, "%f\t",(float)(splitter.int16&0x0FFF)); // Print
46 l = 0; // Reset counter
47 for(int k=2; k<=28; k=k+2){
48 splitter.int8[1]=(unsigned char)memblock[(j+k)];
49 splitter.int8[0]=(unsigned char)memblock[(j+k+1)];
50 temp=splitter.int16&0x3FFF; // AND mask
51 if (((temp&0x2000)>>13) && (k!=20) && (k!=22) && (k!=24)) {
52 temp=(temp-16383); // Sing conversion
53 } else if(k==24){
54 temp=(temp&0x0FFF)-4095; // Sign conversion
55 }
56 fprintf(OutFile, "%f\t", convert[l]*(float)(temp)); //Print
57 l++; // Count
58 }
59 fprintf(OutFile, "\r\n"); // Add carriage return and newline
60 }
61 delete[] memblock; // Cleanup
62 fclose(OutFile); // Release file
63 return 0;
64 }

42 Hardware

Chapter 5

Sensors

MEMS sensors are relatively low cost but suffer from significant errors, com-
pared to its mechanical brothers. In this chapter the MEMS sensors and their
characteristics is covered. Some general terms are introduced and important
parameters highlighted.

5.1 Noise

Figure 5.1: Noise Errors Classifications [15]

Noise is a random varying or constant part of a measured signal, it distorts
the true value and is the main problem in many engineering tasks. As such,
the INS system is vulnerable to noise. This is because the system relies on
single and double integration of a noisy measurement. The Gyroscope mea-
surements are integrated once which results in attitude. Accelerometers are
rotated by the integrated Gyroscope measurements and then integrated twice
to find the position. This process sums up all the noise which often results

44 Sensors

in drift (a constant bias results in a constant drift). It is therefore important
to find and eliminate as many of these noise components as possible. Fig-
ure (5.1) divides MEMS error sources into two groups, namely deterministic
ans stochastic. Systematic errors come from defects in the manufacturing
process, these types of errors can be calibrated. Calibration of a sensor is
based on the specific module in hand, meaning this process is repeated for
each module. Stochastic errors are random and may be caused by electrical
interference such as magnetic forces.

5.1.1 Aliasing:

Consider a analogue signal consisting of a sine wave with a frequency of 10
Hz. Sampling this signal with a ADC which has a sampling frequency of 10
Hz would result in a constant measurement. This is because every sample
would be taken when the continuous signal periodically is equal to itself.
Nyquist’s theorem states that for a signal to be reconstructed it needs to be
sampled with atleast twice the bandwidth of the signal. An analogue signal
has no definite sampling frequency so a direct sampling of this signal would
cause aliasing. A solution to this problem is low pass filtering a signal before
the ADC conversion takes place.

5.1.2 Non-orthogonality

Non-orthogonality is the fault associated with sensors axis misalignment. A
perfect orthogonal axis system is difficult to manufacture. Non-orthogonality
can be measured using a rate table and can therefore also be compensated
for. The factor can be calculated by analysing what the sensor should show
and what it actually shown in a rate table test.

5.1.3 Bias

There are multiple types of bias, where the term comes from the field of
statistics. A statistic is biased if it is calculated in such a way that it is
systematically different from the population parameter of interest. When
no external forces are applied to the accelerometer or gyroscope the mea-
surement should be zero, excluding the gravity on the accelerometer. If the
average of the gyroscope or accelerometer over time is non zero while no
forces are applied is called bias. The ADIS data sheet defines a list of multi-
ple biases; initial bias, In-Run Bias, Temperature Bias, Voltage Bias. These
biases can be calculated and modelled accurately and thus be removed.

5.1 Noise 45

Since INS system relies solely on accelerometers and gyroscopes it is pos-
sible to calculate the position error over time with respect to the biases.
Disregarding the attitude the position error can be calculated as [17]:

perror =
1

2
aβt

2 (5.1)

The ADIS data sheed listst the initial bias as ±50mg which is ±0.49m
s2
, using

the Equation (5.1) the drift along one axis can be calculated. For a duration
of 10 seconds with a constant bias this yields:

perror ≈
1

2
· ±0.49

m

s2
· 102 = ±24.5m (5.2)

Over a 1 minute interval the error becomes:

perror ≈
1

2
· ±0.49

m

s2
· 602 = ±882m (5.3)

An error in attitude will affect the position calculations described above. As
a bias in the gyroscope will introduce an angle error in the attitude, this
error can be described as:

θ = ωβt (5.4)

Considering this errors impact on the position as it will yield a projection of
the acceleration vector in the wrong direction [15]. Where:

aprojection = aβsin(Θ) ≈ aβΘ = aβωβ (5.5)

this yields

perror =
1

6
ωβaβt

3 (5.6)

The ADIS datasheet lists initial bias error to be ±3deg
sec

which yields:

perror =
1

6
· ±3

deg

s
· π

180
· ±0.49

m

s2
· 103 = ±4.27m (5.7)

Similarly in the 60 seconds time frame:

perror =
1

6
· ±3

deg

s
· π

180
· ±0.49

m

s2
· 603 = ±923.62m (5.8)

The where this error is only the projected part of the error meaning a suma-
tion of the error based on the accelerometer error and the error based on the
gyroscope bias must be summarized:

10 sec :perror = 24.5 + 4.27 = 28.77m (5.9)
60 sec :perror = 882 + 923.62 = 1805.62m (5.10)

(5.11)

46 Sensors

These calculations indicate that the gyroscope bias introduce cubic er-
rors where as the accelerometer bias introduce quadratic errors. As time
progresses the bias from the gyroscope is decisive when compared to the
impact of the accelerometer bias.

Initial bias is a bias type that is present from the device is switched on.
It changes between each power cycle and stays constant while the unit is
powered. This bias is equal to the mean of an axis over a time period of time
where there are no external forces applied.

In-Run Bias defines the stability of the bias over time, this is typically a
stochastic process.

Temperature Bias is the effect the temperature has on the measurements
as the temperature scales the measurements. Experiments with the sensor
is confined to a office the temperature bias is not modelled because of the
relatively constant temperature.

Voltage Bias is the effect voltage variations has on the measurements.
This will not be modelled as the voltage provided by the computer is stable.

5.1.4 Allan Variance

Figure 5.2: Allan Variance Classifications[IEEE Std.952-1997]

Allan Variance is a method that was intended to analyse the stability of
an oscillator. The application of AVAR is not just limited to oscillators,
it can also be used to analyse the stochastic variables in Gyroscope and

5.2 Accelerometer 47

Accelerometer measurements. From the AVAR Quantisation Noise, Random
Walk, Bias Instability, Rate Random Walk, Rate Ramp, Correlated Noise
and Sinusoidal noise can be found.

Figure (5.2) shows the different variables that is possible to identify with
AVAR. According to [15] the process noise matrix Q can be found by AVAR,
where Angular Random Walk (ARW) and Velocity Random Walk (VRW)
are of interest. In this thesis a matlab allan variance library has been used,
the library is based on [12], the library can be found at [8]. From the AVAR
plot at τ = 1 both the ARW and VRW can be directly read. The ARW and
VRW is used as parameters in the process noise matrix Q in the Kalman
filter. Where bias instability is used in the measurement noise matrix R to
describe the noise on the bias states.

5.2 Accelerometer

10−3 10−2 10−1 100 101

10−3

10−2.5

Seconds

m s2
A
lla

n
D
ev

fx
fy
fz

Figure 5.3: Accelerometer AVAR plot

Figure (5.3) shows the allan variance plot for the ADIS accelerometers. The
AVAR plot is based on a time series where the sensor is left running in a
fixed positon for 6 hours. The sampling frequency was set to 200Hz. The
velocity random walk and the bias instability results are shown int the Table
(5.1).

48 Sensors

Table 5.1: Accelerometer Stochastic variables

X-axis Y-axis Z-axis Datasheet Unit

Bias Instab. 0.00062394 0.0016138 0.00091252 0.001962 m
s2

VRW 0.0018564 0.0044847 0.0030709 0.003333 m
s

Allan variance confirms that the sampling of the accelerometer yields
results that correlate with the datasheet. These parameters are used to
construct the process noise matrix in the Kalman filter.

5.3 Gyroscope

10−3 10−2 10−1 100 101

10−2

10−1

Seconds

d
eg
se
c
A
lla

n
D
ev

ωx
ωy
ωz

Figure 5.4: Gyroscope AVAR plot

The same data set was used to calculate the gyroscopes AVAR plot as the
one previously used for the accelerometers. Figure (5.4) shows the AVAR
plot where the results are shown in Table (5.3)

Table 5.2: Gyroscope Stochastic variables

X-axis Y-axis Z-axis Datasheet Unit

Bias Instab. 0.0044451 0.0054394 0.0052201 0.007 deg
s

ARW 0.029117 0.028674 0.027748 0.316666 deg
s

5.3 Gyroscope 49

5.3.1 Magnetometer

An apex plot of the magnetometer gives an indication on errors in the mea-
surements. A test where the magnetometer was rotated in many directions
was conducted manually. If this rotation is done by a machine the result
should be a perfect sphere. Figure (5.5) shows the manual execution of this
test.

−0.5

0

0.5 −0.5
0

0.5

−0.5

0

0.5

Figure 5.5: Magnetometer Apex

The figure illustrates the apex plotted from the measurement data. The
assumption that the electro-magnetic force is constant are made. This as-
sumption result in an expectation of the plot being a sphere. Manual analysis
of the plot shows that the magnetometer reading are relatively accurate as
the form is spherical. Further analysis can be done where the spheres should
be centred at 0, the outer rim on all sides should therefore have the same
value.

Table 5.3: Magnetometer Calibration

max min Bias Unit

X-Axis 0.4925 -0.4830 0.0048 Gauss
Y-Axis 0.4785 -0.4915 -0.0065 Gauss
Z-Axis 0.4895 -0.5245 -0.0175 Gauss

Manual rotation of the device affects this process where the maximum
and minimum points may not be reached. This method gives a indication of

50 Sensors

big errors and is a simple method that verifies a proper functioning magne-
tometer. This method is more applicable if a rate table is used.

Chapter 6

Kalman Filter

The Kalman filter was introduced by Rudolf E. Kálmán in the 1960’s. The
Kalman is a set of mathematical equations that provides the means to es-
timate the state of a process based on discrete data influenced by white
noise [4, 18]. The Kalman filter minimizes the mean of the squared error.
It has multiple uses as it can be used to estimate past and present states,
prediction of future states is also possible. In other words, the Kalman filter
is an optimal state estimator which is based on knowledge of the process and
sensors. Knowledge of the measurement and process noise is modelled in the
set of ordinary differential equations that describe the process. When Rudolf
E. Kálmán introduced the kalman filter it was men to be used on linear sys-
tems, the INS equations are non-linear. There are multiple adaptations of
the Kalman filter that are meant to be used on an non-linear system. Among
them are the Unscented, Extended and Linearised filters. In this thesis the
linearised is used.

6.1 Linearised Kalman Filter

As the kalman filter in essence is a linear estimator the non-linear states of
the INS system need to be linearised. The LKF linearise around a nominal
trajectory. Where the nominal trajectory is the integrated INS system based
on accelerometer and gyroscope measurements. The nominal trajectory is
assumed to be close to the actual trajectory. [7] lists the continuous and
discrete linearised Kalman filter equations:

52 Kalman Filter

Algorithm 1 Linearised Kalman Filter Standard Equations
Measurement update:

1: δzk = zk − z̃k
2: Kk = P̄kH

T
k (HkP̄kH

T
k)−1

3: δx̂k = δx̄k +Kk(δzk −Hδx̂k)
4: x̂k = x̃k + δx̂k
5: P̂k = (I −KkHk)P̄

Time Update:
6: ˙̃x = f(x̃, u)
7: δ ˙̄x(t) = F (t)δx̄(t)
8: x̄(t) = x̃+ δ ˙̄x(t)

9: ˙̄P (t) = F (t)P̄ (t) + P̄ (t)F T +G(t)Q̃T (t)

In Algorithm (1) the nominel trajectory is denoted as x̃. The difference
between the nominal trajectory and the true trajectory results in the error
state the Kalman filter is estimating:

xerror = xtrue − xnominal (6.1)
δx̄ = x̄− x̃ (6.2)

Rearranging this then becomes:

x̄ = δx+ x̃ (6.3)

Tables (6.1), (6.2) and (6.3) sums up all equations that is necessary for the

Error definitions
δf = f b − f̃ b δpn = pn − p̃n Rn

b = R̃n
bR(ε)

δω = ωbib − ω̃bib δvn = vn − ṽn R(ε) = I + S(ε)

Table 6.1: Error Definitions INS

Physical System Mechanised System Error Equations
ṗn = vn ˙̃pn = ṽn δṗn = δvn

v̇n = Rn
b f

b − gn ˙̃vn = R̃n
b f̃

b − gn δv̇n = −R̃n
bS(f̃

b
)ε+ R̃n

b δf

Ṙn
b = Rn

bS(ωnbb) ˙̃Rn
b = R̃n

bS(ω̃nbb) ε̇ = −S(ω̃nbb)ε+ δωnbb

Table 6.2: Physical, Mechanisation and Error equations

development of the Kalman error differential equations [5].

6.2 Discretisation 53

Variable Description
p Position
v Velocity
f Acceleration / specific force
gn Gravitation component represented in n [9.81m

s2
]

ω̃nbb Measured gyro velocity between n and b represented in b
ωnbb True rotation velocity
δω Gyroscope error
f̃
b

Specific force represented in the body axis
f b True Specific force in the body axis
δf Accelerometer error
Rn
b Rotation matrix, body to navigation frame

Table 6.3: Variable Description

6.2 Discretisation

Discretization is a process that transfers continuous time models into dis-
crete models. This process is necessary because of the sampling process of
a computer. In Algorithm (1) on line 7 and 9 the error system F and the
Kalman covariance is continuous. In this section the process of discretisation
is shown of the error error equations is shown. Given the continuous state
space model:

ẋ(t) = F (t)x(t) + L(t)u(t) +G(t)v(t) (6.4)

the descritisation can be writen as:

xk+1 = Φkxk + Λkuk + Γkvk (6.5)

which can be written as a integral over a time region where G and L is
assumed to be constant:

Φk = eF ((k+1)−k) (6.6)

Λk =

∫ k+1

k

eF ((k+1)−τ)Lku(τ)dτ (6.7)

Γk =

∫ k+1

k

eF ((k+1)−τ)Gkv(τ)dτ (6.8)

Since the navigation equations does not include u(t) the L(t)/Λk is considered
to be zero. The continuous linearised Kalman filter equations which include

54 Kalman Filter

F and G are:

δ ˙̄x(t) = F ∗(t)δx̄(t) (6.9)
¯̇P (t) = F ∗(t)P̄ (t) + P̄ (t)F ∗T (t) +G∗(t)Q̃G∗(t)T (6.10)

Relationship between continous and descrete F then becomes:

Φk = eF∆t (6.11)

where δ ˙̄x(t) can be re written as:

δ ˙̄xk+1 = Φkδx̄k (6.12)

To solve ¯̇P (t),
P (t) = X(t)Z−1(t) (6.13)

is defined where P (t0) is given and F , G, Q̃ is assumed to be invariant or
constant over the time interval ∆t. At the time t0: X(t0) = P (t0) and
Z(t0) = I where I is the identity matrix. Rearangig 6.13:

X(t) = P (t)Z(t) (6.14)

derivate on both sides and insert for Ṗ yields:

Ẋ = ṖZ + PŻ (6.15)

Ẋ = [FP + PF T +GQ̃GT]Z + PŻ (6.16)

Ẋ − FPZ −GQ̃GTZ = PF TZ + PŻ (6.17)

ẊFX −GQ̃GTZ = P [F TZ + Ż] (6.18)

This can be written in matrix from:[
Ẋ

Ż

]
=

[
F GQ̃GT

0 −F T

]
︸ ︷︷ ︸

Ξxz

[
X
Z

]
(6.19)

Linearisation where:
Ξxz = eFxz(t,t0) (6.20)

is equivalent to the Power Series or Tailor expansion to the matrix:

eFxz =
∞∑
i=0

1

i!
[Fxz(t, t0)]i (6.21)

6.2 Discretisation 55

Linerarized matrix from becomes:[
X(t)
Z(t)

]
=

[
Ξ11(t, t0) Ξ12(t, t0)

0 Ξ22(t, t0)

] [
X(t0)
Z(t0)

]
(6.22)

The equations become:

Z(t) = Ξ22(t, t0) (6.23)
X(t) = Ξ11(t, t0)X(t0) + Ξ12(t, t0) (6.24)

Inserting this into (6.14) yields:

P (t) = Ξ11(t, t0)X(t0)Ξ−1
22 (t, t0) + Ξ12(t, t0)Ξ−1

22 (t, t0)︸ ︷︷ ︸
ΓQ̃ΓT

(6.25)

Drawing out the descretetisation of ΓQ̃ΓT yeilds:

S = Ξ12(t, t0)Ξ−1
22 (t, t0) (6.26)

Finally the covariance of the prediction can be written as:

P̄k+1 = ΦkP̄kΦ
T
k + S (6.27)

The calculation of S has been implemented in the matlab function k2dS,
pseudo code:

Algorithm 2 Contionous to descrete calculation of ΓQ̃ΓT

1: function k2dS(F (t), G(t), Q̃,∆t)

2: A =

[
F GQ̃GT

0 −F T

]
3: Ξ = eA∆t

4: k2dS = Ξ11

Ξ22

5: end function

This can be simplified to the a first order approximation:

ΓkQΓTk =

∫ k+1

k

ΦkGkQ̃G
T
kΦT

k (6.28)

≈
∫ k+1

k

IGkQ̃G
T
k I (6.29)

≈ GkQ̃G
T
k∆t (6.30)

56 Kalman Filter

which can be a reasonable choice if the object of implementation has low com-
putational power. The task of recursively calculating line 7 and 9 Algorithm
(1) becomes:

Φk = eF∆t (6.31)

P̄k+1 = ΦkP̄kΦ
T
k +K2DS(F (t), G(t), Q̃,∆t) (6.32)

The navigation equations on line 6 in Algorithm (1) is continuous and is
solved with Heuns integration method.

6.3 Kalman error equations
The kalman filters differential equations can be written as:

ẋ = Fx+Gv (6.33)

Where F is the process matrix G is the process noise matrix. The unlinear
error model F, is described by [5] as:

δṗn = δvn (6.34)

δv̇n = −S(R̃n
b f̃

b
)ε+ R̃n

b δf (6.35)

ε̇ = −S(ω̃nbb)ε+ R̃n
b δω

nb
b (6.36)

Where the error of the sensors such as bias is incorporated into δωnbb and δf ,
these errors is subject to expansion. In this thesis a bias for the accelerometer
and a bias for the gyroscope will be modelled. The bias differential equation
becomes:

δf ≡ β̇
acc

= 0 (6.37)

δωnbb ≡ β̇
gyr

= 0 (6.38)
(6.39)

The kalman error state vector then becomes:

δ ˙̄x =
[
ṗn v̇n ε̇n β̇

acc
β̇
gyr
]T

(6.40)

The error system F then becomes:

F (t) =

0 1 0 0 0

0 0 −S(R̃n
b (t)f̃

n
(t)) R̃n

b (t) 0

0 0 0 0 R̃n
b (t)

0 0 0 0 0
0 0 0 0 0

 (6.41)

6.4 Aiding sensors 57

and the process noise matrix becomes:

G(t) =

0 0

R̃n
b (t) 0

0 R̃n
b (t)

0 0
0 0

 (6.42)

6.4 Aiding sensors

A aiding sensor is a sensor which is giving an absolute value of the state and
does not rely on the information already in the filter. Examples of this type
of aiding sensor can be the magnetometer for the attitude estimation. The
magnetometer measures magnetic flux and is sensitive enough to measure the
earth’s magnetic field. Though this sensor is vulnerable to external magnetic
fields from electrical engines, magnets ect. Another example could be GPS
for the position, some GPS sensors connected to a triad of antennas are able
to measure attitude as well. Barometric pressure is possible to convert to an
altitude, this stabilizes the drift in the z axis.

6.4.1 Magnetometer Aid

In this thesis the magnetometer is used to stabilise the attitude. The error
definition of the measurements is defined as:

Variable Description
z True Measurement
z̃ Simulated measurement
δz Error in simulated measurement

Table 6.4: Variable Description

The true magnetic measurement is the magnetometer measurement B̃
b
,

where as the simulated measurement is found by the World Magnetic Model
(WMM) [11]. Matlab has a function [10] that calculates the local magnetic
flux in the NED navigation frame. This vector is the measurement of the flux
in the NED frame which tangential to the surface and has its x axis pointing
to the north. The input to the WMM is longitude latitude and altitude, for
testing purposes was this data found by the use of an android enabled smart
phone. Kjeller is located at 59.97487◦N, 11.04532◦E the altitude was set to

58 Kalman Filter

zero. The resulting magnetic vector became:

Bn(WMM) =
[
0.151094 0.005486 0.487058

]
(6.43)

The WMM function in Matlab returns the magnetic field vector in NED form.
The ADIS module is placed on the ground with its magnetic z-axis pointing
up. To be able to compare the two magnetic vectors both a normalization
and rotation is necessary. The WMM magnetic vector is rotated 180◦ around
its x axis as the definition of the n-frame is requiring z to point upwards.
The normalisation is done by dividing the WMM magnetic vector by its own
magnitude. This magnitude is found by the use of the euclidean norm:

Bn =

[
Bn(WMM)
x −Bn(WMM)

y −Bn(WMM)
z

]
||Bn(WMM)||

(6.44)

This became:
Bn =

[
0.2963 −0.0108 −0.9550

]
(6.45)

Bn it then the flux vector from World Magnetic Model, B̃
b
is the measured

magnetic filed from the ADIS sensor. Bb also needs to be normalized:

Bb
k =

Bb
k

||Bb||
(6.46)

The two magnetic field measurements are defined in two different frames
therefore Bn has to be rotated to the body frame. This is done with attitude
found by simulation:

Bb = (R̃n
b)TBn (6.47)

δzk for the magnetic measurement then becomes:

δzk = zk − z̃k (6.48)

δBb
k = B̃

b − (R̃n
b)TBn (6.49)

It is beneficial to let the covariance and bias converge before the platform
is exposed to external forces. Therefore two versions of the measurement
matrix H has been used. One in the alignment phase and one for free run.
As the sensor is kept completely still in the alignment phase both velocity
and position is known. The measurement matrix element corresponding to
position and velocity becomes the identity matrix. To find the element that
corresponds to the magnetic field in the measurement matrix the angulation ε

6.4 Aiding sensors 59

has to be used. The scope is to find the error systems simulated measurement
based on the angulation ε. The error definitions are:

R(ε) = I + S(ε) (6.50)

Rn
b = R(ε)R̃n

b (6.51)

the scope is to re write R̃n
b to be based on ε:

δzbk = B̃
b − (R̃n

b)TBn (6.52)

= (Rn
b)TB − (R̃n

b)TBn (6.53)

= [(Rn
b)T − (R̃n

b)T]Bn (6.54)

= [(I + S(εn)R̃n
b)T − (R̃n

b)T]Bn (6.55)

= [I + S(εn)T (R̃n
b)T − (R̃n

b)T]Bn (6.56)

= [(R̃n
b)T + S(εn)T (R̃n

b)T − (R̃n
b)T]Bn (6.57)

= S(εn)T (R̃n
b)TBn (6.58)

= −(R̃n
b)TS(εn)Bn (6.59)

δzbk = (R̃n
b)TS(Bn)εn + wb (6.60)

(6.61)

Where

ST = −S (6.62)
a× b = −b× a (6.63)
S(a)b = −S(b)a (6.64)

Rn
b = (I + S(ε))R̃n

b (6.65)
(Rn

b)T = Rb
b (6.66)

From [7] the δx̂ is given as:

δx̂ = δx̄+K(δz −Hδx̄) (6.67)

Since epsilon is a part of the state δx which is multiplied with H it is omitted
and the measurement matrix become:

Hk =

I 0 0 0 0
0 I 0 0 0

0 0 (R̃n
b)TS(Bn) 0 0

0 0 0 0 0
0 0 0 0 0

 (6.68)

60 Kalman Filter

When the position of the system is unknown the measurement matrix be-
comes:

Hk =

0 0 0 0 0
0 0 0 0 0

0 0 (R̃n
b)TS(Bn) 0 0

0 0 0 0 0
0 0 0 0 0

 (6.69)

6.5 Initial Alignment
An initial alignment algorithm has been developed to initialize the navigation
attitude. An initial error in the attitude may cause huge errors, the initial
alignment is a rough estimate on the attitude of the body frame. This is
fine tuned by the alignment phase incorperated in the kalman filter. The
algorithem is given as:

Algorithm 3 Initial Alignment

1: function R̃n
b = initR(Bn, B̃

b
)

2: Rb
c =

[
B̃
b
m

||B̃bm||

B̃
b
m×f̃

b

m

||B̃bm×f̃
b

m
||

B̃
b
m

||B̃bm||
× B̃

b
m×f̃

b

m

||B̃bm×f̃
b

m
||

]
3: Rn

c =
[

Bn

||Bn||
Bn×fn

||Bn×fn||
Bn

||Bn|| ×
Bn×fn

||Bn×fn||

]
4: Rn

b = Rn
c (Rb

c)
T

5: end function

6.6 LKF Pseudo
The linerised kalman filter starts with the integration of the navigation equa-
tions:

Algorithm 4 LKF Pseudo code part I (Navigation Simulation)
1: for k = 1→ N do
2: x̃′k+1 = x̃k + ∆tf(x̃k, uk)
3: x̃k+1 = x̃k + ∆t

2
(f(x̃k, uk) + f(x̃′k+1, uk+1)

4: R̃n
b =

 x̃7 x̃8 x̃9

x̃10 x̃11 x̃12

x̃13 x̃14 x̃15

The time update is given as:

6.6 LKF Pseudo 61

Algorithm 5 LKF Pseudo code part II (Time Update)

5: F =

0 1 0 0 0

0 0 −S(Rn
b f̃

n

k
) R̃n

b 0

0 0 0 0 R̃n
b

0 0 0 0 0
0 0 0 0 0

6: G =

0 0

R̃n
b 0

0 R̃n
b

0 0
0 0

7: Φ = expm(F∆t)
8: Γ = kp2dpGa(F,G,Q,∆t)
9: δx̄k = Φδx̄k

10: P̄k = ΦP̂kΦ
T + ΓQΓT

11: x̄k = ([x̃k]
T

[
I6x6

09x6

]
)T + δx̄k

12: ε =
[
δx̄k1 δx̄k2 δx̄k3

]
13: R̄n

b = R̃n
b + (I + S(ε))R̃n

b

62 Kalman Filter

Algorithm 6 LKF Pseudo code part III (Measurement Update)
14: if n is odd then

15: Hk =

I 0 0 0 0
0 I 0 0 0

0 0 (R̃n
b)TS(Bn) 0 0

0 0 0 0 0
0 0 0 0 0

16: Kk = P̄kH

∗
k(HkP̄kH

∗T +Rk)
−1

17: P̂k = (I −K∗kH∗k)P̄k

18: zk =
[
0 0 B̃

b
0 0

]
19: z̃k =

[
p̃
k
ṽk R̃n

bB
n 0 0

]
20: δzk = zk − z̃k
21: δx̂k = δx̄k +Kk(δzk −H∗kδx̄k)
22: x̂k = x̃k + δx̂k
23: else

24: Hk =

0 0 0 0 0
0 0 0 0 0

0 0 (R̃n
b)TS(Bn) 0 0

0 0 0 0 0
0 0 0 0 0

25: Kk = P̄kH

∗
k(HkP̄kH

∗T +Rk)
−1

26: P̂k = (I −K∗kH∗k)P̄k
27: zk =

[
0 0 Bb 0 0

]
28: z̃k =

[
0 0 (R̃n

b)TBn 0 0
]

29: δzk = zk − z̃k
30: δx̂k = δx̄k +Kk(δzk −H∗kδx̄k)
31: x̂k = x̃k + δx̂k
32: end if
33: end for

Chapter 7

Results

In this chapter the performance of the implemented Kalman filter is shown.

7.1 Drift Results

A series of measurements were take when the sensor was completely still. The
length of the data gathered was 8000 samples at 200Hz which is 40 seconds.

0 5 10 15 20 25 30 35 40

−10

−8

−6

−4

−2

0

sec

m s2

x
y
z

Figure 7.1: Raw Accelerometer measurements

Figure (7.1) displays the raw unaltered measurement of the accelerometer
is plotted, the x- and y-axis measurement should be zero and the z-axis
measurement should be 9.81. The z-axis is clearly affected by a scale factor
or bias, the mean of the z-axis in this plot is −10.0601. The accelerometer

64 Results

measurements are inverted (f̃
b · (−1)) before they are used in the Kalman

filter.

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

sec

d
eg s

x
y
z

Figure 7.2: Raw Gyroscope measurements

Figure (7.2) displays the raw unaltered measurement of the gyroscope is
plotted, there is a constant bias present. Calculating the mean yields the
bias:

ω̃bx =
1

8000

8000∑
i=1

[ω̃bx]i = 0.1961◦ (7.1)

ω̃by =
1

8000

8000∑
i=1

[ω̃by]i = 0.1634◦ (7.2)

ω̃bz =
1

8000

8000∑
i=1

[ω̃bz]i = 0.1456◦ (7.3)

This bias is removed from the data before the measurements are used in the
Kalman filter, then ωb is converted to radians.

7.1 Drift Results 65

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

sec

ga
us
s

x
y
z

Figure 7.3: Raw Magnetometer measurements

Figure (7.3) displays the raw unaltered measurement of the magnetome-
ter is plotted. This plot does not illustrate bias the apex is plotted to get
more information as the apex should be constant. The apex is found by the
recursively calculating the euclidean norm as shown in Figure (7.4).

0 5 10 15 20 25 30 35 40
0.4

0.45

0.5

0.55

0.6

sec

ga
us
s

apex

Figure 7.4: Apex magnetometer

In Table (7.1) the max, min and average value of the apex is shown:

66 Results

Table 7.1: Apex mean max min

min mean max ∆max/min

0.5151 0.5218 0.5280 -0.0128

In the Kalman filter section the Bn was normalized, as the B̃
b
varies

around 0.5218 a normalisation process is necessary also here. This is done
by dividing the whole B̃

b
by 0.5218. This results in the two magnetic vectors

having the same magnitude which is important for the error calculation in
the Kalman filter.

0
0.5

1

0

0.5

1

0

0.5

xy

z

p̄

Figure 7.5: 10 seconds Drift result Position

Figure (7.5) shows the drift over 10 seconds of free run time of the es-
timated position which is 2.0791m. Comparing this to the end position of
the nominal trajectory which became 452.6m a vast improvement is seen.
Though 2.0791m is still a big drift considering only 10 seconds have passed.
This suggest the necessity of a measurement update for the position states.
The following Figures (7.6)-(7.14) illustrates the standard deviation based
on the diagonal of the covariance P plotted against the estimated value of
the corresponding state. From 0 to 30 seconds the Kalman filter is in its
alignment phase where the position is known, from 30-40 seconds it runs
without any position aid. Which is why the standard deviation is converging
to 30 second and diverging after. The simulations are based on the diagonal

7.1 Drift Results 67

process noise matrix Q:

Q1,1 = 0.0018564 Q2,2 = 0.0044847 Q3,3 = 0.0030709 (7.4)
Q4,4 = 0.029117 Q5,5 = 0.028674 Q6,6 = 0.027748 (7.5)

and the diagonal measurement noise matrix R:

R1,1 = (10.06092)/2 R2,2 = (14.78312)/2 R3,3 = (24.36302)/2 (7.6)
R4,4 = 10.0609 R5,5 = 14.7831 R6,6 = 24.3630 (7.7)
R7,7 = 0.8425 R8,8 = 0.7427 R9,9 = 0.7427 (7.8)

R10,10 = 0.00062394 R11,11 = 0.0016138 R12,12 = 0.00091252 (7.9)
R13,13 = 0.0044451 R14,14 = 0.0054394 R15,15 = 0.0054394 (7.10)

The R and Q diagonal elements are found by Allan variance and auto corre-
lation of the corresponding signal with the E{x · t} = 0. The measurement
update frequency is set to be equally frequent as the time update:

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

sec

m

σx
−σx
p̄x

Figure 7.6: The standard deviation of the X Position is converging and the
kalman filter is trusting the measurements almost correctly

68 Results

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

sec

m
σy
−σy
p̄y

Figure 7.7: In this plot of the Y position the predicted value is outside the
standard deviation around 1/3 of the time which is correct

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

sec

m

σz
−σz
p̄z

Figure 7.8: The kalman filter is trusting the measurements correctly but the
estimate is to stable, this is the case for all the standard deviation plots
presented above.

7.1 Drift Results 69

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

sec

m s

σx
−σx
v̄x

Figure 7.9: The velocity estimate in the x-axis is much better than the
position as the estimate is varying

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

sec

m s

σy
−σy
v̄y

Figure 7.10: Velocity estimate in the y-axis is also converging correctly

70 Results

0 5 10 15 20 25 30 35 40
−0.1

−5 · 10−2

0

5 · 10−2

0.1

sec

m s
σz
−σz
v̄z

Figure 7.11: The standard deviation of the covariance is also converging for
the velocity z-axis the Kalman filter is trusting the measurements sufficiently
and correctly as the estimate is outside the ±σ one third of the time

0 5 10 15 20 25 30 35 40
−0.1

−5 · 10−2

0

5 · 10−2

0.1

sec

ra
d

σx
−σx
ε̄x

Figure 7.12: ±σx converges and does not diverge after 30 seconds as all the
previous plots this is correct as the magnetometer measurement is always
present

7.1 Drift Results 71

0 5 10 15 20 25 30 35 40
−0.1

−5 · 10−2

0

5 · 10−2

0.1

sec

ra
d

σy
−σy
ε̄y

Figure 7.13: ±σy converges as in the x case but here the Kalman filter is
trusting the measurement to much

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

sec

ra
d

σz
−σz
ε̄z

Figure 7.14: ±σz converges as in the x and y case but this result is similar
to the x case

72 Results

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

sec

m s2
bi
a
s

x
y
z

Figure 7.15: Bias converges for the accelerometer

0 5 10 15 20 25 30 35 40

−5

0

5

·10−3

sec

Figure 7.16: Bias for the gyroscopes converges

Common for all the standard deviation plots for the drift test is that the
estimate is to stable, multiple attempts has been made adjusting bot R, Q
and P0 without success.

7.2 Spiral 73

7.2 Spiral

The sensor was held completely still for 11 seconds before the sensor was
led in a upwards going spiral. The spiral took 4.5 seconds to complete it
was executed manually. A video of the execution is available as a supple-
ment, this clearly illustrates that the implementation of the Kalman filter
an measurements are correct though there are some strange behaviour. The
R and Q matrices were exactly equal to the ones used on the drift dataset.
The square root of the diagonal elements of P is plotted together with the
corresponding predicted value in Figures (7.18) - (7.26)

−2
−10

0.2
0.4

0

0.5

1

XY

Z

Figure 7.17: Plot of the estimated value of the position in three dimensions.
This spiral is plot very similar to the execution done by the author. There is
no accurate way of determining how accurate the position is since the true
position is unknown. The y axis has seamingly a big bias as the spiral drifts
in the y direction

74 Results

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m
σx
−σx
p̄x

Figure 7.18: Standard Deviation vs X position plot

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m

σy
−σy
p̄y

Figure 7.19: Standard Deviation vs Y position plot

7.2 Spiral 75

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m

σz
−σz
p̄z

Figure 7.20: Standard Deviation vs Z position plot

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m s

σx
−σx
v̄x

Figure 7.21: Standard Deviation vs X Velocity plot

76 Results

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m s

σy
−σy
v̄y

Figure 7.22: Standard Deviation vs Y Velocity plot

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

m s

σz
−σz
v̄z

Figure 7.23: Standard Deviation vs Z Velocity plot

7.2 Spiral 77

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

ra
d

σz
−σz
ε̄z

Figure 7.24: Standard Deviation vs εx Angulation plot

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

ra
d

σy
−σy
ε̄y

Figure 7.25: Standard Deviation vs εy Angulation plot

78 Results

0 2 4 6 8 10 12 14

−0.2

0

0.2

sec

ra
d

σz
−σz
ε̄z

Figure 7.26: Standard Deviation vs εz Angulation plot

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

sec

m s2

βax
βay
βaz

Figure 7.27: Accelerometers Bias

7.2 Spiral 79

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1
·10−2

sec

ra
d

βgx
βgy
βgz

Figure 7.28: Gyroscope Bias

80 Results

Chapter 8

Conclusion

In this project several approaches to the rotation matrix in the INS algo-
rithm have been reviewed with performance in mind. Numerical integration
routines have been applied to the different solutions which is also reviewed.
The 9-element direct rotation matrix solved by the skew symmetric angular
velocity multiplied with the rotation matrix was found to perform best. This
requires the use of Heuns numerical integration routine.

A physical MEMS sensor was used to gather data required by the INS
algorithm. A ARM Cortex-M3 microcontroller was used to sample data from
the MEMS sensor at a data rate of 200Hz. Some MEMS noise parameters
have been found by the use of the Allan variance method. These noise pa-
rameters was confirmed correlate with the data sheet. A linearised Kalman
filter has been implemented to remove white noise and bias on the measure-
ments. A drift of 2.079m was found over a 10 second run of the Kalman filter
while the sensor was stationary. When comparing this to the 452.6m drift of
the navigation equations a vast improvement is caused by the implemented
Kalman filter.

The standard deviation for the position and angulation ε in the stationary
measurement drift test are not as expected. The estimated value is too stable
and indicate an error being present. The spirals test indicate that the filter
is doing its job which is somewhat a contradiction though confirming this
fact is somewhat a educated guess.

To summarise, the performance of a MEMS based INS was expected to
be poor because of the many error sources associated with MEMS sensors.
Though the MEMS sensors are acceptable over a short interval. This indi-
cates that the introduction of aiding sensors for position which are stable
over time should yield much better results. Depending on the platform this
system is intended to be implemented on, constraints can be introduced in
the filter. A example of this is a car, a car does not normally move sideways,

82 Conclusion

this constraint together with information on the speed and altitude from a
barometer may be enough to stabilise the platform.

Chapter 9

Further work

There is indications of a error being present in the implementation of the
Kalman filter, further investigation on where the source of error is should be
the first priority. Using a rate table to find more noise and scale factors that
increase the ability of the filter should be the second priority. Implementation
of LKF on and microcrontroller is a demanding task balancing processing
power requirements and accuracy which would be a fun extension to the
assignment. Expanding the filter with more states which may increase the
accuracy would be the next step after successful implementation on a MCU.
Further investigation of the position performance should be done, together
with a various aiding sensors and constraints dependent on the platform.

84 Further work

Bibliography

[1] Analog Devices. Ten Degrees of Freedom Inertial Sensor ADIS16407,
bth edition, 7 11.

[2] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Dif-
ferential Equations And Differential Algebraic Equations. siam.

[3] G. J. J. Ducard. Fault-tolerant Flight Control and Guidance Systems.
Springer.

[4] M. S. GREWAL and A. P. ANDREWS. Kalman Filtering, Theory and
Practice Using MATLAB. Wiley.

[5] O. Hallingstad. Ekempler på tns-modeller. Lecture, 2003.

[6] O. Hallingstad. Forelesnings notater: Matematisk modelereing av dy-
namiske systemer. UNIK, 2009.

[7] O. Hallingstad. Sammendrag av modeller og likninger for kalmanfilteret
anvendt på et ulinjært system. Lecture, 2009.

[8] M. A. Hopcroft. Modified allan. Matlab Central, 10 2010.
ttp://www.mathworks.com/matlabcentral/fileexchange/26637-
allanmodified.

[9] E. Kreyszig. Advanced Engineering Mathematics. Wiley.

[10] Matlab. World magnetic model function. Internet, Published in 2009.
http://www.mathworks.se/help/toolbox/aerotbx/ug/wrldmagm.html.

[11] NASA. World magnetic model 2010. Internet, 2009.

[12] W. Riley. The calculation of time domain frequency stability. IEEE.

[13] R. M. Rogers. Applied Mathematics in Integrated Navigation Systems.
AIAA.

86 BIBLIOGRAPHY

[14] S. Sakka. Notes on quaternion. Centre of Excellence in Computational
Complex Systems Research, 2007.

[15] P. A. Z. Syed and A. N. N. El-Sheimy. MEMS-Based Integrated Navi-
gation. Artecch House.

[16] N. Trawny and S. I. Roumeliotis. Indirect kalman filter for 3d attitude
estimation. University of Minnesota, 2007.

[17] Young and Freedman. University Physics. Pearson.

[18] P. Zarchan. Fundamentals of Kalman Filtering: A Practical Approach.
American Institute of Aeronautics and Astronautics.

Appendix A

Code

A.1 Navigation Analysis Matlab Software

A.1.1 NavSim.m
1 %% Navigation Simulation
2 clear all; clc; close all;
3

4 %% Global Inital Conditions
5

6 Ts=0.01; % Time step
7 Samples=5000; % Number of samples
8 % Ts=1; % Time step
9 % Samples=100; % Number of samples

10 Te=Samples*Ts; % End time
11 t=(1:Samples)*Ts; % Time vector
12

13 r=100; % Radius of circle
14 w=2*pi/(Te*0.5); % Rotation speed
15 %w=0.6283;
16 w=0.2513
17 pos=[r 0 0]’; % Position in nav frame
18 vel=[0 sqrt(r^2*w^2) 0]’;% Velocity in nav frame
19 Theta=[0 0 pi/2]’; % Attitude
20 F_b=[0 (r^2*w^2)/r 0]’;% Force in body
21 w_b_nb=[0 0 w]’; % Rotation in body
22

23 %% dermenistic simulation
24 d.w=w*t; % Rotation pos
25 d.w_dot=w; % Rotation vel
26 d.w_ddot=0; % Rotation acc
27

28 d.pos(1,:)=cos(d.w);
29 d.pos(2,:)=sin(d.w);
30 d.pos(3,:)=0;
31 d.pos=d.pos*r;
32 d.vel(1,:)=-sin(d.w)*d.w_dot;
33 d.vel(2,:)=cos(d.w)*d.w_dot;
34 d.vel(3,:)=0;
35 d.vel=d.vel*r;
36 d.acc(1,:)=(-cos(d.w)*d.w_dot*d.w_dot - sin(d.w)*d.w_ddot);

88 Code

37 d.acc(2,:)=(-sin(d.w)*d.w_dot*d.w_dot - cos(d.w)*d.w_ddot);
38 d.acc(3,:)=-9.81;
39 d.acc=d.acc*r;
40

41 %% Eulers Method
42 x=[F_b,w_b_nb];
43

44 % 321 Euler angles
45 eul.y_321(:,1)=[pos;vel;Theta]; % Inital pos & vel
46 for k=1:Samples;
47 eul.y_321(:,k+1) = eul.y_321(:,k) + feul(eul.y_321(:,k),x)*Ts;
48 end
49

50

51 % Rotation matrix
52 R=DCM([0 0 pi/2]);mx(1:3,1)=R(1,:); mx(4:6,1)=R(2,:); mx(7:9,1)=R(3,:);
53 eul.y_matrix(:,1)=[pos;vel;mx];
54 for k=1:Samples;
55 eul.y_matrix(:,k+1) = eul.y_matrix(:,k) + fmatrix(eul.y_matrix(:,k),x)*Ts;
56 end
57

58 % Quaternion
59 q_init= [0.7071;0;0;0.7071];
60 eul.y_quat(:,1)=[pos;vel;q_init];
61 for k=1:Samples;
62 eul.y_quat(:,k+1) = eul.y_quat(:,k) + fquat(eul.y_quat(:,k),x)*Ts;
63 end
64

65 %% Heuns Method
66

67 % 321 Euler angles
68 heu.y_321(:,1)=[pos;vel;Theta];
69 for k=1:Samples;
70 heu.z_321(:,k+1) = heu.y_321(:,k) + feul(heu.y_321(:,k),x)*Ts;
71 heu.y_321(:,k+1) = heu.y_321(:,k)+((Ts/2) * (feul(heu.y_321(:,k),x)
72 +feul(heu.z_321(:,k+1),x)));
73 end
74

75 % Rotation matrix
76 R=DCM([0 0 pi/2]);mx(1:3,1)=R(1,:); mx(4:6,1)=R(2,:); mx(7:9,1)=R(3,:);
77 heu.y_matrix(:,1)=[pos;vel;mx]; % Inital pos & vel
78 for k=1:Samples;
79 heu.z_matrix(:,k+1) = heu.y_matrix(:,k) + fmatrix(heu.y_matrix(:,k),x)*Ts;
80 heu.y_matrix(:,k+1) = heu.y_matrix(:,k)+((Ts/2) * (fmatrix(heu.y_matrix(:,k),x)
81 +fmatrix(heu.z_matrix(:,k+1),x)));
82 end
83

84 % Quaternion
85 q_init= [0.7071;0;0;0.7071];
86 heu.y_quat(:,1)=[pos;vel;q_init]; % Inital pos & vel
87 for k=1:Samples;
88 heu.z_quat(:,k+1) = heu.y_quat(:,k) + fquat(heu.y_quat(:,k),x)*Ts;
89 heu.y_quat(:,k+1) = heu.y_quat(:,k)+((Ts/2) * (fquat(heu.y_quat(:,k),x)
90 +fquat(heu.z_quat(:,k+1),x)));
91 end
92

93 % Converting to euler angles for plot
94 for k=1:Samples;
95 eul.a_321(:,k+1) = eul.y_321(7:end,k)*180/pi;
96 eul.a_matrix(:,k+1) = R2e(eul.y_matrix(7:end,k));
97 eul.a_quat(:,k+1) = q2e(eul.y_quat(7:end,k));
98 heu.a_321(:,k+1) = heu.y_321(7:end,k)*180/pi;

A.1 Navigation Analysis Matlab Software 89

99 heu.a_matrix(:,k+1) = R2e(heu.y_matrix(7:end,k));
100 heu.a_quat(:,k+1) = q2e(heu.y_quat(7:end,k));
101 end
102

103 % Calulating diff from correct value
104 for k=1:Samples
105 diffeul321(k)=norm(eul.y_321(1:3,k))-norm(d.pos(:,k));
106 diffheu321(k)=norm(heu.y_321(1:3,k))-norm(d.pos(:,k));
107 diffeulmatrix(k)=norm(eul.y_matrix(1:3,k))-norm(d.pos(:,k));
108 diffheumatrix(k)=norm(heu.y_matrix(1:3,k))-norm(d.pos(:,k));
109 diffeulquat(k)=norm(eul.y_quat(1:3,k))-norm(d.pos(:,k));
110 diffheuquat(k)=norm(heu.y_quat(1:3,k))-norm(d.pos(:,k));
111 end
112 %% Plot Results
113 figure(1)
114 clf
115 subplot(2,2,1), hold on, grid on, title(’Position’);
116 plot3(eul.y_321(1,:),eul.y_321(2,:),eul.y_321(3,:),’r’)
117 plot3(eul.y_matrix(1,:),eul.y_matrix(2,:),eul.y_matrix(3,:),’g’)
118 plot3(eul.y_quat(1,:),eul.y_quat(2,:),eul.y_quat(3,:),’b’)
119 plot3(d.pos(1,1:end),d.pos(2,1:end),d.pos(3,1:end),’--k’)
120 axis equal
121 subplot(2,2,2), hold on, grid on, title(’Velocity’);
122 plot3(eul.y_321(4,:),eul.y_321(5,:),eul.y_321(6,:),’r’)
123 plot3(eul.y_matrix(4,:),eul.y_matrix(5,:),eul.y_matrix(6,:),’g’)
124 plot3(eul.y_quat(4,:),eul.y_quat(5,:),eul.y_quat(6,:),’b’)
125 plot3(d.vel(1,1:end),d.vel(2,1:end),d.vel(3,1:end),’--k’)
126

127 subplot(2,2,3), hold on, grid on, title(’Euler Angles’);
128 plot(eul.a_321(3,:),’r’)
129 plot(eul.a_matrix(3,:),’g’)
130 plot(eul.a_quat(3,:),’b’)
131

132 subplot(2,2,4), hold on, grid on, title(’Diff pos’);
133 plot(t,diffeul321,’r’);
134 plot(t,diffeulmatrix,’g’);
135 plot(t,diffeulquat,’b’);
136

137 figure(2)
138 clf
139 subplot(2,2,1), hold on, grid on, title(’Position’);
140 plot3(heu.y_321(1,:),heu.y_321(2,:),heu.y_321(3,:),’--r’)
141 plot3(heu.y_matrix(1,:),heu.y_matrix(2,:),heu.y_matrix(3,:),’--g’)
142 plot3(heu.y_quat(1,:),heu.y_quat(2,:),heu.y_quat(3,:),’--b’)
143 plot3(d.pos(1,1:end),d.pos(2,1:end),d.pos(3,1:end),’k’)
144

145 subplot(2,2,2), hold on, grid on, title(’Velocity’);
146 plot3(heu.y_321(4,:),heu.y_321(5,:),heu.y_321(6,:),’--r’)
147 plot3(heu.y_matrix(4,:),heu.y_matrix(5,:),heu.y_matrix(6,:),’--g’)
148 plot3(heu.y_quat(4,:),heu.y_quat(5,:),heu.y_quat(6,:),’--b’)
149 plot3(d.vel(1,1:end),d.vel(2,1:end),d.vel(3,1:end),’k’)
150

151 subplot(2,2,3), hold on, grid on, title(’Euler Angles’);
152 plot(heu.a_321(3,:),’r’)
153 plot(heu.a_matrix(3,:),’g’)
154 plot(heu.a_quat(3,:),’b’)
155

156 subplot(2,2,4), hold on, grid on, title(’Diff pos’);
157 plot(t,diffheu321,’r’);
158 plot(t,diffheumatrix,’g’);
159 plot(t,diffheuquat),’b’;
160

90 Code

161 %% Error Integration:
162 heu.err321=sum(abs(diffheu321))*Ts;
163 heu.errmatrix=sum(abs(diffheumatrix))*Ts;
164 heu.errquat=sum(abs(diffheuquat))*Ts;
165

166 eul.err321=sum(abs(diffeul321))*Ts;
167 eul.errmatrix=sum(abs(diffeulmatrix))*Ts;
168 eul.errquat=sum(abs(diffeulquat))*Ts;
169

170 fprintf(’Euler Integrated absolute error\n’)
171 fprintf(’321: %f\t matrix: %f\t Quat: %f\n’,eul.err321,eul.errmatrix,eul.errquat)
172 fprintf(’Heun Integrated absolute error\n’)
173 fprintf(’321: %f\t matrix: %f\t Quat: %f\n’,heu.err321,heu.errmatrix,heu.errquat)

A.1 Navigation Analysis Matlab Software 91

A.1.2 fmatrix.m
1 function [y] = fmatrix(y_in,x)
2 % Constants
3 g=[0,0,0]’;
4

5 % Input translation
6 Pos=y_in(1:3);
7 Vel=y_in(4:6);
8 R=vec2mat(y_in(7:15),3);
9 F_b=x(1:3)’;

10 W_b_nb=x(4:6)’;
11

12 % Position
13 Pos_dot=Vel;
14

15 % Velocity
16 Vel_dot=(R*F_b)-g;
17

18 % Attitude
19 R_dot=R*skew(W_b_nb);
20

21 % Output translation
22 y(1:3,1)=Pos_dot;
23 y(4:6,1)=Vel_dot;
24 y(7:9,1)=R_dot(1,:);
25 y(10:12,1)=R_dot(2,:);
26 y(13:15,1)=R_dot(3,:);
27 end
28

29 function [S] = skew(w)
30 %SKEW Takes a vector of 3 parameters and sets them in a skew matrix with 9
31 % elements (3x3)
32 S= [
33 0 -w(3) w(2);
34 w(3) 0 -w(1);
35 -w(2) w(1) 0;
36];
37

38 end

92 Code

A.1.3 feul.m
1 function [y] = feul(y_in,x)
2 % Constants
3 g=[0,0,0]’;
4

5 % Input translation
6 Pos=y_in(1:3);
7 Vel=y_in(4:6);
8 Theta=y_in(7:9);
9 F_b=x(1:3)’;

10 W_b_nb=x(4:6)’;
11

12 % Position
13 Pos_dot=Vel;
14

15 % Velocity
16 Vel_dot=(DCM(Theta)*F_b)-g;
17

18 % Attitude
19 Theta_dot=D(Theta)*W_b_nb;
20

21 % Output translation
22 y(1:3,1)=Pos_dot;
23 y(4:6,1)=Vel_dot;
24 y(7:9,1)=Theta_dot;
25 end
26

27 function [Matrix] = D(Theta)
28 Matrix =[1 sin(Theta(1))*tan(Theta(2)) cos(Theta(1))*tan(Theta(2))
29 0 cos(Theta(1)) -sin(Theta(1))
30 0 sin(Theta(1))/cos(Theta(2)) cos(Theta(1))/cos(Theta(2))];
31 end
32

33 function [Theta_out] = DCM(Th)
34 Theta_out=[
35 cos(Th(3))*cos(Th(2)), ...
36 cos(Th(3))*sin(Th(2))*sin(Th(1))-sin(Th(3))*cos(Th(1)), ...
37 cos(Th(3))*sin(Th(2))*cos(Th(1))+sin(Th(3))*sin(Th(1)); ...
38 sin(Th(3))*cos(Th(2)), ...
39 sin(Th(3))*sin(Th(2))*sin(Th(1))+cos(Th(3))*cos(Th(1)), ...
40 sin(Th(3))*sin(Th(2))*cos(Th(1))-cos(Th(3))*sin(Th(1));
41 -sin(Th(2)), ...
42 cos(Th(2))*sin(Th(1)), ...
43 cos(Th(2))*cos(Th(1))];
44 end

A.1 Navigation Analysis Matlab Software 93

A.1.4 fquat.m
1 function [y] = fquat(y_in,x)
2

3 % Constants
4 g=[0,0,0]’;
5

6 % Input translation
7 Pos=y_in(1:3);
8 Vel=y_in(4:6);
9 q=y_in(7:10);

10

11 % Control input signal to system
12 F_b=x(1:3)’;
13 W_b_ib=x(4:6)’;
14

15 % Position
16 Pos_dot=Vel;
17

18 % Velocity
19 Vel_dot=(DCMquat(q)*F_b)-g;
20

21 % Attitude
22 q_dot=0.5*qrotvel(W_b_ib)*q;
23

24

25 % Output translation
26 y(1:3,1)=Pos_dot;
27 y(4:6,1)=Vel_dot;
28 y(7:10,1)=q_dot;
29

30

31 end
32

33 function [Matrix] = qrotvel(w)
34 Matrix = [
35 0, -w(1), -w(2), -w(3);
36 w(1), 0, w(3), -w(2);
37 w(2), -w(3), 0, w(1);
38 w(3), w(2), -w(1), 0;
39];
40 end
41

42 function [C] = DCMquat(q)
43

44 C = [
45 (q(1)^2+q(2)^2-q(3)^2-q(4)^2), (2*(q(2)*q(3)-q(1)*q(4))), (2*(q(2)*q(4)+q(1)*q(3)));
46 (2*(q(2)*q(3)+q(1)*q(4))), (q(1)^2-q(2)^2+q(3)^2-q(4)^2), (2*(q(3)*q(4)-q(1)*q(2)));
47 (2*(q(2)*q(4)-q(1)*q(3))), (2*(q(3)*q(4)+q(1)*q(2))), (q(1)^2-q(2)^2-q(3)^2+q(4)^2);
48];
49 end

A.1.5 q2e.m
1 function [e] = q2e(q)
2 % converts quaternions to euler angles
3

4 r2d=180/pi;
5 q0=q(1); q1=q(2); q2=q(3); q3=q(4);
6 e(1)=atan2(2*(q0*q1+q2*q3),1-2*(q1^2+q2^2)) * r2d;

94 Code

7 e(2)=asin(2*(q0*q2-q3*q1)) * r2d;
8 e(3)=atan2(2*(q0*q3+q1*q2),1-2*(q2^2+q3^2)) * r2d;
9 end

A.1.6 R2e.m
1 function [e] = R2e(R_in)
2 %R2E Summary of this function goes here
3 % Detailed explanation goes here
4 r2d=180/pi;
5

6 R=vec2mat(R_in,3);
7 if(R(3,1) ~= 1 || R(3,1) ~= -1)
8 y1 = -asin(R(3,1));
9 y2 = pi - y1;

10 x1 = atan2(R(3,2)/cos(y1), R(3,3)/cos(y1));
11 x2 = atan2(R(3,2)/cos(y2), R(3,3)/cos(y2));
12 z1 = atan2(R(2,1)/cos(y1), R(1,1)/cos(y1));
13 z2 = atan2(R(2,1)/cos(y2), R(1,1)/cos(y2));
14 else
15 z1 = 0;
16 if(R(3,1) == -1)
17 y1 = pi/2;
18 x1 = z1 + atan2(R(1,2),R(1,3));
19 else
20 y1 = -pi/2;
21 x1 = -z1 + atan2(-R(1,2),-R(1,3));
22 end
23 end
24 e=[x1 y1 z1]*r2d;
25 end

A.2 Sensor Data Analysis Matlab Software 95

A.2 Sensor Data Analysis Matlab Software

A.2.1 CalcAlan.m
1 %% Allan variance and auto correlation
2 clc, clear all, close all;
3

4 %% Load data
5 %load(’3nov2h6m28s.mat’)
6 load(’7nov3.mat’);
7 t.Ts=0.005;
8

9 %% Calculate time
10 t.time=length(data)*t.Ts;
11 t.days = round(t.time / 86400);
12 t.hours = round((t.time / 3600) - (t.days * 24));
13 t.minutes = round((t.time / 60) - (t.days * 1440) - (t.hours * 60));
14 t.seconds = round(mod(t.time,60));
15 disp([’Logg data length: ’,num2str(t.hours),’:’,num2str(t.minutes),’:’,num2str(t.seconds)]);
16

17 %% Calculate allan variance
18 AllanD.rate=1/t.Ts;
19 AllanD.tau=[];
20

21 AllanD.freq=data(:,3)-mean(data(:,3));
22 [Gx.retval, Gx.s, Gx.errorb, Gx.tau] = allan(AllanD,AllanD.tau,’GyroX’,0);
23

24 AllanD.freq=data(:,4)-mean(data(:,4));
25 [Gy.retval, Gy.s, Gy.errorb, Gy.tau] = allan(AllanD,AllanD.tau,’GyroY’,0);
26

27 AllanD.freq=data(:,5)-mean(data(:,5));
28 [Gz.retval, Gz.s, Gz.errorb, Gz.tau] = allan(AllanD,AllanD.tau,’GyroZ’,0);
29

30 AllanD.freq=data(:,6)-mean(data(:,6));
31 [Ax.retval, Ax.s, Ax.errorb, Ax.tau] = allan(AllanD,AllanD.tau,’AccX’,0);
32

33 AllanD.freq=data(:,7)-mean(data(:,7));
34 [Ay.retval, Ay.s, Ay.errorb, Ay.tau] = allan(AllanD,AllanD.tau,’AccY’,0);
35

36 AllanD.freq=data(:,8)-mean(data(:,8));
37 [Az.retval, Az.s, Az.errorb, Az.tau] = allan(AllanD,AllanD.tau,’AccZ’,0);
38

39 clear AllanD;
40 %% Calculate ARW & Bias Instabiliti
41

42 Gx.BiasInstability = min(Gx.retval); % bias instability grader/sekund
43 Gy.BiasInstability = min(Gy.retval); % bias instability grader/sekund
44 Gz.BiasInstability = min(Gz.retval); % bias instability grader/sekund
45 Ax.BiasInstability = min(Ax.retval); % bias instability grader/sekund
46 Ay.BiasInstability = min(Ay.retval); % bias instability grader/sekund
47 Az.BiasInstability = min(Az.retval); % bias instability grader/sekund
48

49 Gx.ARW=Gx.retval(Gx.tau==1);
50 Gy.ARW=Gy.retval(Gy.tau==1);
51 Gz.ARW=Gz.retval(Gz.tau==1);
52 Ax.ARW=Ax.retval(Ax.tau==1);
53 Ay.ARW=Ay.retval(Ay.tau==1);
54 Az.ARW=Az.retval(Az.tau==1);
55

56 disp(’Gyro parameters:’)
57 disp([’Bias Instability: ’,num2str(Gx.BiasInstability),...

96 Code

58 ’ ,’,num2str(Gy.BiasInstability),...
59 ’ ,’,num2str(Gz.BiasInstability)])
60 disp([’ARW: ’,num2str(Gx.ARW),...
61 ’ ,’,num2str(Gy.ARW),...
62 ’ ,’,num2str(Gz.ARW)])
63

64 disp(’Acc parameters:’)
65 disp([’Bias Instability: ’,num2str(Ax.BiasInstability), ...
66 ’ ,’,num2str(Ay.BiasInstability), ...
67 ’ ,’,num2str(Az.BiasInstability)])
68 disp([’VRW: ’,num2str(Ax.ARW), ...
69 ’ ,’,num2str(Ay.ARW), ...
70 ’ ,’,num2str(Az.ARW)])
71

72 %% Plot results
73 figure;
74 subplot(2,2,1)
75 loglog(Gx.tau,(Gx.retval),’.-r’,’LineWidth’,2,’MarkerSize’,14);
76 hold on, grid on;
77 loglog(Gy.tau,(Gy.retval),’.-b’,’LineWidth’,2,’MarkerSize’,14);
78 loglog(Gz.tau,(Gz.retval),’.-g’,’LineWidth’,2,’MarkerSize’,14);
79 legend(’X-Gyro’,’Y-Gyro’,’Z-Gyro’)
80 alpha 0.1
81 subplot(2,2,2)
82 hold on, grid on;
83 t.auto=(-((length(data)-1)):((length(data)-1)))*t.Ts;
84 plot(t.auto,xcorr(data(:,3)-mean(data(:,3))),’r’)
85 plot(t.auto,xcorr(data(:,4)-mean(data(:,4))),’b’)
86 plot(t.auto,xcorr(data(:,5)-mean(data(:,5))),’g’)
87 legend(’X-Gyro’,’Y-Gyro’,’Z-Gyro’)
88 subplot(2,2,3)
89 loglog(Ax.tau,(Ax.retval),’.-r’,’LineWidth’,2,’MarkerSize’,14);
90 hold on, grid on;
91 loglog(Ay.tau,(Ay.retval),’.-b’,’LineWidth’,2,’MarkerSize’,14);
92 loglog(Az.tau,(Az.retval),’.-g’,’LineWidth’,2,’MarkerSize’,14);
93 legend(’X-Acc’,’Y-Acc’,’Z-Acc’)
94 subplot(2,2,4)
95 hold on, grid on;
96 t.auto=(-((length(data)-1)):((length(data)-1)))*t.Ts;
97 plot(t.auto,xcorr(data(:,6)-mean(data(:,6))),’r’)
98 plot(t.auto,xcorr(data(:,7)-mean(data(:,7))),’b’)
99 plot(t.auto,xcorr(data(:,8)-mean(data(:,8))),’g’)

100 legend(’X-Acc’,’Y-Acc’,’Z-Acc’)

A.3 Kalman Filter 97

A.3 Kalman Filter

A.3.1 RunLKF.m
1 % Linearized kalman filter
2 clear all; clc; close all;
3

4 %% Import data
5 %load(’7nov3’);
6 % load(’spiral.mat’)
7 % N=3100;
8 % PauseTime=2200;
9 load(’DriftTest.mat’)

10 N=8000;
11 PauseTime=6000;
12 %load(’AnglesTest.mat’)
13 acc=-data(:,6:8)’;
14 gyr=data(:,3:5)’;
15 mag=data(:,9:11)’;
16

17 % Dataset Spesific variables + general
18 r2d=180/pi;
19 d2r=pi/180;
20 SampleFreq=200;
21 Ts=1/SampleFreq;
22

23 %% Normalize, bias removal Raw Data
24 for i=1:N
25 normal(:,i)=norm(mag(:,i));
26 end
27 normal2=mean(normal);
28 for i=1:N
29 mag(:,i)=mag(:,i)/normal2;
30 end
31 % Bias removal
32 BiasGyroX=mean(gyr(1,1:PauseTime));
33 BiasGyroY=mean(gyr(2,1:PauseTime));
34 BiasGyroZ=mean(gyr(3,1:PauseTime));
35 gyr(1,:)=gyr(1,:)-BiasGyroX;
36 gyr(2,:)=gyr(2,:)-BiasGyroY;
37 gyr(3,:)=gyr(3,:)-BiasGyroZ;
38

39

40 % Rename
41 fb=acc;
42 wb=gyr*d2r;
43 Bb=mag;
44

45 %% Plot Raw data
46 figure(5);
47 subplot(3,1,1); hold on, grid on;
48 plot(gyr(1,:),’r’); plot(gyr(2,:),’g’); plot(gyr(3,:),’b’);
49 legend(’GyrX’,’GyrY’,’GyrZ’)
50 subplot(3,1,2); hold on, grid on;
51 plot(acc(1,:),’r’); plot(acc(2,:),’g’); plot(acc(3,:),’b’);
52 legend(’AccX’,’AccY’,’AccZ’)
53 subplot(3,1,3); hold on, grid on;
54 plot(mag(1,:),’r’); plot(mag(2,:),’g’); plot(mag(3,:),’b’);
55 legend(’MagX’,’MagY’,’MagZ’)
56

57 %% Initial Attitude

98 Code

58 fn=[0,0,9.81]’;
59 Bn=wrldmagm(0, 59.97487, 11.04532, 2011);
60 Bn=[Bn(1), -Bn(2), -Bn(3)]’;
61

62 Bn=Bn/norm(Bn);
63

64 for i=1:1;
65 Rcb=[Bb(:,i)/norm(Bb(:,i)), ...
66 (cross(Bb(:,i),fb(:,i)))/(norm(cross(Bb(:,i),fb(:,i)))), ...
67 cross(Bb(:,i)/norm(Bb(:,i)) ,(cross(Bb(:,i),fb(:,i)))/(norm(cross(Bb(:,i),fb(:,i)))))];
68 Rcn=[Bn(:,1)/norm(Bn(:,1)), ...
69 (cross(Bn(:,1),fn(:,1)))/(norm(cross(Bn(:,1),fn(:,1)))), ...
70 cross(Bn(:,1)/norm(Bn(:,1)) ,(cross(Bn(:,1),fn(:,1)))/(norm(cross(Bn(:,1),fn(:,1)))))];
71 Rbn=Rcn*Rcb’;
72 InitEuler=R2e(Rbn);
73 end
74

75 %% Kalman Init
76 Q=diag([0.0018564,0.0044847,0.0030709,0.029117,0.028674,0.027748]);
77 R=diag([(10.0609)^2/400, (14.7831^2)^2/400, (24.3630^2)^2/400 ...
78 10.0609/400 14.7831/400 24.3630/400 ...
79 0.8425 0.8030 0.7427, ...
80 0.00062394 0.0016138 0.00091252...% Acc Bias instab
81 0.0044451 0.0054394 0.0052201])*Ts; % Gyro bias instab
82 R=diag([(10)^2/400, (10^2)^2/400, (10^2)^2/400 ...
83 10/400 10/400 20/400 ...
84 0.8425 0.8030 0.7427, ...
85 0.00062394 0.0016138 0.00091252...% Acc Bias instab
86 0.0044451 0.0054394 0.0052201])*Ts; % Gyro bias instab
87 Pp=eye(15)*0.05*200;
88 Pe=eye(15)*0.05*200;
89 U=[fb;wb];
90 j=0;
91

92 % Preallocation
93 Xss=zeros(15,N);
94 Xs=zeros(15,N);
95 dXp=zeros(15,N);
96 dXe=zeros(15,N);
97 Xp=zeros(15,N);
98 Xe=zeros(15,N);
99 EulS=zeros(3,N);

100 EulP=zeros(3,N);
101 EulE=zeros(3,N);
102 Psave=zeros(15,15,N);
103

104 % More initialisation
105 Xs(:,1)=[zeros(6,1);Rbn(1,:)’;Rbn(2,:)’;Rbn(3,:)’];
106

107 %% Kalman Filter
108 for k=1:N-1
109 % Simulation of mecanisation (Heuns)
110 Xss(:,k+1) = Xs(:,k) + fmatrix(Xs(:,k),U(:,k)’)*Ts;
111 Xs(:,k+1) = Xs(:,k)+((Ts/2) * (fmatrix(Xs(:,k),U(:,k)’)+fmatrix(Xss(:,k+1),U(:,k+1)’)));
112

113 % Rotation matrix from simulation
114 RbnS=(vec2mat(Xs(7:15,k+1),3));
115

116 % Conversion from rotation matrix to euler angles
117 EulS(:,k+1)=R2e(RbnS);
118

119 % Error model

A.3 Kalman Filter 99

120 F=[zeros(3,3), eye(3), zeros(3,3), zeros(3,3), zeros(3,3);
121 zeros(3,3), zeros(3,3), -skew(RbnS*(fb(:,k))), RbnS, zeros(3,3);
122 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), RbnS;
123 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);
124 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);];
125 G=[zeros(3,3), zeros(3,3);
126 RbnS, zeros(3,3);
127 zeros(3,3), RbnS;
128 zeros(3,3), zeros(3,3);
129 zeros(3,3), zeros(3,3)];
130

131 % Discretisation
132 Fi=expm(F*Ts);
133 S=k2dS(F,G,Q,Ts);
134

135 % Error update
136 dXp(:,k+1)=Fi*dXp(:,k); % dXp=dXe if applicable!
137

138 % Correction
139 Xp(:,k+1)= [Xs(1:6,k+1);zeros(9,1)] + dXp(:,k+1);
140 RbnP=((eye(3) + skew(dXp(7:9,k+1)))*RbnS);
141

142 % Conversion from rotation matrix to euler angles
143 EulP(:,k)=R2e(RbnP);
144

145 % Predicted Covariance
146 Pp=Fi*Pp*Fi’+S; % Pe=Pp if applicable!
147

148 j=j+1;
149 if (ismember(j,[1:N,N-1]))
150 if(k<PauseTime)
151 % Measurement Matrix
152 H=zeros(15,15);
153 H(1:3,1:3)=eye(3);
154 %H(4:6,4:6)=eye(3);
155 H(7:9,7:9)=RbnS’*skew(Bn);
156

157 % Kalman Gain Matrix
158 K=Pp*H’/(H*Pp*H’+R);
159

160 % Estimated Covariance
161 Pe=(eye(15)-K*H)*Pp;
162

163 % Measurements
164 Z=[zeros(1,3), zeros(1,3), Bb(:,k)’, zeros(1,3), zeros(1,3)]’;
165 %Zs=[Xs(1:3,k)’, Xs(4:6,k)’, (RbnS’*Bn)’, zeros(1,3), zeros(1,3)]’;
166 Zs=[Xs(1:3,k)’, zeros(1,3), (RbnS’*Bn)’, zeros(1,3), zeros(1,3)]’;
167 dZ=Z-Zs;
168

169 % Error update
170 dXe(:,k+1)= dXp(:,k+1) + K*(dZ - H*dXp(:,k+1));
171

172 % Correction
173 Xe(:,k+1)= [Xs(1:6,k+1);zeros(9,1)]+dXe(:,k+1);
174 RbnE=((eye(3) + skew(dXe(7:9,k+1)))*RbnS);
175

176 % Conversion from rotation matrix to euler angles
177 EulE(:,k)=R2e(RbnE);
178

179 % Feedback to prediction
180 Pp=Pe;
181 dXp(:,k+1)=dXe(:,k+1);

100 Code

182 if (k+1>PauseTime)
183 Xs(7:15,k+1)=[RbnE(1,:)’;RbnE(2,:)’;RbnE(3,:)’];
184 Xe(7:9,k+1)=zeros(3,1);
185 Xp(7:9,k+1)=zeros(3,1);
186 dXe(7:9,k+1)=zeros(3,1);
187 dXp(7:9,k+1)=zeros(3,1);
188 end
189 else
190

191 % Measurement Matrix
192 H=zeros(15,15);
193 H(7:9,7:9)=RbnS’*skew(Bn);
194

195 % Kalman Gain Matrix
196 K=Pp*H’/(H*Pp*H’+R);
197

198 % Estimated Covariance
199 Pe=(eye(15)-K*H)*Pp;
200

201 % Measurements
202 Z=[zeros(1,3), zeros(1,3), Bb(:,k)’, zeros(1,3), zeros(1,3)]’;
203 Zs=[zeros(1,3), zeros(1,3), (RbnS’*Bn)’, zeros(1,3), zeros(1,3)]’;
204 dZ=Z-Zs;
205

206 % Error update
207 dXe(:,k+1)= dXp(:,k+1) + K*(dZ - H*dXp(:,k+1));
208

209 % Correction
210 Xe(:,k+1)= [Xs(1:6,k+1);zeros(9,1)]+dXe(:,k+1);
211 RbnE=((eye(3) + skew(dXe(7:9,k+1)))*RbnS);
212

213 % Conversion from rotation matrix to euler angles
214 EulE(:,k)=R2e(RbnE);
215

216 % Feedback to prediction
217 Pp=Pe;
218 dXp(:,k+1)=dXe(:,k+1);
219 end
220 end
221 Psave(:,:,k)=Pp;
222 Pdiag(:,k)=diag(Pp);
223 end
224 %% Display results
225 disp([’Gyro Bias Adjustment---’])
226 disp([’x = ’,num2str(BiasGyroX),’ deg/sec’])
227 disp([’y = ’,num2str(BiasGyroY),’ deg/sec’])
228 disp([’z = ’,num2str(BiasGyroZ),’ deg/sec’])
229

230 disp([’Timing---’])
231 disp([’Total Dataset Time = ’,num2str(N*Ts),’ sec’])
232 disp([’Init time = ’,num2str(PauseTime*Ts),’ sec’])
233 disp([’Free Run time = ’,num2str((N-PauseTime)*Ts),’ sec’]);
234

235 disp([’Initial Attitude:--’])
236 disp([’Roll = ’,num2str(InitEuler(1)),’ deg’])
237 disp([’Pitch = ’,num2str(InitEuler(2)),’ deg’])
238 disp([’Yaw = ’,num2str(InitEuler(3)),’ deg’])
239

240 disp([’Errors---’])
241 disp([’Navgation eq Drift = ’,num2str(norm(Xs(1:3,N))-norm(Xs(1:3,PauseTime)))])
242 disp([’Total Drift = ’,num2str(norm(Xp(1:3,N)))])
243 disp([’Drift Per sec = ’,num2str(norm(Xp(1:3,N))/((N-PauseTime)*Ts))])

A.3 Kalman Filter 101

244

245 %% Plot Results
246 figure(1) % 3D Position Plot
247 hold on, grid on, view(3);
248 %plot3(Xs(1,PauseTime:N)-Xs(1,PauseTime),Xs(2,PauseTime:N)-Xs(2,PauseTime),Xs(3,PauseTime:N)-Xs(3,PauseTime),’b--’);
249 %plot3(Xe(1,PauseTime:N),Xe(2,PauseTime:N),Xs(3,PauseTime:N),’r’);
250 plot3(Xp(1,PauseTime:N),Xp(2,PauseTime:N),Xp(3,PauseTime:N),’k--’);
251 title(’Position’), xlabel(’x’), ylabel(’y’), zlabel(’z’), axis equal
252

253 figure(2) % Attitude
254 hold on, grid on;
255 XMIN=0;XMAX=N*Ts;YMIN=-180;YMAX=180;
256 subplot(3,1,1)
257 hold on, grid on; title(’Roll’)
258 stairs(((1:N)*Ts),EulS(1,:),’b--’);
259 stairs(((1:N)*Ts),EulE(1,:),’r’);
260 stairs(((1:N)*Ts),EulP(1,:),’g’);
261 legend(’Sim’,’Est’,’Pred’)
262 %axis([XMIN XMAX YMIN YMAX])
263 subplot(3,1,2)
264 hold on, grid on; title(’Pitch’)
265 stairs(((1:N)*Ts),EulS(2,:),’b--’);
266 stairs(((1:N)*Ts),EulE(2,:),’r’);
267 stairs(((1:N)*Ts),EulP(2,:),’g’);
268 legend(’Sim’,’Est’,’Pred’)
269 %axis([XMIN XMAX YMIN YMAX])
270 subplot(3,1,3)
271 hold on, grid on; title(’Yaw’)
272 stairs(((1:N)*Ts),EulS(3,:),’b--’);
273 stairs(((1:N)*Ts),EulE(3,:),’r’);
274 stairs(((1:N)*Ts),EulP(3,:),’g’);
275 legend(’Sim’,’Est’,’Pred’)
276 %axis([XMIN XMAX YMIN YMAX])
277

278 figure(3) % Standard deviation Plots
279 name=[’p ’;
280 ’p ’;
281 ’p ’;
282 ’v ’;
283 ’v ’;
284 ’v ’;
285 ’\epsilon ’;
286 ’\epsilon ’;
287 ’\epsilon ’];
288 for i = 1:9
289 subplot(3,3,i)
290 hold on, grid on,
291 plot(((0:N-2)*1/200),sqrt(Pdiag(i,:)),’b’)
292 plot(((0:N-2)*1/200),-sqrt(Pdiag(i,:)),’b’)
293 plot(((0:N-1)*1/200),Xp(i,:),’r’)
294 % stairs(t2,Xe(i,2:200:end),’g’)
295 %legend([’P’,num2str(i)],[’-P’,num2str(i)],[’Xp’,num2str(i)],[’Xe’,num2str(i)])
296 title(name(i,:))
297 hold off
298 end
299 figure(4) % Bias Plots
300 subplot(2,1,1),hold on, grid on;
301 title(’Accelerometer Bias’)
302 plot(((1:N)*Ts),Xp(10,:),((1:N)*Ts),Xp(11,:),((1:N)*Ts),Xp(12,:))
303 legend(’X’,’Y’,’Z’)
304 subplot(2,1,2),hold on, grid on;
305 title(’Gyro Bias’)

102 Code

306 plot(((1:N)*Ts),Xp(13,:),((1:N)*Ts),Xp(14,:),((1:N)*Ts),Xp(15,:))
307 legend(’X’,’Y’,’Z’)

A.3.2 k2dS.m
1 function S = k2dS(F, G, Q_tilde, d)
2 [m,n] = size(F);
3 A = [F G*Q_tilde*G’;
4 zeros(m,n) -F’]*d;
5 B = expm(A);
6 S = B(1:n,n+1:2*n) * inv(B(n+1:2*n,n+1:2*n));

A.3.3 skew.m
1 function [S] = skew(w)
2 %SKEW Takes a vector of 3 parameters and sets them in a skew matrix with 9
3 % elements (3x3)
4 S= [
5 0 -w(3) w(2);
6 w(3) 0 -w(1);
7 -w(2) w(1) 0;
8];
9

10 end

A.3.4 fmatrix.m
1 function [y] = fmatrix(y_in,x)
2 % Constants
3 g=[0,0,9.81]’;
4

5 % Input translation
6 Pos=y_in(1:3);
7 Vel=y_in(4:6);
8 R=vec2mat(y_in(7:15),3);
9 F_b=x(1:3)’;

10 W_b_nb=x(4:6)’;
11

12 % Position
13 Pos_dot=Vel;
14

15 % Velocity
16 Vel_dot=(R*F_b)-g;
17

18 % Attitude
19 R_dot=R*skew(W_b_nb);
20

21 % Output translation
22 y(1:3,1)=Pos_dot;
23 y(4:6,1)=Vel_dot;
24 y(7:9,1)=R_dot(1,:);
25 y(10:12,1)=R_dot(2,:);
26 y(13:15,1)=R_dot(3,:);
27 end

A.3 Kalman Filter 103

A.3.5 DCM.m
1 function [Theta_out] = DCM(Th)
2 Theta_out=[
3 cos(Th(3))*cos(Th(2)), ...
4 cos(Th(3))*sin(Th(2))*sin(Th(1))-sin(Th(3))*cos(Th(1)), ...
5 cos(Th(3))*sin(Th(2))*cos(Th(1))+sin(Th(3))*sin(Th(1)); ...
6 sin(Th(3))*cos(Th(2)), ...
7 sin(Th(3))*sin(Th(2))*sin(Th(1))+cos(Th(3))*cos(Th(1)), ...
8 sin(Th(3))*sin(Th(2))*cos(Th(1))-cos(Th(3))*sin(Th(1)); ...
9 -sin(Th(2)), ...

10 cos(Th(2))*sin(Th(1)), ...
11 cos(Th(2))*cos(Th(1)); ...
12];
13 end

104 Code

A.4 C++ Code MCU & PC

A.4.1 mbed.cpp

A.4.2 DCM.m
1 #include "mbed.h" // Mbed Library Header
2 SPI ADIS16407(p5, p6, p7); // MISO MOSI SCK
3 DigitalOut SS(p8); // Slave Select
4 DigitalOut RST(p9); // ADIS Reset pin
5 Serial pc(USBTX, USBRX); // USB USART tunnel
6 DigitalOut L1(LED1); // Debug Led
7 DigitalOut L2(LED1); // Debug Led
8 Ticker timerINT; // Ticker timer interrupt obj
9 Timer timestamp; // Timer timestamp obj

10

11 union ByteSplit {
12 int16_t int16;
13 int8_t int8[2];
14 };
15

16 void WriteSerialINT(int16_t temp) {
17 ByteSplit split; // Create ByteSplit object
18 split.int16 = temp; // Insert temp into int16
19 pc.putc(split.int8[1]); // Write MSBs of int16 to USART
20 pc.putc(split.int8[0]); // Write LSBs of int16 to USART
21 }
22

23 bool Reading=0;
24 void ReadData() {
25 if (!Reading) { // Error detection
26 Reading=1; // Detection Flag
27 SS=0; // Slave Select (Active Low)
28 L1= !L1; // Toggle LED1
29 WriteSerialINT(timestamp.read_ms()); // Timestamp
30 ADIS16407.write(0x4200); // Initiate ADIS Burst Read
31 for (int i=1; i<=14; i++) { // Read ADIS
32 WriteSerialINT(ADIS16407.write(0x0000)); // Transmit Measurement data
33 }
34 SS=1; // Realease Slave
35 Reading=0; // Ready for new Sample frame
36 }
37 }
38

39 void ConfADIS() {
40 SS=0; // Slave Select (Active Low)
41 wait_us(1); // Waiting for device receive SS
42 ADIS16407.write(0xBB02); // 204.8Hz decimation
43 SS=1; // Release Salve
44 wait_ms(1); // Wait for ADIS process
45 }
46

47 void Initalize() {
48 pc.baud(115200); // Set baud rate
49 ADIS16407.format(16,3); // Set SPI bus with and Mode
50 ADIS16407.frequency(1000000); // Set SPI bus freq
51 SS=1; // Initial Slave select (Active Low)
52 RST=1; // Reset (Active Low)
53 // Writing 0xFF00 to PC for start of transmission mark
54 for (int j=0; j<15; j++) {

A.4 C++ Code MCU & PC 105

55 WriteSerialINT(0xFF00);
56 }
57 ConfADIS(); // Setup ADIS
58 // Timer interrupt setup
59 timerINT.attach(&ReadData,0.005); // Ts=0.005->200Hz
60 // Timestamp reset and start
61 timestamp.reset();
62 timestamp.start();
63 }
64 int main() {
65 Initalize(); // Run init
66 while (1); // noop on free time =)
67 }

A.4.3 Decode.cpp
1 #include <iostream>
2 #include <fstream>
3

4 using namespace std;
5 ifstream::pos_type size;
6 char * memblock;
7 float convert[]={ 0.002418,
8 0.05, 0.05, 0.05,
9 0.0326673, 0.0326673, 0.0326673,

10 0.0005, 0.0005, 0.0005,
11 0.00008, 0.0000003125,
12 0.136, 0.0008059};
13

14 union ByteSplit
15 {
16 int16_t int16;
17 int8_t int8[2];
18 };
19

20 int main () {
21

22 // Input file
23 ifstream inFile ("data.bin", ios::in|ios::binary|ios::ate);// Define input & read mode
24

25 if (inFile.is_open())// Make shure file is open
26 {
27 size = inFile.tellg(); // Get size
28 memblock = new char [size]; // Allocate char array
29 inFile.seekg (0, ios::beg); // Set pointer pos at beginning
30 inFile.read (memblock, size); // Read Whole content into memory
31 inFile.close(); // Close file
32 } else {
33 cout << "Unable to open file";
34 return 1;
35 }
36

37 // Output file
38 FILE * OutFile;
39 OutFile = fopen ("data.txt","w");
40

41 // Conversion algorithem
42 int filesize = (int)size; // Typecast file size to integer (files bigger than 2GB may cause problems)
43

44 int start = 30;

106 Code

45 int l=0;
46 ByteSplit splitter;
47 int16_t temp;
48 int16_t stamp;
49

50 for(int j=start; j<filesize; j=j+30){
51 if(start+j>filesize) break;
52 splitter.int8[1]=(unsigned char)memblock[(j)];
53 splitter.int8[0]=(unsigned char)memblock[(j+1)];
54 stamp=splitter.int16;
55

56 fprintf(OutFile, "%f\t",(float)stamp);
57 l = 0;
58 for(int k=2; k<=28; k=k+2){
59 splitter.int8[1]=(unsigned char)memblock[(j+k)];
60 splitter.int8[0]=(unsigned char)memblock[(j+k+1)];
61 temp=splitter.int16&0x3FFF;
62 if (((temp&0x2000)>>13) && (k!=20) && (k!=22) && (k!=24)) {
63 temp=(temp-16383);
64 } else if(k==24){
65 temp=(temp&0x0FFF)-4095;
66 }
67 fprintf(OutFile, "%f\t", convert[l]*(float)(temp));
68 l++;
69

70 }
71 fprintf(OutFile, "\r\n");
72 }
73

74 delete[] memblock;
75 fclose (OutFile);
76 printf("\r\n");
77 return 0;
78 }

Appendix B

Oddvar Hallingstad Lecture Notes

Eksempler på TNS-modeller

Oddvar Hallingstad
3. mars 2004

1 En-akset plattform

Figuren nedenfor viser en en-akset plattform (den måler akselerasjonen bare langs en akse) som kan dreie seg
om en akse vinkelrett på papirplanet. Denne dreiningen måles av en gyro.

A1

θ

p-systemet

n-systemet

Gyro

x

g
ur

f
ur

i
a
r

pf

Figur 1: Enakset plattform

Feildefinisjoner
±f = f ¡ ~f ±x = x¡ ~x ±µ = µ ¡ ~µ
±! = ! ¡ ~! ±v = v ¡ ~v

Legg merke til definisjonene av feil. De er valgt på denne måten fordi dette gir en standard systemmodell for
et eventuelt Kalmanfilter. Målingene ~f og ~! kan ses på som pådrag. Dersom vi måler posisjonen for bruk i et
Kalmanfilter som måling må feilmodellen være y = ~x = x+ w hvor w er hvit støy.

Fysisk system Mekanisert system Feillikninger

_x = v
·
~x = ~v ± _x = ±v

_v = f−g sin θ
cos θ

·
~v = f̃−g sin θ̃

cos θ̃
± _v = 1

cos2 θ̃

³
~f sin ~µ ¡ g

´
±µ + 1

cos θ̃
±f

_µ = !
·
~µ = ~! ± _µ = ±!

Bare likningen for ± _v krever en egen utledning:

± _v = f−g sin θ
cos θ ¡ f̃−g sin θ̃

cos θ̃
=

f̃+δf−g sin(θ̃+δθ)
cos(θ̃+δθ)

¡ f̃−g sin θ̃
cos θ̃

= δf

cos θ̃
+
³
f̃ sin θ̃

cos2 θ̃
¡ g

¡
1 + tan2 µ

¢´
±µ+O

¡
±µ2; ±f2

¢
= 1

cos2 θ̃

³
~f sin ~µ ¡ g

´
±µ + 1

cos θ̃
±f +O

¡
±µ2; ±f2

¢
± _v = f−g sin θ

cos θ ¡ f̃−g sin θ̃
cos θ̃1

2 To-akset plattform

A1

A2

Gyro

θ

p-systemet

n-systemet

1

pf

2

pf
f
ur

i
a
r

g
ur

Figur 2: To-akset plattform

Feildefinisjoner
±f = fp ¡ ~f

p
±x = xn ¡ ~xn ±µ = µ ¡ ~µ

±! = ! ¡ ~! ±v = vn ¡ ~vn Rn
p = R

³
~µ
´µ

I + ±µ

·
0 ¡1
1 0

¸¶
Den elementære rotasjonsmatrisa R er gitt ved

Rn
p = R (µ) =

·
cos µ ¡ sin µ
sin µ cos µ

¸
Feillikningene skrevet på vektorform:

Fysisk system Mekanisert system Feillikninger

_xn = vn
·
~x
n

= ~vn ± _x = ±v

_vn = Rn
pf

p ¡ gn
·
~v
n

= ~Rn
p
~f
p ¡ gn ± _vn = R3

³
~µ
´·

¡ ~fy
~fx

¸
±µ +R3

³
~µ
´
±f

_µ = !
·
~µ = ~! ± _µ = ±!

Feilikningene skrevet på komponentform:

Fysisk system Mekanisert system Feillikninger

_x = v
·
~x = ~v ± _x = ±v

_v1 = fx cos µ ¡ fy sin µ
·
~v1 = ~fx cos ~µ ¡ ~fy sin ~µ

± _v1 = ¡
³
~fx sin ~µ + ~fy cos ~µ

´
±µ

+±fx cos ~µ ¡ ±fy sin ~µ

_v2 = fx sin µ + fy cos µ ¡ g
·
~v2 = ~fx sin ~µ + ~fy cos ~µ ¡ g

± _v2 =
³
~fx cos ~µ ¡ ~fy sin ~µ

´
±µ

+±fx sin ~µ + ±fy cos ~µ

_µ = !
·
~µ = ~! ± _µ = ±!

Utledning av likningen for hastighetsfeil:

± _vn = Rn
pf

p¡ ~Rn
p
~f
p
= R

³
~µ
´µ

I + ±µ

·
0 ¡1
1 0

¸¶³
~f
p
+ ±f

´
¡R

³
~µ
´
~f
p
== R

³
~µ
´·

0 ¡1
1 0

¸
~f
p
±µ+

R
³
~µ
´
±f = R

³
~µ
´·

¡ ~fy
~fx

¸
±µ +R

³
~µ
´
±f

2

3 Tre-akset plattform, flat ikke-roterende jord

For en tre-akset plattform kan feilen defineres på flere måter.

3.1 Transformasjonsfeilen referert eulervinklene

Feildefinisjoner
±f = fp ¡ ~f

p
±xn = xn ¡ ~xn ±µ = µ ¡ ~µ

±! = !p
np ¡ ~!p

np ±vn = vn ¡ ~vn

Jeg har et eget notat for utledningen her.

3.2 Tranformasjonsfeilen referert n-systemet

Vi skal her se på feillikningene når feilen i beregningen av rotasjonsmatrisa Rn
p refereres til n-systemet.

Feildefinisjoner
±f = fp ¡ ~f

p
±xn = xn ¡ ~xn Rn

p = R (") ~Rn
p

±! = !p
np ¡ ~!p

np ±vn = vn ¡ ~vn R (") = I + S (")

Fysisk system Mekanisert system Feillikninger

_xn = vn
·
~xn = ~vn ± _x = ±v

_vn = Rn
pf

p ¡ gn
·
~vn = ~Rn

p
~f
p ¡ gn ± _vn = ¡S

³
~Rn
p
~f
p
´
"+ ~Rn

p±f

_Rn
p = Rn

pS (!p
np)

·
~Rn
p = ~Rn

pS
¡
~!p
np

¢
_" = ~Rn

p±!

Bevis av d.l. for ±vn:

± _vn = Rn
pf

p ¡ gn ¡
³
~Rn
p
~f
p ¡ gn

´
= (I + S (")) ~Rn

p

³
~f
p
+ ±f

´
¡ ~Rn

p
~f
p
= S (") ~Rn

p
~f
p
+ ~Rn

p±f

=

Bevis av d.l. for ":

V. siden: _Rn
p ¡

·
~R

n

p = S (_") ~Rn
p +(I + S ("))

·
~R

n

p ¡
·
~R

n

p = S (_") ~Rn
p +S (")

·
~R

n

p = S (_") ~Rn
p +S (") ~Rn

pS
¡
~!pnp

¢
H. siden: Rn

pS (!p
np)¡ ~Rn

pS
¡
~!p
np

¢
= (I + S (")) ~Rn

p

¡
S
¡
~!pnp

¢
+ S (±!)

¢
¡ ~Rn

pS
¡
~!pnp

¢
= S (") ~Rn

pS
¡
~!pnp

¢
+

~Rn
pS (±!)

Satt sammen:

S (_") ~Rn
p + S (") ~Rn

pS
¡
~!p
np

¢
= S (") ~Rn

pS
¡
~!p
np

¢
+ ~Rn

pS (±!)

S (_") ~Rn
p = ~Rn

pS (±!)

S (_") = ~Rn
pS (±!) ~Rp

n , _" = ~Rn
p±!

3.3 Transformasjonsfeilen referert p-systemet

Vi skal her se på feillikningene når feilen i beregningen av rotasjonsmatrisa Rn
p refereres til p-systemet.

Feildefinisjoner
±f = fp ¡ ~f

p
±xn = xn ¡ ~xn Rn

p = ~Rn
pR (")

±! = !p
np ¡ ~!p

np ±vn = vn ¡ ~vn R (") = I + S (")

3

Fysisk system Mekanisert system Feillikninger

_xn = vn
·
~xn = ~vn ± _x = ±v

_vn = Rn
pf

p ¡ gn
·
~vn = ~Rn

p
~f
p ¡ gn ± _vn = ¡ ~Rn

pS
³
~f
p
´
"+ ~Rn

p±f

_Rn
p = Rn

pS (!p
np)

·
~Rn
p = ~Rn

pS
¡
~!p
np

¢
_" = ¡S (~!) "+ ±!

Bevis av d.l. for ±vn:

± _vn = Rn
pf

p ¡ gn ¡
³
~Rn
p
~f
p ¡ gn

´
= ~Rn

p (I + S ("))
³
~f
p
+ ±f

´
¡ ~Rn

p
~f
p
= ~Rn

pS (") ~f
p
+ ~Rn

p±f

= ¡ ~Rn
pS

³
~f
p
´
"+ ~Rn

p±f

Bevis av d.l. for S (_"):

V. siden: _Rn
p ¡

·
~R

n

p =
·
~R

n

p (I + S (")) + ~Rn
pS (_")¡

·
~R

n

p =
·
~R

n

pS (") + ~Rn
pS (_") = ~Rn

pS
¡
~!pnp

¢
S (") + ~Rn

pS (_")

H. siden: Rn
pS (!pnp)¡ ~Rn

pS
¡
~!p
np

¢
= ~Rn

p (I + S ("))
¡
S
¡
~!p
np

¢
+ S (±!)

¢
¡ ~Rn

pS
¡
~!pnp

¢
= ~Rn

pS (")S
¡
~!pnp

¢
+ ~Rn

pS (±!)

Satt sammen:
~Rn
pS

¡
~!p
np

¢
S (") + ~Rn

pS (_") = ~Rn
pS (")S

¡
~!p
np

¢
+ ~Rn

pS (±!)

S (_") = S (")S
¡
~!p
np

¢
¡ S

¡
~!p
np

¢
S (") + S (±!)

Sδ =

24 0 ¡±z ±y
±z 0 ¡±x
¡±y ±x 0

35 ; Sω =

24 0 ¡!z !y

!z 0 ¡!x
¡!y !x 0

35 ; Sε =

24 0 ¡"z "y
"z 0 ¡"x
¡"y "x 0

35
SεSω ¡ SωSε + Sδ =

24 0 "y!x ¡ "x!y ¡ ±z "z!x ¡ "x!z + ±y
"x!y ¡ "y!x + ±z 0 "z!y ¡ "y!z ¡ ±x
"x!z ¡ "z!x ¡ ±y "y!z ¡ "z!y + ±x 0

35
D.l. for " skrevet ut:

_"x = "y~!z ¡ "z ~!y + ±~!x

_"y = "z ~!x ¡ "x~!z + ±~!y

_"z = "x~!y ¡ "y ~!x + ±~!z

Dette kan også skrives

_" = ¡S (~!) "+ ±!

4

SAMMENDRAG AV MODELLER OG LIKNINGER FOR KALMANFILTERET ANVENT PÅ ET ULINEÆRT SYSTEM
SUS Sann ulineær ẋ = f(x, u) +Gv x0 ∼ N (x̂0, P̂0), vk ∼ N(0, Q̃δ(t− τ)) E

{
x0w

T
k

}
= 0, E

{
x0v

T (t)
}

= 0

systemmodell zk = hk(xk) + wk wk ∼ N (0, Rδkl) E
{
v (t)wTk

}
= 0

FUD Ulineær det.
·
x̃ = f∗(x̃, u) x̃0 = T x̂0

filtermodell z̃k = h∗k(x̃k) T =
[
I 0

]
SLS Sann lineær δẋ = F (x̃, t) δx+Gv δx0 ∼ N (x̂0 − T T x̃0, P̂0), v ∼ N (0, Q̃δ(t− τ)) E

{
δx0.w

T
k

}
= 0, E

{
δx0.v

T (t)
}

= 0
feilmodell δzk = Hk(x̃) + wk wk ∼ N (0, Rδkl) E

{
v (t) .wTk

}
= 0

FLS Lineær δẋ∗ = F ∗ (x̃, t) +G∗v∗ δx∗0 ∼ N (x̂∗0, P̂
∗
0), v∗ ∼ N(0, Q̃∗δ(t− τ)) E

{
x∗0.w

∗T
k

}
= 0, E

{
x∗0.v

∗T (t)
}

= 0
filtermodel δzk = H∗(x̃) + w∗ w∗k ∼ N (0, R∗δkl) E

{
v∗ (t) .w∗Tk

}
= 0

Dimensjoner dimx = dim δx = nx ≥ dim x̃ = dim δx∗ = nx∗

Filter: TKF-Tilbakekoblet Kalmanfilter LKF-Linearisert Kalmanfilter UKF-Utvidet Kalmanfilter
IV Initialv. t = t̂+0 x̃

(
t̂+0
)

= x̃0, δx̄0 = 0, P̄0 : gitt x̃(t̂+0) = x̃0, δx̄0 = 0, P̄0 : gitt x̄0 = x̃(t̂+0) = x̃0, P̄0 : gitt
MO Måle- δzk = zk − z̃k δzk = zk − z̃k

oppdatering δx̂k = δx̄k +K∗
k(δzk −H∗

kδx̄k) δx̂k = δx̄k +K∗
k(δzk −H∗

kδx̄k) x̂k = x̄k +K∗
k(zk − h∗k (x̄k))

x̂k = x̃k + δx̂k
K∗
k = P̄kH

∗T
k (HkP̄kH

∗T
k +R∗k)

−1 P̂k = (I −K∗
kH

∗
k)P̄k

TK Tilbakekobl. x̂+k = x̃k + S∗δx̂k
ved t = t̂+k δx̂+k = (I − S∗) δx̂k

P̂+k = P̂k

TO Tids-
·
x̃ = f∗(x̃, u), x̃(t̂+k) = x̂+k , t ∈

[
t̂+k , t̄k+1

] .
x̃ = f∗(x̃, u), x̃(t̂k) = x̃ (t̄k) , t ∈

[
t̂k, t̄k+1

] .
x̄ = f∗(x̄, u), x̄(t̂k) = x̂k, t ∈

[
t̂k, t̄k+1

]
oppdatering δ

·
x̄(t) = F ∗(t) · δx̄(t); δx̄(t̂+k) = δx̂+k δ

·
x̄(t) = F ∗(t) · δx̄(t); δx̄(t̂k) = δx̂k

x̄(t) = x̃(t) + δx̄(t) x̄(t) = x̃(t) + δx̄(t)
·
P̄ (t) = F ∗(t)P̄ (t) + P̄ (t)F ∗T (t) + G∗(t) Q̃∗(t)G∗T (t); P̄

(
t̂k
)

= P̂k
LKF (S∗ = 0) og UKF (S∗ = I) er spesialtilfeller av TKF

2

 Ten Degrees of Freedom Inertial Sensor
 ADIS16407

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.

FEATURES
Triaxial digital gyroscope with digital range scaling

±75°/sec, ±150°/sec, ±300°/sec settings
Axis-to-axis alignment, <0.05°

Triaxial digital accelerometer, ±18 g minimum
Triaxial digital magnetometer, ±2.5 gauss minimum
Digital barometer, 10 mbar to 1200 mbar

Calibrated pressure range: 300 mbar to 1100 mbar
Autonomous operation and data collection

No external configuration commands required
210 ms start-up time, 4 ms sleep mode recovery time

Factory calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C

SPI-compatible serial interface
Embedded temperature sensor
Programmable operation and control

Automatic and manual bias correction controls
Bartlett window FIR length, number of taps
Digital I/O: data ready, alarm indicator, general-purpose
Alarms for condition monitoring
Sleep mode for power management
DAC output voltage
Enable external sample clock input up to 1.1 kHz
Single command self test

Single-supply operation: 4.75 V to 5.25 V
2000 g shock survivability
Operating temperature range: −40°C to +105°C

APPLICATIONS
Platform stabilization and control
Navigation
Robotics

GENERAL DESCRIPTION
The ADIS16407 iSensor® device is a complete inertial system
that includes a triaxial gyroscope, a triaxial accelerometer, a
triaxial magnetometer, and pressure sensors. Each sensor in
the ADIS16407 combines industry-leading iMEMS® technology
with signal conditioning that optimizes dynamic performance.
The factory calibration characterizes each sensor for sensitivity,
bias, alignment, and linear acceleration (gyro bias). As a result,
each sensor has its own dynamic compensation formulas that
provide accurate sensor measurements.

The ADIS16407 provides a simple, cost-effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at the
factory, greatly reducing system integration time. Tight orthogonal
alignment simplifies inertial frame alignment in navigation systems.
The SPI and register structure provide a simple interface for
data collection and configuration control.

The ADIS16407 has a compatible pinout for systems that currently
use ADIS1635x, ADIS1636x, and ADIS1640x IMU products.
The ADIS16407 is packaged in a module that is approximately
23 mm × 23 mm × 23 mm and has a standard connector interface.

FUNCTIONAL BLOCK DIAGRAM

CONTROLLLER

CLOCK

TRIAXIAL
GYRO

TRIAXIAL
ACCEL

POWER
MANAGEMENT

CS

SCLK

DIN

DOUT

GND

VDD

TEMP

VDD

DIO1 DIO2 DIO3 DIO4 RST

SPITRIAXIAL
MAGN

PRESSURE

SELF TEST I/O ALARMS

OUTPUT
DATA

REGISTERS

USER
CONTROL

REGISTERS

CALIBRATION
AND

FILTERS

ADIS16407

09
79

7-
00

1

Figure 1.

ADIS16407

Rev. B | Page 2 of 24

TABLE OF CONTENTS
Features .. 1

Applications... 1

General Description ... 1

Functional Block Diagram .. 1

Revision History ... 2

Specifications... 3

Timing Specifications .. 6

Absolute Maximum Ratings.. 7

ESD Caution.. 7

Pin Configuration and Function Descriptions............................. 8

Typical Performance Characteristics ... 9

Basic Operation... 10

Reading Sensor Data .. 10

Output Data Registers.. 11

Input ADC Channel... 13

Device Configuration .. 13

User Registers.. 14

System Functions.. 15

Global Commands ... 15

Power Management.. 15

Product Identification.. 15

Memory Management ... 15

Self Test Function ... 16

Status/Error Flags ... 16

Input/Output Configuration... 17

Data Ready Indicator ... 17

General-Purpose Input/Output.. 17

Auxiliary DAC .. 17

Digital Processing Configuration... 18

Sample Rate ... 18

Input Clock Configuration ... 18

Digital Filtering... 18

Dynamic Range .. 18

Calibration... 19

Gyroscopes .. 19

Accelerometers ... 20

Magnetometer Calibration.. 20

Flash Updates.. 21

Restoring Factory Calibration .. 21

Alarms.. 22

Static Alarm Use ... 22

Dynamic Alarm Use .. 22

Alarm Reporting .. 22

Applications Information .. 23

Installation/Handling... 23

Gyroscope Bias Optimization... 23

Interface Printed Circuit Board (PCB).................................... 23

Outline Dimensions ... 24

Ordering Guide .. 24

REVISION HISTORY
7/11—Rev. A to Rev. B
Change to Table 1, Barometer, Sensitivity Parameter.................. 4
Added Barometer Section; Changes to Table 40 16
Changes to Table 55, Table 56, Table 57 20
Changes to Table 58, Table 59, Table 60 21

6/11—Rev. 0 to Rev. A
Changes to Device Configuration Section and Figure 16......... 13
Changes to Figure 19.. 18
Changes to Figure 25 Caption... 24
Changes to Ordering Guide .. 24

4/11—Revision 0: Initial Version

 ADIS16407

Rev. B | Page 3 of 24

SPECIFICATIONS
TA = 25°C, VDD = 5 V, angular rate = 0°/sec, dynamic range = ±300°/sec ± 1 g, unless otherwise noted.

Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
GYROSCOPES

Dynamic Range ±300 ±350 °/sec
Initial Sensitivity Dynamic range = ±300°/sec 0.0495 0.05 0.0505 °/sec/LSB
 Dynamic range = ±150°/sec 0.025 °/sec/LSB
 Dynamic range = ±75°/sec 0.0125 °/sec/LSB
Sensitivity Temperature Coefficient −40°C ≤ TA ≤ +85°C ±40 ppm/°C
Misalignment Axis to axis ±0.05 Degrees
 Axis to frame (package) ±0.5 Degrees
Nonlinearity Best fit straight line ±0.1 % of FS
Initial Bias Error ±1 σ ±3 °/sec
In-Run Bias Stability 1 σ, SMPL_PRD = 0x0001 0.007 °/sec
Angular Random Walk 1 σ, SMPL_PRD = 0x0001 1.9 °/√hr
Bias Temperature Coefficient −40°C ≤ TA ≤ +85°C ±0.01 °/sec/°C
Linear Acceleration Effect on Bias Any axis, 1 σ (MSC_CTRL[7] = 1) 0.05 °/sec/g
Bias Voltage Sensitivity VDD = 4.75 V to 5.25 V ±0.3 °/sec/V
Output Noise ±300°/sec range, no filtering 0.8 °/sec rms
Rate Noise Density f = 25 Hz, ±300°/sec range, no filtering 0.044 °/sec/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 14.5 kHz

ACCELEROMETERS Each axis
Dynamic Range ±18 g
Initial Sensitivity 3.285 3.33 3.38 mg/LSB
Sensitivity Temperature Coefficient −40°C ≤ TA ≤ +85°C ±50 ppm/°C
Misalignment Axis to axis 0.2 Degrees
 Axis to frame (package) ±0.5 Degrees
Nonlinearity Best fit straight line 0.1 % of FS
Initial Bias Error ±1 σ ±50 mg
In-Run Bias Stability 1 σ, SMPL_PRD = 0x0001 0.2 mg
Velocity Random Walk 1 σ, SMPL_PRD = 0x0001 0.2 m/sec/√hr
Bias Temperature Coefficient −40°C ≤ TA ≤ +85°C ±0.3 mg/°C
Bias Voltage Sensitivity VDD = 4.75 V to 5.25 V 2.5 mg/V
Output Noise No filtering 9 mg rms
Noise Density No filtering 0.5 mg/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 5.5 kHz

MAGNETOMETER
Dynamic Range ±2.5 ±3.5 gauss
Initial Sensitivity 25°C 0.49 0.5 0.51 mgauss/LSB
Sensitivity Temperature Coefficient 25°C, 1 σ 600 ppm/°C
Misalignment Axis to axis 0.25 Degrees
 Axis to frame (package) 0.5 Degrees
Nonlinearity Best fit straight line 0.5 % of FS
Initial Bias Error 25°C, 0 gauss stimulus ±4 mgauss
Bias Temperature Coefficient −40°C ≤ TA ≤ +85°C 0.5 mgauss/°C
Output Noise 25°C, no filtering, rms 1.15 mgauss
Noise Density 25°C, no filtering, rms 0.06 mgauss/√Hz
Bandwidth −3 dB 1540 Hz

ADIS16407

Rev. B | Page 4 of 24

Parameter Test Conditions/Comments Min Typ Max Unit
BAROMETER

Pressure Range
Operating 300 1100 mbar
Extended1 10 1200 mbar

Sensitivity 0.3125 μbar/LSB
Total Error 25°C, 300 mbar to 1100 mbar 1.5 mbar
Relative Error2 −40°C to +85°C, 300 mbar to 1100 mbar 2.5 mbar
Linearity3 25°C, 300 mbar to 1100 mbar 0.1 % of FS
 −40°C to +85°C, 300 mbar to 1100 mbar 0.15 % of FS
Noise 0.027 mbar rms

TEMPERATURE SENSOR
Scale Factor 25°C, output = 0x0000 0.14 °C/LSB

ADC INPUT
Resolution 12 Bits
Integral Nonlinearity ±2 LSB
Differential Nonlinearity ±1 LSB
Offset Error ±4 LSB
Gain Error ±2 LSB
Input Range 0 3.3 V
Input Capacitance During acquisition 20 pF

DAC OUTPUT 5 kΩ/100 pF to GND
Resolution 12 Bits
Relative Accuracy 101 LSB ≤ input code ≤ 4095 LSB ±4 LSB
Differential Nonlinearity ±1 LSB
Offset Error ±5 mV
Gain Error ±0.5 %
Output Range 0 3.3 V
Output Impedance 2 Ω
Output Settling Time 10 μs

LOGIC INPUTS4
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
 CS signal to wake up from sleep mode 0.55 V

CS Wake-Up Pulse Width 20 μs

Logic 1 Input Current, IIH VIH = 3.3 V ±0.2 ±10 μA
Logic 0 Input Current, IIL VIL = 0 V

All Pins Except RST 40 60 μA

RST Pin 1 mA

Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS4

Output High Voltage, VOH ISOURCE = 1.6 mA 2.4 V
Output Low Voltage, VOL ISINK = 1.6 mA 0.4 V

FLASH MEMORY Endurance5 10,000 Cycles
Data Retention6 TJ = 85°C 20 Years

FUNCTIONAL TIMES7 Time until new data is available
Power-On Start-Up Time 220 ms
Reset Recovery Time 105 ms
Sleep Mode Recovery Time 7 ms
Flash Memory Update Time 75 ms
Flash Memory Test Time 30 ms
Automatic Self Test Time SMPL_PRD = 0x0001 52 ms

 ADIS16407

Rev. B | Page 5 of 24

Parameter Test Conditions/Comments Min Typ Max Unit
CONVERSION RATE SPS

xGYRO_OUT, xACCL_OUT, xMAGN_OUT SMPL_PRD = 0x0001 819.2 SPS
BAR_OUT, BARO_OUTL8 SMPL_PRD = 0x0001 51.2 SPS
Clock Accuracy ±3 %
Sync Input Clock9 0.8 1.1 kHz

POWER SUPPLY Operating voltage range, VDD 4.75 5.0 5.25 V
Power Supply Current 70 mA

 Sleep mode 1.4 mA

1 The extended pressure range is guaranteed by design.
2 The relative error assumes that the initial error, at +25°C, is corrected in the end application.
3 Linearity errors assume a full scale (FS) of 1000 mbar.
4 The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant.
5 Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C.
6 The data retention lifetime equivalent is at a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with junction

temperature.
7 These times do not include thermal settling and internal filter response times (330 Hz bandwidth), which may affect overall accuracy.
8 The BARO_OUT and BARO_OUTL registers sample at a rate that is 1/16th that of the other output registers.
9 The sync input clock functions below the specified minimum value, but at reduced performance levels.

ADIS16407

Rev. B | Page 6 of 24

TIMING SPECIFICATIONS
TA = 25°C, VDD = 5 V, unless otherwise noted.

Table 2.
 Normal Mode Burst Read
Parameter Description Min1 Typ Max Min1 Typ Max Unit
fSCLK Serial clock 0.01 2.0 0.01 1.0 MHz
tSTALL Stall period between data 9 1/fSCLK μs
tREADRATE Read rate 40 μs
tCS Chip select to SCLK edge 48.8 48.8 ns
tDAV DOUT valid after SCLK edge 100 100 ns
tDSU DIN setup time before SCLK rising edge 24.4 24.4 ns
tDHD DIN hold time after SCLK rising edge 48.8 48.8 ns
tSCLKR, tSCLKF SCLK rise/fall times, not shown in Timing Diagrams 5 12.5 5 12.5 ns
tDR, tDF DOUT rise/fall times, not shown in Timing Diagrams 5 12.5 5 12.5 ns
tSFS CS high after SCLK edge 5 5 ns

t1 Input sync positive pulse width 5 5 μs
tx Input sync low time 100 100 μs
t2 Input sync to data ready output 600 600 μs
t3 Input sync period 910 910 μs

1 Guaranteed by design and characterization, but not tested in production.

Timing Diagrams

CS

SCLK

DOUT

DIN

1 2 3 4 5 6 15 16

R/W A5A6 A4 A3 A2 D2

MSB DB14

D1 LSB

DB13 DB12 DB10DB11 DB2 LSBDB1

tCS tSFS

tDAV

tDHDtDSU
09

79
7-

00
2

Figure 2. SPI Timing and Sequence

CS

SCLK

tREADRATE

tSTALL

09
79

7-
00

3

Figure 3. Stall Time and Data Rate

t3

tX

t2

t1

SYNC
CLOCK (DIO4)

DATA
READY 07

57
0-

00
4

Figure 4. Input Clock Timing Diagram

 ADIS16407

Rev. B | Page 7 of 24

ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Acceleration

Any Axis, Unpowered 2000 g
Any Axis, Powered 2000 g

VDD to GND −0.3 V to +6.0 V
Digital Input Voltage to GND −0.3 V to +5.3 V
Digital Output Voltage to GND −0.3 V to +3.6 V
Analog Input to GND −0.3 V to +3.6 V
Temperature

Operating Range −40°C to +105°C
Storage Range −65°C to +125°C1, 2

Pressure 6 bar

1 Extended exposure to temperatures outside the specified temperature

range of −40°C to +105°C can adversely affect the accuracy of the factory
calibration. For best accuracy, store the parts within the specified operating
range of −40°C to +105°C.

2 Although the device is capable of withstanding short-term exposure to
150°C, long-term exposure threatens internal mechanical integrity.

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

Table 4. Package Characteristics
Package Type θJA θJC Device Weight
24-Lead Module
(ML-24-2)

39.8°C/W 14.2°C/W 16 grams

ESD CAUTION

ADIS16407

Rev. B | Page 8 of 24

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES
1. THIS VIEW REPRESENTS THE TOP VIEW OF THE MATING CONNECTOR.
2. WHEN CONNECTED, THE PINS ARE NOT VISIBLE.
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.
4. DNC = DO NOT CONNECT.

1

D
IO

3

SC
LK

D
IN

D
IO

1

D
IO

2

VD
D

G
N

D

G
N

D

D
N

C

D
N

C

A
U

X_
A

D
C

D
N

C

D
IO

4/
C

LK
IN

D
O

U
T

C
S

R
ST

VD
D

VD
D

G
N

D

D
N

C

D
N

C

A
U

X_
D

A
C

D
N

C

D
N

C
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ADIS16407
TOP VIEW

(Not to Scale)

09
79

7-
00

5

Figure 5. Pin Configuration

PIN 1

PIN 23

09
79

7-
00

6

Figure 6. Axial Orientation

Table 5. Pin Function Descriptions
Pin No. Mnemonic Type1 Description
1 DIO3 I/O Configurable Digital Input/Output.
2 DIO4/CLKIN I/O Configurable Digital Input/Output or Sync Clock Input.
3 SCLK I SPI Serial Clock.
4 DOUT O SPI Data Output. Clocks the output on the SCLK falling edge.
5 DIN I SPI Data Input. Clocks the input on the SCLK rising edge.
6 CS I SPI Chip Select.

7 DIO1 I/O Configurable Digital Input/Output.
8 RST I Reset.

9 DIO2 I/O Configurable Digital Input/Output.
10, 11, 12 VDD S Power Supply.
13, 14, 15 GND S Power Ground.
16, 17, 18, 19, 22, 23, 24 DNC N/A Do Not Connect. Do not connect to these pins.
20 AUX_DAC O Auxiliary, 12-Bit DAC Output.
21 AUX_ADC I Auxiliary, 12-Bit ADC Input.

1 S is supply, O is output, I is input, N/A is not applicable.

 ADIS16407

Rev. B | Page 9 of 24

TYPICAL PERFORMANCE CHARACTERISTICS

0.001

0.01

0.1

0.1 1 10 100 1k 10k
Tau (sec)

R
O

O
T

AL
LA

N
VA

R
IA

N
C

E
(°

/s
ec

)

–1σ

MEAN

+1σ

09
79

7-
00

7

Figure 7. Gyroscope Root Allan Variance

0.0001

0.001

0.01

0.1 1 10 100 1k 10k
Tau (sec)

R
O

O
T

AL
LA

N
VA

R
IA

N
C

E
(g

)

–1σ

MEAN

+1σ

09
79

7-
00

8

Figure 8. Accelerometer Root Allan Variance

ADIS16407

Rev. B | Page 10 of 24

BASIC OPERATION
The ADIS16407 is an autonomous system that requires no user
initialization. When it has a valid power supply, it initializes itself
and starts sampling, processing, and loading sensor data into
the output registers at a sample rate of 819.2 SPS. DIO1 pulses
high after each sample cycle concludes. The SPI interface enables
simple integration with many embedded processor platforms,
as shown in Figure 9 (electrical connection) and Table 6 (pin
functions).

SYSTEM
PROCESSOR
SPI MASTER

ADIS16407

SCLK

CS

DIN

DOUT

SCLK

SS

MOSI

MISO

5V

IRQ DIO1

VDD
I/O LINES ARE COMPATIBLE WITH

3.3V OR 5V LOGIC LEVELS

10

6

3

5

4

7

11 12

13 14 15

09
79

7-
00

9

Figure 9. Electrical Connection Diagram

Table 6. Generic Master Processor Pin Names and Functions
Pin Name Function
SS Slave select

SCLK Serial clock
MOSI Master output, slave input
MISO Master input, slave output
IRQ Interrupt request

The ADIS16407 SPI interface supports full duplex serial commu-
nication (simultaneous transmit and receive) and uses the bit
sequence shown in Figure 13. Table 7 provides a list of the most
common settings that require attention to initialize the serial
port of a processor for the ADIS16407 SPI interface.

Table 7. Generic Master Processor SPI Settings
Processor Setting Description
Master The ADIS16407 operates as a slave
SCLK Rate ≤ 2 MHz1 Maximum serial clock rate
SPI Mode 3 CPOL = 1 (polarity), CPHA = 1 (phase)
MSB-First Mode Bit sequence
16-Bit Mode Shift register/data length

1 For burst read, SCLK rate ≤ 1 MHz.

READING SENSOR DATA
The ADIS16407 provides two different options for acquiring
sensor data: single register and burst register. A single register
read requires two 16-bit SPI cycles. The first cycle requests the
contents of a register using the bit assignments in Figure 13.
Bit DC7 to Bit DC0 are don’t care for a read, and then the output
register contents follow on DOUT during the second sequence.
Figure 10 includes three single register reads in succession. In
this example, the process starts with DIN = 0x0400 to request
the contents of XGYRO_OUT, then follows with 0x0600 to
request YGYRO_OUT and 0x0800 to request ZGYRO_OUT.
Full duplex operation enables processors to use the same 16-bit
SPI cycle to read data from DOUT while requesting the next set
of data on DIN. Figure 11 provides an example of the four SPI
signals when reading XGYRO_OUT in a repeating pattern.

XGYRO_OUT

DIN

DOUT YGYRO_OUT ZGYRO_OUT

0x0400 0x0600 0x0800

09
79

7-
01

0

Figure 10. SPI Read Example

DOUT = 1111 1001 1101 1010 = 0xF9DA = –1574 LSBs => –19.675°/sec

DIN = 0000 0100 0000 0000 = 0x0400

SCLK

CS

DIN

DOUT

09
79

7-
01

1

Figure 11. Example SPI Read, Second 16-Bit Sequence

Burst Read Function

The burst read function enables the user to read all output registers
using one command on the DIN line and shortens the stall time
between each 16-bit segment to one SCLK cycle (see Table 2).
Figure 12 provides the burst read sequence of data on each SPI
signal. The sequence starts with writing 0x3E00 to DIN, followed
by each output register clocking out on DOUT, in the order in
which they appear in Table 8.

0x3E00 DON’T CARE

1 2 3 15CS

SCLK

DIN

DOUT XGYRO_OUTSUPPLY_OUT AUX_ADC

09
79

7-
01

2

Figure 12. Burst Read Sequence

R/W R/WA6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0

D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15

CS

SCLK

DIN

DOUT

A6 A5

D13D14D15

NOTES
1. THE DOUT BIT PATTERN REFLECTS THE ENTIRE CONTENTS OF THE REGISTER IDENTIFIED BY [A6:A0]
 IN THE PREVIOUS 16-BIT DIN SEQUENCE WHEN R/W = 0.
2. IF R/W = 1 DURING THE PREVIOUS SEQUENCE, DOUT IS NOT DEFINED. 09

79
7-

01
3

Figure 13. SPI Communication Bit Sequence

 ADIS16407

Rev. B | Page 11 of 24

OUTPUT DATA REGISTERS
The output registers in Table 8 provide the most recent sensor
data produced by the ADIS16407. Each output register has flags
for new data indication and error/alarm conditions, which
reduces the need to monitor DIAG_STAT.

Table 8. Output Data Register Formats
Register Address Measurement
SUPPLY_OUT 0x02 Power supply
XGYRO_OUT 0x04 Gyroscope, x-axis
YGYRO_OUT 0x06 Gyroscope, y-axis
ZGYRO_OUT 0x08 Gyroscope, z-axis
XACCL_OUT 0x0A Accelerometer, x-axis
YACCL_OUT 0x0C Accelerometer, y-axis
ZACCL_OUT 0x0E Accelerometer, z-axis
XMAGN_OUT 0x10 Magnetometer, x-axis
YMAGN_OUT 0x12 Magnetometer, y-axis
ZMAGN_OUT 0x14 Magnetometer, z-axis
BARO_OUT 0x16 Barometer/pressure, higher
BARO_OUTL 0x18 Barometer/pressure, lower
TEMP_OUT1 0x1A Internal temperature
AUX_ADC 0x1C Auxiliary ADC

1 This is most useful for monitoring relative changes in the temperature.

Y-AXIS aY

gY gX

X-AXIS

aX

Z-AXIS

aZ

gZ

mX

mY

mZ

09
79

7-
01

4

Figure 14. Inertial Sensor Direction Reference

Gyroscopes

Figure 14 provides arrows (gX, gY, gZ) that indicate the direction
of rotation, which produces a positive response in the gyroscope
output registers: XGYRO_OUT (x-axis, Table 9), YGYRO_OUT
(y-axis, Table 10), and ZGYRO_OUT (z-axis, Table 11). Table 12
illustrates the gyroscope data format.

Table 9. XGYRO_OUT (Base Address = 0x04), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] X-axis gyroscope data, twos complement format,

0.05°/sec per LSB, when SENS_AVG[15:8] = 0x04

Table 10. YGYRO_OUT (Base Address = 0x06), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Y-axis gyroscope data, twos complement format,

0.05°/sec per LSB, when SENS_AVG[15:8] = 0x04

Table 11. ZGYRO_OUT (Base Address = 0x08), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Z-axis gyroscope data, twos complement format,

0.05°/sec per LSB, when SENS_AVG[15:8] = 0x04

Table 12. Rotation Rate, Twos Complement Format
Rotation Rate Decimal Hex Binary
+300°/sec +6000 0x1770 xx01 0111 0111 0000
+0.1°/sec +2 0x0002 xx00 0000 0000 0010
+0.05°/sec +1 0x0001 xx00 0000 0000 0001
0°/sec 0 0x0000 xx00 0000 0000 0000
−0.05°/sec −1 0x3FFF xx11 1111 1111 1111
−0.1°/sec −2 0x3FFE xx11 1111 1111 1110
−300°/sec −6000 0x2890 xx10 1000 1001 0000

Accelerometers

Figure 14 provides arrows (aX, aY, aZ) that indicate the direction
of acceleration, which produces a positive response in the
gyroscope output registers: XACCL_OUT (x-axis, Table 13),
YACCL_OUT (y-axis, Table 14), and ZACCL_OUT (z-axis,
Table 15). Table 16 illustrates the accelerometer data format.

Table 13. XACCL_OUT (Base Address = 0x0A), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] X-axis acceleration data, twos complement format,

0.25 mg per LSB

Table 14. YACCL_OUT (Base Address = 0x0C), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Y-axis acceleration data, twos complement format,

0.25 mg per LSB

Table 15. ZACCL_OUT (Base Address = 0x0E), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Z-axis acceleration data, twos complement format,

0.25 mg per LSB

ADIS16407

Rev. B | Page 12 of 24

Table 16. Acceleration, Twos Complement Format
Acceleration Decimal Hex Binary
+18 g +5401 0x1519 xx01 0101 0001 1001
+6.667 mg +2 0x0002 xx00 0000 0000 0010
+3.333 mg +1 0x0001 xx00 0000 0000 0001
0 g 0 0x0000 xx00 0000 0000 0000
−3.333 mg −1 0x3FFF xx11 1111 1111 1111
−6.667 mg −2 0x3FFE xx11 1111 1111 1110
−18 g −5401 0x2AE7 xx10 1010 1110 0111

Magnetometers

Figure 14 provides arrows (mX, mY, mZ) that indicate the direction
of the magnetic field, which produces a positive response in the
gyroscope output registers: XMAGN_OUT (x-axis, Table 17),
YMAGN_OUT (y-axis, Table 18), and ZAMAGN_OUT (z-axis,
Table 19). Table 20 illustrates the magnetic field intensity data
format.

Table 17. XMAGN_OUT (Base Address = 0x10), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] X-axis magnetic field intensity data, twos complement

format, 0.5 mgauss per LSB

Table 18. YMAGN_OUT (Base Address = 0x12), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Y-axis magnetic field intensity data, twos complement

format, 0.5 mgauss per LSB

Table 19. ZMAGN_OUT (Base Address = 0x14), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Z-axis magnetic field intensity data, twos complement

format, 0.5 mgauss per LSB

Table 20. Magnetometer, Twos Complement Format
Magnetic Field Decimal Hex Binary
+2.5 gauss +5000 0x1388 xx01 0011 1000 1000
+0.001 gauss +2 0x0002 xx00 0000 0000 0010
+0.0005 gauss +1 0x0001 xx00 0000 0000 0001
0 gauss 0 0x0000 xx00 0000 0000 0000
−0.0005 gauss −1 0x3FFF xx11 1111 1111 1111
−0.0005 gauss −2 0x3FFE xx11 1111 1111 1110
−2.5 gauss −5000 0x2C78 xx10 1100 0111 1000

Barometric Pressure

The barometric pressure measurements are contained in two
registers, BARO_OUT (Table 21) and BARO_OUTL (Table 22)
registers. Table 23 provides several numerical format examples
for BARO_OUT, which is sufficient for most applications.

Use BAR_OUTL and the following steps to increase the
numerical resolution by 8-bits for best performance:

1. Read BAR_OUT and multiply by 256 (shift 8 bits)
2. Read BAR_OUTL and max off upper 8 bits
3. Add results together for a 24-bit result,

where 1 LSB = 0.0003125 and 0x00000 = 0 mbar

Table 21. BARO_OUT (Base Address = 0x16), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:0] Barometric pressure data, binary data format,

0.08 mbar per LSB, 0x0000 = 0 mbar

Table 22. BARO_OUTL (Base Address = 0x18), Read Only
Bits Description
[15:8] Not used
[7:0] Barometric pressure data, binary data format,

0.0003125 mbar per LSB, 0x0000 = 0 mbar

Table 23. Pressure, Binary, BARO_OUT Only
Pressure
(mbar) Decimal Hex Binary
1200 15,000 0x3A98 xx11 1010 1001 1000
1100 13,750 0x35B6 xx11 0101 1011 0110
1000 12,500 0x30D4 xx11 0000 1101 0100
0.16 2 0x0002 xx00 0000 0000 0010
0.08 1 0x0001 xx00 0000 0000 0001
0 0 0x0000 xx00 0000 0000 0000

Internal Temperature

The internal temperature measurement data loads into the
TEMP_OUT (Table 24) register. Table 25 illustrates the
temperature data format.

Table 24. TEMP_OUT (Base Address = 0x1A), Read Only
Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:12] Not used
[11:0] Internal temperature data, twos complement,

0.136°C/LSB, 25°C = 0x000

Table 25. Temperature, Twos Complement Format
Temperature Decimal Hex Binary
+105°C +588 LSB 0x24C xxxx 0010 0100 1100
+85°C +441 LSB 0x1B9 xxxx 0001 1011 1001
+25.272°C +2 LSB 0x002 xxxx 0000 0000 0010
+25.136°C +1 LSB 0x001 xxxx 0000 0000 0001
+25°C 0 LSB 0x000 xxxx 0000 0000 0000
+24.864°C −1 LSB 0xFFF xxxx 1111 1111 1111
+24.728°C −2 LSB 0xFFE xxxx 1111 1111 1110
−40°C −478 LSB 0xE22 xxxx 1110 0010 0010

 ADIS16407

Rev. B | Page 13 of 24

Power Supply Table 29. Analog Input, Offset Binary Format
Input Voltage Decimal Hex Binary
3.3 V 4095

The SUPPLY_OUT register (Table 26) provides a measurement
of the voltage that is on the VDD pins of the device. Table 27
illustrates the power supply data format.

Table 26. SUPPLY_OUT (Base Address = 0x02), Read Only

0xFFF xxxx 1111 1111 1111
1 V 1241 0x4D9 xxxx 0100 1101 1001
1.6118 mV 2 0x002 xxxx 0000 0000 0010
805.9 μV 1 0x001 xxxx 0000 0000 0001
0 V 0 Bits Description 0x000 xxxx 0000 0000 0000

[15] New data indicator (ND), 1 = new data in register DEVICE CONFIGURATION
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags

The control registers in Table 30 provide users with a variety of
configuration options. The SPI provides access to these registers,
one byte at a time, using the bit assignments in Figure 13. Each
register has 16 bits, where Bits[7:0] represent the lower address,
and Bits[15:8] represent the upper address. Figure 16 provides
an example of writing 0x03 to Address 0x3B (SMPL_PRD[15:8]),
using DIN = 0xBB03. This example reduces the sample rate by a
factor of eight (see Table 46).

[13:12] Not used
[11:0] Power supply measurement data, binary format,

2.418 mV/LSB, 0 V = 0x000

Table 27. Power Supply Data, Binary Format
Voltage Decimal Hex Binary
+5.25 V 2171 0x87B xxxx 1000 0111 1011
+5.0 V 2068 0x814 xxxx 1000 0001 0100
+4.75 V 1964 0x7AC xxxx 0111 1010 1100
1 V 414

SCLK

CS

DIN

DIN = 1011 1011 0000 0011 = 0xBB03, WRITES 0x03 TO ADDRESS 0x3B. 09
79

7-
01

6

0x19E xxxx 0001 1001 1110
4.836 mV 2 0x002 xxxx 0000 0000 0010
2.418 mV 1 0x001 xxxx 0000 0000 0001
0 V 0 0x000 xxxx 0000 0000 0000

INPUT ADC CHANNEL Figure 16. Example SPI Write Sequence

Dual Memory Structure The AUX_ADC register provides access to the auxiliary ADC
input channel. The ADC is a 12-bit successive approximation
converter that has an input circuit equivalent to the one shown
in Figure 15. The maximum input is 3.3 V. The ESD protection
diodes can handle 10 mA without causing irreversible damage.
The on resistance (R1) of the switch has a typical value of 100 Ω.
The sampling capacitor, C2, has a typical value of 16 pF.

Writing configuration data to a control register updates its SRAM
contents, which are volatile. After optimizing each relevant control
register setting in a system, set GLOB_CMD[3] = 1 (DIN =
0xBE08) to backup these settings in nonvolatile flash memory.
The flash backup process requires a valid power supply level for
the entire 75 ms process time. Table 30 provides a user register
memory map that includes a flash backup column. A “yes” in this
column indicates that a register has a mirror location in flash and,
when backed up properly, it automatically restores itself during
startup or after a reset. Figure 17 provides a diagram of the dual
memory structure used to manage operation and store critical user
settings.

C2

C1

R1

VCC

D

D

09
79

7-
01

5

Figure 15. Equivalent Analog Input Circuit

(Conversion Phase: Switch Open,
Track Phase: Switch Closed)

Table 28. AUX_ADC (Base Address = 0x1C), Read Only
NONVOLATILE

FLASH MEMORY

(NO SPI ACCESS)

MANUAL
FLASH

BACKUP

START-UP
RESET

VOLATILE
SRAM

SPI ACCESS

09
79

7-
01

7

Bits Description
[15] New data indicator (ND), 1 = new data in register
[14] Error/alarm, 1 = active, see DIAG_STAT for error flags
[13:12] Not used
[11:0] Analog input channel data, binary format,

0.8059 mV/LSB, 0 V = 0x000 Figure 17. SRAM and Flash Memory Diagram

ADIS16407

Rev. B | Page 14 of 24

USER REGISTERS
Table 30. User Register Memory Map1
Name R/W Flash Backup Address2 Default Function Bit Assignments
FLASH_CNT R Yes 0x00 N/A Flash memory write count See Table 38
SUPPLY_OUT R No 0x02 N/A Power supply measurement See Table 26
XGYRO_OUT R No 0x04 N/A X-axis gyroscope output See Table 9
YGYRO_OUT R No 0x06 N/A Y-axis gyroscope output See Table 10
ZGYRO_OUT R No 0x08 N/A Z-axis gyroscope output See Table 11
XACCL_OUT R No 0x0A N/A X-axis accelerometer output See Table 13
YACCL_OUT R No 0x0C N/A Y-axis accelerometer output See Table 14
ZACCL_OUT R No 0x0E N/A Z-axis accelerometer output See Table 15
XMAGN_OUT R No 0x10 N/A X-axis magnetometer measurement See Table 17
YMAGN_OUT R No 0x12 N/A Y-axis magnetometer measurement See Table 18
ZMAGN_OUT R No 0x14 N/A Z-axis magnetometer measurement See Table 19
BARO_OUT R No 0x16 N/A Barometer pressure measurement, high word See Table 21
BARO_OUTL R No 0x18 N/A Barometer pressure measurement, low word See Table 22
TEMP_OUT R No 0x1A N/A Temperature output See Table 24
AUX_ADC R No 0x1C N/A Auxiliary ADC measurement See Table 28
XGYRO_OFF R/W Yes 0x1E 0x0000 X-axis gyroscope bias offset factor See Table 49
YGYRO_OFF R/W Yes 0x20 0x0000 Y-axis gyroscope bias offset factor See Table 50
ZGYRO_OFF R/W Yes 0x22 0x0000 Z-axis gyroscope bias offset factor See Table 51
XACCL_OFF R/W Yes 0x24 0x0000 X-axis acceleration bias offset factor See Table 52
YACCL_OFF R/W Yes 0x26 0x0000 Y-axis acceleration bias offset factor See Table 53
ZACCL_OFF R/W Yes 0x28 0x0000 Z-axis acceleration bias offset factor See Table 54
XMAGN_HIC R/W Yes 0x2A 0x0000 X-axis magnetometer, hard iron factor See Table 55
YMAGN_HIC R/W Yes 0x2C 0x0000 Y-axis magnetometer, hard iron factor See Table 56
ZMAGN_HIC R/W Yes 0x2E 0x0000 Z-axis magnetometer, hard iron factor See Table 57
XMAGN_SIC R/W Yes 0x30 0x0800 X-axis magnetometer, soft iron factor See Table 58
YMAGN_SIC R/W Yes 0x32 0x0800 Y-axis magnetometer, soft iron factor See Table 59
ZMAGN_SIC R/W Yes 0x34 0x0800 Z-axis magnetometer, soft iron factor See Table 60
GPIO_CTRL R/W No 0x36 0x0000 Auxiliary digital input/output control See Table 42
MSC_CTRL R/W Yes 0x38 0x0006 Miscellaneous control See Table 39
SMPL_PRD R/W Yes 0x3A 0x0001 Internal sample period (rate) control See Table 46
SENS_AVG R/W Yes 0x3C 0x0402 Dynamic range and digital filter control See Table 47
SLP_CTRL W No 0x3E N/A Sleep mode control See Table 33
DIAG_STAT R No 0x40 0x0000 System status See Table 40
GLOB_CMD W N/A 0x42 0x0000 System command See Table 32
ALM_MAG1 R/W Yes 0x44 0x0000 Alarm 1 amplitude threshold See Table 62
ALM_MAG2 R/W Yes 0x46 0x0000 Alarm 2 amplitude threshold See Table 63
ALM_SMPL1 R/W Yes 0x48 0x0000 Alarm 1 sample size See Table 64
ALM_SMPL2 R/W Yes 0x4A 0x0000 Alarm 2 sample size See Table 65
ALM_CTRL R/W Yes 0x4C 0x0000 Alarm control See Table 66
AUX_DAC R/W No 0x4E 0x0000 Auxiliary DAC data See Table 43
Reserved N/A N/A 0x50 N/A Reserved
LOT_ID1 R Yes 0x52 N/A Lot identification number See Table 34
LOT_ID2 R Yes 0x54 N/A Lot identification number See Table 35
PROD_ID R Yes 0x56 0x4107 Product identifier See Table 36
SERIAL_NUM R Yes 0x58 N/A See Table 37

1 N/A means not applicable.
2 Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte plus 1.

 ADIS16407

Rev. B | Page 15 of 24

SYSTEM FUNCTIONS
The ADIS16407 provides a number of system level controls for
managing its operation, using the registers in Table 31.

Table 31. System Tool Registers
Register Name Address Description
MSC_CTRL 0x38 Self test, calibration, data ready
SLP_CTRL 0x3E Sleep mode control
DIAG_STAT 0x40 Error flags
GLOB_CMD 0x42 Single command functions
LOT_ID1 0x52 Lot Identification Code 1
LOT_ID2 0x54 Lot Identification Code 2
PROD_ID 0x56 Product identifier
SERIAL_NUM 0x58 Serial number

GLOBAL COMMANDS
The GLOB_CMD register in Table 32 provides trigger bits for
software reset, flash memory management, DAC control, and
calibration control. Start each of these functions by writing a 1 to
the assigned bit in GLOB_CMD. After completing the task, the bit
automatically returns to 0. For example, set GLOB_CMD[7] = 1
(DIN = 0xC280) to initiate a software reset, which stops the sensor
operation and runs the device through its start-up sequence. Set
GLOB_CMD[3] = 1 (DIN = 0xC208) to back up the user register
contents in nonvolatile flash. This sequence includes loading
the control registers with the data in their respective flash
memory locations prior to producing new data.

Table 32. GLOB_CMD (Base Address = 0x42), Write Only
Bits Description (Default = 0x0000)
[15:8] Not used
[7] Software reset
[6:4] Not used
[3] Flash update
[2] Auxiliary DAC data latch
[1] Factory calibration restore
[0] Gyroscope bias correction

POWER MANAGEMENT
The SLP_CTRL register (see Table 33) provides two sleep
modes for system level management: normal and timed. Set
SLP_CTRL[8] = 1 (DIN = 0xBF01) to start normal sleep mode.
When the device is in sleep mode, the following events can cause
it to wake up: asserting CS from high to low, asserting RST from
high to low, or cycling the power. Use SLP_CTRL[7:0] to put the
device into sleep mode for a specified period. For example,
SLP_CNT[7:0] = 0x64 (DIN = 0xBE64) puts the ADIS16407 to
sleep for 50 seconds.

Table 33. SLP_CTRL (Base Address = 0x3E), Write Only
Bits Description
[15:9] Not used
[8] Normal sleep mode (1 = start sleep mode)
[7:0] Timed sleep mode (write 0x01 to 0xFF to start)

Sleep mode duration, binary, 0.5 sec/LSB

PRODUCT IDENTIFICATION
The PROD_ID register in Table 36 contains the binary equivalent
of 16,407. It provides a product specific variable for systems that
need to track this in their system software. The LOT_ID1 and
LOT_ID2 registers in Table 34 and Table 35 combine to provide a
unique, 32-bit lot identification code. The SERIAL_NUM
register in Table 37 contains a binary number that represents
the serial number on the device label. The assigned serial
numbers in SERIAL_NUM are lot specific.

Table 34. LOT_ID1 (Base Address = 0x52), Read Only
Bits Description
[15:0] Lot identification, binary code

Table 35. LOT_ID2 (Base Address = 0x54), Read Only
Bits Description
[15:0] Lot identification, binary code

Table 36. PROD_ID Bit (Base Address = 0x56), Read Only
Bits Description (Default = 0x4017)
[15:0] Product identification = 0x4017

Table 37. SERIAL_NUM (Base Address = 0x58), Read Only
Bits Description
[15:12] Reserved
[11:0] Serial number, 1 to 4094 (0xFFE)

MEMORY MANAGEMENT
The FLASH_CNT register in Table 38 provides a 16-bit counter
that helps track the number of write cycles to the nonvolatile flash
memory. The flash updates every time a manual flash update
occurs. A manual flash update is initiated by the GLOB_CMD[3]
bit and is also performed at the completion of the GLOB_CMD[1:0]
functions (see Table 32).

Table 38. FLASH_CNT (Base Address = 0x00), Read Only
Bits Description
[15:0] Binary counter

Checksum Test

Set MSC_CTRL[11] = 1 (DIN = 0xB908) to perform a check-
sum test of the internal program memory. This function takes a
summation of the internal program memory and compares it with
the original summation value for the same locations (from factory
configuration). Check the results in the DIAG_STAT register, which
is in Table 40. DIAG_STAT[6] equals 0 if the sum matches the
correct value, and 1 if it does not. Make sure that the power
supply is within specification for the entire 20 ms that this
function takes to complete.

ADIS16407

Rev. B | Page 16 of 24

SELF TEST FUNCTION
Gyroscopes/Accelerometers

The MSC_CTRL register in Table 39 provides a self test function
for the gyroscopes and accelerometers. This function allows the
user to verify the mechanical integrity of each MEMS sensor.
When enabled, the self test applies an electrostatic force to each
internal sensor element, which causes them to move. The move-
ment in each element simulates its response to actual rotation/
acceleration and generates a predictable electrical response in the
sensor outputs. The ADIS16407 exercises this function and compares
the response to an expected range of responses and reports a pass/fail
response to DIAG_STAT[5]. If this is high, the DIAG_STAT[15:10]
provide pass/fail flags for each inertial sensor.

Table 39. MSC_CTRL (Base Address = 0x38), Read/Write
Bits Description (Default = 0x0006)
[15:12] Not used
[11] Checksum memory test (cleared upon completion)1
 1 = enabled, 0 = disabled
[10] Internal self test (cleared upon completion)1
 1 = enabled, 0 = disabled
[9:8] Do not use, always set to 00
[7] Linear acceleration bias compensation for gyroscopes
 1 = enabled, 0 = disabled
[6] Point of percussion, see Figure 6
 1 = enabled, 0 = disabled
[5:3] Not used
[2] Data ready enable
 1 = enabled, 0 = disabled
[1] Data ready polarity
 1 = active high, 0 = active low
[0] Data ready line select
 1 = DIO2, 0 = DIO1

1 The bit is automatically reset to 0 after finishing the test.

Barometer

The barometer self test function is part of the power-on and
reset initialization processes. DIAG_STAT[7] (see Table 40)
contains the result of this test after the device completes normal
operation. If DIAG_STAT[7] = 1, initiate a software reset by
setting GLOB_CMD[7] = 1 (DIN = 0xC280). If DIAG_STAT[7]
= 0 after the reset process completes, then the barometer is
functional. A persistent fail result in DIAG_STAT[7] indicates a
potential problem with the barometer.

STATUS/ERROR FLAGS
The DIAG_STAT register in Table 40 provides error flags for
a number of functions. Each flag uses 1 to indicate an error con-
dition and 0 to indicate a normal condition. Reading this register
provides access to the status of each flag and resets all of the bits
to 0 for monitoring future operation. If the error condition remains,
the error flag returns to 1 at the conclusion of the next sample
cycle. DIAG_STAT[0] does not require a read of this register to
return to 0. If the power supply voltage goes back into range, this
flag clears automatically. The SPI communication error flag in
DIAG_STAT[3] indicates that the number of SCLKs in a SPI
sequence did not equal a multiple of 16 SCLKs.

Table 40. DIAG_STAT (Base Address = 0x40), Read Only
Bits Description (Default = 0x0000)
[15] Z-axis accelerometer self test result
 1 = fail, 0 = pass
[14] Y-axis accelerometer self test result
 1 = fail, 0 = pass
[13] X-axis accelerometer self test result
 1 = fail, 0 = pass
[12] Z-axis gyroscope self test result
 0 = pass
[11] Y-axis gyroscope self test result
 1 = fail, 0 = pass
[10] X-axis gyroscope self test result
 1 = fail, 0 = pass
[9] Alarm 2 status
 1 = active, 0 = inactive
[8] Alarm 1 status
 1 = active, 0 = inactive
[7] Barometer self test

1 = fail (issue with sensor function), 0 = pass (no issue)
[6] Flash test (checksum) result
 1 = fail, 0 = pass
[5] Self test diagnostic result
 1 = fail, 0 = pass
[4] Sensor overrange condition
 1 = overrange, 0 = normal
[3] SPI communication
 1 = fail (number of SCLKs not equal to a multiple of 16)

0 = pass (number of SCLKs is equal to a multiple of 16)
[2] Flash update verification
 1 = fail (flash update was not successful)

0 = pass (flash update was successful)
[1] Power supply high
 1 = VDD > 5.25 V
 0 = VDD ≤ 5.25 V
[0] Power supply low
 1 = VDD < 4.75 V
 0 = VDD ≥ 4.75 V

 ADIS16407

Rev. B | Page 17 of 24

INPUT/OUTPUT CONFIGURATION
Table 41 provides a summary of registers that provide input/output
configuration and control.

Table 41. Input/Output Registers
Register Name Address Description
GPIO_CTRL 0x36 General-purpose I/O control
MSC_CTRL 0x38 Self test, calibration, data ready
AUX_DAC 0x4E Output voltage control, AUX_DAC

DATA READY INDICATOR
The factory default setting of MSC_CTRL[2:0] = 110 establishes
DIO1 as a positive polarity data ready signal. See Table 39 for
additional data ready configuration options. For example, set
MSC_CTRL[2:0] = 100 (DIN = 0xB804) to change the polarity of
the data ready signal on DIO1 for interrupt inputs that require
negative logic inputs for activation. The pulse width is typically
between 60 μs and 150 μs, including jitter (±30 μs).

GENERAL-PURPOSE INPUT/OUTPUT
DIO1, DIO2, DIO3, and DIO4 are configurable, general-purpose
input/output lines that serve multiple purposes. The data ready
controls in MSC_CTRL[2:0] have the highest priority for
configuring DIO1 and DIO2. The alarm indicator controls in
ALM_CTRL[2:0] have the second highest priority for configuring
DIO1 and DIO2. The external clock control associated with
SMPL_PRD[0] has the highest priority for DIO4 configuration
(see Table 46). GPIO_CTRL in Table 42 has the lowest priority
for configuring DIO1, DIO2, and DIO4, and has absolute
control over DIO3.

Table 42. GPIO_CTRL (Base Address = 0x36), Read/Write
Bits Description (Default = 0x0000)
[15:12] Not used
[11] General-Purpose I/O Line 4 (DIO4) data level
[10] General-Purpose I/O Line 3 (DIO3) data level
[9] General-Purpose I/O Line 2 (DIO2) data level
[8] General-Purpose I/O Line 1 (DIO1) data level
[7:4] Not used
[3] General-Purpose I/O Line 4 (DIO4) direction control
 1 = output, 0 = input
[2] General-Purpose I/O Line 3 (DIO3) direction control
 1 = output, 0 = input
[1] General-Purpose I/O Line 2 (DIO2) direction control
 1 = output, 0 = input
[0] General-Purpose I/O Line 1 (DIO1) direction control
 1 = output, 0 = input

Example Input/Output Configuration

For example, set GPIO_CTRL[3:0] = 0100 (DIN = 0xB604)
to set DIO3 as an output signal pin and DIO1, DIO2, and
DIO4 as input signal pins. Set the output on DIO3 to 1 by
setting GPIO_CTRL[10] = 1 (DIN = 0xB704). Then, read
GPIO_CTRL[7:0] (DIN = 0x3600) and mask off GPIO_CTRL[9:8]
and GPIO_CTRL[11] to monitor the digital signal levels on
DIO4, DIO2, and DIO1.

AUXILIARY DAC
The AUX_DAC register in Table 43 provides user controls for
setting the output voltage on the AUX_DAC pin. The 12-bit
AUX_DAC line can drive its output to within 5 mV of the ground
reference when it is not sinking current. As the output approaches
0 V, the linearity begins to degrade (~100 LSB starting point). As
the sink current increases, the nonlinear range increases. The
DAC latch command in GLOB_CMD[2] (see Table 32) moves
the values of the AUX_DAC register into the DAC input register,
enabling both bytes to take effect at the same time. This prevents
undesirable output levels, which reflect single byte changes of
the AUX_DAC register.

Table 43. AUX_DAC (Base Address = 0x4E), Read/Write
Bits Description (Default = 0x0000)
[15:12] Not used
[11:0] Data bits, scale factor = 0.8059 mV/LSB, offset binary

format, 0 V = 0 LSB

Table 44. Setting AUX_DAC = 1 V
DIN Description
0xCED9 AUX_DAC[7:0] = 0xD9 (217 LSB)
0xCF04 AUX_DAC[15:8] = 0x04 (1024 LSB)
0xC204 GLOB_CMD[2] = 1; move values into the DAC input

register, resulting in a 1 V output level

ADIS16407

Rev. B | Page 18 of 24

DIGITAL PROCESSING CONFIGURATION
Table 45. Digital Processing Registers
Register Name Address Description
SMPL_PRD 0x3A Sample rate control
SENS_AVG 0x3C Digital filtering and range control

SAMPLE RATE
The internal sampling system produces new data in the output
data registers at a rate of 819.2 SPS. The SMPL_PRD register in
Table 46 provides two functional controls that affect sampling
and register update rates. SMPL_PRD[12:8] provides a control
for reducing the update rate, using an averaging filter with a deci-
mated output. These bits provide a binomial control that divides
the data rate by a factor of 2 every time this number increases
by 1. For example, set SMPL_PRD[15:8] = 0x04 (DIN = 0xBB04)
to set the decimation factor to 16. This reduces the update rate
to 51 SPS and the bandwidth to 25 Hz.

Table 46. SMPL_PRD (Base Address = 0x3A), Read/Write
Bits Description (Default = 0x0001)
[15:13] Not used
[12:8] D, decimation rate setting, binomial, see Figure 19
[7:1] Not used
[0] Clock
 1 = internal 819.2 SPS
 0 = external

INPUT CLOCK CONFIGURATION
SMPL_PRD[0] provides a control for synchronizing the internal
sampling to an external clock source. Set SMPL_PRD[0] = 0
(DIN = 0xBA00) and GPIO_CTRL[3] = 0 (DIN = 0xB600) to
enable the external clock. See Table 2 and Figure 4 for timing
information.

DIGITAL FILTERING
The SENS_AVG register in Table 47 provides user controls for
the low-pass filter. This filter contains two cascaded averaging
filters that provide a Bartlett window, FIR filter response (see
Figure 19). For example, set SENS_AVG[2:0] = 100 (DIN = 0xBC04)
to set each stage to 16 taps. When used with the default sample
rate of 819.2 SPS and zero decimation (SMPL_PRD[15:8] = 0x00),
this value reduces the sensor bandwidth to approximately 16 Hz.

0

–20

–40

–60

–80

–100

–120

–140
0.001 0.01 0.1 1

M
A

G
N

IT
U

D
E

(d
B

)

FREQUENCY (f/fS)

N = 2
N = 4
N = 16
N = 64

09
79

7-
01

8

Figure 18. Bartlett Window, FIR Filter Frequency Response

(Phase Delay = N Samples)

DYNAMIC RANGE
The SENS_AVG[10:8] bits provide three dynamic range settings
for this gyroscope. The lower dynamic range settings (±75°/sec
and ±150°/sec) limit the minimum filter tap sizes to maintain
resolution. For example, set SENS_AVG[10:8] = 010 (DIN =
0xBD02) for a measurement range of ±150°/sec. Because this
setting can influence the filter settings, program SENS_AVG[10:8]
before programming SENS_AVG[2:0] if more filtering is required.

Table 47. SENS_AVG (Base Address = 0x3C), Read/Write
Bits Description (Default = 0x0402)
[15:11] Not used
[10:8] Measurement range (sensitivity) selection
 100 = ±300°/sec (default condition)
 010 = ±150°/sec, filter taps ≥ 4 (Bits[2:0] ≥ 0x02)
 001 = ±75°/sec, filter taps ≥ 16 (Bits[2:0] ≥ 0x04)
[7:3] Not used
[2:0] Filter Size Variable B
 Number of taps in each stage; NB = 2B
 See Figure 18 for filter response

MEMS
SENSOR

LOW-PASS
FILTER
330Hz

CLOCK
819.2SPS

ADC

BARTLETT WINDOW
FIR FILTER

AVERAGE/
DECIMATION

FILTER

EXTERNAL CLOCK ENABLED
BY SMPL_PRD[0] = 0

GYROSCOPES
LOW-PASS, TWO-POLE (404Hz, 757Hz)

ACCELEROMETERS
LOW-PASS, SINGLE-POLE (330Hz)

B = SENS_AVG[2:0]
NB = 2B
NB = NUMBER OF TAPS
 (PER STAGE)

D = SMPL_PRD[12:8]
ND = 2D
ND = NUMBER OF TAPS

÷ND

x(n)
n = 1

1
NB

NB
x(n)

n = 1

1
NB

NB
x(n)

n = 1

1
ND

ND

09
79

7-
01

9

Figure 19. Sampling and Frequency Response Block Diagram

 ADIS16407

Rev. B | Page 19 of 24

CALIBRATION
The mechanical structure and assembly process of the ADIS16407
provide excellent position and alignment stability for each sensor,
even after subjected to temperature cycles, shock, vibration, and
other environmental conditions. The factory calibration includes a
dynamic characterization of each gyroscope and accelerometer over
temperature and generates sensor specific correction formulas.
Table 48 provides a list of registers that can help optimize system
performance after installation. Figure 20 illustrates the summing
function for the offset correction register of each sensor.

Table 48. Registers for User Calibration
Register Address Description
XGYRO_OFF 0x1E Gyroscope bias, x-axis
YGYRO_OFF 0x20 Gyroscope bias, y-axis
ZGYRO_OFF 0x22 Gyroscope bias, z-axis
XACCL_OFF 0x24 Accelerometer bias, x-axis
YACCL_OFF 0x26 Accelerometer bias, y-axis
ZACCL_OFF 0x28 Accelerometer bias, z-axis
XMAGN_HIC 0x2A Hard iron correction, x-axis
YMAGN_HIC 0x2C Hard iron correction, y-axis
ZMAGN_HIC 0x2E Hard iron correction, z-axis
XMAGN_SIC 0x30 Soft iron correction, x-axis
YMAGN_SIC 0x32 Soft iron correction, y-axis
ZMAGN_SIC 0x34 Soft iron correction, z-axis
MSC_CTRL 0x38 Miscellaneous calibration
GLOB_CMD 0x42 Automatic calibration

GYROSCOPES
The XGYRO_OFF (Table 49), YGYRO_ OFF (Table 50), and
ZGYRO_ OFF (Table 51) registers provide user-programmable
bias adjustment function for the x-, y-, and z-axis gyroscopes,
respectively. Figure 20 illustrates that they contain bias correction
factors that adjust to the sensor data immediately before it loads
into the output register.

XGYRO_OFF

X-AXIS
MEMS
GYRO

ADC
FACTORY

CALIBRATION
AND

FILTERING

XGYRO_OUT

09
79

7-
02

0

Figure 20. User Calibration, XGYRO_OFF Example

Gyroscope Bias Error Estimation

Any system level calibration function must start with an estimate
of the bias errors, which typically comes from a sample of gyro-
scope output data, when the device is not in motion. The sample
size of data depends on the accuracy goals. Figure 7 provides a
trade-off relationship between averaging time and the expected
accuracy of a bias measurement. Vibration, thermal gradients,
and power supply instability can influence the accuracy of this
process.

Table 49. XGYRO_OFF (Base Address = 0x1E), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] X-axis, gyroscope offset correction factor,

twos complement, 0.0125°/sec per LSB

Table 50. YGYRO_OFF (Base Address = 0x20), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] Y-axis, gyroscope offset correction factor,

twos complement, 0.0125°/sec per LSB

Table 51. ZGYRO_OFF (Base Address = 0x22), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] Z-axis, gyroscope offset correction factor,

twos complement, 0.0125°/sec per LSB

Gyroscope Bias Correction Factors

When the bias estimate is complete, multiply the estimate by −1
to change its polarity, convert it into digital format for the offset
correction registers (Table 49), and write the correction factors
to the correction registers. For example, lower the x-axis bias by
10 LSB (0.125°/sec) by setting XGYRO_OFF = 0x1FF6 (DIN =
0x9F1F, 0x9EF6).

Single Command Bias Correction

GLOB_CMD[0] (Table 32) loads the xGYRO_OFF registers
with the values that are the opposite of the values that are in
xGYRO_OUT, at the time of initiation. Use this command,
together with the decimation filter (SMPL_PRD[12:8], Table 46),
to automatically average the gyroscope data and improve the
accuracy of this function, as follows:

1. Set SENS_AVG[10:8] = 001 (DIN = 0xBD01) to optimize
the xGYRO_OUT sensitivity to 0.0125°/sec/LSB.

2. Set SMPL_PRD[12:8] = 0x10 (DIN = 0xBB10) to set the
decimation rate to 65,536 (216), which provides an averaging
time of 80 seconds (65,536 ÷ 819.2 SPS).

3. Wait for 80 seconds while keeping the device motionless.
4. Set GLOB_CMD[0] = 1 (DIN = 0xC201) and wait for the

time it takes to perform the flash memory backup (~75 ms).

ADIS16407

Rev. B | Page 20 of 24

ACCELEROMETERS
The XACCL_ OFF (Table 52), YACCL_ OFF (Table 53), and
ZACCL_ OFF (Table 54) registers provide user programmable
bias adjustment function for the x-, y-, and z-axis accelerometers,
respectively. These registers adjust the accelerometer data in the
same manner as XGYRO_OFF functions in Figure 20.

Table 52. XACCL_OFF (Base Address = 0x24), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] X-axis, accelerometer offset correction factor,

twos complement, 0.25 mg/LSB

Table 53. YACCL_OFF (Base Address = 0x26), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] Y-axis, accelerometer offset correction factor,

twos complement, 0.25 mg/LSB

Table 54. ZACCL_OFF (Base Address = 0x28), Read/Write
Bits Description (Default = 0x0000)
[15:14] Not used
[13:0] Z-axis, accelerometer offset correction factor,

twos complement, 0.25 mg/LSB

Accelerometer Bias Error Estimation

Under static conditions, orient each accelerometer in positions
where the response to gravity is predictable. A common approach
to this is to measure the response of each accelerometer when
they are oriented in peak response positions, that is, where ±1 g
is the ideal measurement position. Next, average the +1 g and
−1 g accelerometer measurements together to estimate the
residual bias error. Using more points in the rotation can
improve the accuracy of the response.

Accelerometer Bias Correction Factors

When the bias estimate is complete, multiply the estimate by
−1 to change its polarity, convert it to the digital format for the
offset correction registers (Table 52), and write the correction
factors to the correction registers. For example, lower the x-axis
bias by 10 LSB (33.3 mg) by setting XACCL_OFF = 0x1FF6
(DIN = 0xA51F, 0xA4F6).

Point of Percussion Alignment

Set MSC_CTRL[6] = 1 (DIN = 0xB846) to enable this feature
and maintain the factory default settings for DIO1. This feature
performs a point of percussion translation to the point identified
in Figure 21. See Table 39 for more information on MSC_CTRL.

ORIGIN ALIGNMENT REFERENCE POINT
SEE MSC_CTRL[6]. 09

79
7-

02
1

Figure 21. Point of Percussion Physical Reference

MAGNETOMETER CALIBRATION
The ADIS16407 provides registers that contribute to both hard
iron and soft iron correction factors, as shown in Figure 22

ADC + XMAGN_OUT×MAGNETIC
SENSOR

FACTORY
CALIBRATION

AND FILTERING

XMAGN_SIC

XMAGN_HIC

09
79

7-
02

2

Figure 22. Hard Iron and Soft Iron Factor Correction

Hard Iron Correction

The XMAGN_HIC (Table 55), YMAGN_HIC (Table 56), and
ZMAGN_HIC (Table 57) registers provide the user programmable
bias adjustment function for the x-, y-, and z-axis magnetometers,
respectively. Hard iron effects result in an offset of the magneto-
meter response.

Table 55. XMAGN_HIC (Base Address = 0x2A), Read/Write
Bits Description (Default = 0x0800)
[15:14] Not used
[13:0] X-axis hard iron correction factor,

twos complement, 0.5 mgauss/LSB, 0x0000 = 0

Table 56. YMAGN_HIC (Base Address = 0x2C), Read/Write
Bits Description (Default = 0x0800)
[15:14] Not used
[13:0] Y-axis hard iron correction factor,

twos complement, 0.5 mgauss/LSB, 0x0000 = 0

Table 57. ZMAGN_HIC (Base Address = 0x2E), Read/Write
Bits Description (Default = 0x0800)
[15:14] Not used
[13:0] Z-axis hard iron correction factor,

twos complement, 0.5 mgauss/LSB, 0x0000 = 0

 ADIS16407

Rev. B | Page 21 of 24

Hard Iron Factors

When the hard iron error estimation is complete, take the
following steps:

1. Multiply the estimate by −1 to change its polarity.
2. Convert it into digital format for the hard iron correction

registers (Table 55).
3. Write the correction factors to the correction registers. For

example, lower the x-axis bias by 10 LSB (5 mgauss) by
setting XMAGN_HIC = 0x1FF6 (DIN = 0xAB1F, 0xAAF6).

Soft Iron Effects

The XMAGN_SIC (Table 58), YMAGN_SIC (Table 59), and
ZMAGN_SIC (Table 60) registers provide an adjustment
variable for the magnetometer sensitivity adjustment in each
magnetometer response to simplify the process of performing a
system level soft iron correction.

Table 58. XMAGN_SIC (Base Address = 0x30), Read/Write
Bits Description (Default = 0x0800)
[15:12] Not used
[11:0] X-axis soft iron correction factor, binary format,
 Scale factor = 100%/2048LSB, 0x000 = 0

Example: 0x800 = 100% (factory scale unchanged)
Maximum = 0xFFF = 200% − 100%/2048

Table 59. YMAGN_SIC (Base Address = 0x32), Read/Write
Bits Description (Default = 0x0800)
[15:12] Not used
[11:0] Y-axis soft iron correction factor, binary format,
 Scale factor = 100%/2048LSB, 0x000 = 0

Example: 0x800 = 100% (factory scale unchanged)
Maximum = 0xFFF = 200% − 100%/2048

Table 60. ZMAGN_SIC (Base Address = 0x34), Read/Write
Bits Description (Default = 0x0800)
[15:12] Not used
[11:0] Z-axis soft iron correction factor, binary format,
 Scale factor = 100%/2048LSB, 0x000 = 0

Example: 0x800 = 100% (factory scale unchanged)
Maximum = 0xFFF = 200% − 100%/2048

Soft Iron Factors

When the soft iron error estimation is complete, convert the
sensitivity into the digital format for the soft iron correction
registers (Table 58) and write the correction factors to the
correction registers. A simple method for converting the
correction factor is to divide it by 2 and multiply it by 4095. For
example, increasing the default soft iron factor to approximately
1.15 uses a binary code for 2355, or 0x933. Increase the soft iron
correction factor for the y-axis to approximately 1.15 by setting
YMAGN_SIC = 0x0933 (DIN = 0xB309, 0xB233).

FLASH UPDATES
When using the user calibration registers to optimize system
level accuracy, keep in mind that the register values are volatile
until their contents are saved in the nonvolatile flash memory.
After writing all of the correction factors into the user correction
registers, set GLOB_CMD[3] = 1 (DIN = 0xC204) to save these
settings in nonvolatile flash memory. Be sure to consider the
endurance rating of the flash memory when determining how
often to update the user correction factors in the flash memory.

RESTORING FACTORY CALIBRATION
Set GLOB_CMD[1] = 1 (DIN = 0xC202) to execute the factory
calibration restore function. This is a single command function,
which resets the gyroscope and accelerometer offset registers to
0x0000 and all sensor data to 0. Then, it automatically updates the
flash memory within 75 ms and restarts sampling and processing
data. See Table 32 for more information on GLOB_CMD.

ADIS16407

Rev. B | Page 22 of 24

ALARMS
Alarm 1 and Alarm 2 provide two independent alarms. Table 61
lists the alarm control registers, including ALM_CTRL (Table 66),
which provides control bits for data source selection, static/
dynamic comparison, filtering, and alarm indicator.

Table 61. Registers for Alarm Configuration
Register Address Description
ALM_MAG1 0x44 Alarm 1 trigger setting
ALM_MAG2 0x46 Alarm 2 trigger setting
ALM_SMPL1 0x48 Alarm 1 sample period
ALM_SMPL2 0x4A Alarm 2 sample period
ALM_CTRL 0x4C Alarm configuration

STATIC ALARM USE
The static alarms setting compares the data source selection
(ALM_CTRL[15:8]) with the values in the ALM_MAGx registers
listed in Table 62 and Table 63, using ALM_MAGx[15] to deter-
mine the trigger polarity. The data format in these registers
matches the format of the data selection in ALM_CTRL[15:8].
See Table 67, Alarm 1, for a static alarm configuration example.

Table 62. ALM_MAG1 (Base Address = 0x44), Read/Write
Bits Description (Default = 0x0000)
[15] Trigger polarity
 1 = greater than, 0 = less than
[14] Not used
[13:0] Threshold setting; matches for format of

ALM_CTRL[11:8] output register selection

Table 63. ALM_MAG2 (Base Address = 0x46), Read/Write
Bits Description (Default = 0x0000)
[15] Trigger polarity
 1 = greater than, 0 = less than
[14] Not used
[13:0] Threshold setting; matches for format of

ALM_CTRL[15:12] output register selection

DYNAMIC ALARM USE
The dynamic alarm setting monitors the data selection for a
rate-of-change comparison. The rate-of-change comparison is
represented by the magnitude in the ALM_MAGx registers over
the time represented by the number-of-samples setting in the
ALM_SMPLx registers, located in Table 64. See Table 67, Alarm 2,
for a dynamic alarm configuration example.

Table 64. ALM_SMPL1 (Base Address = 0x48), Read/Write
Bits Description (Default = 0x0000)
[15:8] Not used
[7:0] Binary, number of samples (both 0x00 and 0x01 = 1)

Table 65. ALM_SMPL2 (Base Address = 0x4A), Read/Write
Bits Description (Default = 0x0000)
[15:8] Not used
[7:0] Binary, number of samples (both 0x00 and 0x01 = 1)

ALARM REPORTING
The DIAG_STAT[9:8] bits provide error flags that indicate an
alarm condition. The ALM_CTRL[2:0] bits provide controls for
a hardware indicator using DIO1 or DIO2.

Table 66. ALM_CTRL (Base Address = 0x4C), Read/Write
Bits Description (Default = 0x0000)
[15:12] Alarm 2 data source selection
 0000 = disable
 0001 = SUPPLY_OUT
 0010 = XGYRO_OUT
 0011 = YGYRO_OUT
 0100 = ZGYRO_OUT
 0101 = XACCL_OUT
 0110 = YACCL_OUT
 0111 = ZACCL_OUT
 1001 =XMAGN_OUT
 1010 = YMAGN_OUT
 1011 = ZMAGN_OUT
 1100 = AUX_ADC
[11:8] Alarm 1 data source selection (same as Alarm 2)
[7] Alarm 2, dynamic/static (1 = dynamic, 0 = static)
[6] Alarm 1, dynamic/static (1 = dynamic, 0 = static)
[5] Not used
[4] Data source filtering (1 = filtered, 0 = unfiltered)
[3] Not used
[2] Alarm indicator (1 = enabled, 0 = disabled)
[1] Alarm indicator active polarity (1 = high, 0 = low)
[0] Alarm output line select (1 = DIO2, 0 = DIO1)

Alarm Example

Table 67 offers an example that configures Alarm 1 to trigger when
filtered ZACCL_OUT data drops below 0.7 g, and Alarm 2 to
trigger when filtered ZGYRO_OUT data changes by more than
50°/sec over a 100 ms period, or 500°/sec2. The filter setting
helps reduce false triggers from noise and refine the accuracy
of the trigger points. The ALM_SMPL2 setting of 82 samples
provides a comparison period that is approximately equal to
100 ms for an internal sample rate of 819.2 SPS.

Table 67. Alarm Configuration Example 1
DIN Description
0xCD47, ALM_CTRL = 0x4797
0xCC97 Alarm 2: dynamic, Δ-ZGYRO_OUT

(Δ-time, ALM_SMPL2) > ALM_MAG2
 Alarm 1: static, ZACCL_OUT < ALM_MAG1, filtered data

DIO2 output indicator, positive polarity
0xC703,
0xC6E8

ALM_MAG2 = 0x03E8 = 1,000 LSB = 50°/sec

0xC500,
0xC4D2

ALM_MAG1 = 0x00D2 = 210 LSB = +0.7 g

0xC866 ALM_SMPL2[7:0] = 0x52 = 82 samples
82 samples ÷ 819.2 SPS = ~100 ms

 ADIS16407

Rev. B | Page 23 of 24

APPLICATIONS INFORMATION
INSTALLATION/HANDLING
For ADIS16407 installation, use the following two step process:

1. Secure the base plate using machine screws.
2. Press the connector into its mate.

For removal

1. Gently pry the connector from its mate using a small slot
screwdriver.

2. Remove the screws and lift up the device.

Never attempt to unplug the connector by pulling on the plastic
case or base plate. Although the flexible connector is very reliable
in normal operation, it can break when subjected to unreasonable
handling. When broken, the flexible connector cannot be repaired.
The AN-1045 Application Note, iSensor® IMU Mounting Tips,
provides more information about developing an appropriate
mechanical interface design.

GYROSCOPE BIAS OPTIMIZATION
The factory calibration corrects for initial and tempera-
ture dependent bias errors in the gyroscopes. Use the
autonull command (GLOB_CMD[0]) and decimation filter
(SMPL_PRD[12:8]) to address rate random walk (RRW)
behaviors. Control physical, power supply, and temperature
stability during the averaging times to help ensure optimal
accuracy during this process. Refer to the AN-1041 Application
Note, iSensor® IMU Quick Start Guide and Bias Optimization
Tips, for more information about optimizing performance.

INTERFACE PRINTED CIRCUIT BOARD (PCB)
The ADIS16407/PCBZ includes one ADIS16407BMLZ and one
interface PCB. The interface PCB simplifies the process of inte-
grating these products into an existing processor system.

J1 and J2 are dual row, 2 mm (pitch) connectors that work with
a number of ribbon cable systems, including 3M Part 152212-
0100-GB (ribbon crimp connector) and 3M Part 3625/12 (ribbon
cable). Figure 23 provides a hole pattern design for installing the
ADIS16407BMLZ and the interface PCB onto the same surface.
Figure 24 provides the pin assignments for each connector,
which match the pin descriptions for the ADIS16407BMLZ.
The ADIS16407does not require any external capacitors for
normal operation; therefore, the interface PCB does not use the
C1/C2 pads (not shown in Figure 23).

11 12

21

21

11 12

J2

J1

23.75 21.24

30.10 27.70

1.20

NOTES
1. DIMENSIONS IN MILLIMETERS. 09

79
7-

02
3

Figure 23. Physical Diagram for the ADIS16407/PCBZ

1 2

3 4

5 6

7 8

9 10

11 12

AUX_ADC

AUX_DAC

DNC

DNC

DIO2

DNC

DNC

DIO1

DIO4

DIO3

GND
J2

GND

2

4

6

8

10

1

3

5

7

9

11 12

RST

CS

GND

GND

VCC

GND

VCC

VCC

DIN

DOUT

SCLK
J1

DNC

09
79

7-
02

4

Figure 24. J1/J2 Pin Assignments

ADIS16407

Rev. B | Page 24 of 24

OUTLINE DIMENSIONS

12
22

08
-C

TOP VIEW

BOTTOM VIEW

FRONT VIEW

DETAIL A

CASTING
FEATURE

SIDE VIEW

22.964
22.710
22.456

14.950
14.550
14.150

21.410
21.210
21.010

23.504
23.250
22.996

5.20
5.00
4.80
(2×)

4.20
4.00
3.80
(2×)

17.41
17.21
17.01
(2×)

2.660
2.500
2.340

23.454
23.200
22.946

31.900
31.700
31.500

4.330
BSC

1.588
BSC

2.382
BSC

PIN 24

PIN 1

9.464
9.210
8.956
(2×)

DETAIL A

14.00 BSC

0.305
BSC (24×) 1.00

BSC (22×)
1.65 BSC

4.162 BSC

7.18
BSC

1.588
BSC

12.10
BSC

0.05
BSC

1.00
BSC

2.00 BSC10.50
BSC

10.60
BSC

Figure 25. 24-Lead Module with Connector Interface

(ML-24-2)
Dimensions shown in millimeters

ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADIS16407BMLZ −40°C to +105°C 24-Lead Module with Connector Interface ML-24-2
ADIS16407/PCBZ Interface PCB

1 Z = RoHS Compliant Part.

©2011 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 D09797-0-7/11(B)

