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CHAPTER 1

Introduction

Since their advent in the 1990s, Sequential Monte Carlo (SMC) methods,
also known as particle filters, have found routine applications in many fields
of science. Their great success stems from their conceptual simplicity, ease
of implementation, and applicability in nonlinear and non-Gaussian systems.
While greatly successfully in the estimation of low dimensional state spaces,
SMC methods face fundamental challenges in the high dimensional, such as
particle degeneracy, weight collapse, and high computational cost. For high
dimensional state space models, it becomes crucial to design guided particle
filters with novel construction of proposal distributions that alleviate weight
degeneracy. There has as yet no universal recipe for generating such effective
proposals. However, several interesting developments have emerged recently on
particle filtering in the high dimensional setting. SMC in the high dimension
remains a nascent branch of SMC for which we anticipate increasingly more
research and breakthroughs.

Structure of the Report

This thesis is organized into three key parts. In the first, we review the
foundational concepts of sequential Monte Carlo methods. Then we discuss
limitations of these methods in making inferences on the high dimensional state
spaces. Finally, we review a few classes of algorithms that have shown some
promise in the high dimensional setting and compare their performances. For all
numerical examples and experiments, we have used R and Python, and the codes
are available at our GitHub repository https://github.com/smmarashid/smc_hd.
Below we present a brief outline of the structure of report.

Background concepts

In chapter 2, we discuss state space models and the way Monte Carlo integration
makes it possible to make inferences on these models in cases where the analytical
method fails. We consider the importance sampling and resampling concepts
and finally the SMC or particle filtering algorithms.

Challenges of SMC in high dimension

In chapter 3, we study the failure of particle filter in the high dimensional
setting, even when the state space is linear and Gaussian, for which we have
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analytical solutions available from the Kalman filter ((Kalman, 1960)).

Emerging algorithms

In chapter 4, we discuss a few classes of emerging algorithms that have shown
some promise in making inferences on the high dimensional SSMs, particulalry
Block Particle Filter (Rebeschini and Van Handel (2015), Space-Time Particle
Filter (Beskos et al. (2017), Nested Sequential Monte Carlo (C. Naesseth,
Lindsten and Schon (2015), and Divide and Conquer Sequential Monte Carlo
(Crucinio and Johansen (2022).

In chapter 5, we present the results from simulations by algorithms on a linear
Gaussian state space model with different degrees of correlations among its
dimensions. We compare the results based on several metrics, such as runtime,
Wasserstein distance and Kolmogorov–Smirnov distance between distributions
produced by the Kalman filter and those produced by these algorithms, and their
relative mean square error compared to the estimates made by the Kalman filter.

In chapter 6, we summarize key findings, practical challenges we faced, the
future works we could undertake given the opportunity.

Appendix A presents a few mathematical derivations to additionally clarify
some points made in the main text.
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CHAPTER 2

An Introduction to Sequential
Monte Carlo

Sequential analysis of state space models (SSM) is the main application of
Sequential Monte Carlo (SMC), and state space models are ubiquitous in many
different fields of science. In this chapter, we start by defining state space models
and reviewing its essential characteristics. We then discuss how Monte Carlo
integration and the concept of importance sampling lead to numerical solutions
to the inferencing problems, such as estimating the state and its parameters, in
for which no analytical solutions exist.

2.1 State-Space Models

In many fields, such as statistics, econometrics, information engineering, signal
processing, finance, and biology, we frequently encounter dynamic systems that
evolve over time. Our primary objective when encountering such a system often
becomes determining the underlying states that describe the system. However,
the dynamic process that governs the states are often not directly observable
but manifested by indirect, and essentially noisy, observations that are available
to us.

A general, mathematical framework for modeling such a system that
evolves over time is the class of State space models (SSM). An SSM is
essentially a time series model that consists of two discrete-time processes
{Xt} := (Xt)t≥0, {Yt} := (Yt)t≥0 that, respectively, take values in space X and
space Y (Chopin and Papaspiliopoulos, 2020). {Xt} represent the unknown
model variables, generally referred to as latent or hidden variables, that describe
the true state of the phenomena at time t and follow a Markov process, while
{Yt} are the measured observations that are available to us and assumed to be
conditionally independent given {Xt}. We have also parameters θ ∈ Θ ⊂ Rdθ ,
which describe the model but are typically unknown or not sufficiently known.
In addition, there might be explanatory or known variables that we do not model
as stochastic. The spaces X and Y can be high-dimensional Euclidean spaces
(X ⊆ Rdx ,Y ⊆ Rdy ), discrete spaces, or often other types of less-standard
spaces, such as manifold space and function space.
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2.1. State-Space Models

Definition 2.1: Markov process (Pavliotis, 2016)

Let T be an ordered set of time indices and (Ω,F ,P) be a probability
space where Ω is the set of outcomes or the sample space, F the σ-algebra
of events, and P the probability measure on (Ω,F). The time set is
either discrete (T = N) or continuous (T = [0,∞)). T is given the Borel
σ algebra T , and the time space (T, T ) has a natural measure: counting
measure when the time set is discrete, or Lebesgue measure when the
set is continuous. The set of states S is given the Borel σ-algebra S,
and (S,S) is the state space. S can also be discrete and finite (S = N)
or continuous (S = Rd). The stochastic process {Xt}t∈T is a Markov
process if

P(Xt+k ∈ A | F) = P(Xt+k ∈ A | Xt)

for all t, k ∈ T and A ∈ S.

Definition 2.1 implies that if we know the current state Xt, then any
additional information about the past events is redundant in predicting the next
state Xt+1 or any future state Xt+k. In the definition we assume, according to
the primary interest our study throughout the thesis, that {Xt}t∈T follow a
discrete time Markov process (T = N) with Ω = Xt.

There are generally two common ways that are adopted to express an SSM
mathematically, i.e., to relate the processes {Xt} and {Yt}. The first is through
a set of deterministic functions that allow for necessary uncertainty:

X0 = F0(U0, θ) (2.1a)
Xt = Ft(Xt−1, Ut, θ), t = 1, 2, 3, . . . (2.1b)
Yt = Gt(Xt, Vt, θ), t = 0, 1, 2, . . . (2.1c)

where F0, Ft, Gt are the deterministic functions, {Ut}, {Vt} sequences of
independent and identically distributed (iid) random variables, and θ the
parameter vector of the model, which can be either known or unknown and
often be the primary problem of interest, together with {Xt}.

The other way to express an SSM is through a set of probability densities
that define the joint density of the processes via a factorisation:

p0(x0; θ)
T∏

t=0
gt(yt | xt; θ)

T∏
t=1

ft(xt | xt−1; θ).

This joint density describes a generative probabilistic model that evolves from
an initial state through two successive processes. At the onset (t = 0), X0 is
drawn according to the initial density p0(x0; θ), and then each Xt is drawn
conditionally on the previously drawn Xt−1 = xt−1 according to the density
ft(xt | xt−1; θ), and each Yt conditionally on the most recent Xt = xt, according
to the density gt(yt | xt; θ).

X0 ∼ p0(x0; θ). (2.2a)
Xt ∼ ft(xt | xt−1; θ), t = 1, 2, 3, . . . . (2.2b)
Yt ∼ gt(yt | xt; θ), t = 1, 2, 3, . . . . (2.2c)
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Figure 2.1: A schematic representation of a simplified state-space model

To summarize, an SSM is characterized by two principles: (i) the state
process {Xt} is assumed to be a Markov process and (ii) observations, {Yt}, are
independent given {Xt}. An assumption that might sound unsatisfactory in the
second definition is that the conditional distribution of Xt given Xt−1 = xt−1
has a density, but the density might not be directly available. However, this
assumption is not an essential requirement to the definition of the state space
model and can be avoided with other, suitable formulations.

2.2 Analysis of State-Space Models

There are obviously several aspects of a state space model we are generally
interested in making inference about. These aspects can be broadly classified
into two major categories:

1. State inference: Learn the states {Xt} given the available observational
data {Yt}. This objective can further be distinguished by several tasks as
listed in the Table 2.1 below.

Table 2.1: Common tasks in State inference

Task PDF of interest
Filtering p(xt | y0:t)
Joint filtering p(x0:t | y0:t), t = 0, 1, 2, . . .
State prediction p(xt+1 | y0:t) or p(xt+1:t+h | y0:t), h ≥ 1
Joint smoothing p(x0:T | y0:T )
Marginal smoothing p(xt | y0:T ), t ≤ T
Fixed lag smoothing p(xt−h:t | y0:t), h ≥ 1

2. Parameter inference: Learn the parameters θ given the observations.
Parameter estimation can either be (i) online, in which model parameters
are estimated, and the estimates are updated, as new data become
sequentially available over time, or (ii) offline, in which all the observations
become available before the parameters are estimated.

3. Observation inference: In addition to the inference about the states
and the parameters, we might also be interested in the inference about the
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2.2. Analysis of State-Space Models

observation process. For example, in predicting or forecasting future data,
we are interested about the PDF p(yt+1:t+h | y0:t) where h ≥ 1 and t ≥ 0.

The first strategy of inference

The obvious starting point in making any inference in the state space system
appears to be computing the posterior distribution of the states from the
joint prior distribution p(y0:T ) of the states and the conditional likelihood
p(y0:T | x0:T ) of the observations, as given below (we skip θ for rotational
simplicity):

p(x0:T ) = p0(x0)
T∏

t=1
ft(xt | xt−1); (2.3)

p(y0:T | x0:T ) = p0(x0)
T∏

t=0
gt(yt | xt). (2.4)

Now for any given t, the posterior distributions of the states could simply be
calculated by the Bayes’ rule:

p(x0:t | y0:t) = p(y0:t | x0:t) p(x0:t)
p(y0:t)

∝ p(x0:t, y0:t). (2.5)

Computing the full posterior at each time point is however a crude strategy
that might be feasible only for a small amount of observations (it can still be
difficult due to the integration of the denominator in (2.5)), but obviously not
in real-time applications when a large number observations arrive with each
time step.

The next strategy is to exploit the Markov property of the system and
establish the possible recursions in the computation to ascertain that a constant
number of computations is done on each time steps. We illustrate the strategy
with its application on the filtering calculation, i.e. we are interested in marginal
posterior distribution or filtering distribution of the state Xt at each time step
t given the history of the measurements up to the time step t:

6
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Theorem 2.2.1: State space filtering equations

The recursive Bayesian filtering equations for computing the predicted
distribution p(xt | y0:t−1) and the filtering distribution p(Xt | y0:t) at
the time step t are given by the following Bayesian filtering equations.

• Initialization. The recursion starts from prior distribution of
state p(x0) at t = 0.

• Prediction. The predictive distribution of the state xt at the
time step k, given the emission model, can be computed by the
Chapman–Kolmogorov equation

p(xt | y0:t−1) =
∫
f(xt | xt−1) p(xt−1 | y0:t−1) dxt−1. (2.6)

• Update. Given the measurement yt at time step t the posterior
distribution of the state xtcan be computed by Bayes’ rule:

p(xt | y0:t) = g(yt | xt) p(xt | y0:t−1)
Zt

, (2.7)

where the normalizing constant Zt is given as

Zt =
∫
g(yt | xt) p(xt | y0:t−1)dxt. (2.8)

If some of the components of the state are discrete, the correspond-
ing integrals are replaced with summations.

Proof. See Appendix A.1.

Implementing the recursions

Now that we have recursive formulas for predicting and updating the states,
the next obvious strategy is to find whether these equations yield a closed
form to provide an analytical solution. Since we cannot generally compute the
normalizing constant p(y0:t) and marginals of the posterior p(xt | y0:t), because
these require an evaluation of complex, high-dimensional integrals, there are
only a few restrictive cases that admit a close form of solution.

• Posterior at each time is Gaussian.
This implies that the posterior is completely described by mean and
covariance, and this case occurs when the state-space can be expressed
by the functional form specified in equations (2.1a)–(2.1c), with the
deterministic functions Ft and Gt being linear and the {Ut} and {Vt}
Gaussian. This reduces the Bayesian filter of the state space to the famous
Kalman filter (Kalman (1960)) that has the analytical solutions.

• Domain of the state space Xt is discrete and finite.
Suppose that the state space at time t− 1 can assume only one of a finite
set of values:{Xt−1,j}j=1,2,...,Ns

. Let p(xt−1,j | y0:t−1) = wj,t−1|t−1. The
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2.3. Monte Carlo Methods

posterior distribution can therefore by expressed as a sum of Dirac delta
functions:

p(xt−1 | y0:t−1) =
N∑
j

wj,t−1|t−1δ(xt−1 − xt−1,j) (2.9)

The prediction will now be

p(xt | y0:t−1) =
∑

f(xt | xt−1) p(xt−1 | y0:t−1) dxt−1

=
N∑

i=1

N∑
j=1

p(xt,i | xt−1,j)wj,t−1|t−1δ(xt−1 − xt−1,i)

=
N∑

i=1
wi,t|t−1δ(xt − xt,i)

where wi,t|t−1 =
∑N

j=1 p(xt,i | xt−1,j)wj,t−1|t−1. We note two things here:
the new prior is also a weighted sum of the delta functions, and the new
prior weights are arrived by reweighting the old posterior weights based
on the state transition probabilities.
The update step becomes

p(xt | y0:t) = p(yt | xt) p(xt | y0:t−1)∑
p(yt | xt) p(xt | y0:t−1)

=
N∑

i=1
wi,t|tδ(xt−1 − xi,t−1)

wi,t|t =
wi,t|t−1 p(yt | xt,i)∑N

j=1 p(yt | xt,j)

Posterior weights are reweighting of prior weights using likelihoods and
normalization.

2.3 Monte Carlo Methods

Because we do not have a closed form of equations in most of the cases of
state space models, we approximate the intractable integrals appearing in the
equations. Let us consider any test function ψt(x0:t) for some fixed t in which
x0:t are random variables that follow the probability density πt(x0:t). πt(·)
here can be any of the distributions listed in Table 2.1 Thus, the expectation
Eπt [ψt(x0:t)], which is often a statistic of interest in statistical analysis, including
the state space systems, is given by the following integral form:

It = Eπt [ψt(x0:t)] =
∫
X
ψt(x0:t)πt(x0:t) dx0:t. (2.10)

The basic Monte Carlo states that if we sample N independent random variables,
x0:t,i ∼ πt(x0:t) for i = 1, . . . , N , then It can be approximated by the Monte
Carlo estimate Î:

ÎMC
t = 1

N

N∑
i=1

ψt(x0:t,i) ≈ It. (2.11)
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2.3. Monte Carlo Methods

The reliability of the Monte Carlo estimate is based on the Law of large
numbers (LLN) and the Central limit theorem (CLT). In general, we can make
the following propositions about ÎMC

t :

Propositions 2.3.1: Limit theorems about the MC estimate

(a) If Eπt [ψt(x0:t)] < ∞, then ÎMC
t is an unbiased and strongly

consistent estimator of It, i.e., E[ÎMC
t ] = It and ÎMC

t → It almost
surely as N →∞.
Proof.

E[ÎMC
t ] = 1

N

N∑
i=1

Eπt
[ψt(x0:t,i)] = 1

N
(It + . . .+ It) = It.

Strong consistency directly follows from the LLT.

(b) If Eπt
[ψt(x0:t)] <∞ and σ2 = V[ψt(x0:t)] <∞, then E[(Ît−It)2] =

V[Ît,N ] = σ2/N and
√
N(Ît,N − It)/σ

d−→ N (0, 1).
Proof.

V[Ît,N ] = E[(Ît,N − E[Ît,N ])2] = E[(Ît,N − It)2].

V[Ît,N ] = V

[
1
N

N∑
i=1

ψt(x0:t,i)
]

= 1
N2V

[
N∑

i=1
ψt(x0:t,i)

]

= 1
N2

n∑
i=1

V[ψt(x0:t,i)] = 1
N2Nσ

2 = σ2/N.

By applying the CLT on ψt(x1:t,i),

ψt(x1:t,1) + . . .+ ψt(x1:t,N )−NIt

σ
√
N

d−→ N (0, 1),

⇒NÎMC
t −NIt

σ
√
N

d−→ N (0, 1),

⇒
√
N(Ît,N − It)/σ

d−→ N (0, 1).

The main advantage of Monte Carlo methods over standard approximation
techniques is that the standard deviation and the variance of the approximation
error decreases at a rate of O(N1/2) and O(N−1) respectively, regardless of
the dimension dx of the state space X = Rdx of xt. That is, whether dx = 1 or
10000, the error is always in σ/N . This quality of the Monte Carlo estimate
seems to have been misinterpreted sometimes with the erroneous claim that the
Monte Carlo estimates circumvents the Curse of dimensionality problem that
arises in the high dimensional state space. Because σ generally depends on dx,
the curse of dimensionality must often be encountered and be attempted by
other methods to circumvent it. There are at least three key problems with the
basic Monte Carlo approach:

• Problem 1: If πt(x0:t) is a complex high-dimensional probability
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2.4. Importance Sampling

distribution, we still may not be able sample from it directly.

• Problem 2: The posterior distribution p(xt | y0:t), as it often happens in
Bayesian inference, may only be available up to a proportionality constant.
That is, the normalizing constant constant Zt in Equation 2.7 is often
unknown, leaving us with

p(xt | y0:t) ∝ g(yt | xt) p(xt | y0:t−1), (2.12)

• Problem 3: Even if we can sample exactly from πt(x0:t), the computational
complexity of such a sampling scheme is typically at least Ot. Moreover,
this complexity is valid only for low dimensional sate space or, more
specifically, when the dimension of xt is 1. The computational complexity
will increase exponentially with the dimension, as we would note in the
later chapters.

2.4 Importance Sampling

The first two problems are improved by a sampling technique called Importance
Sampling (IS), a fundamental method in Monte Carlo that has served as the
basis of all the algorithms developed later on. Importance sampling functions
by introducing an arbitrary density qt(·) from which samples are drawn, rather
than from the original, target density πt(·). Such strategy might be needed, for
example, when the target density is so complex that successful sampling from it
is a complicated challenge, while the arbitrary density is easier to sample from
but is nevertheless close enough to the target density. A change of distribution
then will not necessarily increase the variance appreciably. Such scenario is
especially common when πt is approximately Gaussian; a perfect Gaussian
is then the natural choice for the arbitrary distribution. The new density is
referred to as importance density, proposal density, or instrumental density,
and chosen such that

πt(x0:t | y0:t) > 0→ qt(x0:t | y0:t) > 0

In other words, the support of qt(xt | y0:t) must be greater than or equal to the
support of πt(xt | y0:t).

The notion of IS is based on the following decomposition of the expectation
over the posterior probability density πt(xt | y0:t):

It =
∫
ψt(xt)πt(xt | y0:t) dxt

=
∫ [

ψt(xt)
πt(xt | y0:t)
qt(xt | y0:t

]
qt(xt | y0:t) dxt (2.13)

The right-hand side of the equation now shows the expectation of the term[
ψt(x) πt(xt|y0:t)

qt(xt|y0:t

]
over the distribution qt(xt | y0:t), so It can also be written as

It = Ept [ψt(xt)πt(xt | y0:t)] = Eqt

[
ψt(xt)

p(xt | y0:t)
qt(xt | y0:t

]
, (2.14)

10



2.4. Importance Sampling

which is called the importance sampling fundamental identity, (Robert and
Casella, 2004) where Eqt

is the expectation for a probability measure for which
the distribution is qt(·) instead of pt(·). Importance sampling can now be defined
as

Definition 2.2: Importance sampling (Robert and Casella,
2004)

The method of importance sampling is an evaluation of (2.10) based on
generating an ensemble {xt,i}i≥0 of particles from a given distribution
qt:

xt,i ∼ qt(xt | y0:t), i = 1, . . . , N, (2.15)

and making the Monte Carlo approximation of the expectation

Î IS
t = 1

N

N∑
i=1

πt(xt,i | y0:t)
qt(xt,i | y0:t)

ψt(xt,i) = 1
N

N∑
i=1

w̃t,iψt(xt,i) (2.16)

≈ It = Eq[w̃t(x0:t)ψt(xt | y0:t)] (2.17)

where

w̃t,i(xt) = πt(xt,i | y0:t)
qt(xt,i | y0:t)

(2.18)

The algorithm is described below:
Algorithm 2.1 Importance Sampling
1 Given a measurement model pt(y0:t | xt), a prior πt(xt), the number of

particles N , choose qt such that supp(qt) ⊃ supp(πt · ψt).
2 for i = 1, . . . , N do
3 Draw xt,i ∼ qt(xt | y0:t).

4 Set the weight w̃t,i(xt) = πt(xt,i | y0:t)
qt(xt,i | y0:t)

= pt(y0:t | xt,i)πt(xt,i)
qt(xt,i | y0:t)

.

5 Return an estimate to the posterior expectation of any function ψt(xt)
by the following:

E[ψt(xt | y0:t)] ≈
1
N

N∑
i=1

w̃t,iψt(xt,i).

In essence, importance sampling implies yielding a weighted ensemble
{xt,i, w̃t,i} from qt(·) instead of pit(·) and using the ensemble for estimating
expectations and therefore probabilities and related measures. The weight, i.e.,
the ratio in Equation (2.18), is known as the importance ratio, importance
weight, or the likelihood ratio. The term importance sampling derives from the
notion that the most common values of xt under the distribution πt(·) may not
necessarily be the most important ones. A well-chosen, alternative density qt(·)
might make the “important” values of xt more likely.

11



2.4. Importance Sampling

Properties of importance sampling estimate

• Î IS
t is consistent if supp(qt) ⊃ supp(pt ·ψt) and Eqt

[w̃t(xt) ·ψt(xt)] < +∞,
as Î IS

t = 1
N

∑N
i=1 w̃t,iψt(xt,i)

a.s.−−→ Ept
[ψt(xt)]. This property follows from

the Law of large numbers.

• The expected value of the weights Eqt
[w̃t] = 1.

• Î IS
t is unbiased.

Theorem 2.4.1: Bias and Variance of Importance Sampling

Eqt
[Î IS

t ] = It (2.19)

Vq[Î IS
t ] = Vq[w̃(xt)ψt(xt)]

N
(2.20)

There is one key challenge to using Algorithm 2.1 in its current form:
qt(.) itself can be available only up to a proportionality constant. Suppose,
πt(xt | y0:t) = Ztγt(xt | y0:t), where the proportionality constant Zt is unknown
to us. Then

Î IS
t = 1

N

N∑
i=1

w̃t,iψt(xt,i)

= 1
N

N∑
i=1

Ztγt(xt,i | y0:t)
qt(xt,i | y0:t)

ψt(xt,i) = 1
N

N∑
i=1

Ztw̃t,iψt(xt,i), (2.21)

where we have weights {w̃t} defined in terms of γt(·) and qt(·). Since Zt does
not cancel out, knowing up to γt(·) is not enough to derive an estimate. We
can however resolve the challenge if we replace the normalization by N by∑N

i=1 Ztw̃t,i in the estimate so that

Eqt
[ψt(xt | y0:t)] ≈

∑N
i=1 Ztw̃t,iψt(xt,i)∑N

i=1 Ztw̃t,i

=
N∑

i=1
wt,iψt(xt,i), (2.22)

where {wt,i} are the standardized weights and defined as

wt,i = Ztw̃t,i∑N
i=1 Ztw̃t,i

= w̃t,i∑N
i=1 w̃t,i

(2.23)

have the property
∑N

i=1 w̃t,i = 1.
The change of the normalization now ensures that the estimate does not depend
on Zt, and it is enough to know πt(·) up tp a multiplicative constant. This
variant of importance sampling is referred to as self normalized importance
sampling, and the resulting algorithm is presented below:

12



2.4. Importance Sampling

Algorithm 2.2 Importance sampling using self-normalized weights
1 Given a measurement model pt(y0:t | xt), a prior πt(xt), and the

number of particles N , choose qt such that supp(qt) ⊃ supp(πt · ψt).
2 for i = 1, . . . , N do
3 Draw xt,i ∼ qt(xt | y0:t).
4 Set the unnormalized weight

w̃t,i(xt) = πt(xt,i | y0:t)
qt(xt,i | y0:t)

= pt(y0:t | xt,i)πt(xt,i)
qt(xt,i | y0:t)

.

5 Compute the standardized weight wt,i = w̃t,i∑N
i=1 w̃t,i

.

6 Return an estimate to the posterior expectation of any function ψt(xt)
by the following:

E[ψt(xt | y0:t)] ≈ ÎSNIS
t =

N∑
i=1

wt,iψt(xt,i).

Properties of self-normalized estimate

• ÎSNIS
t is consistent if supp(qt) ⊃ supp(πt·ψt) and Eqt

[w̃t(xt)·ψt(xt)] < +∞,
as we note that

ÎSNIS
t =

∑N
i=1 w̃t,iψt(xt,i)

N
· N∑N

i=1 w̃t,i

. (2.24)

The first term on the right hand side is the importance sampling estimate
Î IS, which almost surely converges to Ept

[ψt(xt)], and the second term
almost surely converges to the expectation Eqt

[πt(xt)/qt(xt)] or 1 as
n→∞.

• ÎSNIS
t is unbiased, but asymptotically unbiased.

Theorem 2.4.2: Bias and Variance of self-normalized IS

Eqt
[ÎSNIS

t ] = It + ItVq[w̃t(xt)]− Covq[w̃t(xt), w̃t(xt)ψt(xt)]
N

+O(N−2)

(2.25)

Vq[ÎSNIS
t ] = Vq[w̃t(xt)ψt(xt)]− 2ItCovq[w̃t(xt), w̃t(xt)ψt(xt)]

N

+ I2
t Vq[w̃t(xt]

N
+O(N−2)

(2.26)

See (Iambartsev, 2018).
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2.5. Sequential Importance Sampling

2.5 Sequential Importance Sampling

Importance sampling provides us with the numerical approximation for an
intractable function. Sequential importance (see, e.g.,Doucet, De Freitas and
N. Gordon (2001)) is a sequential version of importance sampling. The SIS
algorithm can be used for generating importance sampling approximations to
filtering distributions of generic state space models of the form

xt ∼ ft(xt | xt−1), xt ∈ Rdx ,

yt ∼ gt(yt | xt), yt ∈ Rdy .

The state and measurements may contain both discrete and continuous
components.

The SIS algorithm uses a weighted set of N particles (wt,i, xt,i), i = 1, . . . , N ,
that is, samples from an importance distribution and their weights, for
representing the filtering distribution pt(xt | y0:t) such that at every time
step t the approximation to the expectation of an arbitrary ψ(xt) can be
calculated as the weighted sample average

E[ψt(xt | y0:t)] ≈
N∑

i=1
w̃t,iψt(xt,i)

Equivalently, SIS can be interpreted as forming an approximation to the
filtering distribution as

pt(xt | y0:t) ≈
N∑

i=1
w̃t,δ(xt − xt,i)

To derive the algorithm, we consider the full posterior distribution of states
x0:t given the measurements y0:t. By using the Markov properties of the model,
we get the following recursion for the posterior distribution (to simplify the
notation, we drop the time subscript from the symbol of the density functions
here, but it is understood):

p(x0:t | y0:t) = p(xt | x0:t−1, y0:t)p(x0:t−1 | y0:t)
∝ p(yt | xt, x0:t−1, y0:t−1)p(xt | x0:t−1, y0:t−1)
× p(yt | x0:t−1, y0:t−1)p(x0:t−1 | y0:t−1)

∝ p(yt | xt)p(xt | xt−1)p(yt | x0:t−1, y0:t−1)p(x0:t−1 | y0:t−1),

Using a similar rationale as in the previous section, we can now construct
an importance sampling method which draws samples from a given importance
distribution x0:t,i ∼ q(x0:t | y0:t) and compute the importance weights

ŵt,i ∝
p(yt | xt,i)p(xt,i | xt−1,i)p(x0:t−1,i | y0:t−1)

q(x0:t,i | y0:t)
(2.27)

If we form the importance distribution for the states xt recursively as follows:

q(x0:t | y0:t) = q(xt | x0:t−1, y0:t)q(x0:t−1 | y0:t−1) (2.28)
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then the expressions of the weights can be written as

w̃t,i ∝
p(yt | xt,i)p(xt,i | xt−1,i)
q(xt,i | x0:t−1,i, y0:t)

· p(x0:t−1,i | y0:t−1)
q(x0:t−1 | y0:t−1) (2.29)

Let us now assume that we have already drawn the samples {x0:t−1,i} from
the importance distribution q(x0:t−1 | y0:t−1) and computed the corresponding
importance weights {w̃t−1,i}. We can now draw samples {x0:t,i} from q(x0:t |
y0:t) by drawing the new state samples for the step t as xt,i ∼ q(xt | x0:t−1,i, y0:t).
The importance weights from the previous step are proportional to the last
term in (2.29):

w̃t−1,i ∝
p(x0:t−1,i | y0:t−1)
q(x0:t−1,i | y0:t−1) (2.30)

Thus the weights satisfy the recursion

w̃t,i ∝
p(yt | xt,i)p(xt,i | xt−1,i)
q(xt,i | x0:t−1,i, y0:t)

· w̃t−1,i (2.31)

The generic sequential importance sampling algorithm can now be described as
follows.

Algorithm 2.3 Sequential Importance Sampling
1 Given a measurement model p(y0:t | xt) and a prior p(xt).
2 Sample x0,i from the initial prior: x0,i ∼ p(x0), i = 1, . . . , N.
3 Set w0,i = 1/N for all i ∈ N.
4 for t = 1, · · · , T do
5 Sample xt,i from the importance distributions

xt,i ∼ q(xt | x0:t−1,i, y0:t), i = 1, . . . , N.

6 Set wt,i = 1/N for all i ∈ N.
7 Return xt, i

Weight degeneracy in SIS

One challenge with SIS is that the variance of the weights increase as the time
step t also increase, as illustrated below. From the general rule of conditional
means and conditional variances, we have

V[P ] = E[V[P | Q]] + V[E[P | Q]] ≥ V[E[P | Q]]

Putting P = wt, Q = x0:t−1 and using (2.31), we get

E[w̃t | x0:t−1] = E
[
p(yt | xt)p(xt | xt−1)
q(xt | x0:t−1, y0:t)

· w̃t−1

]
= w̃t−1 · E

[
p(yt | xt)p(xt | xt−1)
q(xt | x0:t−1, y0:t)

| x0:t−1

]
= w̃t−1.1 = w̃t−1
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2.6. Sequential Importance Resampling

Thus, V[w̃t] ≥ V[w̃t−1]. More specifically, it is shown that the variance of the
weight increases exponentially with t and to control the variance with t, the
number of Monte Carlo estimates need to be chosen as exponential of t.

2.6 Sequential Importance Resampling

The weight degeneracy in SIS indicates that the variance of the weights will
continue to increase at each time-step t. The consequence of this uncontrolled
variance is that only a few particles will dominate the entire ensemble in terms
of the weight as time increases, consequently increasing the variability of the
Monte Carlo estimate. The degeneracy problem can be in part solved by using
resampling, a procedure which works as described below:

1. Assume that each weight w̃t,i is the probability of obtaining the index i
in the ensemble of particles {xt,i}.

2. Draw N new particles from this discrete distribution and replace the old
ensemble with the new ensemble.

3. Set each new weight wt,i = 1
N .

Resampling in essence transforms the weighted ensemble {w̃t,i, xt,i}i=1,...,N

of particles into an unweighted or, in other words, a equally-weighted, ensemble
{ 1

N , xt,i}, without changing the distribution. The motivation behind the
resampling procedure is to remove particles which have negligible weights and are,
in general, not a good representative of the true state, and to replicate particles
with large weights, according to weight of each particle before resampling.
Resampling does not change the theoretical distribution represented by the
weighted set of the ensemble, because we are merely choosing particles from
among the already existing ensemble, but it introduces additional variance to
the estimate of state. This variance caused by the resampling procedure can be
reduced by proper choice of the resampling method.

Adding a resampling step to the sequential importance sampling algorithm
leads to sequential importance resampling (SIR), which is the algorithm usually
referred to as the particle filter.

Common resampling methods

The resampling step plays a central role in a sequential Monte Carlo algorithm,
but it is computationally expensive. While there are many schemes to implement
resampling, there are four widely used resampling methods in the context of
sequential Monte Carlo.

1. Multinomial resampling
This is the most commonly used resampling technique in SMC, the
procedures is described below:
Draw N random numbers {ũm}m=1,...,N , ordered and indexed by m, from
the Uniform distribution: ũm ∼ U [0, 1).

Set uN = ũ
1/N
N and successively compute um = ũm+1ũ

1/m
m .
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2.6. Sequential Importance Resampling

Select new particle xm according to the multinomial probability distribu-
tion formed by the normalized weights of the particles before resampling
and the value of um. This selection procedure, which is common to several
other resampling methods, works as follows:
Make the cumulative probability distribution {Ci}i=1,...,N of the normal-
ized weights.
Find the index value i such that Ci−1 ≤ um < Ci.
Select new the particle xm = xi.

2. Stratified resampling
Draw ũm ∼ U [0, 1) for m = 1, . . . , N .

Compute um = (m− 1) + ũm

N
.

Select new particle xm according to the multnomial distribution of the
normalized weights, as describe above.

3. Systematic resampling
The key difference between stratified and systematic resampling is that
the random numbers generated from the Uniform distribution are not
indexed or ordered in case of the letter. Thus, systematic resampling
works as follows:

Draw ũ ∼ U [0, 1). Compute um = (m− 1) + ũ

N
for m = 1, . . . , N.

Select new particle xm according to the multinomial distribution remains
the same.

4. Residual resampling
Create n′

i = ⌊Nwi⌋ replicates of the particle xi, for i = 1, . . . , N, where wi

is the normalized weight and ⌊ ⌋ is the floor function, and directly transfer
these replicates to the new distribution, which is to be the distribution
after resampling. To select the remaining N −∑i n

′
i samples,

Compute the residual weight wres
i of particle xi as wres

i = Nwi − ⌊Nwi⌋,
for i = 1, . . . , N.
Use these weights {wres

i } as probabilities to select the additional samples
from {xi}, using one of the resampling procedures described above.

All of the four resampling algorithms are unbiased. Because the random numbers
um are ordered, they can be implemented in O(n) time. However, because the
process of generating um varies, they have different computational complexities
and consequently different runtimes.

Choice of the resampling method

Systematic resampling is often recommended because of its speed as well as
better empirical performance (in terms of estimates with lower a variance) than
the other methods. Here, we apply the four resampling methods on a non-linear,
1-D state space model and record their performances. The model comes from
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population ecology, and we have taken it from Chopin and Papaspiliopoulos
(2020) in the following form:

X0 ∼ N(0, 1)
Xt = τ0 − τ1e

τ2Xt−1 + Ut, Ut ∼ N(0, σ2
X)

Yt = Xt + Vt, Vt ∼ N(0, σ2
Y )

In our simulation, we have run a sequential importance resampling algorithm
on this model for different numbers (N) of particles, while keeping T = 100.
For each value of N , we have repeated the algorithm 100 times and computed
the average time for a single run. We present the results in Figure 2.2. The
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Figure 2.2: Average runtime for the four common resampling methods in sequential
Monte Carlo

state space model on which we have tested the resampling schemes is non-linear
but is a very low dimensional. Therefore, computational time was small for all
cases. It is nevertheless obvious that multinomial resampling has the highest
computational cost, while systematic the lowest. cost.

In SIR, resampling is generally not performed at every time step because of
two reasons. First, resampling is the most computationally costly step of an
SIR algorithm. Second, resampling at every time step might even be redundant,
for example, at the time when the particles do not suffer from any degeneracy.
Therefore, resampling is performed only when it is deemed necessary by some
criteria. One such criteria could be resampling at the every mth time step,
where m is some predefined constant. Another way is adaptive resampling, in
which the effective sample size (ESS), a popular metric of quality or efficiency
of Monte Carlo estimates that is based on weighted samples and estimated from
the variance of the particle weights (Kong, Liu and Wong (1994)), is used to
monitor the need for resampling. The estimate ÊSS for the particles can be
computed as:

ÊSS(wt,1:n) = 1∑N
i=1(wt,i)2

=

[∑N
i=1(w̃t,i)

]2

∑N
i=1(w̃t,i)2

(2.32)
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where {wt,i} and {w̃t,i} are respectively the normalized and unnormalized
weights.

The SIR algorithm can be summarized as
Algorithm 2.4 Sequential Importance Resampling
1 Given a measurement model p(y0:t | xt), a prior p0(x0), and the

number of particles N .
2 Draw N values from the initial prior:

x0,i ∼ p0(x0), i = 1, . . . , N,

and set weight w0,i = 1/N , for all i = 1, . . . , N .
3 for each t = 1, . . . , T do
4 Draw samples xt,i from the importance distribution

xt,i ∼ qt(xt | xt−1, y0:t), i = 1, . . . , N

5 Calculate new, unnormalized weights

w̃t,i ∝ wt−1,i
gt(yt | xt,i)ft(xt,i | xt−1,i)

qt(xt,i | xt−1,i, y0:t)

6 Normalize the weights

wt,i = w̃t,i∑N
i=1 w̃t,i

7 If ÊSS is less than a specific threshold value, perform resampling.

Performance of the SIR algorithm, like other algorithm that relies on the
importance sampling, naturally depends on the quality of the importance
distribution qt(·). Its functional form should be such that we can easily draw
samples from it and can evaluate the probability densities of the sample points.
The optimal importance distribution in terms of variance (see, e.g., Doucet,
De Freitas and N. Gordon (2001)) is

qt(xt | x0:t−1, y0:t) = p(xt | xt−1, yt) (2.33)

If the optimal importance distribution however cannot be directly used, efficient
importance distributions can sometimes be obtained by indirect methods.
One such method is the local linearization in which a mixture of Laplace
Approximation, extended Kalman filters (EKF), unscented Kalman filters
(UKF), or other types of non-linear filters are used to form the importance
distribution (C. A. Naesseth, Lindsten, Schön et al. (2019)). It is also possible
to use a Metropolis–Hastings step after, or in stead of, the resampling step to
smooth the resulting distribution (Wan and Van Der Merwe (2000)). A particle
filter with UKF importance distribution is also referred to as the unscented
particle filter (UPF). Similarly, a particle filter with the Gauss–Hermite Kalman
filter importance distribution can be termed the Gauss–Hermite particle filter
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(GHPF) and one with the cubature Kalman filter importance distribution
the cubature particle filter (CPF). However, such a mixture of importance
distribution can also lead to the failure of particle filter convergence, demanding
care and caution to avoid such a pitfall. Rather than forming the importance
distribution by using the Gaussian approximation provided by the EKF, UKF,
or other Gaussian filter, it may be recommended to artificially increase the
covariance of the distribution or to replace the Gaussian distribution with a
Student’s t distribution with a suitable number of degrees of freedom (see Cappé,
Moulines and Rydén (2009)). By tuning the resampling algorithm to specific
estimation problems and possibly changing the order of weight computation
and sampling, accuracy and computational efficiency of the algorithm can be
improved.

The bootstrap filter (N. J. Gordon, Salmond and Smith (1993)) is a variation
of SIR where the dynamic model ft(xt | xt−1) is used as the importance distri-
bution. This makes the implementation of the algorithm easy, but inefficiency
of the importance distribution may warrant a very large number of Monte
Carlo samples for the estimation. In the bootstrap particle filter, resampling is
normally performed at each time step.

Algorithm 2.5 Bootstrap Particle Filter
1 Given a measurement model p(y0:t | xt) and a prior p0(x0).
2 Sample N particles from the initial prior:

x0,i ∼ p0(x0), i = 1, . . . , N,

Set weight w0,i = 1/N , for all i = 1, . . . , N .
3 for each t = 1, . . . , T do
4 Draw a new particle xt,i from the dynamic model for each xt−1,i

xt,i ∼ ft(xt | xt−1,i), i = 1, . . . , N
5 Calculate new, unnormalized weights

w̃t,i ∝ gt(yt | xt,i)

6 Normalize the weights

wt,i = w̃t,i∑N
i=1 w̃t,i

7 Resample with replacement N particles from x0:t,i based on w̃t,i

Another variation of SIR is the auxiliary SIR (ASIR) filter (Pitt and
Shephard (1999)). The ley idea of the ASIR is to mimic the availability
of the optimal importance distribution by performing the resampling at step
t− 1 using the available measurement at time t.
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2.7 SMC for parameter estimation

While discussing inferences in the state space, we have so far restricted our
focus on the estimation of the latent variables {xt} that represent the states,
assuming that the parameters of the model are known. In this section, we
consider the parameters θ unknown and discuss their estimation, which is often
another goal in the analysis of state space models. There are generally two
approaches in parameter estimation: Maximum Likelihood Estimation and
Bayesian Estimation (see, e.g., (Storvik, 2017).

Maximum Likelihood Estimation

Given a sequence of observations {y0:t} and a generic statistical model with
likelihood function θ → p(y0:t; θ), a maximum likelihood estimator (MLE) is
defined as

θ̂ ∈ argmax
θ∈Θ

p(y0:t; θ). (2.34)

With the state space model defined in (2.2a)–(2.2c), the objective amounts to
maximizing

p(y0:t | θ) =
∫

x
p(y0:t | x0:t; θ)p(x0:t|θ) dxt (2.35)

The integral is often intractable, so we resort to sequential Monte Carlo methods,
and the main approach in this setting is to set

p(y0:t | θ) = p(y0 | θ)
t∏

s=0
p(ys | y0:s−1; θ) (2.36)

Applying the law conditional probability, p(ys | y0:s−1; θ) can be written as

p(ys | y0:s−1) =
∫

xs

p(ys | xs; θ) p(xs | y0:s−1) dxs (2.37)

The right hand side can now be approximated recursively by an ensemble of
particles∫

xs

p(ys | xs; θ) p(xs | y0:s−1) dxs ≈
N∑

i=1
wt−1,i p(ys | xs,i; θ) (2.38)

Bayesian Estimation

In the Bayesian approach, we view θ as the realization of a random variable Θ,
with a prior distribution p(θ) that reflects our available knowledge about it.
Our aim is then to compute the posterior distribution of Θ, i.e., the distribution
of Θ conditional on data {y0:t}. To proceed on this aim, we start with the
joint conditional distribution of the state variables {xt} and θ given {y0:t},
i.e., p(xt, θ | y0:t) and can assume that at time (t− 1) there exist a weighted
sample {(xt−1,i, θi, wt−1,i)} with respect to p(xt−1, θ|y1:t−1). We can then use
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2.7. SMC for parameter estimation

the recursive Bayes filtering equation, now including θ as well,

p(xt, θ | y0:t−1) =
∫

xt−1

p(xt | xt−1, θ)p(xt−1, θ | y0:t−1) dxt−1

≈
N∑

i=1
wi,t−1p(xt|xi,t−1, θi)δθ(θi)

and

p(xt, θ | y0:t) ≈ Z ·
N∑

i=1
wt−1,i p(xt | xt−1,i, θi)δθ(θi) p(yt | xt, θi) (2.39)

Updated samples {θi, xi,t, wi,t} are obtained by simulating xi,t ∼
p(xt|xi,t−1, θi) and update the weights as wt,i ∝ wt−1,i p(yt | xt,i, θi), The
proportionality constant can be taken care of by normalized weights.
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CHAPTER 3

Challenges of Sequential Monte
Carlo in High Dimension

Since their development in 1993, particle filters have become a standard tool
with an immense success for inference and optimal estimation in general state
space hidden Markov models, while showing successful applications in ever
more complex scenarios (see, e.g., Godsill (2019)). This success has, however,
remained limited only to the applications in the low dimensional state space
models in general. Particle filters face a fundamental obstacle in the high-
dimensional systems. Bootstrap particle filter, for example, perform poorly
when the data-points are very informative. The intuitive explanation behind
this drawback is that the algorithm samples particles {xdx

t } from ft(xdx
t | xdx

t−1),
where dx is the dimension of the state space, in an unguided way, implying
that there is no control mechanism in it to ensure that many of the simulated
particles be compatible with the observation {ydy

t }, where dy is the dimension
of the observation variable. The problem becomes especially pronounced when
the observations are very informative and result in the likelihood gt(ydy

t | xdx
t )

to be a peaked function. This phenomenon happens particularly when dy is
high.

In this chapter, we illustrate the difficulty of sequential Monte Carlo in
high-dimensional estimation by studying two linear state space models, one
with the transition density and the observation density following the Gaussian
distribution and the other with the densities following the Cauchy distribution.
These models are characterized by simple dynamics, but still suffer from
the weight degeneracy and high estimation error resulting from the curse
of dimensionality in the high dimension. We explore, among others, the results
of Snyder et al. (2008) and Bengtsson, Bickel and Li (2008) in light of our
experimental simulation and analyze their key theoretical results that highlight
the difficulty of simulation in high dimensions.

3.1 Model Setting

Our models are described by the following density functions, in line with
expressions for a general SSM that we presented in (2.2a)–(2.2c):

Xdx
0 ∼ p0(xdx

0 ; θ), (3.1a)
Xdx

t ∼ ft(xdx
t | Xdx

t−1; θ), t ≥ 1, (3.1b)
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3.2. Parameter Setting

Y
dy

t ∼ gt(ydy

t | xdx
t ; θ), t ≥ 0. (3.1c)

That is, we assume that Xdx
t is drawn conditionally from a prior or proposal

distribution ft(xdx
t | xdx

t−1), while new observational data Y
dy

t is related to
the state xdx

t by the conditional density gt(ydy

t | xdx
t ). We assume that this

relationship between the states and the observations can be completely described
by a deterministic function. Mathematically, Y dy

t = Gt(Xdx
t ) + ε

dy

t , where εdy

t

is an additive noise that is taken to be independent of the state Xdx
t . Our goal

is to approximate, for some function ψ(·), the following posterior expectation

E
[
ψ(xdx

t ) | ydy

0:t

]
=
∫
ψ(xdx

t ) p(xdx
t | y

dy

0:t) dx
dx
t (3.2)

=
∫
ψ(xdx

t ) gt(ydy

0:t | xdx
t ) p(xdx

t )∫
gt(ydy

0:t | xdx
t ) p(xdx

t )dxdx
t

dxdx
t . (3.3)

by the following estimate using importance ratio:

E
[
ψ(xdx

t ) | ydy

0:t

]
≈ Ê

[
ψ(xdx

t ) | ydy

0:t

]
=

N∑
i=1

ψ(xdx
t,i)

gt(ydy

0:t | xdx
t,i)∑n

j=1 gt(ydy

0:t | xdx
t,j)

(3.4)

In this model setting, the normalized, posterior weight wt,i(xdx
t,i) associated with

ensemble member xdx
t,i is given by

wt,i(xdx
t,i) =

gt(ydy

0:t | xdx
t,i)∑n

j=1 gt(ydy

0:t | xdx
t,j)

We do not put the dimension to the notation of the weight to indicate that
the quantity is a scalar. Our primary objective is to study how the set of N
weights behave as the value of dx or dy increases. In particular, we would like
to verify that one of the particles will dominate the entire ensemble with a very
high likelihood gt(ydy

0:t | xdx
t,i) compared to the other particles regardless of the

time step and, consequently, result in maxi({wt,i})→ 1 when dx or dy becomes
high. For high-dimensional state space systems, weight degeneracy is pervasive
and appears to hold for a wide variety of prior and likelihood distributions

3.2 Parameter Setting

We mentioned in the previous section that dy-dimensional observation vector ydy

t

is related to the state variable xdx
t through a function Gt(·). More specifically,

we assume this function to be a simple, linear operator H and model the
observation y

dy

t as follows:

y
dy

t = Hxdx
t + ε

dy

t

We further assume the following in the Gaussian case:

• The prior proposal pt(xdx
t ) is multivariate, isotropic Gaussian, i.e., each

component xt,d, d ∈ dx, of xdx
t is conditionally independent of all other

components, given xt−1,d. In other words,

xdx
0 ∼ Ndx

(µx, Idx
)

24



3.3. Simulations and Outcomes

xt,d | xdx
t−1 ∼ N (xt−1,d, 1)

For additional simplicity in terms of the computational cost, we take the
mean µx of the Gaussian to be a dx dimensional vector of 0 and variance
σ2

x of each component to be 1, reducing the covariance matrix to the
dx-dimensional identity matrix Idx

. Thus, we have

E
[
xdx

t

]
= µx = 0, E

[
xdx

t xdx
t

⊺
]

= σ2
xIdx

= Idx

• In our simulation, we have taken H to be a dx-dimensional identity matrix.
This makes each component of ydy

t dependent only on the corresponding
component of xdx

t .

• We take the additive noise to be Gaussian with mean 0 and covariance
matrix an identity matrix.

ε
dy

t ∼ Ndy
(µε, Idy

)

⇒ E
[
ε

dy

t

]
= µε = 0, E

[
ε

dy

t ε
dy

t

⊺]
= σ2

xIdy
= Idy

• Finally, we have stipulated dx = dy for additional simplicity.

In the Cauchy case, we take all the densities to follow Cauchy distribution
including the noise term. Thus, we have the following transition and observation
densities:

xdx
0 ∼ Cauchy(0, 1).
xdx

t = xdx
t−1 + Ut, Ut ∼ Cauchy(0, 1)

y
dy

t = Hxdx
t + Vt, Vt ∼ Cauchy(0, 1)

3.3 Simulations and Outcomes

With the model presented above, we have run a bootstrap particle filter for
nine sets of state-space dimension and the number of particles: (dx, N). We
first present results from the Gaussian case, followed by those from the Cauchy
case later in the section.

3.3.1 The Gaussian case

Weight degeneracy

For each set, we have let the process evolve till T = 50 and computed the
N weights of the particles at the final time step, stored them in a list, and
noted the maximum weight in the list. We then repeated the filtering algorithm
for a total of 1000 times. Each histogram in Figure 3.1 summarizes the 1000
maximum weights for one set of (dx, N) in the Gaussian case. The figure depicts
the challenges posed by the dimension of the state space on the performance of
the bootstrap particle filter.

When the dimension is small, e.g., when dx = 5, most of the maximum
weights fall between 0 and 0.2, indicating that there is no single particle that
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Figure 3.1: Sampling distribution of the maximum weight of the particles for nine sets
of (dx, N). Each histogram is based on 1000 simulations of the process at time T = 50.
In each simulation, the maximum weight, max wT , of the ensemble of particles is
computed. The red triangle points to the average of all the 1000 maximum weights.

dominates the particle ensemble in terms of the weight. As the dimension starts
to increase, some particles start experiencing higher weights, but the scenario
is not so severe even at dx = 10 and can further be ameliorated by increasing
the size N of the ensemble. However, when the dimension of the state-space
becomes 1000, the number of particles even at the order of 105 is not enough
to improve performance of the algorithm. We summarize the proportion of the
dominating cases in which maxi(wi) > 0.5 in Table 3.1:

Table 3.1: Percentages of cases where a single particle dominates (with
normalized weight > .5) the entire particle ensemble in the bootstrap filter.

max wT > 0.5 Nx

103 104 105

dx

5 0.2% 0% 0%
10 5.8% 0.1% 0%
100 95.3% 90.5% 83.8%
1000 99.9% 99.6% 99.2%

As we see from the table, when dx = 5, only in 0.2% cases, one of the particles
have weight greater than 0.5 if we choose Nx = 103. However, with dx = 10
and Nx = 103, we observe that 5.8% of the cases have maxWT > .5. The
situation improves if we increase the number of particles toward 105. However,
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3.3. Simulations and Outcomes

the algorithm becomes unreliable in almost 100% of the time even when the
number of particles is 105. By applying a better proposal distribution, one can
reduce the problem, but the problem will essenially stay.

Runtime

We have also recorded the runtimes of 1000 runs of the algorithm for the nine
sets of (dx, N). Table 3.2 below presents the average time spent in one run.

Table 3.2: Average runtime of a bootstrap particle filter in linear state space
with Gaussian prior for different sets of state space dimension and number of
particles.

Runtime (sec) N
103 104 105

dx

5 7.0× 10−2 2.5× 10−1 2.2× 100

10 1.2× 10−1 4.6× 10−1 4.1× 100

50 5.7× 10−1 2.3× 100 2.2× 101

100 1.1× 100 4.5× 100 4.3× 101

1000 1.1× 101 5.0× 101 4.5× 102

The table shows that the runtime is approximately directly proportional
to the size of the dimension of the state space for a given number of particles.
This simple proportional relationship might stem from the fact that we have
stipulated the components of the latent variable to be independent of each
other, and so was the case for the components of the observation variable. If
the covariance matrix of the multivariate Gaussian or the linear operator H
were not an identity matrix, the computational cost could have increased at
a greater rate than a simple proportion due to more interactions among the
variables.

On the other hand, the runtime shows some non-linear relationship to the
number of particles. The algorithm takes about 4 times as much time to
complete one run with N = 104 as with N = 103; the runtime becomes 36
times with N = 105 compared to the runtime with N = 103. This is mainly due
to the resampling step, although we have chosen systematic resampling, the
fastest among the four commonly used resampling methods.

Lack of particle diversity

Another problem, related to weight collapse, of the particle filter is lack of
diversity among the particles as they evolve over time, as illustrated by the
particle ancestry or genealogical tree in Figure 3.2. The tree shows that when
the dimension of the state space is low, particles evolve from many different
ancestors, ensuring diversity in the particle population. However, even when
the dimension is moderate, for example, when dx = 100 in our experiment, all
the particles up to time t = 48 evolve from a single ancestor.

Effects of weight collapse

We examine the effects of weight collapse on the posterior mean and posterior
variance of states. For our linear Gaussian model, we note (we drop the notations
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Figure 3.2: Ancestry trees generated by the bootstrap particle filter using multinomial
resampling and N = 104 particles and T = 50 time steps. (left) tree with dx = 5 and
(right) tree with dx = 100.

dx, dy for the dimensions, which are to be understood here unless explicitly
stated otherwise):

Σxtyt = E[xty
⊺
t ] = E[xt(Hxt + εt)⊺]

= E[xtx
⊺
tH

⊺] + E[xtε
⊺
t ]

= E[xtx
⊺
t ]E[H⊺] + E[xt]E[ε⊺t ]

= Idx
× Idx

+ 0× 0 = Idx
. (3.5)

Σytyt
= E[yty

⊺
t ] = E[(Hxt + εt](Hxt + εt)⊺]

= E[Hxtx
⊺
tH

⊺] + E[Hxtε
⊺
t ]

+ E[εtx
⊺
tH

⊺] + E[εtε
⊺
t ]

= Idx
+ 0 + 0 + Idx

= 2Idx
. (3.6)

According to the Gauss-Markov theorem, the posterior mean vector xc
t := E[xt |

yt] at time t is given by

xc
t = µxt

+ Σxtyt
Σ−1

ytyt
(yt − µxt

)
= 0 + Idx

(2Idx
)−1(yt − 0) = yt/2. (3.7)

In our bootstrap particle filtering experiment, xc
t is estimated as

xc
t ≈ x̂c

t =
N∑

i=1
wix

p
t,i (3.8)

where the superscript p indicates a prior quantity.

The poster variance at time t is given by

V[xt | yt] = Idx − IdxH
⊺[HIdxH

⊺ + Idx ]−1HIdx

= Idx
− Idx

[2Idx
]−1Idx

= Idx
/2 (3.9)

The expected square loss of xc
t over all the dx components

E
[
|xc

t − xt|2
]

=E

[∣∣∣∣xp
t + yt

2 − xt

∣∣∣∣2
]
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=E

[∣∣∣∣xp
t − xt

2 − yt − xt

2

∣∣∣∣2
]

=E

[∣∣∣∣xp
t − xt

2

∣∣∣∣2
]

+ E

[∣∣∣∣yt − xt

2

∣∣∣∣2
]

Due to that yt − xt = εt which is independent of xt. Further, since
E|xp

t − xt|2 = E|yt − xt|2 = dx, we get

E(|xc
t − xt|2) = 1

4dx + 1
4dx = 1

2dx

The correct posterior mean estimated by the filter

x̂t
c =

N∑
i=1

wt,ix
p
t,i
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Figure 3.3: Expected squared error of the posterior mean xc in the bootstrap particle
filter on a linear Gaussian state space with three different cardinalities of dimension.

In our experiment, we have fixed T = 50 and N = 104 and run the filtering
algorithm 1000 times. In each run at the final time step, we have computed
the dx dimensional Monte Carlo estimate of the state by taking the weighted
average of the particles and compared this estimate with the dx dimensional
true state to obtain the aggregated squared error over all dimensions (square of
the L2-norm between the estimated state and the true state). We have repeated
the 1000 runs for dx = 2, 5, 10, 50, 100, and 1000.

Figure 3.3 presents the histogram of the squared errors for each value of dx,
except for 1000, which we exclude from the plot because of their large errors
affecting the vertical scale of the plot. Averaging the squarer error over the 1000
runs, we have got the mean squared error of 10.8, 186.0, 737.7, and 42109.2 for
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3.3. Simulations and Outcomes

dx = 10, 50, 100, and 1000, respectively. Thus, xc is a very poor estimator of
the posterior mean even for small dimensions and as the dimension increases,
the squarer error increases at an exponential rate of the dimension.

Effect on ensemble size on posterior mean

To study the effect of the number of particles on the squared error of the
estimated posterior mean, we have chosen a set of three dimension sizes
dx = 10, 20, 50, and for each value of dx, we have run the bootstrap particle
filter with a different number of particles between N = 100 and N = 105,
inclusive. For each combination of (dx, N), we have repeated the algorithm 100
times and taken the mean squared error of posterior mean described earlier.
The scatter plot in Figure 3.4 below shows the rate of reduction of the squared
error with the increase in the number of particles..

We find that the squared error reduces at an increasingly lower rate as the
ensemble size increases and requires an exponentially high number of particles
to keep the reduction at an appreciable level. For example, for dx = 10, there is
a very little reduction in the error if we choose N = 105, compared to N = 104.
For dx = 20, the squared error decreases from 29.3 with N = 105 to 23.9 with
N = 103, amounting to an 18% gain in the performance; the error is nevertheless
significantly higher that theoretical error we derived above.
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Effect of ensemble size N on the estimate
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Figure 3.4: Effect of the ensemble size three different dimensions dx = 10, 20, 30. Each
scatter point is an average squared error based on 100 simulations of the process at
time T = 50.
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3.3.2 The Cauchy case

Weight degeneracy

We present the sampling distributions of the weights for the nine sets of (dx, N)
in Figure 3.5.
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Figure 3.5: Sampling distribution of the maximum weight of the particles for nine sets
of (dx, N). Each histogram is based on 1000 simulations of the process at time T = 50.
In each simulation, the maximum weight, max wT , of the ensemble of particles is
computed. The red triangle points to the average of all the 1000 maximum weights.

While the bootstrap particle filter with a Cauchy prior suffers, quite
expectantly, from the weight collapse in high dimension, the weight collapse
is, interestingly, not as severe as in the Gaussian case, as evidenced by the
plot. When the dimension of the state space is 1000, the filter with Gaussian
prior had a very negligible percentage of cases with the maximum weight of a
particle greater than 0.5. The percentage of cases for Cauchy prior, through not
significant, was not close to zero. We summarize the proportion of dominating
particles when maxi(wi) > 0.5 in Table 3.3.

Runtime

By comparing the runtimes for the Cauchy case with those in the Gaussian
case from Table 3.2, we find that using a Cauchy prior takes about three times
as much runtime in a single run by the bootstrap filter as in the Gaussian
case. The results suggest that simulating from the Cauchy distribution is much
costlier than simulating from the Gaussian distribution.
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3.4. Discussion

Table 3.3: Percentages of cases where a single particle dominates (with
normalized weight > .5) the entire particle ensemble in the bootstrap filter.

max wT > 0.5 Nx

103 104 105

dx

5 4.8% 1.6% 0.4%
10 16.7% 7.3% 3.7%
100 72.6% 62.2% 63.5%
1000 95.3% 93.3% 92.2%

Table 3.4: Average runtime of a bootstrap particle filter in linear state space
with Cauchy prior for different sets of state space dimension and number of
particles.

Runtime (sec) N
103 104 105

dx

5 2.0× 10−1 7.6× 10−1 6.5× 100

10 3.9× 10−1 1.5× 100 1.3× 101

50 1.8× 100 7.3× 100 6.6× 101

100 3.8× 100 1.5× 101 1.3× 102

1000 3.8× 101 1.5× 102 1.5× 103

3.4 Discussion

Particle filters suffers from a fundamental problem, especially in a moderate to
high dimensional state space, that particle weights collapse, with one of particle
receiving a posterior weight close to unity while all other particles effectively
getting a zero weight. We have illustrated this phenomena through simulations
of the bootstrap particle-filter, but with resampling, in some of the simplest
cases. Even in these simple cases, preventing weight collapse of the particles
demand an ensemble size that must increase exponentially with the dimension
size. This renders traditional particle filtering algorithms in the inference of
high dimensional state space essentially useless.
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CHAPTER 4

Particle Filters in High Dimension

We have noted in chapter 3 that bootstrap particle filter performs very poorly,
experiencing weight collapse, when the dimension of the state space increases.
The problem can be mitigated partly by increasing the number of particles
at an exponential rate of the dimension of the state space. However, this
approach quickly becomes impractical because of the exponential demand on
the computational resources. For example, in weather forecasting applications,
where the dimension may exceed 107, particle filter obviously becomes infeasible.
Even an analytical method like the Kalman filter, assuming it is a plausible
option, will prove to be too computationally expensive in such cases

For high dimensional state space models, it becomes crucial to devise
guided particle filters. Specifically, the construction of proposal distributions
that alleviate weight degeneracy is essential. Unfortunately, there is no
universal recipe to date for generating such effective proposals (Chopin and
Papaspiliopoulos (2020), ch. 17).

There have, however, recently been several interesting developments of
particle filtering in the high dimensional setting. An accessible review of these
algorithms can be found in Van Leeuwen et al. (2019). In this chapter, we
study a few classes of algorithms that have emerged to deal specifically with
inferences in high dimensional state space and have shown some promise of
their capability, and in the next chapter, we compare their performance based
on results from experimentation and simulation.

4.1 Localized Particle Filter

In many practical cases of state-space models, the high dimension of the system
often stems from a large number of locations that each have a common set
of state variables. In the SIR (Susceptible, Infectious, or Recovered) model
of the transmission of a disease during a pandemic, for example, Covid, we
might consider all the world’s cities as locations and the number of S, I, andR
individuals in each city as the state variables. Another case is weather forecasting
for which we are interested in knowing the temperature, humidity, wind speed,
precipitation, etc., of all the world cities. The idea of localization is based on
the assumption that the properties at a specific location is limited to depend
on the observations from a small area around the location.

Formally, let us discuss the problem at a particular time point t and consider
that the locations are spread in a large network of grid points. We define
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4.1. Localized Particle Filter

{xk,t} as the state at grid point k at time t. Each grid point has several model
variables, so each {xk,t} is generally a vector. The key assumption that we
make is that the posterior of the state at k depends only on a subset of the
observations—observations in the grid points within a neighborhood—in which
the neighborhood is defined by some criteria. Let us denote this subset of
observations y[K],t ∈ {yk,t}. We can then use the following approximation in
the update step of the filtering model:

p(xk,t | yt) ≈ p(xk,t | y[K],t). (4.1)

As a consequence of the assumption above, the observations y[K],t depend not on
the whole state vector but only on a part of it, which we denote by x(K),t ∈ xt.
We have then the following approximation for the prediction step of filtering:

p(y[K],t | xt) ≈ p(y[K],t | x(K),t) (4.2)

The pdf p(xk,t | y[K],t) can be rewritten as an integral over the joint pdf:

p(xk,t | y[K],t) =
∫

p(x(K),t | y[K],t)dx(K)\k, (4.3)

where (K) \ k is the set of grid points excluding the grid point k.
By the Bayes’ rule and the particle approximation of the pdf as the weighted

sum of Dirac delta function, we get

p(x(K),t | y[K],t) =
p(y[K],t | x(K),t)

p(y[K],t)
p(x(K),t)

≈ 1
N

N∑
i=1

p(y[K],t | x(K),t,i)
p(y[K],t)

δ(x(K),t − x(K),t,i)

=
N∑

i=1
w(K),t,iδ(x(K),t − x(K),t,i) (4.4)

Therefore, we have the following particle approximation of the posterior at k :

p(xk,t | y[K],t) ≈
N∑

i=1
w(K),t,iδ(x(K),t − x(K),t,i) (4.5)

It is to be noted that w(K),t,i depend only on the local observations y[K],t and
the local prior particles x(K),t,i, which are sampled from p(x(K),t | x(K),t−1). A
consequence of this local sampling is that the variance of the weights will be
much smaller.

By repeating the localization procedure for all grid points , we obtain all
marginals of the posterior pdf. The challenge is that the we do not have a
common ensemble of particles for all locations; the particles and the weights are
rather location (neighborhood) dependent and so change from one grid point to
the next. Attaining a consistent posterior for any pairs of state values (xk,t, xl,t),
for any triplets of state values, and so on requires combining different local
ensembles of particles effectively into a global ensemble that can propagate with
model equations successfully has remained a great challenge until the recent
advent of several ingenious methods, some of which are the focus of the next
sections.
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4.2. Block Particle Filter

4.2 Block Particle Filter

The key idea of the block particle filter (BPF; Rebeschini and Van Handel
(2015)) is to decompose the high-dimensional state space Rdx into a set of
lower dimensional blocks. At each time step t, multiple standard particle filter
algorithms are run in parallel on the blocks, one algorithm on each block. The
filtering distribution over the whole state space is then approximated as the
product of the lower dimensional approximations on each block.

4.2.1 Core idea of BPF

Rebeschini and Van Handel (2015) sets the foundation of their algorithm
with a trivial setting and demonstrates how the curse of dimensionality can
be surmounted. Let V = {1, 2, . . . , d} be a finite index set and, for each
element v ∈ V , (Xt,v, Yt,v)v∈V be a hidden Markov model that takes values in
a measurable space (Ev × Fv, Ev

⊗Fv). Therefore, we have in this system a
total of d Markov chains evolving simultaneously over the time. We further
assume that each Markov chain is independent of all the other chains, i.e.,
({Xt,v}, {Yt,v})v∈V and ({Xt,w}, {Yt,w})w∈V do not depend on each other for
v ̸= w.

This system thus represents a trivial yet high-dimensional model in which the
dimension of the state space is d. This is one of the scenarios that we discussed
in chapter 3 to demonstrate the limitation of applying a single sequential
importance resampling (SIR) algorithm on the high dimensional case. A single
SIR step, as we find from our filtering experiments in replicating some of the
studies of Bengtsson, Bickel and Li (2008), results for the target distribution
in an approximation that quickly deteriorates with increasing d even for this
trivial setting. Intuitively, the underlying cause is that in the high dimensional
models, the proposal distribution p(X) and the desired sampling distribution
become approximately mutually singular and essentially have disjoint support.
Consequently, the density of the desired distribution at all points of the proposed
ensemble of particles is small, with a very small fraction of density values
predominating in relation to the others. Specifically, Bengtsson, Bickel and Li
(2008) proved that the number of Monte Carlo samples N must increases at an
exponential rate in dimension d of the state space to avoid weight collapse of
particles.

Though this trivial model may have little relevance to the reality, it shows
that it is possible to deal with such a high dimensional system because the
state space is locally low-dimensional. If we are then interested in local errors,
i.e., marginals of the filtering distribution on spatial regions of a fixed, smaller
dimension, which can be as low as 1, rather than the global measure of error,
such modeling approach will have some utility.

For example, if we have a state space whose large dimension arises from
its spatial structure, such as geographical sites in case of meteorology or
oceanography, and if the neighboring sites are correlated with each other
while regions sufficiently apart experience decayed correlations to point of
being practically non-existent, we can make an ‘approximation’ and apply
the local filtering model. Large-scale interacting systems can often exhibit an
approximate version of this property, referred to as the “decay of correlations”
or, “the rate of approach of some initial distribution to an invariant one”, has
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4.2. Block Particle Filter

been particularly studied in many fields, particularly in statistical mechanics
and stochastic differential equations (Liverani (1995)). To express informally,
this phenomena implies that the states (xt,v, yt,v) and (xt,w, yt,w) at any two
sites v, w ∈ V are perhaps strongly correlated when v and w are close to each
other; however, these states can be expected to be nearly independent when v
and w are located far apart as measured with respect to the natural distance d
in the graph G (that is, d(v, w) is the length of the shortest path in G between
v, w ∈ V ). The idea then follows that the decay of correlations phenomena also
makes, in practice, many non-trivial state space models locally low-dimensional,
in the sense that the conditional distribution at each site only needs to be
updated by observations in a neighborhood whose size is independent of the
overall dimension. That is, for some large enough distance b,

p(xt,v ∈ · | y0, . . . , yt) ≈ p(xt,v ∈ · | yw,1, . . . , yt,w), d(v, w) ≤ b), (4.6)

w

v

d(v,w)

K

J

Figure 4.1: Schematic diagram of a block particle filter that decomposes the
high dimensional state space into lower dimensional blocks exploiting the decay
of correlations phenomena.

In brief, the hidden Markov model (Xt, Yt)t≥0 at each time t is assumed
to be a random field ({Xt,v}, {Yt,v})v∈V indexed by a finite undirected graph
G = (V,E), in which V stands for the set of vertices and E for the set of edges.
The graph describes the location relationship of data, evaluated by the decay
of correlations, and the spatial degree of freedom of the model.

The state spaces X and Y of Xt and Yt, respectively, are of the following
product forms:

X =
∏
v∈V

Xv, Y =
∏
v∈V

Yv,

The transition and observation densities are given by

f(xt | xt−1, θt) =
∏
v∈V

fv(xt,v | xt−1, θt,v), g(yt | xt, θt) =
∏
v∈V

gv(yt,v | xt,v, θt,v),
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4.2. Block Particle Filter

where fv : X× Xv → R+ and gv : Xv × Yv → R+.
To formally define the block particle filtering algorithm, the vertex set V is

partitioned into K non-overlapping blocks, so that

V =
⋃

K∈K
K, K ∩K ′ = ∅ for K ̸= K ′,K,K ′ ∈ K.

A blocking operator, B, is introduced to deal with the marginals of product
distributions at the block level:

B(ρ) :=
⊗
K∈K

BK(ρ),

where BJ(ρ) denotes the marginal of ρ on
∏

v∈J Xv for any measure ρ on
X =

∏
v∈V Xv and J ⊆ V . The random field described by the measure B(ρ) on

X is independent, following the decay of correlation phenomena, across different
blocks defined by the partition K, while the marginal on each block agrees with
the original measure ρ. The block particle filter inserts an additional blocking
step into the bootstrap particle filter recursion, that is,

π̂µ
0 = µ, π̂µ

t = F̂tπ̂
µ
t−1 (t ≥ 1),

where F̂t := CtBSN P consists of four steps in a sequence:

π̂µ
t−1

prediction−−−−−−→
sampling

π̂µ
t|t−1 = SN Pπ̂µ

t−1
blocking−−−−−−→

correction
π̂µ

t = CtBπ̂µ
t|t−1

The resulting algorithm is presented below:
Algorithm 4.1 Block Particle Filter
1 Data: Fix the number of time-steps T ≥ 1 and the number of particles

N ≫ 1. Observations y1, . . . , yT are given.
2 Initialize π̂µ

0 = µ;
3 Sample x̂0,i ∼ π̂µ

0 , i = 1, . . . , N ;
4 for t = 1, · · · , T do
5 Resample i.i.d. x̂t−1,i ∼ π̂µ

t−1, i = 1, . . . , N ;
6 for each v ∈ V do
7 Sample xt,v,i ∼ fv(x̂t−1,i, ·), i = 1, . . . , N ;
8 Compute

wt,K,i =
∏

v∈K gv(xt,v,i, yt,v)∑N
l=1
∏

v∈K gv(xt,v,l, yt,v)
, i = 1, . . . , N,K ∈ K

9 Let π̂µ
t =

⊗
K∈K

∑N
i=1 wt,K,iδxt,K,i

;
10 Compute the approximate filter πµ

t f ≈ π̂µ
t f.

To summarize, at each time step t, a standard particle filter is applied to
each block K. The approximation of the filtering distribution over the whole
the state space is then obtained by multiplying the approximations of the
distribution for each block. In simpler terms, Rebeschini and Van Handel
(2015) replaces the global resampling step of the bootstrap particle filter with a
local resampling step. This new approach involves independently resampling
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4.3. Space-time Particle Filter

neighborhoods to generate new particles. In their theoretical discussion, they
provide an overarching perspective on the problem. They specifically focus on
the diminishing correlation between local values as spatial distance increases.
They argue that this phenomenon is analogous to the well-understood temporal
stability property of nonlinear filters.

4.2.2 Key results

Let r be stipulated as the maximum distance (l1 norm) between any two vertices
(v, v′) in the undirected graph G for the vertices to be considered in the same
neighborhood. Neighborhood implies that the state of a vertex v at time t
depends only on the states of the vertices located in the same neighborhood at
the previous time step (t− 1). The neighborhood of v is thus defined as

N(v) := {v′ ∈ V, d(v, v′) ≤ r}

Let the following be defined

∆ := max
v∈V

card{v′ ∈ V, d(v, v′) ≤ r}

∆K := max
K∈K

card{K ′ ∈ K, d(K,K ′) ≤ r}

Here, the block distance d(K,K ′) is defined as the minimum of the distances
between all the pairs of vertices that can be formed by taking a vertex from
each of the two blocks, K,K ′.

Suppose that ϵ ≤ fv(xt,v | xt−1) ≤ ϵ−1 for all v. Then for any J ⊆ K ∈ K,

∥πt − π̂t∥ ≤ c1e
−γ1d(J,Kc)︸ ︷︷ ︸

bias

+ c2
eγ2card(K)
√
N︸ ︷︷ ︸

variance

,

provided ϵ ≥ ϵ0, where ϵ0, c1, c2, γ1, γ2 do not depend on card(V ) or n. The result
suggests that increasing the block size to include more vertices (dimensions)
in the block increases the variance while reducing the bias, and vice versa.
Optimizing block size is expected to yield consistent algorithm uniformly in
time and dimension.

4.3 Space-time Particle Filter

The Space-time Particle Filter proposed by Beskos et al. (2017) is an
improvement of the Location Bootstrap Filter of Briggs, Dowd and Meyer
(2013). The word location implies that the particle filter is applied over locations
that form the spatial domain of the state space. A state space system that is
manifested over a set of distinct locations at each time step is referred to as a
spatio-temporal system. To apply the Location Particle Filter of Briggs, Dowd
and Meyer (2013),

• first, an ordered sequence of locations, (1, . . . , L), must be defined such
that location l and location l+1 are spatial neighbors for each l ∈ 1, . . . , L.
If the L locations are situated in a straight line, the order arises naturally
and can be recognized easily. In the case of two-dimensional or, more
realistically, the three-dimensional arrangement of the locations, the
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4.3. Space-time Particle Filter

locations can be thought of situated in 2D or 3D grids, where there are
many possible ways to define the order.

• To compute the observation update at time step t, a sample must be
drawn from the filtering density. In the standard state space case without
distinguishing the locations, this density as given by equation (2.7) is

p(xt | y0:t) = g(yt | xt) p(xt | y0:t−1)∫
g(yt | xt) p(xt | y0:t−1) dxt

.

In case of the location particle filter, the filtering density takes the following
form:

p(xt,1:L | y0:t,1:L)

= g(yt,1:L | xt,1:L) p(xt,1:L | y0:t−1,1:L)∫
g(yt,1:L | xt,1:L) p(xt,1:L | y0:t−1,1:L) dxt

.

• The location-domain state-space model is initialised using the time-
domain prediction pdf p(xt,1:L | y0:t−1,1:L). An ensemble of N particles
{xt,1:L,i | y0:t−1,1:L}i∈1,...,N from this pdf is available from the time-
domain prediction step. A standard particle filter is initialized by
specifying the pdf at location l = 1 and calculating the weight p(yt,1 |
xt,1,i) for each prior particle i, and performing resampling using these
weights over the whole spatial domain. This implies that these resampled
particles are now samples of p(xt,1:L | yt,1:1). A small amount of noise,
whose choice is a matter of active research, is added to avoid identical
particles.

• The filtering algorithm then moves to the next grid point l = 2, computes
the weights of p(yt,2 | xt,2,i), and samples the full ensemble adding a
small noise to prevent ensemble collapse and finally generating samples
from the posterior p(xt,1:L | yt,1:2). This procedure is repeated for all
grid points until we have samples from p(xt,1:L | yt,1:L).

While the location bootstrap filter uses jitter density to avoid identical particles,
Beskos et al. (2017) exploit the spatial transition density p(xt,l | xt,l−1, xt−1,1:L),
in which t is the time index and l the spatial index. So they exploit the pdf of
the state xt,l at time t and grid point l, conditioned on all previous grid points
xt,1:l−1 at the same time t, and conditioned on all grid points at time t − 1,
denoted xt−1,1:L. They do this by introducing a set of M local particles j, for
each global particle i, with i ∈ 1, . . . , N .

For each of the global particles i they run the following algorithm over the
whole grid:

1. Starting from location l = 1, the M local particle ensembles grow in
dimension as they move over the grid toward the final position L. At the
first grid point, the prior particles at that grid point are weighted with the
local likelihood p(y1 | x1) and resampled. Let us designate these particles
as x̂j,1, where j is the local particle index, and 1 is the grid point index.

2. The mean w̄1 of the unnormalized weights is calculated. Here, the subscript
1 refers to the grid point.
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3. For the next grid point, each of these M resampled particles is propagated
to that grid point by drawing from p(xt,2 | x̂t,j,1, xt−1,j,1:L). Since each
of the M particles is drawn independently, they will differ and no noise
needs to be added.

4. Then the unnormalized weights p(yt,2 | xt,2) are calculated, and their
mean w̄t, followed by a resampling step.

5. This process is repeated till l = L, i.e., till the whole space is covered.

6. Finally, the total weight wt,1 =
∏L

l=1 w̄t
l is calculated, which is the

unnormalized weight of the first global particle.

The resulting algorithm is presented below:
Algorithm 4.2 Space-Time Particle Filter
1 for i = 1, · · · , N do
2 for Each grid point j, and local grid points k do
3 for m = 1, · · · ,M do
4 xn

m,j ∼ p(xn
j |xn

1:l−1, x
n−1|xn

1:L;
5 w̃m ← p(yk|xi,k)
6 w̄i,j ← 1

M

∑M
m=1 w̃m

7 wi ←
∏L

j=1 w̄i,j

8 w← w/wT1; Resample

While the filter can still uffer from degeneracy, Beskos et al. (2017) discuss
the challenge and suggest potential solutions.

STPF has the underlying theoretical proof that it converges to the correct
posterior for an increasing number of particles. Furthermore, the authors show
that degeneracy can be avoided if the number of particles grows as the square
of the dimension of the system – much faster convergence than e.g. the optimal
proposal density.

4.4 Nested Sequential Monte Carlo

The goal of Nested Sequential Monte Carlo (NSMC) is to approximate the locally
optimal proposal distribution by running a separate internal, or nested, SMC
algorithm over the components of {xdx

t } = (xt,1, . . . , xt,dx) for each particle we
require. Running a nested SMC sampler with M internal particles for each
particle in the outer algorithm, however, results in O(NM) operations, instead
of N operations in the standard particle filter algorithm. A nested sampler
within another sampler thus might appear wasteful of computational resources.
However, it can be demonstrated that for many models such an approach might
result in a more accurate estimate than, for example, a corresponding standard
SMC algorithm with NM particles and the prior (bootstrap) proposal. The
key idea is to construct an SMC approximation to the locally optimal proposal
q∗

t (xt | x0:t−1). For each particle xt,i that we want to simulate, we construct an
SMC approximation to q∗:
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xdx
t−1

xt,1

xt,1

· · ·

(a) η1(xt,1 | xdx
0:t−1)

xdx
t−1

xt,2

xt,1

xt,1:2

· · ·

(b) η1(xt,1:2 | xdx
0:t−1)

xdx
t−1

xt,3

xt,2

xt,1

xt,1:3

· · ·

(c) η1(xt,1:3 | xdx
0:t−1)

xdx
t−1

xt,4

xt,3

xt,2

xt,1

xt,1:4

· · ·

(d) η1(xt,1:4 | xdx
0:t−1)

Figure 4.2: Schematic diagram of a nested sequential Monte Carlo filter (NSMC) that
uses a nested SMC sampler for each particle in the main algorithm.

q̂∗
t (xt | x0:t−1) =

N∑
j=1

ṽdx,j,i∑
l ṽdx,l,i

δx̄1:dx,j,i
(xt) (4.7)

where (ṽdx,j,i, x̄1:dx,j,i) are properly weighted for q∗
t (xt | x0:t−1,i).

(4.7) is constructed using a nested SMC sampler on the components of xt;
first targeting xt,1, then xt,1:2, etc, where the final target is q∗

t (xt,1:dx | x0:t−1,i).
With this approximation NSMC replaces the sampling step and the weighting
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step by

w̃t,i =
dx∏

k=1

1
M

M∑
j=1

ṽk,j,i (4.8)

where ṽk,j,i are the corresponding weights in the nested SMC sampler. The
algorithm is summarized below:

Algorithm 4.3 Nested Sequential Monte Carlo.
input : Unnormalized target distributions γ̃t , nested SMC sampler

targeting q∗
t (xt | x0:t−1), number of samples N and nested

samples M .
output : Samples and weights {x0:t−1,i, wt,i} approximating γt for

t ≥ 0.
1 for t = 1 to T do
2 for i = 1 to N do
3 Sample x0:t,i ∼ γ̂t−1(x0:t−1)q∗

t (xt | x0:t−1) with (4.7).
4 Set w̃t,i =

∏dx

k=1
∑M

j=1 ṽk,j,i by (4.8).

5 Normalize weights wt,i = w̃t,i∑
j w̃t,i

.

To construct q̂∗
t (xt | x0:t−1,i) internal SMC sampler with M particles is run

that targets

ηl(xt,1:l | x0:t−1) ∝ η̃l(xt,1:l | x0:t−1) :=
l∏

k=1
f(xt,k | xt−1,k)g(yt,k | x0:t,k), (4.9)

for l = 1, . . . , dx. We denote the particles and weights for the nested SMC by
x̄1:l,j,i and ṽl,j,i, respectively. It can be shown that a simple proposal for the
above target distribution is x̄1:l,j,i ∼ η̂l−1(xt,1:l−1 | x1:t−1,i)f(xt,l | xt−1,l,i), i.e.
using the prior proposal. We have then η̂l as

η̂l(xt,1:l | x1:t−1,i) =
M∑

j=1

ṽl,j,i∑
m ṽl,m,i

δx̄1:l,j,i
(xt,1:l), (4.10)

where the weights are given by

ṽl,j,i = g(yt,l | (x0:t−1,k,i, x̄l,j,i)) = N

(
yt,l | x̄l,j,i +

t−1∑
m=1

βt−mxi
m,l, r

)
(4.11)

4.5 Divide and Conquer Monte Carlo

Divide and Conquer SMC (DaC-SMC) (Crucinio and Johansen (2022)) is an
extension of the standard SMC algorithm. It views the high dimensional state
space as a rooted tree T, in which a collection of target distributions {γu}u∈T
is indexed by the nodes of T, and particles evolve from the leaves of the tree to
its root, R, at any time t.
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4.5.1 Core Idea

In the standard SMC, we have a sequence of unnormalized target densities
{γt}t≥0, with

γt(x0:t) = p0(x0; θ)
T∏

t=0
gt(yt | xt; θ)

T∏
t=1

ft(xt | xt−1; θ). (4.12)

Particle filtering algorithms proceed in iterations and at time t approximates
the normalized density

πt(x0:t) = γt(x0:t)∫
γt(x0:t)dx0:t

with an ensemble of particles {x0:t,i}i=1,...,N . In the case of DaC-SMC, multiple
target distributions are defined on spaces whose dimensions grow as we progress
up the tree. At each time t and for each node u, we have the density πt,u ∝ γt,u

over R|Tu| where Tu denotes the sub-tree of T rooted at node u and includes
only node u and all its descendants. |Tu| denotes the cardinality of this sub-tree.

As in the standard SMC, each distribution γt,u is approximated by a particle
ensemble {xt,u,i}i=1,...,N . These distributions are gradually merged whenever
the corresponding branches of T merge. For simplicity, suppose T is a perfect
binary tree with each non-leaf node u having two children: a left child l(u)
and a right child r(u). If u is a leaf node, a simple importance sampling step
is performed with proposal qt,u and the importance weight wt,u := γt,u/qt,u

are computed to obtain a weighted particle ensemble {xt,u,i, wt,u,i}i=1,...,N to
approximate γt,u. If u is a non-leaf node, we collect the particle ensemble
associated with each of u’s children:

γ̂t,l(u) = 1
N

N∑
i1=1

wt,l(u)δ(xt,l(u) − xt,l(u),i1), (4.13)

γ̂t,r(u) = 1
N

N∑
i2=1

wt,r(u)δ(xt,r(u) − xt,r(u),i2). (4.14)

The product γt,Cu
of the marginal distributions γt,l(u), γt,r(u) at the children

nodes is the then estimated as follows: γt,Cu
:= γt,l(u)×γt,r(u) ≈ γ̂t,l(u)× γ̂t,r(u).

To compensate for the mismatch between γt,u and γt,l(u) × γt,r(u), the
product-form approximation, i.e., γ̂t,l(u) × γ̂t,r(u), is reweighed, resulting in the
following mixture importance weights:

mt,u(xt,l(u), xt,r(u)) :=
γt,u(xt,l(u), xt,r(u))

γt,l(u)(xt,l(u))× γt,r(u)(xt,r(u))
(4.15)

Before resampling, these mixture weights are incorporated with the product of
the weights obtained at the children nodes, leading to weights of the following
form for each node u :
w̃t,u(xt,l(u), xt,r(u)) = wt,l(u)(xt,l(u)) wt,r(u)(xt,r(u))mt,u(xt,l(u), xt,r(u)). (4.16)

Resampling N times from w̃t,uγ̂t,l(u) × γ̂t,r(u), using any unbiased resampling
scheme, such as multinomial, stratified, systematic, or residual resampling,
we then an equally weighted particle ensemble {x̃t,u,i, wt,u,i = 1}i=1,...,N

approximating γt,u. Algorithm 4.4, which is applied to the root node to carry
out the sampling process, summarizes this.
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Algorithm 4.4 dac-smc(u) for u in T.
1 if u is a leaf node then
2 Initialize: draw xt,u,i ∼ qt,u and compute wt,u,i = γt,u/qt,u for

i = 1, . . . , N .
3 else
4 Recurse: set ({xt,v,i, wt,v,i})i=1,...,N := DaC-SMC(v) for

v ∈ {l(u), r(u)} and obtain γ̂t,l(u) × γ̂t,r(u) by (4.13) and (4.14).
Merge: compute weights w̃t,u,(i1,i2) in (4.16) for all
i1, i2 = 1, . . . , N.

5 Resample: draw {x̃t,u,i}i=1,...,N using weights w̃t,u,(i1,i2) and set
wt,u,i = 1 for i = 1, . . . , N .

4.5.2 DaC within Marginal SMC for Filtering

We have so far addressed the idea of DAC-SMC for a particular time t. To apply
it to the filtering problem, a suitable collection of unnormalized target densities
{γ̃t,u}u∈T, indexed by the nodes of the tree T, needs to be identified for each
time t. Graphically, this corresponds to a time-dependent path graph in which
each node has, associated with it, a copy of the tree T, corresponding to space,
and this copy of T evolves over t. With this consideration,Algorithm 4.4 takes
as input at the leaves particle ensemble approximating the filtering distribution
at time t − 1 and delivers as the output at the root a particle population
approximating the filtering distribution at time t. At a given time t, to build
the collection {γ̃t,u}u∈T, xdx

t is decomposed spatially into low dimensional
elements. The dimension of a decomposed element can be as low as 1, but the
computational cost of merging many components successively along the tree
toward the root will then increase. On the other hand, keeping the cardinality
of the dimension of an element too high will undermine the DaC principle and
any benefits derived from it.
To illustrate the whole process, a simple decomposition obtained by one-to-one
mapping between the dx components (x1

t , . . . , x
dx
t ) and the leaves of T is now

considered. As we move up the tree, the components are merged pairwise until
xt = x1:dx

t is recovered at the root node R.
We denote the set of components associated with node u by Vu. The

cardinality |Vu| of Vu increases from 1 at the leaf level to dx at the root.
Figure 4.3 shows the space decomposition for dx = 8.

Because of the inherent sequential structure of the state space, the collection
{γ̃t,u}u∈T at time t is specified in terms of the filtering distribution {γ̃t−1,R} at
the previous time t−1, as shown below in (4.17). Functions ft,u : Rdx×R|Vu| →
R and gt,u : Rdy × R|Vu| → R, for t ≥ 1 and u ∈ T, are auxiliary functions
that act as proxies for the marginals of the transition density and observation
likelihood, respectively, at the node u.

γ̃t,u(zt,u) = gt,u(zt,u, (yt(d))d∈Vu)
∫
ft,u(xt−1, zt,u)γ̃t−1,R(xt−1)dxt−1. (4.17)

Here, zt,u = (xt(d))d∈Vu) are the components of xt associated with node u and
xt−1 denotes the previous state of the system.
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Figure 4.3: Space decomposition by the divide and conquer sequential Monte Carlo
(DaC-SMC) algorithm for a state space with the cardinality of its dimension dx = 8.

For each time t, once the the space decomposition over T and the collection
of distributions {γ̃t,u)u∈T have been identified, Algorithm 4.4 can be applied the
root R of T. However, the integral w.r.t. γt−1,R in (4.17) cannot be computed
analytically, requiring an approximation of γ̃t−1,R by the particle population at
the R corresponding to the particle approximation obtained at the previous
time step, as is done in the case of the standard particle filter:

γt,u(zt,u) := gt,u(zt,u, (yt(d))d∈Vu
) 1
N

N∑
i=1

ft,u(zt−1,R,i, zt,u). (4.18)

Given {zt−1,R,i}i=1,...,N at each leaf node of the tree, we sample one component
of xt per node from N−1∑N

i=1 qt,u(zt−1,R,i, ·), the importance weights are then
given by

wt,u(zt,u, x0:t−1,u) = gt,u(zt,u, (yt(d))d∈Vu
)
∑N

i=1 ft,u(zt−1,R,i, zt,u)∑N
i=1 qt,u(zt−1,R,i, zt,u)

(4.19)

As in the bootstrap particle filter, if we choose qt,u = ft,u, the equations
simplifies to wt,y(zt,u, x1:t−1,u) = gt,u(zt,u, (yt(d))d∈Vu

), considerably reducing
the cost of evaluating the weights at the leaves.

For any non-leaf node u, the particle ensembles {zt,l(u),i}i=1,...,N and
{zt,r(u),i}i=1,...,N on its left and right child, respectively, are collected, and
γt,Cu

:= γt,l(u) × γt,r(u) is estimated according to the weighted estimator in
(4.13) and (4.14).

γ̂t,l(u) = 1
N

N∑
i1=1

wt,l(u)δ(zt,l(u) − zt,l(u),i1), (4.20)

γ̂t,r(u) = 1
N

N∑
i2=1

wt,r(u)δ(zt,r(u) − zt,r(u),i2). (4.21)

As discussed earlier, we reweight the particle approximation of γt,Cu
to target

γt,u. In this case, the mixture weights are given by
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mt,u(zt,Cu) = γt,u(zt,Cu
)

γt,Cu (zt,Cu) (4.22)

= gt,u(zt,Cu
, (yt(d))d∈Vu

)
gt,l(u)(zt,l(u), (yt(d))d∈Vl(u)))gt,r(u)(zt,r(u), (yl(d))d∈Vr(u))

×

N−1∑N
i=1 ft,u(zt−1,R,i, zt,Cu)

N−1∑N
i=1 ft,l(u)(zt−1,R,i, zt,l(u))N−1∑N

i=1 ft,r(u)(zn
t−1,R, zt,r(u))

,

where we defined zt,Cu
:= (zt,l(u), zt,r(u)) the vector obtained by merging the

components on the left and on the right child of u.
For each pair in (4.20)–(4.21), we obtain the incremental mixture weights

in (4.22):
mt,u,i1,i2 := mt,u(zt,l(u),i1 , zt,r(u),i2)

and the updated weights

w̃t,u,i1,i2 = w̃t,u(zt,l(u),i1 , zt,r(u),i2)
:= wt,l(u)(zt,l(u),i1)wt,r(u)(zt,r(u),i2)mt,u(zt,l(u),i1 , zt,r(u),i2),

for i1, i2 = 1, . . . , N .
The algorithm below depicts the complete process for Dac-SMC in the

filtering context.
Algorithm 4.5 dac-smc(t) for t ≥ 1.
1 Given ({zn

t−1,R}N
n=1) := dac smc (t− 1).

2 for u leaf node do
3 Initialize: draw zt,u,i ∼ N−1∑N

i=1 qt,u(zt−1,R,i, ·) and compute
wt,u,i as in (4.19) for all i = 1, . . . , N .

4 for u non-leaf node do
5 Recurse: set ({zt,v,i, wt,v,i}N

i=1) := dac-smc (t, v) for v in {l(u), r(u)}
and obtain the product of γ̂t,l(u) and γ̂t,r(u) in (4.20)–(4.21).

6 Merge: compute the mixture weights mt,u,i1,i2 in (4.22) and
w̃t,u,i1,i2 for all i1, i2 = 1, . . . , N .

7 Resample: draw {z̃t,u,i}N
i=1 using weights w̃t,u,i1,i2 and set wn

u = 1
for i = 1, . . . , N .

8 Update: set zt,u,i = z̃t,u,i for all i = 1, . . . , N ≤ N.
9 Output ({zt,R,i}N

i=1).
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CHAPTER 5

Experimental Results

In this chapter, we compare the results obtained with three algorithms: NSMC
of C. Naesseth, Lindsten and Schon (2015), STPF of Beskos et al. (2017), and
DaC of (Crucinio and Johansen, 2022). We apply the three filtering algorithms
on a linear Gaussian SSM and compare their results against the exact filtering
distribution given by the Kalman filter on the same SSM. We also evaluate the
performance of a standard bootstrap particle filter in our comparison. All the
experiments have been run in serial using the Windows Statistics server at the
university. Each experiment was repeated multiple times in parallel using the
computing nodes of the server.

5.1 Linear Gaussian SSM

We start by considering a simple yet high-dimensional, linear Gaussian SSM
studied in C. Naesseth, Lindsten and Schon (2015) and Crucinio and Johansen
(2022) for which we have the exact solution for the filtering distributions from
the Kalman filter. The model is given by

X0 ∼ Ndx
(0, Idx

)
Xt = 1.0AXt−1 + Ut, Ut ∼ Ndx

(0,Σ)
Yt = Xt + Vt Vt ∼ Ndy (0, σ2

yIdy )

Here, A = A1A
−1
2 where

A1 =



τ + λ 0 0 · · · · · · 0 0
0 τ 0 0 · · · 0 0

0 . . . . . . . . . . . . 0 0
... . . . . . . . . . . . . ...

...
... . . . . . . . . . . . . ...

...
0 0 0 0 0 τ 0
0 0 0 0 0 0 τ


,
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A2 =



τ + λ 0 0 · · · · · · 0 0
−λ τ + λ 0 0 · · · 0 0

0 . . . . . . . . . . . . 0 0
... . . . . . . . . . . . . ...

...
... . . . . . . . . . . . . ...

...
0 0 0 0 −λ τ + λ 0
0 0 0 0 0 −λ τ + λ



−1

,

and

Σ−1 = A⊤
2



τ 0 0 · · · · · · 0 0
0 τ + λ 0 0 · · · 0 0

0 . . . . . . . . . . . . 0 0
... . . . . . . . . . . . . ...

...
... . . . . . . . . . . . . ...

...
0 0 0 0 0 τ + λ 0
0 0 0 0 0 0 τ + λ


A2

5.2 Performance Metrics

To evaluate the performances of the algorithms, we compare several measures
of performance.

Algorithm runtime

We have the run the algorithms for T = 50 time steps. For each algorithm,
we have recorded the runtime taken in each time step t ∈ T and summed up
the 50 runtimes to get the time for one complete run. These runs were made
for several sets of dimension size and particle number (dx, N). Each complete
algorithmic run was repeated multiple times, 100 in the low dimensional cases
and 20 in the high dimensional cases, to monitor any variability in the execution
time from one run to the next.

Wasserstein-1 distance

The Wasserstein distance (see, e.g., Panaretos and Zemel (2019)), also known as
the Earth Mover’s Distance (EMD) or optimal transport distance, is a measure
of the distance between two probability distributions over a metric space. It
quantifies the minimum work or ’cost’ of transforming one distribution into the
other, by solving the optimal transport problem, where the cost is associated
with the amount of mass that needs to be moved and the distance it is moved.
The Wasserstein distance of order 1, or Wasserstein-1 distance, for each of the
dx marginals, is given by

DW1t,k
:=
∫ ∣∣∣Ft,k(xt)− F̂t,k(xt)

∣∣∣ dxt, (5.1)

where DW1t,k
denotes Wasserstein-1 distance, Ft,k(xt) the 1-dimensional

cumulative distribution function of marginal k at time t from the Kalman filter
and F̂t,k(xt) its particle approximation from the algorithms we are comparing.
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Kolmogorov-Smirnov distance

The Kolmogorov-Smirnov (KS) distance, also referred to as the Kolmogorov-
Smirnov statistic, is a measure of the dissimilarity between two probability
distributions. It is based on the maximum vertical difference between the
empirical cumulative distribution functions (ECDFs) of the two distributions
being compared and is given by

DKSk
:= max

x

∣∣∣Ft,k(xt)− F̂t,k(xt)
∣∣∣ dxt, (5.2)

where Ft,k(xt) and F̂t,k(xt) denote, respectively, the 1-dimensional cumulative
distribution function of marginal k at time t and its particle approximation.

Relative mean squared error

Finally, we compute the relative mean squared error (ReMSE) for component k
at time t as

ReMSEt,k := E[(x̂t,k − µt,k)2]
(σt,k)2 (5.3)

where x̂k,t denotes the estimate of the mean of component k at time t and
µt,k, σt,k denote the true mean and true variance of xk

t | y0:t obtained from the
Kalman filter. We approximate the ReMSE using an empirical average over all
corresponding runs of each experiment .

5.3 Experimental results

5.3.1 Linear Gaussian SSM with uncorrelated dimensions

We first set τ = 1, λ = 0, and σ2
y =
√

2. This makes the model identical to the
linear Gaussian model that we studied in chapter 3.

ReMSE

We present the ReMSE’s of the algorithms in Figure 5.1 for four values of
dx and three different numbers of particles N for each dx. Each box plot is
based on 20 runs for each set of (dx, N). First we note, expectantly, that the
ReMSE decreases with the increasing ensemble size in all cases for all the
three algorithms. Overall, STPF outperforms the other algorithms for any
combination of (dx, N). However, it has the highest variability in its performance
among the algorithms.

W1 distance and KS distance

We present the W1 distances of the algorithms in Figure 5.2. We see that
STPF has the highest performance in this metric for dx = 16 and 32. For
dx = 64 and 256, NSMC emerges as the best performer. STPF has also the
highest variability in its performance,

We present the KS distances of the algorithms in Figure 5.3. Looking into
the scale of KS distance, all the three algorithms show somewhat comparable
performance on this metric, with STPF slightly outperforming the others, while
DAC-SMC and NSMC are close to each other.
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Figure 5.1: ReMSE with λ = 0. Comparison of the relative mean squared errors,
first averaged over the dimension dx and then averaged for the number of runs (20 in
each case) of the algorithms.

5.3.2 Linear Gaussian SSM with moderately correlated
dimensions

We now repeat the experiments setting λ = 1, while keeping all the other
parameters unchanged and presen the results.

ReMSE

We present the ReMSE’s of the algorithms in Figure 5.4 for four values of dx

and three different numbers of particles N for each dx. Each box plot is based
on 20 runs for each set of (dx, N). We again note that the ReMSE decreases
with the increasing ensemble size in all cases. Overall, STPF outperforms the
other algorithms.

Looking at scale of the vertical axis and comparing with the case for λ = 0,
we discover that ReMSEs have now (with λ = 1) deteriorated significantly
for DAC-SMC, while performances of the other two algorithms have remained
relatively stable.
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Figure 5.2: Wasserstein-1 distance with λ = 0. Comparison of Wasserstein-1
distance between the marginal distribution produced by the Kalman Filter and those
produced by the three algorithms over 20 runs.

W1 distance and KS distance

We present the W1 distances of the algorithms in Figure 5.5. We see that
Dac-SMC has the lowest performance in this metric as well. Its performance is
also the most variable from one algorithmic run to the next, except for dx = 256,
suggesting its variability might stabilize in the high dimensional setting. NSMC
and STPF are comparable in their performances here, with the latter having a
lower mean ReMSE, but with a higher variance, over the runs. NSMC shows
somewhat stable performance. Again, comparing with the λ = 0 case, we find
that performance of DAC-SMC has significantly been affected by the correlation
among the components of state variable.

We present the KS distances of the algorithms in Figure 5.6. All the
three algorithms show comparable performance on this metric, with STPF
outperforming the others, followed by DAC-SMC.

Runtime

In Table 5.1, we haave computed the runtimes for a single time step, taking the
average over 20 repetitions, of the algorithms for the all sets of (dx, N). Below
we present the case for dx = 256. We see that DAC-SMC is quite expensive,
while NSMC has the lowest runtimes.
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Figure 5.3: KS distance with λ = 0. Comparison of KS distance between the
marginal distribution produced by the Kalman Filter and those produced by the three
algorithms over 20 runs

Table 5.1: Comparison of the runtimes in seconds of the algorithms for dx = 256

Runtime (sec) N
102 5× 102 103

dx = 256
DAC-SMC 1.4× 101 7.5× 102 3.7× 103

NSMC 6.5× 100 3.5× 101 6.3× 101

STPF 2.8× 101 1.5× 102 3.1× 102
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Figure 5.4: ReMSE with λ = 1. Comparison of the relative mean squared errors,
first averaged over the dimension dx and then averaged for the number of runs (20 in
each case) of the algorithms.
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Figure 5.5: Wasserstein-1 distance with λ = 1. Comparison of Wasserstein-1
distance between the marginal distribution produced by the Kalman Filter and those
produced by the three algorithms over 20 runs.
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Figure 5.6: KS distance with λ = 1. Comparison of KS distance between the
marginal distribution produced by the Kalman Filter and those produced by the three
algorithms over 20 runs.
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CHAPTER 6

Conclusions

6.1 Summary

We started the thesis with aim of studying the well-known phenomenon of
weight collapse of the sequential Monte Carlo (SMC) methods, especially
in the moderate to high dimensional state space setting. In chapter 2, we
discussed the foundational concepts of SMC and their application in state
and parameter estimation in non-linear, non-Gaussian state space models for
which no analytical solution exists. It is also known that the resampling step is
the most computationally-expensive part of the SMC methods, and there are
four common resampling strategies that are employed by these methods. We
compared the runtimes of these resampling strategies on a simple 1D state space
model with a varying number of particles and found that systematic resampling
is the fastest among them. We however did not notice any appreciable difference
in the accuracy of the strategies in estimating the state.

In chapter 3, we studied, through experiments and simulations, the
fundamental problems, such as high computational cost, particle weight collapse,
high estimation error, and lack of diversity in particle genealogy, encountered by
the particle filter in the high dimensional setting, even when the state space is
linear and Gaussian. We in particular note here that there is currently no known
methodology to successfully overcome any of these problems, and implementing
particle filter remains infeasible for high dimensional problems and applications,
e.g., in weather forecasting, in which the dimension routinely achieves the order
of 107.

In chapter 4, we discussed a few classes of emerging algorithms that have
shown some promise in making inferences on the high dimensional state spaces,
namely the Block Particle Filter (Rebeschini and Van Handel (2015), Space-
Time Particle Filter (Beskos et al. (2017), Nested Sequential Monte Carlo
(C. Naesseth, Lindsten and Schon (2015), and Divide and Conquer Sequential
Monte Carlo (Crucinio and Johansen (2022). We noted that a few of these
methods have got some theoretical support, while studies are being carried out
to establish the theory behind the others. Within these algorithms, there are
also certain variations or modularities that might be adopted to push their
performance limits.

In chapter 5, we presented the results from simulations by algorithms on a
linear Gaussian state space model with different degrees of correlations among its
dimensions. We compare the results based on several metrics, such as runtime,
Wasserstein distance and Kolmogorov–Smirnov distance between distributions
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produced by the Kalman filter and those produced by these algorithms, and their
relative mean square error compared to the estimates made by the Kalman filter.
We noted that STPF has the highest performance in all the metrics, except in
runtime, in which NSMC outperforms. We also noted that performance of all
the algorithms deteriorate when there is a certain degree of correlation among
the components of state space, compared to the case when each dimension is
independent of the other dimensions.

6.2 Challenges we faced

We have spent a substantial amount of time in experimentation and simulation.
SMC in high dimension is in itself an emerging branch. After initially studying
the fundamental problems of SMC in the high dimension, we started our
experimentation in our local machine on small dimensional problems. However,
as we were increasing the size of the dimension, we started to encounter problems
with the computational resources. Running a particle filtering algorithm on a
problem of moderate dimension was taking weeks for a single run. In addition,
long periods of continuous running of the local machine were heavily taxing the
power and operating system stability of the machine.

We then transferred the routines of the experiments to our university
servers. To conduct the simulations in chapter 3, we resorted to the machine
learning nodes (ML) at high performance computing (HPC) clusters of the
university, acoording to the availability. While it resolved the constraint of the
computational resources, using Jupyter Notebook at the ML nodes required
that our local machine also remain continuously on operation in synchronization
with the ML node, and interruption of either of the machines resulted in data
loss over several days in multiple occasions.

For simulations in chapter 5, we resorted to Windows Statistics Server at
the university. This server was by comparison more stable than, but not as
computationally powerful as, the ML nodes. In addition, the virtual machine
at the Statistics server had 23 cores, which might be deemed enough for other
simulation works but proved to a limiting factor in conducing many parallel
runs of the algorithms.

6.3 Future works

We have greatly enjoyed our works throughout the thesis. Because of our
prior, limited familiarity with Bash/Shell scripting, Monte Carlo simulations,
high computing tasks, and parallel computing, we had to spend more time on
repeated experimentation and simulation. Now that we have got some familiarity
with these methods and can set up these experiments comparatively quickly, we
could first investigate the problems with even higher dimensions. Then we could
explore in detail the theoretical properties of the emerging algorithms that we
addressed. We have, among other areas, have also a particular interest in online
Bayesian parameter estimation. During our experiments in chapter 2, we did
some parameter estimation tasks using particle marginal metropolis hastings
(PMMH) on a population ecology model of 1D. We could undertake similar
challenges in the high dimensional setting. Overall, SMC in high dimension is
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nascent branch with a lot of promises and challenges, which certainly elicits
our strong passion.
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APPENDIX A

Derivations and Calculations

A.1 Bayesian Filtering Equations

p(xt | y0:t−1) =
∫
f(xt | xt−1) p(xt−1 | y0:t−1) dxt−1. (A.1)

p(xt | y0:t) = g(yt | xt) p(xt | y0:t−1)∫
g(yt | xt) p(xt | y0:t−1)dxt

. (A.2)

Assume that at the time-step t − 1, we have the posterior p(xt−1 | y0:t−1)
available. The joint-distribution of xt and xt−1 given y0:t−1 can now be
calculated by the Chapman–Kolmogorov equation:

p(xt, xt−1 | y0:t−1) =
∫

p(xt | xt−1) p(xt−1 | y0:t−1) dxt−1

By the Chain rule of probability and Markov property, we can rewrite the left
side of the equation above as

p(xt, xt−1 | y0:t−1) = p(xt | xt−1, y0:t−1) p(xt−1 | y0:t−1)
= p(xt | xt−1) p(xt−1 | y0:t−1).

Hence,

p(xt | y0:t−1) =
∫
f(xt | xt−1) p(xt−1 | y0:t−1) dxt−1.

The distribution of xt given y0:t−1 can be computed by Bayes’ rule:

p(xt | y0:t) = p(xt | yt, y0:t−1)

= 1
Zt

p(yt | xt, y0:t−1) p(xt | y0:t−1)

= 1
Zt

p(yt | xt) p(xt | y0:t−1)
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