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Summary (English summary) 

 The most common vector borne disease in the Northern Hemisphere is Lyme disease, 

a bacterial infection vectored by ticks. Recent changes in climate, land use, and wildlife 

communities have resulted in the rapid emergence (increased incidence) of Lyme disease, 

which is both spreading in geographic extent and exhibiting increased incidence in many 

areas where the disease is already established. Climate change has been observed to disrupt 

the timing and duration of seasonal cycles, impacting ecosystems globally by changing 

species distributions, abundances, and phenology (timing of periodic life events). Disruptions 

of the phenological synchrony between interacting species, termed phenological mismatch, is 

known to impact population and evolutionary dynamics. However, the importance of 

phenological relationships for disease dynamics has not been well explored. A more in-depth 

understanding of phenological synchrony is crucial in the field of vector-borne disease 

ecology, where complex interactions between multiple host and vector species drive the 

circulation of pathogens in ecosystems. In this thesis, I use Lyme disease as a case study to 

explore the effects of changing seasonality on tick borne disease ecology. In Papers 1 and 2, 

surveillance data is used to investigate seasonal and demographic trends in Lyme disease 

cases, while in Paper 3 a mathematical model is used to explore phenological and 

demographic effects on pathogen transmission between a small mammal host and tick vector.  

 In Paper 1, statistical analysis of surveillance data from Norway quantified changes in 

the seasonal timing and annual incidence of Lyme disease over a 25-year study period (1995-

2019). The surveillance data captures disease emergence at the expanding northern 

biogeographical edge of Lyme disease in Europe. A modern Bayesian statistical framework 

was used to fit a flexible seasonal model across the entire study period to measure changes in 
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the peak incidence week. This analysis demonstrated a six-week advancement in case timing 

accompanying an increase in incidence across regions of Norway. The change in timing of 

plant greening, derived from Normalized Difference Vegetation Index (NDVI), was used as a 

yardstick to contextualize the magnitude of the seasonal shift in case timing. While following 

a similar pattern, the shift in case timing outpaced a concurrent advancement of peak spring 

greening by around two weeks. 

 In Paper 2, the Norwegian Lyme disease surveillance data is used to explore 

demographic patterns in patient clinical manifestations and case timing. This analysis 

identified a bimodal pattern of incidence across patient age, with children and seniors having 

disproportionately high incidence rates. Youth presented with a higher proportion of 

neuroborreliosis cases than adults, and among adults the proportion of arthritis cases was 

higher in males than females. Case timing was found to be consistently around 4.4 weeks 

earlier in youth than in adults, independent of clinical manifestation. Both youth and adults 

exhibited a similar advancement in case timing over the study period. 

 In Paper 3, a theoretical SI (Susceptible-Infected) model for structured populations of 

ticks and hosts is presented for exploring pathogen dynamics on a monthly timescale. In the 

mathematical model, the size of the tick population is regulated by the availability of hosts, 

specifically, a reservoir competent small mammal host with seasonal variations in fertility and 

survival, and a reservoir incompetent large mammal host with stable abundance across 

seasons. The model was used to explore how the seasonal density of infected questing ticks 

depends on tick questing phenology and demographic turnover (change in demographic 

composition) in the small mammal host population. Pathogen dynamics were sensitive to 

phenological synchrony between tick questing and small mammal reproduction in the model, 



 

III 

 

because host demographic turnover rapidly diluted pathogen prevalence during periods of 

high reproduction. 

 These three papers together advance our understanding of the Lyme disease system in 

a way that is both novel and aligned with prior empirical and theoretical work. Paper 1 is the 

among the first to identify a consistent, long-term shift in the timing of a tick borne disease. In 

light of this finding, Papers 2 and 3 aim to identify possible causes and mechanisms that 

could underlie a shift in case timing. Paper 2 extends the statistical analysis from Paper 1 to 

investigate how case timing varied based on patient demography and clinical manifestation. 

Paper 3 employs a mathematical model to explore relationships between host and vector 

phenology and disease dynamics. In the face of an incredibly complex puzzle that global 

change poses to human and wildlife health, combining epidemiological and ecological 

methods enables a deeper understanding of the underlying dynamics of vector borne diseases 

required for confronting emerging health challenges.  
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Sammendrag (Norwegian summary) 

Den vanligste vektorbårne sykdommen på den nordlige halvkule er borreliose, en 

bakteriell infeksjon overført av flått. Endringer i klima, arealbruk og sammensetning av 

vertsdyrbestander har resultert i den raske fremveksten av borreliose, som både øker i 

geografisk utbredelse og viser økt forekomst i mange områder der sykdommen allerede er 

etablert. Klimaendringer skifter tidspunktet og varigheten av sesongmessige sykluser i 

miljøet, og påvirker økosystemer globalt ved å endre utbredelse, antall og fenologi, dvs. når 

på året aktivitet foregår. Forstyrrelser av den fenologiske synkroniteten mellom trofisk 

koblede arter, kalt fenologisk «mis-match», er kjent for å påvirke dynamikken både på 

økologisk og evolusjonær tidsskala. Imidlertid har ikke betydningen av fenologi blitt godt 

undersøkt når det kommer til sykdommer. En mer dyptgående forståelse av fenologisk 

synkroni er avgjørende for å forstå dynamikken til vektorbårne sykdommer, der komplekse 

interaksjoner mellom flere vertsdyr og vektorarter driver sirkulasjonen av patogener i 

økosystemene. I denne oppgaven bruker jeg borreliose som et eksempel for å utforske 

interaksjoner mellom sesongvariasjoner og økologien til flåttbårne sykdommer. Paper 1 og 2 

bruker overvåkingsdata for å undersøke sesongmessige og demografiske trender i borreliose-

data hos mennesker, mens Paper 3 bruker en økologisk matrise-modell for å utforske 

sesongmessige og demografiske effekter på patogenoverføring mellom en liten pattedyrvert 

og flåttvektor. 

I artikkel 1 brukes overvåkingsdata fra Norge for å kvantifisere endringer i det 

sesongmessige tidspunktet og årlig forekomst av borreliose over en 25-årig studieperiode 

(1995-2019). Overvåkingsdataene fra Norge fanger opp økt forekomst ved den nordlige 

utbredelsen av borreliose i Europa. En fleksibel sesongmodell ble implementert over hele 

studieperioden for å måle endringer i høyeste ukentlige forekomst av borreliose ved å bruke et 
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moderne Bayesiansk statistisk rammeverk. Denne analysen viser en seks ukers tidligere 

forekomst sammen med en økning i forekomst på tvers av regioner i Norge. Endringen i 

tidspunktet for plantegrønning, avledet fra «Normalized Difference Vegetation Index» 

(NDVI), ble brukt som en målestokk for å skalere omfanget av sesongskiftet i forekomst av 

borreliose. Selv om NDVI fulgte et lignende mønster med tidligere start på plantevekst over 

tid, skiftet det tidligere startpunkt på høyeste ukentlige antall borreliose-tilfeller med to uker 

mer enn det tilsvarende skifte i start på plantevekst. 

I artikkel 2 brukes overvåkingsdataene for borreliose for å utforske demografiske 

mønstre i pasientens kliniske manifestasjoner og sesongvariasjonen i forekomst. Denne 

analysen identifiserte et bimodalt mønster for forekomst med hensyn på pasientalder, med 

barn og eldre med uforholdsmessig høy forekomst. Barn hadde en høyere andel tilfeller av 

nevroborreliose enn voksne, og blant voksne var andelen tilfeller av artrose høyere hos menn 

enn kvinner. Sesongvariasjonen i tidspunktet for forekomst ble funnet å være konsekvent 

rundt 4,4 uker tidligere hos barn enn hos voksne, uavhengig av klinisk manifestasjon. Både 

barn og voksne viste et lignende skifte med et tidligere tidspunktet for høyeste forekomst i 

løpet av studieperioden. 

I artikkel 3 presenteres en modell for å utforske patogendynamikk i en flåttvektor og 

en liten pattedyrvert på en månedlig tidsskala. I modellen er størrelsen på flåttpopulasjonen 

regulert av tilgjengeligheten av verter, som inkluderer en reservoarkompetent liten 

pattedyrvert med sesongvariasjoner i reproduksjon og overlevelse, og en 

reservoarinkompetent stor pattedyrvert med stabil bestand gjennom året. Modellen brukes til å 

utforske hvordan den sesongmessige tettheten av infiserte flått på jakt etter vert avhenger av 

fenologi og demografisk sammensetning hos små pattedyrverter. Smittesyklusen er følsom for 

fenologisk synkronisering mellom flått på jakt etter vert og reproduksjon av små pattedyr, 
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fordi høyt antall unge småpattedyr (som ikke er infisert) raskt fortynner patogenprevalens i 

perioder med høy reproduksjon. 

Disse tre artikkelene som helhet fremmer vår forståelse av borreliose på en måte som 

er både ny og konsistent med tidligere empirisk og teoretisk arbeid. Artikkel 1 er blant de 

første som identifiserer et skifte i tidspunktet for forekomst av en flåttbåren sykdom. I lys av 

dette funnet, tar artikkel 2 og 3 sikte på å identifisere mulige årsaker og mekanismer som kan 

ligge til grunn for endring i tidspunktet for sykdomsforekomst. Artikkel 2 tar en statistisk 

tilnærming til å forstå disse endringene basert på demografiske og kliniske trender i 

overvåkingsdata. Artikkel 3 bruker en teoretisk tilnærming ved å bruke en populasjonsmodell 

for å utforske sammenhenger mellom verts- og vektorfenologi og sykdomsdynamikk. I møte 

med et komplekst puslespill som global endring utgjør for menneskers og dyrs helse, 

muliggjør kombinasjonen av epidemiologiske og økologiske metoder en dypere forståelse av 

den underliggende dynamikken til vektorbårne sykdommer som kreves for å møte nye 

helseutfordringer.  
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Introduction 

Seasonal Ecology 

 Changes in seasonality resulting from climate change are already documented in most 

regions globally, with wide-ranging physical, ecological, and societal impacts, that are 

predicted to exacerbate in coming decades (Environmental Protection Agency, 2021; 

Ernakovich et al., 2014; Ramachandran, 2011; Suepa et al., 2016). Although seasonal 

environments are often associated with temperate and arctic regions with high annual 

fluctuations in temperature and day length, climate seasonality is found across biomes 

(Mellard et al., 2019), including tropical regions where changes in rainfall seasonality have 

been ecologically and socially important (Feng et al., 2013). The effects of climate seasonality 

have been shown to be important across vertebrate (Paul et al., 2007) and invertebrate 

(Lawrence & Soame, 2004; Zagatto et al., 2017) species of enormous variety in size, life 

history, and trophic level, including such diversity as fungal endophytes (Oita et al., 2021), 

soil microorganisms (Wang et al., 2023), insect parasitoids (Tougeron et al., 2020), 

zooplankton (Varpe et al., 2009), birds (Jenni & Kéry, 2003), and mammals (Bronson, 2009). 

All of these species have evolved life history strategies for coping with seasonal variation in 

resource availability and environmental conditions through a variety of strategies including: 

diapause, dormancy, hibernation, timing of reproduction and growth, pacing of growth, 

energy storage, and migration (Varpe, 2017). 

The evolution of annual cycles and the phenological plasticity of these cycles are 

adaptations to climate seasonality which will shape biological responses to climate change 

(Varpe, 2017). The extent to which organisms have adapted to use predictable cues, such as 

photoperiodism, versus variable, climate-driven cues, such as temperature, to time life events, 

is an important component in determining the plasticity of a phenological response (Coppack 
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et al., 2003; Saikkonen et al., 2012; Tsai et al., 2020; Walker et al., 2019). There is increasing 

empirical evidence for pathways that integrate environmental cues, such as photoperiod and 

temperature, to signal physiological cycles (Abrieux et al., 2020; Flynn & Wolkovich, 2018; 

Wood et al., 2020).  

Seasonality and Disease 

 Infectious diseases provide well-documented examples of the role of seasonality in 

shaping population dynamics, as many human and animal diseases exhibit conspicuously 

seasonal fluctuations in incidence (Altizer et al., 2006). Common examples of seasonality of 

infectious diseases in humans include increases in influenza in winter, measles with school 

terms, and malaria with seasonal rains (Altizer et al., 2006; Becker et al., 2016). Seasons can 

influence contact rates, infectivity of pathogens, host demographic structure, host immunity, 

and other factors that alter the spread and persistence of infectious diseases (Altizer et al., 

2006). Understanding the causes of seasonal fluctuations in infectious diseases can yield 

insight into the functioning of the disease system, elucidate potential linkages between the 

disease system and climate, and ultimately inform public health actions and control measures 

(Altizer et al., 2006). 

 Diseases that are vector borne are particularly sensitive to abiotic conditions because 

they impact the population dynamics of arthropod disease vectors, the survival and replication 

of pathogens inside vectors, host distributions, and vector-host contact rates (Gage et al., 

2008). The seasonality of many vector-borne human diseases is often largely driven by vector 

activity patterns (Gage et al., 2008). However, it can be challenging to predict how disease 

dynamics vary across seasons because it depends on many different components of the 

pathogen, vector, and host life cycles (Khong et al., 2023). Seasonal oscillations in 
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temperature and humidity can impact survival, fecundity, and phenology of the vector, 

pathogen, and host, as well as vector-host interactions, sometimes in opposing directions 

(Harvell et al., 2009; Khong et al., 2023; Medeiros et al., 2016). In addition to impacting 

disease ecology, changing climate seasonality can alter the duration and timing of human 

exposure to vectors (Mora et al., 2022). For ticks, shifting climate seasonality can alter vital 

rates, interstadial development, and the timing and duration of environmental suitability for 

questing (Levi et al., 2015; MacDonald et al., 2020; Ogden et al., 2020; Ogden & Lindsay, 

2016). The timing and duration of tick questing can influence host contact rates, which 

determine tick abundance through survival and/or reproductive success, and the probability of 

encountering an infected host (MacDonald et al., 2020).  

 Generally, it is predicted that climate change will lengthen the transmission season of 

many vector-borne diseases, but many projections fail to fully capture how climate will shape 

seasonal vector borne disease patterns (Caminade et al., 2019). Dry springs and milder winter 

conditions are thought to increase the risk of West Nile virus transmission in the United States 

(Epstein, 2001). Milder winters and prolonged spring and autumn seasons in Europe are 

thought to have increased the seasonal activity and geographical range of Ixodes ricinus, the 

main tick vector of Lyme disease and several other tick borne infections (Medlock et al., 

2013). Generalizations of the impact of seasons under climate change on vector borne 

diseases are limited because predictions are highly sensitive to regional and disease specific 

features (Khong et al., 2023). Limited availability of long-term, high quality disease and 

vector data, and a tendency to oversimplify the mechanisms by which climate change impacts 

disease transmission, have hindered our ability to determine exactly how shifting climate 

seasonality has already impacted vector borne disease systems and predict the effects of future 

climate change (Kovats et al., 2001). It remains an open question whether climate-driven 



 

4 

 

shifts in phenology could create novel disease emergence by introducing contact between 

groups of hosts, vectors, and pathogens that did not formerly interact (Altizer et al., 2013).  

Lyme disease 

 Lyme disease, also known as Lyme borreliosis, is a bacterial infection caused by 

spirochetes in the Borrelia burgdorferi sensu lato complex, vectored by several species of 

hard-bodied ticks in the genus Ixodes. The B. burgdorferi sl complex contains several 

genospecies which are known to cause Lyme disease in humans (Stanek & Reiter, 2011). 

Lyme disease is the most common vector borne disease in the Northern Hemisphere, with a 

broad geographic distribution across Europe, North America, and Asia (Kilpatrick et al., 2017; 

Rizzoli et al., 2011). The current distribution and recent geographical expansion of Lyme 

disease is partially driven by the current and expanding distribution of tick vectors, although 

in some regions where vectors are present, Lyme disease incidence is low and possibly absent 

(Burtis et al., 2022; Eisen, Eisen, & Beard, 2016; Mysterud et al., 2016). Lyme disease 

vectoring ticks are generalists that can use a wide range of vertebrates as hosts, including 

mammals, birds, and lizards, that represent a wide range of reservoir competency for B. 

burgdorferi and also a broad range of life history traits and ecological niches (Brunner et al., 

2008; Ostfeld et al., 2014).  

 The epidemiology of Lyme disease is based on an interplay of seasonal interactions 

between ticks, hosts, and humans. Figure 1 illustrates the overlapping timelines of tick 

questing phenology, host reproduction seasonality in an example small mammal host, and 

periods of peak infection risk for hosts and humans. This illustration is based on a northern 

European ecosystem as represented in Paper 3, and the timelines would be different in other 

regions with different climates and host and vector species. In this example, tick adults and 
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nymphs quest from March to November, with the peak questing period from April through 

June. Larvae start questing a little later, in April, and have peak activity in May and June. 

Oviposition by fed adult females occurs from July until November. Peak infection risk for 

hosts and humans is during the period of maximum nymphal questing. The small mammal in 

this example, based on the bank vole, reproduces from May to October, with peak 

reproduction from June through August. For humans, early symptom onset typically occurs 

within a month from the time of infection, but it could take several months for the infection to 

disseminate and be diagnosed.  

The Lyme disease surveillance data from Norway used in Paper 1 and Paper 2 

provide an excellent resource for exploring questions with relevance beyond the region from 

which the data are collected. The uniformity, quality, and long duration of surveillance makes 

the data from Norway a valuable resource for exploring long term trends and difficult-to-

capture signals, such as changes in patient demography and case seasonality. Furthermore, 

Norway spans a large latitudinal range (57°58′–71°08′ N), comprised of distinct eco-regions 

with differences in climate and host composition unified under a single-surveillance umbrella 

(Mysterud et al., 2016; Mysterud et al., 2017). The Norwegian data also provides an excellent 

case study for the geographic spread of Lyme disease because it is situated at the expanding 

northern edge of the biographical range of Lyme disease in Europe (Mysterud et al., 2018). 
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reproductive output occurs. The seasonal infection dynamics of the host population are 
explored in Paper 3. The next ring outward illustrates human infection seasonality. As with the 
hosts, peak infection risk, represented by a red arc, overlaps with nymphal questing, although 
infection can happen at any time that ticks are active and cases are diagnosed throughout the 
year. The month following is filled in with a black arc to illustrate a lag between the onset of 
symptoms from the time of infection, which is usually around 2 to 30 days. The purple arc 
represents the timing over which disseminated symptoms and diagnosis would typically 
follow after the delay in initial symptom onset. 

 

Climate Change in Norway 

While it can be methodologically challenging to directly attribute disease burden to 

climate change, there is a growing body of evidence that climate change has impacted the 

geographic range, seasonality, and transmission of infectious diseases (Semenza & Menne, 

2009). Lyme disease has been shown to be climate sensitive in both Europe (Semenza & Paz, 

2021) and North America (Ebi et al., 2017). Over recent decades, Norway has experienced a 

marked and well-documented change in climate patterns that includes warming temperatures 

and increased precipitation in most regions (Hanssen-Bauer et al., 2009; Ketzler et al., 2021). 

Paper 1 and Paper 2 include regional analyses of Lyme disease surveillance data, following 

designations from prior studies (Mysterud et al., 2016; Mysterud, Heylen, et al., 2019). Across 

these study regions, long term climate trends have been similar, with a general pattern of 

increasing temperature and precipitation that has been ongoing since 1950 (Figure 2). Over 

the 25-year study period (1995-2019) used in Paper 1 and Paper 2, the warming trend is 

predominantly discernible in Spring (March through May) and is very similar across regions 

(Figure 3). Precipitation shows considerable inter-annual variability, and a slight increase in 

summer, over the study period (Figure 4).  

The warming pattern observed in spring leads to the prediction that ticks may be able 

to quest earlier in the year, resulting in advanced timing of Lyme disease cases. If host 
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availability is different for ticks questing earlier in the year, the timing of tick-host 

interactions could impact infection prevalence in ticks, and thereby provide an ecological 

explanation for the observed increase in the number of human cases occurring each year. 

While the different regions of Norway have considerably different climates, primarily due to 

differences in topography and coastal effects (Mysterud, Heylen, et al., 2019), the change in 

climate over the study period has been very similar across regions. The similarity in trends, 

combined with the assumption that areas within the regions with high case frequency will 

have environmental similarities, leads to the prediction that any changes in Lyme disease case 

timing will be similar across regions of Norway. 

 

 
Figure 2. Long term, annual trends in daily mean temperature, daily precipitation, and 
average number of frost days per month over the time period 1950 to 2019 in the study 
regions in Norway. The y-axes show the difference from the period average of the value of the 
climate variable. Data for these graphs were extracted from the Copernicus Interactive 
Climate Atlas (Copernicus Climate Change Service, 2024) using the gridded land-only 
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observational dataset over Europe (Cornes et al., 2018). Trendlines were fit to the data using 
the default GAM model in ggplot2 (Wickham, 2016). 

 

 

Figure 3. Seasonal temperature trends over the study period (1995 to 2019) and study regions 
in Norway. The graphs show, for each season, the difference between the average daily 
temperature and the seasonal average temperature across the study period. Positive values 
indicate years with a higher than average daily mean temperature for the season, and negative 
values indicate lower than average temperatures, compared to the average seasonal value for 
the study period. Data for these graphs were extracted from the Copernicus Interactive 
Climate Atlas (Copernicus Climate Change Service, 2024) using the gridded land-only 
observational dataset over Europe (Cornes et al., 2018). Trendlines were fit to the data using 
the default GAM model in ggplot2 (Wickham, 2016). 
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Figure 4. Seasonal precipitation trends over the study period (1995 to 2019) and study 
regions in Norway. The graphs show, for each season, the difference between the average 
daily precipitation and the seasonal average precipitation across the study period. Positive 
values indicate years with a higher than average amount of precipitation for the season, and 
negative values indicate lower than average precipitation, compared to the average seasonal 
value for the study period. Data for these graphs were extracted from the Copernicus 
Interactive Climate Atlas (Copernicus Climate Change Service, 2024) using the gridded land-
only observational dataset over Europe (Cornes et al., 2018). Trendlines were fit to the data 
using the default GAM model in ggplot2 (Wickham, 2016). 
 

Aims 

In this thesis, I aim to use Lyme disease as a case study for exploring vector borne 

disease seasonality with a combination of statistical modeling of human case data, and 

mathematical modeling of the disease dynamics of hosts and vectors. The statistical analysis 

identifies seasonal and demographic trends from case data, and in the process generates 

questions that can be approached with theoretical modeling. The mathematical modelling 

aims to approach well described knowledge gaps regarding fundamental aspects of Lyme 
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disease that are barriers to effective control, specifically understanding how vector-host-

pathogen interactions impact disease hazard (number of infected questing tick nymphs) across 

seasons (Kilpatrick et al., 2017).  

The aim of Paper 1 is to quantify changes in annual incidence and seasonal timing of 

Lyme disease cases across Norway over a 25-year study period (1995-2019). In Paper 2, the 

main goals were to investigate whether the incidence of different clinical manifestations of 

Lyme disease varied based on patient age and sex, and to determine whether patient 

demography or clinical manifestation impacted case timing. Based on the hypothesis that 

ecological responses to climate change could be driving both the emergence and shifting 

seasonality of Lyme disease, Paper 3 used a mathematical model with the goal of identifying 

possible ecological mechanisms that could underlie the advanced case seasonality observed in 

Paper 1. The aim of the model is to create a simulation where tick and host phenology can be 

altered to generate hypotheses regarding how the timing of interactions between vector and 

host populations can modulate disease hazard. 

Study System 

Lyme Disease Emergence  

 Lyme disease was not clinically recognized until the late 1970s when geographic 

clustering of childhood arthritis cases in Connecticut, USA led to the description of Lyme 

arthritis, a condition of asymmetric joint swelling putatively linked to an arthropod vector 

(Steere et al., 1977). A few years later in 1981, the causative agent of Lyme disease was 

discovered to be a tick-borne spirochete bacterium, now known as Borrelia burgdorferi sensu 

lato (Burgdorfer, 1991). While the discovery of Lyme disease seems to have been motivated 

by an increase in case frequency, it was likely facilitated by social development and improved 
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laboratory methods, such as the discovery of the microimmunofluorescence test in 1968 

(Burgdorfer, 1984; Wang, 2000), spurred by the rapidly growing science and technology 

sector (Bohrer, 2008). While there exist earlier descriptions of Lyme disease symptoms 

(Anderson & Magnarelli, 1994) and genomic evidence that B. burgdorferi has been endemic 

in Europe and North America since the last glacial maximum (Vollmer et al., 2013; Walter et 

al., 2017), there is significant public health evidence of Lyme disease emergence beginning in 

the late 1970s and continuing to present day in both Europe and North America (Eddens et al., 

2019; Steere et al., 2004; Vandekerckhove et al., 2021).  

Clinical Manifestations 

 Lyme disease pathogenesis is very heterogeneous among individuals, and many of the 

symptoms can be difficult to distinguish from other conditions (Cochat Costa Rodrigues et al., 

2017; Cruz et al., 2017; Trevisan et al., 2020). The most typical initial manifestation of Lyme 

disease is a “bullseye” shaped dermal lesion expanding from the site of the tick bite, known as 

erythema migrans, that typically occurs 2 to 30 days after infection and can be accompanied 

by flu-like symptoms (Johnson et al., 2018; Steinbrink et al., 2022). If the infection is left 

untreated in the early stages of infection that are localized in the skin near the tick bite, the 

pathogen can disseminate in the body creating a systemic infection (Hyde, 2017; Steere et al., 

2016). It is estimated that dissemination occurs in 15-20% of untreated cases (Koedel et al., 

2015; Ornstein et al., 2001; Strnad & Rego, 2020). Early-stage dissemination often involves 

neurological manifestations, termed neuroborreliosis, that can involve the central and/or 

peripheral nervous systems (Garkowski et al., 2017; Steinbrink et al., 2022). Late-stage 

dissemination encompasses diverse sequelae including arthritis, acrodermatitis chronica 

atrophicans, and carditis (Cadavid et al., 2016; Coburn et al., 2021; Lochhead et al., 2021).  
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Lyme disease is typically diagnosed with an antibody test, though PCR methods for 

pathogen detection are also used (Borchers et al., 2015; Eldin et al., 2019; Marques et al., 

2021). Lyme disease is treated with antibiotics, with similar guidelines across Europe and 

North America (Marques et al., 2021). Recovery time after treatment can be very variable 

between individuals, with some patients experiencing symptoms for a prolonged period of 

time (Koedel et al., 2015; Monaghan et al., 2023). 

Pathogenesis and seroconversion are known to vary based on patient age and sex, but 

the epidemiological significance of patient demography is not yet well understood (Carlsson 

et al., 2018; Krawczuk et al., 2020; Steere et al., 2003; Woudenberg et al., 2020). North 

American and European patients exhibit differences in clinical manifestations, with Lyme 

arthritis being more common in North America and neuroborreliosis more common in Europe 

(Arvikar & Steere, 2022; Marques et al., 2021). Children and adults exhibit some differences 

in clinical manifestations of Lyme disease, including that children are more likely to develop 

neuroborreliosis and borrelial lymphocytoma than adults (Stanek & Strle, 2018). Within 

neuroborreliosis cases, children are more likely to exhibit cranial meningoradiculitis while 

adults are more likely to exhibit spinal meningoradiculitis (Oschmann et al., 1998). These 

age-based differences in clinical manifestations lead to the prediction that case timing could 

be different between adults and children.  

It has been shown that females more often report localized Lyme disease infections 

while males present more disseminated infections (Nygård et al., 2005; Skufca et al., 2022; 

Tulloch et al., 2020). This trend has generally been attributed to gender-related differences in 

healthcare-seeking behavior (Bennet et al., 2007; Doyal, 2001; Eliassen et al., 2017), but may 

also have physiological underpinnings (Dias et al., 2022). While the analyses presented in 

Paper 1 and Paper 2 only include cases of disseminated disease, it would be reasonable to 
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predict that differences in healthcare-seeking behavior could result in delayed case timing in 

males compared to females. 

Tick Vectors 

 In North America, the most common vectors are I. scapularis in eastern US and 

Canada, followed by I. pacificus in the west (Steere et al., 2016). The most common vector in 

Europe is I. ricinus, and I. persulcatus is the most common vector in Asia, though it is also 

found in parts of Europe, including Baltic countries and parts of Scandinavia (Steere et al., 

2016). These four vector species are closely related and occupy similar ecological niches 

(Gray et al., 2016). There are many articles describing what is currently known of the biology 

and ecology of Lyme disease vectoring ticks (Gray et al., 2021; Kahl & Gray, 2023; 

Korenberg et al., 2021; Padgett & Lane, 2001; Sonenshine & Simo, 2021). I will here 

summarize key life history traits, which are generally conserved across the four main Lyme 

disease vectors, with emphasis on I. ricinus, and mention a few differences between these 

species.  

 There are four instars, or main life stages, of ixodid ticks: egg, larva, nymph, and 

adult, also known as imago (Figure 5). All feeding instars of the Lyme disease vectoring ticks 

can bite humans, except in I. persulcatus, where adult females are the main vectors (Gray et 

al., 2016). The total duration of the life cycle is around 3-6 years in most regions, but can be 

faster or slower based on environmental conditions (Grigoryeva & Shatrov, 2022; Kahl & 

Gray, 2023; Korenberg et al., 2021; Sirotkin & Korenberg, 2022). Plasticity in the timing and 

duration of the life cycle is enhanced by two types of diapause, behavioral and developmental 

(also known as morphogenetic), which enable ticks to prolong the duration of life stages and 

match time periods of questing activity and development with favorable environmental 
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conditions. Behavioral diapause controls the activity levels of fully developed unfed ticks, 

while developmental diapause delays interstadial development (Gray et al., 2016). The 

plasticity of the tick life cycle and differences in diapause patterns lends complexity to the 

population structure because individuals in the same life stage can have very different 

calendar ages (Balashov, 2012).  

Photoperiod is a primary cue for inducing diapause, although other environmental 

factors, such as temperature, and endogenous factors, such as tick age, appear to have 

modifying effects (Gray et al., 2016; Korenberg et al., 2021). The extent to which ticks 

undergo true behavioral diapause, rather than a period of quiescence that can be readily 

interrupted given suitable environmental conditions, remains unclear (Gray et al., 2016). 

There is evidence for both ticks that quest during warm winter months as well as photoperiod 

driven diapause in fully developed unfed nymphs (Gray et al., 2016). A key difference 

between species and populations of Lyme disease vectoring ticks is the timing and duration of 

their life cycle events and activity levels, which appear to be environmental adaptations 

(Gilbert et al., 2014; Gray et al., 2016; Korenberg et al., 2021; Kurtenbach et al., 2006; 

Padgett & Lane, 2001). For example, there is evidence for differences between Lyme disease 

vectoring species regarding whether diapause happens in the embryo or in the adult instar 

before oviposition (Gray et al., 2016; Korenberg et al., 2021). Populations of I. ricinus 

collected from different regions have differential activity levels in response to temperature, 

which has interesting implications for climate adaptivity (Gilbert et al., 2014). There are also 

findings of population-level differences in questing behaviors in I. scapularis (Arsnoe et al., 

2015). 

 Interstadial development necessitates only a single meal of blood, and adult females 

require a blood meal for egg development, resulting in a maximum of three complete feedings 
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during the tick’s life cycle (Kahl & Gray, 2023). Adult males may take small amounts of 

blood while on a host’s body seeking a female for mating, but these feedings are small and 

therefore generally not considered important for pathogen transmission (Kahl & Gray, 2023). 

Lyme disease vectoring ticks spend the majority of their lives free-living, either resting in the 

upper layers of soil and leaf litter or questing on vegetation, and are not associated with host 

nests and burrows (Gray et al., 2016; Korenberg et al., 2021). The duration of feeding events, 

while representing only a tiny fraction of the tick life span, is long relative to other blood-

feeding arthropods (Kahl & Gray, 2023). Typically, larvae will feed on a host for 2-4 days, 

nymphs for 3-5 days, and adult females for 7-10 days (Kahl & Gray, 2023). Ticks are 

sensitive to desiccation when questing, and will retreat from higher levels of vegetation to the 

more humid microclimate of leaf litter and hydrate using water vapor in the air (Kahl & Gray, 

2023).  

 

Figure 5. An illustration of the life cycle of Lyme disease vectoring ticks. A single successful 
bloodmeal is required for interstadial development and oviposition. 
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Hosts 

 Generally, tick larvae preferentially feed on small mammals and ground-feeding birds, 

nymphs feed broadly across vertebrates, and adults will feed primarily on large mammals, 

including deer and domesticated animals such as sheep (Korenberg et al., 2021; Stewart & 

Bloom, 2020). Ticks in different regions feed on different host species based on host 

availability, but it is unclear to what extent species and populations have physiologically 

adapted to the regionally available host complement.  

 Non-reservoir hosts are also important for disease dynamics because they can control 

the size and structure of the tick population by altering stage-specific survival rates and 

reproductive success (Mysterud et al., 2016). Thus, host community structure is important for 

determining both tick population sizes and infection prevalence (Gage et al., 2008). The role 

of deer in driving Lyme disease risk has been debated because deer are not reservoir 

competent but serve as a common reproduction host for adult female ticks in both North 

America and Eurasia (Gandy et al., 2021; Gilbert et al., 2012; Kugeler et al., 2015; Mysterud 

et al., 2016). The role of host biodiversity in driving Lyme disease risk, as well as zoonotic 

disease risk in general, has also been discussed (Civitello et al., 2015; Köhler et al., 2023; 

Levy, 2013; Ostfeld & Keesing, 2000; Randolph & Dobson, 2012; Rohr et al., 2019). The 

general idea behind the link between biodiversity and disease risk is that a biodiverse host 

community will include non-reservoir hosts which serve as dead-ends for disease 

transmission, thereby diluting disease risk (Keesing & Ostfeld, 2021).  

Pathogens 

 In North America, B. burgdorferi sensu stricto is the most common genospecies 

infecting humans (Cerar et al., 2016). In Europe, there is much higher diversity of 
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genospecies with geographic variability; overall B. garinii and B. afzelii are most common 

(Rauter & Hartung, 2005). The different genospecies vary in host associations (Wolcott et al., 

2021). A recent review of host associations notes major gaps in the empirical data, but notes 

that almost all genospecies that are pathogenic to humans have at least two types of host 

reservoirs (Wolcott et al., 2021). Generally, B. afzelii is associated with rodents (Hanincová et 

al., 2003), and B. garinii is associated with birds (Comstedt et al., 2011), though this is, in 

part, an oversimplification as B. garinii has been identified in mice in Switzerland (Hügli et 

al., 2002) and B. afzelii has been found in ticks feeding on birds (Franke et al., 2010; 

Lommano et al., 2014). Within the many genospecies of B. burgdorferi sl there are also 

several recognized strains with geographic associations, which have demonstrated variance in 

clinical manifestations and inflammatory potential (Cerar et al., 2016). Based on within 

genospecies comparison of strains, ecological niche appears more relevant for some clinical 

and immune characteristics than phylogeny (Cerar et al., 2016).  

 In addition to having different host associations, B. burgdorferi sl genospecies exhibit 

differences in associated clinical manifestations in humans (Jahfari et al., 2017). In Norway, it 

was found that B. garinii was the main genospecies found in cerebrospinal fluid of children 

with neuroborreliosis (Barstad et al., 2018), despite being only the second most common 

genospecies in ticks, representing around 20-30% of tick infections (Mysterud, Heylen, et al., 

2019). This is consistent with findings throughout Europe, where neuroborreliosis is the most 

common form of disseminated infection (Barstad et al., 2018). The most commonly found 

genospecies in ticks in Europe, B. afzelii, is associated with late-stage dermatological 

manifestations, which are much less frequent than neuroborreliosis (Coipan et al., 2016; 

Rupprecht et al., 2008). However, B. afzelii and hedgehog-associated B. bavariensis have also 
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been indicated as causative agents of neuroborreliosis (Mysterud, Heylen, et al., 2019; Strle et 

al., 2006). It remains unclear if clinical associations to genospecies are caused by differences 

in pathogeneicity, sensitivity and specificity of diagnostic tests, or likelihood of presenting 

easily recognizable early symptoms such as erythema migrans that result in timely treatment 

(Carlsson et al., 2003; Logar et al., 2004; McManus & Cincotta, 2015; Mysterud, Heylen, et 

al., 2019). All genospecies appear to respond equally to antibiotic therapy (Steere et al., 

2016). 

Methods  

Analysis of Lyme Disease Surveillance Data 

 The Lyme disease surveillance data used in this thesis has been collected by the 

Norwegian Surveillance System for Communicable Diseases (MSIS), administrated by the 

Norwegian Institute of Public Health. Lyme disease surveillance has been ongoing in Norway 

since 1991, when case reporting became mandatory for care providers, including laboratories 

and clinicians (MacDonald et al., 2016). Consistent case reporting criteria has been 

maintained since 1995, whereby only cases of disseminated infection are notifiable and must 

have laboratory confirmation by one of the following: antibody test, nucleic acid test, or 

pathogen isolation (MacDonald et al., 2016; Mysterud, Heylen, et al., 2019; Norwegian 

Public Health Institute, 2023). Case reports include a wide variety of clinical and 

demographic information, although not every case report includes all possible fields. For 

example, about half of case reports contain the municipality in which the tick bite occurred.  

The study period in Paper 1 and Paper 2 was 1995-2019 because over this time there 

has been little change in diagnostics in Norway, with the exception of the standardization of 

spinal fluid testing protocols for children since 2011 (Mysterud, Heylen, et al., 2019). The 
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date of diagnostic testing was available for every patient and used in Paper 1 and Paper 2 as 

a uniform metric for exploring the timing of cases within the year. Paper 1 focused on 

national and regional trends in case seasonality, and included only cases in adults (20+ years), 

pooled across sex. The regional analysis grouped counties into four biogeographical regions, 

following designations from prior studies (Mysterud et al., 2016; Mysterud, Heylen, et al., 

2019). Paper 2 expanded the analysis of surveillance data from Paper 1 to explore the 

seasonality of cases grouped by age, sex, and clinical manifestation.  

A Bayesian modeling framework was used to quantify annual and seasonal trends in 

the timing of case data. By fitting a flexible seasonal trend to case timing across the entire 

time series, we were able to measure shifts in the timing of the week in which case numbers 

peaked. The statistical package INLA (http://www.r-inla.org) was used to fit the Bayesian 

models. INLA uses a method of Integrated Nested Laplace Approximation to fit Bayesian 

models rapidly, such that the analysis could be conducted on an average personal computer 

(Rue et al., 2009).  

Matrix Population Models 

 In Paper 3 we use an SI (Susceptible-Infected) framework to simulate disease 

dynamics in structured populations of ticks and hosts. The mathematical model presented in 

Paper 3 is based on a matrix population model, a structured, discrete time framework for 

describing dynamics in a population stratified according to states such as age, stage, or 

infection status (Caswell, 2001). The use of periodic matrix models on a discrete monthly 

timescale follows established matrix modeling theory that has been in use since the 1960s 

(Bacaër, 2009; Caswell & Trevisan, 1994; Skellam, 1967). The extension of such stage-
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structured matrix models to describe infectious disease dynamics is also well established 

(Klepac & Caswell, 2011; Klepac et al., 2009). 

In Paper 3, an existing tick matrix population model (Vindenes & Mysterud, 2024) is 

extended to include a pathogen transmission function during feeding events, infection status 

of ticks and small mammal hosts (susceptible or infected), and monthly vital rates in the small 

mammal host affecting the demographic turnover. The tick model employed in this 

framework is based on a matrix population model with 17 life stages, which account for 

instar, feeding status (fed or unfed), season of feeding (spring or fall), and overwintering 

(Vindenes & Mysterud, 2024). Tick abundance depends on the availability of two types of 

hosts, a small host with seasonal variation in availability and a large host that remains 

constant throughout the year (Vindenes & Mysterud, 2024). For the exploratory purpose of 

the study, the monthly timescale was considered optimal for exploring seasonal fluctuations 

while minimizing the number of parameters explicitly defined in the model. Only seasonal 

and not annual cycles were simulated in this model, as the size of the small host population 

was reset every January.  

The baseline parameter values were based on generalizations of I. ricinus, for the tick 

vector, and Myodes glareolus (bank vole), for the small mammal host, in northern ecosystems. 

The bank vole was used because it is an important host for the transmission cycle of B. 

burgdorferi sl in Europe (Aminikhah et al., 2021), and the generalization of its life cycle 

captures the main seasonal aspects of many other small mammal hosts (Tanton, 1969). The 

model primarily represents the transmission of B. afzelii, the genospecies of B. burgdorferi sl 

that is most commonly found in bank voles (Mysterud, Stigum, et al., 2019). As B. afzelii is 

typically associated with localized infections, the disease hazard represented in the model is 
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mainly for more common presentations of Lyme disease than the cases included in the 

surveillance data used in Papers 1 and Paper 2. The model was used to explore alternative 

scenarios that simulated shifts in tick questing phenology and changes in monthly vital rates 

for the small host. Seasonal population sizes were extracted from the equilibrium state of the 

model, obtained by population projection. 

Main Results 

In Paper 1, the statistical analysis of surveillance data revealed a six-week 

advancement in the seasonal timing of disseminated Lyme disease cases in southern Norway 

over the 25-year study period. The seasonal shift predominantly occurred in the first 10 years 

of the study period, preceding the period with the most rapid increase in annual incidence. 

Annual incidence increased across geographic regions in Norway. Changes in plant 

phenology, measured by peak spring greening observed by Normalized Difference Vegetation 

Index (NDVI), over the same study period and area were used as a yardstick for interpreting 

the observed shift in case timing. The shift in case seasonality outpaced a concurrent shift in 

peak spring greening, which advanced by around three weeks over the study period in the 

same study area. The shift in peak spring greening also predominantly occurred during the 

first 10 years and then stabilized for the remainder of the study period. The advancement of 

case timing and similarity between study regions were consistent with the climate-based 

predictions outlined in the Introduction. 

The analysis in Paper 2 identified that the seasonal case timing in youth (0-19 years, 

both sexes) was consistently around 4.4 weeks earlier than adults, regardless of clinical 

manifestation. Both adults and youth had a similar advancement in case timing over the study 

period, indicating that the advancement trend is unrelated to patient demography. Other 
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demographic features of the surveillance data include a bimodal distribution of incidence over 

patient age, with children (0-9 years) having the highest incidence, seconded by seniors (70-

79 years). Males had a higher incidence than females in all age groups except for children (0-

9 years). Adult males had higher proportion of arthritis cases compared to adult females. 

While all demographic groups predominantly had neuroborreliosis manifestations, youth (0-

19 years) presented with a higher proportion of neuroborreliosis cases and a lower proportion 

of arthritic manifestations compared to adults. These findings partially aligned with the 

predictions outlined earlier, as while a difference in case timing between children and adults 

was identified, no clear difference in case timing between males and females was quantified. 

In the mathematical model presented in Paper 3, tick questing phenology had an 

important effect on disease hazard. Earlier questing exposed ticks, particularly larvae, to 

higher infection prevalence in the small host population due to the seasonality of host 

demography leading to a high number of infected adults in the beginning of the year. In 

spring, the small mammal population was comprised of a larger proportion of older 

individuals which were infected by ticks the prior year. This was in contrast with the summer 

and fall population, dominated by susceptible juveniles. Thus, host demographic turnover, 

driven by reproduction, rapidly diluted infection prevalence in the host population and thereby 

reduced the infection probability for feeding ticks. Synchrony in questing between tick stages 

was important for pathogen transmission cycles because the demographic turnover in hosts 

diluted infection levels very rapidly in summer. 
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Discussion 

Shifting Seasons as a Driver of Disease Emergence  

 Over recent decades, climate change, in addition to other factors, has already altered 

the prevalence and distribution of infectious diseases (Altizer et al., 2013; Campbell-Lendrum 

et al., 2015), and specifically tick borne diseases (Gilbert, 2021). It is often difficult to 

disentangle the role of shifting climate seasonality from other climate trends in driving 

changes in disease dynamics. One possible link between shifting seasonality and disease 

emergence could be a longer duration of tick activity resulting in more disease cases. In 

Paper 1, we find that the timing of Lyme disease cases advanced by six weeks over the study 

period, but the duration of the season of Lyme cases did not change. It is interesting that there 

is no observed lengthening of the season given that models predict climate change can cause 

increased tick activity in autumn (Li et al., 2016; Ogden et al., 2008). This could occur 

because the activity potential of a longer duration of suitable climate for tick questing may not 

be fully realized by a tick population, for example because of low autumn host availability 

(Eisen, Eisen, Ogden, et al., 2016). Even if tick questing activity is prolonged, human 

exposure levels may be reduced in autumn (Eisen, Eisen, Ogden, et al., 2016).  

In Paper 3, we found that advanced tick questing could increase disease hazard, but it 

remains unclear, and likely highly regionally variable, whether climate change will result in 

delayed or advanced tick questing, and/or an extension or reduction of questing duration, with 

several models showing different, but overlapping, predictions (Li et al., 2016; MacDonald et 

al., 2020; Ogden et al., 2020). Generally, tick activity is predicted to start earlier in the spring 

and have a longer duration (Levi et al., 2015; MacDonald et al., 2020; Monaghan et al., 2015). 

While tick activity appears to be primarily driven by climate, specifically humidity (Berger et 

al., 2014; Hauser et al., 2018; Requena-García et al., 2017; Schulz et al., 2014) and 
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temperature (Alonso‐Carné et al., 2015; Eisen, Eisen, Ogden, et al., 2016; Wongnak et al., 

2022), and cumulative growing degree days is a strong predictor of activity levels (Diuk-

Wasser et al., 2006; Moore et al., 2014), photoperiod-induced diapause (Gray et al., 2016) 

makes tick responses to climate warming difficult to predict. Climate based predictions of tick 

dynamics based on seasonal environmental suitability for tick questing may not adequately 

account for ticks entering diapause, which could inhibit fall questing (Belozerov et al., 2002; 

Gray et al., 2016). Responses to photoperiod and climate drivers vary between tick 

populations from different regions (Eisen, Eisen, Ogden, et al., 2016; Gilbert et al., 2014; 

Ogden et al., 2020), which makes such effects difficult to generalize. Limited data is available 

on how temperature effects B. burgdorferi survival and replication inside the tick vector (Gray 

et al., 2009), in contrast to the malaria disease system where such effects are well studied 

(Mordecai et al., 2019). 

 Seasonal effects that impact Lyme disease hazard indirectly via host phenology, 

abundance, and movement could explain linkages between case seasonality and emergence as 

well as the divergence between the observed magnitude of case advancement in Paper 1 and 

model-based predictions of shifts in case timing (Li et al., 2016; Monaghan et al., 2015). 

Following the model proposed in Moore et al. 2014, that links cumulative growing degree 

days to case seasonality, the observed six-week case advancement in Paper 1 would require 

an increase of 450 cumulative growing degree days by mid-May. This value exceeds 

expectations for climate change projections to year 2050 for most of Norway (Skaugen & 

Tveito, 2004). While climate based projections of case seasonality are undoubtedly useful, the 

divergence between model predictions and empirical findings in Paper 1 highlights the 

importance of combining such approaches with mechanistic models that include host and 

vector population dynamics and interactions. 
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 A limitation of the mathematical model presented in Paper 3 is that it only 

incorporates one small host, representing a small mammal life history. This is a large 

simplification of the complexity of hosts used by ticks. Avian hosts, such as the European 

Blackbird (Turdus merula), impact Lyme disease dynamics as an important reservoir of B. 

garinii (Brinkerhoff et al., 2009; Gryczyńska & Kowalec, 2019; Mysterud, Heylen, et al., 

2019). Climate change has resulted not only in advanced migration phenology in many bird 

species (Barrett, 2002; Cotton, 2003; Jenni & Kéry, 2003; Lehikoinen et al., 2004), but also a 

reduction in migratory strategy in partial migrants, including the European Blackbird (Møller 

et al., 2014; Van Vliet et al., 2009). It is plausible that climate driven changes in bird 

migratory behavior increase the availability of birds as hosts for spring-feeding ticks, thus 

increasing B. garinii infection levels in the tick population. Extending the model framework 

presented in Paper 3 to include an avian host would be an interesting future direction for 

research. 

Case Seasonality Analysis 

 Many jurisdictions have instated Lyme disease surveillance since the 1990s, when 

Lyme disease became nationally notifiable in many European countries and the United States 

(Blanchard et al., 2022; Cartter et al., 2018; Nagarajan et al., 2023). Surveillance systems 

differ between countries in case definition and reporting policies (Blanchard et al., 2022; 

Vandekerckhove et al., 2021), particularly as to whether patients with erythema migrans are 

included in the case definition or only cases of disseminated infection are included (Nagarajan 

et al., 2023). Heterogeneity between surveillance systems creates difficulty in understanding 

Lyme disease epidemiology, comparing data between jurisdictions, and developing wide-scale 

interventions (Blanchard et al., 2022; Nagarajan et al., 2023). Under-reporting of Lyme 
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disease cases is a broadly recognized problem (Burn et al., 2023; Ogden et al., 2019; Rutz et 

al., 2018).  

One of the challenges of working with Lyme disease surveillance data is that typically 

only positive results of tests are recorded. The surveillance data reports the number of cases in 

a given week, but not the proportion of tests that were positive, making health system effects 

much more difficult to control for. Health system effects can be very important in an emerging 

disease where awareness of the disease can play an important role in detection. In general, 

interpretation of the quality and completeness of surveillance data requires additional data 

collection processes (Lescano et al., 2008), which was outside of the scope of this thesis but 

has been discussed elsewhere (MacDonald et al., 2016). Many Lyme disease surveillance 

systems, including the Norwegian data, only include cases of disseminated disease, which 

represent only a small fraction of total cases. Thus, even in places with relatively high 

incidence, the number of cases per week is quite small and heavily zero inflated.  

Estimation of changes in case seasonality requires the ability to pick out a weak signal 

from the data with a high level of confidence. In Paper 1, the challenge of small case totals, 

although partially mitigated by the long duration of the study period (25 years), had to be met 

by pooling county-level data into larger regions. Similarly, in Paper 2, sexes had to be 

grouped in youth because of low case totals. Although these groupings were necessary for 

statistical model fitting, it would have been ideal to be able to work on more demographic 

groups and a finer spatial scale. Spatial scale is particularly important because Lyme disease 

exhibits a high degree of local variability (Waller et al., 2007). Additionally, because Lyme 

disease has been emerging in Norway throughout the entire study period, particularly in the 
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context of coarse spatial scales, it is challenging to identify a baseline time period for 

comparison.  

 Given the many challenges of working with surveillance data, Bayesian methods are 

an attractive approach for model fitting (Robertson et al., 2010). Historically, Bayesian 

modeling has been hindered by the computational intensity of sampling parameters from the 

posterior distribution via Monte Carlo Markov Chain methods (Robertson et al., 2010; Rue et 

al., 2009). The package INLA simplified the implementation of flexible and complex 

components in the generalized linear mixed model structure that could separate annual and 

seasonal trends in the data. The modelling approach for the seasonal component was inspired 

by a previous analysis of mumps cases in New York City, that also included a flexible annual 

trend and a time-variant harmonic seasonal component, but did not use a Bayesian framework 

(Ruiz-Cárdenas et al., 2012). In Paper 1 we were able to use INLA to fit a flexible seasonal 

trend that varied across years to data from the entire study period. This differentiated our 

method from a prior approach to analyzing Lyme disease case seasonality in the USA, which 

involved year by year analysis of seasonal peaks by fitting a polynomial regression function 

(Moore et al., 2014). An advantage of our method is an improved ability to quantify 

uncertainty in the estimated seasonal peaks by repeated sampling from the posterior 

distribution.  

Demography and Sociological Features 

Human demography is known to be important for vector borne diseases through a 

variety of pathways including vulnerability, mobility, and awareness (Athni et al., 2021; Ryan, 

2020; Sahoo et al., 2017; Soriano-Paños et al., 2020), but has been given considerably little 

attention in the context of predicting vector borne disease outcomes. Demographic changes in 
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Thailand have resulted in an increase in the mean age of dengue hemorrhagic fever cases, 

which has important implications for clinical complications and health burden (Huang et al., 

2022). For Lyme disease, surveillance data has been used to explore the demography of 

patients in several regions, which generally shows a bimodal distribution with elevated 

incidence in youth and older adults (Kugeler et al., 2022; Schwartz et al., 2017; Seukep et al., 

2015; Tulloch et al., 2019). While behavioral factors modulating exposure are often assumed 

to drive the bimodal demographic pattern (Kugeler et al., 2022), little research has been 

conducted into possible physiological and immunological factors that could also be involved. 

Continued demographic transition to an older population age structure from reduced birth and 

death rates (Bongaarts, 2009) may have important implications for Lyme disease 

epidemiology but is typically not included in predictions of Lyme disease emergence.  

Economic improvements reduce the incidence of many vector borne diseases 

(Campbell-Lendrum et al., 2015), but the relationship between economic development and 

incidence is less clear for Lyme disease. Vector control efforts and infrastructure changes have 

had a very significant impact on many vector borne diseases (Altizer et al., 2013), but are not 

very relevant for Lyme disease where sanitation and water storage do not impact disease 

hazard and limited vector control options are available (Ostfeld et al., 2006). Socioeconomic 

change influences land use and conversion between land cover types, which can influence 

both disease hazard and human exposure (Li et al., 2019). Projections of Lyme disease risk 

based on a combination of climate and socioeconomic forecasts suggest that Lyme disease 

hazard is expected to increase under scenarios with increased social, economic, and political 

disparities (Li et al., 2019). However, Lyme disease risk has also been linked with higher 

socioeconomic status in several contexts (Slatculescu et al., 2022; Springer & Johnson, 2018; 
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Tulloch et al., 2019), which is congruent with known risk factors that can be associated with 

higher socioeconomic status, such as residing in suburban areas (Kaup, 2018; Smith et al., 

2001) and participation in outdoor leisure activities, such as hiking and gardening 

(Aenishaenslin et al., 2022; Mead et al., 2018). 

A confounding factor in drawing linkages between socioeconomic status and Lyme 

disease risk stems from the case definition used for Lyme disease surveillance, as it appears 

that lower socioeconomic status and reduced health care access is associated with 

disseminated cases of Lyme disease, while higher socioeconomic status is associated with 

localized infections (Moon et al., 2021). Gender-based social inequality has been mentioned 

in Paper 2 as it has been found that there is a female bias in studies on localized Lyme disease 

infections and a male bias in studies on disseminated infections (Eliassen et al., 2017; Nygård 

et al., 2005; Skufca et al., 2022; Tulloch et al., 2020; Tulloch et al., 2019). Further 

investigation into Lyme disease demography and the social and physiological risk factors for 

disease dissemination would be a very valuable direction for future research that is currently 

beyond the scope of the data recorded in surveillance systems.  

Insights from Mathematical Models 

 Tick population models, including the one used in Paper 3 and those described 

elsewhere (Dobson et al., 2011; Estrada-Peña & Estrada-Sánchez, 2013), are inherently 

limited by knowledge gaps resulting from a lack of empirical data on tick biology and ecology 

(Gray et al., 2021; Kahl & Gray, 2023; Sirotkin & Korenberg, 2022), particularly for non-

questing stages that are more difficult to observe. For this reason, the model-based predictions 

discussed in Paper 3 are intended to describe qualitative changes in outcomes between 

scenarios, rather than accurate quantitative predictions. Additionally, the model is flexible and 
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adaptable such that empirical data can be incorporated into the framework as they become 

available. Despite inherent limitations, population models are useful for exploring underlying 

linkages between tick and host phenology and disease dynamics, which may be very difficult 

and costly to observe in an empirical system. 

 A theoretical basis for understanding links between disease hazard and vector and host 

phenology is needed for untangling complex relationships in a vector borne disease system. 

This is exemplified in the literature on frogs infected by the trematode parasite Ribeiroia 

ondatrae that uses snails as an intermediate between terrestrial reservoirs and tadpoles. This is 

one of the only disease systems where it has been empirically demonstrated that changes in 

temperature alters phenological synchrony between hosts and parasites, yielding important 

changes to disease dynamics. Warmer temperatures cause parasites to be released from snails 

into the aquatic environment earlier in the year, yielding bidirectional impacts on frog disease 

outcomes (Paull & Johnson, 2011). Earlier parasite release coincides with higher snail 

mortality and reduced overlap between tadpoles and parasites, but also a higher risk of 

infection as the tadpoles are more susceptible earlier in their development (McDevitt-Galles et 

al., 2020; Paull & Johnson, 2014; Paull & Johnson, 2011). Similar effects could be occurring 

in the Lyme disease system, but the role of host immunity in driving pathogen loads has not 

been well explored. Observed heterogeneity in tick infestation and infection levels in rodents 

(Lindsø et al., 2023) could be related to host immunology. Migratory birds have been shown 

to have seasonal fluctuations in pathogen load, linked to immune modulation from migratory 

stress (Gylfe et al., 2000). It would be interesting to extend the model presented in Paper 3 to 

include more within-host heterogeneity to gain insight into how factors such as body 

condition, stress, and immunity could impact seasonal pathogen loads and host infection 

susceptibility. 
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 It is well recognized that climate and local adaptations drive the seasonal synchrony of 

activity levels of tick instars, and that questing synchrony is relevant for pathogen 

transmission cycles (Estrada-Peña & Estrada-Sánchez, 2013; Gatewood et al., 2009; Gilbert, 

2021; Ogden et al., 2020; Randolph et al., 2000). It remains unclear and regionally diverse 

whether climate change is likely to increase or decrease the synchrony of nymphal and larval 

feeding (Altizer et al., 2013; Ogden et al., 2020; Ogden et al., 2008; Ostfeld & Brunner, 

2015). This is another topic that lends itself to exploration with models because of the 

difficulty in observing tick phenology across instars for a long time period and at a large 

spatial scale, while controlling for inter-annual climate variability.  

It has been postulated that a time lag between host inoculation by nymphs in spring 

and pathogen acquisition by larvae in summer favors pathogen genotypes that are able to 

persist in hosts for several months (Gatewood et al., 2009; Ostfeld & Brunner, 2015), while 

greater synchrony in larval and nymphal feeding, could select for pathogen strains with higher 

virulence (Altizer et al., 2013). However, even with a prolonged lag between nymphs and 

larvae questing, in cases where hosts have high demographic turnover and infected hosts have 

low survival, a virulence strategy could be more favorable than a persistence strategy. This is 

because it could be more beneficial for the pathogen to target high transmission rates between 

infected nymphs and susceptible larvae questing at the near edges of their activity periods 

than to attempt to bridge the gap between activity peaks during which high infected host 

mortality could occur. In a scenario where such an adaptation has occurred, phenological 

shifts that increase synchrony between nymphs and larvae could be more relevant because the 

virulent genotype that was dominant has more to gain from the phenological shift than a 

genotype with a persistent strategy. Similar hypotheses regarding the relationship between 

tick stage synchrony, host longevity, and disease transmission have been proposed elsewhere 
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(Eisen, Eisen, Ogden, et al., 2016; Ogden et al., 2020). An extension of the mathematical 

model presented in Paper 3 that includes multiple pathogen genotypes with different 

evolutionary strategies could be used to explore such theories. 

 The pathway proposed in Paper 3 that links tick questing phenology and host 

demographic turnover with disease hazard is a novel perspective on Lyme disease ecology, 

that could be relevant in other disease systems. Further empirical research is needed to 

demonstrate whether this pathway is actually occurring in nature. With more population data 

for hosts and vectors, the model could be extended to include spatial specificity and a finer 

temporal scale. Clinical and social research that explores human exposure and disease 

pathogenesis would be valuable for linking disease hazard model outputs with human case 

surveillance data. While the demographic analysis in Paper 2 and the mathematical modeling 

exercise presented in Paper 3 make an initial foray into exploring potential causes of the 

seasonal shift observed in Paper 1, we remain far from demonstrating why Lyme disease 

cases are occurring earlier in the year and whether this is linked with an increase in incidence 

and/or the spatial distribution of Lyme disease. I hope this work inspires further investigation 

into the seasonality of Lyme disease and other vector borne diseases.   
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Climate change has had a major impact on seasonal weather patterns,
resulting in marked phenological changes in a wide range of taxa. However,
empirical studies of how changes in seasonality impact the emergence and
seasonal dynamics of vector-borne diseases have been limited. Lyme borre-
liosis, a bacterial infection spread by hard-bodied ticks, is the most common
vector-borne disease in the northern hemisphere and has been rapidly
increasing in both incidence and geographical distribution in many regions
of Europe and North America. By analysis of long-term surveillance data
(1995–2019) from across Norway (latitude 57°580–71°080 N), we demonstrate
a marked change in the within-year timing of Lyme borreliosis cases accom-
panying an increase in the annual number of cases. The seasonal peak in
cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts
in plant phenology and previous model predictions. The seasonal shift
occurred predominantly in the first 10 years of the study period. The concur-
rent upsurgence in case number and shift in case timing indicate a major
change in the Lyme borreliosis disease system over recent decades. This
study highlights the potential for climate change to shape the seasonal
dynamics of vector-borne disease systems.

1. Introduction
Emergence and range expansion of vector-borne and other infectious diseases
are expected to accompany the many threats of the climate crisis [1,2]. Climate
warming and environmental changes are suspected to have already led to both
geographical range expansion of many vector-borne diseases and increased
incidence in regions where diseases are already established [3–5]. Ecosystems
at northern latitudes are experiencing above-average climate warming, which
can create more favourable conditions for arthropod disease vectors and thus
increase disease hazard [6,7]. In addition to warming, climate change has modi-
fied the seasonal structure in northern latitudes, introducing shorter winters, an
earlier onset of spring and a longer growing season [8]. Phenological changes in
the activity patterns of organisms have become one of the most notable effects
of climate change in temperate regions and can be observed across taxa, from
changes in the onset of plant growth, to reproductive timing in birds and
mammals [9,10].

The speed at which different species respond to climate warming varies,
and asynchronous responses by interacting species can create phenological
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mismatches [11–14]. Vector-borne zoonoses are maintained
by inherently complex ecological networks of hosts, vectors
and pathogens [2]. Phenological overlaps between interacting
components are key determinants of disease dynamics, and
climate change-induced asynchronies are likely to alter dis-
ease trends. Empirical evidence demonstrating linkages
between climate change, seasonality and disease outcomes
has been limited [15,16]. Analysis of consistent, long-term
surveillance data has been recognized as a critical step in
developing an understanding of the ecological and climatic
drivers of disease risk [3,4,15]. Explicit consideration of case
seasonality in surveillance data can improve the detection
of long-term changes in disease trends and is important for
identifying potential effects of climate change on disease
dynamics [17–21].

Lyme borreliosis, or Lyme disease, is a zoonotic infection
caused by certain genospecies of the Borrelia burgdorferi sensu
lato (sl) complex that are transmitted by tick vectors in the
genus Ixodes [22]. The ixodid tick vectors are highly generalist
hematophages that feed on a wide range of vertebrates includ-
ing small and largemammals, birds and reptiles. A bloodmeal
is required for the tick to develop between life stages, from
larvae to nymphs and then adults, and for adult females to
lay eggs [23]. B. burgdorferi sl is acquired by larval and nymphal
ticks during feeding on infected hosts, and then transmitted
during subsequent feedings [24]. The different pathogenic
B. burgdorferi sl genospecies are associated with different
vertebrate groups. In Europe, Borrelia afzelii is found in small
mammals and B. garinii in birds [25]. In North America,
B. burgdorferi sensu stricto is the main pathogenic genospecies
and is found in bothmammals and birds [26]. Hence, the circu-
lation in the ecosystem of pathogens causing Lyme borreliosis
differs markedly between the continents.

Lyme borreliosis is the most common vector-borne dis-
ease across temperate regions of the northern hemisphere
[27–30]. Over recent decades, there has been an increase in
both the number of Lyme borreliosis cases and the geo-
graphical distribution range, with emergence particularly
impacting northern latitudes and high-elevation regions in
North America and Europe [27,31–34]. Several studies have
investigated spatial disease trends and the environmental fac-
tors that influence regional disease risk [33–37]. For temporal
disease trends, empirical exploration of seasonality change
is restricted to cases in the USA [38–40]. However, as the
European and North American disease systems differ funda-
mentally due to contrasting hosts, pathogens and vectors, it is
necessary to consider these systems independently [41]. For
the European disease system, changes in Lyme borreliosis
seasonality have only been predicted by a mechanistic
model based on data from Scotland [42]. Our study is the
first in Europe to use surveillance data to explore changes
in the seasonality of Lyme borreliosis cases.

The goal of this study is to quantify changes in both the inci-
dence and seasonal timing of Lyme borreliosis cases at the
expanding northern distribution range in Europe. Lyme borre-
liosis surveillance data have been consistently reported in
Norway under uniform criteria since 1995, presenting an excel-
lent data source for this undertaking. Furthermore, Norway
comprises distinct ecoregions with differences in climate and
host composition, which allows for a unique opportunity to
compare disease seasonality in ecologically distinct areas uni-
fied under a single-surveillance umbrella. Changes in plant
phenology, described by spring greening measured from

satellite data using the Normalized Difference Vegetation
Index (NDVI), are used as a yardstick for interpreting the
magnitude of phenological responses to climate change in the
study area [9].

2. Methods
(a) Study area
Norway’s Lyme borreliosis surveillance data include cases
reported from the entire country, spanning a latitudinal range of
57°580–71°080 N [34,43]. For this analysis, cases reported at the
municipality scale were grouped into four biogeographical
regions, North, South, East and West (figure 1a), following desig-
nations from prior studies [25,34]. The four regions represent
contrasting ecosystems with marked differences in topography
and climate. TheWest region is separated from the East by amoun-
tain range and experiences a temperate maritime climate, in
contrast with the more continental climate of the East. The
region South is mild and humid [44]. Forest and species
composition also differ between regions [45]. Large mammal com-
munities in particular are different between regions, which has
especial importance for the vector life cycle [46]. The region West
is dominated by red deer (Cervus elaphus), while roe deer (Capreolus
capreolus) andmoose (Alces alces) aremost prominent in the regions
East and South. Generally, the same small mammal and avian host
species occur across the regions studied, though quantitative evi-
dence of differences in abundances and host importance between
regions remains limited [24,47].

Documented effects of climate change have been recorded
across Norway over the study period [48]. For the reference
period of 1979–2008, the annual mean temperature for mainland
Norway has increased by 0.5–0.6°C, with winter temperatures
increasing by about 1°C. The growing season, defined by the
numbers of days with a mean temperature above 5°C, has
increased by 1–2 weeks nationally, with the greatest increase in
the Western coastal regions. Annual precipitation has increased
in all regions, on average by 3% per decade, with the Western
region most impacted by increased precipitation. The precipi-
tation has primarily increased in the spring and decreased in
the autumn [48]. The streamflow during the spring has also
increased due to earlier snowmelt and earlier timing of snow-
melt-driven flooding events [48,49]. The snow season has
become shorter in most parts of mainland Norway, with reduced
annual snow depth and fewer days of snow cover [48]. Advance-
ment in spring plant phenology in response to climate change
has been documented [50,51].

(b) Lyme borreliosis surveillance data
Lyme borreliosis surveillance data has been collected by the
Norwegian Surveillance System for Communicable Diseases
(MSIS) since 1991, when it became mandatory for care providers
to report cases of positive diagnosis [52]. MSIS is curated and
administrated by the Norwegian Institute of Public Health. The
study period used for this analysis is from 1995 to 2019 because
consistent criteria for reporting cases of disseminated Lyme bor-
reliosis have been maintained over this time. A detailed account
of reporting criteria has been reported elsewhere [25,52]. The
only significant documented change in diagnostics over the
study period is the standardization of spinal fluid testing proto-
cols for children since 2011 [25]. Because of this change in testing
protocol and to reduce bias from health system effects, case
reports used for this study were restricted to patients over age
19. Cases were spatially localized to the region in which the
tick bite occurred when these data were available (ca 50% of
cases), otherwise the municipality in which the person resides
was used. If the location of bite was reported as outside of
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Norway these cases were not included in the study. Case timing
is based on the date on which the patient went for diagnostic
testing, which is available for every case. This date will typically
occur several weeks after the tick bite, allowing time for
disseminated disease symptoms to have manifested [53].

(c) Normalized difference vegetation index
Changes in the seasonality of plant development were used as a
yardstick to contextualize the magnitude of temporal changes in
the seasonality of Lyme borreliosis cases. Plant development was
characterized using remote sensing NDVI satellite data to deter-
mine peak spring greening (when the rate of plant green-up is
fastest) each year from 1995 to 2019. NDVI data are a widely
used indicator of ecological responses to environmental change
[54]. Changes in plant phenology are not expected to affect the
timing of Lyme borreliosis cases directly, but are a useful point
of reference for exploring downstream effects of climate change.

NDVI images are produced from satellite instrumentation that
has been available from various sources since 1981 [55]. Moderate

Resolution Imaging Spectroradiometer (MODIS) data at 250m res-
olution have been available since 2000 andwere downloaded from
NASA Earthdata (https://urs.earthdata.nasa.gov/home) using
the ‘MODIStsp’ package in R [56]. For the first 5 years of the
study period (1995–2000), NDVI data from the Global Inventory
Modelling and Mapping Studies (GIMMS) at the 8 km resolution
scale were downloaded using the ‘gimms’ package in R [57].
MODIS andGIMMS data have been shown to be highly correlated
and suitable for making continuous time series [55]. The high cor-
relation (r > 0.9) was confirmed for this study by checking the years
2000–2005 in which data from both sources were available.

NDVI data were processed for areas below 200 m above sea
level in the West, East and South regions combined, to estimate a
yardstick that is on the national scale and relevant to areas in
which Lyme borreliosis is most common. The MODIS NDVI
images are collected once every 16 days, and the GIMMS NDVI
images every 15/16 days. All images were processed following
the procedures in Bischof et al. [58] and Rivrud et al. [59,60]. For
each image pixel, the NDVI over the study period was scaled (0–
1) and a double logistic regression curve was fitted annually
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Figure 1. Key changes in the seasonal and long-term trends of Lyme borreliosis. (a) Map of Norway showing the regional aggregations used in this, and prior,
studies [25,34]. The statistical models are fitted to national data, as well as to the South, West and East regions independently. (b) The annual component from the
main model for Lyme borreliosis cases fitted to the national data (black) and to regional data for the South (blue), West (yellow) and East ( purple). The trends show
relative changes in average weekly case totals predicted for each year (relative case intensity). Because the intercept is not included, the trends are not comparable
on an absolute scale. (c) The shift in the week of peak spring vegetation greening, measured by NDVI. The points represent the week in which peak greening was
observed. The trendline is fitted from a linear model with a basis spline for year, with three degrees of freedom. (d ) Predicted peak weeks for Lyme borreliosis cases
from the main national model (black) and the regional models fitted to the South, West and East (blue, yellow and purple). Black points represent the annual peaks
from the national model, and the corresponding black vertical lines show the 95% credible intervals, quantified by repeated sampling from the posterior distribution.
The black curve with a shaded confidence interval is a basis spline with four degrees of freedom fitted to the predicted national peaks.
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following Bischof et al. [58] and Rivrud et al. [59,60] to estimate a
continuous time series from which derivatives, e.g. rate of
change in green-up, start of spring, end of spring, and more,
can be calculated [58,60]. Further details on the processing and
modelling of NDVI data can be found elsewhere [58–60].

The day on which the rate of increase in greenness was at the
maximumwas used to determine the date of peak spring greening,
and the corresponding week number was then extracted to make
the data comparable to the Lyme borreliosis case data. A linear
regression using a basis spline with three degrees of freedom
was applied to visualize the change in peak spring greening over
the study period. The basis spline with three degrees of freedom
was selected for having the lowest Akaike information criterion
(AIC) in comparison with a linear model and more flexible splines
(see electronic supplementary material).

(d) Statistical analysis
The statistical software R v.4.2.2 was used for all statistical
analyses [61]. The package INLA (http://www.r-inla.org) was
used to fit all models. INLA uses a method of Integrated
Nested Laplace Approximation to rapidly fit Bayesian models
[62]. The R script (reproducing all the results and figures) and
further details on the statistical analyses are available in the
electronic supplementary material.

The number of Lyme borreliosis cases per week was modelled
with a generalized linearmixedmodel (GLMM) including a flexible
seasonal component that allows for the separation of a yearly trend
and a seasonal trend. The number of cases yij inweek i (from 1 to 52)
and year j were assumed to follow a Poisson distribution,

yij � Poisson(lij), ð2:1Þ
where lij is the expected number of cases according to themodel. As
is standard for PoissonGLMMs,we used a logarithmic link function
(i.e. ln(lij) is a linear predictor). The model formulawas specified as
follows:

ln (lij) ¼ b0 þ ln (Nj)þ Yj þWij þ 1ij, ð2:2Þ
where b0 is the intercept, Yj is the year effect (modelled as a first-
order random walk), Wij is the seasonal effect (specified below),
ln(Nj) is the population offset and εij is a Gaussian random effect
used to account for overdispersion [63].

The population offset ln(Nj) is the logarithm of the total adult
population Nj in the region. This was included to account for any
changes in the number of observed cases due to changes in
population size. Including a population offset makes the log-
linear model equivalent to modelling the log of the expected
number of cases relative to the population size (i.e. ln(lij/Nj)).
Population size data were obtained on 25 January 2022 from Stat-
istics Norway, Population Count (https://www.ssb.no/en/
befolkning/folketall).

The main advantage of this model is its ability to separate the
yearly (Yj) and seasonal (Wij) components, so that changes in sea-
sonality can be isolated from long-term disease trends. The
modelling approach for the seasonal component was inspired by
an analysis of monthly registered cases of mumps in New York
City by Ruiz-Cárdenas et al. in 2012 [64]. The long-term trend
(Yj) is modelled as a first-order random walk (prior specified in
the electronic supplementary material). The seasonal component
is based on a periodic function, where the effect of week number
i in year j is given by

Wij ¼ bij sin
2p
52

� �
þ gij cos

2p
52

� �
, ð2:3Þ

where bij and gij are eachmodelledwith a first-order randomwalk
to make the seasonal effect of sequential weeks highly correlated,
and the constant factor 2p/52 defines the period in weeks within

year. This seasonal effect is smooth across the study period because
the parameters bij and gij vary slowly.

Using trigonometric identities, equation (2.3) above can be
rewritten as follows:

Wij ¼ Aij sin
2p
52

þ pij

� �
, ð2:4Þ

where Aij represents the amplitude (determined by A2
ij ¼

b2
ij þ g2ij), and pij represents the phase shift of the sinusoidal func-

tion (determined by tan( pij) = bij/gij). Importantly, the phase
shift in equation (2.4) uniquely identifies a peak week of each
year during which the number of Lyme borreliosis cases is at
the maximum predicted by the model. Thus, changes in case sea-
sonality over the study period can be quantified by extracting the
peak week for each year from the model. In total, this results in a
flexible seasonal component that can capture changes in season-
ality over time. Credible intervals (95%) for the annual seasonal
peaks were computed from 1000 samples from the posterior
model. Long-term trends in annual seasonal peaks were visual-
ized by fitting a basis spline with four degrees of freedom
using the ‘ggplot2’ package in tidyverse [65].

(e) Regional analysis
To compare regional differences in seasonality, the model
described above was fit to the South, West and East regions separ-
ately, aswell as to national data that includes all regions. TheNorth
region contained only few cases (approx. 5% of total cases) and
was not analysed separately. Fitting the models for each region
separately can reveal any differences between the regions in the
seasonality and long-term trends of cases and indicate if changes
in the geographical distribution of cases could underlie national
shifts in case timing. Regional models accounted for local adult
population offsets, using data obtained from Statistics Norway.

( f ) Model selection and alternative models
To determine whether case seasonality changed over the study
period, the main model described above was compared with
two alternative models with fixed seasonality across years. The
alternative models only differed from the main model in the con-
struction of the seasonal component. All models were fitted
using the national dataset for this comparison.

The first alternative model removed the flexibility of the seaso-
nal component by fixing the amplitude Aij and the phase pij in the
periodic function (equation (2.4)) so that they are the same each
year. An additional alternative model with an improved descrip-
tion of a fixed seasonality was modelled using a cyclic random
walk to fit a flexible spline with one knot per week [62,66]. This
improved alternative model has a closely tailored seasonal com-
ponent compared to the coarser sinusoidal seasonal model.
Comparing these models allowed us to determine whether a clo-
sely fit but fixed seasonal trend describes the data better than a
more coarsely fit but flexible seasonal trend that changes over time.

Comparison of the models was done through cross-validation
(see electronic supplementary material). A randomly selected 10%
of the data were removed before each model was refitted, and
model performance was compared across 10 repetitions. Prediction
quality was scored by root-mean-square error (RMSE), mean absol-
ute error (MAE) and the negative log-likelihood (NLL) [67].
Additionally, the deviance information criterion (DIC) score, as
given by INLA, was used as a metric for model comparison [68].

3. Results
The main model with a flexible seasonal trend that changes
across years demonstrated good fit throughout the study
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period (figure 2; electronic supplementary material, figure S6)
and performedwell in cross-validation assessments (electronic
supplementary material, figure S16). The main model outper-
formed both alternative models with fixed seasonality on all
cross-validation metrics and using DIC (table 1), indicating
that there has been a shift in Lyme borreliosis case seasonality
over the study period (1995–2019). With the main model, we
were able to separately quantify year-to-year changes in the
number of cases and changes in within-year seasonality. The
main model’s parameters specifying the random effect distri-
butions are reported in the electronic supplementary
material, table S1. The seasonal component accounted for a
larger amount of the total variance than the year component,
highlighting the importance of including the seasonal trend
(electronic supplementary material, table S2). There was no
remaining temporal autocorrelation in the residuals (electronic
supplementarymaterial, figure S13). The unimodal seasonality
employed by the main model is supported by the cross-vali-
dation and through analysis of the residuals, which show
that the seasonality component of the main model is descrip-
tive across weeks within the year (electronic supplementary

material, figure S14). Thus, our findings support that the sea-
sonality of Lyme borreliosis cases in Norway is characterized
by a single main peak.

There was a clear national trend of increasing relative case
intensity over time (reflecting the year component of the main
model), with strong regional differences (figure 1b). While
nationally the average weekly cases have more than tripled
over the study period, there has only been a small increase
in the region South (figure 1b). This is in contrast with the
West, where in 2019 there were more than 10 times as
many cases than at the start of the study period. The region
South reported the majority of raw case counts in Norway
every year until 2010, when the West surpassed it in the
proportion of total cases reported annually. However,
throughout the study period, the South maintained the high-
est annual incidence (number of cases per 100 000 adults) due
to the much smaller population size relative to the other
regions (electronic supplementary material, figure S9). Stat-
istics describing trends in the raw data can be found in the
electronic supplementary material.

There was a distinct change in the seasonal timing of
Lyme borreliosis cases, characterized by an earlier shift in
the week in which case numbers peaked (figure 1d ). The
extent of the seasonal shift was around six weeks over the
25-year study period, averaging to a rate of change of
around 0.2 weeks per year. In the mid-1990s, the seasonal
peak was typically in late October, while in 2018 it was in
early September. Most of the seasonal shift occurred in the
first 10 years of the study period, after which the peaks
have been more stable. This is illustrated in figure 1d,
where the trend line fitted to annual peaks is a basis spline
with four degrees of freedom, which had a lower AIC than
a linear model (difference of 7.8). No regional differences in
the seasonal shift over the study period were observed.
Each regional model exhibited the same overall pattern as
the national model, and all regional peaks were within
the credible intervals of the national model (electronic
supplementary material, figures S11 and S12).
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Figure 2. Weekly case numbers over the study period (grey points), together with model predictions (green) for the main national model. The yearly trend is shown
in black (seasonal effect estimates set to zero), and the seasonal trend is shown in magenta (yearly effect estimates set to zero).

Table 1. Model performance metrics from cross-validation and DIC for
comparing different candidate structures for the seasonality component. The
main model includes a flexible seasonal component, while the two
alternative models include a fixed seasonal component (see main text and
electronic supplementary material). The metrics used were RMSE, MAE, NLL
and DIC.

model RMSE MAE NLL DIC

main model 2.08 1.53 2560.5 5065.5

fixed cyclic

random walk

2.12 1.56 2589.6 5096.0

fixed sinusoidal 2.13 1.57 2599.2 5104.2
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The shift in case seasonality outpaced the NDVI yard-
stick, which showed a shift towards an earlier peak spring
greening of around three weeks over the study period
(figure 1c). As with case timing, no regional differences in
the NDVI trend were observed. Although the shift in NDVI
was less pronounced than the shift in Lyme borreliosis
cases, both had a similar overall trend with a rapid shift in
the first 10 years and then a stabilization for the rest of the
study period.

4. Discussion
Climate change is expected to impact the dynamics and geo-
graphical extent of vector-borne diseases, but simultaneous
disease emergence and changing seasonality have rarely
been quantified. Lyme borreliosis exhibits a highly seasonal
incidence pattern and high sensitivity to environmental con-
ditions, making it an interesting case study for exploring
changes in seasonality. By applying a statistical model frame-
work that explicitly accounts for seasonality in long-term
surveillance data, we provide the first empirical evidence
supporting a marked shift in Lyme borreliosis seasonality
accompanying disease emergence and major climatic changes
in northern latitudes of Europe.

Alteration of seasonality is a critical pathway by which
climate change can affect ecosystem dynamics [69,70].
Changes in the seasonality of Lyme borreliosis cases were
consistent between ecoregions of Norway (figure 1d ), despite
major regional differences in the species composition of large
vertebrate hosts. All regions share the same tick vector,
indicating that changes in vector phenology are likely an
important driver of the observed patterns of Lyme borreliosis
cases. Lyme borreliosis infections have been shown to peak in
synchrony (with a lag) with high activity levels of nymphal
ticks [38,39,42]. Ticks have the capacity for rapid modifica-
tion of their questing activity and stage durations on the
individual scale, yielding high plasticity in their life-history
responses to environmental drivers [23,71–73]. The findings
in this study support the intuitive effect of warmer springs
shifting the Lyme borreliosis season earlier.

It has been hypothesized that warmer spring weather
could potentially lead to increased nymphal tick activity in
autumn due to a shortened development cycle leading to a
second annual peak of the nymph stage [23,38,74,75]. A
mechanistic model based on data from Scotland predicted
increased incidence rates and a lengthening of the Lyme bor-
reliosis season, but small changes in seasonality that varied
between regions, with some regions having an earlier shift
and other regions having a later shift in seasonality [42].
Our empirical analysis found only a consistent earlier shift
in Lyme borreliosis cases in Norway, across all ecoregions.
Both unimodal and bimodal distributions of tick questing
activity levels have been observed in Europe, typically with
a strong spring activity peak and, in some regions, a
second, smaller autumn activity peak [76,77]. In Norway,
tick activity data are limited to one study site in the Western
region, where it was found that tick questing levels peaked in
early summer (May–June), and only in some years, there was
also a small activity peak in early autumn [64]. We found no
evidence for a later secondary peak of Lyme borreliosis cases
(electronic supplementary material, figures S1 and S13).
This is consistent with findings in Denmark, where tick

activity levels are reported to have a bimodal pattern while
human Lyme borreliosis cases have a unimodal distribution
[78–81]. These findings suggest that the seasonal pattern of
Lyme borreliosis cases is driven by processes other than
tick activity levels alone. In Norway, pathogen prevalence
in small mammal hosts has been found to be consistently
higher in spring than in fall, while pathogen prevalence in
questing ticks is seasonally variable across years [24,34].
Human activity patterns may also lead to variable exposure
across seasons.

The shift in Lyme borreliosis seasonality observed in this
study far exceeds the magnitude of change observed in the
USA [38,40]. An empirical study of Lyme borreliosis cases
over a similar time period (1992–2007) across 12 U.S. states
found that warmer southern states had an earlier seasonal
onset than colder northern states [38]. However, there was
high inter-annual variability in timing of cases and no consist-
ent shift in seasonality [38]. The value of using a yardstick has
been highlighted when comparing quantitative estimates of
phenology [9]. For this study, NDVI was selected because it
is a well-developed index for the onset of plant growth [54].
The seasonal shift in Lyme borreliosis cases documented here
paralleled the shift in the onset of plant growth but with
a larger magnitude of shift (figure 1c,d). The difference in
magnitude of shift between peak spring greening and Lyme
borreliosis case timing highlights that there are likely differ-
ences in the climatic drivers of these two manifestations of
climate change. Empirical evidence suggests that several
species of arthropods are highly sensitive to climate change
and can show more rapid phenological shifts than plants and
vertebrates [9,82]. It remains a gap in current understanding
of tick biology towhat extent tick stage durations are controlled
by photoperiod or temperature [83,84]. The rapid seasonal shift
observed in this study suggests that photoperiod has a limited
effect on tick emergence from winter diapause, and that
climatic drivers, such as increasingly warm spring tempera-
tures and shifts in spring moisture levels and snow melt,
primarily drive the tick life cycle.

Alternative or additional explanations for the rapid shift in
seasonality of Lyme disease cases other than changes in tick
vector phenology cannot be excluded. Phenological changes
have also been documented in many host species linked to
the Lyme borreliosis disease system, such as onset of the deer
calving season [85,86] and the timing of migration and repro-
duction of birds [87]. Migratory birds play an important role
in the Lyme borreliosis disease system [47,88], but whether
changes to avian host phenology can drive themarked changes
in Lyme borreliosis disease seasonality remains unclear.
Changes to the healthcare system could underlie unexpected
epidemiological patterns observed over long study periods. It
is possible that improvements to health technologies and
increased disease awareness among physicians and the
public may have contributed to some of the seasonality shift
observed over the study period by hastening the speed of diag-
nosis for patients with Lyme borreliosis. However, there is
currently no documented evidence of any systemic and consist-
ent social or health system change that would significantly
impact speed of diagnostics over the study period.

Interestingly, the majority of the seasonal shift in cases in
Norway took place preceding a period of rapid increase in
case numbers and geographical range expansion (figure 1b,
d). While we cannot document a causal relationship, the
increased incidence may have been facilitated by the
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preceding shift in seasonality. There are many potential
mechanisms by which a shift in seasonality could increase
disease incidence. For example, warmer spring weather
could reduce critical mortality periods for immature ticks
emerging from winter diapause [23,84,89,90]. Warmer
springs also could increase synchrony between larval and
nymphal stages, thereby changing pathogen transmission
profiles and shifting the seasonality of Lyme borreliosis risk
in accordance with changes in vector stage timing [20,26,91].

This study provides quantitative evidence demonstrating
seasonality changes in a vector-borne disease. Further
research is needed to isolate the ecological drivers of season-
ality and how phenological changes in birds, mammals and
arthropods combine to impact pathogen circulation and, in
turn, human disease risks.
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This document includes R code for running the analysis and producing all the figures in the main text, as

well as additional figures and tables. The INLA models are also described in more detail here.

1. Setup and data exploration
The models are fitted using the INLA-package. To install the package, run:

#install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-do

wnload.org/R/stable"), dep=TRUE)

1.1 Datasets and libraries

The dataset (LymeData.csv) represents cases of Lyme borreliosis in Norway, aggregated to week, from

1995-2019. This data is gathered from surveillance data from the MSIS system. Each case is dated with

the week number at which the patient went for diagnostic testing at the hospital. The dataframe has a

running year-week index X, from the first week of 1995 to the last week of 2019.

# Lyme borreliosis data

dfa <- read.csv("LymeData.csv")

Y <- unique(dfa$year) #Years

wnr <- seq(1, 52, 1) #Week numbers within year

#NDVI data

peak.spring <- read.csv("NDVI_peakspring.csv")

#Dataset for plotting the map

load("Norway_df.RData")

Libraries and setup



Here, the libraries required to run the script are loaded into the R environment. This script was developed

using R version 4.2.2, INLA version 22.05.07, and tidyverse version 1.3.1 (which is bundled with ggplot2

version 3.3.6).

library(INLA)

library(sn)

library(mgcv)

library(tidyverse)

library(patchwork)

library(sf)

library(raster)

library(ggiraph)

library(mapproj)

library(knitr)

library(cowplot)

  

#----------------------------------------

# Initialize random number generator

set.seed(123456)

1.2 Exploring the Data

Before modelling the data we can briefly explore the raw data.

Total number of cases nationally:

sum(dfa$cases)

## [1] 4426

Total number of cases in the South:

sum(dfa$casesSouth)

## [1] 1896

Total number of cases in the West:

sum(dfa$casesWest)

## [1] 1512

Total number of cases in the East:

sum(dfa$casesEast)



## [1] 795

The proportional increase in case totals from the start to the end of the study period can be estimated by

comparing the averages of the case totals in the first three and last three years of the study period:

yrsums <- dfa %>% group_by(year) %>% summarize(n=sum(cases), nS=sum(casesSouth), 

nW=sum(casesWest), nE=sum(casesEast))

changes <- data.frame( 

  National_Change = mean(yrsums[23:25,]$n)/mean(yrsums[1:3,]$n),

  South_Change = mean(yrsums[23:25,]$nS)/mean(yrsums[1:3,]$nS),

  West_Change = mean(yrsums[23:25,]$nW)/mean(yrsums[1:3,]$nW),

  East_Change = mean(yrsums[23:25,]$nE)/mean(yrsums[1:3,]$nE))

changes

##   National_Change South_Change West_Change East_Change

## 1        3.116438     1.207792    12.48276    7.851852

From the above it can be estimated that, nationally, the number of cases approximately tripled over the

25 year study period. The region South had a small increase of around 20%, which is in stark contrast to

the region West where there are more than 10 times the number of raw cases at the end of the study

period compared to the start.

We can also calculate the proportion of national cases in the regions South and West to find the year in

which the proportion of national cases in the West surpassed the South.

propSouth <- yrsums$nS / yrsums$n

propWest <- yrsums$nW / yrsums$n

propframe <- data.frame(

  Year = Y,

  Proportion_South = propSouth,

  Proportion_West = propWest

)

zoompf <- propframe[propframe$Year %in% 2007:2012,]

print(zoompf)



##    Year Proportion_South Proportion_West

## 13 2007        0.4832536       0.3301435

## 14 2008        0.3699187       0.2764228

## 15 2009        0.3622449       0.3112245

## 16 2010        0.3370166       0.4364641

## 17 2011        0.3092105       0.4013158

## 18 2012        0.3035714       0.4583333

From 2010 onwards the region West reports the highest proportion of cases nationally.

The national weekly incidence (per 100,000 adults) over the study period is visualized as raw data below.

Additionally, the overall shape of the seasonal trend is visualized by the median weekly incidence over

the whole study region and time period.

pRaw1 <- ggplot(dfa) +

  geom_line(aes(x=X, y=cases/pop*100000)) +

  ylab("Weekly Incidence") + 

  xlab("Year") + 

  scale_x_continuous(breaks=seq(1,1590,265), labels=c("1995","2000","2005","201

0","2015", "2020")) +

  theme_bw() + labs(tag = "(a)") + theme(plot.tag = element_text()) 

raw2 <- dfa

raw2$incidence <- raw2$cases/raw2$pop*100000

raw2 <- raw2 %>% group_by(week) %>% summarize(incidence = quantile(incidence, c

(0.25, 0.5, 0.75)), q = c("q0.25", "q0.5", "q0.75"))

raw2 <- pivot_wider(raw2, names_from = q, values_from = incidence)

pRaw2 <- ggplot(raw2) +

  geom_line(aes(x=week, y=q0.5)) + 

  geom_ribbon(aes(x=week,ymax=q0.75, ymin=q0.25), fill="purple", alpha= 0.2) +

  stat_smooth(aes(x=week, y=q0.5), method="gam") +

  xlab("Week Number") +

  ylab("Median Incidence") +

  theme_bw() + labs(tag = "(b)") + theme(plot.tag = element_text()) 

figS1 <- plot_grid(pRaw1, pRaw2, nrow=2, align="hv", axis="l", rel_heights = c

(1,1, 1,1))

figS1



Figure S1: Exploration of temporal trends in unprocessed Lyme borreliosis surveillance data. (a) The

national weekly incidence of Lyme borreliosis over the study period. (b) The median national weekly

incidence pooled over the study period. The purple shaded area represents upper and lower quartiles.

The blue trend line and shaded gray error region are a basic GAM spline highlighting the shape of the

seasonal peak.

2. Map of regions
The data set of spatial coordinates used to plot the map of Norway was downloaded from

https://gadm.org (https://gadm.org) (Sep 5, 2022). The data frame used for plotting is included as a

separate ‘RData’ file. The statistical models are fitted to the national data as well as to the South, West

and East regions independently. The regions are based on the 2017 county numbers, with the region

East spanning county numbers 1-6, South 7-10, West 11-15, and North 16+.



regcols <- c("#56B4E9", "#E69F00", "#9b67a1", "#eeeeee")  

names(regcols) <- c("South","West","East","North")

 

map_plot <- ggplot() +

  geom_polygon(data = Norway_df,

               aes(x = long, y = lat, group = group, fill=Region, color=Region), 

               color="black",

               size = 0.2,

               alpha = 1) +

  coord_map() +

  theme_bw()+

  scale_fill_manual(values=regcols)+

  theme(legend.position = c(0.8, 0.27),

        legend.title = element_blank())

 

map_plot

Figure S2: This is part of Figure 1. Map of Norway showing the regional aggregations used in this and

prior studies. The statistical models are fitted to the national data as well as to the South, West and East

regions independently.

3. Defining INLA-models
Here we describe the basic structure of the INLA-models used in the manuscript, including the R code for

defining model structures and priors. Additional information can be found in the R-INLA documentation at

https://www.r-inla.org/documentation (https://www.r-inla.org/documentation).



We start with a baseline model without a seasonal component specifically included, before expanding

this below with three alternatives for adding the seasonal component (the models compared in the

manuscript): 1) our main model with a flexible seasonal component, 2) an alternative model with fixed

seasonality using a sinusoidal wave function, and 3) an alternative model with fixed seasonality using a

second-order cyclic random walk.

3.1 Model without seasonality

We assume that the number of Lyme disease cases in week number  and year  is Poisson distributed

with mean ,

The linear predictor for the mean number of cases in week  and year  is given by , using the

standard log-link function for Poisson models. Effects of covariates are thus assumed additive on this

scale.

For this initial model without seasonality explicitly modeled, the linear predictor can be written as

where  is the intercept,  is a week effect (defined by a random walk, see below), and  is the

population offset.

The week effect is modeled with a first order random walk process,

where  represents running week number (through the entire data series), and  are iid (independently

and identically distributed) Gaussian variables with mean 0 and standard deviation . The standard

deviation is estimated in the INLA-model and depends on two constants defining a prior distribution as

described below. More information about first order random walks is available in the INLA documentation:

inla.doc("rw1")

Setting priors

For the INLA model we set the prior for the precision  of the random walk in the recommended

‘standard’ way, by using a ‘penalized complexity prior’ (PC prior) (Simpson et al. 2017; Gómez-Rubio

2020). More information about PC priors is available in the INLA documentation:

inla.doc("pc.prec")

The PC prior is defined by two constants  and , defining the prior by the probability

. The prior is defined in R as follows:

i j

λij

∼ Poisson( ).yij λij

i j ln( )λij

ln( ) = + + ln( ),λij β0 Wij Nj

β0 Wij ln( )Nj

w(t + 1) = w(t) + ,zt

t zt

σ

τ = 1/σ2

σ0 α

P(σ > ) = ασ0



hyper.rw1 = list(theta1=list(prior="pc.prec", param=c(0.3, 0.5))) 

The value of  is set to 0.3 to limit the variance in  for the first order random walk. The value of  is

set to 0.5, which makes  the median of the probability distribution.

Defining the model in R

The following code defines and fits the basic model without seasonality as described above. The

population offset makes the log-linear model equivalent to the log of the expected number of cases per

capita, i.e. incidence. The offset function fixes the coefficient of the  effect to 1.

#Define the linear predictor

formula00 <- cases ~ f(X, model = "rw1", hyper=hyper.rw1) + offset(log(pop))

#Fit the model

fit00 <- inla(formula00, data=dfa, family="poisson", 

             control.predictor = list(compute=T, link=1), 

             control.compute = list(config=T, dic=T, waic=T))

#Extract predicted cases on absolute scale

dfbasic <- data.frame(expPredictor = exp(fit00$summary.linear.predictor$mean), d

ata = dfa$cases, ids = dfa$X)

Basic <- ggplot(dfbasic) + 

  geom_point(aes(x=ids, y=data), size=0.8, color="Gray60") + 

  geom_line(aes(x=ids, y=expPredictor),  size=1, color="black") +

  ylab("Weekly Cases") + 

  xlab("Year") + 

  theme_bw() + 

  scale_x_continuous(breaks=seq(1,1590,265), labels=c("1995","2000","2005","201

0","2015", "2020"))+

  theme(legend.position = c(.2, .8), legend.title.align = 0.5, legend.background 

= element_rect(color="black", fill="white",linetype = "solid", size=.2, col="gre

y60")) 

Basic

σ0 zt α

= 0.3σ0

ln Nj



Figure S3: Predicted weekly case numbers from a basic model including only a running week effect and

a population offset, fitted to the national data (grey points).

The cyclic fluctuations apparent in Figure S3 above highlight the need for a seasonal model to describe

the within-year changes.

3.2 Main model with flexible seasonality

The baseline model was extended to separate the seasonal effect from annual (year-to-year) effect,

where  is the year effect modeled with a first order random walk (with priors as described above). The

seasonal effect  was modeled using sine and cosine functions:

This expression is a “weighted random effect”, where  and  are random effects fluctuating over

time, and modeled as first order random walks with priors as defined above.

The terms  and  are constant vectors that were added to the dataframe as follows (the

factor  defines the annual periodicity in weeks):

log( ) = + + + ln( ),λij β0 Wij Yj Nj

Yj

Wij

= sin( ) + cos( ).Wij βij

2πi

52
γij

2πi

52

βij γij

sin( )2πi

52
cos( )2πi

52
2π

52



dfa$cos_i=cos( 2*pi / 52*dfa$X)

dfa$sin_i=sin( 2*pi / 52*dfa$X)

Phase shift defining peak week

Using trigonometric identities, the above definition of  can be rewritten as

defining a sine wave with amplitude  (where ), period , and a phase shift 

defined by . This phase shift determines the peak week of annual cases in the model.

Accounting for overdispersion

Figure S4: Plot of the cases per week in the national dataset. The mean weekly case number shown as

red line.

Preliminary exploration of the case data (fig. S3) indicated that the variance of weekly case numbers will

often be higher than the mean, and we therefore added a random effect  to account for

overdispersion,

The random effect  was modeled as an iid random variable with the following priors (same as for the

random walks defining the year effect , and the effects  and ):

Wij

= sin( + ),Wij Aij

2πi

52
pij

Aij = +A2
ij β2

ij γ2
ij

2π

52
pij

tan( ) =pij

βij

γij

εij

log( ) = + + ln( ) + .λij β0 Wij Nj εij

εij

Yj βij γij



hyper.iid = list(theta1=list(prior="pc.prec", param=c(0.3, 0.5)))

On the absolute scale, the overdispersion is the exponential of the Gaussian residual, which is multiplied

to the rest of the model, i.e.

When the overdispersion for an observation is small, this means that  is small. We ran the model with

and without this overdispersion parameter included, and found that the model with overdispersion

outperformed the model without overdispersion (based on DIC).

To create the random effects for , , and  in INLA, there has to be a separate time column in the

dataframe for each random effect used. Therefore, duplicate time columns representing running week

number were added to the dataframe and named “t” and “t2” for the two seasonal components, and “iid”

for the overdispersion component :

dfa$t = dfa$X

dfa$t2 = dfa$X

dfa$iid = dfa$X

3.3 Alternative models with fixed seasonality

To investigate whether case seasonality changes over the study period we compared the main model

with flexible seasonality (denoted ‘MAIN’ in the code) to two alternative models with fixed seasonality.

The first alternative model with fixed seasonality assumes that the parameters  and  defining the

sinusoidal seasonal effect  are constant for each week and not varying between years (  and

). This model is denoted with ‘CSFIX’ in the code below, and yielded a poor fit to the data. For

this reason we also constructed an alternative model for fixed seasonality which has more flexibility in the

intra-annual trend than the sinusoidal function, using a second order random walk to fit a seasonality

curve. The covariate for this expression is simply week number, because the value should be the same

each year at the corresponding week number. To smooth this curve between years we specify that the

curve should be cyclic. This second alternative model is denoted “RWFIX” in the code below. More

information about second order cyclic random walks is available in the INLA documentation:

inla.doc("rw2")

Define and fit the models in R

The following code specifies the model forms and then uses INLA to fit the main model (flexible

seasonality) and the two alternative models with fixed seasonality to the data. The models are first fitted

to the national data, and then the main model is also fitted to the data sets from the regions South, West

and East independently, in order to compare results between regions.

= = .λij eeffects+εij eeffectseεij

ϵij

βij γij εij

εij

βij γij

Wij =βij βi

=γij γi



Specify the form of each model:

#Main model with flexible seasonal effect

formMAIN = cases ~ f(year, model = "rw1", hyper=hyper.rw1) +

  f(t, cos_i, model="rw1", constr=F, hyper=hyper.rw1) +

  f(t2, sin_i, model="rw1", constr=F, hyper=hyper.rw1) +

  f(iid, model="iid", hyper=hyper.iid) + offset(log(pop))

#Alternative model #1 with fixed seasonal effect (sine-cosine)

formCSFIX = cases ~ f(year, model = "rw1", hyper=hyper.rw1) + 

  cos_i + sin_i + 

  f(iid, model="iid", hyper=hyper.iid) + offset(log(pop))

#Alternative model #2 with fixed seasonal effect (cyclic random walk)

formRWFIX = cases ~ f(year, model = "rw1", hyper=hyper.rw1) +

  f(week, model="rw2", constr=T, scale.model=T, cyclic=T) +

  f(iid, model="iid", hyper=hyper.iid) + offset(log(pop))

#Main model for the region South only

formSOUTH = casesSouth ~ f(year, model = "rw1", hyper=hyper.rw1) + 

  f(t, cos_i, model="rw1", constr=F, hyper=hyper.rw1) +

  f(t2, sin_i, model="rw1", constr=F, hyper=hyper.rw1) + 

  f(iid, model="iid", hyper=hyper.iid) + offset(log(popSouth))

#Main model for the region West only

formWEST = casesWest ~ f(year, model = "rw1", hyper=hyper.rw1) + 

  f(t, cos_i, model="rw1", constr=F, hyper=hyper.rw1) +

  f(t2, sin_i, model="rw1", constr=F, hyper=hyper.rw1) + 

  f(iid, model="iid", hyper=hyper.iid) + offset(log(popWest))

#Main model for the region East only

formEAST = casesEast ~ f(year, model = "rw1", hyper=hyper.rw1) + 

  f(t, cos_i, model="rw1", constr=F, hyper=hyper.rw1) +

  f(t2, sin_i, model="rw1", constr=F, hyper=hyper.rw1) + 

  f(iid, model="iid", hyper=hyper.iid) + offset(log(popEast))

Fit each model with INLA:



fitMAIN = inla(formMAIN, data=dfa, family="poisson", control.predictor = list(co

mpute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

fitCSFIX = inla(formCSFIX, data=dfa, family="poisson", control.predictor = list

(compute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

fitRWFIX = inla(formRWFIX, data=dfa, family="poisson", control.predictor = list

(compute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

fitSOUTH = inla(formSOUTH, data=dfa, family="poisson", control.predictor = list

(compute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

fitWEST = inla(formWEST, data=dfa, family="poisson", control.predictor = list(co

mpute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

fitEAST = inla(formEAST, data=dfa, family="poisson", control.predictor = list(co

mpute=T, link=1), control.compute = list(config=T,dic=T,waic=T))

4. Model outputs
In this section we go through the various outputs from the models fitted in the previous section.

4.1 Model predictions

The following code extracts the following components and predictions using different components:

• The weekly mean predictor on absolute scale ( )

• the mean of the two components of the seasonal effect

• the intercept including population offset

• the predicted weekly case numbers using only the seasonal effect

• the predicted weekly case numbers using only the year effect

These are stored in a data frame along with the case data points and time series.

Main model

E[ ]λij



mfDFYR <- data.frame(expPredictor = exp(fitMAIN$summary.linear.predictor$mean - 

fitMAIN$summary.random$iid$mean), 

                     cyc2 = fitMAIN$summary.random$t$mean * dfa$cos_i,

                     cyc3 = fitMAIN$summary.random$t2$mean * dfa$sin_i, 

                     inter = fitMAIN$summary.fixed$mean[1] + log(dfa$pop),

                     data = dfa$cases, 

                     ids = dfa$X)

mfDFYR$seasonal <- exp(mfDFYR$cyc2+mfDFYR$cyc3+mfDFYR$inter)

mfDFYR$LT <- exp(rep(fitMAIN$summary.random$year$mean, each=52) + mfDFYR$inter)

idlt <- seq(from=26,to=1324,by=52)

mfDFYR$idlt <- seq(from=26,to=1324,by=52)

The following code plots the model predictions using different components of the main national model

(other component estimates set to zero), plotted with the data on weekly cases of Lyme disease over the

study period.

pMFyr <- ggplot(mfDFYR) + 

  geom_point(aes(x=ids, y=data), size=0.8, color="grey60") + 

  geom_line(aes(x=ids, y=expPredictor, color="Full model"),  size=1) +

  geom_line(aes(x=ids, y=seasonal, color="Season"), size=1) +

  geom_line(aes(x=idlt, y=LT[idlt], color="Year"), size=1) +

  xlab("Year") +  

  ylab("Weekly Cases") + 

  scale_color_manual(values=c("#3cb371","#ee82ee", 1))+

  theme_bw() + 

  scale_x_continuous(breaks=seq(1,1590,265), labels=c("1995","2000","2005","201

0","2015", "2020"))+

  theme(legend.position = c(.2, .85), legend.title=element_blank(), legend.backg

round = element_rect(color="black", fill="white",linetype = "solid", size=.2, co

l="grey60")) 

pMFyr



Figure S5: Same as Figure 2 from the main text. Predicted weekly cases over the study period, using the

full national model (green), the seasonal component (magenta), or the year component (black). Case

data are shown as grey points.

We can also make a zoomed in version of Figure 2, to see better how the main model fits the data each

year. The green prediction curve goes through the center of the datapoints.

pMFyr + coord_cartesian(xlim = c(dfa[dfa$yrwk==201401,]$X, dfa[dfa$yrwk==20175

2,]$X)) + 

  scale_x_continuous(breaks=seq(dfa[dfa$yrwk==201401,]$X, dfa[dfa$yrwk==20175

2,]$X+52,52), labels=c("2014","2015","2016","2017","2018"))



Figure S6: Same as Figure 2 above, but zoomed in on the years 2014-2018. Predicted weekly cases

over the study period using the full national model (green), only the seasonal component (magenta), or

only the year component (black). Case data are shown as grey points.

Alternative model 2

interFIX = fitRWFIX$summary.fixed$mean[1] + log(dfa$pop)

mfDFYRix <- data.frame(expPredictor=exp(fitRWFIX$summary.linear.predictor$mean - 

fitRWFIX$summary.random$iid$mean),

                     data = dfa$cases,

                     ids = dfa$X,

                     LT= exp(rep(fitRWFIX$summary.random$year$mean, each=52) + i

nterFIX),

                     seasonal = exp(fitRWFIX$summary.random$week$mean[dfa$week] 

+ interFIX))

mfDFYRix$idlt <- seq(from=26,to=1324,by=52)

Here we show the difference between the main model with a flexible seasonal trend and the second

alternative model (rw2 cyclic) with fixed seasonality across years (compare the magenta part of the

figures).



pMFix <- ggplot(mfDFYRix) + 

  geom_point(aes(x=ids, y=data), size=0.8,color="grey60") + 

  geom_line(aes(x=ids, y=expPredictor, color="Full model"),  size=1) +

  geom_line(aes(x=ids, y=seasonal, color="Season"), size=1) +

  geom_line(aes(x=idlt, y=LT[idlt], color="Year"), size=1) +

  xlab("Year") +  

  ylab("Weekly Cases") + 

  scale_color_manual(values=c("#3cb371","#ee82ee", 1)) +

  theme_bw() + 

  scale_x_continuous(breaks=seq(1,1590,265), labels=c("1995","2000","2005","201

0","2015", "2020")) +

  theme(legend.position = c(.2, .8), legend.title=element_blank(), legend.backgr

ound = element_rect(color="black", fill="white",linetype = "solid", size=.2, col

="grey60")) 

plot(pMFix)

Figure S7: Predicted weekly cases over the study period based on the second alternative model with

fixed seasonal effects, using the full model (green), only the seasonal component (magenta), or only the

year component (black). Case data are shown as grey points.

4.2 Long-term trends



LTdfMAIN <- data.frame(year = unique(dfa$year), 

                   region = "National",

                   meanyear = exp(fitMAIN$summary.random$year$mean),

                   upper = exp(fitMAIN$summary.random$year$`0.975quant`),

                   lower = exp(fitMAIN$summary.random$year$`0.025quant`)

                   )

LTdfSOUTH <- data.frame(year = unique(dfa$year), 

                   region = "South",

                   meanyear = exp(fitSOUTH$summary.random$year$mean),

                   upper = exp(fitSOUTH$summary.random$year$`0.975quant`),

                   lower = exp(fitSOUTH$summary.random$year$`0.025quant`)

                   )

LTdfWEST <- data.frame(year = unique(dfa$year), 

                   region = "West",

                   meanyear = exp(fitWEST$summary.random$year$mean),

                   upper = exp(fitWEST$summary.random$year$`0.975quant`),

                   lower = exp(fitWEST$summary.random$year$`0.025quant`)

                   )

LTdfEAST <- data.frame(year = unique(dfa$year), 

                   region = "East",

                   meanyear = exp(fitEAST$summary.random$year$mean),

                   upper = exp(fitEAST$summary.random$year$`0.975quant`),

                   lower = exp(fitEAST$summary.random$year$`0.025quant`)

                   )

LTdf <- rbind(LTdfMAIN, LTdfSOUTH, LTdfWEST, LTdfEAST) 

cols <- c("#000000", "#56B4E9","#E69F00", "#9b67a1")

names(cols) <- c("National", "South", "West", "East")

TrendPlot1 = ggplot(LTdf) +

  geom_line(aes(x=year,y=meanyear, color=region),size=1) +

  geom_ribbon(aes(x=year,ymax=upper, ymin=lower, fill=region), alpha= 0.2)+

  ylab("Relative Intensity of Weekly Cases") + 

  xlab("Year") + 

  scale_colour_manual(values=cols) +

  scale_fill_manual(values=cols)+

  theme_bw() + 

  scale_x_continuous(limits=c(1995,2020), breaks=seq(1995,2020,5), labels=seq(19

95,2020,5)) + 

  theme(plot.title= element_text(hjust = 0.5),

        legend.position = c(.25, .8), 

        legend.title=element_blank(), 

        legend.background = element_rect(color="black", fill="white",linetype = 

"solid", size=.2, col="grey60")

        ) + 

  labs(color="Region",fill="Region") 

 



TrendPlot1

Figure S8: The long term trend component from the main national model and the models fitted to the

regions South, West and East independently, illustrating the relative change in cases per week over

years when the seasonal component is set to zero. Because the intercept and population offset are also

not included, the trends estimated for different regions are not comparable to each other on an absolute

scale.

The code below generates a figure similar to Figure S8 above, but the inclusion of the intercept makes it

an absolute measure of case intensity rather than relative, so that the predictions for each region can be

compared quantitatively. Per capita estimates are adjusted to a per 100,000 adults scale.



interMain = fitMAIN$summary.fixed$mean[1] + log(100000)

interSouth = fitSOUTH$summary.fixed$mean[1] + log(100000)

interWEST = fitWEST$summary.fixed$mean[1] + log(100000) 

interEAST = fitEAST$summary.fixed$mean[1] + log(100000) 

# remake the dataframe adding the intercept

LTdf2MAIN <- data.frame(year = unique(dfa$year),

                        region="National",

                        pred = exp(fitMAIN$summary.random$year$mean + interMai

n),

                        upper = exp(fitMAIN$summary.random$year$`0.975quant` + i

nterMain),

                        lower = exp(fitMAIN$summary.random$year$`0.025quant` + i

nterMain))

LTdf2SOUTH <- data.frame(year = unique(dfa$year),

                         region="South",

                         pred = exp(fitSOUTH$summary.random$year$mean + interSou

th),

                         upper = exp(fitSOUTH$summary.random$year$`0.975quant` + 

interSouth),

                         lower = exp(fitSOUTH$summary.random$year$`0.025quant` + 

interSouth))

LTdf2WEST <- data.frame(year = unique(dfa$year),

                        region="West",

                        pred = exp(fitWEST$summary.random$year$mean + interWES

T),

                        upper = exp(fitWEST$summary.random$year$`0.975quant` + i

nterWEST),

                        lower = exp(fitWEST$summary.random$year$`0.025quant` + i

nterWEST))

LTdf2EAST <- data.frame(year = unique(dfa$year),

                        region="East",

                        pred = exp(fitEAST$summary.random$year$mean + interEAS

T),

                        upper = exp(fitEAST$summary.random$year$`0.975quant` + i

nterEAST),

                        lower = exp(fitEAST$summary.random$year$`0.025quant` + i

nterEAST))

LTdf2 <- rbind(LTdf2MAIN, LTdf2SOUTH, LTdf2WEST, LTdf2EAST) 

TrendPlot2 <- ggplot(LTdf2) +

  geom_ribbon(aes(x=year,ymax=upper, ymin=lower, fill=region),  alpha= 0.2) +

  geom_line(aes(x=year,y=pred, color=region),size=1) +

  ylab("Weekly Incidence (Cases per 100,000)") + 

  xlab("Year") + 

  theme_bw() + 

  theme(legend.position = c(.7, .8), legend.title=element_blank(), 



        legend.background = element_rect(color="black", fill="white",linetype = 

"solid", size=.2, col="grey60")

  )+

  labs(color="Region",fill="Region") +

  scale_colour_manual(values=cols)+

  scale_fill_manual(values=cols)

TrendPlot2

Figure S9: Predicted weekly cases per 100,000 adults from the main model and the regional models with

the seasonal effect estimates set to zero. This figure captures the same long-term trends as in Figure S8

above, but on a different scale, highlighting the higher incidence in the region South compared to the

other regions.

4.3 Extract peaks

The goal of the analysis was to evaluate whether and how seasonality has changed over the study

period. To accomplish this, we extracted the seasonal peak, i.e. the week in which the seasonality

component is at a maximum, from the model each year. Because the seasonal component is modeled

with a periodic sine function, there is only one peak each year, and it uniquely describes the year’s

seasonality. This means any shift in the peak also applies to the onset of the season, or any other point

of interest on the fitted sinusoidal curve.

The R function below extracts the annual peaks from the fitted models with flexible seasonality (i.e. the

main model and regional models) by repeated sampling from the posterior distribution. We generated

 samples to ensure the peak extracted from each year is representative and that we can

estimate a credible interval for the peak. INLA has built-in functionality for sampling from the posterior

distribution.

n = 1000



#sampling n=1000 samples from the posterior distribution of model 'myfit'

peak_sampling_function <- function(myfit, nsample=1000) {

  

  samples = inla.posterior.sample(n=nsample, result = myfit) 

  

  contents = myfit$misc$configs$contents

  tid = "t"

  t2id = "t2"

  predid = "Predictor"

  

  id1 = which(contents$tag==tid)

  id2 = which(contents$tag==t2id)

  idP = which(contents$tag==predid)

  

  ix1 = contents$start[id1]-1 + (1:contents$length[id1])

  ix2 = contents$start[id2]-1 + (1:contents$length[id2])

  ixP = contents$start[idP]-1 + (1:contents$length[idP])

  

  samt = lapply(samples, function(x) x$latent[ix1])

  samt2 = lapply(samples, function(x) x$latent[ix2])

  samP = lapply(samples, function(x) x$latent[ixP])

  

  iidid = "iid"    

  idI = which(contents$tag==iidid)  

  ixI = contents$start[idI]-1 + (1:contents$length[idI])

  samI = lapply(samples, function(x) x$latent[ixI])

  

  maxpeakw<-array(NA,dim=c(1000,length(Y)))

  maxpeakw=data.frame(maxpeakw)

  names(maxpeakw)<-Y

  

#get the peaks from just the cyclic part of the model

for(i in 1:1000){

    cyc2 = samt[[i]] * dfa$cos_i

    cyc3 = samt2[[i]]* dfa$sin_i

    cyc_sc = cyc2+cyc3

for (j in 1:length(Y)){

      yy<-Y[j]

      wX<-which(dfa$year==yy)

      subcyc<- cyc_sc[dfa$t2 %in% wX]

#takes the maximum week after week 12

      maxpeakw[i,j]<-wnr[subcyc==max(subcyc[-c(1:12)])]  

    }

  }

  

#make a data frame with summary stats for the peak week each year as output

  gdf <- data.frame(Year= Y, mean = round(apply(maxpeakw,2,mean),1), med= apply

(maxpeakw,2,median), 

                        sd = round(apply(maxpeakw,2,sd),2), upper=round(apply(ma

xpeakw,2,quantile,prob=c(0.975)),1),



                        lower=round(apply(maxpeakw,2,quantile,prob=c(0.025)),1))

return(gdf)

}

Apply the sampling function

This function is applied to extract the peaks for the national model, and the regional (South, West, and

East fit independently) models:

peaksMAIN <- peak_sampling_function(fitMAIN, nsample=1000)

peaksMAIN$Region <- "National"

peaksSOUTH <- peak_sampling_function(fitSOUTH, nsample=1000)

peaksSOUTH$Region <- "South"

peaksWEST <- peak_sampling_function(fitWEST, nsample=1000)

peaksWEST$Region <- "West"

peaksEAST <- peak_sampling_function(fitEAST, nsample=1000)

peaksEAST$Region <- "East"

#Store all the sampled peaks in a dataframe for plotting:

plotDF <- rbind(peaksMAIN, peaksSOUTH, peaksWEST, peaksEAST)

Selecting a spline

We used AIC to compare different splines fitted to the sampled peaks (for visualization). The spline with

 had the lowest AIC and was used for plotting.

fit1 <- lm(mean~Year, dat=plotDF)

fits <- lm(mean~splines::bs(Year,df=4), dat=plotDF)

fits3 <- lm(mean~splines::bs(Year,df=3), dat=plotDF)

AIC(fit1, fits3, fits)

##       df      AIC

## fit1   3 337.7273

## fits3  5 301.1475

## fits   6 289.0575

Plot the peaks

The following code plots the peaks from the main model and the models fitted to other regions, along

with 95% credible intervals and the selected spline.

df = 4



pPOT = ggplot(plotDF) + 

  geom_linerange(aes(x=Year, y=mean, ymin=lower, ymax=upper), color=1, data=peak

sMAIN)+

  geom_point(aes(x=Year, y=mean, col=Region), size=2)+

  geom_point(aes(x=Year, y=mean), color=1, data=peaksMAIN)+

  stat_smooth(aes(x=Year, y=mean),data=peaksMAIN,  fill=1, col=1, alpha=.2, meth

od = "lm", formula=y~splines::bs(x,df=4), se=TRUE, size=1, show.legend = FALSE) 

+

  scale_x_continuous(limits=c(1995,2020),breaks=seq(1995,2020,5), labels=seq(199

5,2020,5)) + 

  theme_bw() +

  scale_colour_manual(values=cols)+

  scale_fill_manual(values=cols)+

  ylab("Peak Week") +  

  scale_y_continuous(limits=c(30,52), breaks=seq(30,52,2)) +

  theme(plot.title= element_text(hjust = 0.5), 

        legend.position = c(.85, .78), 

        legend.title = element_blank(),

        legend.background = element_rect(color="black", fill="white",linetype = 

"solid", size=.2, col="grey60")

        ) 

 

pPOT

Figure S10: Extracted peaks from the models fitted to different regions. The 95% credible intervals and

fitted spline represent the national model. Note that the estimated peaks from the South, West and East

regions are all within the error bars for the national model peaks.



The code below generates a figure showing that the different regions have a similar overall pattern in the

peaks as the spline visualized in Figure S10 above.

#Comparison of Splines between Regions

pPOT2 = ggplot(plotDF) + 

  geom_linerange(aes(x=Year, y=mean, ymin=lower, ymax=upper), color="grey60", da

ta=peaksMAIN) +

  stat_smooth(aes(x=Year, y=mean, color=Region, fill=Region), alpha=0.2,method = 

"lm", formula=y~splines::bs(x,df=4), se=TRUE, size=1) +

  ylab("Peak Week") +  

  scale_x_continuous(breaks=seq(1995,2020,5), labels=seq(1995,2020,5)) + 

  scale_y_continuous(limits=c(30,52), breaks=seq(30,52,2)) +

  theme_bw() +

  labs(color="Region", fill="Region") +

   scale_colour_manual(values=cols) +

  scale_fill_manual(values=cols)+

  theme(plot.title= element_text(hjust = 0.5), 

        legend.position = c(.85, .78), 

        legend.title = element_blank(),

        legend.background = element_rect(color="black", fill="white",linetype = 

"solid", size=.2, col="grey60")

        ) 

pPOT2

Figure S11: Comparison of the splines fit to regional peaks with the national spline from above. The error

bars represent the error on the national peak week number, as in the figure above.



Below we take a closer look at the trend in peaks of the region East. The region East has quite few cases

per year in the early part of the study period, yielding larger error bars (95% credible intervals) on the

peak week than the national, South, and West models. The figure below compares the error regions for

the East and national models to help interpret the trends above. The slightly earlier peaks at the start of

the study period for the region East are within the time frame where peak estimation is most uncertain

because of low case numbers.

plotDF2 <- rbind(peaksEAST, peaksMAIN)

pPOT3cols <- c("#9b67a1", "black")  

names(pPOT3cols) <- c("East", "National")

pPOT3 <- ggplot(plotDF2) + 

  geom_linerange(aes(x=Year, y=mean, ymin=lower, ymax=upper, color=Region), size

=1, data=peaksEAST)+

  geom_linerange(aes(x=Year+0.2, y=mean, ymin=lower, ymax=upper, color=Region), 

size=1, data=peaksMAIN)+

  geom_point(aes(x=Year, y=mean, col=Region), size=2, data=peaksEAST)+

  geom_point(aes(x=Year+0.2, y=mean, col=Region), size=2, data=peaksMAIN)+

  scale_x_continuous(limits=c(1995,2020),breaks=seq(1995,2020,5), labels=seq(199

5,2020,5)) + 

  theme_bw() +

  scale_colour_manual(values=pPOT3cols)+

  scale_fill_manual(values=pPOT3cols)+

  ylab("Peak Week") +  

  scale_y_continuous(limits=c(27,52), breaks=seq(26,52,2)) +

  theme(plot.title= element_text(hjust = 0.5), 

        legend.position = c(.87, .84), 

        legend.title = element_blank(), 

        legend.background = element_rect(color="black", fill="white",linetype = 

"solid", size=.2, col="grey60")) 

pPOT3



Figure S12: Comparison between 95% credible intervals on extracted peaks from the model fitted to the

region East and the national model. The buffering on the x-axis between the series is a visualization aid

only and does not represent any difference in the sampling.

4.4 Random effects properties

Table of medians and credible intervals for the standard deviations of the random effects in the main

model:

table1 <- data.frame(

  Component = c("Year effect", "Seasonal parameter 1", "Seasonal parameter 2", "

Overdispersion parameter"),

  Median= signif(fitMAIN$summary.hyperpar[,4]^-0.5, 2),

  Lower0.025= signif(fitMAIN$summary.hyperpar[,3]^-0.5, 2),

  Upper0.975= signif(fitMAIN$summary.hyperpar[,5]^-0.5, 2)

)

Table S1: Point estimates and 95% credible intervals for the standard deviations of the random effects in

the model fitted to the national data set.

Component Median Lower0.025 Upper0.975

Year effect 0.160 0.240 0.1100

Seasonal parameter 1 0.014 0.032 0.0062

Seasonal parameter 2 0.017 0.035 0.0071

Overdispersion parameter 0.210 0.270 0.1600



Table showing the estimated variance of each main model component, relative to the total variance:

seasonal <- mfDFYR$cyc2 + mfDFYR$cyc3 # seasonal effect

denominator <- sd(fitMAIN$summary.linear.predictor$mean - fitMAIN$summary.rando

m$iid$mean) #remove the iid part D

table2 <- data.frame(

  Component = c("Year effect", "Seasonal effect", "Population"),

  Proportional_Variance = c(sd(fitMAIN$summary.random$year$mean) / denominator,

  sd(seasonal) / denominator,

  sd(log(dfa$pop))/ denominator)

)

table2[,2] <- signif(table2[,2],2)

names(table2)<- c("Component", "Variance proportion")

Table S2: Estimated variance for each model component, relative to the total model variance.

Component Variance proportion

Year effect 0.53

Seasonal effect 0.79

Population 0.11

4.5 Residuals

In this section we examine the residuals of the main national model to determine how well it fits the data.

Temporal autocorrelation

We checked for temporal autocorrelation in the residuals and found it to be very low:

par(mfrow=c(2,2))

acf(fitMAIN$summary.random$iid$mean, main="National")  

acf(fitSOUTH$summary.random$iid$mean, main="South") 

acf(fitWEST$summary.random$iid$mean, main="West")

acf(fitEAST$summary.random$iid$mean, main="East")  



Figure S13: Autocorrelation functions for the residuals from the fitted models with flexible seasonal

component, for the different regional data sets.

Residual effects of week number

Below is a graph of residuals from the main national model over the weeks of the year. The model is able

to describe in the intra-annual variation well. The residuals are small and do not show a trend within the

year.



resid0 = fitMAIN$summary.random$iid$mean # Residuals from the over-dispersion co

mponent

fitted = fitMAIN$summary.fitted.values$mean

## Pearson residuals

resid2 = (dfa$cases - fitted) / sqrt(fitted)

## Total residuals

resid1 = resid0 + resid2

## Plot of residuals across week numbers

wkres <- data.frame(week=rep(c(1:52),25))

wkres$resid1 <- resid1

wkres <- wkres %>% group_by(week) %>% summarize(resid1 = quantile(resid1, c(0.2

5, 0.5, 0.75)), q = c("q0.25", "q0.5", "q0.75"), mean=mean(resid1))

wkres <- pivot_wider(wkres, names_from = q, values_from = resid1)

pwkres <- ggplot(wkres) +

  geom_point(aes(x=week, y=q0.5)) +

  geom_ribbon(aes(x=week, ymax=q0.75, ymin=q0.25), alpha=0.2) +

  theme_bw() + xlab("Week Number") + ylab("Residuals")

pwkres

Figure S14: Residuals from the main national model summarized over weeks. The black points represent

the median residuals over the study period at a given week number. The shaded area is bounded by the

first and third quartiles of the residuals at each week number.

Proportion of cases in the peak season



We defined the duration of the peak season as the 4 week period centered on the peak week. The two

weeks on either side of the mean peak is based on the standard deviation from the repeated sampling

from the posterior distribution, which is on average 1.5 weeks over the time series, and maximum 2.15

weeks.

peaksMAIN$peakStart <- round(peaksMAIN$mean)-2

peaksMAIN$peakEnd <- round(peaksMAIN$mean)+2

summary(peaksMAIN$peakEnd-peaksMAIN$peakStart)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##       4       4       4       4       4       4

yrsums$NinPeak<-0

for(i in Y){

  start <- peaksMAIN[peaksMAIN$Year==i,]$peakStart

  end <- peaksMAIN[peaksMAIN$Year==i,]$peakEnd

  a<- dfa[dfa$year==i,]

  a<- a[a$week >= start & a$week <= end,]

  yrsums[yrsums$year==i,]$NinPeak <- sum(a$cases)

}

summary(yrsums$NinPeak/yrsums$n*100)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   9.278  15.942  17.105  17.982  20.197  26.000

We visualize the percent of national cases in the peak season over the study period, and observe no

systemic trend and high inter-annual variability.

p4wkpeak <- ggplot() +

  geom_point(aes(x=Y, y=yrsums$NinPeak/yrsums$n*100)) +

  geom_line(aes(x=Y, y=yrsums$NinPeak/yrsums$n*100)) + theme_bw() +

  ylab("Percent of Cases in Peak Season") + xlab("Year")

p4wkpeak



Figure S15: The percent of national Lyme borreliosis cases occurring during the peak season, defined as

a 4-week period centered on the peak week.

5. Model comparisons
This section generates Table 1 in the main text. The purpose is to compare performance between the

main model with flexible seasonality and the two alternative models with fixed seasonality.

5.1 Extract DIC’s

The following code extracts the DIC (Deviance Information Criterion) value for each fitted model, which is

included in the main manuscript in Table 1.

Note that the DIC values will change slightly every time the code is run, because of slight variability in the

estimated posteriors.

DIC_MAIN <- fitMAIN$dic$dic 

DIC_CSFIX <- fitCSFIX$dic$dic 

DIC_RWFIX <- fitRWFIX$dic$dic

5.2 Cross validation

The cross validation script below uses 90% of the data as a training set, and measures model



performance based on predicting the remaining 10% of the data. The script iterates through the data

randomly assigning different points to the test and training sets so that model performance is considered

across the whole time series. This provides a way to compare model performance between the main and

alternative models in addition to DIC. Predictive accuracy is measured by RMSE (root mean square

error), MAE (mean absolute error), and negative log-likelihood.



forms=c(formMAIN, formCSFIX, formRWFIX)

forms.names = c("formMAIN", "formCSFIX", "formRWFIX")

crossval.results=data.frame()

 

## Use N crossvalidation sets:

n.cv.sets = 10

## Choose to do random subsets for the CV or not:

do.random.allocation = TRUE

for(j in 1:length(forms)){

  myform = forms[[j]]

  

## Step 1: Hide parts of the dataset in the test set and fit model

  rind = 1:nrow(dfa)

  CV = list()

  

for (i in 1:n.cv.sets){

if (i==n.cv.sets) {

      ids = rind

      rind = NA

    } else {

      number.of.ind = floor(nrow(dfa)/n.cv.sets)

if (do.random.allocation){

## Sample randomly

        ids = sample(rind, number.of.ind, replace = F)

      } else {

## Use the first part of sequence

        ids = rind[1:number.of.ind]

      }

      rind = setdiff(rind, ids)

    }

    

    CV[[i]] = list(holdout=ids, formula=myform)

    

    tempdata = dfa

    tempdata$cases[ids] = NA

    

    myfit = inla(myform, data=tempdata, family="poisson", 

                control.predictor = list(compute=T, link=1), 

                control.compute = list(config=T,dic=T,waic=T))

    

    CV[[i]]$fit = myfit

    CV[[i]]$eta = myfit$summary.linear.predictor$mean

    

if (any(is.na(CV[[i]]$eta))) stop("Some NAs found!")

  }

  

## Step 2: Compute summaries of how good the predictions are

  

  dfa$cv.eta.1 = NA



  all.ids = c()

  

for (i in 1:n.cv.sets){

    ho.ids = CV[[i]]$holdout

    dfa$cv.eta.1[ho.ids] = CV[[i]]$eta[ho.ids]

    all.ids = c(all.ids, ho.ids)

  }

  

  error = dfa$cases-exp(dfa$cv.eta.1)

  RMSE = sqrt(mean((error)^2))

  MAE = mean(abs(error))

  negloglik = -1*sum(dpois(dfa$cases, lambda=exp(dfa$cv.eta.1), log=TRUE))

  

  new.results = data.frame(j=j, RMSE=RMSE, MAE=MAE, negloglik=negloglik)

  crossval.results = rbind(crossval.results, new.results)

}

crossval.results$names = forms.names

Combine results from DIC and cross validation in a table:

crossval.results$DIC <- c(DIC_MAIN, DIC_CSFIX, DIC_RWFIX)

table3 <- crossval.results[,c(2,3,4,6)]

colnames(table3)<-c("RMSE", "MAE", "NLL", "DIC")

rownames(table3)<-c("Main model", "Fixed season sinusoidal",  "Fixed season RW")

table3[,c(1,2)] <- signif(table3[,c(1,2)],3)

table3[,c(3,4)] <- signif(table3[,c(3,4)],5)

Table S3: Corresponding to Table 1 from main text, note that outputs vary slightly each time the

crossvalidation code is run. Model performance metrics from cross-validation for comparing the three

candidate models with different structures for the seasonality component. The main model includes a

flexible seasonal component, while the other two models include a fixed seasonal component, either as a

cyclic random walk or as a sinusoidal wave. The metrics compared are Root-Mean-Square Error

(RMSE), Mean Absolute Error (MAE), Negative Log-Likelihood (NLL), and Deviance Information Criterion

(DIC).

RMSE MAE NLL DIC

Main model 2.08 1.53 2560.5 5065.5

Fixed season sinusoidal 2.13 1.57 2599.2 5104.2

Fixed season RW 2.12 1.56 2589.6 5096.0

The code below creates a figure to show how the model performs on a test set after being fitted to the



training set:

dfaGAPS = dfa

startna = 1144

dfaGAPS$cases[startna:1300] = NA

forecastMAIN= inla(formMAIN, data=dfaGAPS, family="poisson", 

                     control.predictor = list(compute=T, link=1), 

                     control.compute = list(dic=1, waic=1, cpo=1))

pforecast <- ggplot() + 

  geom_point(aes(x=dfa$X, y=dfa$cases), size=0.6, color="blue") +

  geom_point(aes(x=dfa$X, y=dfaGAPS$cases), color="grey40", size=0.6) +

  geom_line(aes(x=dfa$X, y=forecastMAIN$summary.fitted.values$mean), size=1, col

or="black") +

  geom_vline(xintercept = startna) + 

  theme_bw() + 

  theme(legend.position = "bottom") + 

  xlab("Running Week Number") + 

  ylab("Weekly Cases")

pforecast

Figure S16: The main model forecasting for data in a test set (right of the vertical line) after being fitted to

a training set (left of the vertical line).



6. NDVI
The week with maximum increase in greenness, or peak spring greening, is modeled to visualize

changes seasonality over the study period. NDVI data was processed for areas below 200 m above sea

level in the West, East, and South regions combined.

# Model the change in NDVI peak over time using lm 

lmWeek<-lm(week~year, peak.spring)

summary(lmWeek)

## 

## Call:

## lm(formula = week ~ year, data = peak.spring)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -1.9546 -1.0415  0.1131  0.6492  2.9246 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)   

## (Intercept) 257.1839    70.6392   3.641  0.00137 **

## year         -0.1208     0.0352  -3.431  0.00228 **

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.269 on 23 degrees of freedom

## Multiple R-squared:  0.3386, Adjusted R-squared:  0.3098 

## F-statistic: 11.77 on 1 and 23 DF,  p-value: 0.002279

# check global significance of lm

anova(lmWeek,test="Chisq")

## Analysis of Variance Table

## 

## Response: week

##           Df Sum Sq Mean Sq F value   Pr(>F)   

## year       1 18.961 18.9608  11.774 0.002279 **

## Residuals 23 37.039  1.6104                    

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



#Generate the B-spline basis matrix for a polynomial spline.

splineWeek.df3 <- lm(week~splines::bs(year,df=3),dat=peak.spring)

splineWeek.df4 <- lm(week~splines::bs(year,df=4),dat=peak.spring)

splineWeek.df5 <- lm(week~splines::bs(year,df=5),dat=peak.spring)

#Compare the models with AIC

AIC(lmWeek, splineWeek.df3, splineWeek.df4, splineWeek.df5)  

##                df      AIC

## lmWeek          3 86.77447

## splineWeek.df3  5 83.03135

## splineWeek.df4  6 84.41240

## splineWeek.df5  7 85.94544

#df=3 yields the lowest AIC

anova(splineWeek.df3,test="Chisq")

## Analysis of Variance Table

## 

## Response: week

##                           Df Sum Sq Mean Sq F value   Pr(>F)   

## splines::bs(year, df = 3)  3 28.826  9.6087  7.4257 0.001423 **

## Residuals                 21 27.174  1.2940                    

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

pndviweek = ggplot(peak.spring) + 

  ylab("Peak week of spring greening") + 

  xlab("Year")+ theme_bw() +

  stat_smooth(aes(x=year, y=week), method = "lm", formula=y~splines::bs(x,df=3), 

se=TRUE, size=1, show.legend = FALSE, color="#008631", fill="#008631", alpha=.

2)+

   scale_x_continuous(limits=c(1995,2020),breaks=seq(1995,2020,5), labels=seq(19

95,2020,5)) + 

  geom_point(aes(x=year, y=week), size=2, color="#008631")  

pndviweek



Figure S17: The week with maximum increase in greenness, or peak spring greening, is modeled to

visualize changes seasonality over the study period.

Combined plot

FigA <- map_plot + labs(tag = "(a)") + theme(plot.tag = element_text()) 

FigB <- TrendPlot1 + labs(tag = "(b)") + theme(plot.tag = element_text())

FigC <- pndviweek + labs(tag = "(c)") + ylim(9,25) + theme(plot.tag = element_te

xt()) 

FigD <- pPOT + ylim(34,50) + labs(tag = "(d)") + theme(plot.tag = element_text

()) 

plot_grid(FigA, FigB, FigC, FigD, nrow=2, align="hv", axis="l", rel_heights = c

(1,1, 1,1))



Figure S18: Figure 1 from the main text, showing key model outputs of changes in the seasonal and

long-term trends of Lyme borreliosis cases in the regions.
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Selected Figures and Tables from Supplementary Materials

Figure S1. Number of individuals in different demographic age groups (10-year intervals for 
all groups except the oldest which has a 20-year interval) in Norway over the study period, 
shown for males and females. Data source: Statistics Norway.



Figure S2. Changing proportion of females in each demographic age group in Norway over 
time (10-year intervals for all groups except the oldest which has a 20-year interval). Data 
source: Statistics Norway.

Figure S3. Changes in the population of youth (0-19 years) and adults (20-99 years) during 
the study period. Data source: Statistics Norway.



Figure S4. Changing percentage of youth (0-19 years) and adults (20-99) in different regions 
of Norway over time (South, West and East, see Goren et al. 2023 for definitions of each 
region). Data source: Statistics Norway.



Figure S5. Average male proportion of Lyme borreliosis cases divided by average male 
proportion in the population data for each age group. A number above 1 indicates an excess of
males in the case data relative to the underlying population.



Figure S6.  Temporal trends in Lyme neuroborreliosis cases for demographic groups (youth, 
adult females, and adult males) based on seasonal INLA-models. (A) Inter-annual trend 
comparison based on the annual components of the models, with shaded 95% credible 
intervals. The annual components describe relative changes in average weekly cases, not 
incidence, over the study period. (B) Comparison of changing seasonality measured by 
predicted seasonal incidence peak. The ribbons represent the 95% confidence intervals on the 
fitted splines, while the vertical lines represent error margins on the estimated peak incidence 
weeks based on repeated sampling from the posterior distribution. This figure is the same as 
Figure 3 in the main text but includes only cases of neuroborreliosis and no other clinical 
manifestations.

Table S1. Estimated incidences and proportions of clinical manifestations within each 
demographic group, from annual INLA-models without seasonality.

Demographic 
Group

Clinical 
Manifestation

Incidence Proportion of 
Cases

Adult Males Neuroborreliosis 3.67 [3.47, 3.87] 0.55 [0.53, 0.57]

Adult Males Arthritis 1.11 [0.94, 1.30] 0.17 [0.14, 0.20]

Adult Males Other 1.23 [1.05, 1.44] 0.19 [0.16, 0.22]

Adult Females Neuroborreliosis 2.61 [2.45, 2.78] 0.56 [0.53, 0.58]

Adult Females Arthritis 0.59 [0.48, 0.73] 0.13 [0.10, 0.16]

Adult Females Other 1.12 [0.94, 1.33] 0.24 [0.20, 0.28]

Youth Neuroborreliosis 6.36 [6.03, 6.70] 0.79 [0.78, 0.81]

Youth Arthritis 0.61 [0.50, 0.76] 0.08 [0.06, 0.10]

Youth Other 0.63 [0.51, 0.77] 0.08 [0.06, 0.10]
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