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Chapter 1

Introduction

The information age, in which we live, is based on digital computers and
electronic devices made possible by the use of semiconductor devices. Yet,
understanding these devices is a challenge; in the research field of semicon-
ductors it is not unusual that a device is produced in a laboratory before
the physics of the material is fully understood. In order to obtain the de-
tailed knowledge of how these devices really work, it is necessary to model
the physical processes taking place at a microscopic scale inside the material.
Modern microelectronic devices requires the treatment of transient dynamics
of highly non-equilibrium carrier distributions; the Monte Carlo method of
semiconductor device simulation is a widely used and acknowledged model
suitable for this purpose. The method is a computer simulation technique
where the model is designed on a microscopic scale, on the level of electronic
interactions, while the results are obtained in terms of macroscopic mate-
rial properties, e.g. the current-voltage characteristics of a diode. Using
computer simulation techniques such as the Monte Carlo method offers a
unique insight into processes which are not directly observable in physical
experiments.

The Monte Carlo method is a particle simulation technique where we follow
the phase space trajectories of the current conducting particles in a semi-
conductor material. These particles are subject to thermal motion within
a crystal lattice. This is modelled as a series of free flights terminated by
scattering events. Random numbers are used to determine the duration of
the free flights and the new directions of the particles after the scatterings.
In this way, we obtain the statistical distribution of particle states in the



material which is also a solution to Boltzmann’s transport equation. All
macroscopic transport properties may be extracted from this solution as en-
semble or time averages.

For our purposes, which is device simulation, the electric field within the
device also needs to be considered, and hence it is the solution to the self-
consistent system of system of Boltzmann’s equation and Poisson’s equation
that needs to be obtained. In this thesis, an iterative fast Poisson solver
suitable for two-terminal devices has been developed and an Ohmic contact
model has been implemented to the existing bulk simulator.

The Monte Carlo method for material simulations roots in the 1960’s, and
has been the base for numerous publications during the past fifty years. It
has been recognised as a powerful theory for studying physics on the border
between the classical and quantum mechanical regimes. A way to view this
is considering the effort that has been put into stretching the temporal and
spatial validity regime of the model. In the limit of long simulation times,
the method is used in combination with hydrodynamic theory which allows
a longer time step. In the limit of small devices, a variety of quantum
correction methods have been developed.

In this thesis, we have used the Monte Carlo method for semiconductor de-
vice simulation to simulate a pn-diode and an avalanche photodiode (APD).
A pn-diode is a rectifying device which allows current to pass in one direc-
tion while current in the opposite direction is blocked. The APD is a highly
sensitive photo-detector which relies on the photoelectric effect; a photon
excites an electron into the conduction band, the APD then exploits the
physical process of impact ionisation to generate an avalanche of carriers.
This gives rise to a current pulse which is large enough to be detectable in
the electrical circuit surrounding the diode. APDs are increasingly impor-
tant for technological applications; they are used as detecting components
of LIDARs, which are used for optical remote sensing, and for scintillation
detectors, which measure ionising radiation.

The APD and the pn-diode are both relatively simple two-terminal devices
in which the pn-junction constitute the main building block. Simple compo-
nents like these have traditionally been analysed using the drift-diffusion or
hydrodynamic model. Particle simulation techniques have not, to any great
extent, been employed to this task. In this thesis, we apply the Monte Carlo
method to pn-junction devices in order to investigate some of the limits and
weaknesses of the Monte Carlo method.



Stationary simulations of a pn-diode have been conducted in order to obtain
the current-voltage characteristics for the device. It points to the fact that
the Monte Carlo method is unsuited for obtaining the reverse leakage current
for Cd,Hg,_,Te (CMT) pn-diodes. Detailed statistics have been extracted
for simulations under reverse and forward bias voltage, these indicate that
there is a small accumulation of an electron plasma at the p-side of the
junction of the CMT diode. This phenomenon has previously been observed
for GaAs-diodes. A transient simulation has been performed in order to
obtain the switching time for the CMT pn-diode at a reverse bias of —5 V.
In addition, our simulation results show that large electric fields arise across
a CMT pn-junction, thus it may be necessary to incorporate intracollisional
field effects by extending the simulator with quantum corrections.

I order to do simulations of CMT APDs, a simple impact ionisation model
has been implemented to the Monte Carlo simulator. Multiplication and
noise has been measured under variations in lattice temperature and photon
wavelength, the multiplication gain was observed to be slightly higher due
to increased mobility in the cooled device. Furthermore, our results show
an exponential gain-voltage curve and excess noise which is independent of
gain. We report a switching time of 500 ps when the device is switched from
the conducting state to a reverse bias voltage of —8 V. We also present
the current impulse response time, which points to a weakness of the Monte
Carlo model; due to the large asymmetry in the effective masses of electrons
and holes in CMT, it is necessary to take into account charge continuity in
the surrounding circuit and the displacement current in order to obtain a
proper current-response curve.

This thesis is part of a student project which has been undergoing at the
Norwegian Defence Research Establishment (FFI) since 2007. The aim of the
project is to develop a state of the art Monte Carlo simulation tool for both
bulk and devices and thereby promote the photovoltaic infrared detector
development taking place at FFIL. In this context, the aim of this thesis has
been to extend the existing bulk simulator to a device simulator with the
implementation of a fast Poisson solver and an ohmic contact model, as well
as enabling the study APDs with the implementation of an impact ionisation
model.






Chapter 2

Basics of modelling
semiconductors

This chapter gives a short introduction to the some of the topics of solid
state physics which are needed for modelling semiconductor crystals. The
aim is to build a bridge between the theory as it is often presented in quan-
tum mechanics and solid state courses taught at the university and how the
theory is used in a Monte Carlo particle simulator. First, the properties of
semiconductors in general are briefly summed up in section 2] and a few
properties of Cd,Hg;_,Te are given in section 2221 In section 23] a brief
presentation of the quantum mechanical description of crystals is given, in-
cluding the concepts of Bloch states and energy bands. In section 2.4 the
Boltzmann transport equation is presented, and finally, in section 23] the
quantum mechanical treatment of scattering events is presented.

2.1 Semiconductor materials

Solid state materials are categorised as metals, semiconductors or insulators
based on the electrical conductivity of the material. Semiconductors have
lower conductivity than metals, but higher conductivity than insulators. At
low temperatures, the valence band is completely filled while the conduction
band is empty, thus the semiconductor behaves like an insulator. At room
temperature, electrons are thermally excited to the conduction band, and
hence the material becomes conductive.



The conductivity of semiconductors is easily controlled, either dynamically
by temperature changes or permanently by the level of impurities introduced
into the material. This property makes semiconductor materials applicable
for a wide range of purposes within the electronics industry.

Semiconductor materials have crystal structure where the atoms are arranged
in a periodic lattice. The material may be doped with impurity atoms to
modify the electronic properties of the material. In this process, some of the
host atoms are replaced by impurity atoms. If arsenic atoms, which have
five valence electrons, are implanted into a silicon lattice, four of the valence
electrons of each arsenic atom will form covalent bonds with the neighbour-
ing silicon atoms. The fifth electron ends up being loosely bound to its host
atom and is therefore easily excited to the conduction band, leaving behind
an ionised impurity centre. While donors contribute electrons to the con-
duction band forming n-type semiconductors, acceptors contribute holes to
the valence band that participate in electrical conduction in p-type semi-
conductors. In this thesis both n- and p-type materials will be considered.
The material is assumed to be fully ionised at room temperature, thus the
density of conduction band electrons is set equal to the density of donors
and likewise the hole density is assumed equal to the acceptor density.

2.2 Cdngl_xTe

Cd,Hg,_,Te, abbreviated CMT, is a compound ternary alloy semiconductor
which crystallises in the zinc blende lattice structure. It is composed of
the semimetal HgTe and the semiconductor CdTe; the x denotes the mole
fraction of HgTe in the alloy. CMT has a direct bandgap which increases
approximately linearly with x until reaching the bandgap of CdTe which is
1.5 eV at room temperature. The band gap is also temperature dependent,
an experimentally obtained formula for the bandgap which is valid up to
T =500 K is given in [I]:

6.3-(1—2x)—325-2—5.92-2-(1 —x)
11-1—2)+787-2+T

E,=Eyp+ x 107472,

where Egg = —0.303- (1 —2)+1.606-2—0.132-z- (1 —z). E;isin eV and
Tin K.

The variable bandgap and the high absorption coefficient makes CMT a very
useful material for applications. It can be tuned to absorb wavelengths in
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the interval 0.7 — 25 um, thus covering most of the infrared region of the
electromagnetic spectrum. CMT is an important material to the industry
of infrared detectors and photodiodes, and especially useful for fabricating
highly sensitive avalanche photodiodes which are low in noise.

The simulations which has been performed during the work with this thesis
are done with an alloy fraction of z = 0.28 and, unless otherwise stated, at
room temperature. These conditions correspond to a bandgap Fg = 0.27 eV.

2.3 Quantum mechanical treatment of crystals

The quantum mechanical description of a perfect crystal is thoroughly given
in many textbooks, among them [2]. The full description of a perfect crystal
is given by the Schrodinger equation with the many particle crystal Hamil-
tonian

2 N Z; 712
_ D j 1 j45'€
"= : 2m,~+Z2M-+2Z4moyR—R»,\
i j J 5’3 J J
/ /
12 Z:e? 12 e?
2 i 47T€0|I‘Z'—Rj| 2 Iy 47T€0|I‘Z'—I'i/|

Here, the two first term represents respectively the kinetic energy of the elec-
trons, having masses m;, and the nuclei of masses M;. The three last terms
represent the potential energies between the ions and the electrons. The
symbols p; and P; represent the momentum operators of the i’th electron
and the j’th nucleus, r; and R; denote their respective positions. Z; denotes
the atomic number of the j’th nucleus and g the electrical permittivity of
vacuum.

To be able to solve this system, we introduce several approximations. First,
the nuclei and the strongly bound core electrons are lumped together reduc-
ing the system to ion cores and loosely bound conduction electrons. This does
not change the appearance of the equation above, but changes the meaning
of the indices; ¢ now labels only valence electrons instead of all electrons,
and j now labels ion cores.

Next, the Born-Oppenheimer approximation can be applied since the ion
cores are heavier and slower than the valence electrons. As a consequence,
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the electrons sees only the potential of the stationary ion cores, while the ion
cores sees only the time-averaged adiabatic potential of the valence electrons.
The Hamiltonian is thereby reduced to a sum of three terms,

H = Hions(Rj) + He(rs, Rjo) + He—ion(rs, 0R;).

The first term describes the ionic motion in the averaged potential; the
second term is denoted the electronic term, it describes the motion of the
electrons in the lattice where the ions are frozen in their equilibrium po-
sitions, Rjop, and the last term describes the change in electronic energies
due to displacements, 6R;, of the ions from their equilibrium positions, also
called phonons.

Further, the mean field approximation, which is derived in [3], is applied.
The purpose of this approximation is to reduce the many-body problem
above to an effective one-body problem where all electrons are considered
to experience the same averaged potential V(r). The result is the familiar
one-electron Schrodinger equation:

2

(;’L + V(r)> Un(t) = Enthy(r). (2.1)
m

Here, v, denotes the one-electron wave function and E,, the one-electron

energy of the eigenstate labelled n. Even though they are accurate solutions

to 21 they are approximate in the sense that the equation is subject to the

above mentioned approximations.

The Bloch theorem states that when V' (r) is a periodic function, the solutions
to 2.1l are Bloch waves,

"%k(l‘) = eik ) runk(r)y
where u,k(r) have the periodicity of the lattice, with corresponding energies
E, = E,(k).

The solutions carries the index k which is the wave vector. The allowed
electronic states are thus defined by the two indices k and n. The k-vector
takes values within the first Brillouin zone of the reciprocal lattice. The
index n € [1,00) represents the available bands. The bands with the lowest
indices are valence bands occupied by valence electrons, while the electrons in
the conduction band participate in conducting current. The band structure
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E, (k), originating from the periodic nature of the crystal defines the allowed
electronic energy states of the crystal.

There are several methods of calculating the band structure of a crystal.
Symmetry often aids the calculations, and hence band structure calculations
produce E(k)-relations along crystal directions of high symmetry, see fig
21 within the Brillouin zone. The basis for the band model used with our
simulations is the k-p-method, which is a perturbative method; thus the
accuracy of the energy decreases as k increases.

Figure 2.1: First Brillouin zone of the fec crystal lattice with symmetry labels.
Figure from [4].

2.4 Boltzmann’s transport equation

The transport properties of a material is described by the Boltzmann trans-
port equation. Applied to our system, which is a slab of semiconductor
material, the solution to the Boltzmann equation is the statistical distri-
bution function of the conduction band electrons in the material. When
the probability of each available phase space state being occupied is known,
all transport properties may be evaluated taking averages over a statistical
ensemble of carriers.

The Boltzmann transport equation is an equation for the rate of change of
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the distribution function. The distribution function, f = f(r,k,t), of the
electrons is in general a function of position, r; momentum, k and time, .
It describes the probability of a phase space state being occupied at a given
time. In equilibrium, the distribution function is the familiar Fermi-Dirac
function,

1
F(E) = e(BE—Ep)/ksT 4 1’

which is here stated in terms of energy, I/. E'r denotes the Fermi level, which
may be considered the highest energy level occupied by the electrons at 0 K;
T the temperature and kp is Boltzmann’s constant.

Boltzmann identified three possible reasons for changes in the distribution
function, namely diffusion, influence by external fields and collisions between
electrons and lattice imperfections. The mathematical statement of these
three assumptions give rise to the Boltzmann transport theory,

of _of of of

- < 4+ - + -
ot ot dif fusion ot fields ot

coll

Substituting for the partial derivatives due to diffusion and fields, the Boltz-
mann transport equation reads
of of

o TV Vel Tk Vif =

coll

where k is determined by the external electric and magnetic fields, E and
B, by the relation

. 1
hk =—e(E+ -v x B)
c
and the particle velocity is

1
= — E-
v 7 ;k

The collision term of the equation is expressed in terms of quantum me-
chanical scattering probabilities. How scattering probabilities are calculated
will be elaborated in the next section. For now, we’ll assume that the rate
of transition per unit time from a state k to another state k’ is given by
W (k,k’). This particular scattering event can only happen if the state k
is occupied and the state k’ is free. The probability of k being occupied is
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f(k) and the probability that it is free is (1 — f(k)). The total change in
f(k) is given by the difference between the increase due to scattering into
the k-state and the decrease due to scattering out of the k-state. These two
terms should be integrated over all k’-states, the resulting collision term is
thus expressed:

of 1

ot - (2m)3 / [f(k/)(l — fROW (K, k) — f(k)(1 - f(K))W(k, k’)] 43K

coll

2.5 Scattering events

In semi-classical transport models, the electron is considered to be of wave
nature during the collisions with the lattice or interactions with other parti-
cles, these interactions are therefore referred to as scatterings. A scattering
is a transition between two electronic states, the wave picture indicates a
deflection of the wave.

In quantum mechanic theory, the transitions between electronic states are
caused by imperfections in an otherwise perfect periodic lattice potential.
Assuming that the deviations from the original potential are small, we may
use perturbation theory , and the hamiltonian of the system may be written

’HZ'H()-F’H]‘,

where Hj is the Hamiltonian of the unperturbed system and #; is the per-
turbation causing the transition.

A general result derived using time dependent perturbation theory is the
Fermi Golden rule. It states that the transition rate per unit time from an
initial state k in band n to a state k’ in band m is given by [5]:

T, (n,k;m, k') = %Wm, K | 1) | 0,1 [20( B (') — Fo (k) % hw),

where hw is the energy emitted (upper) or absorbed (lower) during the pro-
cess. The Delta function ensures conservation of energy during the process.
The total scattering rate per unit time for transitions out of the state k of
band n is found by performing the summation over all states the system can
transition into:

L(n,k) = 2% Z [(m, K | H;(r) | n,k>\25(Em(k’) —E,(k) +hw). (2.2)

m,k’
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To obtain the scattering rates to be used in a Monte Carlo simulator, is
evaluated for specific scattering potentials, H;. This is explained in [6].

2.6 Applying the theory to the particle simulator

So far this chapter has summed up some relevant topics found in text book
theory of solid state physics and quantum mechanics. It is time to look at
how this theory is applied in a Monte Carlo particle simulator.

The Monte Carlo method is based on the assumption that the Schrodinger
equation has already been solved, and a model of the band structure is
available either as an analytical expression or as a look-up table. This makes
it is possible to assign an energy to a given momentum state. Full-band
Monte Carlo models include accurate representations of the band structure,
but are computationally more costly than simpler analytical models.

It is also assumed that the scattering rates of all the scattering processes
which are considered relevant have been obtained in advance using the The
Fermi Golden Rule. The rates are function of particle energy and should be
available to the simulator as tables.

Summing up the Monte Carlo method in brief, we initialise each particle
with a state consisting of its k-vector, position and valley or band. We then
follow the trajectory of each particle by integrating up its momentum in time
during the free flights. The particles are scattered at certain times according
to the scattering rates; the scattering rates assure that a particle high in
energy will have a high probability loosing energy in a scattering event while
the opposite is true for a particle low in energy. After the simulation has run
for some time, we end up with a statistical distribution of particles which
is independent of the initial states. It can be shown that the distribution
function obtained using this technique satisfies the Boltzmann’s transport
equation in he long time limit [5].

The energy bands and scattering rates are obtained from quantum mechanics
where the wave picture of electrons is used, but in the Monte Carlo model,
the electrons and holes are viewed as particles. This is the reason why
the Monte Carlo method belongs to the category of semi-classical transport
theories. The fact that the particles are simultaneously sharp in position
and momentum poses a limit to the validity of the model because according
to the uncertainty principle of quantum mechanics, these quantities cannot
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be precisely determined at the same time. If we require the uncertainty in
momentum to be much smaller than the average particle momentum and at
the same time the uncertainty in position to be much smaller than the mean
free path, Jacoboni [7] shows that the validity of the semi-classical theory is
ensured when collisions are less frequent than 10'*s. Thus in case of high
scattering rates, quantum transport theories should be employed rather than
the Monte Carlo method.
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Chapter 3

The Monte Carlo simulator

This chapter starts out with a brief description of the Monte Carlo simulator
developed during the work with this thesis. The intention of section Bl is
to give an overview of the simulator as a whole, including the parts that
has not been changed during the work with this thesis. The following sec-
tions throughout this chapter will focus on the algorithms implemented in
order to extend the Monte Carlo simulator from a bulk simulator to a device
simulator. Section sketches a the device geometries which has been im-
plemented during the work with this thesis. Some changes have been made
to the equations governing the electron dynamics within the device, these
are presented in section B3l In order to solve Poisson’s equation and ob-
tain the electric field within the device, the positions of the mobile carriers
needs to be converted to the format of a charge density matrix. The cloud in
cell algorithm which has been implemented is described in section .4l The
device has been made capable of exchanging particles with its surround-
ings through the implementation of ohmic contacts. The contact model and
program implementation is described in section Section describes
how the current running through the device is measured. A description of
the particle boundary conditions at the edges of the device is given in sec-
tion @7 Finally, sections B.8 and discuss the physical interpretation of
superparticle charge and charge density when a 3D device is modelled in 2D.
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3.1 Description of the program

The Monte Carlo simulator developed during the work with this thesis has
been in development by students at the Norwegian Defence Research Estab-
lishment (FFI) since 2007. Earlier versions of the program are described in
the Master’s theses of Norum [§], Olsen [9] and Skéring [I0]. The purpose of
the student project at FFI is to develop a versatile tool for modelling mate-
rials and devices using both types of carriers. In addition to the simulations
presented in the student theses referred to above, the program has been
employed in simulations of laser pulse excitations in bulk material [11I, [12].

The description of the program which will be given in the rest of this section
follows the sequence elements in the program as they are presented in the
pseudo code of figure B.11

The first task of the program is to present the user with a menu for setting
simulation parameters. It allows the user to customise the simulation, se-
lecting device or bulk simulation, device geometry, turning scattering mech-
anisms on and off, allowing the Pauli principle to be in action etc. The
simulation parameters set by the user define which chunks of code will be
executed during a simulation.

The next step is initialisation of the position and momenta of the electron
and hole ensemble. The particles are initialised with randomised momenta
drawn from a Maxwellian distribution. The initialisation of particle posi-
tions depends on the device to be simulated. The initial positions are drawn
from a uniform distribution such that the device is initially charge neutral.
When a simulation has run for a sufficiently long time, the particle distri-
bution will be independent of the initial distribution [7]; however guessing
an initial distribution close to the equilibrium distribution may shorten the
simulation time required to reach equilibrium. The possibility of starting
a simulation with the position and k distribution obtained at the end of a
previous simulation has been implemented.

The scattering rates and energy band models determine when the scattering
events will occur and the new particle states after scattering. The level of
sophistication of a specific Monte Carlo simulator therefore relies heavily
on the implementation of these two ingredients. The following scattering
mechanisms are currently implemented in our model:

Carrier-carrier scattering
Coupled modes scattering
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< Read user input from menu >

< Initialize simulation parameters >

< Initialize position and k-states of particles >
< Calculate scattering rates and energy tables>

for all timesteps
< Perform carrier-carrier scattering >
< Update charge density matrix >
< Calculate electric field matrix >

for all electrons
< flight >
< scatter >
end

for all holes
< flight >
< scatter >
end

< Inject / eject particles at contacts >
< Measure current at the contacts >
< Update hot phonons >
< Update screening length >
< Collect statistics >
end

Figure 3.1: Overview of the Monte Carlo simulator.
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Polar optical scattering
Acoustic scattering
lonised impurity scattering
Plasmon scattering
Non-polar scattering
Inter-valley scattering
Alloy scattering

Impact ionisation scattering

The scattering rates for most of these mechanisms have not been changed
during the work with thesis. For a more thorough description of the rates,
see [8],[9) [10] for descriptions and plots. The sources for most of the rates used
with our simulator is [I3] I4]. The impact ionisation scattering mechanism
has been developed as part of this thesis, and will be described in section

e

The program assumes a three-valley model for the conduction band. The
electrons inhabit the I', L or X-valley. The conduction band model used
is an analytical, isotropic and non-parabolic model. The program includes
two hole bands, the heavy hole band and the light hole band which in the
program are represented as tables [10].

The scattering rates and energy bands are fundamental elements of the
Monte Carlo model. Details and plots of of the energy band of the I' valley
and the hole bands as well as the inter-valley and inter-band scattering rates
are presented in the appendices [Al and Bl

During simulation, the charge density matrix is updated using the cloud in
cell algorithm and the electric field is calculated using the successive over-
relaxation method every field adjusting time step.

Within the particle ensemble loops, the flight subroutine updates the parti-
cle positions. This routine first updates the particle momentum due to the
electric field, then the new positions is found using time integration. The
scatter subroutine determines the scattering rates for a particular particle
depending on it’s energy. The duration of the free flight is determined using
random numbers; if a sufficient amount of time has passed since particle ex-
perienced its last scattering event, a new scattering will occur. A scattering
mechanism is then chosen from the rates, which also includes self-scattering.
The final k-state after scattering is computed in the local coordinate system
where the z-axis is along the direction of the initial k-vector, and then trans-
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formed to the global coordinate system of the device. If the Pauli principle
is turned on, the particle will make a transition into the new state only if
the state is unoccupied.

After the particle states have been updated, new particles may enter the
simulation and existing particles may be evicted at the contact regions of
the device. The screening length routine is described in [I0] and the hot
phonon routine in [}, [10].

At selected time steps, particle positions and k-vectors are among the simu-
lation data which is written to file. Average particle energy, particle number
and current measurement at the contacts are among the data written to file
every simulation step.

3.2 Device geometry

Three different device structures have been simulated during the develop-
ment and testing of the program. The n+ n n+ shown in figure Il has been
used for benchmarking the Monte Carlo program with respect to carrier mo-
bilities and resistance. The pn-diode shown in figure and the APD in
figure [[.T] are simple components in which the pn-junction is the prominent
feature.

We have chosen simple device geometries and fairly light doping densities in
order to avoid complications during interpretation of the simulation results.
The devices are easily modified in the user menu of the program.

3.3 Carrier dynamics

In the Monte Carlo simulator, the carrier dynamics is handled during the
free flights. The existing flight routine in the Monte Carlo simulator has
been updated to fit the Cd,Hg;_,Te material. Time integration of the par-
ticle momenta is used to compute the displacement of the particles during
a simulation step, thus it is necessary to obtain the group velocity of the
particles from the k-vector.

In general, the group velocity is related to the derivative of the energy:
1

Vg == ﬁVkE
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Models of the heavy and light hole bands and their derivatives were already
incorporated into the program and are described in detail in [10]. The band
model is isotropic, thus it depends on the modulus, k, rather than the k-
vector and thus the vectorial v, cannot be obtained by differentiating the
dispersion relation. In order to obtain the group velocity for the holes,
we must introduce some approximations; inspired by [I5], we choose the
approximation

_1ldy
AT
thus the derivative of the isotropic band is directly interpreted as the mag-
nitude of the velocity. The hole velocity vector is then constructed using
this quantity for the magnitude and the direction of the particle’s k-vector
is directly adopted as the direction of the group velocity vector. Using this
approach, the components of the group velocity of the holes are given by:

v
— 9
vgi = Lk,

where i € (z,y, 2).

The group velocity for electrons is found taking the derivative of the band
structure, which is given in equation [A ] the result is:

nk;
my /1 4 4o 282

Here, i € (z,y,2), m* is the effective mass at the bottom of the conduction
band and « is the non-parabolicity parameter.

(3.1)

Vg,i =

Once the velocity vector is obtained, the approximate displacement is found

by [16]:

(vg(t1) — vg4(to)) At,

DO | =

"l
Ar :/ v (t)dt' ~
10

where t( is the time at the beginning of the flight, ¢; the time at the end
and At the difference between these. The carrier dynamics for holes have
not been changed during the work with this thesis.
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3.4 Particle-mesh coupling

Particle-mesh coupling algorithms are designed to attribute the charge of
stationary and mobile charges located at arbitrary positions, such as (zx, yx),
in figure to the nodes of a discrete charge density mesh.

L L
Ii7yj+1 x’i+17yj+l

Thes Y
® ®
Lis Yj Lit1; Yj

Figure 3.2: A particle positioned at (zy,yx), between the nodes of the computa-
tional mesh.

The simplest charge assignment method is the nearest grid point method
(NGP). The charge of an electron at (xy,yy) in figure is contributed to
the nearest grid point, (x;,y;), such that the charge density it contributes
to grid point (4, j) is:

( ) enLxLy
= plai,yi) = LA .
Pij = P\Li, Yj Nshmhy Psup

In this expression, e is the elementary charge, n the electron density, Lx and
Ly the device lengths in the z and y-direction, h, and h,, are the mesh spacing
in the x and y-direction and Ng the number of superparticles participating
in the simulation. pg,), is calculated at the beginning of a simulation, using
the initial particle number in the device. The superparticle charge remains
constant during simulation. The nearest grid point approximation is crude
and results in a coarse and noisy approximation to the electrical potential.

A better method is the cloud in cell (CIC) method [17], which has been
implemented in the Monte Carlo simulator during this work. This algorithm
smears the charge density of the superparticle over its four nearest grid

25



points. The charge density in the mesh point with coordinates (x;,y;) due
to the charge with coordinates (xg,yx) in the figure is given by

B |z — 4 e — v
Pij = Psup <1 ) (- (3.2)

for |z — 2] < hy and |yx — y;| < hy where h, and hy is the spacing
between grid points. An important property of is that the total charge
contributed by the superparticles are conserved from the NGP scheme. This
is easily verified; by adding the charge contributed by one particle to all of
its four nearest nodes gives pgyp.

Instead of representing a point charge, as in the NGP scheme, the super-
particle now represents a cloud of charge. This has a smoothing effect on
the electrical potential computed in the Poisson solver. The cloud shape and
the corresponding assignment function is visualised in figure 3.3l

| | | |
Li—1 Li Tk Lit+1
(a) Cloud shape

| | b |
Ti-1 i Tk Li+1

(b) Assignment function

Figure 3.3: The cloud shape and the assignment function for the Cloud in Cell
algorithm. These figures are from Kim [I4].

When Poisson’s equation is solved, the potential and the electric field is
obtained only in the nodes of the computational mesh. To evaluate the
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electric field at the particle positions, a force interpolation scheme is needed.
In this thesis, the NGP method has been used for this purpose while the
CIC method has been employed to assign charges to the mesh.

3.5 Ohmic contacts

The contacts of a semiconductor device are semiconductor-metal interfaces
where carriers can pass into or out of the device. There are two types of
contacts, Schottky and ohmic contacts. In general, the metal and the semi-
conductor material have different work functions which creates a potential
barrier for the carriers to surmount if they are to enter the device through
a Schottky contact. An ohmic contact is a junction with no such barrier; it
represents an ideal source or sink of carriers. The gate contact of a transistor
is usually a Schottky contact while the source and drain contacts are ohmic.

The modelling of ohmic contacts poses one of the great challenges for device
simulations. One reason is the complexity of the physics of the contact re-
gion where metal and semiconductor molecules form pockets of different alloy
compositions [I8]. Another reason is the fact that the contact implementa-
tion directly governs the number of particles entering and exiting the device,
it thus directly controls the current through the device. Studying contacts is
a research field of its own, and will not be the topic for this thesis. We will
therefore be content with getting an overview of the most important contact
models found in the literature, and choose one of the models that has been
tested to yield reliable results and use it for our simulator.

There is a variety of contact models suggested in the literature, a classifica-
tion of the different models can be found in [5]], in which three main classes of
models are identified. The first class is characterised by the two conditions of
charge neutrality and thermal equilibrium in a small region adjacent to the
contacts [19], 20} [I8]. The charge neutrality condition is imposed to meet the
zero voltage drop criterion. The model implemented in our simulator belongs
to this class of models and it will be described in more detail below. Another
class of models for two-terminal devices use periodic boundary conditions. A
particle which is absorbed at one of the contacts gets re-injected at the op-
posite contact, either with the same wavevector that it was absorbed with or
with a new wavevector randomly drawn from a thermal distribution. These
models are considered unphysical [5]. This is due to the fact that the model
simply does not reflect the real physics of the contacts. Yet another type of
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model involves simulating the dynamics of the carriers in a reservoir adja-
cent to the device. An appropriate carrier distribution is obtained within the
reservoir, and the dynamics of the reservoir determines the carrier injection
into the device. This method is described in more detail in [20].

The first and the third class both agree with the understanding we have of
the complex physics of the contacts. We have chosen to implement a model
belonging to the first class because it is simple and presumably gives results
which are easily interpreted. The contact model employed in our Monte
Carlo simulator closely follows the approach of Fischetti and Laux which is
described in [19].

The condition for injection is the charge neutrality condition of the contact
region; if there is a net deficit of majority carriers, injection will happen
until charge neutrality is maintained. The extension of the contact region
into the device should be small, typically a few mesh cells [21] [16], as the
number of injected particles may be affected by the choice. We have chosen
Ly = 0.02 um for all devices and simulations. The contact region of the
devices we have used for our simulations are shaded in the figures B.1]

and [T.1]

The net charge in the contact region is calculated by counting free and im-
mobile charges within the region, alternatively, it could have been calculated
using the charge density matrix. If there is a net positive charge in the re-
gion, as many electrons needed to maintain charge neutrality are injected.
The injected electrons are given a position vector drawn from a uniform dis-
tribution within the contact region. The thermal equilibrium condition is
met by giving the injected particles a k-vector drawn from a thermal distri-
bution. The half Maxwellian velocity distribution is used to ensure that the
momenta of the injected particles are directed into the device. To improve
the model, the displaced Maxwellian velocity distribution, which also takes
into account the fact that the injected carriers are expected to have a drift
velocity, should be implemented.

Absorption of a particle at the contact happens if the particle will hit the
contact surface during the coming time step. Based on the current position
and the group velocity, the estimated particle position at the next time step
is calculated. If the new position falls at the contact surface or beyond it,
the particle is absorbed and discarded from the simulation.

When simulating the pn junction and the APD structure, both electrons and
holes are simulated at the same time. In this case, the contact on the p-side
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injects only holes and the contact on the n-side injects only electrons. Both
types of carriers are absorbed at both electrodes.

It should be noted that the charge per superparticle, which is discussed in
more detail in section B.9] is kept constant throughout the simulation, thus
a device in operation is allowed to be electrically charged.

Contact regions are usually heavily doped, this has been taken into account
in our model by introducing such zones beneath the contacts. Doing this
smooths the transition between the metal contact and semiconductor device.
However, the simulation of heavy doped contact region poses a problem to
the Monte Carlo method because it requires the simulation of a relative large
number of superparticles at the contact regions compared to the more lightly
doped regions of the device. The carriers in the contact regions are far from
the junction where carrier properties are most interesting, and they are often
near thermal equilibrium. Simulating contact regions is computationally
inefficient because a large number of superparticles needs to be simulated in
order to obtain good statistics in the regions of low carrier density. A solution
to this problem which may be implemented into our model in the future is
offered by Mills et al. [22]. A charge enhancement factor is assigned to
the superparticles in the low density regions such that once a particle enters
this region, it is replicated a number of times corresponding to the charge
enhancement factor. As a result, the same number of superparticles may be
simulated, but with improved statistics at the regions of low carrier density.

An apparent weakness of the contact model implemented at present is that
the source and drain contacts behave as separate sinks and sources of car-
riers, thus the model allows the charge continuity in the imagined circuit
surrounding the device to be violated. The contact model should therefore
be subject to further development; as a first approach, we suggest imple-
menting the Ramo-Shockley particle boundary conditions [23].

Future development of the contact model should be fitted to the material
properties of CMT, a detailed study of carrier transport and contact resis-
tance in metal contacts of Cd,Hg;_,Te is presented in [24].

3.6 Measuring current

The current passing through the device is measured as the rate of carriers
passing through the contacts of the device. The current is in general given
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by
dQ(t)
dt ’
for our devices, Q(t) is the charge that has passed through an electrode up
until the time ¢. It is given by

I(t) =

Q = qs(Ng — N;) + 6360/}3 -ndo.

In this relation, N; and N, represents the number of particles injected or
absorbed at the electrode up until the time . The second term represents
the displacement current; e5e¢g is the electrical permittivity, n is a normal
vector to the contact surface and do a surface element. The integral is
to be taken over the surface of the electrode. The contribution from the
displacement term is negligible when the applied voltage bias is constant in
time, but necessary when doing transient simulations.

We have defined the positive direction of the current into the device.

This method of measuring current is the most commonly employed method
in Monte Carlo device simulations [5], but other methods exist. A method for
measuring current at arbitrary crossections through the device is proposed

in [25].

3.7 Boundary conditions

Boundary conditions enter the simulation at two stages, in the carrier dy-
namics and when solving Poisson’s equation. The particle boundary condi-
tions implemented in our simulator requires that when a carrier hits one of
the edges of the device, it is specularly reflected. The boundary conditions
of the Poisson solver are constant potential, known as Dirichlet boundary
conditions, at the contacts, reflecting that external voltages are applied to
the device under operating conditions. On the remaining edges, the equa-
tion is solved with von Neumann boundary conditions. The von Neumann
conditions imply that no electric field can exist perpendicular to the edges
of the device.

According to Jacoboni and Lugli [7], the source and drain voltages may be
directly applied to the Dirichlet boundaries. Our simulation results indicate
that this might not apply to non-symmetrical devices, this is discussed in
section
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3.8 Modelling 3D devices in 2D

In the Monte Carlo simulator, a device is modelled in 2D by tracking the
superparticles in all three dimensions of real space and momentum space, but
Poisson’s equation is solved only in 2D. This approach saves a considerable
amount of computation time. A 2D model may sufficiently represent a real
3D device if the device has little variation in the direction perpendicular to
the crossection we are simulating.

The physical interpretation of the superparticle charge and charge density
in 2D is important to understand, and therefore deserves a discussion here.
Poisson’s equation in a 3D material reads

\Y (Esd—(’p> = —@,

dr €0

where ¢ is the electrical potential. Assuming a constant relative permittivity,
€s and no change in the z-direction, i.e. g—f = 0, we are left with the 2D
version of Poisson’s equation,

o e pz,y)

Ox? + o2~ eg

The unit of the charge density, p, remains the same in the two and three
dimensional equation, namely Cm™>. As a consequence, the charge of a
superparticle in 2D should be interpreted as a charge per unit length in the
perpendicular direction, and the corresponding charge density of two dimen-
sional superparticles in an area should be interpreted as charge density per
unit length in the perpendicular direction. The corresponding geometrical

interpretation is that a superparticle represents a rod of charge [7].

3.9 Superparticles in 2D and 3D

In a device of typical size, the number of real conduction band electrons is
far too large that every particle can be simulated. Instead, we employ the
concept of superparticles. A superparticle may be interpreted as a statistical
representation of a number of particles. The superparticle behaves as a single
electron during the scattering events and is attributed the charge of a single
electron moving in the electric during the free flights. However, when the
charge density matrix is constructed for solving Poisson’s equation, or when
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the current through the device is measured, the charge of the superparticle
is equal to the charge of the real particles that it represents.

The charge per superparticle is found by the principle that the total charge of
all the superparticles should equal the total charge of all the real conduction
band electrons in the device, thus the superparticle charge is

gs = Qdem’ce o enV
s = =
Ns Ns,initial

where @ gevice 18 the total charge of the conduction band electrons in a device
and V' is the three dimensional volume of the device. N initiq represents the
number of superparticles at the beginning of a simulation.

The use of superparticles makes the Monte Carlo device simulation feasible,
but there are some disadvantages. The large charge of the superparticles
magnify the natural fluctuations in the local electron density of the device,
and thus causing larger fluctuations in the computed electric field than what
is actually the case [2I]. A particle that is accelerated in an artificially large
field will achieve too high energy and thus the probability of scattering will
be affected. It is therefore important for the validity of the simulation to use
enough superparticles. According to our experience, the number of particles
simulated with our devices should be at least ~ 50000 to avoid this effect.
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Chapter 4

Poisson’s equation

Using the Monte Carlo method is an efficient way to obtain the simultaneous
solution of Boltzmann’s transport equation and Poisson’s equation. This
approach is known as the self-consistent Monte Carlo model; it involves
that Poisson’s equation is solved every field adjusting time step during the
simulation. A field adjusting time step corresponds to a few basic time
steps of the Monte Carlo simulator. A single simulation requires Poisson’s
equation to be solved several thousand times, thus it is clear that a quick
solver is needed.

In this chapter, we will first present Poisson’s equation in section Il the
discrete formulation for our model problem is presented in sections and
the corresponding boundary conditions are presented in section 3l Tn
section 4] we will have a brief look at some different numeric schemes
which solve this problem and argue why our choice fell on the successive
overrelaxation method. Finally, the Poisson solver implemented in our Monte
Carlo simulator will be described in section [4.5]

4.1 Poisson’s equation in a material

Poisson’s equation is a stationary equation to obtain the electric potential,
©(r), due to a given charge distribution p(r). In a material, Poisson’s equa-

tion is
dey p
s— | = -2, 4.1
v (6 dr> €0 ( )
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where €5 is the dielectric constant for the material. In general 4 is not a
constant, but varies spatially, implying that the equation is non-linear. In
our case, the linear approximation has been made. A thorough mathematical
description and proof of existence of a unique solution can be found in [26].

4.2 The finite difference formulation

The finite difference formulation of the 2D Poisson’s equation is obtained by
discretising the equation on a uniform grid with N = Nx x Ny nodes, where
Nx and Ny are the number of nodes in the z- and y-direction respectively.
In principal, the spacing in z- and y-direction may be different. Here we’ll
assume equal spacing, h, implying that the coordinates of the nodes are
zi=14-(h—1),ie€[l,Ne]and y; =j-(h—1),j€[1,Ny] .

The discretised Poisson’s equation is obtained by approximating the second
order partial derivatives using Taylor expansion. This is done in many text
books, see for instance |26l 27]. The finite difference formulation of ] on
the uniform grid is

i+l — 2055+ Yi-1,j

h2 (707'7.]""1 (707'7.] + (70@7.7 1 _ p7'7.] (42)

+ =
h? €s€0

where ¢; ; denotes the potential in the mesh point (4, j). This approximation
is called the five point difference approximation, it has an error O(h?) because
the Taylor expansions are truncated after the h?-term. The computational
stencil for this approximation is illustrated in figure .2al

The discretised Poisson’s equation constitute a system of linear equations,
one equation for each node in the grid. Re-indexing the nodes, ¢; ; —
where k € [1, N], the system of equations may be formulated as a matrix
equation, Ax = b. In this equation, the unknown potential in the nodes is
contained in the x -vector, A is the coefficient matrix and b contains the
source term and the boundary conditions.

The coefficient matrix of the five point stencil is the block diagonal matrix

T I
-1 T -1
, (4.3)
-1 T -1
-1 T
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Figure 4.1: The computational mesh used for the solution of Poisson’s equation.
The value of the potential in the white nodes are set by Dirichlet boundary condi-
tions.

where the —I-block is the negative identity matrix and

After having solved the system of linear equations and obtained the electric
potential, the electric field is found using centred difference:

_ Pitlj T Pi-1,j
2h

~ Pig+1 — Pig-1
2h

B ;=

Lyij =

4.3 Boundary conditions

The finite difference formulation of equation described in the previous
section is valid only for the interior nodes of the computational mesh. At
the nodes representing the contacts, a constant electrical potential is imposed
and thus the equations representing these nodes are simply eliminated from
the system of equations. At the remaining edges, von Neumann boundary
conditions are applied.

In order to apply the von Neumann boundary conditions, Taylor expansion
is used to approximate the normal components of the first derivatives. At
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the top and bottom edges of the device in figure 1] the normal component
of the derivative is

a%,j ~ Pij+1 — Pij—1 (4 5)
oy 2h ’ '

where j = 1 for the lower edge and j = Ny for the upper edge. A corre-
sponding equation is needed for the left and right edges. Forcing zero flux
in equation at the lower edge where j = 1, we get

©i0 = Pi2- (4.6)

The point mesh node (,0) lies outside the grid we have defined for our model
problem; thus the von Neumann boundary conditions makes it necessary
to introduce what is called ghost nodes. In these nodes, the value of the
potential is known and given by equations similar to A6l The equation
valid at the lower von Neumann edge of our problem is illustrated by the
computational molecule in the second panel of figure [4.2]

The corner nodes requires special treatment because the normal direction to a
corner is not well defined. The rectangular grid allows two normal directions
at the corner nodes, the x- and the y-direction. Only one condition in each
boundary node can be prescribed if the system is not to be overdetermined.
According to [28], the analytic requirement

dp .
/%ds =0 (4.7)

[

where c¢ is the boundary curve and n the normal direction, must hold to
ensure a unique solution. The stencil used for the corner nodes is shown in
the third panel of figure has been implemented to ensure that 7] will
not be violated.

4.4 Overview of numerical methods

In the research field of Monte Carlo device simulation, a variety of different
methods are in use for solving Poisson’s equation. This reflects the fact
that each method has its own strength which may be particularly useful
when solving a specific problem. Future development of the Monte Carlo
simulator should therefore include the incorporation of a set of solvers based
on different solution methods.
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Figure 4.2: Computational stencils used for the A-matrix of the finite difference
formulation of Poisson’s equation. Panel (a) is valid for the equations corresponding
to interior grid points, (b) for nodes the edges and (c) for the corner nodes.

Vasileska [5] argue that the Fast Multipole Method (FMM) is an efficient
way of solving the 3D problem. In this method, multipole expansion is used
to reduce the complexity of the Coloumbic many-body problem prior to force
evaluation.

The finite element method (FEM) is another frequently used solver for Pois-
son’s equation. This method allows a refined mesh in areas which require
high resolution, such as the area surrounding localised impurities. For this
reason, the FEM method is well suited for simulation of quantum structures.

For this thesis, we have chosen the successive over-relaxation method which
belongs to the class of iterative solvers. The iterative solvers are flexible
with respect to boundary conditions because few changes need to be made
to the code in order to simulate different device geometries. Due to the
nature of the self-consistent Monte Carlo method, an iterative solver is a good
choice [29]; because the simulation time elapsed between two consecutive
solutions is small, thus the solution obtained at the previous time step makes
a good starting guess at the solution which is to be computed this time step.
Furthermore, the successive overrelaxation method can be combined with the
multigrid technique in advance of parallellising the code in order to further
improve the solution time [5].

4.5 The relaxation methods

The relaxation methods offer a fast solution to Poisson’s equation and are
efficient in terms of storage [7]. The solution offered by iterative solvers is
an approximate solution, the approximation is controlled by a chosen toler-
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ance. The simplest of the relaxation methods is the Jacobi method which is
described in detail in [27], 30]. The basic idea behind this algorithm and its
successors; the Gauss-Seidel and the successive over-relaxation method with
Chebyshev acceleration will be described in this section.

The relaxation methods are obtained by iterating equation In the case
of the Jacobi method, this is done straight forward:

m) _ L[ 1)

n n—1)
Yij = 3 [Pirni T Y-

(n

—1 —1
+ (701'7j+1) "

h? pij
s — 4.8
+(’DW_1] T E5€0 (48)

Here, n denotes the iteration number.

The first step of the Jacobi algorithm is to make an initial guess at the

Z(-f)j), which is used as input on the right hand side of .8 to calculate

a better guess cpglj). This procedure is repeated until the solution satisfies

the criterion of convergence.

solution, ¢

To have a closer look at the convergence of the Jacobi method, it is useful
to go back to the matrix formulation of Poisson’s problem. Splitting the
A-matrix of A3]in two matrices, A = D + R, where D contains the diagonal
elements of A and R contains all the off-diagonal elements, the equation can
be rewritten:

(D+R)x=Db
x=—(D'R)x+ D 'b.

The matrix D™'R is called the iteration matrix. The last equation is an
implicit equation in x that can be iterated:

x" = —(D'R)x"V) + D 'b.

The convergence of the Jacobi method depends on the properties of the
iteration matrix. The iterative methods are guaranteed to converge if the
spectral radius of the iteration matrix satisfies

ps(D7IR) < 1.

The proof of this is given in [3I]. The spectral radius of a matrix is the
modulus of the largest eigenvalue of the matrix. For the coefficient matrix
of the Poisson problem, it can be shown [30] that

cos (%) + cos (le)
Ps = D)
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for quadratic mesh cells. Each eigenvalue of the iteration matrix reflects
the factor by which the amplitude of a particular eigenmode of undesired
residual is suppressed during one iteration [30]. Proof is given in [32] that a
diagonal dominant A-matrix ensures convergence of the Jacobi method.

The convergence rate for the Jacobi algorithm is slow, making it unsuitable
for our purposes. However, there are several methods based on the simple
idea of the Jacobi algorithm but with improvements to the convergence rate.
The Gauss-Seidel method uses the latest information on the solution avail-
able. Assuming that the ¢; j-values of an iteration are obtained in sequence,
at the time 901(3-) is calculated, gpl@ld 2(73)_1
are available in the n-th iteration:

and ¢ are already calculated and

h? pij
4 e4e0

) _ L[ (n-1)

n n—1 (n) (
Pij = 4 [Pt

n—1)
T i1t P

+ 9057;)_1 +

(4.9)
The Gauss-Seidel method converges faster than the Jacobi method, though
only marginally [7].

The successive overrelaxation method is an improvement to the Gauss-Seidel
method. This method introduces an acceleration parameter, w, to make
an over-correction, anticipating corrections of future iterations. First, the
Gauss-Seidel iterate, gpff(n), is calculated using The final n-th iterate
is then calculated as the linear combination:

(n—1)

GS
ol =wely "+ (L= W)l

The relaxation parameter should take values in the range 1 < w < 2. The
convergence rate is optimised when [7]

2

Wopt = ————F——.
P+ 12

The convergence rate may be improved even further with a variable w. This
algorithm is called the cyclic Chebyshev method. It is similar to the succes-
sive over-relaxation method, but with
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1
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4.6 Parallellising the Poisson solver

The successive overrelaxation method allows odd-even ordering of the mesh
nodes. Calculating the potential in an odd point of the mesh requires only
values of the potential in even nodes and vice versa. A half-sweep over
the mesh updating all the odd mesh points is carried out before the second
half-sweep which updates the potential in the even mesh points.

The possibility of odd-even ordering makes the Jacobi method and its suc-
cessors inherently parallel. Using the checkerboard analogy, the even and
odd mesh points may be compared to the black and white squares. The
solution in all the black nodes may be calculated at the same time from the
solution obtained at the previous iteration. Thereafter, the solution in all
the white nodes may be calculated simultaneously from the knowledge of the
solution in the black nodes of this iteration. This makes the class of methods
described in section very well suited for parallelisation.
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Chapter 5

Accuracy and reliability of the
model

In section 5.1 of this chapter, we present the general stability criteria for a
Monte Carlo device simulation and assure that the simulation parameters
we will use with later simulations obey them. The results of the simulator
is tested in section by studying the electron and hole mobilities obtained
from bulk simulations. Finally, in section [B.3] we perform a simulation of a
simple n+ n n+ structure in order to verify that our model is reliable.

5.1 Resolution in time and space

There are two types of stability criteria to consider when doing Monte Carlo
simulations. On one hand, there are physical arguments which defines the
resolution in time, At, and space, Axz. On the other hand there are numer-
ical arguments which limit the coupling between the temporal and spatial
resolution. A thorough discussion is presented in [33]. Here, we will check
that the mesh cell size we have used for our Poisson solver, h; the basic
time step, 7; and the field adjusting time step, 7¢, in our model satisfies the
necessary criteria.

The mesh cells of the grid used for solving Poisson’s equation should be small
enough to resolve the smallest physical features relevant to the variation in
the potential. The Debye screening length provides the characteristic length
scale for variation in the electrical potential and carrier concentrations in
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the Poisson-Boltzmann problem [34]. Thus it is natural to require that the
mesh cell should be smaller than the Debye screening length, Lp. The Debye
screening length is well approximated by the material parameter

/ T
LD = ekB2 )
ne

where € = g46¢. In our model, the donor density of the heaviest doped regions
are 1.0 x 107 em™3, thus h < 15 nm. The devices we have simulated have
a length of 3 um, implying that the number of nodes in the z-direction, Nx,
should be at least 200.

The physical argument limiting the basic time step, 7, is that we require all
scattering events to be resolved. The most frequent scattering mechanisms
have rates ~ 10" s~1, thus we should have 7 < 1 fs.

The field adjusting time step, 77, determines how often Poisson’s equation
is solved. Some authors claim that the particles should not be allowed to
travel across more than a few mesh cells during one field adjusting time step
[21], while other [33] demand a mesh cell smaller than the longest distance
travelled during a time step. In any case, the numerical requirement imposed
on the relation between Ax and At can be expressed on the form:

Vmaz At < lnax, (5.1)

where v,4; is the maximal velocity component a particle can achieve during
simulation. We have used 7; = 5 fs and measured the maximum velocity
obtained during the simulations. By experience, this has produced stable
simulations. The maximum velocity electrons reach in semiconductors in
general is on the order 108 cm/s [33], thus the strictest interpretation of
Imaz 1in equation Bl requires a mesh cell 5 nm.

Yet another stability criterion for the relation between At and Az which is
often quoted in the context of device simulation is

At 1

2 Wp
where w), is the plasma frequency. However, in [35], it is argued that this
applies to simulations of collision-less plasma rather than device simulations

due to the stabilising effect of the scatterings.
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5.2 Mobility

The mobility describes how strongly the particle motion is influenced by an
applied electric field [36]. A carrier in an applied electric field will gain mo-
mentum and energy from the field, but the scatterings limit the achievable
drift velocity. In the Monte Carlo simulator, the mobility provides an im-
portant check on the interaction between the band model, from which the
particle velocity stems, and the frequency of the scatterings. The electron
mobility is defined as the proportionality factor between the drift velocity
and the electric field,

Vd
)
Ee:ct

Me = —

and likewise, the hole mobility is the proportionality factor between the drift
velocity of the holes and the electric field. In CMT, the hole mobility is a
few orders of magnitude lower than than the electron mobility due to the
larger effective mass.

The electron and hole mobilities are extracted in bulk simulations where only
one type of carrier participate in the simulation. Bulk simulations are used
to eliminate undesired contact effects. The mobility is measured by applying
a constant electric field and then the average drift velocity of the particles
is measured after the Monte Carlo simulator has reached a stationary state.
If the electric field is applied in the z-direction, the average drift velocity
is measured as the average group velocity of the particles in the z-direction
using equation Bl The drift velocity is averaged over the particle ensemble
and over time.

The bulk simulations are performed at lattice temperature 7' = 300 K with a
basic time step of 1 fs and an alloy fraction = = 0.28. The simulation results
are presented in table .11

‘ E.;; in kVem™ ! ‘ Le in cm?V-1Is™! ‘ Lr in cm?V-Is7! ‘
0.1 1.82 x 10* 117
0.3 1.77 x 10* 137
0.5 1.78 x 10* 148

Table 5.1: Electron and hole mobilities, y. and uy, respectively, extracted from the
Monte Carlo simulator at different applied electric fields, Fe,:. The results were
obtained at 7' = 300 K and = = 0.28.
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There are considerable variations in the eperimentally obtained electron and
hole mobilities [37]. The mobilities obtained by the Monte Carlo simulator
are within range of the mobilities reported by the experimentalists, but they
are in the lower end of it. We conclude that the values produced by the
simulator appear reasonable. It should be noted that the Pauli principle was
not taken into account during these simulations. As a consequences, some
scatterings may have taken place that would else have been prevented by
Pauli prohibition, and thus the extracted mobility may be artificially low.

5.3 Simulation of an n+ n n+ diode

In order to test the code and acquire experience on device simulation, the
current voltage characteristics of a simple n+ n n+4-device has been obtained.
As a check, the resistance of this device has been compared to the ohmic
resistance in a slab of CMT material which is similar in size to the simulated
device.

The device simulated is sketched in figure 5.1l and the simulation parameters
used is given in 0.2 The device is a symmetric n+ n n+ diode with three
regions of different doping densities, the Np region is relatively lightly doped
compared to NZS regions. The shaded regions of the device are the contact
regions described in section Only the electrons were simulated.

Lak Lk
L Lyl Ly
Np Lyj, Lyj Np
y Lok Lalt Ly
Np
Lx
X

Figure 5.1: An illustration of the geometry of the n+ n n+ device. The shaded
regions represent, the contact regions.

The current-voltage characteristics of the n+ n n+-diode has been obtained
by running simulations of the device under different bias voltages. The cur-
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Lx 3.0 pm
Ly 1.0 pm
Lxg, " = Lxg, Tt 0.75 pm
LYer = LYdrR 0.50 pm
Lxe = Lixe, 0.75 um
LYCrL = LYCrR 0.02 pm
Nx 500

T 1fs

Np 1% 10" ¢cm™®
Np 1 x 10 ¢cm™3
T 300 K

x 0.28

Table 5.2: Parameters for the n+ n n+ device. The symbols are explained in figure

BT

rent which runs through the device after the Monte Carlo simulation has
reached equilibrium has been extracted averaging over a particle ensemble
of ~ 50000 electrons and over 30 ps. The resulting [V-curve is shown in fig-
ure The figure shows that at zero bias voltage, almost no current runs
through the device while at higher voltages the current saturates, thus the
component exhibits the behaviour of an n+ n n+-diode.

According to Ohm’s law, the current running through a conductor is pro-
portional to the voltage, thus the resistance is given by the slope of a linear
IV curve. The n+ n n+-diode is a nonlinear component, but an approxi-
mation to ohmic resistance in the near linear region of the IV curve may be
obtained from figure The slope of region close to zero bias voltage is
approximately 0.3 k€.

The formula used to calculate the Ohmic resistance in a slab of CMT material
18

L
A Y
where L is the length of the slab in the direction of the current and A the

crossection area. The resistivity, p is here considered a material parameter
obtained via the electron mobility using the relation

R=p (5.2)

1

1
p = — = —_,
o e(npe + ppun)
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Figure 5.2: IV-curve of the n+ n n+ device.

where o is the conductivity and p the hole concentration. We assume no
contribution from the second term of the denominator, since the device is
n type. We use an electron mobility value which is independent from our
simulation results, in [38], pe = 3.5 x 103 em?V~!s~! is reported for CMT
with a free electron concentration of 2 x 10'® ecm™3. This gives the resistivity
p = 5.49 x 10~% Qm, corresponding to the resistance R = 1.647 k{Q for a slab
which is 3.0 um long with a crossection of 1 pum?.

The discrepancy between the theoretically calculated resistance and the re-
sistance measured in our program is within an order of magnitude. The
resistance of the simulated device is smaller than the resistance through the
slab, which contradicts our understanding that the contact regions would
induce extra resistance compared to the slab. The contact regions of our
device are however large compared to the device, the high doping density in
these areas contribute to a lower resistance.

From the results presented in the last two sections, we conclude that that
the model may need some fine tuning before it is used for more realistic
simulations.
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Chapter 6

PN junction

The Monte Carlo method is rarely used for studying simple pn-diodes. These
structures may seem too simple to engage advanced simulation techniques
such as the Monte Carlo method. Instead, simple analytic theories which
are based on numerous simplifications are used. Apart from the studies
Moglestue conducted in the 1980’s [I8],[39], Monte Carlo studies of pn-diodes
are scarce.

Precisely because the pn-diode is described by analytic theory, this structure
serves well as a starting point for discussion of the Monte Carlo method itself.

In this chapter, we have simulated a pn-device under reverse and forward
bias voltage. The simulation parameters are presented in section while
the simulation results are presented in section and respectively. The
results show that our Monte Carlo model is in qualitative agreement with
the analytical pn-junction model. The current-voltage characteristics, or IV
curve, has been obtained and is presented in while the switching time
has been studied in section [6.3]

6.1 Simulation parameters and assumptions

The pn-junction simulated has the geometry shown in figure [6.I] and the
simulation parameters used are listed in table 6221 The donor and acceptor
densities at the junction, Np and N4 have been set to 106 cm™3 while
the regions close to the contacts are more heavily doped, N; and N;{ have
been set to 1017 cm™3. The doping densities have been chosen fairly light
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in order to make the approximation of neglecting the Pauli principle. The
three simulations differ only in the Dirichlet boundary conditions imposed
at the contacts of the Poisson solver. The voltages set at the left and right
contacts are designated Vi, and Vg respectively; in table [6.I] the Dirichlet
boundary conditions for the three simulations are given.

Type of external bias voltage V]gois son Vﬁois son
Near unbiased —0.35 0.00
Forward bias —0.10 0.00
Reverse bias —0.60 0.00

Table 6.1: Overview of the boundary conditions used for the stationary pn-diode
simulations.

The simulations have been performed assuming no generation or recombina-
tion of carriers. In [I§], it is argued that the carrier lifetimes in GaAs are
too long for a significant number of recombination events to take place, thus
modelling recombination will have little effect on the simulation results. We
consider the same argument to apply for our CMT diode.

It should also be mentioned that the simulations performed here were ini-
tialised with particle states consistent with the steady state of the Monte
Carlo simulator at the given voltage. These states were obtained running
transient simulations, starting from a qualified guess at the end states, un-
til the Monte Carlo simulator reached its equilibrium. The Monte Carlo
equilibrium for the stationary simulations was simulated for 100 ps.

Lak La®
Lyf, Lyt
Ni Np
Y Ny Np Ly
Lz /2
Lx
x

Figure 6.1: The geometry of the pn-diode. The shaded regions represent the
contact regions.
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Lx 3.0 pm
Ly 1.0 pm
Lxg” = Lxg. Tt 0.75 um
LYer = LYdrR 0.50 pm
Lxe = Lixe, 0.75 um
Lyat = Ly ™ 0.02 pm
Nx 600

T 11s

Np 1% 10 cm™3
N; 1x 107 em—3
Ny 1x 10 cm™3
Nj 1 x 107 em=3
T 300 K

x 0.28

Table 6.2: Simulation parameters used for the pn-diode simulations. The symbols
refer to figure

6.2 Simulation results under reverse bias

We know from standard text book theory, e.g. Tonning [40], that when
p-type and n-type semiconductor material are put together to form a pn-
junction, the holes close to the junction will diffuse from the p-side over to
the n-side and likewise electrons will diffuse from the n to the p-side. On
both sides of the junction, regions of uncompensated immobile charge are
left, causing an electric field directed from the n-side towards the p-side.
While the concentration gradient drives the diffusion process pushing the
carriers past the junction, the electric field acts to draw the carriers back. In
equilibrium, the drift and diffusion processes perfectly balances each other,
the resulting electron and hole currents are zero separately.

Applying a more negative voltage to the p-side reinforces the electrostatic
potential difference and hence the electric field across the junction, thus
enhancing the drift current compared to the diffusion current. As a result,
the extension of the depletion region will increase.

We have used the Monte Carlo simulator to simulate the carrier distribution
and the depletion region of the pn-diode at operating conditions near equi-
librium and under reverse bias. The resulting spatial distribution of carriers
in the device in figures and [6.3] The figures show that in both cases, a
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depletion region arise at the junction and the depletion region is wider under
heavier bias.

The width of the depletion region may be calculated analytically for a simple
1D junction. Tonning does this by solving Poisson’s equation under the
assumption that the depletion region is completely free of mobile carriers;
the only contribution to the charge density is the acceptor density at the
p-side and donor density at the n-side. The extension on the n-side is then
given by

e & W
eNp Na+ Npl\ e SR

2

2¢e N kT . NaN
LN,eq = \/ A —AD (61)

and a similar expression is given for the extension at the p-side. The calcula-
tion is based on the assumption of drift-diffusion balance, which introduces
the intrinsic carrier density, n;. This quantity is not present in our Monte
Carlo model, thus in order to do an informal comparison between our re-
sult and the analytical model, we have regarded the intrinsic carrier density
a material constant that can be looked up in a table. In [37] a value of
n; = 4.1 x 105 ecm™3 is reported, using this with the formula above gives
the dotted lines sketched into the carrier distribution plots. According to
figure [6.9 it is clear that there are also two minor built-in voltage barriers
on the border of the two heavier doped contact regions. Their existence may
affect the potential barrier across the main junction, and thus there are sev-
eral reasons not to take the comparison between the analytical model and
our Monte Carlo model too seriously.

z, [um |

Figure 6.2: Spatial distribution of electron (blue) and hole (red) positions of the
near unbiased pn-diode. The drawn lines correspond to the theoretical extension
of the depletion region under zero bias voltage as calculated in [40].
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Figure 6.3: Spatial distribution of electron (blue) and hole (red) positions of the
reverse biased pn-diode. The drawn lines correspond to the analytically calculated
extension of the depletion region when the device is in equilibrium, i.e. zero bias
voltage is applied.

The figures and give the quantitative picture of the carrier densities
along the z-axis. The figures are obtained from the carrier positions; dividing
the x-axis into bins of 60 nm and averaging out the y-direction.

9 X 1016

Electrons, n(z)
Holes, p(x)

1.5

Carrier concentrations, [ cm™3]

1 L
0.5
0 1 1 J
0 0.5 1 15 2 2.5 3
z, [ pm]

Figure 6.4: The concentration of holes (red) and electrons (blue) along the z-axis
of the near unbiased pn-diode.

Representing the current running through the device as a function of time
directly gives a picture which is dominated by statistical noise. We find it
easier for the eye to capture what is actually going on by representing the
cumulative charge that has passed through the contacts on the p and n-side
during the simulation time. The figures and show this for the diode
close to equilibrium and the diode under reverse bias respectively. The fact
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Figure 6.5: The concentration of holes (red) and electrons (blue) along the z-axis

of the reverse biased pn-diode.
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Figure 6.6: Cumulative charge that has entered the left contact and exited the

right contact of the near unbiased pn-diode during the simulation.
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Figure 6.7: Cumulative charge that has entered the left contact and exited the

right contact of the reverse biased pn-diode during the simulation.
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that the curves are running parallel indicate that there is no accumulation of
charge inside the device. The sign of the slope of the curve gives the direction
of the current; positive slope indicates current in the forward direction of the
diode, current in the reverse direction has a negative slope. The steepness
of the slope indicates the amount of current running through the device.

Figure indicate that almost no current runs through the device under
weak reverse bias, while the plot in figure has a very weak negative slope
indicating a small current in the reverse direction. The current through a
reverse biased diode is known to be mainly due to generation of electron-hole
pairs in the depletion region. The generated carriers are swept in each direc-
tion by the electric field causing a small current. The generation process is
not modelled in our particle simulator, thus the observation must correspond
to noise.

-0.05

0.4

- 1-0.15
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1.5

-0.35

0 T, |Wm
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Figure 6.8: Electric potential in V in the near unbiased pn-diode. The p-side is
to the left in the figure.

The 1D model which may be solved analytically gives an expression for the
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built-in voltage across the junction:

kT = NyN,
V;)i: —In AgDa
e

n;

which would correspond to 0.2 V for a 1D CMT junction.

Figure shows the electric potential, as it is computed by the Poisson
solver, when the device is close to equilibrium. The potential difference
across the device is approximately 0.35 V, which is somewhat larger than
the potential predicted by the analytical model.

There are significant differences between the 1D junction and our simulated
device that cause this difference; the simulated device contains two contact
regions. Figure show that there are three electric fields pointing in the
same direction which together contribute to the 0.35 V we observe; thus it
is appropriate that we observe a value which is larger than the analytically
obtained result.

According to [7], the external bias voltage may be directly imposed as Dirich-
let boundary conditions. We suggest that this may be true for symmetrical
devices, but not necessarily for asymmetric devices such as the pn-diode. We
observe that we need to impose a voltage difference of 0.2 — 0.3 V between
the contacts in order to simulate the device in equilibrium. This is related to
the asymmetry of the pn-device. Wurfel [4I] discusses the potentials which
arise at a p-n junction in detail. There is a chemical potential difference
at the junction due to the large concentration of holes on the p-side and
electrons on the n-side. The chemical potential is exactly balanced by the
built-in potential which is a purely electrical potential. The electrical po-
tential causes an electric field from the n-side to the p-side; this field cannot
perform any physical work and as a consequence no current can run in a
circuit consisting of an unbiased p-n diode. This is evident because there is
no source of energy in such a circuit. A voltmeter cannot measure a purely
electrical potential, instead it measures the combined electrochemical poten-
tial difference; there is no deflection on the voltmeter in the circuit consisting
of a pn-diode with no applied bias.

The Poisson solver sees both the built-in potential at the junction and the
voltage difference imposed at the contacts. As a consequence, there is an
offset between what we think of as an externally applied bias voltage and
the Dirichlet boundary conditions.
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Figure 6.9: Electric field in the near unbiased pn-junction. The p-side is to the
left in the figure.
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Figure 6.10: Electric field in the z-direction of the near unbiased pn-junction. The
p-side is to the left in the figure.

95



The figures and show the electric field in the device when it is
in equilibrium. The direction of the field is consistent with the analytical
theory, it is directed from the n-side towards the p-side. There are also fields
which indicate that smaller junctions arise at the contact region boundaries.

The field arising at the junction is large enough that, for future development
of the simulator, it should be considered to take into account intracollisional
field effects.

6.3 Simulation results under forward bias voltage

The device is forward biased by applying a positive voltage to the p-side
relative to the n-side. This will lower the electrostatic potential across the
junction and hence the drift-diffusion balance will be disturbed. The diffu-
sion current is enhanced compared to the drift current, and thus the width
of the depletion region is reduced. The figures and shows our simu-
lation result of the carrier distribution in a forward biased pn-junction. The
figures show that, compared to the unbiased case, the depletion region is
decreased in extension.

z, [um |

Figure 6.11: Spatial distribution of electron (blue) and hole (red) positions in the
forward biased pn-diode. The drawn lines correspond to the analytically calculated
extension of the depletion region when the device is in equilibrium.

The positive slope of the graph in figure indicate that under forward
bias voltage, there is a current running through the device from the p-side
towards the n-side. Thus the qualitative result produced by our Monte Carlo
model is consistent with the analytical model.
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Figure 6.12: The concentration of holes (red) and electrons (blue) along the z-axis
of the forward biased pn-diode.

The current found when taking the derivative of this curve is 1.0 x 1072 mA /um
in the z-direction.
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Figure 6.13: Cumulative charge that has entered the left contact and exited the
right contact of the forward biased pn-diode during the simulation time of the
forward biased pn-junction.

A similar study of a GaAs pn-device under forward bias has been con-
ducted by Moglestue [18] [39]. In this study, Boltzmann’s transport equation
and Poisson’s equation were solved self-consistently using the Monte Carlo
method. The device had ohmic contacts in both ends. Moglestue observed
the formation of an electron hole plasma at both sides of the junction; and
he refers to experiments in which the luminescence from such a plasma has
been measured. The density of the plasma reached four times the acceptor or
donor density at the junction. Our results indicate that for a Cdg.2sHgg 79 Te
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diode under forward bias, there is a small accumulation of electron plasma
at the p-side of the junction. This can be seen in both figure and
if studied carefully. The effect may be due to the small effective mass of the
electrons. The plasma effect observed for the CMT diode is much weaker
than Moglestue’s result indicate for the GaAs junction.

6.4 IV characteristics of the pn junction

The I'V-characteristics for the pn-junction has been obtained running station-
ary simulations with varying Vpeisson While measuring the current through
the diode. The result is presented in figure [6.141 The figure shows that the
pn-junction has the rectifying behaviour of a diode.

The current running through the diode under the three different operating
conditions discussed in the previous sections is presented in table [6.31

The IV curve shows that for our simulation results, there is no reverse leakage
current in the diode. Reverse leakage current, or dark current in the context
of photodiodes, is an undesired effect occurring in APD detectors which is
due to generation of carriers in the depletion region of a reverse biased device.
Dark current can in principle be studied using the Monte Carlo method, this
requires the implementation of carrier generation rates obtained from first
principles of quantum mechanics. However, due to the very low generation
rate compared to the time step of the Monte Carlo method, the technique
is inefficient in this respect. Several studies have been conducted on dark
current in HgCdTe APDs [42] [43], in these studies, the transport equations
have been solved using other methods than the Monte Carlo.

Type of external bias voltage | Total current at p-contact [ mA /um]
Forward bias 1.0 x 1072
Unbiased ~1.6 x 107
Reverse bias —3.5x 1074

Table 6.3: Current running through the pn-diode during the three stationary
simulations presented in the two previous sections .
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Figure 6.14: Current voltage characteristics of the pn-diode. Vpy;sson refers to the
voltage difference at the Dirichlet boundaries of the Poisson solver.
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6.5 Switching behaviour of a diode

The simulations described above are stationary simulations performed with
constant voltage being applied to the diode. The Monte Carlo simulator
is also suited for studying the transient dynamics. We have studied the
behaviour of a diode which is switched from the current conducting to the
non-conducting state.

Figure shows a circuit where a diode is forward biased when the switch
is in position 1 and reverse biased when it is in position 2. Assume that the
switch was in position 1 at t < 0, and switched to position 2 at ¢ = 0. The
current through the diode and the voltage across it is sketched schematically
as a figure of time in figure Tonning’s analysis of the switching process
is the following: At t < 0, the diode is carrying a current in the forward
direction. At ¢t = 0 it starts carrying a large current in the reverse direction.
This current is due to holes being pulled out from the n-side and electrons
being pulled from the p-side. We term the time it takes for a diode initially in
the on-state to switch to the off-state the switching time. At the time when
the minority carrier concentrations near the depletion region has fallen off
to the respective equilibrium levels, the current stabilises at the saturation
current I, which runs in the reverse direction. This current is due to the
generation of electron hole pairs in the depletion region. When ¢ — oo, the
voltage has reached the reverse bias, and thus the diode represents a large
resistance in the circuit.

We have simulated the transient behaviour of the switching process and
measured the switching time of the pn-diode for a reverse bias voltage of
5 V. The simulation was initialised with particle positions and momenta
obtained after simulating the diode under forward voltage bias, i.e. V =
Vr = 0.0. We used Vg, = —5.0 and Vi = 0.0 as boundary conditions to the
Poisson solver and otherwise the same simulation parameters as presented
above. According to figure there is a small reverse-current effect at
the beginning of the simulation, but it is not as pronounced as Tonning’s
analysis suggest. Figure shows that the current through the contacts
drops off steadily and reaches a stationary level near zero. From figure
it is clear that after approximately 60 — 70 ps, there is no current running
through the device, and this is how we determine the switching time of the
diode.

Figure [6.17b] also reflects the fact that the charge of the diode changes under
operation. This may be related to the particle boundary conditions at the
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contacts. Modelling the pn-diode may require that the Ramo-Shockley par-
ticle boundary conditions [23] are implemented in order to better maintain
charge continuity.

Figure 6.15: Circuit used for switching a diode between the conducting and non-
conducting states. The figure is from [40].
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Figure 6.16: The current through and voltage over a diode which is being switched
from the conducting to the non-conducting state at t = 0. The figure is from [40].
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Figure 6.17: Switching of the CMT pn-diode from the conducting to the non-
conducting state. 63
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Chapter 7

APD model

In this chapter, we will in section [Z1] briefly explain how an APD works
before we describe the details of the APD model as we have implemented it
in the Monte Carlo simulator. The architecture of our model component is
described in section[.2] The physical process of impact ionisation is sketched
in section [.3] and the model as we have implemented it to the simulator is
described in section[T.4l Section [l gives an overview of the model in pseudo
code, and the details of the photo excitation models is given in section [.5.11

7.1 Principle of operation

An APD is a photodetector, a device which may transform a light signal to
a current pulse. An important application of APDs are as photodetectors
for LIDARs (Light Detection And Ranging). A LIDAR illuminates a target
by laser pulses and detects the back-scatter. Object imaging and mapping
by LIDAR has applications in a wide range of fields, ranging from studies
of atmospheric composition to geological surveying as well as military ap-
plications [44]. Another important application for APDs is the scintillation
counter [45]. A scintillator is a crystal which fluoresces when struck by ion-
ising radiation, the light from the crystal may be detected and converted to
an electrical signal using an APD.

Different semiconductors are suited as detectors for different parts of the
electromagnetic spectrum determined by the quantum efficiency of the ma-
terial. The definition of quantum efficiency is the fraction of photons of
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given wavelength which are converted to electron-hole pairs. Cd,Hg;_,Te
has a high quantum efficiency in the interval 3 — 15 pm depending on the
alloy composition. Thus Cd,Hg,_,Te is a detector material covering both
of the atmospheric windows in the infrared spectrum. For z = 0.28, the
material is suited for mid-wave infrared detection, i.e. wavelengths in the
range 3 — 5 pm.

The APD that we will study here is in principle a pn junction under reverse
bias. A photon which is absorbed in the depletion region may generate
carriers by the photoelectric effect. Carrier multiplication is caused by the
impact ionisation process described in the following section. These carriers
will eventually reach the contacts of the device, resulting in a measurable
current gain.

Cd,Hg,_,Te is a highly sensitive detector material which is also low in noise
[46]. The low multiplication noise is due to a large asymmetry between
the impact ionisation rates of electrons and holes in CMT, this reduces the
excess noise which stems from the stochastic nature of the multiplication
process. An especially useful property of APDs is that the excess noise is in
dependant of the gain. As a consequence, the reverse bias may be increased
to increase the signal strength from the APD without increasing the noise at
the same time. This makes these devices useful detectors for signals of very
low intensity; devices capable of detecting single photons have been reported

[47).

7.2 APD architecture

The model APD we will study here is a pin device operated under reverse
bias. The ¢-region of such a device should be near intrinsic; in practise, it is
often weakly doped with donors. The interface between the p and ¢ region
resembles the pn-junction studied in the previous chapter, but because of
the weak doping, the depletion region extends far into the i-region. Under
reverse bias there will be a reinforced electric field across the depletion region.

Our model APD is sketched in figure[Z.Il The acceptor density is 1 x 10'6 cm™3
at the p side and the donor densities are 5 x 10 cm™ and 1 x 107 cm ™3
respectively for the ¢ and n+ regions. We believe including a heavy doped
contact region at the p-side would help increase device performance, and
should be considered for future simulations. The same device has been used
for the simulations presented in chapter We have kept the doping den-

66



sities low in order to avoid degeneracy and hence the need for considering
the Pauli principle. Table [[I] gives an overview of the device measures and
simulation parameters used with the simulations presented in chapter Bl

for fo;
Syl Lyf
Lycli?; n+
Lz
y P . dr Ly
Lx/2
Lx
T

Figure 7.1: The geometry of the APD device. The shaded regions represent the
contact regions.

7.3 The Auger and impact ionisation processes

The Auger and the impact ionisation processes are non-radiative recombina-
tion and generation processes occurring in semiconductors. The Auger and
impact ionisation processes are inverse of each other; the Auger processes
are associated with carrier recombination and impact ionisation processes
with carrier generation. These processes exists in a few different variants,
depending on whether localised states or phonons are involved. Ridley [48]
describes five basic Auger processes; here we will focus on the Auger 1 process
because it is the dominant process occurring in narrow gap semiconductors.
The impact ionisation process implemented in the Monte Carlo simulator is
the inverse of the Auger 1 process.

The Auger 1 process is initiated by a collision between two electrons where
one of the electrons falls down into the valence band; the energy of the
annihilated electron hole pair is absorbed by the other electron.

The inverse impact ionisation process is initiated with a high energetic elec-
tron which causes an ionising collision with the lattice, thus generating an
electron hole pair. In this process, the initial electron loses energy corre-
sponding to the energy gained by the newly generated electron hole pair.
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Lx 3.0 pm
Ly 1.0 pm
Lxg, ™ 0.75 pum
Lya: " 0.30 um
Lxe ! = Lixe 0.75 um
LYCrL = LYCrR 0.02 um
Nx 600

h 5 nm

T 1fs

Tf 5 fS

Ny 1x 10 cm™3
Np 5x 10" em™3
Nj 1x 107 em™®
T 300K / 77K
T 0.28

Table 7.1: Simulation parameters for the APD diode. The symbols are explained
in figure [711

The two electrons of the final state are swept to the n-side and the hole to
the p-side. Figure illustrates the process.

Carriers in the high electric field of the reverse biased pn-junction of an
APD are accelerated to high energies, thus impact ionisation becomes an
important scattering mechanism in this region of the device. One photo
generated electron hole pair in this region may initiate a sequence of impact
ionisation, resulting in carrier or avalanche multiplication. If enough carriers
are generated, a current gain is measurable at the contacts of the device.

7.4 The impact ionisation model

This section describes the impact ionisation model implemented in our Monte
Carlo simulator. We assume that only electrons may initiate impact ioni-
sation events; this is a reasonable assumption for CMT due to the large
asymimetry between the impact ionisation rates of electron and holes.
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Figure 7.2: Illustration of carrier generation by the impact ionisation process. A
high energy electron loses energy to produce an electron hole pair. The figure is

from [49].

7.4.1 Scattering rate

The impact ionisation process is modelled as a scattering mechanism follow-
ing the approach of [50]. Thus, we first need to obtain the scattering rate
for the impact ionisation scattering mechanism. Several choices exist, many
authors uses the Keldysh formula [50, 5I]], but we have decided to use the
rate obtained by Ridley [48] in order to avoid the use of fitting parameters.
The calculation of this rate is described in great detail; the Fermi Golden
Rule is used with the matrix element of screened Coloumb interaction. The
final expression is:

Ay/mgmy, (m; 1\*[E;
Wi = 4.139 x 1016 lih (ﬂ + u) (—) {— 1+ u)}

mo mo Er E,

In this expression, m; and mj are the effective masses of the conduction and
valence band, mg the free electron mass, F; the energy of the electron which
initiated the process and u = m}/mj. The scattering rate reflects that the
energy of the incident electron must be higher than the threshold energy

to be able to cause impact ionisation. The scattering rate is plotted in figure

3l
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Figure 7.3: The scattering rate for impact ionisation at 300 K used in the Monte
Carlo simulator.
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7.4.2 Determining the energy loss

The next problem is to find the energy loss, AE;, of the electron that initiated
the ionising collision. According to Kinch [52], the total probability of impact
ionisation is proportional to the integral

\/2(<%—x)+1)2—1(2(§;—x)+1)(2:c—1) Gr 121

x4

)

i
P(E;) /Eg de
1

where, + = AE;/E,. From this integral, we have extracted a probability
distribution for the energy loss of the electron causing the ionising collision
depending on its initial energy. The integral runs over all possible energy
losses, thus for a given Fj;, the integrand is proportional to the probability
distribution for the energy loss. A plot of this integrand for a few different
values of Ej; is given in figure [[.4] the graphs have been normalised with their
maximum values to ease comparison. For energies larger than a few £, the
shape of the distribution function, including the position of the maximum,
shows small changes; we have therefore chosen the three curves in figure [7.4]
as approximate distributions to save computations. Once the probability
distribution for AFE; is known, we sample from it using the acceptance-
rejection method described in [27].

7.4.3 Generation of the new electron-hole pair

Once the energy loss of the electron initiating the impact ionisation process
is determined, it remains to determine the states of the three carriers after
the scattering. The energy of the original electron after the scattering is
FE; — AE;, while the loss is divided equally between the generated electron
and the hole. In our model, the new electron is created in the I'-valley
while the new hole is created in the heavy hole band. The modulus of the
momentum vectors are found using the band structure while the directions
of the momenta of all three particles are randomised, adopting the procedure

of [51].

Our model takes into consideration the conservation of energy, but not con-
servation of momentum. The randomisation of the final state momenta
is a crude approximation which violates an important fundamental law of
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Figure 7.4: Given the energy, E; of an incident electron in an impact ionisation
process, f(AE;/E,) is proportional to the probability distribution for the energy
loss of the electron during the process.
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physics, namely the conservation of momentum. If the number of impact ion-
isation events taking place during a simulation is large, the randomisation
will ensure that there is no bias towards any side; and thus, considering the
total of all the impact ionisation events, one can imagine that the momentum
on average is near conserved.

An overview of the implementation of the scattering mechanism is given in
pseudo code below:

< Determine energy loss:
- choose distribution function
- sample from chosen distribution function
using accept-reject method >

FinalEnergy = InitialEnergy - EnergyLoss
k = k(FinalEnergy)
< randomize direction of momentum >

< Generate electron-hole pair:
k = k(deltaEi/2)
position = position of initial electron
< randomize directions of momenta >
valley = Gamma
band = heavy hole >

7.5 Overview of program implementation

Simulation of the APD simulation is conducted in two parts; first, the pin-
structure is simulated under reverse bias until the stationary Monte Carlo
equilibrium is reached. In this part of the simulation, Poisson’s equation is
solved every field adjusting time step. We have used approximately 50 000
superparticles of each species and the Dirichlet boundary conditions Vi =
—3.0 Vand Vi = 0.0 V to obtain the carrier distribution shown in figure [.6l
The figure shows that most of the particles participating in the simulation
are located in the near charge neutral areas where impact ionisation has a
low probability of occurring.

To increase the efficiency of the simulation, this carrier distribution along
with with the corresponding electric field will be frozen in the second part of
the simulation. One electron-hole pair is optically generated, and in addition
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to this pair, we track in time only the carriers generated by the impact ion-
isation process. The carriers are considered electrons and holes carrying the
elementary charge. They participate in free flights and scatterings, but we
assume their contribution to the electric field within the device is negligible.
The injection of superparticles at the contacts is stopped, but the simulated
carriers are allowed to leave the device through the contacts. The current
measured at the contacts represents the current gain. This implies that if
any dark current would be running through the diode during the simulation,
it would have been artificially set to zero.

< Perform simulation to obtain (or read) electric field >
for each simulation
< Generate electron hole pair due to photo-excitation >
for all timesteps
for all electrons
< flight >
< scatter, including impact ionization mechanism>
end
for all holes
< flight >
< scatter >
end
< Absorb particles at contacts >
< Measure current at the contacts >
< Collect statistics >
end

< Collect statistics >

end

Figure 7.5: Overview of the program implementation of the APD model.
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Figure 7.6: Spatial distribution of electron (blue) and hole (red) positions in the
reverse biased pin-structure.

7.5.1 Photo excitation

The initial electron hole pair starting the avalanche process in an APD pho-
todiode is generated by a photon with energy £, impinging on the ¢-region
of the diode. The photon energy needs to be larger than the band gap to be
able to ionise an atom; the remaining energy will be split among the electron
and hole. The photon energy can thus be written

E, = E,+ Ejy + E.. (7.1)

For the simulations presented in the next chapter, a 4.0 um photon has been
used to initiate the avalanche process. The generated particles are assumed
to be a heavy hole and an electron in the I' valley. The resulting electron
energy, E, and hole energy, Fj, is found using the band structure. Figure[7.7]
shows equation [Z1] plotted as a function of k = |k|. The electron-hole pair
is given the k found at the intersection of the two curves while the direction
chosen at random. The hole is given the negative of the electron k-vector
to preserve the momentum in the ionisation process. The position of the
initial electron hole pair is fixed to the depletion region of the i-region of the
pin-structure.
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Figure 7.8: Pseudo code giving an overview of the photo-generation of an electron-
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Figure 7.7: Finding the modulus of the k-vector from the band structure.

Determine photon energy from wavelength>
Assign fixed position in i-region >

determine electron |k| from band structure >
randomize direction of momentum >

Transform electron k-vector to cartesian coordinates >
valley = Gamma >

Assign hole k-vector using conservation of momentum >
band = heavy hole >

hole pair.
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Chapter 8

APD simulation results

In this chapter the simulation results for the reverse biased Cdg.2sHgg 79 Te
APD of figure [Tl will be presented. We have studied the current gain in
terms of the carrier multiplication in the device under different conditions,
including variation in the photon energy and lattice temperature. First, we
will have a peek at the behaviour of the carriers inside device during the
multiplication process.

8.1 Distribution of carriers inside the device

In figure B we have extracted the carrier positions within the device at a
few selected time steps during the simulation. The simulation was allowed
to run until we could observe that all the carriers had exited the device,
approximately a few hundred picoseconds. The top left plot shows the initial
photogenerated electron hole pair, it is accelerated in the electric field for
a few hundred femtoseconds before the the first impact ionisation process
occurs. The electrons, which have small effective masses compared to the
holes, drift faster towards the contact at the n-side than the holes towards
the p-side. As the impact ionisation events continue to happen, more and
more holes appear near the n-side of the component. As the electrons reach
the n contact, they exit the simulation. In a real device which obeys charge
continuity, the electrons would not be allowed to escape the device while the
holes are still on their way to the contact. They would have to wait for the
holes to reach the opposite contact and then recombination would take place.
In our simulations, depending on the bias voltage, the holes either succeed at
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exiting the component or they accumulate at the p-side of the device, which
is a sign of poor performance of this particular component. This effect might
either be due to unphysical large fluctuations in the electric field due to the
large superparticle charge, or it might be due to poor architecture design. In
the latter case, including a p+ region close to the p-contact would give rise
to an electric field which could pull the holes faster towards the contact.

As the electrons move out of the high electric field, they lose energy and the
probability of impact ionisation events decreases. Consequently, new electron
hole pairs are generated at a lower rate and eventually the generation process
dies out. Oune light pulse may thus be associated with one current pulse.

8.2 Switching time

The switching time for the APD diode has been measured when switching
from forward bias voltage corresponding to Dirichlet boundary conditions
Vi, = ViR = 0.0 V to reverse bias corresponding to Dirichlet boundary condi-
tions Vr, = 0.0 V and Vp = —8.0 V. Figure shows the current dropping
off during the transition. The figure indicates a switching time just above
~ 500 ps.

8.3 Multiplication and noise

The multiplication factor is the total number of electron hole pairs generated
from the initial photogenerated pair of carriers. We have measured the aver-
age multiplication factor and its standard deviation for two different lattice
temperatures and two different photon wavelengths. The multiplication fac-
tor is a measure of the current gain and hence the performance of the APD,
while the standard deviation is related to the noise.

The simulation results presented in table are averages over 5000 simu-
lations performed at a reverse bias of —3.0 V, meaning that the Dirichlet
boundary conditions to the Poisson solver was set to —3.0 V at the p-side
and 0.0 V at the n-side.

According to table Bl the multiplication is slightly larger for both wave-
lengths when the device is cooled. The impact ionisation rate is slightly
larger at 300 K than 77 K, but the difference is believed to be too small, a
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Figure 8.1: Carrier positions at selected time steps during the simulation.
This simulation was carried out at a reverse bias of 3.0 V.
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factor of the order ~ 1.1, to be directly responsible for the deviation. How-
ever the other scattering rates, as e.g. the polar optical scattering rate is
considerably higher at room temperature. When scatterings occur more of-
ten, the electron mobility is reduced. Thus the carriers in the cooled device
reach higher velocities, which, combined with a lower threshold energy for
impact ionisation, agrees with a larger multiplication factor.

The excess noise factor, F, is estimated using the formula [50)]:

o2

F(M)=1+ MM ,
where M is the mean multiplication gain and oj; the standard deviation.
For our simulations, the excess noise is indeed independent of gain, and the
values, just above 1, agrees with what has been observed in previous studies

I50].

‘ ‘ Photon wavelength ‘ M ‘ oM ‘ Excess noise ‘
T =300 K 3.0 um 12.8 6.6 1.27
4.0 pm 10.3 5.3 1.26
T'=T7TK 3.0 pm 16.5 7.7 1.22
4.0 pm 13.3 6.2 1.22

Table 8.1: Multiplication, M, and standard deviation, ojs obtained at a
reverse bias of —3.0 V. The results are averaged over 5000 simulations.

8.4 Current impulse response

The bandwidth of the device is related to the time it takes from a photon
hits the detector until the corresponding current pulse has faded out. The
bandwidth is of great interest for APDs to be used as the photodetecting
components of LIDARs, but as far as we know, little research has been done
on the current response CMT diodes so far.

In figure B3] the number of carriers exiting at one of the contacts per fem-
tosecond is plotted as a function of time for a simulation performed at a
reverse bias of 7.0 V. The generating photon had a wavelength 4.0 um.

The plot shows that the bandwidth for this component is limited by the
holes. At 8 ns, all the holes has exited the device. The logarithmic z-axis of
the plot obscures the fact that most of the holes exit the simulation during
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Figure 8.3: Reverse bias voltage: —7 V,photon wavelength 4.0 um

the time interval between 300 ps and 2 ns, followed by a tail which is close
to reaching zero at 5 ns.

It should be noted that the circuit surrounding the APD is not part of
our Monte Carlo model. As a consequence, there is no charge continuity
condition imposed on the contacts in our model, and thus there is reason to
believe that the time the model predicts it would take to exit the holes from
the device may be too long.

8.5 Gain-voltage characteristics

Figure B4] shows the multiplication-voltage characteristics of the simulated
diode. As observed in other studies, e.g. Derelle et al. [51], the gain curve
is exponential. This is a property of HgCdTe APDs related to the high
asymmetry of the impact ionisation coefficients of electron and holes.

Derelle et al. has studied the multiplication gain under variations in which
scattering processes are included in the model [5I]. The authors conclude
that alloy scattering has a large effect on the multiplication and excess noise
factor; they observe a steeper multiplication voltage characteristics for the
simulations which include the alloy scattering mechanism. The alloy scat-
tering is assumed to be completely random and isotropic in this model. In
our model the potential for the alloy scattering is not set for the simulations
presented here, thus alloy scattering does not happen in our simulations.
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Chapter 9

Discussion and further work

At the moment, several research groups work on Monte Carlo simulation
of APD-diodes. On the contrary, only few MC studies exist of the simple
pn-diode, and these are mainly from the 1980s.

The recent APD studies focus mainly on modelling and simulating gain and
noise in existing components in order to study device performance. Our
focus has been on the Monte Carlo method itself; to establish the difficulties
of using the Monte Carlo method. Our model is not tuned to experimental
results and contains no fitting parameters. Our model devices are chosen
for simplicity rather than for high performance. Our focus has been to shed
some light on general problems which arise when using the Monte Carlo
technique for studying devices based on pn-junctions.

The research on APD structures conducted up until recent operate in the
low photocurrent limit [53] [46], [50]; it is assumed that the charge of the
optically generated cloud of electron hole pairs is small enough that the
electric repulsion between them can be neglected in comparison to the large
applied bias. This assumption implies that the electric field is calculated
only at the beginning of the simulation and stays frozen throughout. It is
only since spring 2011 that simple Fermi-Poisson solvers [53] [50] has been
replaced by self-consistent solution of the Monte Carlo model and Poisson’s
equation [46] 54]. The low photocurrent assumption was relaxed first by
Bertazzi et al. in 2011 [54], but it still remains to do this for CMT APDs.
Our model is in principle prepared for doing this at this stage.

The APDs current response to a light pulse in CMT APDs has been studied
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using the Monte Carlo model [54] and a 1D deterministic model based on
carrier generation [55]. The latter study explains that the response time is
due to the large capacitive effect of the metal contacts. The former explains
the response time in terms of the gain. A longer tail of the current response
curve is observed for larger gains; the increased number of offspring carriers
need more time to leave the device. Our model is in agreement with both
of these models, but in addition, it points at the importance of the large
difference in electron and hole velocities. Based on our simulation results,
we suggest to explore the possibility of coupling the Monte Carlo method
with the solution of Maxwell’s equations to study the significance of the
displacement current on the current response time.

Further development of the Monte Carlo simulator includes development of
the Poisson solver. A cylindrical 2D solver will prepare the simulator for
modelling a new class of devices, as will the inclusion of a 3D solver. The
2D solver currently included in the simulator consumes about 50% of the
simulation time, solving the 3D problem strengthens the need for a fast
solver. This can be achieved within the framework of the successive over
relaxation method by applying multigrid techniques. Another alternative
which may be considered is the Fast Multipole Method (FMM) [5]. This
method relies on reducing the complexity the many-body problem before
solving it, thus reducing the solution time.

9.1 Further work

During the work with this thesis, we have identified a number of details that
will improve the Monte Carlo simulator:

e Include the full band structure information and provide interoperability
with ab-initio electronic structure codes such as Wien2k.

e The impact ionisation model should be improved by taking into ac-
count conservation of momentum in addition to energy conservation.

e The ohmic contact model should be fitted for the CMT material. It
is necessary to implement the Ramo-Shockley particle boundary con-
ditions. Furthermore, detailed simulation of the contact region using
the charge enhancement method should be considered.

In the discussion section, a few topics relevant for ongoing research in the
field of APDs were mentioned. In addition, we suggest:
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e Use the model to solve Poisson’s equation self-consistently during APD
simulation in order to study larger photocurrents or THz switches.

e The iterative Poisson solver which has been developed can be combined
with the multigrid technique prior to parallellisation.
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Chapter 10

Conclusions

The Monte Carlo simulator which has been developed as a student project
at FFI has during this work been made capable of modelling devices. A fast
Poisson solver which relies on the successive overrelaxation method has been
implemented and an impact ionisation model has been implemented in order
to make the simulator capable of modelling APDs.

During this work, two simple pn-junction devices has been simulated, a
pn-diode and an APD. The device characteristics, including current-voltage
characteristics and switching times have been obtained. Our simulation re-
sults of the pn-diode has shown that there may be a small formation of
electron plasma at the p-side of a CMT pn-diodes. For the APD, we have
studied multiplication and noise and obtained the gain-voltage characteris-
tics.

We simulated simple devices in order to discuss a few problematic aspects
of the Monte Carlo method which arise when simulating CMT pn-junctions.
Within the framework of the Monte Carlo method, the dark current needs to
be neglected for CMT APDs. We have pointed to the fact that the current-
impulse response may turn out inaccurate due to violation of the continuity
equation in the surrounding circuit. Furthermore, we believe that the self-
consistent solution of the transport equations and Poisson’s equation using
the Monte Carlo method is well suited for studying large photocurrents in
APDs because the frozen field assumption is easily relaxed within the Monte
Carlo framework.
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Appendix A

Energybands and effective
masses

The energy bands and scattering rates are corner stones of the Monte Carlo
model. They have not been altered during the work with this thesis, thus
they are presented here in the appendix. More details are presented in the
theses of Norum [§], Olsen [9] and Skéaring [10].

The electron band band structure used in the Monte Carlo simulator is the
analytical and isotropic approximation

h?k?

90 = E(1+aF) = 2,

(A1)
where a = (1 — m}/m.)?/E, and E, is the band gap at the I' point. Here,
m™* are the effective masses of the three valleys included in our model, I, L
and X.

The effective mass of the I' valley at the bottom of the conduction band is
3h2Eg
(16.56x 10~ 10eC)2
temperature via the band gap dependancy. The effective masses of the L and

X valleys are m} = 0.222m, and m’, = 0.580m, where m, is the free elctron
mass. These valleys are high in energy, 1.5 eV and 2.5 eV respectively, and
therefore rarely active in Cd,Hg;_, Te.

in our model mp = thus depends on the alloy fraction and

The current heavy hole the light hole band models are described in Skaring’s
master’s thesis [I0]. The bands are reproduced together with the electron
band structure of the I' valley in figure [A.Dl The hole bands are isotropic
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with continous derivatives. The effective hole masses are m7;; = 0.530m,

* _ *
and mj 5y = myp.

Energy, [ eV]

k,[em™]

Figure A.1: The band structure of the I' valley, the heavy (HH) and light (LH)
hole band at 300 K.
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Appendix B

Scattering rates

The intravalley and intraband scattering rates included in our Monte Carlo
model as functions of the I' valley and heavy hole band energy are presented
in figures [B.1] and respectively. In addition, intervalley and interband
scattering rates are included in the model.
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Figure B.1: The scattering rates for the I" valley at 300 K. Poab/poem means polar
optical absorption/emission, acab/acem corresponds to acoustic phonon scattering
and plab/plem to plasmon scattering.
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Figure B.2: The heavy hole scattering rates at 300 K. Poab/poem means polar op-
tical phonon absorption/emission, acab/acem corresponds to acoustic phonon scat-
tering, lonpacab /lonpacem and tonpacab/tonpacem to longitudinal and transversal
nonpolar optical phonon scattering respectively.
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