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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Professor
Wojciech J. Miloch with co-supervisors from Kobe University professor Hideyuki
Usui and associate Professor Yohei Miyake. Although formally this work was
financially supported by my research position at UiO, this work was in large
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4000127346/19/NL/IA and 4000130688/20/NL/FF/gp. Support was also given
by the Norwegian Directorate for Higher Education and Skills, project number:
UTF-2016-long-term/10054. Support was also given indirectly from Swarm
DISC—Data, Innovation, and Science Cluster, funded through the European
Space Agency, through ESA contract 4000109587/13/I-NB.

The thesis is a collection of three papers, presented in chronological order of
writing. The common theme to them is improving Langmuir Probe accuracy
through means of kinetic Particle-in-Cell simulations. The papers are preceded
by three chapters. An introductory chapter that relates them to the field of
plasma and space physics and provides background information and motivation
for the work. Next is a chapter with background theory that is important for
understanding the results. Last is a chapter explaining the main simulation
method with a focus on the most relevant parts of the method, and the
implementations done as a part of this PhD.
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Summary

English

A common approach to probing a plasma is with Langmuir probes. Langmuir
probes collect electric currents from the surrounding plasma and infer plasma
parameters using theoretical considerations usually based on the orbital motion
limited (OML) theory. The OML theory uses assumptions that need to be
met for it to be accurate. Under certain conditions in the ionosphere, these
assumptions are not strictly met, leading to uncertainty in the measurements.

In this thesis, the aim is to improve Langmuir probe measurements using
particle-in-cell (PIC) simulations to test the limits of common assumptions in
the OML theory, and where possible build models to correct for the errors.
In particular, three assumptions are studied: the assumption of collisionless
conditions, the assumption of a perfect geometry, and the assumption of an
unmagnetized plasma.

The assumption on collisionless conditions is tested by simulating a spherical
Langmuir probe in a plasma with typical lower ionospheric plasma parameters.
The simulations are run in a range of collision frequencies where it is found
that an increase in the electron current is present when the mean free path of
the electrons approaches the Debye length. A model that is valid down to 100
kilometers in height is built, and corrections are applied to data gathered on the
Investigation of Cusp Irregularities-4 sounding rocket.

The OML theory is based on ideal geometries such as planar, cylindrical, and
spherical. In practice, such geometries are not possible, however, they can often
be used to a good approximation. A Langmuir probe is mounted to a guard and
the guard is mounted to a spacecraft surface or boom. Since the OML theory
uses ideal geometries it is assumed that the guard and boom do not impact
the current collection significantly. An in-depth evaluation of the limits of the
validity of this assumption is done using PIC simulations. It is found that the
common guard length of ∼ 2 Debye lengths is not sufficient, and at least 6 − 8
Debye lengths should be used for a minimal impact. In addition, it is found that
the guard radius should follow the same assumption as the probe radius of being
smaller than the Debye length.

Since the ionosphere is inside the Earth’s magnetosphere the plasma is not
unmagnetized. In regions of the ionosphere where the plasma temperature is low
and the Debye length is long, the magnetization of the plasma is stronger. It is
therefore studied how magnetization impacts the current collection of a spherical
Langmuir probe using PIC simulations. It is found that magnetization can impact
the currents to a great degree, lowering them by as much as 90%. A model
is built to correct for the magnetization effect for a wide range of parameters,
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Summary

making it applicable to many of the conditions found in the ionosphere.

Norwegian

En vanlig tilnærming for å undersøke et plasma er med Langmuir prober.
Langmuir prober samler elektriske strømmer fra det omkringliggende plasmaet
og beregner plasmaparametere ved hjelp av teoretiske betraktninger, vanligvis
basert på teorien kalt "orbital motion limited" (OML). OML teorien bruker
antakelser som må oppfylles for at den skal være nøyaktig. Under visse forhold i
ionosfæren oppfylles ikke disse antakelsene strengt, noe som fører til usikkerhet i
målingene.

I denne avhandlingen er målet å forbedre målingene med Langmuir prober
ved å bruke såkalte "Particle-in-cell" (PIC) simuleringer for å teste grensene
for vanlige antakelser i OML teorien, og der det er mulig, bygge modeller for å
korrigere feilene. Spesielt studeres tre antakelser: antakelsen om kollisjonsfrie
forhold, antakelsen om en perfekt geometri, og antakelsen om et umagnetisert
plasma.

Antakelsen om kollisjonsfrie forhold testes ved å simulere en sfærisk Langmuir
probe i et plasma med typiske plasma parametere for den lavere ionosfæren.
Simuleringene kjøres i et spekter av kollisjonsfrekvenser der det viser seg at det
er en økning i elektronstrømmen når middelfrivei for elektronene nærmer seg
Debye lengden. En modell som er gyldig ned til 100 kilometer i høyde bygges,
og korreksjoner påføres data samlet inn av Investigation of Cusp Irregularities-4
sonderaketten.

OML teorien er basert på ideelle geometrier som planar, sylindrisk og
sfærisk. I praksis er slike geometrier ikke alltid mulige, men de kan ofte brukes
som en god tilnærming. En Langmuir probe er montert på en beskytter, og
beskytteren er montert på en overflate eller stag på et romfartøy. Siden OML
bruker ideelle geometrier, antas det at beskytteren og staget ikke påvirker
strømsamlingen betydelig. En grundig evaluering av gyldighetsgrensene for
denne antakelsen gjøres ved hjelp av PIC simuleringer. Det viser seg at den
vanlige beskytterlengden på ∼ 2 Debye lengder ikke er tilstrekkelig, og minst
6 − 8 Debye lengder bør brukes for minimal påvirkning. I tillegg viser det seg at
beskytterens radius bør følge den samme antakelsen som probens radius om å
være mindre enn Debye lengden.

Siden ionosfæren er innenfor jordens magnetosfære, er plasmaet ikke
umagnetisert. I områder av ionosfæren der plasmaets temperatur er lav og
Debye lengden er lang, er magnetiseringen av plasmaet sterkere. Det studeres
derfor hvordan magnetisering påvirker strømsamlingen til en sfærisk Langmuir
probe ved hjelp av PIC simuleringer. Det viser seg at magnetisering kan påvirke
strømmene i stor grad, og redusere dem med så mye som 90%. En modell bygges
for å korrigere for magnetiseringseffekten for et bredt spekter av parametere,
noe som gjør den anvendelig for mange forhold som finnes i ionosfæren.
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Chapter 1

Introduction

It is often stated by plasma physicists that 99% of the observable universe (i.e.,
visible matter) is in a plasma state [3, 36]. This statement is therefore one of
the most popular and efficient ways for plasma physicists to create "enemies" in
other fields of physics. The statement is of course true, however, it is misleading
since it is also a question of the scales involved. In a galaxy, all the stars are in
a plasma state, and the dynamics of the star’s core, layers, and corona are best
described as a plasma. The macroscopic picture of the galaxy on the other hand
is best described through gravitational effects. Astrophysics and space physics is
therefore not purely plasma physics, although the fact remains that matter is
mainly in a plasma state, and the field of space physics is in large part plasma
physics.

Plasma is sometimes called the fourth state of matter [9, 13]. Consider a
solid matter. If we continuously add heat to the matter it will at some point
transition into a liquid. Further increasing the temperature turns the liquid into
a gas. Sufficiently heating the gas will lead to ionization, where the electron
bonds to the nucleus in the atoms are broken such that the gas consists of free
charges, and the gas is then in a plasma state. This is a simplification, and there
is not a point at which all the particles get ionized. In a gas, there is always a
part of the gas that is ionized, and the transition to a plasma happens when
the gas is sufficiently ionized such that the collective behavior is dominated by
electromagnetic effects.

Figure 1.1: Aurora australis as seen from the ISS
on 19.08.2017 19:20:05 GMT. Credits: NASA.

At the surface of the
Earth, natural occurrences
of plasmas are seldom. This
is because the gas tempera-
ture is low and the density is
high, such that ionized parti-
cles quickly recombine back
to neutral particles [9]. How-
ever, natural occurrences of
plasmas exist in the form of
discharges such as lightning
or in the upper atmosphere,
where in the polar regions
charged particles can lead
to aurora borealis or aurora
australis, shown in figure1.1.
Plasma physics is also ap-
plied in many man-made devices, such as light tubes, neon lights, and the
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1. Introduction

pixels of a plasma TV. Plasma can even be made at home by placing two grapes
under an upside-down glass in a microwave oven and turning it on.

It is common to differentiate plasma regimes by their typical temperatures
and densities. Figure 1.2 shows an overview of such regimes. In classical plasmas,
we often differentiate between cold plasma where slow-moving particles interact
seldom with each other, examples of such plasmas include the ionosphere or the
solar wind. These are in contrast to hot plasma where more frequent interactions
make, in addition to the electromagnetic forces, conventional pressure forces
important, for example in the solar core.

Figure 1.2: Examples of naturally occurring and
artificially made plasmas shown as a function of
their temperature T and density n (per cubic cm).
Figure adapted from [10].

It is also common to
differentiate between rela-
tivistic and non-relativistic
plasma. In relativistic
plasma, the particles’ move-
ments need to take into ac-
count relativistic effects, and
in the highest density quan-
tum plasma where quantum
effects are important due to
short distances on the quan-
tum scale between particles.

Since naturally occurring
plasma is sparse, to study
plasma we are generally re-
stricted to laboratory ex-
periments, direct measure-
ments via sounding rock-
ets or spacecraft, indirect
measurements with ground-
based instruments, or com-
putational simulations. On
Earth, plasma for space
physics can also be stud-
ied experimentally in plasma
chambers [27]. There is
also interest in plasma fusion
with large experiments such
as the ITER tokamak and
the Wendelstein 7-X stellara-
tor [12, 38]. The promise of plasma fusion is abundant clean and cheap energy,
and it is therefore easy to see the appeal. Indirect measurements of space plasma
are done with ground-based radars such asionosondes, SuperDARN, and EISCAT,
as well as with optical and other instruments[33, 46]. In space, measurements
are done mostly through in-situ observations where instruments are flown on
sub-orbital and orbital spacecraft, and also on spacecraft flown to other celestial
bodies[4, 39, 45].
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Objectives and Scope

Figure 1.3: Illustration of NASA-ESA Cassini spacecraft close to Saturn. Credits:
NASA.

In this thesis, we are mainly interested in the ionospheric plasmas which
are space plasmas that are closest to Earth and therefore the ones we study
most frequently with probes. The results in this thesis have applications also for
magnetospheric plasma which we find in Earth’s magnetosphere, but also in the
magnetosphere of other celestial bodies such as Saturn that was investigated by
the Cassini spacecraft, see figure 1.3.

One standard way to probe a plasma is with a Langmuir probe. Langmuir
probes are widely applied in space physics research, where most space missions
that have instruments for plasma measurements include a Langmuir probe.
A Langmuir probe is in simple terms a conductive surface with a known geometry.
Currents to conducting surfaces immersed in plasma were described by [31].
From these currents plasma parameters such as density and temperature can be
inferred, however, the theory on which the parameters are calculated is based on
an ideal case where several assumptions are made.

1.1 Objectives and Scope

The main goal of this thesis is to study the real-environment impact on some of
the assumptions made in the Orbital-Motion-Limited (OML) theory for Langmuir
probes. We wish to increase the accuracy and reliability of Langmuir probes by
minimizing the error in the measurements that stem from specific assumptions.
The study is done mainly through plasma-probe simulations, designed to measure
the difference in the currents from an ideal case to a more realistic case. We will
also focus on practical aspects, such that the results can be applied to ongoing
and upcoming space experiments.

The common assumptions we aim to test are as follows:

• In the lower E-region ionosphere the assumption of a collisionless plasma
breaks down. This region is of growing interest since it is shown to be of
importance for scintillation of trans ionospheric radio signals such as from

3



1. Introduction

Global Navigation Satellite Systems (GPS, Galileo, etc.) [24]. However,
although particle collisions are often stated as a possible culprit of errors
in the measurements, a study quantifying the errors has not been done.
We therefore wish to measure the impact of collisions between charged and
neutral particles in the context of the E-region ionosphere.

• Data analyses from Langmuir probes are based on theories that consider
ideal geometries where these geometrical objects are free-floating. In reality,
such ideal geometries are not possible since the probe needs to be mounted
to a surface, and practical considerations play a role. Since an ideal probe
is practically impossible the violation of this assumption is often neglected,
and arguments are made on a general basis. We will study the applicability
of this assumption in detail, and give an accurate limit of the geometric
assumptions.

• One well-known problem with the Langmuir probe theories is that
they assume non-magnetized plasma, but they are frequently used for
measurements in magnetized plasma. Theories including magnetized effects
have been developed [22], however, they are known to be inaccurate. It is
therefore often assumed that magnetic effects are negligible, and theory for a
non-magnetized plasma is used instead. We will therefore employ empirical
modeling based on simulations such that the effects of magnetization can
be taken into account and corrected for both in previous, present, and
upcoming experiments.

In addition to the aforementioned problems, in this thesis, there is a goal of
further developing the particle-in-cell simulation code PINC. At the start of this
PhD, PINC was a functioning code capable of large-scale multi-species plasma
simulations. However, the appropriate boundary conditions and plasma-object
calculations were not finalized. Therefore PINC code needs to be extended, and
tested for the new additions.

All the simulations included in the papers (except for verification/comparison)
for this thesis were performed by the author of this thesis. The simulation code
was initially a concept developed by Dr. Sigvald Marholm, after which it was
handed over to the author. The code was at various times co-developed with
several developers (Dr. Jan Deca, Gullik Killie, Vigdis Holta, Steffen Brask,
Trym Nielsen) [8, 17, 20, 25] Over the course of the project, for the papers
included in this thesis, PINC was run on several computer clusters (Abel, Saga,
Fram) on 16-256 CPU’s, where the total amount of time used is in the range of
500.000-1.000.000 CPU hours.
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Chapter 2

Background
A plasma is a collection of charged particles where all the particles interact
with each other through electromagnetic forces. Particles of opposite charge
will attract each other and particles of the same charge will be pushed apart.
When there are many particles, a collection of the same charge particles will
attract opposite charge particles in the vicinity 2.1. These attracted particles
will therefore form a "cloud" of opposite charge around the collection of particles.
This cloud is called the Debye sphere, with its radius being the characteristic
plasma length, or Debye length λD [9, 36]:

λDs =

√
ϵ0kTs

q2
sns

, (2.1)

where s denotes a particle species. k, Ts are respectively the Boltzmann constant
and temperature, qs is the particle charge, ns is the number density of particles,
and ϵ0 is the vacuum permittivity.

The attracted particles will shield the forces from particles outside the Debye
sphere, such that the collection of charges at the center effectively only feels the
forces from the contributions inside the Debye sphere.

Figure 2.1: Illustration of a Debye
sphere. Two species (red and blue)
with opposite charge signs form fluc-
tuations on the scale of the Debye
length. On larger scales, the plasma
is charge-neutral.

On scales similar to the Debye length
there will be areas of positive and negative
charge, however, on scales much larger
than the Debye length the plasma can
be considered charge-neutral. This con-
dition is commonly referred to as quasi-
neutrality. The positive and negatively
charged areas will pull and push particles
in adjacent areas, which leads to a natural
frequency of oscillation called the plasma
frequency ωps:

ωps =

√
q2

sns

ϵ0ms
(2.2)

where ms is the species particle mass.
There are several other natural, or res-
onant, frequencies in a plasma, depending
on the conditions.

For a gas to be considered a plasma it
needs to be sufficiently ionized, such that
the particles’ mean free path is long with respect to the Debye length in space
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2. Background

and the collision frequency is low as compared to the plasma frequency in the
temporal domain. One way to understand this is that a charged particle needs
to interact with the fields from the bulk for several plasma periods and travel
several Debye lengths before colliding with a neutral particle. This is also the
case for the Coloumb scattering, which can be considered a collision between
two charged particles. A more precise way to describe this criterion is with the
plasma parameter Λ:

Λ = 4
3πnsλ3

Ds. (2.3)

The plasma criteria are then Λ ≫ 1 [9]. Thus, the number of charged particles
within a Debye sphere must be large.

2.1 Single Particle Motion and Particle Description of
Plasma

In the microscopic description, plasma dynamics can be described through the
motion of a collection of single particles. For a single non-relativistic particle,
the equations of motion are given by [6]:

dx⃗p

dt
= v⃗p, mp

dv⃗p

dt
= F⃗p, (2.4)

where x⃗p, v⃗p is the position and velocity of particle p and mp is its mass. The
force Fp acting on the particle is given by the Lorentz force:

F⃗p = qp(E⃗p + v⃗p × B⃗p), (2.5)

where qp is the particle’s charge. For the Lorentz force the electric and magnetic
fields E⃗p and B⃗p are evaluated at the particle position. The evolution of the
electric and magnetic field is governed by Maxwell’s equations [3, 9]

Gauss’ law: ∇ · E⃗ = ρ

ϵ0
(2.6)

Gauss’ law for magnetism: ∇ · B⃗ = 0 (2.7)

Maxwell - Faraday law: ∇ × E⃗ = −∂B⃗

∂t
(2.8)

Ampere’s law: ∇ × B⃗ = µ0(J⃗ + ϵ0
∂E⃗

∂t
) (2.9)

In Gauss’ Law, equation 2.6, ρ is the electric charge density, and ϵ0 is the
vacuum permittivity. In Ampere’s law, equation 2.9, µ0 is the vacuum magnetic
permeability, and J⃗ is the surface electric current density. ρ and J⃗ act as source
terms for the electric and magnetic fields in equations 2.6 and 2.9, and the fields
are coupled through equation 2.8.

The source terms ρ and J⃗ are generated by the particles, and can therefore
be written as sums over the particle ensemble [3]

6



Kinetic Description of Plasma

ρ =
∑

p

qpδ(x⃗ − x⃗p), J⃗ =
∑

p

qpv⃗pδ(x⃗ − x⃗p) (2.10)

where δ is the Dirac-delta function. Equations 2.10 close the set of Maxwell’s
equations and together with equations 2.4 and 2.5 give a complete description of
the plasma. However, the set of equations is highly nonlinear since the source
terms, equations 2.10, are calculated from the particle ensemble, which eventually
dictates the particles’ movement. A solution is also quite involved in realistic
cases due to many particles involved in the system.

A common simplification made in many space physics applications is that of
the electrostatic plasma approximation [16]. For slowly varying magnetic fields,
the right-hand side of equation 2.8 can be neglected, such that ∇ × E⃗ = 0. Using
Helmholtz theorem, E⃗ can thus be described in terms of an electric potential ϕ

E⃗ = −∇ϕ. (2.11)

Inserting equation 2.11 into Gauss’ law 2.6 reveals Poissons’ equation for
electric potentials

∇2ϕ = − ρ

ϵ0
. (2.12)

In the electrostatic approximation equation 2.11 and 2.12 can be used instead
of the full set of Maxwell’s equations. The implications of doing so are that
physical properties like energy and momentum can not propagate through the
magnetic field, and any physical process where such propagation is important
will be neglected. A static magnetic field and the effects of a static magnetic
field can still be included in the formalism, as long as the assumption ∂B⃗

∂t = 0
holds.

2.2 Kinetic Description of Plasma

The kinetic description of a plasma is that of the evolution of the 6D phase
space particle distribution function. It is generally accepted for space plasmas
that the evolution is governed by the collisionless Boltzmann equation, called
the Vlasov equation [44]:( ∂

∂t
+ v⃗ · ∇ + qs

ms
(E⃗ + v⃗ × B⃗) · ∂

∂v⃗

)
fs(x⃗, v⃗, t) = 0 (2.13)

where fs(x⃗, v⃗, t) is a distribution function for an ensemble of particles. fs(x⃗, v⃗, t)
can be described by a sum of each particle’s probability distribution function
(Louiville’s theorem).

From the distribution, macroscopic quantities for the bulk density and bulk
velocity can be derived by taking the zeroth and first-order moments of fs:

ns =
∫

fs(x⃗, v⃗, t)dv⃗ (2.14)

7
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nsv⃗ =
∫

v⃗fs(x⃗, v⃗, t)dv⃗ (2.15)

where ns is the particle number density for species s. In combination with the
Maxwell equations, and using a macroscopic description of charge density and
current density

ρ =
∑

s

qsns (2.16)

J⃗ =
∑

s

qsnsv⃗d (2.17)

this closes the Vlasov-Maxwell set of equations.
When the particles in a plasma exchange energy and momentum often the

particles’ velocity distribution will be Maxwellian. In three dimensions the
Maxwellian distribution is [9]

f0,s(v⃗, t) = ( 1√
2πvth,s

)3exp(−1
2

||v⃗ − v⃗d||
v2

th,s

), (2.18)

where vd is the bulk plasma drift velocity. The thermal speed vth,s is the
root-mean-squared value of the particles’ velocities, which is also the standard
deviation of the distribution:

vth,s =
√

kTs

ms
. (2.19)

Here the plasma temperature is Ts.

2.3 Fluid Description of Plasma

It is common to model a plasma using a fluid model. Several abbreviations of
such models are commonly employed, however, loosely speaking they use the
zeroth and first moments of the Boltzmann equation to get the conservation of
continuity and momentum (Navier-Stokes) equations [3]:

∂ns

∂t
+ ∇ · (nsv⃗sv⃗s) = 0 (2.20)

∂nsv⃗s

∂t
+ ∇ · (nsv⃗sv⃗s) = ns

qs

ms
(E⃗ + v⃗s × B⃗) − 1

ms
∇ps (2.21)

where ps is the fluid pressure, which was assumed to be isotropic.
Along with these two conservation equations, one or more equations to close

the system are needed. It is quite common to use an equation of state for the
pressure, which relies on assuming the particle distribution to be Maxwellian. In
addition, another assumption commonly made for the electromagnetic force is
the electrostatic assumption, such that the electromagnetic part of the equations
can be closed using Poisson’s equation, equation 2.12, instead of the full set of
Maxwell’s equations.

8
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2.4 Objects in Plasma

When an object is immersed in a plasma it will collect charged particles. The
charged particle collection can be determined by a current balance. The process
of particle collection will differ for conducting and non-conducting surfaces,
where we are mainly interested in conducting surfaces since both spacecraft and
probes usually have conducting surfaces. The current balance equations are valid
for the whole spacecraft body if it is conducting, and only valid in the limit of
a point for a non-conducting surface which complicates the charging dynamics
[14].

Charging of an object can also be complicated by involving many charging
sources, such as thermal ions and electrons, photo-electrons, secondary electrons,
high-energy particles etc. We will mainly focus in this thesis on a two-species
plasma with a single electron and ion species. For an object at the plasma
potential Vp, i.e., when an object has no net charge, the current flux to the
object will be determined by the species thermal velocity [14]. Since ions are
much heavier than electrons, more electrons will be collected over time leading
to an overall negative charge. This charge will set up an electric potential on
the object called the floating potential, at which the net current to the object is
zero. Thus, the value of the potential on the object with respect to plasma is
determined by the current balance.

2.5 Current Collection

At floating potential, the current balance equation can be formulated as a sum
of all possible currents to a conducting surface in a plasma as

dQ

dt
=

∑
s

Is(V ) = 0, (2.22)

where Q is the total charge, V is the potential of the object, and s denotes the
species.

For an object that is large with respect to the Debye length, the sheath
will be small with respect to the object size. This is called the thin sheath
approximation, and the object charging can be described by the sheath-limited
theory, where the sheath size can be neglected. This is typically done for
spacecraft, and for calculating the floating potential of spacecraft. The simplest
calculation of floating potential is that of a non-drifting collisionless, non-
magnetized Maxwellian plasma where the current balance 2.22 is a sum of
thermal currents for each species[47]. We will consider in this thesis a more
realistic and slightly more complicated scenario by including a super-sonic drift.
A commonly used derivation for the floating potential of a spacecraft is given by
[1].

A spacecraft in orbit is typically moving at supersonic speeds. At such speeds,
the ions can be considered stationary in their frame of reference, however, for
the electrons the spacecraft can be considered stationary since they are moving

9



2. Background

orders of magnitude faster. Therefore all of the surface is accessible to the
electrons. However, for the ions only the surface area facing the ram direction is
accessible. This can be formulated in terms of current flux as

Ji = qnivsc (2.23)
where vsc is the spacecraft speed. Particle attraction and repulsion have been
neglected here due to the slow ion thermal movement such that the spacecraft
potential is ignored. This can not be done for the electrons where the current
flux, assuming a spherical geometry is

Je = qene

√
2kTe

πme
exp

( qV

kTe

)
(2.24)

where V is the spacecraft potential. For other geometries than spherical, the
constant stemming from integration will be different. Inserting these fluxes
into equation 2.22, and using I = AJ for a surface area A we get the floating
potential, ϕsp:

ϕsp = −kTe

q
ln

Ae

Ai

( kTe

2πmev2
sc

) 1
2 (2.25)

For spherical geometry the ratio of accessible surfaces is Ae/Ai = 4, and
using Te = 1500K, we get ϕsp = −0.458V . Typically, it is seldom that spacecraft
in low Earth orbit experience potential differences of more than a few volts
negative [1].

2.6 OML Theory

For a current collector with a thick sheath in a collisionless non-magnetized
Maxwellian plasma, we can use the Orbital-Motion-Limited (OML) theory to
link current to voltage. In the OML theory current is calculated by considering
particles far away from the probe, having energies related to their thermal
motion. It is determined by the conservation of energy, and conservation of
angular momentum whether such a particle approaching the probe on a ballistic
trajectory will be collected, and contribute to the current. It is also assumed that
the mean free paths of particles are much longer than the probe size and thus
the Debye length, such that the effects of collisions are negligible. In addition,
it is assumed that forces from the probe dominate, such that long-range forces
from other particles are negligible.

The probe currents are divided into collected species current and repelled
species current, where a collected species has qsV < 0 with V being the probe
bias potential. Collected species current expressions for simple geometries are
given by integrating over the part of the species distribution accessible to the
probe [31]:

plane: Is(ηs) = Ith,s (2.26)

10
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cylinder: Is(ηs) = Ith,s

( 2√
π

√
ηs + exp(ηs)erfc(√ηs)

)
(2.27)

≈ Ith,s
2√
π

√
1 + ηs (2.28)

sphere: Is(ηs) = Ith,s(1 + ηs) (2.29)
(2.30)

where Ith,s is the thermal current corresponding to the situation where the probe
had zero bias. The thermal current is given by the particle thermal flux and
the surface area S as Ith,s = nsqsS

√
kTs

2πms
. To simplify the notation we used

dimensionless potential ηs = −qsV/kTs. The approximation given in equation
2.28 is generally accepted to be valid for η > 2.

For a repelled species qsV > 0 the current to the probe is

Is(ηs) = Ith,sexp(ηs) (2.31)

and is independent of probe shape, but proportional to the surface area.
Equations 2.26 to 2.29 were summarized in a single equation by [21]

Is(η) = Ith,sK(1 + η)β (2.32)

where K and β are geometric parameters determined by equations 2.26 to 2.29 .
For a cylinder K = 2/

√
π and β = 0.5, for a sphere K = 1 and β = 1, and for a

plane K = 1 and β = 0.

2.7 Langmuir Probes and Design Considerations

Langmuir probes is a collective term for probes based on current collection
theories for conductors in plasmas. Most designs are based on the OML theory
and use cylindrical or spherical geometries. It is also possible to use a probe
that is large with respect to the Debye length and assume it then behaves as a
plane, using equation 2.26 for the currents. This is the same as a thin sheath or
sheath-limited approximation. However, of most interest to this thesis are the
cylindrical and spherical OML-based probes.

Plasma parameters can be calculated based on a probe I-V characteristics. A
typical I-V curve for both cylindrical and spherical probes is shown in figure 2.2.
In the figure, the probe bias voltage is on the x-axis, and the probe current is on
the y-axis. The current is the sum of currents for both electrons and ions. The
I-V curve is split into regions of current collection, according to what current
is dominating. In the Ion saturation region, the potential is negative enough
that most electrons are repelled, and the ion current dominates. The current
can therefore to a good approximation be calculated as an ion current given by
equation 2.28 or 2.29 with s = i. On the opposite end is the Electron saturation
region where the probe bias is positive enough that most ions are repelled and
corresponding equations can be used for an electron current with s = e. The
region in between is called the electron retardation region. Since the ion current
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Figure 2.2: typical I-V curve for Langmuir probes. Figure taken from
http://tid.uio.no/plasma/norsat/mnlp_instrument.html

is typically much smaller than the electron current due to the slow ion motion,
this region can be approximated as a repelled electron current. The current
can then be calculated with equation 2.31 where s = e. The ion saturation and
electron regions are separated by the floating potential Vf , which is the point
where all currents sum to zero and also determines the potential of the probe if
it is free-floating and un-biased. The plasma potential Vp determines the point
between the electron retardation and saturation regions.

Taking the logarithm of equation 2.31 temperature can be expressed as

Te = qeV

kS
(2.33)

where S is the slope of the curve in the electron retardation region. Density can
be expressed by setting V = Vp = 0 in equation 2.31 to get

Ne = Ie

qeA

√
me

2kTe
, (2.34)
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where A is the probe surface area. Since Langmuir probes are grounded to a
spacecraft that has a floating potential, the point of Vf is not readily available,
and the slope is therefore also challenging to determine. A common way to
solve this problem is by operating the probe in a swept bias mode. Sampling
is done in a large range of probe potentials from which the plasma potential
can be determined along with the slope by graphical methods [2]. However,
since a sweep typically takes seconds to complete, the spacecraft typically moves
kilometers within one sweep. A solution to this problem is to use multiple probes
like the rapid m-NLP system [4, 15, 19]. In equation 2.32 the probe potential is
a sum of the potential Vb given with respect to spacecraft and the spacecraft
floating potential V = Vb + Vf , where the floating potential is unknown. To get
an expression for the density that is independent of Vf we can take the difference
of two cylindrical probes at different potentials to get [4]

Ne = 1
CA

√
∆I2

∆V
, (2.35)

where ∆I2 = I2
1 + I2

2 for the two probes 1 and 2. ∆V is the difference in probe
bias potentials.

The accuracy of any of the density and temperature measurements is
dependent on the accuracy of the current measurements, which is the main
focus of this thesis. Note also that for some of the calculations, e.g., equation
2.35 we have a squared current, I2. In such cases, otherwise insignificant errors
will also get squared and may become significant.

In deriving equations 2.33-2.35 the underlying OML theory with its
assumptions dictates the accuracy. Whenever one of these assumptions is
sufficiently violated this therefore leads to non-trivial effects in the currents. It
is important to understand how these effects materialize and may impact the
different methods at different scales. For example, if two probes at different
potentials have different impacts leading to different errors in the currents this
may give a significant error in equation 2.35. However, even with a higher or
lower current collection value, if the slope is the same, equation 2.33 may still
be accurate.
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Chapter 3

PINC-simulator

3.1 Particle-in-Cell method

There are two main methods of particle simulations for plasma. The most basic
are the particle-particle type methods, where each particle contributes to each
other particles’ force term through the Lorentz force 2.5. These contributions are
through the field quantities E⃗ and B⃗, thus the fields at the position of a particle
are determined by the sum of field contributions from all other particles. The
scalability in particle-particle simulations is their main draw-back, where the
number of computational operations and their complexity scale as O(np) ∝ n2

p

[16] with np being the number of simulated particles. For an increasing amount
of particles, this scalability quickly hits limits on computation, and simulating
large systems with many particles is thus not practical. Another type of particle
simulations is called particle-mesh (PM) methods, where the most common
particle-mesh method is the Particle-in-Cell (PIC) method. In the PIC method
the fields E⃗ and B⃗ are defined on a grid, also called a mesh, at discrete points in
the domain. The grid acts as an intermediary between the particles, where each
particle’s contribution to the fields only needs to be calculated on the grid once,
and the field quantities are then solved separately. Therefore well optimized
PIC simulators can achieve a complexity of O(np, ng) ≃ nglog(ng) + np [16]
or O(np, ng) ≃ ng + np using multigrid solvers [41] and are thus capable of
simulating much larger systems.

3.1.1 PIC Main Cycle

The main PIC cycle is illustrated in figure 3.1. The operations in the PIC cycle
can be split into four plus two optional operations making six in total. The four
standard operations are as follows: The integration of equations of motion that
move the particles based on the forces Fp acting on each particle. Each particle’s
microscopic properties position and velocity, xp, v⃗p, are then interpolated to the
grid to construct particle-related macroscopic quantities: charge density and
current density ρg, J⃗g. Next, these macroscopic quantities are used to solve for
the electric and magnetic fields E⃗, B⃗. The last step is to interpolate the field
quantities from the grid back to the particle positions where the forces on each
particle are defined by the Lorentz force equation 2.5. The standard elements of
the PIC main cycle with closed boundaries form a self-consistent system where
either momentum or energy is conserved [6, 43].

In addition, it is common to initialize the system with a Maxwellian
distribution of the particles and update the velocities of the particles by half
a step in time to start a leapfrog scheme before entering the main loop. To
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Figure 3.1: PIC cycle flow chart. The chart shows one iteration of the standard
PIC cycle with the optional inclusion of Monte-Carlo collisions and plasma-object
interaction modules.

make sure that potential energy is not artificially added to the system and that
particles are not correlated which could trigger collective phenomena, the initial
distribution of particles in space should be randomized within a Debye sphere
such that random fluctuations in charge density are of the order of a Debye
length or shorter.

The optional operation of Monte-Carlo collisions (MCC) are usually statistical
considerations of collisions between charged and neutral particles [43]. They
can also include statistical considerations between collisions of charged particles.
The collisions change the particles’ velocity vectors in direction and magnitude,
which also changes the energy of the system according to the statistics. The last
additional step that can be included is that of object-plasma interactions. If an
object’s surface is defined, particles that move through the surface of the object
are collected and redistributed on the surface, or throughout the object if the
surface has resistance [16]. Several objects can be defined and circuits deciding
current flow between them are possible.

3.1.2 Common algorithms

In the new PIC code Particle-IN-Cell (PINC) we use an electrostatic solver for
the electric field. For electrostatic solutions, it is common to use a centered grid,
where all the field quantities are defined on the same points in space, called
nodes or vertices. For electromagnetic field solutions, it is common to use the

16



Particle-in-Cell method

Yee lattice, where the electric and magnetic field nodes are offset by a half spatial
step [43].

Figure 3.2: Schematic diagram of a superparticle moving in the grid from time t
to t + ∆t. The grid nodes g are denoted by the indices i, j for the dimensions x
and y. The weighting of the particle to grid node i + 2, j is shown as the red
area of the particle.

In the PIC method, it is necessary to use so-called superparticles. A
superparticle is a collection of particles that follow the same trajectory in
phase-space [23]. Solving the Vlasov equation 2.13 for two sets of particles where
one is the physical particles, and the other is a collection of physical particles,
each carrying several physical particles gives the same solution given that the
two sets have the same distribution in phase space [23, 25]. A PIC simulation is
thus a kinetic solution, which updates the distribution function for each timestep.
Thus, a PIC method can be considered as a way of solving the Vlasov equation
(or Boltzmann equation if collisions are included). Using a first-order weighting
scheme between the particle positions and grid nodes gives the superparticles
a size equal to the grid cell size. The discretization therefore has a smoothing
effect on particle positions [6].

A schematic diagram in 2-D of the uniform grid used in PINC is shown in
figure 3.2. The field quantities are defined at the point where the grid lines
intersect. The distance between the grid points is given by the spatial step
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lengths ∆X, ∆y. In the schematic the grid nodes g are denoted by their indices
i, j in the dimensions x and y. A particle moves from one position at time t to a
different position in the next cell to the right at time t + ∆t.

In addition to the statistical weight of the particle (i.e., the measure of how
many physical particles form a superparticle), a weighting function is used to
weight the particle quantities to the grid quantities and vice versa. Thus, the
interpolation between particles and fields is done using a weighting function,
which in PINC is based on B-splines [23]:

W (x⃗g − x⃗p) = bn(xg − xp

∆x
)bn(yg − yp

∆y
) (3.1)

where xg, yg are the positions of the grid in x and y, and xp, yp are the positions
of the particle in x and y. bn is a B-spline of order n.

The shape of superparticles can then be defined through the weighting
function as the shape function

S(x⃗g − x⃗p) = wp
W (x⃗g − x⃗p)

∆x∆y
. (3.2)

The shape function S defines the shape of the particles. In PINC, for
the weighting function 3.1, we use the n = 1 B-spline, i.e., the first-order
(linear) interpolation for the particle positions and Dirac-delta functions for their
velocities. This choice of interpolation is commonly referred to as cloud in cell
(CIC) since the particle’s shape is the same as the shape of a computational cell.
In figure 3.2 we see how this shape is interpolated to the grid. In simple terms,
a particle within a cell is weighted by "how much" of the particle is close to each
of the nodes that make up the cell.

The grid quantities can be computed as a sum of the particle shape functions:

ρg =
∑

p

qpS(x⃗g − x⃗p),

J⃗g =
∑

p

qpv⃗pS(x⃗g − x⃗p).
(3.3)

Similarly, the field quantities at the particle can be computed from the grid
using the weighting function:

E⃗p =
∑

g

EgW (x⃗g − x⃗p),

B⃗p =
∑

g

BgW (x⃗g − x⃗p).
(3.4)

The most common method for updating particle positions and velocities is
the Leapfrog algorithm [6, 43]. It is called the Leapfrog algorithm because it uses
a staggered temporal scheme for the positions and velocities, such that positions
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are defined at ∆t and velocities are defined at ∆t/2 for a timestep ∆t. The finite
difference scheme is first-order accurate, however, the addition of the velocities
offset in time by ∆t/2 in the Leapfrog algorithm makes the scheme second-order
accurate in time. The particle positions and velocities are determined by the
non-relativistic Newton–Lorentz equations of motion 2.4 and 2.5.

The equations can be discretized using finite differences and the staggered
temporal scheme. Let time be defined at discrete points t = n∆t, where the
timestep is ∆t long. The discrete Newton–Lorentz equations equations at time t
can be written as:

x⃗t+∆t
p − x⃗t

p

∆t
= v⃗

t+ ∆t
2

p ,

v⃗
t+ ∆t

2
p − v⃗

t− ∆t
2

p

∆t
= qs

ms
(E⃗p + v⃗

t+ ∆t
2

p − v⃗
t− ∆t

2
p

2 × B⃗p)
(3.5)

A common way to avoid doing the full cross product of velocity and magnetic
field is given by the Boris algorithm [7]:

v⃗−
p = v⃗

t− ∆t
2

p + qs

ms
E⃗p

∆t

2 ,

v⃗
′

p = v⃗−
p + v⃗−

p × T⃗ ,

v⃗+ = v⃗−
p + v⃗

′

p × S⃗,

v⃗
t+ ∆t

2
p = v⃗+ + qs

ms
E⃗p

∆t

2 ,

(3.6)

where we have used the same notation as in ref. [6]. The rotational parameters
S⃗, T⃗ are given by

T⃗ = B̂p · tan(qs∆t

2m
Bp),

S⃗ = 2T⃗

1 + T⃗ 2

(3.7)

The drawback of the Boris algorithm is understood by observing that the
magnetic field does not enter the equations in a way such that the magnetic
field can change the magnitude of the velocity, only the direction. Thus using
the Boris algorithm implies that there is no transport of energy or momentum
between the particles and the magnetic field [37]. However, this implication is
well suited for use with a static magnetic field, such as within the electrostatic
approximation (equation 2.12).

In the formulations thus far we have included both ρ and J⃗ . However, for an
electrostatic simulator only ρ is needed, due to the electrostatic approximation
described in section 2.1. A solution for the electric field can be obtained by
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discretizing equations 2.11, and 2.12. For the formulations of the field solver, we
will for simplicity consider the one-dimensional equations, as extending them to
several dimensions is trivial. Given an electric potential ϕ, the electric field can
be computed with a centralized-space discretization

E⃗i = −ϕi+1 − ϕi−1

2∆x
. (3.8)

If the potentials are known the electric field is trivial to compute. However,
what is known at a timestep is the charge density ρ, calculated from particle
positions. The electric potentials can then be obtained by solving Poisson’s
equation 2.12 in a second-order centralized-space discretization

ϕi+1 − 2ϕi + ϕi−1

∆x2 = −ρi

ϵ0
(3.9)

Equation 3.9 can not be solved directly in the PIC method since ϕi depends
on both ϕi+1 and ϕi−1, which are unknowns. The most common approach is to
use rapid spectral solvers, however, the spectral solvers are not well suited for
parallel computations. Therefore, in PINC an iterative multigrid solver has been
implemented. The solver is based on the multigrid method detailed in [20, 41],
which uses the Gauss-Seidel even-odd scheme. In an iterative solver, the solution
is iteratively moved towards the true solution by minimizing the residual.

3.2 Stability Criteria

In simulations, the topic of numerical stability is most important. Failing to
meet the stability criteria of the simulated system will at least lead to large
inaccuracies, and at worst catastrophic failure. It is therefore important to know
the stability criteria, and make sure that they are met in all simulations.

3.2.1 Finite Grid

Due to the discretization of the field quantities on the grid, numerical instability
can occur when the grid spatial step is too large. The mathematics of the finite
grid instability are quite involved so we omit them here. However, this topic is
discussed in depth in literature [6, 16, 23]. The criteria can be summarized as
an inequality

∆x < CλD, (3.10)

where the parameter C depends on the choice of interpolation scheme. For the
CIC scheme used in PINC, it is generally accepted that C ≃ π. If the finite grid
stability criteria are not met the simulated plasma will be artificially heated
until the criteria are satisfied, or the simulation overflows and fails.
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3.2.2 Finite Time

The forward integration in time of the positions and velocities of the particles
has stability criteria associated with it. A straightforward von Neuman analysis
of the time discretization leads to the relation[6, 16]:

sin
(

ωN ∆t

2

)
= ±ω∆t

2 (3.11)

where ωN is the simulated frequency, and ω is the real frequency we wish to
simulate. Since the sine function can only have values in the interval [−1, 1]
any real frequency where ω∆t/2 > 1 will be represented as a complex solution
for ωN . Such a solution will lead to a numerical instability that unboundedly
grows. In practice, one should ensure that any simulation is nowhere close to this
criteria, and it is common to use ω∆t = 0.1 for any known frequency simulated.

3.2.3 The CFL Condition

First formulated by [11], the CFL condition states that no particle or phenomenon
at a characteristic speed can travel past one grid cell in a single timestep. This
can be formulated as an inequality [40]

∆x

∆t
> C (3.12)

There are several implications of the CFL condition. First, it must hold for
any wave propagation. That is any electrostatic, magnetic, or electromagnetic
wave can not travel past one cell per timestep. In the case of an electromagnetic
wave that means we need to resolve the speed of light. Second, it also means
that particles can not travel more than one cell per timestep, and it is generally
accepted that the mean velocity in the bulk plasma should meet the CFL criteria.
Lastly, the CFL condition can be interpreted as a constraint on the flow of
information, where information can not travel more than one cell per timestep.

3.2.4 Additional Constraints

Recently it was shown that there is an additional constraint when including
a magnetic field in the PIC scheme. If all the above constraints are met, but
the magnetic field is strong enough that the gyroradius is smaller than the
spatial step length, an instability will arise that is quite similar to the finite grid
instability, and the heating of particles will lead to a larger gyroradius [18].

3.3 Object-Plasma interactions

The plasma-object (probe) calculations are performed in PINC with the standard
capacitance matrix method [6, 30]. At present the object is assumed to be a
perfect conductor, thus the charge is redistributed instantaneously (i.e., within
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one timestep in the context of numerical simulation), on the object surface. To
explain this process in some detail, we can begin with equation 4 from [30]

The difference between [30] and the implementation in PINC is that we use
an electrostatic solver. In PINC we do not keep track of the current densities,
thus we need to explicitly count the charges collected. The total charge of the
object can be expressed as

Qt
s = Qt−∆t

s + ∆qs, (3.13)
where Qt

s is the total surface charge of the object at time t, and ∆qs is the
collected charge from t − ∆t to t. To obtain ∆qs at each timestep we check each
particle’s position. If the particle is inside the boundary of the conductive object
surface the particle is removed and its charge is added to ∆qs. For each grid
node i on the object surface, the change in charge is related to the change in
potential in the following way

δρs,i =
Ns∑
j=1

Cijδϕsj , (i = 1, ..., Ns) (3.14)

Expanding equation 3.14 to include an equipotential value ϕc, we can write
δϕsj = ϕc − ϕsj , giving

δρs,i =
Ns∑
j=1

Cij(ϕc − ϕsj), (i = 1, ..., Ns) (3.15)

In PINC we obtain the values of ϕsj by equally distributing the total surface
charge Qs on the object surface nodes, and then solving the Poisson equation
2.12. Inserting equation 3.15 into a discrete equation for charge conservation
[30] we obtain

ϕc =
∑

i

∑
j Cijϕsj∑

i

∑
j Cij

(3.16)

where all variables are now known. Inserting this value for ϕc back into equation
3.15 gives us corrections to the charge on each surface node. Lastly, we solve
for the potential on the whole grid (equation 2.12) again using the multigrid
solver. During the charge redistribution, which is based on the capacitance
matrix method, we thus always conserve charge and obtain an equipotential
value inside the conductive surface.

The values of C are computed once during initialization and are found by
using a known solution. The usual way to do this is to set a unitary charge on a
grid node and then solve for the potential. The potential values obtained on the
surface nodes are then one column of C−1.

To bias the object, as a probe with a fixed potential value, we can set a value
for the equipotential in equation 3.16. When we do this, the charge is no longer
conserved. It is assumed that the object is connected to a source like a battery
that can deliver the necessary current to give the values of charge in equation
3.15.
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3.4 Parallelization in PINC

The parallelization scheme used in PINC was first devised by Sigvald Marholm
as a part of his PhD work [25]. Many PIC codes have some sort of parallelization.
However, the common way to parallelize a PIC simulator is to split the particles
evenly onto several processors but solve the entire grid on one node. There are
several reasons to do this. For older codes it is often that the method used to
solve the grid has a low degree of parallelization, meaning that it will mostly add
overhead to the computations, and slow down the solver. Secondly, many codes
use spectral solvers, which are highly serial, because the implementations are
simpler and thus quicker to implement and test. Solving the grid on one processor
sets an upper limit on the possible size of a simulation. Both computational and
memory limits for that node can be met when the grid size increases.

The main novelty and motivation for PINC’s development was that of a fully
parallelized simulator. Here both particles and the grid are split into several
processors, such that simulations can in theory be scaled up indefinitely as long
as we add the appropriate amount of processors.

Figure 3.3: Schematic diagram of the parallelization employed in PINC. In the
schematic, we use a 2-D grid with four processors.

A schematic diagram to help explain the parallelization in PINC is given
in figure 3.3. For simplicity, we used a 2-D grid with four processors in this
example. Each processor has its core space in white, which is surrounded by the
so-called ghost cells in red. Each processor is responsible for computing all field
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quantities on all of the vertices that are inside, or adjacent to the core space.
For quantities that are dependent on the "next-over" grid value, e.g., i + 1 or
i − 1, the ghost node value needs to be communicated to its neighbor. This is
done with MPI communication operations. Since particles can exist in the ghost
cell that is owned by two different processors, charge density needs to be added
up in its MPI operation. The electric potential is solved iteratively, and each
iteration solution on the outermost vertex of the core space is given as a ghost
node to the neighbor. This generally happens hundreds to thousands of times
per neighbor and per timestep.

Each processor holds a local array of particle positions and velocities where
the particle positions are inside its own core space. For example, a particle
whose position is inside one of the cells marked 0,1,2 will be owned by processor
0. A threshold is set that needs to be traversed before a particle’s ownership
is given to a neighboring processor. This threshold is indicated by the dotted
red line in figure 3.3. If a particle moves across this threshold, its position and
velocity vectors are sent via MPI send and receive operations from the current
processor to the appropriate neighboring processor, and the particle is removed
from the own local array of particles of the current processor. In the example in
figure 3.3, a particle moves across the threshold, and ownership is given from
processor 2 to 3. The reason for setting a threshold, and not simply using the
edge of the ghost cell is that a particle that has a position exactly at the ghost
cell edge would be sent back and forth indefinitely.

In the above description the boundary between the processors, called the
ghost cells, is periodic. If all boundaries are periodic, the simulation is closed,
and all information needed is transferred between two opposing outer boundaries
as if they were inner boundaries.

3.5 Open boundaries

In PINC we set the boundary type on each boundary for each processor. If the
boundary is connected to a different processor we call it an inner boundary, and
it is always treated as a periodic boundary. If it is connected to the outside
of the simulation we call it an outer boundary. We wish the outer boundaries
to be open, where plasma can flow freely in and out. In the absence of a bulk
plasma flow, this is achieved by setting a Dirichlet-type boundary on the whole
ghost cell and filling the cell with a fresh Maxwellian plasma each timestep. The
Dirichlet-type boundary can have any value, although changing the value on the
whole outer boundary effectively shifts the null point of the electric potential,
and the solution is the same except shifted by the boundary value. We therefore
always set it to zero.

If we wish to include a bulk plasma drift, special handling of the boundary
needs to be done. In this case, the simulation frame of reference is not the
same as the particle’s frame of reference. However, we know that the forces
acting in the two frames must be the same due to Newton’s first law of motion.
Considering a single particle, the force F⃗ in the simulation frame of reference
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acting on it must then obey

F⃗ = F⃗ ′, (3.17)

where F⃗ ′ is the force in the frame co-moving with the bulk plasma. The two
forces can be defined by the Lorentz force, and using that in the plasma frame
of reference the plasma drift is zero V ′

d = 0, the two forces are

F⃗ =q(V⃗ × B⃗) + qE⃗ = 0,

F⃗ ′ =qE⃗′ = 0,
(3.18)

where also F⃗ ′ = 0 since we set a Dirichlet boundary, so E⃗′ = 0. Using a centered
finite difference, equation 3.8 for E⃗ can then be written

Ex = −∇ϕ = ϕi+1 − ϕi−1

2∆x
= −V⃗d × B⃗. (3.19)

Here we only show the equation for one of the dimensions x, since it is the same
for the others. Note that this equation only has non-zero values in the direction
perpendicular to both V⃗d and B⃗. This can be rewritten into an equation for the
electric potential at

ϕi+1 = 2∆xV⃗d × B⃗ + ϕi−1 (3.20)
which gives the more general equation:

ϕi = i∆xV⃗d × B⃗ + ϕ0, i = [0, 1, 2...nx], (3.21)
where ϕ0 = 0 can again be used because of the Dirichlet boundary set to zero,
or it can be set to any value since this would only shift the zero point and thus
solve an equivalent system. In PINC it is set to nx∆xV⃗d×B⃗

2 such that the ϕi = 0
point is in the center of the simulated domain.

3.6 Charged-neutral collisions

The collision module is implemented using the Monte-Carlo null-collision (MCC)
[43] method described earlier by [42], with the exception of a linear approximation
to the collision frequencies. It is a similar method as in [35]. For additional
context see [5]. A more in-depth explanation of the implementation in PINC is
given in [8].

The probability of a particle colliding within a timestep is given by

Pi = 1 − exp(−νi∆t) (3.22)
Where νi is the collision frequency for collision type i. The null-collision

method is based on the idea of introducing a constant maximum possible collision
frequency. The maximum collision frequency will be the maximum of the sum
of added collision types. This is shown schematically in figure 3.4.
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Figure 3.4: Scematic of different collision types and their frequencies as functions
of energy. Diagram taken from [43].

Inserting νmax into equation 3.22 gives the maximum collision probability
Pmax from which we can define the maximum possible number of particles to
collide within a timestep

NC = PmaxNT (3.23)

where NT is the total number of particles in the simulation. Different collision
types will have different collision cross-sections σi, and scattering angles. In
PINC we have implemented charge-exchange and elastic collisions for ions, and
elastic for electrons. The scattering angles are calculated as in [42].

In PINC there are three methods for obtaining collision cross-sections: zeroth
(ν = constant), constant, and functional. In papers I and III we used the
constant type collision cross-section. At low energies, collisional cross-sections
are calculated using the definition of collision frequency:

νi = ng(x)σi(ϵ)v(ϵ), (3.24)

where i denotes the collision type and x is the position. ϵ is the particle energy.
ng is the neutral density, and v is the relative particle velocity. In equation 3.24
the collision frequency can be either the collision frequency of one particle if
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using the neutral density at the particle position and the particle’s velocity, or
it can be the average collision frequency of the whole system if using average
values.

To maintain the collision frequency in the system we solve eq. (3.24) for the
cross-section, and use the average values:

σi(ϵ) = νi

ng,avgvavg
(3.25)

where ng,avg is the constant average neutral density, and vavg is the average
velocity of the particles. This gives us a model with a linear collision frequency
in velocity i.e., ν ∝ v.

Due to discretization in time, there is a probability that a particle undergoes
more than one collision per time step. The number of missed particle collisions
can be calculated [42, 43]

ri ≈
∞∑

k=2
P k

i = P 2
i

1 − Pi
(3.26)

This leads to an additional simulation constraint, νT,max∆t ≪ 1. This
constraint can significantly increase the number of time steps needed for moderate
to high collision frequencies.

3.7 Testing and Verification

We will present here some of the tests done for verification of PINC. The following
is a non-exhaustive list of verification tests performed:

• Multigrid solver was run on Heaviside and sinus rho test. Any function that
has known second derivatives can be used to measure the error in equation
2.12. For example, distributing the particles in the domain according to a
sine function such that ρ(x⃗) is a sine function, the double derivative will
also be a sine function. For details see [20].

• The first test of the full PIC cycle performed was the Landau damping
test, one of the hallmarks of the PIC simulator. In this test, one species is
offset such that an electric potential is added between the species. This
leads to Langmuir oscillations where plasma period and Landau damping
and energy conservation can be calculated theoretically. All values were
within a few percent, although the error depends on discretization, and a
finer step in time and space leads to a lower error.

• The Boris algorithm was tested. The tests were performed on single
particles where the field contributions from particles were nullified. With
static electric and magnetic fields, one can test that correct gyroradius,
gyrofrequency, and E⃗ × B⃗ drift velocity and direction.
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• For closed/periodic boundaries, it was verified that there is a constant
number of particles in a fully distributed simulation. When particles (and
total energy) move between subdomains it is important that the total
number of particles is conserved.

• For open boundaries, where the simulation edge is connected to a
Maxwellian plasma, the total simulated number of particles averaged
over several ion plasma periods should be constant. This was tested with
several drift velocities and a few very long simulations. The same tests
were done for energy conservation, although this will be stabilized by the
boundary and hence testing energy is not precise in this case. However,
large changes initially should not occur.

• Object-plasma interactions were tested against theoretical expressions of
the OML-charging of a floating spherical probe, and the biased spherical
probe both in a stationary, non-magnetized, Maxwellian plasma. Some
version of this test is detailed in all papers included in this thesis. In
addition, large objects’ floating potential in a non-drifting plasma will be
decided by the thermal currents. (equation 2.26).

• The collisional module was rigorously tested in [8]. The tests included
the correct number of collisions throughout the domain. Averaging over
many collisions should not have a preferred direction in space. Particle
distributions and average energy for ions converge towards neutral species
characteristics.

In addition, several reproductions of earlier papers have been done. There are
too many of these to list all, so we list here a few the author was involved in.

• Reproduced simulation results done by Oppenheim et al. on the Farley-
Buneman instability. In particular, we get the same phase diagram ω/k
as in [34], and similar temperature changes. A discussion on these results
from PINC is done in [8]. A comparison is also made with [34, 35].

• Reproduced ion focusing results from [28, 29]. In the reproduction in PINC,
it was observed that the Mach angle, charging, and peak ion densities are
the same, and the wake geometry overall is similar.

3.8 Status of PINC

PINC has been developed to a point now where it can be considered a state-of-
the-art 3D kinetic particle-in-cell electrostatic simulator capable of simulating
large-scale plasma simulations and object-plasma interactions. While several
similar simulators exist, to the best of our knowledge none of them have the
full feature set of PINC in addition to the high degree of parallelization and
efficiency.

In addition to the features highlighted, several new features are under
development in PINC. Of note is the PIC neutral module, where neutral particles
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can be simulated in the PIC framework. In the future, this can be used to simulate
collisional shocks for objects in super- and hypersonic drifts. A method for energy
transport between neutrals and charged particles needs to be devised, such that
energy conservation is maintained. In the standard PIC-MCC method energy
is not conserved. The method is tested for neutral-only simulations in a shock
tube test where the correct sound speed was observed.

Object-plasma interactions for single objects are well-tested. Multiple objects
have recently been implemented by Jan Deca as a part of a new project. The
implementation includes circuit calculations between objects, such that they can
be biased with respect to each other.

An off-the-shelf MG solver (hypre C library) has been implemented, however,
the work stalled when it was found that it was not significantly faster than the
PINC MG solver. The hypre-based solver is likely more efficient for very large
simulations, and the implementation and testing should therefore be completed.

Photoemission was implemented by Trym Nielsen [32] as a part of his master’s
thesis. This needs a review and some more testing, although it showed promising
and accurate results in selected cases.
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Chapter 4

Summary of Papers

We turn our focus to the new results we found in this PhD project. In this PhD
work we use numerical methods (PIC), which we have just introduced, to improve
instrumentation (LP), which are used to extend our knowledge of plasma and
ionospheric physics. The aims of the papers included were all chosen through
a balance of being impactful, possible, and simple enough to be explainable.
There is a problem in modeling and the current widely employed methods of
machine learning in physics that they are often poorly explained, and used as a
black box. This severely limits such models, or the applicability and adoption of
results based on such models. In this PhD project, there has therefore been a
focus on explaining the results and having a clear path to adopting the results
in other projects.

Idealized probe theory (OML) is a perfect theory under perfect conditions.
In reality, conditions are never perfect. It is well known that realistic conditions
will have several sources of errors due to the non-ideal conditions, however, it is
not clear to what degree these sources will impact probe measurements. Often
the ideal theory assumptions are listed and then neglected. For most conditions
in space, ideal theory will be a good approximation, however, the neglect is
problematic since we lose control over how much we know. There is an error
present, whose magnitude is unknown. In particular, the OML theory is based
on simple geometries and assumes among others collisionless non-magnetized
conditions. The conditions are non-trivial in different regions of the ionosphere
and many other parts of space. We have therefore papers focusing on each of
these conditions: collisional plasma, non-ideal probe geometry, and magnetized
plasma.

4.1 Paper I (Electron–neutral collisions effects on Langmuir
probe in the lower E-region ionosphere)

In this paper, we investigate the effects of charged-neutral collisions on needle-
type Langmuir probes. It is found that the probe currents are increased as the
electron mean free path approaches the Debye length. Summary of Paper I:

1. A set of simulated data for two probe biases was made using the Particle-
in-Cell simulation code PINC.

2. The set uses simulation input parameters based on EISCAT Svalbard Radar
(ESR) data collected at 120 km altitude at the launch of the Investigation
of Cusp Irregularities-4 (ICI-4) sounding rocket. The probe biases have
the same values as two of the four probes on the m-NLP system flown

31



4. Summary of Papers

on the ICI-4 rocket. In addition to the two probe voltages, six collision
frequencies are simulated along with a collision-free simulation.

3. A model was built to correct the currents to two probes with different
probe biases for a specific use case.

4. In the case of the ICI-4 sounding rocket, the model function is shown to
be accurate down to 100km height in the context of the simulations.

5. It is discussed how multi-probe measurements can be accurate even in the
collisional regime if the impact on the currents is independent of probe
voltage. However, this is not the case for the simulations in this paper,
although the differences are small enough to be within the simulation error.

6. It is discussed how the method employed to build models for specific use
cases can be deployed in other scientific missions focusing on the collisional
regime of the ionosphere.

4.2 Paper II (Effects of Guard and Boom on Needle Langmuir
Probes Studied with Particle in Cell Simulations)

Several assumptions are made explicitly, or often implicitly when designing and
deploying needle Langmuir probes. In this paper two assumptions on the probe
geometry are investigated in detail. This paper was motivated by the results
of Marholm and Marchand [26], where it was shown that end effects have an
impact on the current at relatively long probe lengths.

1. The two assumptions tested are: (i) that the guard length needs to be
a few Debye lengths, and (ii) that the guard radius does not impact the
currents.

2. A guard is designed to isolate the probe electrically from the mounting
point. Since the mounting point and the biased probe have a potential
difference, unwanted currents will flow between them if they are not
sufficiently isolated.

3. It is found that the common 1-2 Debye lengths for the guard length are
not sufficient, and at least 6-8 Debye lengths should be used.

4. Since the guard is biased at the same potential as the probe it is commonly
assumed that its geometry will not impact the currents, as long as it is
far enough from the mounting point. We see that this is not the case for
large radii, where the large guard acts as a current sink, such that the
probe currents get lower. However, this effect is negligible when the guard
is small with respect to the Debye length.

5. For a small guard radius there are other complex effects at play, that in
this case do not impact the total currents greatly. However, it is discussed
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Particle-in-Cell simulations)

how these effects may become important at specific probe geometries and
probe potentials.

We concluded that simulating the large number of simulations needed to build
a general model that corrects for these effects will need further justification
since most of these effects can be avoided with proper care taken in designing
and deploying the probe. More work on the effects seen in the small guard
radius regime should be done to find the limits of the particle "funneling" effect
discussed in sections 3.2 and 3.3 of Paper II.

4.3 Paper III (Spherical Langmuir probes in magnetized
plasma. A model based on Particle-in-Cell simulations)

In this paper, a new model for magnetized spherical Langmuir probes, based
on PIC simulations is built. The simulated parameters are loosely based on
simulated ionospheric input parameters, however, the analysis and modeling are
done in dimensionless parameters spanning most ionospheric conditions.

1. The simulations show that even moderate magnetization can lead to a
significant impact on the currents of up to an 80 − 90% reduction. This
means that this is one of the most significant sources of error to Langmuir
probes in the ionosphere that use non-magnetized theories.

2. A dimensional analysis to determine parameters that the simulations need
to describe is performed using Buckinghams’ π theorem.

3. It is determined that under the same assumptions as the OML theory, we
need simulated data points for the parameters probe potential Vp, and
magnetic field β to fully describe the dimensionless set of parameters given
in equation 5.

4. The assumptions used in agreement with the OML theory are that the
probe radius is small with respect to the Debye length and that the plasma
parameter approaches infinity (is sufficiently large).

5. The main set of simulations simulates a spherical Langmuir probe in a
range of probe potentials and magnetic field values.

6. As an initial step a simplified model was built on a single probe bias
value. This model is accurate for probe biases close to the dimensionless
probe potential η ≈ 52, however, due to the large change in currents the
error from using this simplified model is still much smaller than using
non-magnetized theory.

7. A model spanning the full set of dimensionless parameters was built using a
multivariate least squares regression. The model is valid for the simulated
range of parameters η ∈ [15 − 98], and β ∈ [0 − 3.2].

33



4. Summary of Papers

8. Both models have a good fit to the simulated data shown with the ’goodness
of fit’ R2, Mean Absolute Error, and Mean Squared Error parameters.

9. It is discussed how the models can be considered a modification to the
probe effective surface area, or the available surface area with respect to
I0, where I0 is the current given from the OML theory.

10. In the ionosphere, one area where magnetization likely has a large impact
is in the lower altitude, namely the E-region ionosphere. In this region,
charged-neutral collisions also come into effect. Therefore an example of
collisional effects is also included. It is shown that moderate magnetization
is important also in the collisional regime and that collisions behave
similarly to earlier work [48] and paper I. However, the combination of
magnetization and collisions makes the problem highly complex, and many
more simulations would be needed to describe it through simulations.

The final model presented here is straightforward to deploy in space missions. It
is a model for spherical Langmuir probes, which are flown on many missions (see
introduction of paper). However, in the lower regions of the ionosphere needle
type Langmuir probes are often used since the Debye length gets shorter closer
to Earth, and they are easier to miniaturize. This is typically also the region
where magnetization would be most impactful. Therefore more simulations and
modeling for cylindrical probes would be beneficial.
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Discussion

In this section, I will expand on the discussions given in papers I-III. The
discussion will be given in the context of the overall PhD project.

In the papers included as a part of this thesis, we build functions to correct
some known current I0, which is in these cases the OML current. We can consider
a spherical probe and for this example also assume that the results in paper I
are applicable to a sphere. A general function including several effects needs
in general to be a function of all parameters. For example, if we combine the
collisional effects seen in paper I with the magnetic effects seen in paper III the
general function will need to depend on both the collisional parameter λ and
the magnetic parameter β

I

IOML
= f(λ, β, η), (5.1)

and we know from paper III that it needs to depend on the probe potential η.
In this case, there are three dimensions we need to expand and the number of
simulations needed is nd = 103 = 1000 for ten simulations in each dimension.
However, for the collisional effects, the η dependence is weak, and therefore it is
reasonable to assume that the collisional parameter is linearly independent of
the magnetic and potential, such that

I

IOML
= f1(λ) + f2(β, η). (5.2)

f1 and f2 can therefore be expanded separately and the number of simulations
needed is 10 + 100 = 110. This assumption is not trivial since the η dependence
is not completely absent, and we do not know if it holds for all λ and η. However,
this is an approach that can yield satisfactory results with far fewer simulations
needed. When adding even more parameters, carefully evaluating the dependence
and whether they can be considered independent might be a necessity for building
a general function.

When considering a cylindrical probe the problem is further complicated by
the end-effects [26] and magnetic field angle. In addition, plasma flow should be
included. A function expanded on all parameters will then need 106 simulations,
and these are only the parameters we know to be impactful. If we assume linear
independence on the magnetic field angle in addition to the end effects being
linearly independent of all other parameters we can write the correction function
as

I

IOML
= f1(λ, Θ) + f2(β, η) + f3(lp, η), (5.3)
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where f3 is the function from [26] and is already known. We then need
100 + 100 + 100 simulations for a general function, however, we only need
200 new simulations. f2 and f3 both depend on η and are therefore clearly not
independent. However, it is still possible that the assumption holds to a good
approximation. In any case, a general function including several corrections would
be useful, and 200 additional simulations are possible to do, 106 is infeasible.

In paper II it is left as future work to study the focusing effect observed at
certain values of rg/rp. It is also mentioned that the probe length might play a
role. The effect is accompanied by a sheath with an unusual shape, which we
called a funnel shape. Since the sheath shape changes greatly it is reasonable
that this shape will also impact current collection in a magnetized case. If this
is so, the limits given in the paper may need to be accompanied by a limit on
magnetization. It is also possible that the guard radius will need to be included
in a general function if such effects exist.

Large changes in the sheath were observed in the collisional plasma, with
changing the guard geometry, and in magnetized cases. The sheath shape is
important for the probe current, and it is difficult to predict what all of these
changes combined would mean for the probe currents. It is therefore possible
that a general function is not usable without expanding all parameters in one
function. The complexity of the problem, and the possibility of a solution being
infeasible, is not a reason to leave this question without further investigation, it
is rather the opposite.

5.1 Future work

Papers I-III have discussions of future work. In this section, we will highlight
some of the future work discussed in the papers as bullet points, and add one
new point in the end.

• A study of the effects of magnetization on a cylindrical probe should be
performed, and if possible a correction function should be constructed.
Such a function will need the magnetic field angle in addition to the probe
length along with the two parameters from the spherical case as parameters.
This makes the problem difficult, however, as discussed above, it may be
possible to do some simplifications.

• The funnel shape on the sheath in paper II with an increase in the current
was an unexpected result. The effect is small in the cases simulated in
the paper, however, we do not know if there exists a specific configuration
where this effect becomes significant. This should be investigated.

• Work towards a general empirical function correcting for all effects would
be beneficial. The feasibility of building such a function is discussed above,
and further details are discussed in papers II-III.

An overview study where different corrections are evaluated for the m-NLP
system where different corrections impact at different times during a flight

36



Future work

should be highlighted. This can be done without a general function, if it is
understood that the corrections are a measure of the impact of an effect and the
actual currents are still unknown. In areas where all corrections are small, we
will know that the data has a high quality. The corrections we can evaluate are
the collisional effects from paper I, the magnetic effect if this is expanded to the
cylindrical case, and the finite length (end effect) modeled in [26]. We can also
flag areas if the criteria of paper II are violated.
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ABSTRACT

We present the first set of particle-in-cell simulations including Monte Carlo collisions between charged and neutral particles used
to simulate a cylindrical Langmuir probe in the electron saturation regime with a collisional electron sheath. We use a setup focused on the
E-region ionosphere; however, the results of these simulations are analyzed in a general sense using dimensionless values. We find that the
electron currents get enhanced as the collision frequency for electrons increases and the values of ke=kD ! 1, where ke is the electron mean
free path and kD is the electron Debye length. In addition, we apply the simulation results to a sounding rocket experiment and show how we
can correct the currents for the Investigation of Cusp Irregularities-4 sounding rocket due to collisions while it flies through the E-region.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079761

I. INTRODUCTION

Langmuir probes have a long history and widespread usage in
space measurements. The probes are usually designed with either
spherical or cylindrical geometries, and they may have different setups
for single- or multi-probe measurements. For example, the Rosetta
spacecraft1 had a two-probe setup designed for low-density measure-
ments. This concept was inherited from earlier missions, like the Freja
F42 and Cluster3 missions, targeting relatively high density plasma in
the ionosphere and magnetosphere. Another modern Langmuir probe
system is the multi-needle Langmuir probe (m-NLP) used on the
Investigation of Cusp Irregularities (ICI) rockets,4–6 and NorSat-1.7

The different setups require different theoretical equations to extract
plasma parameters like temperature, density, and electric potential
from the surrounding plasma. Usually, these theories are based on
orbital limited (OML) theory,8 which, in the electron saturation
region, predicts that the current Ip to a probe p is given by

Ip ¼ IthK 1þ
qðVp þ Vf Þ

kBTe

� �b

; (1)

where kB is the Boltzmann constant, q the elementary charge, and Te
the electron temperature. K and b are dependent on the probe shape.

In particular,K ¼ 2=
ffiffiffi
p
p

and b ¼ 0:5 for ideal infinite length cylindri-
cal probes and K ¼ b ¼ 1 for spherical probes. Vp and Vf are the
probe potential and spacecraft body floating potential, respectively.

Ith ¼ neqS
ffiffiffiffiffiffiffiffi
kBTe
2pme

q
is the thermal electron current, where ne and me are

the electron density and mass with S being the surface area of the
probe.

For the m-NLP system, ideally, we can eliminate some of the free
parameters in Eq. (1) by taking the difference of the square of two m-
NLP probes4 to obtain an expression for the electron current that does
not depend on the electron temperature. We could also take the cur-
rent ratio to eliminate some parameters, and get an equation that is
independent of the electron density. In any case, the direct measure-
ment is an electric current to the probe, where for analysis ideal condi-
tions are assumed, and one of these conditions is that the plasma is
collisionless.

Most, if not all, scientific missions in space where Langmuir
probes are used for measurements assume collisionless plasma condi-
tions.1,9 For the most part, this assumption is likely valid. However, in
the lower E-region of the ionosphere—at �90–150 km—the collision
frequencies between charged and neutral species are too high to call
plasma in this region collisionless.10,11 Several missions, like the
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SPIDER missions9 or the proposed orbital low flyer Daedalus,12 have
their focus on regimes with higher collision frequencies, where colli-
sions are likely to impact the measurements in some way. In these
cases, collisionless theories for the current collection of Langmuir
probes must still be used since there is no collisional theory available.
It is therefore assumed that the impact of collisions is small. However,
this assumption is not trivial; there does not exist, to the best of our
knowledge, any good source that would justify it, or would give a
quantifiable method of correcting the currents collected by the
Langmuir probes in collisional plasma. Interest in the complex and
turbulent nature of the lower E-region is growing, due to radio echoes,
signal degradation, and GPS scintillation.13 In addition, there are sev-
eral unanswered fundamental questions of plasma and atmospheric
physics that are linked to this region.14–16

There have been some previous works on collisional effects on
the currents collected by Langmuir probes.17,18 While these articles
focus on the ion collection (the negative probe potential) regime,
discussions of the physical processes are applicable also for electro-
n–neutral collisions. In Ref. 17, the authors report an increased ion
current in the low-pressure (low-collision frequency) limit; this is
attributed to the destruction of ion orbits around the probe. In addi-
tion, in the highly collisional case the ion currents are lower, limited by
diffusion and drift to the probe. This is similar to the empirical results
in Ref. 18 where they also report a peak in the ion current in the OML
range when ki � the sheath thickness. In their results, the value of
kD=ki where this peak occurs ranges from �0:2 to 0.5, meaning, there
is a peak when ki is slightly longer than kD. However, some fundamen-
tal differences between electrons and ions means there will likely be
significant differences between the charge–neutral collision effects on
an ion or electron Langmuir probe current. One major difference is
that for ion–neutral collisions, electrons usually act as a neutralizing/
restoring background; this will not necessarily be the case for electron
neutral-collisions.

Here, we will, for the first time, focus on the effects of electro-
n–neutral collisions in the positive probe potential regime. The
effects of ion collisions are in a sense more relevant than that of
electron collisions because the mean free path is usually shorter for
ions, giving it a wider range of applicability. However, experiments
can easily be designed to circumvent the ion collisional effect by
using probes that collect electron currents in the electron current
regime where ion collisions can be neglected. This is where the
need for an analysis of the electron collision effects arises. One pos-
sible reason explaining why this has not been done before is that
simulating electron collisions is computationally more expensive,
since we cannot treat the electrons as a fluid, as it is done in the
studies of ion–neutral collision effects. We will here present the
first fully 3D, kinetic simulations, of both electrons and ions, of a
cylindrical Langmuir probe in the electron saturation regime, with
a collisional electron sheath.

In this article, we will address both of the aforementioned issues
using particle-in-cell (PIC) simulations. It is our intention that this
article can be used as a reference to emphasize where the collisionless
assumption holds. In addition, we will apply a method for building a
function to correct collisional effects on the collected currents to a
cylindrical Langmuir probe. We apply this method to the ICI-4 sound-
ing rocket data to show an example of the effects of electron–neutral
collisions through the whole E-region.

II. THE PIC SIMULATOR

This section reviews some important aspects of the new fully par-
allel 3D particle-in-cell (PIC) code PINC used in this study. There are
three main classes of simulators employed for simulating plasma: PIC,
fluid, and hybrid. A PIC simulator is well suited for studying kinetic
effects and uses less assumptions as opposed to fluid or hybrid simula-
tors. In particular, a fluid simulator solves the magnetohydrodynamic
(MHD) equations, which assumes a Maxwellian form on the particle
distribution. In hybrid simulators, a fluid treatment is usually per-
formed on the electrons, and a PIC treatment is used for the ions. In a
PIC simulator, we effectively solve the Vlasov equation using the
method of characteristics, making no assumption on the particle dis-
tribution.19 In collisional plasma, we have no a priori knowledge of the
particle distributions; thus, a fluid or hybrid simulator is not well
suited for this task. In addition, a fourth kind of simulator has emerged
in recent years called Vlasov simulators.20 Vlasov simulators solve the
Vlasov equation directly and thus include kinetic effects. However, the
collisionless assumption is usually included in the design of the simu-
lator and would need further development to include charge–neutral
particle collisions. The need for a new code lies in the fact that most
codes that see widespread usage make some assumption—like treating
electrons as a fluid—or are only capable to 2D simulations. There do
exist some modern codes that do most of what we need, with the
exception of for example charge–neutral collisions, which we could
have modified for our use. However, by developing our own code we
gain a larger degree of control in the implementation.

A. Applied algorithms

PINC uses the standard PIC main cycle19,21,22 with the addition of
object–plasma calculations using the conductive surface capacitance-
matrix method22,23 and charge-neutral collisions using the null-collision
Monte Carlo collision (MCC) scheme.21,24 Since particles exist in the
space between grid nodes, on which the fields are defined, we need to
translate between the particle positions and grid nodes. The interpola-
tion between particles and field quantities on the grid is done with a first
order weighting function, often referred to as Cloud-In-Cell (CIC). For
each particle, its charge is weighted to the nearest grid nodes that define
the cell in which that particle resides. This is done with a weighting
function,25 which weighs the particle by one minus its normalized dis-
tance to each of the nodes. Similarly, later the field quantities are super-
imposed at the particle position from each of the nodes by the same
weighting function. We also use the so-called superparticles, meaning
that each particle is to be considered a part of phase-space with a size in
space equal to the grid cell volume, but a point in velocity. This gives the
superparticles the ability to be rescaled to include several real particles
and still allow for solving the same Vlasov equation.19

In PINC, we are interested in the electrostatic solution, neglecting
any change in the magnetic field. However, a static magnetic field can
still be included using the Boris algorithm.26

On the edge of the total simulated domain, we have chosen to
use Dirichlet-type boundaries. We set the electric potential to be zero
on the outermost nodes of the simulated domain and inject particles
with a Maxwellian distribution.

The collision module is implemented using the null-collision
MCC method described in Ref. 24, with the exception of a linear
approximation to the collision frequencies, a method similar to the
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one in Ref. 11. In order to maintain the correct collision frequency in
the bulk plasma, in addition to adding the feature that slower moving
particles collide less often than faster moving ones, we calculate the
constant value of the cross sections that maintain this collision fre-
quency. To do this, we begin with the probability for particle p to col-
lide within a time step24,25

Pp ¼ 1� e�ntðxÞrT ðeÞVpðeÞ; (2)

where nt is the neutral density and Vp is the relative particle speed
between the incident and target particle, with e the particle energy. rT

is the total collision cross section, which can be written as a sum of
cross sections for each collision type i present. From this, we define an
instantaneous collision frequency as follows:

�i;p ¼ ntðxÞriðepÞVðepÞ; (3)

where � is the instantaneous collision frequency, at position x. In Eq.
(3), the collision frequency �i;p can be considered as the instantaneous
collision frequency of one particle, used to calculate that particle’s
probability to collide within a time step, using the neutral density at
the particle and the particle’s speed. If we average over the particle dis-
tribution using Eq. (3), and solve for the cross section, we get

ri ¼
�� i

�nt �V
; (4)

where �nt is the constant average neutral density and �V is the average
speed of the particles, averaging over the particle distribution. We used
here �� i to indicate that this is for the whole distribution, meaning that
this is the actual collision frequency of the species. Although the cross
sections ri are generally dependent on a single particle’s energy, using
the averages in this way now gives us a constant value at the average
energy (temperature). Feeding this value back into Eq. (3) will also
give an individual instantaneous collision frequency per particle but
maintain the correct collision frequency when averaging over many
particles. This gives us a model with a linear collision frequency in
speed, i.e., � / V .

The collisional cross sections are complicated functions of energy
in reality;24 however, simplifications can be made by approximating
the collision frequencies with a linear or squared function of the par-
ticle’s speed.11,27 We generally assume that the linear approximation is
well justified for relatively low-energy plasmas such as those found in
the vicinity of the Earth. Assumptions on the form of the collision fre-
quencies are a topic of ongoing discussion, see Ref. 11, Sec. IV.

Usually, elastic electron–neutral collisions lead to a loss in energy
for the electron due to the large difference in mass between the elec-
tron and neutral atom.24 However, in some of the highly collisional
cases presented in this article, this loss in energy, or lowering of tem-
perature, could possibly increase the Debye length so much that the
simulation becomes susceptible to the finite grid instability.22,28 This is
especially likely for the higher collisional cases (e.g., at least 6 and 7)
because in cases 6 and 7 the particles will collide several hundreds of
times before reaching the probe if they take the shortest path from the
boundary. If this happened, it would be difficult to differentiate what
part of the results were due to nonphysical numerical issues and what
are actual physical results. We therefore use an energy conserving
scheme, where we ensure that the energy before and after a collision is
the same. This is done by storing the speed j~vpj of the electron p

undergoing a collision before the scattering is performed. In previous
works, calculation of the scattered velocity v̂ scat [see Ref. 24, Eq. (11)]
is a unit vector, thus multiplying the particle speed before a collision
with the scattered unit vector, i.e., j~vpj � v̂ scat , will maintain the speed
of the particle throughout the collision. Note that the collision fre-
quency, i.e., probability to collide for a given particle is still energy
(speed) dependent, so is the scattering angle.24

One important thing to note is that the MCC method includes
an error in the number of particles to collide. In order for a particle to
have a small probability of having two or more collisions, e.g., r< 0.01
in a single time step, the probability Pp of a collision in one time step
should be Pp < 0:095.24 This adds a constraint on the time step dt
used for simulations, which will dominate for high collision
frequencies.

B. Verification of simulation setup

During the development of PINC, many verification tests have
been run; most of these are elaborate and outside the scope of this arti-
cle, and we will here present some selected tests that are designed to
cover the bigger picture. A detailed discussion of these tests can be
found in the master’s thesis of Killie,29 Brask,30 Holta,31 and Nielsen.32

In order to verify the correctness and accuracy of PINC, we ran a
set of verification tests. They can generally be split into two groups.
The first set is for object–plasma interactions. The second set is for
charge–neutral collisions. For object–plasma interactions, we first run
a special case to compare to the OML theory. The case is essentially
the same as in Ref. 23, and we use the same representation of a sphere
with a radius of two cells. The actual geometry used is shown in Fig. 1.
In addition to the floating potential, we compare the current collected
by a biased Langmuir probe with the theoretical value. The current Ip
in the electron saturation region is given by Eq. (1), where we have Vf

¼ 0 since we are simulating a probe without the spacecraft.
In the test case, we used a mass ratio of mi=me ¼ 100, a density

of ne ¼ ni ¼ 1� 109m�3, and a temperature of Te ¼ Ti ¼ 1000K.
For the floating potential test, we use a radius of 0:06kD in order to
directly compare with Ref. 23. After running the simulation until it
reaches a steady state, we get a floating potential of �0:1260V, or
�1:46kBT=e, which is 3% of the theoretical value. When running the
simulation again but with a bias of 2V and again using a radius of 0.06
kD, we get a current of 4:310� 10�8A to the probe compared with the
theoretical value given by Eq. (1), which is 4:102� 10�8A. This gives
a percentage difference of 5%. The differences in values we obtain

FIG. 1. Discretized geometry of a sphere used in the spherical OML test case.
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from the simulator and theory might be explained by the ambiguity in
the radius of the sphere. The sphere is approximated by numerical
cells, which are in fact cubes.

An additional test was performed to verify the current collec-
tion. In this test, we use a slightly more complicated geometry for
the probe, a cylinder which is longer than the Debye length and
has a radius that is shorter than the Debye length. We then com-
pare the collected current to an independent PIC code, PTetra.33,34

PTetra differs from PINC in one major way in that it uses nonuni-
form grid spacing. For verification, we used the collisionless case
detailed in Sec. III and ran the simulation with the exact same
probe geometry in PTetra and PINC. We ran the simulation both
with a probe bias of 4.5 and 7.5 V. The steady state currents from
PINC and from PTetra are shown in Table I. In this comparison
between PINC and PTetra, we did not expect an exact agreement
due to significant implementation differences between PINC and
PTetra. Still, we obtain a difference of �8%–9% in both cases,
which we deem to be adequate for this case.

The most important test for verifying the correctness of the colli-
sional module is that the number of colliding particles is consistent
with the collision frequency. This is obtained from the probability for
a particle to undergo a collision within a time step,24,25 given by

Pp ¼ 1� e��pDt ; (5)

where Pp is the probability for particle p to collide in time Dt, with col-
lision frequency �p from Eq. (3). The number of colliding particles in a
simulation per time step will then on average be

Nc ¼ NT�P; (6)

where �P is the average probability, using the average collision fre-
quency from Eq. (5). NT is the total number of particles in the sim-
ulation. Note that with this definition, using probability, the
number of colliding particles will change as the weighting of
the superparticles changes, as it should. To verify that we
collide the correct number of particles, we ran a simulation on an
8� 8� 8 grid with 420 particles per cell. With a time step of
0:1xpe ¼ 1:77 � 10�8 s and � ¼ 4� 105 s�1, we get Nc ¼ 758 col-
liding particles per time step. The result was an average 769.7 colli-
sions for electrons and 766.2 for ions. This test was run for a
relatively short time, and we expect the numbers to get closer to Nc

if we run the text longer; however, the largest error here is 1:5%,
which is lower than other sources of error.

In addition to the collision frequency change, we checked that
the change in energies and scattering angles due to a collision was con-
sistent with the equations given in Ref. 24. In addition, to check that
there was no systematic error in the scattering angles, we checked that
the average of these was zero, i.e., angle has no preferred direction but
is random.

III. SIMULATION SETUP

In this section, we will go through the simulation setup used. The
set consists of twelve simulations: six of them are run with a probe bias
of 4.5 V and the other six are run with a probe bias of 7.5 V. We main-
tain the plasma parameters fixed with the exception of collision fre-
quency, such that we isolate the effects of collisions on the two
different biased probes. The parameters are based on EISCAT
Svalbard Radar (ESR) data collected at 120 km altitude on 19 February
2015, at 22:00, at the launch of the ICI-4 sounding rocket, and are
listed in the first panel in Table II. The values provided correspond to
the mean quantities obtained from ESR UHF between 22:05:59 and
22:15:59 UT using 120 s integration time.

ICI-4 was launched from Andøya, Norway, in the nightside
aurora and was in total darkness during the entire flight. The collision
frequencies for both ions and electrons vary in power from 0 to 7. ICI-
4 had four Langmuir probes biased at 3, 4.5, 6, and 7.5 V. Ideally, we
would want to simulate all four probes; however, since we are some-
what limited by available computational resources we pick the 4.5 and
7.5 V probes. We are mostly interested in the electron collision fre-
quencies as the collected currents are in the electron saturation region,
and electron dynamics will be the dominating effect. In the E-region
ionosphere, the dominant ion species are NOþ and O2þ; however, in
the simulations we use He4þ. It is a common trick in PIC simulations,
however, to reduce the ion mass. This is because otherwise, the ion
dynamics gets so slow that they incur a high computational cost—by
increasing the time steps needed—and, therefore, the computational
time needed to reach steady state. Reducing the ion mass will in turn
increase the ion current. However, in the electron saturation region,
the ion current is nonetheless negligible compared to the electron

TABLE I. Summary of parameters for the current collection test where we compare
PINC to PTetra.

PINC PTetra

4.5 V �4:59 � 10�6A �5:05� 10�6A
7.5 V �6:95 � 10�6A �7:55 � 10�6A

TABLE II. Input parameters to the PIC simulator. The simulation parameters are
based on observational data from ESR and NRLMSISE-00 Model 2001. The plasma
parameters come from ESR and neutral densities and temperatures used for calcu-
lating collision frequencies come from NRLMSISE. The simulation ID is assigned
from the power of the electron collision frequency �e.

Parameters Value

dx, dy, dz (m) 0.002
dt (s) 5 � 10�10

Time steps 100 000
Density (e, i) (m�3) 9:597 � 1010

Te (K) 441
Ti (K) 475
me (kg) 9:109� 10�31

mi (kg) 6:646� 10�27

Simulation ID �i �e

0 0 0
2 8:737� 102 2:911� 102

3 8:737� 103 2:911� 103

4 8:737� 104 2:911� 104

5 8:737� 105 2:911� 105

6 8:737� 106 2:911� 106

7 8:737� 107 2:911� 107
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current. In addition, there is no collisional coupling between electrons
and ions. The reduced mass therefore should not affect our results.

For comparison, we chose a probe geometry that mimics the
probes from ICI-4. The exact geometry can make a difference, and we
are simulating a probe with length �5kD such that the probe current
likely is impacted by the finite length effect35 and the fact that the
probe is actually mounted on a guard, not included in the simulations.
In the following analysis, we assume that such effects do not depend
on the collision frequency such that when we take the ratio of two cur-
rents, effects like the finite length effect will disappear. Due to the uni-
form grid employed in PINC, our simulated “cylindrical” probe is
actually a rectangular box with size 1� 1� 12 cells, that is 0:002
� 0:002� 0:024m3. We also use a simulated domain of 128� 128
� 128 cells, which is 0:256� 0:256� 0:256m3. That gives each side
of the domain a length of 54.8 Debye lengths.

In Table III, we have listed some derived parameters for the sim-
ulations, in particular the dimensionless parameter mean free path
(ke)/Debye length (kD). To calculate ke, we use the definition

ke �
particle speed

e� n collision frequency
¼ vth;e

�e
: (7)

Here, vth;e is the electron thermal speed and �e is the electron–neutral
collision frequency. In the remainder of this article, it is therefore
understood that when we talk about the mean free path it is the elec-
tron mean free path ke.

The usual assumption on collisionless conditions is stated as
xpe=�e � 1, where xpe is the electron plasma frequency. This
inequality leads to the equation

ke
kD
¼ vth;e=�e

vth;e=xpe
¼ xpe

�e
� 1: (8)

So, both the dimensionless parameters, ke=kD and xpe=�e, can be used
interchangeably; but we will use the parameter ke=kD as a measure of
the collisionality in plasma.

In order to calculate the collision frequencies between the plasma
particles and neutral particles, we used the equations given in Ref. 36
and the data for neutral temperatures and densities from NRLMSISE-
00 Model 2001.37,38 The NRLMSISE model is an empirical model
based on several sources of data, used to calculate the neutral density
and temperature in Earth’s atmosphere. NRL stands for the US Naval
Research Laboratory. MSIS stands for mass spectrometer and

incoherent scatter radar, which was the source of data in the original
form of the model. Later versions also include satellite drag data. The
last E stands for exosphere, indicating that the model extends through
the whole exosphere of the Earth.

IV. RESULTS

The results of the simulations are divided into three subsections.
First, we provide general results of the current collected at two differ-
ent bias values of the Langmuir probe, where the only varied parame-
ter is ke=kD. Second, we carry out an additional test to study the
dependence of the current on the plasma parameters at a fixed value
of ke=kD. Third, we quantify the simulation results with a least squares
regression to a well-behaved function.

A. Simulation results

In this section, we present results from the simulations described
in Sec. III.

Figure 2 shows plots of the electron densities perpendicular to
the probe and through the short side in the center of the probe. The
vertical black dotted line represents the probe surface. In the figure, we
added one plot from each simulation from the 4.5 V bias cases, such
that each plot represents a collision frequency, or equivalently a value
of ke=kD. We chose to omit including a figure for the 7.5 V case as it
shows similar density profiles, only with the exception of higher peak
density values.

As expected, when the collision frequencies increase, the peak
electron density in the probe sheath gets lowered. However, there is
one exception, from simulation 2 we see a small increase in the peak
density. Noting that this increase is small enough to be within simula-
tion error, it might indicate a higher trapping rate for the electrons,
similar to the processes described in Refs. 17 and 18, but for electrons
instead of ions. For relatively low collision frequencies, the electron-
neutral collisions transfer radial momentum to angular momentum,
trapping the electrons in orbit. This happens at a higher rate than the

TABLE III. Derived parameters for Table II.

Parameters Value

xpe (rad/s) 1:75� 107

kde (m) 0.004 678
ke0=kD 1
ke2=kD 60 038
ke3=kD 6003.8
ke4=kD 600.38
ke5=kD 60.038
ke6=kD 6.0038
ke7=kD 0.6004

FIG. 2. Lineplots across the middle of the probe traversing the short side. The plot
shows the electron densities. Density values are normalized by N0, the ambient
background density of the electrons, and length is given in Debye lengths.
Densities are averaged over the last 1000 time steps. The plot shows only the con-
tribution from particles, omitting the contribution from surface charges on the probe.
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opposite effect, where the colliding electron orbits are destroyed and
the electrons fall toward the probe. For the rest of the simulations, the
latter effect seems to be dominating, the high rate of electrons getting
pushed out of orbit is effectively lowering the density close to the
probe. The presheath, at �65–10kD has the opposite behavior, with
lower values for lower collision frequencies, and higher densities as the
collision frequencies rise.

The development of the currents to the probe in time is presented
in Fig. 3. Comparing the 4.5 V (a) cases to the 7.5 V (b) cases, we see
that the overall behavior between these is the same. For the cases up to
case 6, that is, for all cases where ke=kD > 1, the currents stabilize at
higher values as the collision frequencies rise and ke gets lower. The
development of the transient in the current slows down and stabilizes
at an enhanced value, compared to the collisionless case. The reason

for higher current values is the same as that for the lower densities
seen in Fig. 2—as the collision frequency rises, more particles are
knocked out of orbit and get collected by the probe.

The impact of varying the electron-neutral collision fre-
quency on the collected current can be seen in Fig. 4. In Fig. 4(a),
the currents are normalized, with I0 being the zero collision fre-
quency (collisionless) current obtained from simulations. The
black dotted line indicates a 10% change with respect to the colli-
sionless case. The current ratio, see Fig. 4(b), is the ratio of the
currents at a bias value of 7.5 V to the 4.5 V simulations at differ-
ent values of ke=kD.

The importance of current ratios is to visualize the difference in
the impact of collisions for the two different probes. If the variation in
collision frequency impacts probes at different potentials equally, the

FIG. 3. Development of the currents to the simulated probe at 4.5 V cases (a) and
7.5 V cases (b). The numbers 7, 6, 5, 4, 3, 2, and 0 refer to the order of magnitude
of the electron collision frequency. Values are given in SI units. Both plots include a
10� zoomed-in area to show the differences in cases 0, 2, and 3. In order to
remove noise, an exponential moving average filter using a relaxation time of ten
time steps was applied. (Associated dataset available at https://doi.org/10.5281/
zenodo.5906749) (Ref. 39).

FIG. 4. Comparison of single currents (a) and current ratios (b) for case with fixed
plasma parameters, but with varying collision frequency. Currents are collected at
two different positive bias values: 4.5 and 7.5 V. All values are averaged over the
last 500 time steps. The gray area shows where the mean free path has the same
order of magnitude as the Debye length. The zero collision, infinitely long mean
free path case 0 is represented by the number 6 � 107. (Associated dataset avail-
able at https://doi.org/10.5281/zenodo.5906749) (Ref. 39).
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plotted line in Fig. 4(b) should be straight. Taking the ratio of two
probes a and b using Eq. (1), we get

Ia=Ib ¼

�
1þ qðVa þ Vf Þ

kBTe

�b

�
1þ

qðVb þ Vf Þ
kBTe

�b ; (9)

which is independent of density and constant for constant values of
floating potential Vf, electron temperature Te, and probe geometry b.
In these simulations, we control Vf and Te, and maintain them as con-
stants, so the changes must be explained either with b which is possi-
ble since the probe has a finite length35 or as a purely collisional effect.

In both plots in Fig. 4, the x axis is log scaled using a base 10 loga-
rithm. From the normalized currents, we see that the currents increase
with increasing collision frequency (lower ke) for cases where
ke=kD > 1. In addition, the curve seems to follow an exponential
increase, at least for the first five points. This exponential increase sug-
gests that the change in currents linearly depends on ke=kD due to the
log scaled x axis. We will test this dependency in Secs. IV B and IV C.
For the current ratios, we observe a similar increase—suggesting that
the collisions impact the two different bias values differently. However,
the percentagewise change is small and might therefore be negligible
for the present setup. We do not know if this change will be larger for
other setups. It might also impact some analysis methods to a larger
degree, if one takes for example the difference of the squared currents.
In any case, we will include most of these differences in the correction
later.

For the case 7 current value, it is likely true that it will be lower
than at least the case 6 currents, based on the observations from Fig. 3.
Currently, we do not know if this value can be trusted, as it is likely
that when ke=kD < 1 the plasma dynamics are no longer dominated
by electromagnetic forces. Although this in itself should not invalidate
the simulations, this point should be analyzed with care. In addition,
we highlighted the area where the mean free path has the same order
of magnitude as the Debye length in gray as an area of concern, which
needs additional analysis and verification in the future. However, the
trend makes physical sense as electrical resistance will dominate at
these higher collision frequencies. It is also consistent with a similar
process for ions.18 The point is added for consistency with the previous
plots, and future reference.

B. Dependence on plasma parameters with fixed ke=kD

As we saw in Fig. 4, there is a dependence of the collected current
on the parameter ke=kD. However, it might seem unclear if there are
additional dependencies on plasma parameters. In order to answer
this question, we set up an additional test. We modify two additional
simulated parameters, starting with the setup in Table II; for the first
additional case, we increase the temperature by an order of magnitude,
and for the second we increase the temperature by a factor of 10 and
the density by a factor of 5. In each case, we maintain the parameter
ke=kD ¼ 60 by varying the electron collision frequency. In addition,
we rescale the simulation grid to maintain the probe size with respect
to kD. The idea is that if we change the plasma parameters, but main-
tain all the dimensionless parameters at constant values, if there is no
dependence on other parameters, we should get the same value in
each case for I=I0, the ratio of collisionless current to the collisional

current. To this end, we also need to rescale the probe bias. To do this,
we use the dimensionless potential

g ¼
qVp

kBTe
: (10)

In this case, we get a value of g ’ 118; for both of the new cases
to maintain a constant g, we need to increase the bias by an order of
magnitude since the temperature increases by an order.

From Table IV, we see that the value of I=I0 can be considered
constant as the differences are small enough to be associated with the
simulation errors, such as the finite grid, finite time step, and limited
simulation box. For these values, the mean is 1.2216 with a small stan-
dard deviation of 0.0095; this small standard deviation supports the
fact that normalized currents are dependent only on the dimensionless
parameter ke=kD at a constant g. It is important to note that since g is
temperature dependent, realistically, in a rocket mission as temperature
and floating potential of the spacecraft changes, g will also change.

C. Quantifying the changes in currents

As mentioned previously, the currents in Fig. 3 seem to follow an
exponential curve. We will in this subsection show how we can use
these results from the simulations to fit a suitable exponential function
to the data points. This function will then give a quantifiable method
for correcting the collected currents, which could be used in post-
processed/corrected L2 data products for sounding rocket missions or
low flying orbiters.

There are several candidate functions we can fit to. We chose one
that will be suited for the low to medium collisional range, as this will
be usable for most cases in space plasmas. If we were to include higher
collision frequencies, this function would need a more complex form.
To this end, we use only the five lowest collision frequency points. The
function we chose is of the form

I=I0 ¼ 1þ ccorr ¼ 1þ 10AþBx; (11)

where I is the collected current and I0 is the zero collision current. I0
can be any successful theoretical or measured collisionless current; for
example, we may use the OML value of the current for I0, then I is the
collisionally corrected OML current. ccorr is a correctional term, in this
case an exponential ccorr ¼ 10AþBx . The variable x is the ( log10) value
of ke=kD. ccorr could have been the natural exponential, this would just
change the coefficients A and B. We chose to use base 10 for consis-
tency with the simulations and plots.

We perform a least squares regression where we minimize the
residual sum of squares defined as RSS ¼

P
i ðyi � ~yiÞ

2. Here, yi are
the values from the simulations and ~yi are the values we get from Eq.
(11) at the same values of x ¼ log10ke=kD.

In order to evaluate the quality of the fit, we use the coefficient of
determination called “R square” value, defined as R2 ¼ 1� RSS=TSS,

TABLE IV. Normalized current values for three cases with different plasma parame-
ters, but fixed ke=kD.

Original Added case 1 Added case 2

I=I0 1.212 1.222 1.231
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where TSS ¼
P

i ðyi � �yÞ2 and is the total sum of squares. Generally,
a higher value of R squared indicates that the fit is better, and if
R2 ¼ 1 the model perfectly describes the data. As we see from the val-
ues of R2 in Table V, the fit we obtain is good. Since the parameters
are found using a setup applicable to the launch of the ICI-4 sounding
rocket, using these in Eq. (11), this gives us a correction due to colli-
sions that we can apply to the ICI-4 data for the 4.5 and 7.5 V probes.
As mentioned above, the values obtained for the coefficients A and B
are based on simulations using an energy-conserving scheme for the
electron–neutral collisions. It should be noted that this assumption
might be nontrivial, and the inclusion of energy-loss during the elec-
tron–neutral collisions will likely further enhance the collected current,
which would change these coefficients to some degree.

Finally, we can apply this fitted function to the ICI-4 Langmuir
probe data. In addition, we need kD and ke. The plasma temperature
and density are again obtained using ESR data with a resolution of
5 km in the vertical direction and the neutrals’ (N2, O, and O2) tem-
perature and density are obtained with NRLMSISE-00 Model
2001,37,38 and ke is calculated using collision frequencies from Ref. 36.
From this, we get a value of ke=kD at each 5 km, values are interpolated
between the 5 km resolution in Fig. 5(b). Note also that this calculated
kD is not accurate within these 5 km; however, this should not make a
large impact since it is the order of magnitude that is important.

The result of the collisional correction is shown in Fig. 5(a). Both
the original uncorrected current I4 and the corrected I40 probe current
are plotted. A bandpass filtering was performed on the uncorrected
current to remove the spin from the payload and the first three har-
monics. The bandpass filtering is then effectively also applied to the

corrected current through the uncorrected current. In Fig. 5(b), the
ratio of these is plotted in a similar manner as in Fig. 4. From the
I4=I40 ratio, we see that the corrections are small above 120 km and
negligible above 160 km. For ICI-4, if high accuracy in the currents is
required, then it will be important to use collisional corrections on
data up to �160 km, and under 120 km collisional corrections should
always be used. It is reasonable to assume that similar heights will be
of importance for other missions.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

The results of the simulations indicate that the effect of electro-
n–neutral collisions on an electric current collected by a cylindrical
Langmuir probe, biased in the electron saturation regime, generally
leads to an enhancement in the collected current when ke=kD ! 1.
With the simulation results, we could fit a function to the simulation
results for the probes biased at 4.5 and 7.5V for plasma parameters
relevant for ionospheric conditions. These two functions were consis-
tent with the simulations at ionospheric altitudes down to 100 km, at
which point additional simulations and a non-linear function for the
exponent of ccorr would be needed. This method of using simulations
results for correcting experimental data is general, and it can be
deployed on a per-mission basis. We expect that the values we
obtained and used in Eq. (11) should hold for ionospheric conditions
similar to the ICI-4 sounding rocket mission presented here. However,
at present we feel that additional simulations should be run in other
missions to verify or obtain new parameters. In addition, since the
model presented here for ICI-4 is not verified outside of simulations,
experimental verification should be done in the future.

It may be possible to extract plasma parameters omitting the col-
lisional effects by taking, e.g., the ratio of two probes. If the collisions
impact the probes at the same rate, the collisional effect should disap-
pear. However, we see some evidence that this is not the case for
higher collision frequencies in Fig. 4(b). More precisely, as long as the
dependence on the dimensionless collision parameter ke=kD does not
change with varying g, i.e., the term ccorr in Eq. (11) appears to depend
weakly on g. In the present study, the g dependence will be included
in Eq. (11) as long as the linear assumption holds, which in this case is

TABLE V. Table of coefficients, and their residual sum of squares from the fit of Eq.
(11) to the simulation data.

A B R2

4.5 V 0.76 �0.81 0.999 81
7.5 V 0.72 �0.74 0.999 76

FIG. 5. (a) Real filtered current (I4) for ICI-4 sounding rocket, and its collisionally corrected (I40) current for the 4:5V biased probe. Figure (b) shows the ratio of real (I4) to cor-
rected (I40) currents. Plots show only the relevant range of the upleg flight in the range 85–185 km. (Associated dataset available at https://doi.org/10.5281/zenodo.5647637)
(Ref. 40).
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down to �100 km from comparing Figs. 5(b) and 4(a). However,
when a linear equation [exponent of ccorr in Eq. (11)] does not hold, a
nonlinear dependence on the collisional parameter ke=kD and possibly
dimensionless probe voltage g seems to be present. A focused study on
these effects is therefore important to perform in the future.

In addition, a function that includes the very highly collisional
currents, where ke=kD � 1, is favorable. This area is of less practical
interest, but it would nevertheless be instructive to include it in a gen-
eralized function. We would also like to do a study on the kinetic
effects, i.e., how the electron distribution close to the probe changes in
phase-space in the medium-to-high collisional range with respect to
the collisionless case. We expect that there will be some differences,
and that these will help to explain the mechanism of the enhanced col-
lisional currents.

The results presented here should be relevant for any data analy-
sis done on Langmuir probe currents from a collisional plasma in the
electron saturation region. It is especially important to track the
parameter ke=kD and know the limits of when collisionless theory is
valid. This applies to both previous and future missions in the E-
region, in addition to special cases like complex plasmas in a cometary
tail or outgassing from a planet or moon, where neutral densities can
be relatively high. It is our hope that this article will highlight the
importance of a special treatment needed for such cases.
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We investigate the effects of different guard geometries on the currents to the needle
type Langmuir probes. The results are based on Particle-in-Cell numerical simulations.
We show that if the guard length is less than 6−8 Debye lengths there can be a significant
impact on the currents to the probe. A guard radius should not be larger than the Debye
length, otherwise it can also significantly impact the currents. However, since guard radii
are often close to the probe radius, the second condition is usually satisfied.

1. Introduction
Current-voltage (I-V) characteristics of electrically conducting surfaces in isotropic

plasmas were first discussed by Irvin Langmuir Mott-Smith & Langmuir (1926) with the
so-called orbital motion limited theory (OML). Derivations for ideal planar, spherical,
and cylindrical electric probes in plasma were done, and such probes are nowadays
collectively referred to as Langmuir probes. The Langmuir probe theory was later refined
by Laframboise (1966) with such additions as for example a finite radius of the probe.
In space and ionospheric plasma experiments, both spherical and cylindrical probes
are commonly used. Langmuir probes have seen a widespread usage both outside the
ionosphere, with e.g., the Rosetta mission, and inside the ionosphere with orbital missions
such as Freya, Swarm, Cluster, and Norsat-1 (Eriksson et al. 2007; Holback et al. 1994;
Buchert et al. 2014; Gustafsson et al. 1997; Hoang et al. 2018). In addition, Langmuir
probes have been deployed in many sub-orbital sounding rocket missions, such as the
ICI 1,2,4 rockets or the ECOMA campaign (Jacobsen et al. 2010; Bekkeng et al. 2010,
2013). The Debye length in the ionosphere ranges from a fraction of a millimeter to
centimeters, and it is difficult to manufacture such a small spherical probe that will
fulfill the OML assumptions and will collect currents with acceptable signal to noise
levels. Thus, cylindrical probes with very small radii are often used. Such small cylindrical
probes are often called needle type probes (Hoang et al. 2018).

When a Langmuir probe has a high enough bias voltage, it will collect only charges
of a single (opposite) sign. This regime of the probe bias is called saturation. In the
ionosphere and space plasma, for a sufficiently high positive bias voltage, only electrons
will be collected. Note that if there are different ion species, including negative ions, they
will also contribute to the currents in the electron saturation regime. However, in the
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‡ Email address for correspondence: w.j.miloch@fys.uio.no
¶ Email address for correspondence: rmarchan@ualberta.ca
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2 S. M. Brask, S. Marholm, W.J. Miloch and R. Marchand

following we consider probes at a high positive bias, and consider only electrons to be
collected in this regime, which is the usual condition in the ionosphere.

For a cylindrical Langmuir probe p in the saturation regime at a voltage V with
respect to the background, the collected current due to species α is approximately given
by Laframboise (1966)

Ip,α = Ith,αK

(
1 +

qαV

kBTα

)β

, (1.1)

where kB , qα, Tα are the Boltzmann constant and the charge and temperature of the
species, respectively. K is a constant depending on the probe shape with K = 2/

√
π for

a cylindrical probe. Ith,α = nαqS
√

kBTα

2πmα
is the thermal current due to random particle

motion through a surface S if the surface and plasma are at the same electric potential.
nα,mα are the species’ number density and mass.

Several assumptions are made in the OML theory for the derivation of equation (1.1),
such as the probe being very long, and the probe radius being very small with respect
to the Debye length. Since the β parameter of equation (1.1) is 1 for a spherical probe,
and 0.5 for an infinitely long cylindrical probe, it is assumed that the real effects of both
of these assumptions can be captured in the β parameter, with a value approaching 1 as
the probe gets shorter (Laframboise 1966; Marholm & Marchand 2020). This was also
recently shown to hold true empirically using kinetic numerical simulations by Marholm
& Marchand (2020).

Several high quality corrections have been made to the OML theory recently that are
regression based, using nonlinear functions like Radial Basis Functions (RBF), or feed
forward neural networks (Olowookere & Marchand 2021; Liu et al. 2023). These methods
can be used to infer plasma parameters, like temperature or density from simulations
using the regression model as a "black box". A high degree of complexity can be included,
although a complete understanding of the physics is not available. This is possible for
specific use cases, for example, by limiting the model to a specific probe geometry, which
adds a powerful tool to a specific space mission (Liu et al. 2023). In some cases it is
also possible to use such methods to construct a more general function, which is more
widely applicable (Marholm & Marchand 2020). However, as of now for such general
functions, some assumptions need to be made. It is not clear how much these assumptions
impact probe measurements. Therefore, in this work we investigate the impact of the two
geometrical assumptions commonly made on the guard length, and guard radius.

It is quite common in the design of needle Langmuir probes to accept guard lengths as
short as 1−2 Debye lengths (Hoang et al. 2018). Recent results have shown that the end-
effects can reach much longer than one or two shielding lengths, giving some motivation
for testing the common 1 − 2 Debye lengths assumption (Marholm & Marchand 2020).
In addition, seldom is the guard radius of particular interest in needle Langmuir probe
design, although it is quite reasonable to assume there are some changes in the probe
current when a larger current collector is right next to it. To our best knowledge, these
assumptions have never been properly tested. In this article we address this issue, so
that previous and upcoming probe designs can get substantive information to base their
designs upon.

It is useful for the discussion to understand how the model function is derived for the
Finite-Length (FL) theory (see Marholm & Marchand 2020). The Marholm-Marchand
model (FL) includes the finite-length end-effects of a cylindrical probe, removing the infi-
nite length probe assumption that was made in the OML theory (Marholm & Marchand
2020). We therefore briefly review it here.
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Effects of Guard and Boom on Needle Langmuir Probes 3

The main idea is that the problem can be completely described by a function that
includes all physical parameters that can have an impact. Introducing independent
dimensionless variables we can write a relationship between the parameters. The problem
can then be reduced by Buckingham’s π theorem to yield a function of the form
(Buckingham 1914)

G
( i

ith
,
−qV
kBT

,
z

λD
,
l

λD
,
r

λD
, nλ3D

)
= 0. (1.2)

Where i
ith
, −qV
kBT are the normalized current and the probe bias potential. z

λD
is the

position on the probe l
λD
, r
λD

are respectively the probe length and radius, and nλ3D
is the plasma parameter. We use the Debye length λD to normalize the parameters in
length. We omit any subscript for the radius r initially since we consider a single free
floating cylinder. At this point some assumptions are made that reduce the dimensionality
of the problem further.

First, it is assumed that the probe is thin r
λD

→ 0, this is a usual assumption for
the Langmuir probes, and it is often stated as r

λD
< 1 (see Laframboise 1966). Second,

it is assumed that plasma is weakly coupled i.e., nλ3D → ∞, which is also a common
assumption. The last two arguments of equation 1.2 can therefore be disregarded, and
the equation can be inverted with respect to the first argument to yield

i(z) = ith g
( z

λD
;
l

λD
,
−qV
kBT

)
. (1.3)

Equation 1.3 is for the collected current density at position z on the probe, and the
total probe current is then the integral of i(z) over the whole surface of the probe. The
parameter space, which the simulations need to span is the length of the probe and the
probe potential. A python library using local polynomial regression to make a non-linear
fit of the profile function g was made available by Marholm (2019), and the resulting
profile functions and corrected currents are available in the Langmuir library (Marholm
& Darian 2021). The g functions in the library were constructed from the simulation
made by Marholm & Marchand (2019) as a part of the work by Marholm & Marchand
(2020).

Figure 1 (a) is adopted from Marholm & Marchand (2020), and together with Figure
1 (b), it shows the assumed probe and guard geometry used in this work. In figure 1
(a) we use the same geometry as Marholm & Marchand (2020), with the addition of a
bootstrapped section, also called a spacecraft bus, carrier or boom, on the left side. In this
geometry the probe radius and guard radius are the same. In fact, the simulations run in
the Marholm-Marchand paper are of a free floating cylinder, and the guard is imposed
by removing a section of the profile function g. It is therefore implicitly assumed that
the guard radius has no impact on the probe current. In reality the boom-guard-probe
geometry is more complex, and while the removed section of the profile function currently
removes one of the end points which typically see an increase in the current, a boom will
likely lower the current to the same section. In addition, practically the boom-guard-
probe system usually needs a guard with a larger radius (Bekkeng et al. 2010), which is
illustrated in Figure 1 (b), and which likely also impacts the currents to the probe. If we
where to include one of these additional parameters, for example the guard radius (and
even the normalized guard length Lg/λD), equation 1.3 must be extended

i(z) = iOML g
( z

λD
;
Rg

λD
,
l

λD
,
−qV
kBT

)
, (1.4)

where Rg

λD
is the normalized guard radius.
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(a) (b)

Figure 1: The assumed geometry of the needle Langmuir probe and guard in the FL
library Marholm & Darian (2021) (a) including a carrier (boom), compared to a more
realistic geometry (b) including a guard with a larger radius Rg. The current |i(z)| curve
represents the collected current density on the probe surface as a function of distance z.
The dotted part of the |i(z)| curve in (b) represents the region where the current density
inferred from the FL library is uncertain due to the presence of a guard and boom. In
addition we marked the guard length Lg.

It is roughly enough to use 10 data points per dimension to sufficiently describe
equation 1.3 in the range of typical values used in space plasma according to Marholm
& Marchand (2020). Therefore, the number of simulations needed to span the two
dimensions in equation 1.3 is 10 × 10 = 100. If we were to add one parameter, for
example the radius of the guard, and this parameter also needed 10 data points, the
total number of simulations needed would increase to 10× 10× 10 = 1000. While this is
a large number of simulations, it is not impossible, but for this to be worth the effort,
the added parameter should have a significant impact on the probe current.

2. Particle-In-Cell Simulations
2.1. Numerical Approach

For all simulations in the present work we use PTetra which is a parallelized 3D particle-
in-cell (PIC) simulator (Marchand 2012; Marchand & Resendiz Lira 2017). PTetra is a
good choice of simulator to use due to the unstructured grid, giving us a high spatial
resolution close to the simulated objects like probe and guard. In addition PTetra tracks
the current through each surface cell, such that we can get localized currents at discrete
points along a simulated surface, and not only the total current to that surface, giving
us more information about the current distribution.

2.2. Simulation Setup
We have designed numerical experiments so that each simulation has the same inner

resolution of 0.056λD and initially use 50 · 106 simulation particles, or so-called super-
particles. In every simulation the plasma parameters are Te = 0.1eV, and ne = ni =
1 · 1011m−3. This gives the Debye length of 7.4mm. We also set the shortest length from
the simulation outer boundary to any other simulated surface to be 15λD. To speed up
the simulations a usual technique is to use a modified ion mass, and we use mi = 114me.64
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We set a sufficiently high positive bias on the probe and guard, so that the attracted
species are the electrons. We also set the probe bias voltage equal to the guard voltage.
The currents to the probe do not depend on the ion mass with negligible contributions
from the repelled ions, as long as we are in the electron saturation regime, i.e., the probe
bias is sufficiently large (Marholm & Marchand 2020). This is the case for all probe bias
voltages considered in this study. The simulations are then run for 1 · 10−5s, or 2.7 ion
plasma periods, which is sufficiently long to reach a steady state. To understand the
effects of different parts of the Langmuir probe, we split up the geometry and run one
set of simulations where we isolate the effects of a charged boom, with varying the guard
length Lg. Then we run a second set of simulations where we omit the boom and simulate
only the probe and guard, with varying guard radius Rg.

A summary of the parameters for the main set of experiments is listed in table 1. For
the first experiment we let Lg vary, and we run the simulations for two probe voltages.
In this experiment we use the geometry as in figure 1 (a) where Rp = Rg. In reality,
the probe and guard will be attached to some surface. This is typically a boom, which
has the same floating potential as the main spacecraft body. Spacecraft charge can be
calculated by considering the current contributions of different species (Garrett 1981;
Whipple 1981). To calculate some typical values of spacecraft potentials ψsc in the Low
Earth Orbit (LEO) we can use the equation given by Anderson (2012)

ψsc = −kBTe
q

ln
Ae

Ai

[ kBTe
2πmev2sc

] 1
2

(2.1)

where the fraction of surface accessible to the electrons with respect to ions is given by Ae

Ai
,

and the spacecraft speed relative to the background plasma is given by vsc. Using typical
plasma values, the most realistic values of the spacecraft voltages range from ∼ −0.3V
to −0.6V. It is also noted that spacecraft in LEO rarely experience potentials of more
than a few volts negative, which is also supported by observational data (Anderson 2012;
Anderson et al. 1994). However there are a few examples of high charging events where
potentials can exceed 100V negative (Gussenhoven et al. 1985; Eriksson & Wahlund
2006; Anderson 2012). This is valid for low background plasma density and high flux
of precipitating electrons inside the auroral arc. In these cases the electron distributions
are likely to be a two-component Maxwellian (Yeh & Gussenhoven 1987). We do not
complicate the simulations with adding high energy precipitating particles at this stage.
We therefore use two voltages for the spacecraft/boom in the simulations: we first consider
a realistic boom voltage of −0.5V, and then, a slightly more negative value at −2V, which
are both representative of boom (or spacecraft) voltages in the ionosphere. Due to limited
amount of computational resources, we select the most important parameters to vary.
Thus, the guard length Lg is varied while the probe length is maintained at Lp = 10λD.
We assume that the boom radius is large and set it to 10λD. Thus, in this experiment the
changes we observe will be attributed to the guard length. We repeat the same process
for two different probe radii of 0.1λD and 0.5λD, and later refer to these as "small probe"
and "large probe", and run each configuration for the probe bias voltage of 1V and 5V.
This gives us 56 simulations in the first numerical experiment.

For the second numerical experiment, we use the geometry as in figure 1 (b), where the
boom is blurred to show that it is removed from the simulations. We remove the boom
to isolate the effects of having a guard radius that is different from that of the probe. We
therefore vary Rg while keeping Rp fixed. We reuse the small and large probe with radius
of 0.1λD and 0.5λD, with probe and guard length of Lp = Lg = 10λD. In Buckingham’s
π theorem we can choose a dimensionless parameter for Rg, however one may find a
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ID Vp Rg/Rp Lg Vb

1a : Rp = 0.1λD [1,5] V 1 [1,2,3,4,5,7,10] λD [1,5] V
1b : Rp = 0.5λD [1,5] V 1 [1,2,3,4,5,7,10] λD [1,5] V
2a : Rp = 0.1λD [1,5,10] V [2,3,4,5,8,16] 10 λD N/A
2b : Rp = 0.5λD [1,5,10] V [2,3,4,5,8,16] 10 λD N/A

Table 1: Summary of parameters for two main numerical experiments.

better choice, where the two candidates are Rg/Rp, and Rg/λD. To investigate this we
set Rg/Rp = 2, 3, 4, 5, 8, 16 for both the large and small probe. If Rg/Rp is a better
parameter to consider, the curves should be quite similar. Although we cannot eliminate
the parameter altogether, if the curves are similar then the behaviour of the parameter in
the function derived using Buckingham’s π theorem gets simpler. In regression tasks in
the future this simplicity will likely mean that we can reduce the number of data points
needed in the dimension of Rg/Rp or Rg/λD. We also run all configurations for three
probe bias voltages of 1V, 5V and 10V. The total number of simulations is 36 for this
setup, bringing the overall number of simulations for the whole project up to 92.

In the next section we will compare the currents from the present simulations with
the Marholm-Marchand model (Marholm & Marchand 2020). To do this we first want to
validate, and get an estimate of the error, for the currents in the present setup with respect
to the Marholm-Marchand model. The Langmuir library developed for the Marholm-
Marchand model was constructed using a single cylinder (Marholm & Darian 2021). For
that cylinder, the total current I is an integral of the profile function i(z) which is the
current as a function of length along the whole length of the probe. However, since the
probe current i(z) is a function of length for that cylindrical probe, defining the probe
to be the part of the cylinder, for example, from 0 to Z/2 for a cylinder of length Z, the
current I is readily available integrating over only the part of the probe from 0 to Z/2.
This is effectively the same as splitting the cylinder into two separate simulated surfaces
at Z/2, a probe and a guard in the simulator, and considering only the probe, defined as
the surface starting at 0. These two will therefore give the same total current I. In order
to verify that this is correct and to get an estimate of the errors for the large and small
probe, we ran simulations with Rg = Rp, and Lp = Lg = 10λD. That means that in the
simulations we define two cylinders of the same radius, and then compare to the Langmuir
library, which is based on simulations of a single cylinder, where we set the probe length,
and guard length equal to 10λD such that the library does an integration over only the
10λD that correspond to the probe. For the small probe Rp = 0.1λD the relative errors
in percent with respect to FL, at the three chosen voltages are [−3.52,−1.64,−0.08], and
for the large probe Rp = 0.5λD the relative errors in percent are [6.64, 7.86, 9.45]. We see
that the large probe has the largest error, and it is generally a positive change, meaning
that we collect a larger current to the probe than predicted with the Langmuir model.
We should keep these errors in mind when evaluating the results later on.

3. Results
3.1. Guard length

The probe currents obtained in the first numerical experiment with setup ID 1 from
table 1 are shown in figure 2, with panel (a) including currents for the small probe (ID
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(a) (b)

Figure 2: Normalized currents collected by the probe as a function of the guard length.
The plots include one data point for each of the simulations listed in table 1 with the
simulation ID 1. The guard length Lg is treated as a variable, and the four lines per panel
correspond to the four possible configurations of the remaining parameters. The plot
shows the ratio I/IFL, where I is computed from the simulations, and IFL is the current
obtained from the FL model. Panel (a) contains data for the small probe with probe
radius Rp = 0.1λD, and panel (b) contains data for the large probe with Rp = 0.5λD.

1a), and panel (b) including currents for the large probe (ID 1b). The panels include
both thermally charged boom (blue, yellow), and higher charged boom (green, red). The
only parameter being varied here is Lg. It is reasonable to assume the current values
to converge towards the current given by the FL theory. Convergence does not seem
to have been exactly reached within the considered parameter space, although, it is in
quantitative agreement and within 10%. Similar to the FL theory, the probe needs to be
≳ 10λD before the current i(z) is close to the OML current at the probe center, but the
probe needs to be ≫ 10λD before OML is a good approximation for the total current
(Marholm & Marchand 2020). It does look like the currents will continue to converge
towards the FL theory at some guard length longer than the 10 λD chosen here, at least
for the case of a small probe. The larger radius for the large probe might be large enough
that it contributes to a small deviation from FL theory. The curves gather and flatten
out in both cases around 6− 8λD, we therefore deem this to be the length needed for a
reasonable degree of convergence, and the length needed for the probes to have a small
impact from the boom. For the boom to have zero impact on the probe, the guard needs
to be longer than at least 10λD, since the curves have not flattened out completely even
at 10λD. We also see that for the common usage of a guard of 2 − 3λD, the error from
the charged boom will likely be significant. In addition we can generally state that when
the guard is short, the currents are significantly lowered due to the density depletion
in the vicinity of the boom. This is therefore in agreement with previous assumptions
that a long enough guard leads to minimal impact on currents. However, what is not in
agreement is the scale length of the impact.

Another notable effect is that the currents are larger in some cases, with a visible peak
67
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Figure 3: Normalized total currents as a function of the guard length for the second
numerical experiment with the simulation ID 2 and parameters listed in table 1. The
parameter Rg/Rp is treated as a variable, and the three lines in each panel correspond
to the three probe biases simulated. The probe current is normalized I/IFL, where IFL

is the current obtained from the FL theory. Panel (a) shows results for the small probe
with probe radius Rp = 0.1λD, and panel (b) shows results for the large probe with
Rp = 0.5λD.

at Lg/λD = 3 for the large probe with a thermal charging of the boom. A smaller local
peak is seen at Lg/λD = 4 for the small probe. This shift in position suggests that this
effect is at least dependent on Rp in addition to Lg. This is counter-intuitive, as one
would expect the boom to only reduce the currents to a certain degree as it has opposite
polarity. This might be different for ion collection since then both boom and probe are
normally negatively charged.

For the second experiment we have gathered all simulated currents in figure 3. While
we compare results with the FL theory here, we should not expect the currents to coincide
with the FL currents since the FL theory is applicable for the "ideal" theory, where it is
assumed that Rg = Rp. In this experiment the boom is removed from the simulations, and
the only varying parameter is Rg. The simulation parameters are summarized in table
1 with setup ID 2. In figure 3, panel (a) is again for the small probe, while panel (b) is
for the large probe. The two panels do not follow the same trend, indicating that Rg/Rp

is not the best choice of parameter for the dimensionless set of variables. However, we
observe a peak for the currents in both panels. In dimensions of λD this is at Rg = 0.8λD
for the small probe, and Rg = 1.5λD for the large probe. This is quite close considering
the resolution of 0.5λD for the large probe. This, instead, suggests that Rg/λD is a better
choice for dimensionless parameter to use. By using Rg/λD we also avoid issues in the
mathematical model when assuming that Rp → 0.

It is clear from figure 3, that the currents behave quite differently at high and low probe
voltages. For a small probe, in panel (a) for the 1V curve we observe a clear negative trend
as the guard radius gets larger. This makes sense as a larger object collecting particles in
the vicinity of the probe leaves fewer particles for the probe to collect. However, for both
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(a) (b)

Figure 4: Normalized currents per unit length i(z) as a function of position z along the
probe for the second numerical experiment (upper panels). There is one current curve
shown for each simulated value of Rg. Values for the small probe Rp = 0.1λD are to the
left (a), and values for the large probe Rp = 0.5 are to the right (b). All legends in the
upper panes are given in units of λD. The lower panels show the percentage change ierr
with respect to the Rg = Rp curve (i.e., the FL current).

the 5V, and 10V curves we see a peak in the curves, indicating that the guard increases
the current to the probe at certain guard radii. This also seems to be true for the large
probe, although it is less clear as there is only one simulated sample point before the
peak. For the large probe the impact is quite significant when varying the ratio Rg/Rp.
However, significant values for change in current to the probe of greater than ten percent
occur for Rg ⪆ 4λD.
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3.2. Guard radius

The peaks in the currents seen in figure 3 can be further analyzed by considering the
currents as a function of position on the probe (i.e., i = i(z)), similarly to what has been
done by Marholm & Marchand (2020). Similar to what we did in section 3.1, it would be
ideal to compare the regression curves for i(z) from the present simulations to the i(z)
curves obtained from the global regression in the FL theory, which are readily available in
the Langmuir library (Marholm & Marchand 2020; Marholm & Darian 2021). However,
since the changes in current observed in the present simulations are in some cases quite
small, it might be misleading to make this comparison as it would be difficult to discern
the source of the observed changes when the changes are smaller than the error with
respect to the verification simulations. Therefore, we use the verification simulations
as a comparison, and use the same local regression technique as in the FL library on
the verification simulations and the simulations with ID 2 presented in table 1. The
regression on the verification simulations are performed with the same method as the local
regressions in the FL library, however, comparing regressions from verification simulations
to RG/RP simulations will not include the small errors due to the global regression,
assumptions on geometry, etc.

For this analysis, we selected 10V-current curves from figure 3 and present the corre-
sponding i(z) regression curves in figure 4. The probe tip is set at z = 0, and the probe
is attached to the guard at z = 10λD. The small probe i(z) results are shown in the left
panels (a), and the results for the large probe are shown in the right panels (b). The upper
panels show the normalized current with respect to the OML current, i(z)/iOML(z). To
differentiate between the effect of changing the guard radius and the finite length effects
we also show in the lower panels the percentage error between Rg = Rp curves and the
Rg ̸= Rp curves as a function of z. Generally, on the guard side the currents are lowered.
This is followed by a relative current error increase towards the tip of the probe, although
not at the tip, but at 2 − 4λD from the probe tip, and finally another drop in relative
current error at the probe tip. The drop is with respect to the FL current, and is thus
an increase with respect to the OML current, according to the FL library. Integrating
over the i(z) curves in figure 4 gives the total probe currents we see in figure 3. For small
Rg, or lower values in figure 4 (a) Rg = [0.2− 0.3]Rp, the peak in relative current is still
lower than the comparison current Rg = Rp, in addition to the generally lower currents
close to the guard. This means that an integral over this current will lead to a lowered
current with respect to the FL current. For large Rg = [0.8 − 1.6]Rp this peak is large
and wide, such that an integral over this curve will give a slightly larger current with
respect to the FL current. For the intermediate values of Rg we see that there are indeed
changes in the currents. However, the maxima and minima in the currents roughly cancel
each other after integrating, leading to an overall negligible change in the total current
to the probe. For large values of Rg, the larger values in 4 (b), there is a more significant
lowering of the current. However, this impact is along the whole probe, and it is most
significant at the opposite end of the guard.

The aforementioned area of positive error in the Rg = 1.5λD (yellow) curve in figure
4 (b) is indeed interesting. In contrast to this area of the probe, the area closest to the
guard, between the lower values of Rg in figure 4 (b) to the larger values of Rg in figure 4
(a) suggest that the guards impact on the probe is opposite for the small and large guard
in this range of parameters. The idea that the larger guard will serve as a sink of particles,
leading to an overall lowering of the probe currents in its vicinity, is in opposition to this
result. Therefore other sheath effects must play an important role in this case.
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Figure 5: Panels showing slices in the normalized x− z directions of the average charge
density ρavg, and average electric potential ϕavg in the vicinity of the probe and guard.
The simulations selected are from the small probe Rg = 0.1λD case.The color bar refers
to ρavg in units of C/m3

3.3. Guard radius effects on the the sheath density
To look closer at the effects of the guard on the probe currents, in figure 5 we plot slices

of charge density and potential around the probe and guard from the same simulations
as in 4 a), i.e., for the small probe biased at 10V and for varying guard radius. The guard
radius increases in each panel from 0.2λD (upper left panel) to 1.6λD (lower right panel),
and each panel is split in two along the center of the probe in the z direction running the
length of the probe. The left half shows the averaged charge density, and the right half
shows the averaged electric potential. The time-averaging follows the averaging scheme
given by Marchand (2012) with the relaxation time of 1µs. The added color bar shows
the color map for the charge density. We omit the color bar for the electric potential as
this goes from 0 to 10V since the probe is biased at 10V.

Figure 5 shows the changes in the density sheath and electric potential as the guard
radius is varied. For the charge density, an area of density depletion gets wider close
to the probe with the width of the depletion area roughly equal to the guard radius.
At transition, which in the present case is close to Rg = 0.8λD, the depletion area is
overtaken by a density cone-shape stemming from the tip of the probe. It is not clear
currently if this cone-shape is at the tip because the tip happened to be at 10λD, or if
it will always be at the tip of the probe. It does however seem like the peak in currents
observed in figure 4 at 2 − 4λD can be explained by the formation of this cone, as the
peaks are located right on the inner edge of the cone structure. A possible explanation
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as to how the cone forms can be seen from taking into account the electric potential.
In the fourth panel, for Rg = 0.5λD, it seems that particles travel from the edge of the
guard towards the probe. Most of these particles are trapped in the potential well of the
guard, and will follow the equipotential lines that are pointing slightly in the direction
of the probe (radially inwards) in the area between 5 − 10λD in this case. This gives a
small amount of particles the additional radial energy needed to overcome the trapping
potential.

In figure 4 a) the smallest guard radius Rg = 0.2λD has a slightly lower current along
the whole probe, which might be explained by the density depletion gap close to the
probe seen for the smaller values of Rg in figure 5. For these small values, the depletion
leads to the lowering of the currents, and the funneling effect discussed over is not large
enough to contribute to the current increase at any point.

4. Discussion
The currents in the upper panels of figure 4 include the FL end-effect resulting in an

increased current, which is seen as a peak in the current towards the tip of the probe.
The FL current peak is in this case 4 times larger (300%) than the OML current. In
present simulations, the largest change seen as a result of changing the guard radius is
40% as long as Rg < λD, so the FL end-effect dominates in all the cases considered.
However, since we only simulate probes with a probe length Lp = 10λD, and we see that
there are changes in the current along the whole probe it is possible that there exists
some configuration where the FL end-effect and the effect of varying Rg can contribute
to the error on an equal scale. In addition it seems likely that the cone shape observed
stems from the probe tip appeared at the tip because it happens to be at 10λD. The
present setup, where we assumed the probe length to have a minimal impact as long as
the probe is sufficiently long for the change in the end-effects (including varying Rg) to
be negligible, leaves room for further investigations, and a follow up study that includes
a varying probe length in addition to the varying guard radius.

As mentioned earlier, it seems that Rg/λD is the best parameter to use for a model
using the Buckingham’s π theorem. However, the differences between the small probe and
large probe do not seem to be negligible, and therefore Rp may also need to be included
in the dimensionless set of variables when doing a regression. The initial assumption that
Rp is small with respect to λD may no longer be valid for the Rp = 0.5λD probe. This
is supported by results in figure 3 where we see that (for relatively small guard radii)
the currents for the small probe are all within a five to seven percent band, which is
likely within the simulation error, while the errors for the large probe are > 10%. It is
likely that Rp = 0.5λD is the limit of this assumption, and for Rp < 0.5λD, Rp can be
neglected, however, for Rp ⩾ 0.5λD Rp should be included. In addition, evaluating the
changes for a large Rg, if we take for example Rg = 1.6λD (brown) curve from 4 a), and
Rg = 1.5λD (yellow) curve from 4 b), these two curves should be nearly equal if there
were no dependence on Rp. For these curves we see a 20% difference in the current errors
at the tip of the probe. There is also an area of negative error for the small probe closer
to the guard, while the large probe is positive in the same area. In addition, as seen in
figure 3 when integrating over the two curves the difference is 10% (Rg/Rp = 16 from
panel (a) vs. Rg/Rp = 3 from panel (b)). Therefore the differences also seem to appear
for higher values of Rg.

As a final example we could evaluate the applicability of these results to a real world
scenario. We could for example consider the m-NLP system, which uses a probe with
Rp = 0.25mm (diameter of 0.5mm), and Lp = 25mm. For the guard the radius Rg = 1mm
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(diameter of 2mm), and guard length is Lg = 15mm. We include also a quote on the
m-NLP design by Hoang et al. (2018): "The probes were designed to be much smaller
than the Debye length of a few to tens of millimeter for common ionospheric plasma
conditions". With the Debye length of tens of millimeters the guard will be close to one
Debye length or shorter. In the present numerical setup the m-NLP probes will have a
probe length of 3.6λD, a guard length of 2.2λD, and a guard radius of ∼ 0.1λD. With
these numbers we can see that the guard length will likely lead to significant errors.
In addition, the design being for a few to tens of millimeter, and the usual assumption
of Lg = 1 − 2λD should not be considered sufficient. However, based on the limited
present results, the small Rg and small difference in Rg/Rp likely do not contribute to a
significant source of error.

5. Conclusions
For the first numerical experiment, where we considered a varying guard length and

included a boom, we can summarize the results as follows: In order for the boom to have
a small impact on the probe current, the guard needs to be 6 − 8λD long. For a zero
impact the guard needs to be longer (or much longer) than 10λD. As mentioned earlier, to
include the parameter Lg/λD in an empirical model we will need up to 1000 simulations.
This is not impossible, but expensive computationally considering that the problem can
be mostly avoided by enforcing the requirement on the guard length of 6 − 8λD long.
However, it may be important in a study where new data is compared with older data if
this data was taken with a probe design where only a guard length of 2λD was used as
the requirement for the shortest λD in its operating range.

For the second numerical experiment, a zero impact on the total current to the probe is
only possible for Rp = Rg, and this is often practically impossible. However, the impact
is small enough that it should not be the major source of error. Again, including Rg as a
parameter in an empirical model is possible, but computationally expensive. We therefore
need justification for this to be necessary. However, this justification may not be strong
as Rg usually has a small effect on the total probe current. However, this is only true
as long as the guard radius is not too large with respect to the Debye length. This is
usually the case for most of the needle Langmuir probes, however, it is a good practice
to explicitly check this condition when using data from a particular probe system.
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We present a new model for current collected by a spherical Langmuir probe in magnetized plasmas. Data is obtained
using state-of-the-art fully 3D kinetic particle-in-cell simulations. We perform a dimensional analysis and use it to
determine the appropriate model function. The model is then empirically derived based on the simulation data for
a range of probe potentials and magnetic field values with respect to the Debye length. The final model function is
applicable to most space plasmas and can easily be generalized.

I. INTRODUCTION

Langmuir probes have been widely utilized in laboratory
and space physics1–4. The well-established Orbital Motion
Limited (OML)5,6 theory is usually used to deduce plasma pa-
rameters, such as density and temperature, from the currents
that are collected by such probes. The OML theory has proven
to be a highly accurate theory under ideal conditions7 and ro-
bust in some non-ideal conditions8. However, the OML theory
has been developed for collisionless, unmagnetized plasmas,
thus it may be incomplete and erroneous for several use cases
in space. For example, measurements by missions close to
Earth can be impacted by both collisional effects9,10 and mag-
netic field effects due to Earth’s relatively strong magnetic
field at ∼ 20− 50µT11. Langmuir probes used in missions
close to other celestial objects that are embedded in a mag-
netic field can also be impacted by magnetic effects, such as
the BepiColombo mission to Mercury12, the Cassini-Huygens
mission to Saturn and Titan13, the JUNO mission to Jupiter14,
or the Jupiter icy moons explorer mission JUICE15.

Several studies on magnetic effects on charge collectors in
plasma have been done in the past16–20. In addition, recently,
effects of magnetic fields on objects immersed in plasma have
been studied for high-pressure plasmas that are applicable to
tokamaks21. For low-pressure plasmas, there has been interest
in magnetic field effects on the charging of dust grains in flow-
ing plasmas, and a lower charge on dust was demonstrated
for stronger magnetic fields22,23. They also show that magne-
tized plasma flow leads to enhanced and complex wakes that
can extend far from the object. These works considered the
floating potential of the object, and they are thus not directly
applicable to the current collectors in the saturation regime
of the current-voltage characteristics. However, these works
show that studying magnetic field effects in the context of ob-
ject charging is of broad interest, and it is likely that similar
effects will be present in other cases, such as for biased Lang-
muir probes.

Development of theory fully describing the complicated
dynamics of a current collector in a magnetized plasma has
proven to be a very difficult task. This is true even for sim-
ple geometries like a sphere or cylinder. These difficulties are

summarized by Laframboise16 along with an overview of best
attempts for theories. In short, the theories seem incomplete
due to a large difference between making different assump-
tions in the derivations, leading to an upper bound (canonical)
current, and a lower bound (adiabatic) current that rapidly di-
verges as the probe potential increases. In addition, numerical
integration of the equations of motion for particles in the long
Debye length limit shows that the actual current lies likely
somewhere in between16,17.

The first attempts towards theories explaining spherical
Langmuir Probes in magnetized plasmas were done by Parker
and Murphy18. Additions to this theory were later made
by Rubinstein and Laframboise19,20. The normalized current
collected by a spherical probe in a magnetized collisionless
plasma under steady-state conditions, for an attracted species
given by Laframboise16 is

I
Ith

=
1
2
+

2√
π

√ηp

β
+

2
πβ 2 , (1)

where ηp = −qφp/kT ≫ 1 is the dimensionless probe po-
tential, and β = rp/rg is the ratio of probe radius to attracted
species mean gyro radius, with rg = mv̄⊥/|q||B|. The species
average speed perpendicular to the magnetic field v̄⊥ is given
by the species thermal speed vth =

√
kT/m, and |B| is the

absolute magnetic field strength. The currents are normal-
ized by the random thermal current Ith = Sqn0

√
kT/2πm, and

S = 4πr2
p is the probe surface area. T,m,q and n0 are the

species temperature, mass, charge, and density. The probe
electric potential is given by φp. The physical constants ε0,
and k are the permittivity of free space and Boltzmann con-
stant, respectively.

In equation 1 the first two terms on the right-hand side co-
incide with the theory of Parker and Murphy18, and the last
term is the addition given by Rubinstein and Laframboise19,20.
Equation 1 is valid for ηp ≫ 1; however the difference be-
tween using the full equations (eq. 8-10 in ref.16) and equa-
tion 1 is small even for ηp > 1 as long as β is also > 1. Equa-
tion 1 is called an upper-bound current16 since it is built on
the assumption that all particle orbits that can intersect the
probe surface will be collected. It is therefore a question of
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how much this equation overestimates the real currents. This
question is partially answered by the significant disagreement
between this equation and the single-particle simulation re-
sults given by Sonmor17. However, the latter result is still
inaccurate since it uses single particle orbit simulations which
neglect space charge effects.

Given the difficulties in deriving an accurate theory, we
will here use a different approach. Using Buckingham’s π
theorem24 we will perform a dimensional analysis of the pa-
rameters involved. We will then map the relevant parame-
ter space using fully kinetic three-dimensional Particle-in-Cell
(PIC) simulations and will use these results to build an empir-
ical model. Spherical, cylindrical, and plate geometries used
for Langmuir probes are of interest; however, as the first step
we will in the present work focus only on spherical probes,
since, as we will see later, their relatively simple geometry
allows us to build an accurate model by sampling the whole
relevant parameter space.

A successful model, in addition to capturing the intricate
real-world dynamics of magnetized plasmas, should focus on
ease of implementation to use it. We therefore will seek a
model based on an algebraic expression. An algebraic-based
model will be straightforward to deploy in future projects, giv-
ing ease of implementation, in addition to offering high accu-
racy.

II. PIC SIMULATIONS

In all simulations presented in this work, we use the PIC
simulator PINC. PINC uses the usual PIC main cycle de-
scribed in literature25–28. The particles are moved using the
Boris method29,30, to account for the effects of a static exter-
nal magnetic field on the plasma dynamics. The electric field
is solved electrostatically using the iterative multigrid method
with a Gauss-Seidel red-black ordering described in31, with a
detailed explanation in Killie32. Additional formulations on
PINC are given by Marholm33. The main strength of PINC is
in the design of the simulated domain, where both the field
quantities and particles are distributed into simulation sub-
domains such that we can assign one CPU per subdomain,
making PINC highly parallelized and able to utilize a large
number of CPU’s in parallel. PINC has also options for pe-
riodic (closed) and open boundaries, with or without plasma
flow, and including external magnetic fields. The open bound-
ary employs a Dirichlet boundary condition, where the elec-
tric potential is set to zero in the particle frame of reference,
and the outermost cell is connected with a Maxwellian plasma
outside of the simulation domain. The object (probe) calcu-
lations for charge and thus electric potential, use the standard
capacitance matrix method34,35, redistributing charge within
one timestep, effectively making the object a perfect conduc-
tor.

One important aspect of the PIC simulators is that they are
collisionless by their design27. Particles within one cell do
not "see" any other particles, they only "feel" the collective
effects of all particles given from the electric field. Thus ef-
fects of collisions, both charged-charged and charged-neutral

FIG. 1: True simulated geometry surface, as defined by the
simulation cells. Geometry represents a sphere with a radius

of two grid cell lengths.

are neglected in the standard PIC approach. However, tur-
bulent effects are still included. Thus, the collisionless as-
sumption is included by design, and it makes standard PIC
valid for simulating primarily low-pressure, long mean-free-
path plasma conditions. Collisions can however be included
through statistical Monte-Carlo methods34, such as the null-
collision method36. In PINC there is an option to include
charged-neutral collisional effects. These methods usually in-
clude a statistical consideration of energy transport between
charged-neutral species. Since this is a statistical approach
and neutral species are not explicitly simulated, it breaks self-
consistency10. We will therefore use in the simulation an op-
tion to conserve energy, where the collisional scattering hap-
pens without any energy exchange between the particles.

A. Simulation Setup

We will simulate a spherical probe, using a discretization
with two cells per radius of the sphere. This choice allows us
to have a probe as small as possible, while still having a step
length large enough to capture as much of the magnetic bottles
extending from the probe along the magnetic field as possible.
The magnetic bottles are the area of particle depletion due to
collection at the probe that extends along the magnetic field.
The density inside and outside the bottle is different since par-
ticles are inhibited by the magnetic field, and often have a rel-
atively sharp density gradient at the edge. An in-depth expla-
nation is given by Laframboise16. Due to the probe surfaces
being defined on the uniform cell mesh in PINC, the simulated
geometry is as shown in figure 1. The probe is placed in the
center of the simulated domain, such that the magnetic bot-
tles along the magnetic field lines extend the same length on
both sides of the probe. The simulated plasma is a stationary,
nonflowing plasma, such that the magnetic bottles extend in a
straight line parallel to the magnetic field in the z direction.

In every simulation, we use a base set of parameters, which
are listed in table I. We then vary the magnetic field and probe
bias.
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Parameter Value
∆t (timestep) 1.5×10−9s
Nt (number of time steps) 55000
∆x,∆y,∆z (spatial step) 0.007m
(Nx,Ny,Nz) (number of cells) 64,64,1024
Te = Ti 1000K
me 9.11×10−31kg
mi = 500me 4.554692×10−28kg
ne = ni 5.9×109m−3

Bx,By,Bz 0,0,5×10−5T
Vp (Probe bias ) 4.5 V
Initial particles per cell 8ppc ∼ 68×106tot

TABLE I: Simulation input parameters for the base case.
Simulations use typical values for temperature T , and density
n. The magnetic field B is only non-zero in the z direction.
The simulation cells are uniform and have the same length
in each direction (∆x,∆y,∆z), with the total simulated domain
being (Nxdx,Nydy,Nzdz).

For the plasma density and temperature, we choose typical
values representative of the ionosphere. However, the actual
values in the SI units are not of primary importance for our
modeling since we will be working with dimensionless vari-
ables. The collected species is chosen to be electrons, and
we set the mass ratio to be mi/me = 500, which is quite com-
mon to do in PIC simulations to speed up the ion dynamics37.
For all probe bias voltages used in this work, the current is in
the electron saturation regime. Therefore the ion mass (i.e.,
repelled species mass) does not enter the equation for the col-
lected current, and the lowered mass ratio should not impact
this current significantly. We vary the magnetic field in the
range ∥B∥ ∈ [0− 7]× 10−5T, and the probe bias in the range
Vp ∈ [1.5,8.5]V. The spacing is chosen such that the probe
radius is small with respect to the Debye length, but still as
large as possible to capture enough of the magnetic bottle. The
number of cells is therefore chosen to be 64 in the perpendic-
ular to the magnetic field direction, and 1024 in the parallel
to the magnetic field direction. Theoretically, neglecting ki-
netic effects, the length of the magnetic bottles tends to infin-
ity along the magnetic field direction. This is not possible to
simulate, and we therefore must select an appropriate length
of the system to simulate. This length of 1024 cells was cho-
sen by running a set of test simulations with a magnetic field
of 5×10−5T and varying the system length up to 4096 cells,
where negligible change in current was observed for systems
longer than 512 cells length.

Derived parameters highlighting the resolution of the sim-
ulation setup are given in table II.

Parameter Value
λD 0.0284m
Lx,Ly,Lz (sim length) [0.448,0.448,7.168]m
Lx,Ly,Lz (sim length) [15.77,15.77,252.39]λd
vth,e 123111m/s
vth,i 5505m/s
ωpe (electron plasma frequency) 4.3×106rad/s
ωpi (ion plasma frequency) 1.94×105rad/s
rge given |B|= 5×10−5T 0.014m
rgi given |B|= 5×10−5T 0.313m
ωce (electron gyro frequency) 8.79×106rad/s
ωci (ion gyro frequency) 1.76×104rad/s
electron plasma periods 56.88
ion plasma periods 2.54
electron cyclotron periods 115.46
ion cyclotron periods 0.23

TABLE II: Simulation derived parameters highlighting the
simulation resolution. All parameters are well resolved, and
typical scales are covered. The exception is the ion cyclotron
period, which likely does not greatly impact electron current
collection, due to weak magnetization of ions.

Although the simulated probe geometry is a low-resolution
discrete representation of a sphere, it has proven to work well
in earlier work10,35. In addition, we can verify the current
setup by comparing the unmagnetized simulations with the
OML current6. For this test, we pick two values of probe
bias 4.5V and 2.5V. For the 4.5V simulation we get an error
of −1.5%, and for the 2.5V simulation it is 1.6%, which is
adequate when considering PIC simulations.

B. Simulation Results

We start with presenting general results. Figure 2 shows
how the shape of the sheath in density around the spheri-
cal probe changes from the standard spherical sheath to a
donut-shaped sheath as the magnetic field increases. The pan-
els in figure 2 show only half of the probe with the center
of the simulated domain set to z = 0, and for clarity of the
figure, we include only a part of the magnetic bottles along
z. Another interesting observation is that not only does the
shape of the sheath change but also the peak density inside
the sheath is lower for the cases with a high magnetic field.
The donut-shaped sheath has also been reported in laboratory
experiments16,38.

The spherical sheath used to derive the Orbital-Motion-
Limited OML current5,6 which in spherical coordinates is
symmetric in two dimensions. Mathematically the spherical
symmetry is much simpler to work with than the donut shape
which is symmetrical only about one axis. This sheath asym-
metry is one of the main reasons why a complete theory for
the magnetic case is so hard to derive.
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FIG. 2: The electron density distribution around a spherical probe biased at 4.5V for four values of the magnetic field strength:
Bz = [1,2.5,4,5]×10−5T.), and β = [0.4,1.0,1.6,2.0]. [Associated dataset available at

http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

C. Dimensional analysis

The reasoning in this section closely follows the similar rea-
soning of Marholm37. We wish to determine the attracted-
species current I for a spherical probe. First, we can assume
that the current can be fully described by a relation between
all relevant parameters. For a free-floating conductive sphere
in a plasma, in addition to the current I, the relevant parame-
ters will be the potential V and probe radius rp, as well as the
attracted species properties, mass m, charge q, density n, and
species energy kT . In addition, it is reasonable to assume that
the vacuum permittivity enters the equation. Lastly, we wish
to include magnetization by adding the magnetic field strength
|B|. The relation can then be written as:

F
(

I,V,rp,q,m,n,kT,ε0, |B|
)
= 0. (2)

We can now use Buckingham’s π theorem24,37 to reduce
the dimensionality. The dimensions of all of the parameters
involved can be described by the four SI units: meters, kilo-
gram, seconds, and Ampére, therefore this forms a 9x4 dimen-
sional matrix with rank 4, and the relation can be written using
9−4 = 5 parameters24. The parameters can be chosen freely
as long as they are independent. First, we include normalized
current and potential

I
Ith
,
−qV
kT

(3)

We normalize the lengths by the Debye length, λD =
√

ε0kT
nq2

rp

λD
,

rg

λD
, (4)

where we included the magnetization through the species
average gyroradius rg = mv̄⊥

|q||B| . Last, we include the plasma
parameter such that the reduced equation we choose can be
written as

G
( I

Ith
,
−qV
kT

,
rp

λD
,

rg

λD
,nλ 3

D

)
= 0. (5)

The hitherto unknown function G can be inverted with re-
spect to the first argument. If, in addition we make additional
assumptions that rp ≪ λD, and nλ 3

D → ∞ we get

I
IOML

= g
(−qV

kT
,

rg

λD

)
. (6)

Where we also pulled out a factor from G such that the nor-
malization factor for I is IOML. We can call g the correction
function. Note also that we have used rg

λD
, instead of the com-

mon rp
rg

. This is done to make the dimensionless potential and
magnetization independent variables and to avoid any prob-
lems with the assumption of rp ≪ λD. For the sake of building
a model, we will initially make the nontrivial assumption that
I is only weakly dependent on the potential such that we can
write equation 6 as

I
IOML

= g
( rg

λD

)
. (7)

We will discuss this assumption further later and will ex-
pand the parameter space by including potential. However,
we make this assumption initially to build a model as simple
as possible, and we will increase complexity in subsequent
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sections. We will also use the magnetization as the inverse of
rg
λD

, such that β = λD
rg

∝ |B|, this makes no difference for the
dimensional analysis; however the latter is easier to discuss
and interpret. In addition, we will use the definition η = −qV

kT
for the dimensionless potential.

III. A MODEL FUNCTION

In principle, any suitable function that can be fit to the data
from simulations can be used. One approach would be to use
nonlinear regression techniques like a neural network40, or ra-
dial basis functions37, that can be fit to any set of data. How-
ever, these techniques require a large set of coefficients and
parameters to use. Therefore there is a larger technical barrier
to implementing them in subsequent work. In addition, the
complexity of these functions makes analyzing them difficult,
e.g., by taking the derivative. Our approach therefore seeks an
algebraic expression. We chose here to start with a physical
argument for the form of the function, although we wish to
stress that this is still an empirical approach.

The argument goes as follows: first, we recognize that parti-
cle movement is inhibited in a plasma when an external mag-
netic field is applied. The inhibition is perpendicular to the
magnetic field, and along the field, the particles are free to
move as if there is no magnetic field. This means that effec-
tively, the application of a magnetic field makes a part of the
probe surface unavailable to the particles in the direction per-
pendicular to the field. At some point for a strong magnetic
field, particles must strictly follow the magnetic field lines re-
ducing the effective surface area available to a disc instead
of a sphere of the same radius. From this point, increasing the
field intensity will not make a difference. However lowering it
will increase the current until the magnetic field is zero, where
unmagnetized theory is valid again. We therefore model the
current as an effective surface area:

I
IOML

= S ∗ =
Se f f

S0
, (8)

where Se f f is the effective surface area available to the mag-
netized particles and S0 is the actual unmagnetized surface
area. Where we chose a function for S ∗ that fits the above
description. We can define these criteria rigorously as

lim
β→∞

f (β ) =C, C ̸= 0, (9)

lim
β→0

f (β ) = 1. (10)

Where f (β ) = S ∗ and C is a constant that is unknown at
this point. We also see that S ∗ is the correction function from
equation 6 or 7. A successful function needs to converge to-
wards a lower value as β increases. Based on the results in
figure 3 it is reasonable to use an inverse exponential function
and choose one on the form

S ∗ = e−Aβ−C +C, (11)

or we can use an algebraic equation in the form

S ∗ =
1−C√
1+Aβ 2

+C. (12)

We will test both equation 11 and equation 12 as possi-
ble candidate models in the following. We can take note that
equation 11 does not strictly follow the criteria in 9; however,
it is close as long as C is small.

It might be tempting to interpret the last part of equation
11 and equation 12 as the surface area of the disc in a highly
magnetized plasma; however S ∗ is a dimensionless empirical
function, and so C should be considered as a placeholder that
does not have any meaning unless multiplied by for example
S0, which when combined, they would be the effective disc
surface Se f f , when, for example 1−C√

1+Aβ 2
= 0.

A. Fit of model to single bias data

We now fit S ∗ to data using a least squares regression to
determine the coefficient A and constant C. We chose here to
use only the 4.5V data since we know that the assumption that
potential does not impact the correction function is likely not
valid. This fit is therefore only highly accurate for η ∼ 50.

model A C R2 RMSE MAE
model1 1.438 0.125 0.9987 0.011 0.010
model2 10.068 0.0317 0.9998 0.004 0.003

TABLE III: Table listing coefficients and ’goodness
of fit’ R2 parameter. [Associated dataset available at
http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

In table III we list the model coefficients obtained from
the regression. In addition, we list three relevant evaluation
metrics. First, we include the ’goodness of fit’ R2 parame-
ter which is a measure of how much of the observed variance
in the data is explained by the model. R2 = 1 would mean
that everything is explained and the data and model agree per-
fectly. Thus, the values we obtain are quite good. However, at
this point, we included a small number of data points in the re-
gression which may affect this result. In addition, we present
the root-mean-squared error which is the quadratic mean of
the error between the data and the model points, and mean ab-
solute error, which is the mean sum of absolute errors. Both
can be considered a measure of how far apart the data points
and model points are on average. Both have small values in-
dicating a good fit.
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FIG. 3: Normalized currents (dots) for simulations for
five values of the magnetic field Bz = [0,1,2.5,4,5,6,7]×
10−5T (β = [0.4,1.0,1.6,2.0,2.6,3.3]), and 2 values of
probe bias Vp = [4.5,2.5]V. Compared to the two can-
didate models in equation 11, and 12 (solid lines), con-
structed using the 4.5V data. [Associated dataset available
at http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

In figure 3 we plotted some selected data points along with
the two model functions using their respective coefficients.
The selected data is for the base case voltage 4.5V, and we
added data for a probe bias of 2.5V for comparison. We
call the fit to equation 11 model1, and the fit to equation 12
model2. As we see in figure 3, the difference between the
2.5V data and the 4.5V data is much smaller than the differ-
ence from including even a moderate magnetic field. There-
fore, being as simple as possible function both models seem
to yield more accurate results than using unmagnetized theory
alone.

From table III we can also see that model2 has the best
metrics, and it also follows criteria in 9, and 10 better. We
therefore choose to continue using model2 from equation 12
in the remaining of this study.

B. Determining C from physical argument

We can calculate the value of C based on the physical argu-
ment outlined above. To do this we first calculate the extrema
values of S ∗

S ∗
∣∣∣∣
0
=

1−C√
1+Aβ

∣∣2
0

+C = 1−C+C = 1, (13)

S ∗
∣∣∣∣
∞
=

1−C√
1+Aβ

∣∣2
∞

+C =
C
1
=C. (14)

By assuming that the effective surface area for an unmag-
netized probe is a sphere and that the effective surface area for
an infinitely magnetized probe is a two-sided disc we get

S ∗∣∣
∞

S ∗∣∣
0

=
2πr2

4πr2 (15)

Combining this result with equation 13 and equation 14 we
get

C =
1
2
. (16)

Comparing this value to the values of C in table III we see
that C in equation 16 is larger than both. It seems that since
the C parameter becomes smaller with a higher probe poten-
tial, the C = 0.5 value is a boundary value, i.e., a maximum
value of C, for the ideal case where the probe potential is zero,
η = 0. As such, it represents the minimal impact possible due
to magnetization and it can therefore be considered safe to use
in all cases as long as it is understood that it underestimates to
a certain degree. Note also that this function will not be accu-
rate for η = 0. As stated in the introduction, all simulations
are done in the electron saturation regime, meaning that the
results are only valid in saturation. This is clearly not the case
if η = 0. The C = 0.5 value is however consistent with the
earlier best attempts given in equation 1, when β → ∞. Thus,
model1 converges towards the "canonical upper" theory given
by Laframboise16 at the limit of infinite magnetization, and
for small probe potentials η .

It is well known that the area of collection for a probe in
the unmagnetized case extends well beyond the probe surface,
and through the probe sheath. This will not be the case for a
probe in an infinitely magnetized plasma. In this case, the
gyro radius tends to zero, and the particles strictly follow the
magnetic field lines. Therefore, a more realistic calculation
can use instead the probe sheath as the collection area for the
unmagnetized probe S ∗|0. The sheath thickness is given by
the potential expanded sheath5

Ss = Sp
(
1+η

)
, (17)

where Sp is the probe surface. Using the sheath expanded
surface Ss as the collection surface for S ∗∣∣

0, and using a
two-sided disc as the probe surface for the magnetized probe
S ∗|∞, we get the value C = 0.0094. This value is quite close
to the value for C given in table III. This gives further weight
to model1, and it also indicates that this method can be used
to calculate C values for a given η . The C = 0.0094 value is
valid for η = 52.
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C. A model including η as a variable

We have seen that there is a weak dependence on η in the
simulations. We wish to build a model that can account for
this dependency. We therefore start with model2, equation 12,
and include the Vp, or η dependence in the parameter C by
changing the parameter to be a function that depends only on
the dimensionless probe potential C :=C(η).

FIG. 4: Plot of the full model and simulation data, show-
ing the shape of the curves in current-potential space. Se-
lected values of magnetic field that are not zero are included.
The plot also shows good agreement between the simula-
tion and the full model. [Associated dataset available at
http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

To decide a suitable function we first plot the currents ob-
tained in the simulations as a function of η in figure 4. The
simulation curves, for different magnetization, along η do not
follow a linear trend. However, the trend seems to be consis-
tent for different magnetization values, which is promising.

We tested different candidate functions that generally fol-
lowed a simple rule: they should converge towards a constant,
and be as simple as possible. We ended up using the func-
tion C(η) = B

√
η +C′, where B is a new coefficient, and we

marked C′ to differentiate it from the previous C although it
is similar to the old C. C′ is also therefore a new coefficient.
The full model expression can then be written as

S ∗ =
1− (B

√
η +C)√

1+Aβ 2√η
+(B

√
η +C). (18)

We, therefore, have three fitting coefficients, and 28 data
points to fit in the range of η ∈ [15− 98], and β ∈ [0− 3.2].
Note that we added a cross-parameter effect in the denomi-
nator of the first part of the model expression by multiplying

the two parameters: β 2√η . This gave slightly better model
performance metrics. After a multivariate least squares re-
gression we obtain the performance metrics for the model in
equation 18 listed in table IV

A B C R2 RMSE MAE
full model 1.390 -0.022 0.197 0.997 0.010 0.009

TABLE IV: Table listing coefficients and ’goodness
of fit’ R2 parameter. [Associated dataset available at
http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

We included the same metrics for the full model as we did
for model1 and model2 in table III. Compared to the previ-
ous model2 metrics this full model has slightly worse perfor-
mance. However, these results with many more data points
and the numbers in table IV are still very good. We have plot-
ted lines for all the simulated probe bias voltages used for the
model against the simulated data points in figure 5 showing
the good agreement between the model curves and simula-
tion data. In addition, there are no outliers and all simulation-
model errors are within simulation-reality acceptable errors.

FIG. 5: Normalized currents from simulations for
seven values of Bz = [0,1,2.5,4,5,6,7] × 10−5T
(β = [0.4,1.0,1.6,2.0,2.6,3.3]), and five values of probe
bias Vp = [1.5,2.5,4.5,6.5,8.5]V (shown as dots). The
simulation results are plotted against the full model
given by equation 18. [Associated dataset available at
http://dx.doi.org/10.5281/zenodo.8370038 (Ref.39)]

Omitting the β 2η cross dependence, we can also calculate
the infinite magnetization, zero probe bias value, which rep-
resents an "ideal" case where only magnetization effects are
evaluated. In this limit, S ∗ =C, which is consistent with the
earlier results.
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IV. VERIFICATION OF THE MODEL

As a limited verification of the model, we ran a small set of
verification simulations. The simulations use modified plasma
parameters in SI units; however, the dimensionless parameters
are maintained fixed. We then ran four simulations with dif-
ferent magnetic fields, where each value also corresponds to
one of the dimensionless β values used in the base case. In
table V we have listed the SI parameters used.

Parameter: V T n |B| λD rp/λD
Base 2.5 1000 5.8977e9 5.0×10−5 0.0284 0.4927
Verif 5.0 2000 5.8977e8 1.58×10−5 0.1271 0.5036

TABLE V: Table listing the different parameters used in SI
units for the base case, and the verification set. These param-
eters give the same values in dimensionless units of η , β , and
length, e.g. dimensionless probe radius rp/λD, for both cases.

The parameters used give the same values in dimensionless
units, where η = 29, and β = [0.0,0.4,1.0,1.7,2.1]. The |B|
given in table V is the largest value used for this test.

To evaluate the correctness we calculate the same metrics
that were used in the regressions above. In this case, we do
not do a regression, but instead use the coefficients from table
IV.

Metric: R2 RMSE MAE
Verif 0.998 0.014 0.013

TABLE VI: Metrics for the validation simulations. There was
no regression performed to obtain these.

As we can see in table VI the verification simulations fit
the model as well as the base simulations. For the verification
simulations, the R2 parameter is slightly better. On the other
hand, RMSE and MAE are slightly worse. The differences
are small enough that they can be neglected. This shows that
the model works on a different data set. Due to computational
constraints, the test set was small. We therefore feel there are
a few additional arguments for the model’s accuracy to point
out. First, the assumption on probe radius is the same as in
OML theory. In OML theory it is assumed that rp/λD << 1;
however it is shown that OML is accurate for rp/λD ≤ 0.5 for
spherical probes, and even rp/λD ≤ 1 for cylindrical probes6.
Mathematically, if the assumption rp/λD << 1 is satisfied, the
model we build is accurate and independent of the size of rp.
What is not entirely clear is if the currently used rp is small
enough. However, since we make the same assumption as in
OML here it is reasonable to expect the same inequalities to
hold in the magnetized case. We will not do a more in-depth
verification at this point. However, to remove any doubt on
the model’s limitations this should be done in the future. As
for η , since we do expand the parameter in the model, and
we use dimensionless parameters, it should be correct within
the range used. For η , it would be good to further expand the
dimension to map out the actual limitations of this parameter
for the model.

V. DISCUSSION

A. Charged-neutral collisional effects

One major question for the lower ionosphere where the
plasma temperature drops and the magnetization ratio in-
creases is what role charged-neutral collisions play. In this
region, charged-neutral collision frequencies also increase as
plasma temperature drops. We include in this section an ex-
ample, without doing any modeling, of what happens in a
magnetized case when collision frequencies increase. We use
the same plasma parameters as in the base case, with a mag-
netic field strength of 5×10−5T which is a typical value used
for the earth’s magnetic field in the lower ionosphere. We
run six simulations with electron collision frequencies in the
range νe ∈ [0− 1× 107]s−1. We also include ion collisions
where the ratio of electron-neutral to ion-neutral collisions are
calculated using the equations of Brekke41, although the ion
collisions should not impact the result meaningfully since we
study the probe in the electron saturation regime.

FIG. 6: Plot of the dimensionless current I/IOML against the
logarithm in base 10 of dimensionless Mean-Free-Path as
log10(λm f p/rg). The Mean-Free-Path is given as the electron-
neutral collisional Mean-Free-Path.

In figure 6 we have plotted the currents against the Mean-
Free-Path in dimensionless values. The Mean-Free-Path
is given as the electron-neutral collisional Mean-Free-Path,
λm f p = Vth,e/νe, and the normalization parameter used to
make the Mean-Free-Path dimensionless is the electron gyro
radius rg. We chose to use the gyro radius instead of the De-
bye length since in this case, it is a question of what effect
is dominating either magnetization or the collisional effects.
As we see in figure 6, there is a small increase in current for
short Mean-Free-Path, when log10(λm f p/rg) < 2. The effect
of current increase for weakly collisional plasma is reported
in several works9,10, and this effect has been discussed by
Laframboise16. This result would be similar if we used De-
bye length as the normalization parameter since in this case,
Debye length and electron gyro radius are in the same order
of magnitude.

One important observation is that the currents are always
much lower than the unmagnetized collision-free OML cur-
rent. However, the problem of including collisions is likely
even more complicated in the lower magnetized cases, where
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FIG. 7: Electron density for four cases of increasing collision frequency νe = 2.91× [102,104,105,106]. The parameter at the
top is the collisional parameter log10(λm f p/rg).

increases in current such as discussed in Laframboise16 might
occur.

If the collisional effects were to be included in an empirical
function, like the one given in equation 18, we would need to
run many more simulations. Including an additional parame-
ter in equation 2, without doing any additional assumptions,
will lead to a correction function g with an additional param-
eter. That means that instead of spanning a two-dimensional
parameter space with simulations we will need to span a three-
dimensional space, where nsp ∝ nd . The number of simulated
data points needed nsp scales proportional to the power of the
dimensionality d of the parameter space.

In figure 7 we have plotted the electron density for four
simulations with increasing collision frequency (decreasing
λm f p). In figure 7 we plotted the same selection of the do-
main as in figure 2, where only half the probe is shown, and
centered at z = 0. The last plot on the right-hand side corre-
sponds to the highest current in figure 6. What we see here
is the effect commonly referred to as "breakdown of magnetic
insulation"16. The interesting observation is that as collisional
effects start to dominate, when λm f p ∼ rg, we get the "break-
down of magnetic insulation". This leads to the sheath revert-
ing to the unmagnetized spherical shape, instead of the donut
shape that we can observe on the left panel in figure 7. How-
ever, this does not lead to a complete reversion of the currents
back to the OML current. Instead, there seems to be some
resistance inhibiting the flow of electrons to the probe, either
from magnetic or collisional resistance.

An expanded model to include charged-neutral collisions is
beneficial in some cases. However, we would need to span
an additional parameter space (three instead of two already
spanned). If we need ca. 5 simulated points per parameter,
for two parameters we would need 52 = 25 simulations. If we
include collisions we need 53 = 125. While it is possible, we
would need many more simulations, and this task is therefore

left for future work.
As discussed in the previous works16, collisional effects, in-

cluding collisional ionization, may increase the collected cur-
rents. This is supported by laboratory experiments9, and un-
magnetized simulation results10. However, we observe that
magnetization leads to a lowering of the collected currents
w.r.t OML for all values of collision frequency, see again fig-
ure 6. In addition, collisions have an effect when the mean-
free-path is on the order of the gyro-radius. As long as the
mean-free-path is orders of magntude longer there should be
a negligible impact from collisions. This is usually the case
for space plasmas. Even when collisional effects are large,
the currents never reach the OML values. Therefore, there
does not seem to be any collision frequency where it is safe
to say that the magnetic effects can be neglected, due to colli-
sional effects, as long as magnetic effects are large enough to
also be important. Another interesting observation, including
the general collisional effect of increasing the currents in the
intermediate collisional range,10,16 is that in the range where
mean-free-path, gyro radius, and Debye length are close to
each other in size, there likely are significant effects, includ-
ing cross-effects between all of these parameters, making it
highly unpredictable, and complex. This can happen in the
lower E-region of the ionosphere. In this case, a model in-
cluding all three parameters would be beneficial.

B. General Discussion

In the derivation of the models we initially made the as-
sumption that rp ≪ λD. This was done so that rp did not need
to be included in the dimensionless set of parameters included
in equation 5. This is a common assumption to make6,37. For
the dimensionless analysis, this works out mathematically;
however, in the case of including a magnetic field this as-
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sumption may be less trivial, and the question of how small
rp should be is more oblique. Secondly, questions about the
use of rg/λD v.s. rp/rg might be raised. For incident parti-
cles, following the magnetic field lines, is it the gyro radius
w.r.t. the probe radius, or w.r.t. the Debye length that is most
important? In both of these questions, it seems that consis-
tently using λD as the normalization factor is best, and the
size rp should follow similar assumptions and rules as in the
OML theory. This is because the sheath length, i.e, the col-
lection area, in the magnetic case does not depend in large on
the magnetization, and it has a similar length in the direction
perpendicular to B⃗ in every case, for the same bias, as seen
in figure 2. In addition, for the second question, using rg/λD
is better suited for Buckingham’s π theorem. If we were to
try and use rp/rg it would interfere with the assumption that
rp ≪ λD, since this assumption then also leads to rp/rg → 0.
As such the parameters rp/rg, and rp/λD are in addition not
independent, which is a requirement in Buckingham’s π theo-
rem. The mathematical framework we have used is therefore
robust. However, a more in-depth verification is still needed,
and some focus on how small rp should be added in such a
verification study.

The model is applicable to rocket data if it uses a spherical
probe. However, a verification based on rocket data may not
be possible. For Langmuir probes the currents are calculated
using the OML theory, which assumes unmagnetized condi-
tions. This data will contain errors we can not control in the
cases of interest. A successful verification therefore needs to
use probes based on other theories than OML, where mag-
netic effects do not make an impact, still being as accurate as
OML-based probes.

In the lower E-region, where Debye lengths are short, it
is common to use needle-type Langmuir probes that follow
cylindrical OML theory. Therefore a model including the
cylindrical case is sought after. In the case of a cylindri-
cal probe, there is an additional parameter: probe length. In
this case, the angle of the magnetic field is also important,
and the number of simulated data points explodes to a non-
feasible amount. To build a model for a cylindrical probe,
we would therefore need to make some assumptions, such
as; the probe potential has a weak impact and can be ne-
glected. We could also consider infinitely long probes, and
simulate "long enough" probes, such that probe length can be
neglected. Any such assumption will be non-trivial. However,
the model would nevertheless be closer to reality than simply
assuming unmagnetized conditions.

VI. CONCLUSION

The model, equation 18 is applicable to any experimental
data that falls within the dimensionless parameter range and
is not dominated by collisions. A real-world verification of
this model would be beneficial; however, this is a challeng-
ing task. Such an experiment would need a varying mag-
netic field, in addition to good control over the parameters
such as the plasma temperature, density, and magnetic field
strength. The main problem is the scales involved. The De-

bye length needs to be larger than the probe, which also needs
to be large enough to be considered spherical. In addition, the
plasma needs to reach hundreds of Debye lengths along the
magnetic field, requiring the use of large and sophisticated
plasma chambers. This would be a highly interesting study to
perform; however, it is left as future work.

The inclusion of a magnetic field greatly modifies the cur-
rent collection with respect to the unmagnetized OML cur-
rents. The modification depends not only on the inclusion of
the density-depleted magnetic bottle but also on the change
of the probe sheath. In the unmagnetized case, the sheath
formation is due to particles getting accelerated towards the
probe. These particle orbits are evenly distributed around the
probe in every dimension leading to a spherically symmetric
sheath. For the magnetized case, the orbits are nonsymmetric
since particles need to orbit the probe and are also gyrating
around the magnetic field lines. This leads to the character-
istic donut-shaped sheath seen in figure 2. The asymmetric
sheath is likely the reason why no theory has accurately pre-
dicted the current collection for magnetized Langmuir probes.
In the absence of a sheath, the current will be determined by
the amount of particles flowing along the magnetic field lines
that intersect the probe surface. However, when including the
donut-shaped sheath, some particles will enter the sheath, and
some of them will get collected due to scattering close to the
probe. The asymmetry in the problem makes it a non-trivial
task to calculate the current. However, it should be noted that
the impact of the magnetic field on the currents to the probe is
large, and should not be neglected. Therefore empirical mod-
els should see widespread usage.

As far as we know, none of the previous theories for spher-
ical Langmuir probes in magnetized plasma17–20 have been
verified in a satisfying manner. Thus, the fact that we do not
have a complete verification for our model at present is not
unique to this work. However, we believe our model will fit
better to good experimental data since the difference between
all of those, and our model is that we do not make any non-
trivial assumptions, as long as we trust the simulations to be a
good representation of reality.
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