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Chapter 1Introdu
tion
The information age, in whi
h we live, is based on digital 
omputers andele
troni
 devi
es made possible by the use of semi
ondu
tor devi
es. Yet,understanding these devi
es is a 
hallenge; in the resear
h �eld of semi
on-du
tors it is not unusual that a devi
e is produ
ed in a laboratory beforethe physi
s of the material is fully understood. In order to obtain the de-tailed knowledge of how these devi
es really work, it is ne
essary to modelthe physi
al pro
esses taking pla
e at a mi
ros
opi
 s
ale inside the material.Modern mi
roele
troni
 devi
es requires the treatment of transient dynami
sof highly non-equilibrium 
arrier distributions; the Monte Carlo method ofsemi
ondu
tor devi
e simulation is a widely used and a
knowledged modelsuitable for this purpose. The method is a 
omputer simulation te
hniquewhere the model is designed on a mi
ros
opi
 s
ale, on the level of ele
troni
intera
tions, while the results are obtained in terms of ma
ros
opi
 mate-rial properties, e.g. the 
urrent-voltage 
hara
teristi
s of a diode. Using
omputer simulation te
hniques su
h as the Monte Carlo method o�ers aunique insight into pro
esses whi
h are not dire
tly observable in physi
alexperiments.The Monte Carlo method is a parti
le simulation te
hnique where we followthe phase spa
e traje
tories of the 
urrent 
ondu
ting parti
les in a semi-
ondu
tor material. These parti
les are subje
t to thermal motion withina 
rystal latti
e. This is modelled as a series of free �ights terminated bys
attering events. Random numbers are used to determine the duration ofthe free �ights and the new dire
tions of the parti
les after the s
atterings.In this way, we obtain the statisti
al distribution of parti
le states in the5



material whi
h is also a solution to Boltzmann's transport equation. Allma
ros
opi
 transport properties may be extra
ted from this solution as en-semble or time averages.For our purposes, whi
h is devi
e simulation, the ele
tri
 �eld within thedevi
e also needs to be 
onsidered, and hen
e it is the solution to the self-
onsistent system of system of Boltzmann's equation and Poisson's equationthat needs to be obtained. In this thesis, an iterative fast Poisson solversuitable for two-terminal devi
es has been developed and an Ohmi
 
onta
tmodel has been implemented to the existing bulk simulator.The Monte Carlo method for material simulations roots in the 1960's, andhas been the base for numerous publi
ations during the past �fty years. Ithas been re
ognised as a powerful theory for studying physi
s on the borderbetween the 
lassi
al and quantum me
hani
al regimes. A way to view thisis 
onsidering the e�ort that has been put into stret
hing the temporal andspatial validity regime of the model. In the limit of long simulation times,the method is used in 
ombination with hydrodynami
 theory whi
h allowsa longer time step. In the limit of small devi
es, a variety of quantum
orre
tion methods have been developed.In this thesis, we have used the Monte Carlo method for semi
ondu
tor de-vi
e simulation to simulate a pn-diode and an avalan
he photodiode (APD).A pn-diode is a re
tifying devi
e whi
h allows 
urrent to pass in one dire
-tion while 
urrent in the opposite dire
tion is blo
ked. The APD is a highlysensitive photo-dete
tor whi
h relies on the photoele
tri
 e�e
t; a photonex
ites an ele
tron into the 
ondu
tion band, the APD then exploits thephysi
al pro
ess of impa
t ionisation to generate an avalan
he of 
arriers.This gives rise to a 
urrent pulse whi
h is large enough to be dete
table inthe ele
tri
al 
ir
uit surrounding the diode. APDs are in
reasingly impor-tant for te
hnologi
al appli
ations; they are used as dete
ting 
omponentsof LIDARs, whi
h are used for opti
al remote sensing, and for s
intillationdete
tors, whi
h measure ionising radiation.The APD and the pn-diode are both relatively simple two-terminal devi
esin whi
h the pn-jun
tion 
onstitute the main building blo
k. Simple 
ompo-nents like these have traditionally been analysed using the drift-di�usion orhydrodynami
 model. Parti
le simulation te
hniques have not, to any greatextent, been employed to this task. In this thesis, we apply the Monte Carlomethod to pn-jun
tion devi
es in order to investigate some of the limits andweaknesses of the Monte Carlo method.6



Stationary simulations of a pn-diode have been 
ondu
ted in order to obtainthe 
urrent-voltage 
hara
teristi
s for the devi
e. It points to the fa
t thatthe Monte Carlo method is unsuited for obtaining the reverse leakage 
urrentfor CdxHg1−xTe (CMT) pn-diodes. Detailed statisti
s have been extra
tedfor simulations under reverse and forward bias voltage, these indi
ate thatthere is a small a

umulation of an ele
tron plasma at the p-side of thejun
tion of the CMT diode. This phenomenon has previously been observedfor GaAs-diodes. A transient simulation has been performed in order toobtain the swit
hing time for the CMT pn-diode at a reverse bias of −5 V.In addition, our simulation results show that large ele
tri
 �elds arise a
rossa CMT pn-jun
tion, thus it may be ne
essary to in
orporate intra
ollisional�eld e�e
ts by extending the simulator with quantum 
orre
tions.I order to do simulations of CMT APDs, a simple impa
t ionisation modelhas been implemented to the Monte Carlo simulator. Multipli
ation andnoise has been measured under variations in latti
e temperature and photonwavelength, the multipli
ation gain was observed to be slightly higher dueto in
reased mobility in the 
ooled devi
e. Furthermore, our results showan exponential gain-voltage 
urve and ex
ess noise whi
h is independent ofgain. We report a swit
hing time of 500 ps when the devi
e is swit
hed fromthe 
ondu
ting state to a reverse bias voltage of −8 V. We also presentthe 
urrent impulse response time, whi
h points to a weakness of the MonteCarlo model; due to the large asymmetry in the e�e
tive masses of ele
tronsand holes in CMT, it is ne
essary to take into a

ount 
harge 
ontinuity inthe surrounding 
ir
uit and the displa
ement 
urrent in order to obtain aproper 
urrent-response 
urve.This thesis is part of a student proje
t whi
h has been undergoing at theNorwegian Defen
e Resear
h Establishment (FFI) sin
e 2007. The aim of theproje
t is to develop a state of the art Monte Carlo simulation tool for bothbulk and devi
es and thereby promote the photovoltai
 infrared dete
tordevelopment taking pla
e at FFI. In this 
ontext, the aim of this thesis hasbeen to extend the existing bulk simulator to a devi
e simulator with theimplementation of a fast Poisson solver and an ohmi
 
onta
t model, as wellas enabling the study APDs with the implementation of an impa
t ionisationmodel.
7
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Chapter 2Basi
s of modellingsemi
ondu
tors
This 
hapter gives a short introdu
tion to the some of the topi
s of solidstate physi
s whi
h are needed for modelling semi
ondu
tor 
rystals. Theaim is to build a bridge between the theory as it is often presented in quan-tum me
hani
s and solid state 
ourses taught at the university and how thetheory is used in a Monte Carlo parti
le simulator. First, the properties ofsemi
ondu
tors in general are brie�y summed up in se
tion 2.1 and a fewproperties of CdxHg1−xTe are given in se
tion 2.2. In se
tion 2.3, a briefpresentation of the quantum me
hani
al des
ription of 
rystals is given, in-
luding the 
on
epts of Blo
h states and energy bands. In se
tion 2.4, theBoltzmann transport equation is presented, and �nally, in se
tion 2.5, thequantum me
hani
al treatment of s
attering events is presented.2.1 Semi
ondu
tor materialsSolid state materials are 
ategorised as metals, semi
ondu
tors or insulatorsbased on the ele
tri
al 
ondu
tivity of the material. Semi
ondu
tors havelower 
ondu
tivity than metals, but higher 
ondu
tivity than insulators. Atlow temperatures, the valen
e band is 
ompletely �lled while the 
ondu
tionband is empty, thus the semi
ondu
tor behaves like an insulator. At roomtemperature, ele
trons are thermally ex
ited to the 
ondu
tion band, andhen
e the material be
omes 
ondu
tive.9



The 
ondu
tivity of semi
ondu
tors is easily 
ontrolled, either dynami
allyby temperature 
hanges or permanently by the level of impurities introdu
edinto the material. This property makes semi
ondu
tor materials appli
ablefor a wide range of purposes within the ele
troni
s industry.Semi
ondu
tor materials have 
rystal stru
ture where the atoms are arrangedin a periodi
 latti
e. The material may be doped with impurity atoms tomodify the ele
troni
 properties of the material. In this pro
ess, some of thehost atoms are repla
ed by impurity atoms. If arseni
 atoms, whi
h have�ve valen
e ele
trons, are implanted into a sili
on latti
e, four of the valen
eele
trons of ea
h arseni
 atom will form 
ovalent bonds with the neighbour-ing sili
on atoms. The �fth ele
tron ends up being loosely bound to its hostatom and is therefore easily ex
ited to the 
ondu
tion band, leaving behindan ionised impurity 
entre. While donors 
ontribute ele
trons to the 
on-du
tion band forming n-type semi
ondu
tors, a

eptors 
ontribute holes tothe valen
e band that parti
ipate in ele
tri
al 
ondu
tion in p-type semi-
ondu
tors. In this thesis both n- and p-type materials will be 
onsidered.The material is assumed to be fully ionised at room temperature, thus thedensity of 
ondu
tion band ele
trons is set equal to the density of donorsand likewise the hole density is assumed equal to the a

eptor density.2.2 CdxHg1−xTe

CdxHg1−xTe, abbreviated CMT, is a 
ompound ternary alloy semi
ondu
torwhi
h 
rystallises in the zin
 blende latti
e stru
ture. It is 
omposed ofthe semimetal HgTe and the semi
ondu
tor CdTe; the x denotes the molefra
tion of HgTe in the alloy. CMT has a dire
t bandgap whi
h in
reasesapproximately linearly with x until rea
hing the bandgap of CdTe whi
h is
1.5 eV at room temperature. The band gap is also temperature dependent,an experimentally obtained formula for the bandgap whi
h is valid up to
T = 500 K is given in [1℄:

Eg = Eg0 +
6.3 · (1− x)− 3.25 · x− 5.92 · x · (1− x)

11 · (1− x) + 78.7 · x+ T
× 10−4T 2,where Eg0 = −0.303 · (1− x) + 1.606 · x− 0.132 · x · (1− x). Eg is in eV and

T in K.The variable bandgap and the high absorption 
oe�
ient makes CMT a veryuseful material for appli
ations. It 
an be tuned to absorb wavelengths in10



the interval 0.7 − 25 µm, thus 
overing most of the infrared region of theele
tromagneti
 spe
trum. CMT is an important material to the industryof infrared dete
tors and photodiodes, and espe
ially useful for fabri
atinghighly sensitive avalan
he photodiodes whi
h are low in noise.The simulations whi
h has been performed during the work with this thesisare done with an alloy fra
tion of x = 0.28 and, unless otherwise stated, atroom temperature. These 
onditions 
orrespond to a bandgap Eg = 0.27 eV.2.3 Quantum me
hani
al treatment of 
rystalsThe quantum me
hani
al des
ription of a perfe
t 
rystal is thoroughly givenin many textbooks, among them [2℄. The full des
ription of a perfe
t 
rystalis given by the S
hrodinger equation with the many parti
le 
rystal Hamil-tonian
H =

∑

i

p2i
2mi

+
∑

j

P 2
j

2Mj
+

1

2

′
∑

j′,j

ZjZj′e
2

4πε0|Rj −Rj′ |

−
1

2

′
∑

j,i

Zje
2

4πε0|ri −Rj |
+

1

2

′
∑

i′,i

e2

4πε0|ri − ri′ |
.Here, the two �rst term represents respe
tively the kineti
 energy of the ele
-trons, having masses mi, and the nu
lei of masses Mj . The three last termsrepresent the potential energies between the ions and the ele
trons. Thesymbols pi and Pj represent the momentum operators of the i'th ele
tronand the j'th nu
leus, ri and Rj denote their respe
tive positions. Zj denotesthe atomi
 number of the j'th nu
leus and ε0 the ele
tri
al permittivity ofva
uum.To be able to solve this system, we introdu
e several approximations. First,the nu
lei and the strongly bound 
ore ele
trons are lumped together redu
-ing the system to ion 
ores and loosely bound 
ondu
tion ele
trons. This doesnot 
hange the appearan
e of the equation above, but 
hanges the meaningof the indi
es; i now labels only valen
e ele
trons instead of all ele
trons,and j now labels ion 
ores.Next, the Born-Oppenheimer approximation 
an be applied sin
e the ion
ores are heavier and slower than the valen
e ele
trons. As a 
onsequen
e,11



the ele
trons sees only the potential of the stationary ion 
ores, while the ion
ores sees only the time-averaged adiabati
 potential of the valen
e ele
trons.The Hamiltonian is thereby redu
ed to a sum of three terms,
H = Hions(Rj) +He(ri,Rj0) +He−ion(ri, δRj).The �rst term des
ribes the ioni
 motion in the averaged potential; these
ond term is denoted the ele
troni
 term, it des
ribes the motion of theele
trons in the latti
e where the ions are frozen in their equilibrium po-sitions, Rj0, and the last term des
ribes the 
hange in ele
troni
 energiesdue to displa
ements, δRj , of the ions from their equilibrium positions, also
alled phonons.Further, the mean �eld approximation, whi
h is derived in [3℄, is applied.The purpose of this approximation is to redu
e the many-body problemabove to an e�e
tive one-body problem where all ele
trons are 
onsideredto experien
e the same averaged potential V (r). The result is the familiarone-ele
tron S
hrödinger equation:

(

p2

2m
+ V (r)

)

ψn(r) = Enψn(r). (2.1)Here, ψn denotes the one-ele
tron wave fun
tion and En the one-ele
tronenergy of the eigenstate labelled n. Even though they are a

urate solutionsto 2.1, they are approximate in the sense that the equation is subje
t to theabove mentioned approximations.The Blo
h theorem states that when V (r) is a periodi
 fun
tion, the solutionsto 2.1 are Blo
h waves,
ψnk(r) = eik · runk(r),where unk(r) have the periodi
ity of the latti
e, with 
orresponding energies

En = En(k).The solutions 
arries the index k whi
h is the wave ve
tor. The allowedele
troni
 states are thus de�ned by the two indi
es k and n. The k-ve
tortakes values within the �rst Brillouin zone of the re
ipro
al latti
e. Theindex n ∈ [1,∞) represents the available bands. The bands with the lowestindi
es are valen
e bands o

upied by valen
e ele
trons, while the ele
trons inthe 
ondu
tion band parti
ipate in 
ondu
ting 
urrent. The band stru
ture12



En(k), originating from the periodi
 nature of the 
rystal de�nes the allowedele
troni
 energy states of the 
rystal.There are several methods of 
al
ulating the band stru
ture of a 
rystal.Symmetry often aids the 
al
ulations, and hen
e band stru
ture 
al
ulationsprodu
e E(k)-relations along 
rystal dire
tions of high symmetry, see �g2.1, within the Brillouin zone. The basis for the band model used with oursimulations is the k ·p-method, whi
h is a perturbative method; thus thea

ura
y of the energy de
reases as k in
reases.

Figure 2.1: First Brillouin zone of the f

 
rystal latti
e with symmetry labels.Figure from [4℄.2.4 Boltzmann's transport equationThe transport properties of a material is des
ribed by the Boltzmann trans-port equation. Applied to our system, whi
h is a slab of semi
ondu
tormaterial, the solution to the Boltzmann equation is the statisti
al distri-bution fun
tion of the 
ondu
tion band ele
trons in the material. Whenthe probability of ea
h available phase spa
e state being o

upied is known,all transport properties may be evaluated taking averages over a statisti
alensemble of 
arriers.The Boltzmann transport equation is an equation for the rate of 
hange of13



the distribution fun
tion. The distribution fun
tion, f = f(r,k, t), of theele
trons is in general a fun
tion of position, r; momentum, k and time, t.It des
ribes the probability of a phase spa
e state being o

upied at a giventime. In equilibrium, the distribution fun
tion is the familiar Fermi-Dira
fun
tion,
f(E) =

1

e(E−EF )/kBT + 1
,whi
h is here stated in terms of energy, E. EF denotes the Fermi level, whi
hmay be 
onsidered the highest energy level o

upied by the ele
trons at 0 K;T the temperature and kB is Boltzmann's 
onstant.Boltzmann identi�ed three possible reasons for 
hanges in the distributionfun
tion, namely di�usion, in�uen
e by external �elds and 
ollisions betweenele
trons and latti
e imperfe
tions. The mathemati
al statement of thesethree assumptions give rise to the Boltzmann transport theory,

∂f

∂t
=
∂f

∂t

∣

∣

∣

∣

diffusion

+
∂f

∂t

∣

∣

∣

∣

fields

+
∂f

∂t

∣

∣

∣

∣

coll

.Substituting for the partial derivatives due to di�usion and �elds, the Boltz-mann transport equation reads
∂f

∂t
+ v ·∇rf + k̇ · ∇kf =

∂f

∂t

∣

∣

∣

∣

coll

.where k̇ is determined by the external ele
tri
 and magneti
 �elds, E and
B, by the relation

h̄k̇ = −e(E +
1

c
v ×B)and the parti
le velo
ity is

v =
1

h̄
∇kE.The 
ollision term of the equation is expressed in terms of quantum me-
hani
al s
attering probabilities. How s
attering probabilities are 
al
ulatedwill be elaborated in the next se
tion. For now, we'll assume that the rateof transition per unit time from a state k to another state k′ is given by

W (k,k′). This parti
ular s
attering event 
an only happen if the state kis o

upied and the state k′ is free. The probability of k being o

upied is14



f(k) and the probability that it is free is (1 − f(k)). The total 
hange in
f(k) is given by the di�eren
e between the in
rease due to s
attering intothe k-state and the de
rease due to s
attering out of the k-state. These twoterms should be integrated over all k′-states, the resulting 
ollision term isthus expressed:
∂f

∂t

∣

∣

∣

∣

coll

=
1

(2π)3

∫

[

f(k′)(1 − f(k))W (k′,k)− f(k)(1− f(k′))W (k,k′)
]

d3k′.2.5 S
attering eventsIn semi-
lassi
al transport models, the ele
tron is 
onsidered to be of wavenature during the 
ollisions with the latti
e or intera
tions with other parti-
les, these intera
tions are therefore referred to as s
atterings. A s
atteringis a transition between two ele
troni
 states, the wave pi
ture indi
ates ade�e
tion of the wave.In quantum me
hani
 theory, the transitions between ele
troni
 states are
aused by imperfe
tions in an otherwise perfe
t periodi
 latti
e potential.Assuming that the deviations from the original potential are small, we mayuse perturbation theory , and the hamiltonian of the system may be written
H = H0 +Hj,where H0 is the Hamiltonian of the unperturbed system and Hj is the per-turbation 
ausing the transition.A general result derived using time dependent perturbation theory is theFermi Golden rule. It states that the transition rate per unit time from aninitial state k in band n to a state k′ in band m is given by [5℄:

Γj(n,k;m,k
′) =

2π

h̄

∣

∣〈m,k′ | Hj(r) | n,k〉
∣

∣

2
δ(Em(k′)− En(k) ± h̄ω),where h̄ω is the energy emitted (upper) or absorbed (lower) during the pro-
ess. The Delta fun
tion ensures 
onservation of energy during the pro
ess.The total s
attering rate per unit time for transitions out of the state k ofband n is found by performing the summation over all states the system 
antransition into:

Γj(n,k) =
2π

h̄

∑

m,k′

∣

∣〈m,k′ | Hj(r) | n,k〉
∣

∣

2
δ(Em(k′)− En(k)± h̄ω). (2.2)15



To obtain the s
attering rates to be used in a Monte Carlo simulator, 2.2 isevaluated for spe
i�
 s
attering potentials, Hj . This is explained in [6℄.2.6 Applying the theory to the parti
le simulatorSo far this 
hapter has summed up some relevant topi
s found in text booktheory of solid state physi
s and quantum me
hani
s. It is time to look athow this theory is applied in a Monte Carlo parti
le simulator.The Monte Carlo method is based on the assumption that the S
hrödingerequation has already been solved, and a model of the band stru
ture isavailable either as an analyti
al expression or as a look-up table. This makesit is possible to assign an energy to a given momentum state. Full-bandMonte Carlo models in
lude a

urate representations of the band stru
ture,but are 
omputationally more 
ostly than simpler analyti
al models.It is also assumed that the s
attering rates of all the s
attering pro
esseswhi
h are 
onsidered relevant have been obtained in advan
e using the TheFermi Golden Rule. The rates are fun
tion of parti
le energy and should beavailable to the simulator as tables.Summing up the Monte Carlo method in brief, we initialise ea
h parti
lewith a state 
onsisting of its k-ve
tor, position and valley or band. We thenfollow the traje
tory of ea
h parti
le by integrating up its momentum in timeduring the free �ights. The parti
les are s
attered at 
ertain times a

ordingto the s
attering rates; the s
attering rates assure that a parti
le high inenergy will have a high probability loosing energy in a s
attering event whilethe opposite is true for a parti
le low in energy. After the simulation has runfor some time, we end up with a statisti
al distribution of parti
les whi
his independent of the initial states. It 
an be shown that the distributionfun
tion obtained using this te
hnique satis�es the Boltzmann's transportequation in he long time limit [5℄.The energy bands and s
attering rates are obtained from quantum me
hani
swhere the wave pi
ture of ele
trons is used, but in the Monte Carlo model,the ele
trons and holes are viewed as parti
les. This is the reason whythe Monte Carlo method belongs to the 
ategory of semi-
lassi
al transporttheories. The fa
t that the parti
les are simultaneously sharp in positionand momentum poses a limit to the validity of the model be
ause a

ordingto the un
ertainty prin
iple of quantum me
hani
s, these quantities 
annot16



be pre
isely determined at the same time. If we require the un
ertainty inmomentum to be mu
h smaller than the average parti
le momentum and atthe same time the un
ertainty in position to be mu
h smaller than the meanfree path, Ja
oboni [7℄ shows that the validity of the semi-
lassi
al theory isensured when 
ollisions are less frequent than 1014 s. Thus in 
ase of highs
attering rates, quantum transport theories should be employed rather thanthe Monte Carlo method.
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Chapter 3
The Monte Carlo simulator
This 
hapter starts out with a brief des
ription of the Monte Carlo simulatordeveloped during the work with this thesis. The intention of se
tion 3.1 isto give an overview of the simulator as a whole, in
luding the parts thathas not been 
hanged during the work with this thesis. The following se
-tions throughout this 
hapter will fo
us on the algorithms implemented inorder to extend the Monte Carlo simulator from a bulk simulator to a devi
esimulator. Se
tion 3.2 sket
hes a the devi
e geometries whi
h has been im-plemented during the work with this thesis. Some 
hanges have been madeto the equations governing the ele
tron dynami
s within the devi
e, theseare presented in se
tion 3.3. In order to solve Poisson's equation and ob-tain the ele
tri
 �eld within the devi
e, the positions of the mobile 
arriersneeds to be 
onverted to the format of a 
harge density matrix. The 
loud in
ell algorithm whi
h has been implemented is des
ribed in se
tion 3.4. Thedevi
e has been made 
apable of ex
hanging parti
les with its surround-ings through the implementation of ohmi
 
onta
ts. The 
onta
t model andprogram implementation is des
ribed in se
tion 3.5. Se
tion 3.6 des
ribeshow the 
urrent running through the devi
e is measured. A des
ription ofthe parti
le boundary 
onditions at the edges of the devi
e is given in se
-tion 3.7. Finally, se
tions 3.8 and 3.9 dis
uss the physi
al interpretation ofsuperparti
le 
harge and 
harge density when a 3D devi
e is modelled in 2D.19



3.1 Des
ription of the programThe Monte Carlo simulator developed during the work with this thesis hasbeen in development by students at the Norwegian Defen
e Resear
h Estab-lishment (FFI) sin
e 2007. Earlier versions of the program are des
ribed inthe Master's theses of Norum [8℄, Olsen [9℄ and Skåring [10℄. The purpose ofthe student proje
t at FFI is to develop a versatile tool for modelling mate-rials and devi
es using both types of 
arriers. In addition to the simulationspresented in the student theses referred to above, the program has beenemployed in simulations of laser pulse ex
itations in bulk material [11, 12℄.The des
ription of the program whi
h will be given in the rest of this se
tionfollows the sequen
e elements in the program as they are presented in thepseudo 
ode of �gure 3.1.The �rst task of the program is to present the user with a menu for settingsimulation parameters. It allows the user to 
ustomise the simulation, se-le
ting devi
e or bulk simulation, devi
e geometry, turning s
attering me
h-anisms on and o�, allowing the Pauli prin
iple to be in a
tion et
. Thesimulation parameters set by the user de�ne whi
h 
hunks of 
ode will beexe
uted during a simulation.The next step is initialisation of the position and momenta of the ele
tronand hole ensemble. The parti
les are initialised with randomised momentadrawn from a Maxwellian distribution. The initialisation of parti
le posi-tions depends on the devi
e to be simulated. The initial positions are drawnfrom a uniform distribution su
h that the devi
e is initially 
harge neutral.When a simulation has run for a su�
iently long time, the parti
le distri-bution will be independent of the initial distribution [7℄; however guessingan initial distribution 
lose to the equilibrium distribution may shorten thesimulation time required to rea
h equilibrium. The possibility of startinga simulation with the position and k distribution obtained at the end of aprevious simulation has been implemented.The s
attering rates and energy band models determine when the s
atteringevents will o

ur and the new parti
le states after s
attering. The level ofsophisti
ation of a spe
i�
 Monte Carlo simulator therefore relies heavilyon the implementation of these two ingredients. The following s
atteringme
hanisms are 
urrently implemented in our model:Carrier-
arrier s
atteringCoupled modes s
attering 20



< Read user input from menu >< Initialize simulation parameters >< Initialize position and k-states of parti
les >< Cal
ulate s
attering rates and energy tables>for all timesteps< Perform 
arrier-
arrier s
attering >< Update 
harge density matrix >< Cal
ulate ele
tri
 field matrix >for all ele
trons< flight >< s
atter >endfor all holes< flight >< s
atter >end< Inje
t / eje
t parti
les at 
onta
ts >< Measure 
urrent at the 
onta
ts >< Update hot phonons >< Update s
reening length >< Colle
t statisti
s >end Figure 3.1: Overview of the Monte Carlo simulator.
21



Polar opti
al s
atteringA
ousti
 s
atteringIonised impurity s
atteringPlasmon s
atteringNon-polar s
atteringInter-valley s
atteringAlloy s
atteringImpa
t ionisation s
atteringThe s
attering rates for most of these me
hanisms have not been 
hangedduring the work with thesis. For a more thorough des
ription of the rates,see [8, 9, 10℄ for des
riptions and plots. The sour
es for most of the rates usedwith our simulator is [13, 14℄. The impa
t ionisation s
attering me
hanismhas been developed as part of this thesis, and will be des
ribed in se
tion7.4.The program assumes a three-valley model for the 
ondu
tion band. Theele
trons inhabit the Γ, L or X-valley. The 
ondu
tion band model usedis an analyti
al, isotropi
 and non-paraboli
 model. The program in
ludestwo hole bands, the heavy hole band and the light hole band whi
h in theprogram are represented as tables [10℄.The s
attering rates and energy bands are fundamental elements of theMonte Carlo model. Details and plots of of the energy band of the Γ valleyand the hole bands as well as the inter-valley and inter-band s
attering ratesare presented in the appendi
es A and B.During simulation, the 
harge density matrix is updated using the 
loud in
ell algorithm and the ele
tri
 �eld is 
al
ulated using the su

essive over-relaxation method every �eld adjusting time step.Within the parti
le ensemble loops, the �ight subroutine updates the parti-
le positions. This routine �rst updates the parti
le momentum due to theele
tri
 �eld, then the new positions is found using time integration. Thes
atter subroutine determines the s
attering rates for a parti
ular parti
ledepending on it's energy. The duration of the free �ight is determined usingrandom numbers; if a su�
ient amount of time has passed sin
e parti
le ex-perien
ed its last s
attering event, a new s
attering will o

ur. A s
atteringme
hanism is then 
hosen from the rates, whi
h also in
ludes self-s
attering.The �nal k-state after s
attering is 
omputed in the lo
al 
oordinate systemwhere the z-axis is along the dire
tion of the initial k-ve
tor, and then trans-22



formed to the global 
oordinate system of the devi
e. If the Pauli prin
ipleis turned on, the parti
le will make a transition into the new state only ifthe state is uno

upied.After the parti
le states have been updated, new parti
les may enter thesimulation and existing parti
les may be evi
ted at the 
onta
t regions ofthe devi
e. The s
reening length routine is des
ribed in [10℄ and the hotphonon routine in [8, 10℄.At sele
ted time steps, parti
le positions and k-ve
tors are among the simu-lation data whi
h is written to �le. Average parti
le energy, parti
le numberand 
urrent measurement at the 
onta
ts are among the data written to �leevery simulation step.3.2 Devi
e geometryThree di�erent devi
e stru
tures have been simulated during the develop-ment and testing of the program. The n+ n n+ shown in �gure 5.1 has beenused for ben
hmarking the Monte Carlo program with respe
t to 
arrier mo-bilities and resistan
e. The pn-diode shown in �gure 6.1 and the APD in�gure 7.1 are simple 
omponents in whi
h the pn-jun
tion is the prominentfeature.We have 
hosen simple devi
e geometries and fairly light doping densities inorder to avoid 
ompli
ations during interpretation of the simulation results.The devi
es are easily modi�ed in the user menu of the program.3.3 Carrier dynami
sIn the Monte Carlo simulator, the 
arrier dynami
s is handled during thefree �ights. The existing �ight routine in the Monte Carlo simulator hasbeen updated to �t the CdxHg1−xTe material. Time integration of the par-ti
le momenta is used to 
ompute the displa
ement of the parti
les duringa simulation step, thus it is ne
essary to obtain the group velo
ity of theparti
les from the k-ve
tor.In general, the group velo
ity is related to the derivative of the energy:
vg =

1

h̄
∇kE.23



Models of the heavy and light hole bands and their derivatives were alreadyin
orporated into the program and are des
ribed in detail in [10℄. The bandmodel is isotropi
, thus it depends on the modulus, k, rather than the k-ve
tor and thus the ve
torial vg 
annot be obtained by di�erentiating thedispersion relation. In order to obtain the group velo
ity for the holes,we must introdu
e some approximations; inspired by [15℄, we 
hoose theapproximation
vg =

1

h̄

dE

dk
,thus the derivative of the isotropi
 band is dire
tly interpreted as the mag-nitude of the velo
ity. The hole velo
ity ve
tor is then 
onstru
ted usingthis quantity for the magnitude and the dire
tion of the parti
le's k-ve
toris dire
tly adopted as the dire
tion of the group velo
ity ve
tor. Using thisapproa
h, the 
omponents of the group velo
ity of the holes are given by:

vg,i =
vg
k
ki,where i ∈ (x, y, z).The group velo
ity for ele
trons is found taking the derivative of the bandstru
ture, whi
h is given in equation A.1, the result is:

vg,i =
h̄ki

m∗

√

1 + 4α h̄2k2

2m∗

(3.1)Here, i ∈ (x, y, z), m∗ is the e�e
tive mass at the bottom of the 
ondu
tionband and α is the non-paraboli
ity parameter.On
e the velo
ity ve
tor is obtained, the approximate displa
ement is foundby [16℄:
∆r =

∫ t1

t0
vg(t

′)dt′ ≈
1

2
(vg(t1)− vg(t0))∆t,where t0 is the time at the beginning of the �ight, t1 the time at the endand ∆t the di�eren
e between these. The 
arrier dynami
s for holes havenot been 
hanged during the work with this thesis.24



3.4 Parti
le-mesh 
ouplingParti
le-mesh 
oupling algorithms are designed to attribute the 
harge ofstationary and mobile 
harges lo
ated at arbitrary positions, su
h as (xk, yk),in �gure 3.2 to the nodes of a dis
rete 
harge density mesh.

xi, yj xi+1, yj

xi+1, yj+1xi, yj+1

xk, ykFigure 3.2: A parti
le positioned at (xk, yk), between the nodes of the 
omputa-tional mesh.The simplest 
harge assignment method is the nearest grid point method(NGP). The 
harge of an ele
tron at (xk, yk) in �gure 3.2 is 
ontributed tothe nearest grid point, (xi, yj), su
h that the 
harge density it 
ontributesto grid point (i, j) is:
ρi,j = ρ(xi, yj) =

enLxLy

Nshxhy
= ρsup.In this expression, e is the elementary 
harge, n the ele
tron density, Lx and

Ly the devi
e lengths in the x and y-dire
tion, hx and hy are the mesh spa
ingin the x and y-dire
tion and Ns the number of superparti
les parti
ipatingin the simulation. ρsup is 
al
ulated at the beginning of a simulation, usingthe initial parti
le number in the devi
e. The superparti
le 
harge remains
onstant during simulation. The nearest grid point approximation is 
rudeand results in a 
oarse and noisy approximation to the ele
tri
al potential.A better method is the 
loud in 
ell (CIC) method [17℄, whi
h has beenimplemented in the Monte Carlo simulator during this work. This algorithmsmears the 
harge density of the superparti
le over its four nearest grid25



points. The 
harge density in the mesh point with 
oordinates (xi, yj) dueto the 
harge with 
oordinates (xk, yk) in the �gure 3.3 is given by
ρi,j = ρsup

(

1−
|xk − xi|

hx

)(

1−
|yk − yj|

hy

) (3.2)for |xk − xi| < hx and |yk − yj| < hy where hx and hy is the spa
ingbetween grid points. An important property of 3.2 is that the total 
harge
ontributed by the superparti
les are 
onserved from the NGP s
heme. Thisis easily veri�ed; by adding the 
harge 
ontributed by one parti
le to all ofits four nearest nodes gives ρsup.Instead of representing a point 
harge, as in the NGP s
heme, the super-parti
le now represents a 
loud of 
harge. This has a smoothing e�e
t onthe ele
tri
al potential 
omputed in the Poisson solver. The 
loud shape andthe 
orresponding assignment fun
tion is visualised in �gure 3.3.
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xi−1 xi xk xi+1(b) Assignment fun
tionFigure 3.3: The 
loud shape and the assignment fun
tion for the Cloud in Cellalgorithm. These �gures are from Kim [14℄.When Poisson's equation is solved, the potential and the ele
tri
 �eld isobtained only in the nodes of the 
omputational mesh. To evaluate the26



ele
tri
 �eld at the parti
le positions, a for
e interpolation s
heme is needed.In this thesis, the NGP method has been used for this purpose while theCIC method has been employed to assign 
harges to the mesh.3.5 Ohmi
 
onta
tsThe 
onta
ts of a semi
ondu
tor devi
e are semi
ondu
tor-metal interfa
eswhere 
arriers 
an pass into or out of the devi
e. There are two types of
onta
ts, S
hottky and ohmi
 
onta
ts. In general, the metal and the semi-
ondu
tor material have di�erent work fun
tions whi
h 
reates a potentialbarrier for the 
arriers to surmount if they are to enter the devi
e througha S
hottky 
onta
t. An ohmi
 
onta
t is a jun
tion with no su
h barrier; itrepresents an ideal sour
e or sink of 
arriers. The gate 
onta
t of a transistoris usually a S
hottky 
onta
t while the sour
e and drain 
onta
ts are ohmi
.The modelling of ohmi
 
onta
ts poses one of the great 
hallenges for devi
esimulations. One reason is the 
omplexity of the physi
s of the 
onta
t re-gion where metal and semi
ondu
tor mole
ules form po
kets of di�erent alloy
ompositions [18℄. Another reason is the fa
t that the 
onta
t implementa-tion dire
tly governs the number of parti
les entering and exiting the devi
e,it thus dire
tly 
ontrols the 
urrent through the devi
e. Studying 
onta
ts isa resear
h �eld of its own, and will not be the topi
 for this thesis. We willtherefore be 
ontent with getting an overview of the most important 
onta
tmodels found in the literature, and 
hoose one of the models that has beentested to yield reliable results and use it for our simulator.There is a variety of 
onta
t models suggested in the literature, a 
lassi�
a-tion of the di�erent models 
an be found in [5℄, in whi
h three main 
lasses ofmodels are identi�ed. The �rst 
lass is 
hara
terised by the two 
onditions of
harge neutrality and thermal equilibrium in a small region adja
ent to the
onta
ts [19, 20, 18℄. The 
harge neutrality 
ondition is imposed to meet thezero voltage drop 
riterion. The model implemented in our simulator belongsto this 
lass of models and it will be des
ribed in more detail below. Another
lass of models for two-terminal devi
es use periodi
 boundary 
onditions. Aparti
le whi
h is absorbed at one of the 
onta
ts gets re-inje
ted at the op-posite 
onta
t, either with the same waveve
tor that it was absorbed with orwith a new waveve
tor randomly drawn from a thermal distribution. Thesemodels are 
onsidered unphysi
al [5℄. This is due to the fa
t that the modelsimply does not re�e
t the real physi
s of the 
onta
ts. Yet another type of27



model involves simulating the dynami
s of the 
arriers in a reservoir adja-
ent to the devi
e. An appropriate 
arrier distribution is obtained within thereservoir, and the dynami
s of the reservoir determines the 
arrier inje
tioninto the devi
e. This method is des
ribed in more detail in [20℄.The �rst and the third 
lass both agree with the understanding we have ofthe 
omplex physi
s of the 
onta
ts. We have 
hosen to implement a modelbelonging to the �rst 
lass be
ause it is simple and presumably gives resultswhi
h are easily interpreted. The 
onta
t model employed in our MonteCarlo simulator 
losely follows the approa
h of Fis
hetti and Laux whi
h isdes
ribed in [19℄.The 
ondition for inje
tion is the 
harge neutrality 
ondition of the 
onta
tregion; if there is a net de�
it of majority 
arriers, inje
tion will happenuntil 
harge neutrality is maintained. The extension of the 
onta
t regioninto the devi
e should be small, typi
ally a few mesh 
ells [21, 16℄, as thenumber of inje
ted parti
les may be a�e
ted by the 
hoi
e. We have 
hosen
Lycr = 0.02 µm for all devi
es and simulations. The 
onta
t region of thedevi
es we have used for our simulations are shaded in the �gures 5.1, 6.1and 7.1.The net 
harge in the 
onta
t region is 
al
ulated by 
ounting free and im-mobile 
harges within the region, alternatively, it 
ould have been 
al
ulatedusing the 
harge density matrix. If there is a net positive 
harge in the re-gion, as many ele
trons needed to maintain 
harge neutrality are inje
ted.The inje
ted ele
trons are given a position ve
tor drawn from a uniform dis-tribution within the 
onta
t region. The thermal equilibrium 
ondition ismet by giving the inje
ted parti
les a k-ve
tor drawn from a thermal distri-bution. The half Maxwellian velo
ity distribution is used to ensure that themomenta of the inje
ted parti
les are dire
ted into the devi
e. To improvethe model, the displa
ed Maxwellian velo
ity distribution, whi
h also takesinto a

ount the fa
t that the inje
ted 
arriers are expe
ted to have a driftvelo
ity, should be implemented.Absorption of a parti
le at the 
onta
t happens if the parti
le will hit the
onta
t surfa
e during the 
oming time step. Based on the 
urrent positionand the group velo
ity, the estimated parti
le position at the next time stepis 
al
ulated. If the new position falls at the 
onta
t surfa
e or beyond it,the parti
le is absorbed and dis
arded from the simulation.When simulating the pn jun
tion and the APD stru
ture, both ele
trons andholes are simulated at the same time. In this 
ase, the 
onta
t on the p-side28



inje
ts only holes and the 
onta
t on the n-side inje
ts only ele
trons. Bothtypes of 
arriers are absorbed at both ele
trodes.It should be noted that the 
harge per superparti
le, whi
h is dis
ussed inmore detail in se
tion 3.9, is kept 
onstant throughout the simulation, thusa devi
e in operation is allowed to be ele
tri
ally 
harged.Conta
t regions are usually heavily doped, this has been taken into a

ountin our model by introdu
ing su
h zones beneath the 
onta
ts. Doing thissmooths the transition between the metal 
onta
t and semi
ondu
tor devi
e.However, the simulation of heavy doped 
onta
t region poses a problem tothe Monte Carlo method be
ause it requires the simulation of a relative largenumber of superparti
les at the 
onta
t regions 
ompared to the more lightlydoped regions of the devi
e. The 
arriers in the 
onta
t regions are far fromthe jun
tion where 
arrier properties are most interesting, and they are oftennear thermal equilibrium. Simulating 
onta
t regions is 
omputationallyine�
ient be
ause a large number of superparti
les needs to be simulated inorder to obtain good statisti
s in the regions of low 
arrier density. A solutionto this problem whi
h may be implemented into our model in the future iso�ered by Mills et al. [22℄. A 
harge enhan
ement fa
tor is assigned tothe superparti
les in the low density regions su
h that on
e a parti
le entersthis region, it is repli
ated a number of times 
orresponding to the 
hargeenhan
ement fa
tor. As a result, the same number of superparti
les may besimulated, but with improved statisti
s at the regions of low 
arrier density.An apparent weakness of the 
onta
t model implemented at present is thatthe sour
e and drain 
onta
ts behave as separate sinks and sour
es of 
ar-riers, thus the model allows the 
harge 
ontinuity in the imagined 
ir
uitsurrounding the devi
e to be violated. The 
onta
t model should thereforebe subje
t to further development; as a �rst approa
h, we suggest imple-menting the Ramo-Sho
kley parti
le boundary 
onditions [23℄.Future development of the 
onta
t model should be �tted to the materialproperties of CMT, a detailed study of 
arrier transport and 
onta
t resis-tan
e in metal 
onta
ts of CdxHg1−xTe is presented in [24℄.3.6 Measuring 
urrentThe 
urrent passing through the devi
e is measured as the rate of 
arrierspassing through the 
onta
ts of the devi
e. The 
urrent is in general given29



by
I(t) =

dQ(t)

dt
,for our devi
es, Q(t) is the 
harge that has passed through an ele
trode upuntil the time t. It is given by

Q = qs(Na −Ni) + εsε0

∫

E · n̂dσ.In this relation, Ni and Na represents the number of parti
les inje
ted orabsorbed at the ele
trode up until the time t. The se
ond term representsthe displa
ement 
urrent; εsε0 is the ele
tri
al permittivity, n̂ is a normalve
tor to the 
onta
t surfa
e and dσ a surfa
e element. The integral isto be taken over the surfa
e of the ele
trode. The 
ontribution from thedispla
ement term is negligible when the applied voltage bias is 
onstant intime, but ne
essary when doing transient simulations.We have de�ned the positive dire
tion of the 
urrent into the devi
e.This method of measuring 
urrent is the most 
ommonly employed methodin Monte Carlo devi
e simulations [5℄, but other methods exist. A method formeasuring 
urrent at arbitrary 
rosse
tions through the devi
e is proposedin [25℄.3.7 Boundary 
onditionsBoundary 
onditions enter the simulation at two stages, in the 
arrier dy-nami
s and when solving Poisson's equation. The parti
le boundary 
ondi-tions implemented in our simulator requires that when a 
arrier hits one ofthe edges of the devi
e, it is spe
ularly re�e
ted. The boundary 
onditionsof the Poisson solver are 
onstant potential, known as Diri
hlet boundary
onditions, at the 
onta
ts, re�e
ting that external voltages are applied tothe devi
e under operating 
onditions. On the remaining edges, the equa-tion is solved with von Neumann boundary 
onditions. The von Neumann
onditions imply that no ele
tri
 �eld 
an exist perpendi
ular to the edgesof the devi
e.A

ording to Ja
oboni and Lugli [7℄, the sour
e and drain voltages may bedire
tly applied to the Diri
hlet boundaries. Our simulation results indi
atethat this might not apply to non-symmetri
al devi
es, this is dis
ussed inse
tion 6.2. 30



3.8 Modelling 3D devi
es in 2DIn the Monte Carlo simulator, a devi
e is modelled in 2D by tra
king thesuperparti
les in all three dimensions of real spa
e and momentum spa
e, butPoisson's equation is solved only in 2D. This approa
h saves a 
onsiderableamount of 
omputation time. A 2D model may su�
iently represent a real3D devi
e if the devi
e has little variation in the dire
tion perpendi
ular tothe 
rosse
tion we are simulating.The physi
al interpretation of the superparti
le 
harge and 
harge densityin 2D is important to understand, and therefore deserves a dis
ussion here.Poisson's equation in a 3D material reads
∇

(

εs
dϕ

dr

)

= −
ρ(r)

ε0
,where ϕ is the ele
tri
al potential. Assuming a 
onstant relative permittivity,

εs and no 
hange in the z-dire
tion, i.e. ∂ϕ
∂z = 0, we are left with the 2Dversion of Poisson's equation,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= −

ρ(x, y)

εε0The unit of the 
harge density, ρ, remains the same in the two and threedimensional equation, namely Cm−3. As a 
onsequen
e, the 
harge of asuperparti
le in 2D should be interpreted as a 
harge per unit length in theperpendi
ular dire
tion, and the 
orresponding 
harge density of two dimen-sional superparti
les in an area should be interpreted as 
harge density perunit length in the perpendi
ular dire
tion. The 
orresponding geometri
alinterpretation is that a superparti
le represents a rod of 
harge [7℄.3.9 Superparti
les in 2D and 3DIn a devi
e of typi
al size, the number of real 
ondu
tion band ele
trons isfar too large that every parti
le 
an be simulated. Instead, we employ the
on
ept of superparti
les. A superparti
le may be interpreted as a statisti
alrepresentation of a number of parti
les. The superparti
le behaves as a singleele
tron during the s
attering events and is attributed the 
harge of a singleele
tron moving in the ele
tri
 during the free �ights. However, when the
harge density matrix is 
onstru
ted for solving Poisson's equation, or when31



the 
urrent through the devi
e is measured, the 
harge of the superparti
leis equal to the 
harge of the real parti
les that it represents.The 
harge per superparti
le is found by the prin
iple that the total 
harge ofall the superparti
les should equal the total 
harge of all the real 
ondu
tionband ele
trons in the devi
e, thus the superparti
le 
harge is
qs =

Qdevice

Ns
=

enV

Ns,initialwhere Qdevice is the total 
harge of the 
ondu
tion band ele
trons in a devi
eand V is the three dimensional volume of the devi
e. Ns,initial represents thenumber of superparti
les at the beginning of a simulation.The use of superparti
les makes the Monte Carlo devi
e simulation feasible,but there are some disadvantages. The large 
harge of the superparti
lesmagnify the natural �u
tuations in the lo
al ele
tron density of the devi
e,and thus 
ausing larger �u
tuations in the 
omputed ele
tri
 �eld than whatis a
tually the 
ase [21℄. A parti
le that is a

elerated in an arti�
ially large�eld will a
hieve too high energy and thus the probability of s
attering willbe a�e
ted. It is therefore important for the validity of the simulation to useenough superparti
les. A

ording to our experien
e, the number of parti
lessimulated with our devi
es should be at least ∼ 50000 to avoid this e�e
t.
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Chapter 4Poisson's equation
Using the Monte Carlo method is an e�
ient way to obtain the simultaneoussolution of Boltzmann's transport equation and Poisson's equation. Thisapproa
h is known as the self-
onsistent Monte Carlo model; it involvesthat Poisson's equation is solved every �eld adjusting time step during thesimulation. A �eld adjusting time step 
orresponds to a few basi
 timesteps of the Monte Carlo simulator. A single simulation requires Poisson'sequation to be solved several thousand times, thus it is 
lear that a qui
ksolver is needed.In this 
hapter, we will �rst present Poisson's equation in se
tion 4.1, thedis
rete formulation for our model problem is presented in se
tions 4.2 andthe 
orresponding boundary 
onditions are presented in se
tion 4.3. Tnse
tion 4.4, we will have a brief look at some di�erent numeri
 s
hemeswhi
h solve this problem and argue why our 
hoi
e fell on the su

essiveoverrelaxation method. Finally, the Poisson solver implemented in our MonteCarlo simulator will be des
ribed in se
tion 4.5.4.1 Poisson's equation in a materialPoisson's equation is a stationary equation to obtain the ele
tri
 potential,
ϕ(r), due to a given 
harge distribution ρ(r). In a material, Poisson's equa-tion is

∇

(

εs
dϕ

dr

)

= −
ρ

ε0
, (4.1)33



where εs is the diele
tri
 
onstant for the material. In general εs is not a
onstant, but varies spatially, implying that the equation is non-linear. Inour 
ase, the linear approximation has been made. A thorough mathemati
aldes
ription and proof of existen
e of a unique solution 
an be found in [26℄.4.2 The �nite di�eren
e formulationThe �nite di�eren
e formulation of the 2D Poisson's equation is obtained bydis
retising the equation on a uniform grid with N = Nx×Ny nodes, where
Nx and Ny are the number of nodes in the x- and y-dire
tion respe
tively.In prin
ipal, the spa
ing in x- and y-dire
tion may be di�erent. Here we'llassume equal spa
ing, h, implying that the 
oordinates of the nodes are
xi = i · (h− 1), i ∈ [1, Nx] and yj = j · (h− 1), j ∈ [1, Ny] .The dis
retised Poisson's equation is obtained by approximating the se
ondorder partial derivatives using Taylor expansion. This is done in many textbooks, see for instan
e [26, 27℄. The �nite di�eren
e formulation of 4.1 onthe uniform grid is

ϕi+1,j − 2ϕi,j + ϕi−1,j

h2
+
ϕi,j+1 − 2ϕi,j + ϕi,j−1

h2
= −

ρi,j
εsε0

, (4.2)where ϕi,j denotes the potential in the mesh point (i, j). This approximationis 
alled the �ve point di�eren
e approximation, it has an error O(h2) be
ausethe Taylor expansions are trun
ated after the h2-term. The 
omputationalsten
il for this approximation is illustrated in �gure 4.2a.The dis
retised Poisson's equation 
onstitute a system of linear equations,one equation for ea
h node in the grid. Re-indexing the nodes, ϕi,j → xkwhere k ∈ [1, N ], the system of equations may be formulated as a matrixequation, Ax = b. In this equation, the unknown potential in the nodes is
ontained in the x -ve
tor, A is the 
oe�
ient matrix and b 
ontains thesour
e term and the boundary 
onditions.The 
oe�
ient matrix of the �ve point sten
il is the blo
k diagonal matrix
A =















T −I
−I T −I . . .

−I T −I
−I T















, (4.3)
34



2 3

2

... Nx

Ny

i=1

j=1

x

yFigure 4.1: The 
omputational mesh used for the solution of Poisson's equation.The value of the potential in the white nodes are set by Diri
hlet boundary 
ondi-tions.where the −I-blo
k is the negative identity matrix and
T =















4 −1
−1 4 −1 . . .

−1 4 −1
−1 4















. (4.4)
After having solved the system of linear equations and obtained the ele
tri
potential, the ele
tri
 �eld is found using 
entred di�eren
e:

Exi,j = −
ϕi+1,j − ϕi−1,j

2h

Eyi,j = −
ϕi,j+1 − ϕi,j−1

2h4.3 Boundary 
onditionsThe �nite di�eren
e formulation of equation 4.2 des
ribed in the previousse
tion is valid only for the interior nodes of the 
omputational mesh. Atthe nodes representing the 
onta
ts, a 
onstant ele
tri
al potential is imposedand thus the equations representing these nodes are simply eliminated fromthe system of equations. At the remaining edges, von Neumann boundary
onditions are applied.In order to apply the von Neumann boundary 
onditions, Taylor expansionis used to approximate the normal 
omponents of the �rst derivatives. At35



the top and bottom edges of the devi
e in �gure 4.1, the normal 
omponentof the derivative is
∂ϕi,j

∂y
≈
ϕi,j+1 − ϕi,j−1

2h
, (4.5)where j = 1 for the lower edge and j = Ny for the upper edge. A 
orre-sponding equation is needed for the left and right edges. For
ing zero �uxin equation 4.5 at the lower edge where j = 1, we get

ϕi,0 = ϕi,2. (4.6)The point mesh node (i, 0) lies outside the grid we have de�ned for our modelproblem; thus the von Neumann boundary 
onditions makes it ne
essaryto introdu
e what is 
alled ghost nodes. In these nodes, the value of thepotential is known and given by equations similar to 4.6. The equationvalid at the lower von Neumann edge of our problem is illustrated by the
omputational mole
ule in the se
ond panel of �gure 4.2.The 
orner nodes requires spe
ial treatment be
ause the normal dire
tion to a
orner is not well de�ned. The re
tangular grid allows two normal dire
tionsat the 
orner nodes, the x- and the y-dire
tion. Only one 
ondition in ea
hboundary node 
an be pres
ribed if the system is not to be overdetermined.A

ording to [28℄, the analyti
 requirement
∫

c

∂ϕ

∂n
ds = 0 (4.7)where c is the boundary 
urve and n the normal dire
tion, must hold toensure a unique solution. The sten
il used for the 
orner nodes is shown inthe third panel of �gure 4.2 has been implemented to ensure that 4.7 willnot be violated.4.4 Overview of numeri
al methodsIn the resear
h �eld of Monte Carlo devi
e simulation, a variety of di�erentmethods are in use for solving Poisson's equation. This re�e
ts the fa
tthat ea
h method has its own strength whi
h may be parti
ularly usefulwhen solving a spe
i�
 problem. Future development of the Monte Carlosimulator should therefore in
lude the in
orporation of a set of solvers basedon di�erent solution methods. 36
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11 −4(a) interior 2

11 −4(b) edge 2

2 −4(
) 
ornerFigure 4.2: Computational sten
ils used for the A-matrix of the �nite di�eren
eformulation of Poisson's equation. Panel (a) is valid for the equations 
orrespondingto interior grid points, (b) for nodes the edges and (
) for the 
orner nodes..Vasileska [5℄ argue that the Fast Multipole Method (FMM) is an e�
ientway of solving the 3D problem. In this method, multipole expansion is usedto redu
e the 
omplexity of the Coloumbi
 many-body problem prior to for
eevaluation.The �nite element method (FEM) is another frequently used solver for Pois-son's equation. This method allows a re�ned mesh in areas whi
h requirehigh resolution, su
h as the area surrounding lo
alised impurities. For thisreason, the FEM method is well suited for simulation of quantum stru
tures.For this thesis, we have 
hosen the su

essive over-relaxation method whi
hbelongs to the 
lass of iterative solvers. The iterative solvers are �exiblewith respe
t to boundary 
onditions be
ause few 
hanges need to be madeto the 
ode in order to simulate di�erent devi
e geometries. Due to thenature of the self-
onsistent Monte Carlo method, an iterative solver is a good
hoi
e [29℄; be
ause the simulation time elapsed between two 
onse
utivesolutions is small, thus the solution obtained at the previous time step makesa good starting guess at the solution whi
h is to be 
omputed this time step.Furthermore, the su

essive overrelaxation method 
an be 
ombined with themultigrid te
hnique in advan
e of parallellising the 
ode in order to furtherimprove the solution time [5℄.4.5 The relaxation methodsThe relaxation methods o�er a fast solution to Poisson's equation and aree�
ient in terms of storage [7℄. The solution o�ered by iterative solvers isan approximate solution, the approximation is 
ontrolled by a 
hosen toler-37



an
e. The simplest of the relaxation methods is the Ja
obi method whi
h isdes
ribed in detail in [27, 30℄. The basi
 idea behind this algorithm and itssu

essors; the Gauss-Seidel and the su

essive over-relaxation method withChebyshev a

eleration will be des
ribed in this se
tion.The relaxation methods are obtained by iterating equation 4.2. In the 
aseof the Ja
obi method, this is done straight forward:
ϕ
(n)
i,j =

1

4

[

ϕ
(n−1)
i+1,j + ϕ

(n−1)
i−1,j + ϕ

(n−1)
i,j+1 + ϕ

(n−1)
i,j−1

]

+
h2

4

ρi,j
εsε0

. (4.8)Here, n denotes the iteration number.The �rst step of the Ja
obi algorithm is to make an initial guess at thesolution, ϕ(0)
i,j , whi
h is used as input on the right hand side of 4.8 to 
al
ulatea better guess ϕ(1)

i,j . This pro
edure is repeated until the solution satis�esthe 
riterion of 
onvergen
e.To have a 
loser look at the 
onvergen
e of the Ja
obi method, it is usefulto go ba
k to the matrix formulation of Poisson's problem. Splitting the
A-matrix of 4.3 in two matri
es, A = D+R, where D 
ontains the diagonalelements of A and R 
ontains all the o�-diagonal elements, the equation 
anbe rewritten:

(D +R)x = b

x = −(D−1R)x+D−1b.The matrix D−1R is 
alled the iteration matrix. The last equation is animpli
it equation in x that 
an be iterated:
x(n) = −(D−1R)x(n−1) +D−1b.The 
onvergen
e of the Ja
obi method depends on the properties of theiteration matrix. The iterative methods are guaranteed to 
onverge if thespe
tral radius of the iteration matrix satis�es

ρs(D
−1R) < 1.The proof of this is given in [31℄. The spe
tral radius of a matrix is themodulus of the largest eigenvalue of the matrix. For the 
oe�
ient matrixof the Poisson problem, it 
an be shown [30℄ that

ρs =
cos

(

π
Nx

)

+ cos
(

π
Ny

)

238



for quadrati
 mesh 
ells. Ea
h eigenvalue of the iteration matrix re�e
tsthe fa
tor by whi
h the amplitude of a parti
ular eigenmode of undesiredresidual is suppressed during one iteration [30℄. Proof is given in [32℄ that adiagonal dominant A-matrix ensures 
onvergen
e of the Ja
obi method.The 
onvergen
e rate for the Ja
obi algorithm is slow, making it unsuitablefor our purposes. However, there are several methods based on the simpleidea of the Ja
obi algorithm but with improvements to the 
onvergen
e rate.The Gauss-Seidel method uses the latest information on the solution avail-able. Assuming that the ϕi,j-values of an iteration are obtained in sequen
e,at the time ϕ(n)
i,j is 
al
ulated, ϕ(n)

i−1,j and ϕ(n)
i,j−1 are already 
al
ulated andare available in the n-th iteration:

ϕ
(n)
i,j =

1

4

[

ϕ
(n−1)
i+1,j + ϕ

(n)
i−1,j + ϕ

(n−1)
i,j+1 + ϕ

(n)
i,j−1

]

+
h2

4

ρi,j
εsε0

. (4.9)The Gauss-Seidel method 
onverges faster than the Ja
obi method, thoughonly marginally [7℄.The su

essive overrelaxation method is an improvement to the Gauss-Seidelmethod. This method introdu
es an a

eleration parameter, ω, to makean over-
orre
tion, anti
ipating 
orre
tions of future iterations. First, theGauss-Seidel iterate, ϕGS(n)
i,j , is 
al
ulated using 4.9. The �nal n-th iterateis then 
al
ulated as the linear 
ombination:
ϕ
(n)
i,j = ωϕ

GS(n)
i,j + (1− ω)ϕ

(n−1)
i,j .The relaxation parameter should take values in the range 1 ≤ ω ≤ 2. The
onvergen
e rate is optimised when [7℄

ωopt =
2

1 +
√

1− ρ2s
.The 
onvergen
e rate may be improved even further with a variable ω. Thisalgorithm is 
alled the 
y
li
 Chebyshev method. It is similar to the su

es-sive over-relaxation method, but with

ω0 = 1

ω1 =
1

1− 0.5ρ2s

ωp+1 =
1

1− 0.25ρ2sωp
, p ≥ 1.39



4.6 Parallellising the Poisson solverThe su

essive overrelaxation method allows odd-even ordering of the meshnodes. Cal
ulating the potential in an odd point of the mesh requires onlyvalues of the potential in even nodes and vi
e versa. A half-sweep overthe mesh updating all the odd mesh points is 
arried out before the se
ondhalf-sweep whi
h updates the potential in the even mesh points.The possibility of odd-even ordering makes the Ja
obi method and its su
-
essors inherently parallel. Using the 
he
kerboard analogy, the even andodd mesh points may be 
ompared to the bla
k and white squares. Thesolution in all the bla
k nodes may be 
al
ulated at the same time from thesolution obtained at the previous iteration. Thereafter, the solution in allthe white nodes may be 
al
ulated simultaneously from the knowledge of thesolution in the bla
k nodes of this iteration. This makes the 
lass of methodsdes
ribed in se
tion 4.5 very well suited for parallelisation.
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Chapter 5A

ura
y and reliability of themodel
In se
tion 5.1 of this 
hapter, we present the general stability 
riteria for aMonte Carlo devi
e simulation and assure that the simulation parameterswe will use with later simulations obey them. The results of the simulatoris tested in se
tion 5.2 by studying the ele
tron and hole mobilities obtainedfrom bulk simulations. Finally, in se
tion 5.3 we perform a simulation of asimple n+ n n+ stru
ture in order to verify that our model is reliable.5.1 Resolution in time and spa
eThere are two types of stability 
riteria to 
onsider when doing Monte Carlosimulations. On one hand, there are physi
al arguments whi
h de�nes theresolution in time, ∆t, and spa
e, ∆x. On the other hand there are numer-i
al arguments whi
h limit the 
oupling between the temporal and spatialresolution. A thorough dis
ussion is presented in [33℄. Here, we will 
he
kthat the mesh 
ell size we have used for our Poisson solver, h; the basi
time step, τ ; and the �eld adjusting time step, τf , in our model satis�es thene
essary 
riteria.The mesh 
ells of the grid used for solving Poisson's equation should be smallenough to resolve the smallest physi
al features relevant to the variation inthe potential. The Debye s
reening length provides the 
hara
teristi
 lengths
ale for variation in the ele
tri
al potential and 
arrier 
on
entrations in41



the Poisson-Boltzmann problem [34℄. Thus it is natural to require that themesh 
ell should be smaller than the Debye s
reening length, LD. The Debyes
reening length is well approximated by the material parameter
LD =

√

εkBT

ne2
,where ε = εsε0. In our model, the donor density of the heaviest doped regionsare 1.0 × 1017 cm−3, thus h < 15 nm. The devi
es we have simulated havea length of 3 µm, implying that the number of nodes in the x-dire
tion, Nx,should be at least 200.The physi
al argument limiting the basi
 time step, τ , is that we require alls
attering events to be resolved. The most frequent s
attering me
hanismshave rates ∼ 1014 s−1, thus we should have τ ≤ 1 fs.The �eld adjusting time step, τf , determines how often Poisson's equationis solved. Some authors 
laim that the parti
les should not be allowed totravel a
ross more than a few mesh 
ells during one �eld adjusting time step[21℄, while other [33℄ demand a mesh 
ell smaller than the longest distan
etravelled during a time step. In any 
ase, the numeri
al requirement imposedon the relation between ∆x and ∆t 
an be expressed on the form:

vmax∆t < lmax, (5.1)where vmax is the maximal velo
ity 
omponent a parti
le 
an a
hieve duringsimulation. We have used τf = 5 fs and measured the maximum velo
ityobtained during the simulations. By experien
e, this has produ
ed stablesimulations. The maximum velo
ity ele
trons rea
h in semi
ondu
tors ingeneral is on the order 108 cm/s [33℄, thus the stri
test interpretation of
lmax in equation 5.1 requires a mesh 
ell 5 nm.Yet another stability 
riterion for the relation between ∆t and ∆x whi
h isoften quoted in the 
ontext of devi
e simulation is

∆t

2
=

1

ωpwhere ωp is the plasma frequen
y. However, in [35℄, it is argued that thisapplies to simulations of 
ollision-less plasma rather than devi
e simulationsdue to the stabilising e�e
t of the s
atterings.42



5.2 MobilityThe mobility des
ribes how strongly the parti
le motion is in�uen
ed by anapplied ele
tri
 �eld [36℄. A 
arrier in an applied ele
tri
 �eld will gain mo-mentum and energy from the �eld, but the s
atterings limit the a
hievabledrift velo
ity. In the Monte Carlo simulator, the mobility provides an im-portant 
he
k on the intera
tion between the band model, from whi
h theparti
le velo
ity stems, and the frequen
y of the s
atterings. The ele
tronmobility is de�ned as the proportionality fa
tor between the drift velo
ityand the ele
tri
 �eld,
µe = −

vd
Eext

,and likewise, the hole mobility is the proportionality fa
tor between the driftvelo
ity of the holes and the ele
tri
 �eld. In CMT, the hole mobility is afew orders of magnitude lower than than the ele
tron mobility due to thelarger e�e
tive mass.The ele
tron and hole mobilities are extra
ted in bulk simulations where onlyone type of 
arrier parti
ipate in the simulation. Bulk simulations are usedto eliminate undesired 
onta
t e�e
ts. The mobility is measured by applyinga 
onstant ele
tri
 �eld and then the average drift velo
ity of the parti
lesis measured after the Monte Carlo simulator has rea
hed a stationary state.If the ele
tri
 �eld is applied in the x-dire
tion, the average drift velo
ityis measured as the average group velo
ity of the parti
les in the x-dire
tionusing equation 3.1. The drift velo
ity is averaged over the parti
le ensembleand over time.The bulk simulations are performed at latti
e temperature T = 300 K with abasi
 time step of 1 fs and an alloy fra
tion x = 0.28. The simulation resultsare presented in table 5.1.
Eext in kVcm−1 µe in cm2V−1s−1 µh in cm2V−1s−1

0.1 1.82 × 104 117
0.3 1.77 × 104 137
0.5 1.78 × 104 148Table 5.1: Ele
tron and hole mobilities, µe and µh respe
tively, extra
ted from theMonte Carlo simulator at di�erent applied ele
tri
 �elds, Eext. The results wereobtained at T = 300 K and x = 0.28. 43



There are 
onsiderable variations in the eperimentally obtained ele
tron andhole mobilities [37℄. The mobilities obtained by the Monte Carlo simulatorare within range of the mobilities reported by the experimentalists, but theyare in the lower end of it. We 
on
lude that the values produ
ed by thesimulator appear reasonable. It should be noted that the Pauli prin
iple wasnot taken into a

ount during these simulations. As a 
onsequen
es, somes
atterings may have taken pla
e that would else have been prevented byPauli prohibition, and thus the extra
ted mobility may be arti�
ially low.5.3 Simulation of an n+ n n+ diodeIn order to test the 
ode and a
quire experien
e on devi
e simulation, the
urrent voltage 
hara
teristi
s of a simple n+ n n+-devi
e has been obtained.As a 
he
k, the resistan
e of this devi
e has been 
ompared to the ohmi
resistan
e in a slab of CMT material whi
h is similar in size to the simulateddevi
e.The devi
e simulated is sket
hed in �gure 5.1, and the simulation parametersused is given in 5.2. The devi
e is a symmetri
 n+ n n+ diode with threeregions of di�erent doping densities, the ND region is relatively lightly doped
ompared to N+
D regions. The shaded regions of the devi
e are the 
onta
tregions des
ribed in se
tion 3.5. Only the ele
trons were simulated.
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Figure 5.1: An illustration of the geometry of the n+ n n+ devi
e. The shadedregions represent the 
onta
t regions.The 
urrent-voltage 
hara
teristi
s of the n+ n n+-diode has been obtainedby running simulations of the devi
e under di�erent bias voltages. The 
ur-44



Lx 3.0 µm
Ly 1.0 µm

Lxdr
L = Lxdr

R 0.75 µm

Lydr
L = Lydr

R 0.50 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 500
τ 1 fs
N+

D 1× 1017 cm−3

ND 1× 1016 cm−3

T 300 K
x 0.28Table 5.2: Parameters for the n+ n n+ devi
e. The symbols are explained in �gure5.1.rent whi
h runs through the devi
e after the Monte Carlo simulation hasrea
hed equilibrium has been extra
ted averaging over a parti
le ensembleof ∼ 50000 ele
trons and over 30 ps. The resulting IV-
urve is shown in �g-ure 5.2. The �gure shows that at zero bias voltage, almost no 
urrent runsthrough the devi
e while at higher voltages the 
urrent saturates, thus the
omponent exhibits the behaviour of an n+ n n+-diode.A

ording to Ohm's law, the 
urrent running through a 
ondu
tor is pro-portional to the voltage, thus the resistan
e is given by the slope of a linearIV 
urve. The n+ n n+-diode is a nonlinear 
omponent, but an approxi-mation to ohmi
 resistan
e in the near linear region of the IV 
urve may beobtained from �gure 5.2. The slope of region 
lose to zero bias voltage isapproximately 0.3 kΩ.The formula used to 
al
ulate the Ohmi
 resistan
e in a slab of CMTmaterialis

R = ρ
L

A
, (5.2)where L is the length of the slab in the dire
tion of the 
urrent and A the
rosse
tion area. The resistivity, ρ is here 
onsidered a material parameterobtained via the ele
tron mobility using the relation

ρ =
1

σ
=

1

e(nµe + pµh)
,45
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Figure 5.2: IV-
urve of the n+ n n+ devi
e.where σ is the 
ondu
tivity and p the hole 
on
entration. We assume no
ontribution from the se
ond term of the denominator, sin
e the devi
e is
n type. We use an ele
tron mobility value whi
h is independent from oursimulation results, in [38℄, µe = 3.5× 103 cm2V−1s−1 is reported for CMTwith a free ele
tron 
on
entration of 2× 1015 cm−3. This gives the resistivity
ρ = 5.49 × 10−4 Ωm, 
orresponding to the resistan
e R = 1.647 kΩ for a slabwhi
h is 3.0 µm long with a 
rosse
tion of 1 µm2.The dis
repan
y between the theoreti
ally 
al
ulated resistan
e and the re-sistan
e measured in our program is within an order of magnitude. Theresistan
e of the simulated devi
e is smaller than the resistan
e through theslab, whi
h 
ontradi
ts our understanding that the 
onta
t regions wouldindu
e extra resistan
e 
ompared to the slab. The 
onta
t regions of ourdevi
e are however large 
ompared to the devi
e, the high doping density inthese areas 
ontribute to a lower resistan
e.From the results presented in the last two se
tions, we 
on
lude that thatthe model may need some �ne tuning before it is used for more realisti
simulations. 46



Chapter 6PN jun
tion
The Monte Carlo method is rarely used for studying simple pn-diodes. Thesestru
tures may seem too simple to engage advan
ed simulation te
hniquessu
h as the Monte Carlo method. Instead, simple analyti
 theories whi
hare based on numerous simpli�
ations are used. Apart from the studiesMoglestue 
ondu
ted in the 1980's [18, 39℄, Monte Carlo studies of pn-diodesare s
ar
e.Pre
isely be
ause the pn-diode is des
ribed by analyti
 theory, this stru
tureserves well as a starting point for dis
ussion of the Monte Carlo method itself.In this 
hapter, we have simulated a pn-devi
e under reverse and forwardbias voltage. The simulation parameters are presented in se
tion 6.1 whilethe simulation results are presented in se
tion 6.2 and 6.3 respe
tively. Theresults show that our Monte Carlo model is in qualitative agreement withthe analyti
al pn-jun
tion model. The 
urrent-voltage 
hara
teristi
s, or IV
urve, has been obtained and is presented in 6.4 while the swit
hing timehas been studied in se
tion 6.5.6.1 Simulation parameters and assumptionsThe pn-jun
tion simulated has the geometry shown in �gure 6.1, and thesimulation parameters used are listed in table 6.2. The donor and a

eptordensities at the jun
tion, ND and NA have been set to 1016 cm−3 whilethe regions 
lose to the 
onta
ts are more heavily doped, N+

D and N+
A havebeen set to 1017 cm−3. The doping densities have been 
hosen fairly light47



in order to make the approximation of negle
ting the Pauli prin
iple. Thethree simulations di�er only in the Diri
hlet boundary 
onditions imposedat the 
onta
ts of the Poisson solver. The voltages set at the left and right
onta
ts are designated VL, and VR respe
tively; in table 6.1, the Diri
hletboundary 
onditions for the three simulations are given.Type of external bias voltage V L
Poisson V R

PoissonNear unbiased −0.35 0.00Forward bias −0.10 0.00Reverse bias −0.60 0.00Table 6.1: Overview of the boundary 
onditions used for the stationary pn-diodesimulations.The simulations have been performed assuming no generation or re
ombina-tion of 
arriers. In [18℄, it is argued that the 
arrier lifetimes in GaAs aretoo long for a signi�
ant number of re
ombination events to take pla
e, thusmodelling re
ombination will have little e�e
t on the simulation results. We
onsider the same argument to apply for our CMT diode.It should also be mentioned that the simulations performed here were ini-tialised with parti
le states 
onsistent with the steady state of the MonteCarlo simulator at the given voltage. These states were obtained runningtransient simulations, starting from a quali�ed guess at the end states, un-til the Monte Carlo simulator rea
hed its equilibrium. The Monte Carloequilibrium for the stationary simulations was simulated for 100 ps.
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Figure 6.1: The geometry of the pn-diode. The shaded regions represent the
onta
t regions. 48



Lx 3.0 µm
Ly 1.0 µm

Lxdr
L = Lxdr

R 0.75 µm

Lydr
L = Lydr

R 0.50 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 600
τ 1 fs
ND 1× 1016 cm−3

N+
D 1× 1017 cm−3

NA 1× 1016 cm−3

N+
A 1× 1017 cm−3

T 300 K
x 0.28Table 6.2: Simulation parameters used for the pn-diode simulations. The symbolsrefer to �gure 6.1.6.2 Simulation results under reverse biasWe know from standard text book theory, e.g. Tonning [40℄, that when

p-type and n-type semi
ondu
tor material are put together to form a pn-jun
tion, the holes 
lose to the jun
tion will di�use from the p-side over tothe n-side and likewise ele
trons will di�use from the n to the p-side. Onboth sides of the jun
tion, regions of un
ompensated immobile 
harge areleft, 
ausing an ele
tri
 �eld dire
ted from the n-side towards the p-side.While the 
on
entration gradient drives the di�usion pro
ess pushing the
arriers past the jun
tion, the ele
tri
 �eld a
ts to draw the 
arriers ba
k. Inequilibrium, the drift and di�usion pro
esses perfe
tly balan
es ea
h other,the resulting ele
tron and hole 
urrents are zero separately.Applying a more negative voltage to the p-side reinfor
es the ele
trostati
potential di�eren
e and hen
e the ele
tri
 �eld a
ross the jun
tion, thusenhan
ing the drift 
urrent 
ompared to the di�usion 
urrent. As a result,the extension of the depletion region will in
rease.We have used the Monte Carlo simulator to simulate the 
arrier distributionand the depletion region of the pn-diode at operating 
onditions near equi-librium and under reverse bias. The resulting spatial distribution of 
arriersin the devi
e in �gures 6.2 and 6.3. The �gures show that in both 
ases, a49



depletion region arise at the jun
tion and the depletion region is wider underheavier bias.The width of the depletion region may be 
al
ulated analyti
ally for a simple1D jun
tion. Tonning does this by solving Poisson's equation under theassumption that the depletion region is 
ompletely free of mobile 
arriers;the only 
ontribution to the 
harge density is the a

eptor density at the
p-side and donor density at the n-side. The extension on the n-side is thengiven by

xN,eq =

√

2ε

eND

NA

NA +ND

√

kT

e
ln
NAND

n2i
, (6.1)and a similar expression is given for the extension at the p-side. The 
al
ula-tion is based on the assumption of drift-di�usion balan
e, whi
h introdu
esthe intrinsi
 
arrier density, ni. This quantity is not present in our MonteCarlo model, thus in order to do an informal 
omparison between our re-sult and the analyti
al model, we have regarded the intrinsi
 
arrier densitya material 
onstant that 
an be looked up in a table. In [37℄ a value of

ni = 4.1× 1015 cm−3 is reported, using this with the formula above givesthe dotted lines sket
hed into the 
arrier distribution plots. A

ording to�gure 6.9, it is 
lear that there are also two minor built-in voltage barrierson the border of the two heavier doped 
onta
t regions. Their existen
e maya�e
t the potential barrier a
ross the main jun
tion, and thus there are sev-eral reasons not to take the 
omparison between the analyti
al model andour Monte Carlo model too seriously.PSfrag repla
ements
x, [µm ]

y

,[µm] 0 1 2 300.5
1

Figure 6.2: Spatial distribution of ele
tron (blue) and hole (red) positions of thenear unbiased pn-diode. The drawn lines 
orrespond to the theoreti
al extensionof the depletion region under zero bias voltage as 
al
ulated in [40℄.50



PSfrag repla
ements
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Figure 6.3: Spatial distribution of ele
tron (blue) and hole (red) positions of thereverse biased pn-diode. The drawn lines 
orrespond to the analyti
ally 
al
ulatedextension of the depletion region when the devi
e is in equilibrium, i.e. zero biasvoltage is applied.The �gures 6.4 and 6.5 give the quantitative pi
ture of the 
arrier densitiesalong the x-axis. The �gures are obtained from the 
arrier positions; dividingthe x-axis into bins of 60 nm and averaging out the y-dire
tion.
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Figure 6.4: The 
on
entration of holes (red) and ele
trons (blue) along the x-axisof the near unbiased pn-diode.Representing the 
urrent running through the devi
e as a fun
tion of timedire
tly gives a pi
ture whi
h is dominated by statisti
al noise. We �nd iteasier for the eye to 
apture what is a
tually going on by representing the
umulative 
harge that has passed through the 
onta
ts on the p and n-sideduring the simulation time. The �gures 6.6 and 6.7 show this for the diode
lose to equilibrium and the diode under reverse bias respe
tively. The fa
t51
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Figure 6.5: The 
on
entration of holes (red) and ele
trons (blue) along the x-axisof the reverse biased pn-diode.
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Figure 6.6: Cumulative 
harge that has entered the left 
onta
t and exited theright 
onta
t of the near unbiased pn-diode during the simulation.
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Figure 6.7: Cumulative 
harge that has entered the left 
onta
t and exited theright 
onta
t of the reverse biased pn-diode during the simulation.52



that the 
urves are running parallel indi
ate that there is no a

umulation of
harge inside the devi
e. The sign of the slope of the 
urve gives the dire
tionof the 
urrent; positive slope indi
ates 
urrent in the forward dire
tion of thediode, 
urrent in the reverse dire
tion has a negative slope. The steepnessof the slope indi
ates the amount of 
urrent running through the devi
e.Figure 6.6 indi
ate that almost no 
urrent runs through the devi
e underweak reverse bias, while the plot in �gure 6.7 has a very weak negative slopeindi
ating a small 
urrent in the reverse dire
tion. The 
urrent through areverse biased diode is known to be mainly due to generation of ele
tron-holepairs in the depletion region. The generated 
arriers are swept in ea
h dire
-tion by the ele
tri
 �eld 
ausing a small 
urrent. The generation pro
ess isnot modelled in our parti
le simulator, thus the observation must 
orrespondto noise.
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Figure 6.8: Ele
tri
 potential in V in the near unbiased pn-diode. The p-side isto the left in the �gure.The 1D model whi
h may be solved analyti
ally gives an expression for the53



built-in voltage a
ross the jun
tion:
Vbi =

√

kT

e
ln
NAND

n2i
, (6.2)whi
h would 
orrespond to 0.2 V for a 1D CMT jun
tion.Figure 6.8 shows the ele
tri
 potential, as it is 
omputed by the Poissonsolver, when the devi
e is 
lose to equilibrium. The potential di�eren
ea
ross the devi
e is approximately 0.35 V, whi
h is somewhat larger thanthe potential predi
ted by the analyti
al model.There are signi�
ant di�eren
es between the 1D jun
tion and our simulateddevi
e that 
ause this di�eren
e; the simulated devi
e 
ontains two 
onta
tregions. Figure 6.9 show that there are three ele
tri
 �elds pointing in thesame dire
tion whi
h together 
ontribute to the 0.35 V we observe; thus itis appropriate that we observe a value whi
h is larger than the analyti
allyobtained result.A

ording to [7℄, the external bias voltage may be dire
tly imposed as Diri
h-let boundary 
onditions. We suggest that this may be true for symmetri
aldevi
es, but not ne
essarily for asymmetri
 devi
es su
h as the pn-diode. Weobserve that we need to impose a voltage di�eren
e of 0.2− 0.3 V betweenthe 
onta
ts in order to simulate the devi
e in equilibrium. This is related tothe asymmetry of the pn-devi
e. Wurfel [41℄ dis
usses the potentials whi
harise at a p-n jun
tion in detail. There is a 
hemi
al potential di�eren
eat the jun
tion due to the large 
on
entration of holes on the p-side andele
trons on the n-side. The 
hemi
al potential is exa
tly balan
ed by thebuilt-in potential whi
h is a purely ele
tri
al potential. The ele
tri
al po-tential 
auses an ele
tri
 �eld from the n-side to the p-side; this �eld 
annotperform any physi
al work and as a 
onsequen
e no 
urrent 
an run in a
ir
uit 
onsisting of an unbiased p-n diode. This is evident be
ause there isno sour
e of energy in su
h a 
ir
uit. A voltmeter 
annot measure a purelyele
tri
al potential, instead it measures the 
ombined ele
tro
hemi
al poten-tial di�eren
e; there is no de�e
tion on the voltmeter in the 
ir
uit 
onsistingof a pn-diode with no applied bias.The Poisson solver sees both the built-in potential at the jun
tion and thevoltage di�eren
e imposed at the 
onta
ts. As a 
onsequen
e, there is ano�set between what we think of as an externally applied bias voltage andthe Diri
hlet boundary 
onditions. 54
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Figure 6.9: Ele
tri
 �eld in the near unbiased pn-jun
tion. The p-side is to theleft in the �gure.
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Figure 6.10: Ele
tri
 �eld in the x-dire
tion of the near unbiased pn-jun
tion. The
p-side is to the left in the �gure.
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The �gures 6.9 and 6.10 show the ele
tri
 �eld in the devi
e when it isin equilibrium. The dire
tion of the �eld is 
onsistent with the analyti
altheory, it is dire
ted from the n-side towards the p-side. There are also �eldswhi
h indi
ate that smaller jun
tions arise at the 
onta
t region boundaries.The �eld arising at the jun
tion is large enough that, for future developmentof the simulator, it should be 
onsidered to take into a

ount intra
ollisional�eld e�e
ts.6.3 Simulation results under forward bias voltageThe devi
e is forward biased by applying a positive voltage to the p-siderelative to the n-side. This will lower the ele
trostati
 potential a
ross thejun
tion and hen
e the drift-di�usion balan
e will be disturbed. The di�u-sion 
urrent is enhan
ed 
ompared to the drift 
urrent, and thus the widthof the depletion region is redu
ed. The �gures 6.11 and 6.12 shows our simu-lation result of the 
arrier distribution in a forward biased pn-jun
tion. The�gures show that, 
ompared to the unbiased 
ase, the depletion region isde
reased in extension.PSfrag repla
ements
x, [µm ]

y

,[µm] 0 1 2 300.5
1

Figure 6.11: Spatial distribution of ele
tron (blue) and hole (red) positions in theforward biased pn-diode. The drawn lines 
orrespond to the analyti
ally 
al
ulatedextension of the depletion region when the devi
e is in equilibrium.The positive slope of the graph in �gure 6.13 indi
ate that under forwardbias voltage, there is a 
urrent running through the devi
e from the p-sidetowards the n-side. Thus the qualitative result produ
ed by our Monte Carlomodel is 
onsistent with the analyti
al model.56
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Figure 6.12: The 
on
entration of holes (red) and ele
trons (blue) along the x-axisof the forward biased pn-diode.The 
urrent found when taking the derivative of this 
urve is 1.0× 10−2 mA/µmin the z-dire
tion.
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Figure 6.13: Cumulative 
harge that has entered the left 
onta
t and exited theright 
onta
t of the forward biased pn-diode during the simulation time of theforward biased pn-jun
tion.A similar study of a GaAs pn-devi
e under forward bias has been 
on-du
ted by Moglestue [18, 39℄. In this study, Boltzmann's transport equationand Poisson's equation were solved self-
onsistently using the Monte Carlomethod. The devi
e had ohmi
 
onta
ts in both ends. Moglestue observedthe formation of an ele
tron hole plasma at both sides of the jun
tion; andhe refers to experiments in whi
h the lumines
en
e from su
h a plasma hasbeen measured. The density of the plasma rea
hed four times the a

eptor ordonor density at the jun
tion. Our results indi
ate that for a Cd0.28Hg0.72Te57



diode under forward bias, there is a small a

umulation of ele
tron plasmaat the p-side of the jun
tion. This 
an be seen in both �gure 6.12 and 6.11if studied 
arefully. The e�e
t may be due to the small e�e
tive mass of theele
trons. The plasma e�e
t observed for the CMT diode is mu
h weakerthan Moglestue's result indi
ate for the GaAs jun
tion.
6.4 IV 
hara
teristi
s of the pn jun
tionThe IV-
hara
teristi
s for the pn-jun
tion has been obtained running station-ary simulations with varying VPoisson while measuring the 
urrent throughthe diode. The result is presented in �gure 6.14. The �gure shows that the
pn-jun
tion has the re
tifying behaviour of a diode.The 
urrent running through the diode under the three di�erent operating
onditions dis
ussed in the previous se
tions is presented in table 6.3.The IV 
urve shows that for our simulation results, there is no reverse leakage
urrent in the diode. Reverse leakage 
urrent, or dark 
urrent in the 
ontextof photodiodes, is an undesired e�e
t o

urring in APD dete
tors whi
h isdue to generation of 
arriers in the depletion region of a reverse biased devi
e.Dark 
urrent 
an in prin
iple be studied using the Monte Carlo method, thisrequires the implementation of 
arrier generation rates obtained from �rstprin
iples of quantum me
hani
s. However, due to the very low generationrate 
ompared to the time step of the Monte Carlo method, the te
hniqueis ine�
ient in this respe
t. Several studies have been 
ondu
ted on dark
urrent in HgCdTe APDs [42, 43℄, in these studies, the transport equationshave been solved using other methods than the Monte Carlo.Type of external bias voltage Total 
urrent at p-
onta
t [ mA/µm]Forward bias 1.0× 10−2Unbiased −1.6× 10−6Reverse bias −3.5× 10−4Table 6.3: Current running through the pn-diode during the three stationarysimulations presented in the two previous se
tions .58
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Figure 6.14: Current voltage 
hara
teristi
s of the pn-diode. VPoisson refers to thevoltage di�eren
e at the Diri
hlet boundaries of the Poisson solver.
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6.5 Swit
hing behaviour of a diodeThe simulations des
ribed above are stationary simulations performed with
onstant voltage being applied to the diode. The Monte Carlo simulatoris also suited for studying the transient dynami
s. We have studied thebehaviour of a diode whi
h is swit
hed from the 
urrent 
ondu
ting to thenon-
ondu
ting state.Figure 6.15 shows a 
ir
uit where a diode is forward biased when the swit
his in position 1 and reverse biased when it is in position 2. Assume that theswit
h was in position 1 at t < 0, and swit
hed to position 2 at t = 0. The
urrent through the diode and the voltage a
ross it is sket
hed s
hemati
allyas a �gure of time in �gure 6.16. Tonning's analysis of the swit
hing pro
essis the following: At t < 0, the diode is 
arrying a 
urrent in the forwarddire
tion. At t = 0 it starts 
arrying a large 
urrent in the reverse dire
tion.This 
urrent is due to holes being pulled out from the n-side and ele
tronsbeing pulled from the p-side. We term the time it takes for a diode initially inthe on-state to swit
h to the o�-state the swit
hing time. At the time whenthe minority 
arrier 
on
entrations near the depletion region has fallen o�to the respe
tive equilibrium levels, the 
urrent stabilises at the saturation
urrent Is, whi
h runs in the reverse dire
tion. This 
urrent is due to thegeneration of ele
tron hole pairs in the depletion region. When t → ∞, thevoltage has rea
hed the reverse bias, and thus the diode represents a largeresistan
e in the 
ir
uit.We have simulated the transient behaviour of the swit
hing pro
ess andmeasured the swit
hing time of the pn-diode for a reverse bias voltage of
5 V. The simulation was initialised with parti
le positions and momentaobtained after simulating the diode under forward voltage bias, i.e. VL =
VR = 0.0. We used VL = −5.0 and VR = 0.0 as boundary 
onditions to thePoisson solver and otherwise the same simulation parameters as presentedabove. A

ording to �gure 6.17b there is a small reverse-
urrent e�e
t atthe beginning of the simulation, but it is not as pronoun
ed as Tonning'sanalysis suggest. Figure 6.17a shows that the 
urrent through the 
onta
tsdrops o� steadily and rea
hes a stationary level near zero. From �gure 6.17it is 
lear that after approximately 60− 70 ps, there is no 
urrent runningthrough the devi
e, and this is how we determine the swit
hing time of thediode.Figure 6.17b also re�e
ts the fa
t that the 
harge of the diode 
hanges underoperation. This may be related to the parti
le boundary 
onditions at the60




onta
ts. Modelling the pn-diode may require that the Ramo-Sho
kley par-ti
le boundary 
onditions [23℄ are implemented in order to better maintain
harge 
ontinuity.
1

2

R

Figure 6.15: Cir
uit used for swit
hing a diode between the 
ondu
ting and non-
ondu
ting states. The �gure is from [40℄.
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VsFigure 6.16: The 
urrent through and voltage over a diode whi
h is being swit
hedfrom the 
ondu
ting to the non-
ondu
ting state at t = 0. The �gure is from [40℄.
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t.Figure 6.17: Swit
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Chapter 7APD model
In this 
hapter, we will in se
tion 7.1 brie�y explain how an APD worksbefore we des
ribe the details of the APD model as we have implemented itin the Monte Carlo simulator. The ar
hite
ture of our model 
omponent isdes
ribed in se
tion 7.2. The physi
al pro
ess of impa
t ionisation is sket
hedin se
tion 7.3 and the model as we have implemented it to the simulator isdes
ribed in se
tion 7.4. Se
tion 7.5 gives an overview of the model in pseudo
ode, and the details of the photo ex
itation models is given in se
tion 7.5.1.7.1 Prin
iple of operationAn APD is a photodete
tor, a devi
e whi
h may transform a light signal toa 
urrent pulse. An important appli
ation of APDs are as photodete
torsfor LIDARs (Light Dete
tion And Ranging). A LIDAR illuminates a targetby laser pulses and dete
ts the ba
k-s
atter. Obje
t imaging and mappingby LIDAR has appli
ations in a wide range of �elds, ranging from studiesof atmospheri
 
omposition to geologi
al surveying as well as military ap-pli
ations [44℄. Another important appli
ation for APDs is the s
intillation
ounter [45℄. A s
intillator is a 
rystal whi
h �uores
es when stru
k by ion-ising radiation, the light from the 
rystal may be dete
ted and 
onverted toan ele
tri
al signal using an APD.Di�erent semi
ondu
tors are suited as dete
tors for di�erent parts of theele
tromagneti
 spe
trum determined by the quantum e�
ien
y of the ma-terial. The de�nition of quantum e�
ien
y is the fra
tion of photons of65



given wavelength whi
h are 
onverted to ele
tron-hole pairs. CdxHg1−xTehas a high quantum e�
ien
y in the interval 3− 15 µm depending on thealloy 
omposition. Thus CdxHg1−xTe is a dete
tor material 
overing bothof the atmospheri
 windows in the infrared spe
trum. For x = 0.28, thematerial is suited for mid-wave infrared dete
tion, i.e. wavelengths in therange 3− 5 µm.The APD that we will study here is in prin
iple a pn jun
tion under reversebias. A photon whi
h is absorbed in the depletion region may generate
arriers by the photoele
tri
 e�e
t. Carrier multipli
ation is 
aused by theimpa
t ionisation pro
ess des
ribed in the following se
tion. These 
arrierswill eventually rea
h the 
onta
ts of the devi
e, resulting in a measurable
urrent gain.
CdxHg1−xTe is a highly sensitive dete
tor material whi
h is also low in noise[46℄. The low multipli
ation noise is due to a large asymmetry betweenthe impa
t ionisation rates of ele
trons and holes in CMT, this redu
es theex
ess noise whi
h stems from the sto
hasti
 nature of the multipli
ationpro
ess. An espe
ially useful property of APDs is that the ex
ess noise is independant of the gain. As a 
onsequen
e, the reverse bias may be in
reasedto in
rease the signal strength from the APD without in
reasing the noise atthe same time. This makes these devi
es useful dete
tors for signals of verylow intensity; devi
es 
apable of dete
ting single photons have been reported[47℄.7.2 APD ar
hite
tureThe model APD we will study here is a pin devi
e operated under reversebias. The i-region of su
h a devi
e should be near intrinsi
; in pra
tise, it isoften weakly doped with donors. The interfa
e between the p and i regionresembles the pn-jun
tion studied in the previous 
hapter, but be
ause ofthe weak doping, the depletion region extends far into the i-region. Underreverse bias there will be a reinfor
ed ele
tri
 �eld a
ross the depletion region.Our model APD is sket
hed in �gure 7.1. The a

eptor density is 1× 1016 cm−3at the p side and the donor densities are 5× 1014 cm−3 and 1× 1017 cm−3respe
tively for the i and n+ regions. We believe in
luding a heavy doped
onta
t region at the p-side would help in
rease devi
e performan
e, andshould be 
onsidered for future simulations. The same devi
e has been usedfor the simulations presented in 
hapter 8. We have kept the doping den-66



sities low in order to avoid degenera
y and hen
e the need for 
onsideringthe Pauli prin
iple. Table 7.1 gives an overview of the devi
e measures andsimulation parameters used with the simulations presented in 
hapter 8.
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Figure 7.1: The geometry of the APD devi
e. The shaded regions represent the
onta
t regions.7.3 The Auger and impa
t ionisation pro
essesThe Auger and the impa
t ionisation pro
esses are non-radiative re
ombina-tion and generation pro
esses o

urring in semi
ondu
tors. The Auger andimpa
t ionisation pro
esses are inverse of ea
h other; the Auger pro
essesare asso
iated with 
arrier re
ombination and impa
t ionisation pro
esseswith 
arrier generation. These pro
esses exists in a few di�erent variants,depending on whether lo
alised states or phonons are involved. Ridley [48℄des
ribes �ve basi
 Auger pro
esses; here we will fo
us on the Auger 1 pro
essbe
ause it is the dominant pro
ess o

urring in narrow gap semi
ondu
tors.The impa
t ionisation pro
ess implemented in the Monte Carlo simulator isthe inverse of the Auger 1 pro
ess.The Auger 1 pro
ess is initiated by a 
ollision between two ele
trons whereone of the ele
trons falls down into the valen
e band; the energy of theannihilated ele
tron hole pair is absorbed by the other ele
tron.The inverse impa
t ionisation pro
ess is initiated with a high energeti
 ele
-tron whi
h 
auses an ionising 
ollision with the latti
e, thus generating anele
tron hole pair. In this pro
ess, the initial ele
tron loses energy 
orre-sponding to the energy gained by the newly generated ele
tron hole pair.67



Lx 3.0 µm
Ly 1.0 µm

Lxdr
R 0.75 µm

Lydr
R 0.30 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 600
h 5 nm
τ 1 fs
τf 5 fs
NA 1× 1016 cm−3

ND 5× 1014 cm−3

N+
D 1× 1017 cm−3

T 300 K / 77 K
x 0.28Table 7.1: Simulation parameters for the APD diode. The symbols are explainedin �gure 7.1.The two ele
trons of the �nal state are swept to the n-side and the hole tothe p-side. Figure 7.2 illustrates the pro
ess.Carriers in the high ele
tri
 �eld of the reverse biased pn-jun
tion of anAPD are a

elerated to high energies, thus impa
t ionisation be
omes animportant s
attering me
hanism in this region of the devi
e. One photogenerated ele
tron hole pair in this region may initiate a sequen
e of impa
tionisation, resulting in 
arrier or avalan
he multipli
ation. If enough 
arriersare generated, a 
urrent gain is measurable at the 
onta
ts of the devi
e.

7.4 The impa
t ionisation modelThis se
tion des
ribes the impa
t ionisation model implemented in our MonteCarlo simulator. We assume that only ele
trons may initiate impa
t ioni-sation events; this is a reasonable assumption for CMT due to the largeasymmetry between the impa
t ionisation rates of ele
tron and holes.68



ECEVFigure 7.2: Illustration of 
arrier generation by the impa
t ionisation pro
ess. Ahigh energy ele
tron loses energy to produ
e an ele
tron hole pair. The �gure isfrom [49℄.7.4.1 S
attering rateThe impa
t ionisation pro
ess is modelled as a s
attering me
hanism follow-ing the approa
h of [50℄. Thus, we �rst need to obtain the s
attering ratefor the impa
t ionisation s
attering me
hanism. Several 
hoi
es exist, manyauthors uses the Keldysh formula [50, 51℄, but we have de
ided to use therate obtained by Ridley [48℄ in order to avoid the use of �tting parameters.The 
al
ulation of this rate is des
ribed in great detail; the Fermi GoldenRule is used with the matrix element of s
reened Coloumb intera
tion. The�nal expression is:
Wii = 4.139 × 1016

[

4
√

m∗

em
∗

h

m0

(

m∗

e

m0
+ µ

)(

1

εr

)2 [Ei

Eg
− (1 + µ)

]

]

.In this expression, m∗

e and m∗

h are the e�e
tive masses of the 
ondu
tion andvalen
e band, m0 the free ele
tron mass, Ei the energy of the ele
tron whi
hinitiated the pro
ess and µ = m∗

e/m
∗

h. The s
attering rate re�e
ts that theenergy of the in
ident ele
tron must be higher than the threshold energy
Eth =

1 + 2µ

1 + µto be able to 
ause impa
t ionisation. The s
attering rate is plotted in �gure7.3. 69
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Figure 7.3: The s
attering rate for impa
t ionisation at 300 K used in the MonteCarlo simulator.
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7.4.2 Determining the energy lossThe next problem is to �nd the energy loss,∆Ei, of the ele
tron that initiatedthe ionising 
ollision. A

ording to Kin
h [52℄, the total probability of impa
tionisation is proportional to the integral
P (Ei) ∝

∫

Ei
Eg

1

dx
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2
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x4
,







where, x = ∆Ei/Eg. From this integral, we have extra
ted a probabilitydistribution for the energy loss of the ele
tron 
ausing the ionising 
ollisiondepending on its initial energy. The integral runs over all possible energylosses, thus for a given Ei, the integrand is proportional to the probabilitydistribution for the energy loss. A plot of this integrand for a few di�erentvalues of Ei is given in �gure 7.4, the graphs have been normalised with theirmaximum values to ease 
omparison. For energies larger than a few Eg, theshape of the distribution fun
tion, in
luding the position of the maximum,shows small 
hanges; we have therefore 
hosen the three 
urves in �gure 7.4as approximate distributions to save 
omputations. On
e the probabilitydistribution for ∆Ei is known, we sample from it using the a

eptan
e-reje
tion method des
ribed in [27℄.7.4.3 Generation of the new ele
tron-hole pairOn
e the energy loss of the ele
tron initiating the impa
t ionisation pro
essis determined, it remains to determine the states of the three 
arriers afterthe s
attering. The energy of the original ele
tron after the s
attering is
Ei −∆Ei, while the loss is divided equally between the generated ele
tronand the hole. In our model, the new ele
tron is 
reated in the Γ-valleywhile the new hole is 
reated in the heavy hole band. The modulus of themomentum ve
tors are found using the band stru
ture while the dire
tionsof the momenta of all three parti
les are randomised, adopting the pro
edureof [51℄.Our model takes into 
onsideration the 
onservation of energy, but not 
on-servation of momentum. The randomisation of the �nal state momentais a 
rude approximation whi
h violates an important fundamental law of71
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physi
s, namely the 
onservation of momentum. If the number of impa
t ion-isation events taking pla
e during a simulation is large, the randomisationwill ensure that there is no bias towards any side; and thus, 
onsidering thetotal of all the impa
t ionisation events, one 
an imagine that the momentumon average is near 
onserved.An overview of the implementation of the s
attering me
hanism is given inpseudo 
ode below:< Determine energy loss:- 
hoose distribution fun
tion- sample from 
hosen distribution fun
tionusing a

ept-reje
t method >FinalEnergy = InitialEnergy - EnergyLossk = k(FinalEnergy)< randomize dire
tion of momentum >< Generate ele
tron-hole pair:k = k(deltaEi/2)position = position of initial ele
tron< randomize dire
tions of momenta >valley = Gammaband = heavy hole >7.5 Overview of program implementationSimulation of the APD simulation is 
ondu
ted in two parts; �rst, the pin-stru
ture is simulated under reverse bias until the stationary Monte Carloequilibrium is rea
hed. In this part of the simulation, Poisson's equation issolved every �eld adjusting time step. We have used approximately 50 000superparti
les of ea
h spe
ies and the Diri
hlet boundary 
onditions VL =
−3.0 V and VR = 0.0 V to obtain the 
arrier distribution shown in �gure 7.6.The �gure shows that most of the parti
les parti
ipating in the simulationare lo
ated in the near 
harge neutral areas where impa
t ionisation has alow probability of o

urring.To in
rease the e�
ien
y of the simulation, this 
arrier distribution alongwith with the 
orresponding ele
tri
 �eld will be frozen in the se
ond part ofthe simulation. One ele
tron-hole pair is opti
ally generated, and in addition73



to this pair, we tra
k in time only the 
arriers generated by the impa
t ion-isation pro
ess. The 
arriers are 
onsidered ele
trons and holes 
arrying theelementary 
harge. They parti
ipate in free �ights and s
atterings, but weassume their 
ontribution to the ele
tri
 �eld within the devi
e is negligible.The inje
tion of superparti
les at the 
onta
ts is stopped, but the simulated
arriers are allowed to leave the devi
e through the 
onta
ts. The 
urrentmeasured at the 
onta
ts represents the 
urrent gain. This implies that ifany dark 
urrent would be running through the diode during the simulation,it would have been arti�
ially set to zero.< Perform simulation to obtain (or read) ele
tri
 field >for ea
h simulation< Generate ele
tron hole pair due to photo-ex
itation >for all timestepsfor all ele
trons< flight >< s
atter, in
luding impa
t ionization me
hanism>endfor all holes< flight >< s
atter >end< Absorb parti
les at 
onta
ts >< Measure 
urrent at the 
onta
ts >< Colle
t statisti
s >end< Colle
t statisti
s >endFigure 7.5: Overview of the program implementation of the APD model.74
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Figure 7.6: Spatial distribution of ele
tron (blue) and hole (red) positions in thereverse biased pin-stru
ture.7.5.1 Photo ex
itationThe initial ele
tron hole pair starting the avalan
he pro
ess in an APD pho-todiode is generated by a photon with energy Eγ impinging on the i-regionof the diode. The photon energy needs to be larger than the band gap to beable to ionise an atom; the remaining energy will be split among the ele
tronand hole. The photon energy 
an thus be written
Eγ = Eg + Eh + Ee. (7.1)For the simulations presented in the next 
hapter, a 4.0 µm photon has beenused to initiate the avalan
he pro
ess. The generated parti
les are assumedto be a heavy hole and an ele
tron in the Γ valley. The resulting ele
tronenergy, Ee and hole energy, Eh, is found using the band stru
ture. Figure 7.7shows equation 7.1 plotted as a fun
tion of k = |k|. The ele
tron-hole pairis given the k found at the interse
tion of the two 
urves while the dire
tion
hosen at random. The hole is given the negative of the ele
tron k-ve
torto preserve the momentum in the ionisation pro
ess. The position of theinitial ele
tron hole pair is �xed to the depletion region of the i-region of the

pin-stru
ture.
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tor from the band stru
ture.< Determine photon energy from wavelength>< Assign fixed position in i-region >< determine ele
tron |k| from band stru
ture >< randomize dire
tion of momentum >< Transform ele
tron k-ve
tor to 
artesian 
oordinates >< valley = Gamma >< Assign hole k-ve
tor using 
onservation of momentum >< band = heavy hole >Figure 7.8: Pseudo 
ode giving an overview of the photo-generation of an ele
tron-hole pair. 76



Chapter 8APD simulation results
In this 
hapter the simulation results for the reverse biased Cd0.28Hg0.72TeAPD of �gure 7.1 will be presented. We have studied the 
urrent gain interms of the 
arrier multipli
ation in the devi
e under di�erent 
onditions,in
luding variation in the photon energy and latti
e temperature. First, wewill have a peek at the behaviour of the 
arriers inside devi
e during themultipli
ation pro
ess.8.1 Distribution of 
arriers inside the devi
eIn �gure 8.1, we have extra
ted the 
arrier positions within the devi
e at afew sele
ted time steps during the simulation. The simulation was allowedto run until we 
ould observe that all the 
arriers had exited the devi
e,approximately a few hundred pi
ose
onds. The top left plot shows the initialphotogenerated ele
tron hole pair, it is a

elerated in the ele
tri
 �eld fora few hundred femtose
onds before the the �rst impa
t ionisation pro
esso

urs. The ele
trons, whi
h have small e�e
tive masses 
ompared to theholes, drift faster towards the 
onta
t at the n-side than the holes towardsthe p-side. As the impa
t ionisation events 
ontinue to happen, more andmore holes appear near the n-side of the 
omponent. As the ele
trons rea
hthe n 
onta
t, they exit the simulation. In a real devi
e whi
h obeys 
harge
ontinuity, the ele
trons would not be allowed to es
ape the devi
e while theholes are still on their way to the 
onta
t. They would have to wait for theholes to rea
h the opposite 
onta
t and then re
ombination would take pla
e.In our simulations, depending on the bias voltage, the holes either su

eed at77



exiting the 
omponent or they a

umulate at the p-side of the devi
e, whi
his a sign of poor performan
e of this parti
ular 
omponent. This e�e
t mighteither be due to unphysi
al large �u
tuations in the ele
tri
 �eld due to thelarge superparti
le 
harge, or it might be due to poor ar
hite
ture design. Inthe latter 
ase, in
luding a p+ region 
lose to the p-
onta
t would give riseto an ele
tri
 �eld whi
h 
ould pull the holes faster towards the 
onta
t.As the ele
trons move out of the high ele
tri
 �eld, they lose energy and theprobability of impa
t ionisation events de
reases. Consequently, new ele
tronhole pairs are generated at a lower rate and eventually the generation pro
essdies out. One light pulse may thus be asso
iated with one 
urrent pulse.8.2 Swit
hing timeThe swit
hing time for the APD diode has been measured when swit
hingfrom forward bias voltage 
orresponding to Diri
hlet boundary 
onditions
VL = VR = 0.0 V to reverse bias 
orresponding to Diri
hlet boundary 
ondi-tions VL = 0.0 V and VL = −8.0 V. Figure 8.2 shows the 
urrent droppingo� during the transition. The �gure indi
ates a swit
hing time just above
∼ 500 ps.8.3 Multipli
ation and noiseThe multipli
ation fa
tor is the total number of ele
tron hole pairs generatedfrom the initial photogenerated pair of 
arriers. We have measured the aver-age multipli
ation fa
tor and its standard deviation for two di�erent latti
etemperatures and two di�erent photon wavelengths. The multipli
ation fa
-tor is a measure of the 
urrent gain and hen
e the performan
e of the APD,while the standard deviation is related to the noise.The simulation results presented in table 8.1 are averages over 5000 simu-lations performed at a reverse bias of −3.0 V, meaning that the Diri
hletboundary 
onditions to the Poisson solver was set to −3.0 V at the p-sideand 0.0 V at the n-side.A

ording to table 8.1, the multipli
ation is slightly larger for both wave-lengths when the devi
e is 
ooled. The impa
t ionisation rate is slightlylarger at 300 K than 77 K, but the di�eren
e is believed to be too small, a78
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fa
tor of the order ∼ 1.1, to be dire
tly responsible for the deviation. How-ever the other s
attering rates, as e.g. the polar opti
al s
attering rate is
onsiderably higher at room temperature. When s
atterings o

ur more of-ten, the ele
tron mobility is redu
ed. Thus the 
arriers in the 
ooled devi
erea
h higher velo
ities, whi
h, 
ombined with a lower threshold energy forimpa
t ionisation, agrees with a larger multipli
ation fa
tor.The ex
ess noise fa
tor, F , is estimated using the formula [50℄:
F (M) = 1 +

σM
M

2
,where M is the mean multipli
ation gain and σM the standard deviation.For our simulations, the ex
ess noise is indeed independent of gain, and thevalues, just above 1, agrees with what has been observed in previous studies[50℄. Photon wavelength M σM Ex
ess noise

T = 300 K 3.0 µm 12.8 6.6 1.27
4.0 µm 10.3 5.3 1.26

T = 77 K 3.0 µm 16.5 7.7 1.22
4.0 µm 13.3 6.2 1.22Table 8.1: Multipli
ation, M , and standard deviation, σM obtained at areverse bias of −3.0 V. The results are averaged over 5000 simulations.8.4 Current impulse responseThe bandwidth of the devi
e is related to the time it takes from a photonhits the dete
tor until the 
orresponding 
urrent pulse has faded out. Thebandwidth is of great interest for APDs to be used as the photodete
ting
omponents of LIDARs, but as far as we know, little resear
h has been doneon the 
urrent response CMT diodes so far.In �gure 8.3, the number of 
arriers exiting at one of the 
onta
ts per fem-tose
ond is plotted as a fun
tion of time for a simulation performed at areverse bias of 7.0 V. The generating photon had a wavelength 4.0 µm.The plot shows that the bandwidth for this 
omponent is limited by theholes. At 8 ns, all the holes has exited the devi
e. The logarithmi
 x-axis ofthe plot obs
ures the fa
t that most of the holes exit the simulation during81
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Figure 8.3: Reverse bias voltage: −7 V,photon wavelength 4.0 µmthe time interval between 300 ps and 2 ns, followed by a tail whi
h is 
loseto rea
hing zero at 5 ns.It should be noted that the 
ir
uit surrounding the APD is not part ofour Monte Carlo model. As a 
onsequen
e, there is no 
harge 
ontinuity
ondition imposed on the 
onta
ts in our model, and thus there is reason tobelieve that the time the model predi
ts it would take to exit the holes fromthe devi
e may be too long.8.5 Gain-voltage 
hara
teristi
sFigure 8.4 shows the multipli
ation-voltage 
hara
teristi
s of the simulateddiode. As observed in other studies, e.g. Derelle et al. [51℄, the gain 
urveis exponential. This is a property of HgCdTe APDs related to the highasymmetry of the impa
t ionisation 
oe�
ients of ele
tron and holes.Derelle et al. has studied the multipli
ation gain under variations in whi
hs
attering pro
esses are in
luded in the model [51℄. The authors 
on
ludethat alloy s
attering has a large e�e
t on the multipli
ation and ex
ess noisefa
tor; they observe a steeper multipli
ation voltage 
hara
teristi
s for thesimulations whi
h in
lude the alloy s
attering me
hanism. The alloy s
at-tering is assumed to be 
ompletely random and isotropi
 in this model. Inour model the potential for the alloy s
attering is not set for the simulationspresented here, thus alloy s
attering does not happen in our simulations.82
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Chapter 9Dis
ussion and further work
At the moment, several resear
h groups work on Monte Carlo simulationof APD-diodes. On the 
ontrary, only few MC studies exist of the simple
pn-diode, and these are mainly from the 1980s.The re
ent APD studies fo
us mainly on modelling and simulating gain andnoise in existing 
omponents in order to study devi
e performan
e. Ourfo
us has been on the Monte Carlo method itself; to establish the di�
ultiesof using the Monte Carlo method. Our model is not tuned to experimentalresults and 
ontains no �tting parameters. Our model devi
es are 
hosenfor simpli
ity rather than for high performan
e. Our fo
us has been to shedsome light on general problems whi
h arise when using the Monte Carlote
hnique for studying devi
es based on pn-jun
tions.The resear
h on APD stru
tures 
ondu
ted up until re
ent operate in thelow photo
urrent limit [53, 46, 50℄; it is assumed that the 
harge of theopti
ally generated 
loud of ele
tron hole pairs is small enough that theele
tri
 repulsion between them 
an be negle
ted in 
omparison to the largeapplied bias. This assumption implies that the ele
tri
 �eld is 
al
ulatedonly at the beginning of the simulation and stays frozen throughout. It isonly sin
e spring 2011 that simple Fermi-Poisson solvers [53, 50℄ has beenrepla
ed by self-
onsistent solution of the Monte Carlo model and Poisson'sequation [46, 54℄. The low photo
urrent assumption was relaxed �rst byBertazzi et al. in 2011 [54℄, but it still remains to do this for CMT APDs.Our model is in prin
iple prepared for doing this at this stage.The APDs 
urrent response to a light pulse in CMT APDs has been studied85



using the Monte Carlo model [54℄ and a 1D deterministi
 model based on
arrier generation [55℄. The latter study explains that the response time isdue to the large 
apa
itive e�e
t of the metal 
onta
ts. The former explainsthe response time in terms of the gain. A longer tail of the 
urrent response
urve is observed for larger gains; the in
reased number of o�spring 
arriersneed more time to leave the devi
e. Our model is in agreement with bothof these models, but in addition, it points at the importan
e of the largedi�eren
e in ele
tron and hole velo
ities. Based on our simulation results,we suggest to explore the possibility of 
oupling the Monte Carlo methodwith the solution of Maxwell's equations to study the signi�
an
e of thedispla
ement 
urrent on the 
urrent response time.Further development of the Monte Carlo simulator in
ludes development ofthe Poisson solver. A 
ylindri
al 2D solver will prepare the simulator formodelling a new 
lass of devi
es, as will the in
lusion of a 3D solver. The2D solver 
urrently in
luded in the simulator 
onsumes about 50% of thesimulation time, solving the 3D problem strengthens the need for a fastsolver. This 
an be a
hieved within the framework of the su

essive overrelaxation method by applying multigrid te
hniques. Another alternativewhi
h may be 
onsidered is the Fast Multipole Method (FMM) [5℄. Thismethod relies on redu
ing the 
omplexity the many-body problem beforesolving it, thus redu
ing the solution time.9.1 Further workDuring the work with this thesis, we have identi�ed a number of details thatwill improve the Monte Carlo simulator:
• In
lude the full band stru
ture information and provide interoperabilitywith ab-initio ele
troni
 stru
ture 
odes su
h as Wien2k.
• The impa
t ionisation model should be improved by taking into a
-
ount 
onservation of momentum in addition to energy 
onservation.
• The ohmi
 
onta
t model should be �tted for the CMT material. Itis ne
essary to implement the Ramo-Sho
kley parti
le boundary 
on-ditions. Furthermore, detailed simulation of the 
onta
t region usingthe 
harge enhan
ement method should be 
onsidered.In the dis
ussion se
tion, a few topi
s relevant for ongoing resear
h in the�eld of APDs were mentioned. In addition, we suggest:86



• Use the model to solve Poisson's equation self-
onsistently during APDsimulation in order to study larger photo
urrents or THz swit
hes.
• The iterative Poisson solver whi
h has been developed 
an be 
ombinedwith the multigrid te
hnique prior to parallellisation.
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Chapter 10Con
lusions
The Monte Carlo simulator whi
h has been developed as a student proje
tat FFI has during this work been made 
apable of modelling devi
es. A fastPoisson solver whi
h relies on the su

essive overrelaxation method has beenimplemented and an impa
t ionisation model has been implemented in orderto make the simulator 
apable of modelling APDs.During this work, two simple pn-jun
tion devi
es has been simulated, a
pn-diode and an APD. The devi
e 
hara
teristi
s, in
luding 
urrent-voltage
hara
teristi
s and swit
hing times have been obtained. Our simulation re-sults of the pn-diode has shown that there may be a small formation ofele
tron plasma at the p-side of a CMT pn-diodes. For the APD, we havestudied multipli
ation and noise and obtained the gain-voltage 
hara
teris-ti
s.We simulated simple devi
es in order to dis
uss a few problemati
 aspe
tsof the Monte Carlo method whi
h arise when simulating CMT pn-jun
tions.Within the framework of the Monte Carlo method, the dark 
urrent needs tobe negle
ted for CMT APDs. We have pointed to the fa
t that the 
urrent-impulse response may turn out ina

urate due to violation of the 
ontinuityequation in the surrounding 
ir
uit. Furthermore, we believe that the self-
onsistent solution of the transport equations and Poisson's equation usingthe Monte Carlo method is well suited for studying large photo
urrents inAPDs be
ause the frozen �eld assumption is easily relaxed within the MonteCarlo framework. 89
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Appendix AEnergybands and e�e
tivemasses
The energy bands and s
attering rates are 
orner stones of the Monte Carlomodel. They have not been altered during the work with this thesis, thusthey are presented here in the appendix. More details are presented in thetheses of Norum [8℄, Olsen [9℄ and Skåring [10℄.The ele
tron band band stru
ture used in the Monte Carlo simulator is theanalyti
al and isotropi
 approximation

γ(k) = E(1 + αE) =
h̄2k2

2m∗
, (A.1)where α = (1 −m∗

Γ/me)
2/Eg and Eg is the band gap at the Γ point. Here,

m∗ are the e�e
tive masses of the three valleys in
luded in our model, Γ, Land X.The e�e
tive mass of the Γ valley at the bottom of the 
ondu
tion band isin our model m∗

Γ = 3h̄2Eg
(16.56×10−10eC)2

, thus depends on the alloy fra
tion andtemperature via the band gap dependan
y. The e�e
tive masses of the L and
X valleys are m∗

L = 0.222me and m∗

X = 0.580me where me is the free el
tronmass. These valleys are high in energy, 1.5 eV and 2.5 eV respe
tively, andtherefore rarely a
tive in CdxHg1−xTe.The 
urrent heavy hole the light hole band models are des
ribed in Skåring'smaster's thesis [10℄. The bands are reprodu
ed together with the ele
tronband stru
ture of the Γ valley in �gure A.1. The hole bands are isotropi
91



with 
ontinous derivatives. The e�e
tive hole masses are m∗

HH = 0.530meand m∗

LH = m∗

Γ.PSfrag repla
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Figure A.1: The band stru
ture of the Γ valley, the heavy (HH) and light (LH)hole band at 300 K.
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Appendix BS
attering rates
The intravalley and intraband s
attering rates in
luded in our Monte Carlomodel as fun
tions of the Γ valley and heavy hole band energy are presentedin �gures B.1 and B.2 respe
tively. In addition, intervalley and interbands
attering rates are in
luded in the model.
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Figure B.1: The s
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