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Chapter 1Introdution
The information age, in whih we live, is based on digital omputers andeletroni devies made possible by the use of semiondutor devies. Yet,understanding these devies is a hallenge; in the researh �eld of semion-dutors it is not unusual that a devie is produed in a laboratory beforethe physis of the material is fully understood. In order to obtain the de-tailed knowledge of how these devies really work, it is neessary to modelthe physial proesses taking plae at a mirosopi sale inside the material.Modern miroeletroni devies requires the treatment of transient dynamisof highly non-equilibrium arrier distributions; the Monte Carlo method ofsemiondutor devie simulation is a widely used and aknowledged modelsuitable for this purpose. The method is a omputer simulation tehniquewhere the model is designed on a mirosopi sale, on the level of eletroniinterations, while the results are obtained in terms of marosopi mate-rial properties, e.g. the urrent-voltage harateristis of a diode. Usingomputer simulation tehniques suh as the Monte Carlo method o�ers aunique insight into proesses whih are not diretly observable in physialexperiments.The Monte Carlo method is a partile simulation tehnique where we followthe phase spae trajetories of the urrent onduting partiles in a semi-ondutor material. These partiles are subjet to thermal motion withina rystal lattie. This is modelled as a series of free �ights terminated bysattering events. Random numbers are used to determine the duration ofthe free �ights and the new diretions of the partiles after the satterings.In this way, we obtain the statistial distribution of partile states in the5



material whih is also a solution to Boltzmann's transport equation. Allmarosopi transport properties may be extrated from this solution as en-semble or time averages.For our purposes, whih is devie simulation, the eletri �eld within thedevie also needs to be onsidered, and hene it is the solution to the self-onsistent system of system of Boltzmann's equation and Poisson's equationthat needs to be obtained. In this thesis, an iterative fast Poisson solversuitable for two-terminal devies has been developed and an Ohmi ontatmodel has been implemented to the existing bulk simulator.The Monte Carlo method for material simulations roots in the 1960's, andhas been the base for numerous publiations during the past �fty years. Ithas been reognised as a powerful theory for studying physis on the borderbetween the lassial and quantum mehanial regimes. A way to view thisis onsidering the e�ort that has been put into strething the temporal andspatial validity regime of the model. In the limit of long simulation times,the method is used in ombination with hydrodynami theory whih allowsa longer time step. In the limit of small devies, a variety of quantumorretion methods have been developed.In this thesis, we have used the Monte Carlo method for semiondutor de-vie simulation to simulate a pn-diode and an avalanhe photodiode (APD).A pn-diode is a retifying devie whih allows urrent to pass in one dire-tion while urrent in the opposite diretion is bloked. The APD is a highlysensitive photo-detetor whih relies on the photoeletri e�et; a photonexites an eletron into the ondution band, the APD then exploits thephysial proess of impat ionisation to generate an avalanhe of arriers.This gives rise to a urrent pulse whih is large enough to be detetable inthe eletrial iruit surrounding the diode. APDs are inreasingly impor-tant for tehnologial appliations; they are used as deteting omponentsof LIDARs, whih are used for optial remote sensing, and for sintillationdetetors, whih measure ionising radiation.The APD and the pn-diode are both relatively simple two-terminal deviesin whih the pn-juntion onstitute the main building blok. Simple ompo-nents like these have traditionally been analysed using the drift-di�usion orhydrodynami model. Partile simulation tehniques have not, to any greatextent, been employed to this task. In this thesis, we apply the Monte Carlomethod to pn-juntion devies in order to investigate some of the limits andweaknesses of the Monte Carlo method.6



Stationary simulations of a pn-diode have been onduted in order to obtainthe urrent-voltage harateristis for the devie. It points to the fat thatthe Monte Carlo method is unsuited for obtaining the reverse leakage urrentfor CdxHg1−xTe (CMT) pn-diodes. Detailed statistis have been extratedfor simulations under reverse and forward bias voltage, these indiate thatthere is a small aumulation of an eletron plasma at the p-side of thejuntion of the CMT diode. This phenomenon has previously been observedfor GaAs-diodes. A transient simulation has been performed in order toobtain the swithing time for the CMT pn-diode at a reverse bias of −5 V.In addition, our simulation results show that large eletri �elds arise arossa CMT pn-juntion, thus it may be neessary to inorporate intraollisional�eld e�ets by extending the simulator with quantum orretions.I order to do simulations of CMT APDs, a simple impat ionisation modelhas been implemented to the Monte Carlo simulator. Multipliation andnoise has been measured under variations in lattie temperature and photonwavelength, the multipliation gain was observed to be slightly higher dueto inreased mobility in the ooled devie. Furthermore, our results showan exponential gain-voltage urve and exess noise whih is independent ofgain. We report a swithing time of 500 ps when the devie is swithed fromthe onduting state to a reverse bias voltage of −8 V. We also presentthe urrent impulse response time, whih points to a weakness of the MonteCarlo model; due to the large asymmetry in the e�etive masses of eletronsand holes in CMT, it is neessary to take into aount harge ontinuity inthe surrounding iruit and the displaement urrent in order to obtain aproper urrent-response urve.This thesis is part of a student projet whih has been undergoing at theNorwegian Defene Researh Establishment (FFI) sine 2007. The aim of theprojet is to develop a state of the art Monte Carlo simulation tool for bothbulk and devies and thereby promote the photovoltai infrared detetordevelopment taking plae at FFI. In this ontext, the aim of this thesis hasbeen to extend the existing bulk simulator to a devie simulator with theimplementation of a fast Poisson solver and an ohmi ontat model, as wellas enabling the study APDs with the implementation of an impat ionisationmodel.
7
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Chapter 2Basis of modellingsemiondutors
This hapter gives a short introdution to the some of the topis of solidstate physis whih are needed for modelling semiondutor rystals. Theaim is to build a bridge between the theory as it is often presented in quan-tum mehanis and solid state ourses taught at the university and how thetheory is used in a Monte Carlo partile simulator. First, the properties ofsemiondutors in general are brie�y summed up in setion 2.1 and a fewproperties of CdxHg1−xTe are given in setion 2.2. In setion 2.3, a briefpresentation of the quantum mehanial desription of rystals is given, in-luding the onepts of Bloh states and energy bands. In setion 2.4, theBoltzmann transport equation is presented, and �nally, in setion 2.5, thequantum mehanial treatment of sattering events is presented.2.1 Semiondutor materialsSolid state materials are ategorised as metals, semiondutors or insulatorsbased on the eletrial ondutivity of the material. Semiondutors havelower ondutivity than metals, but higher ondutivity than insulators. Atlow temperatures, the valene band is ompletely �lled while the ondutionband is empty, thus the semiondutor behaves like an insulator. At roomtemperature, eletrons are thermally exited to the ondution band, andhene the material beomes ondutive.9



The ondutivity of semiondutors is easily ontrolled, either dynamiallyby temperature hanges or permanently by the level of impurities introduedinto the material. This property makes semiondutor materials appliablefor a wide range of purposes within the eletronis industry.Semiondutor materials have rystal struture where the atoms are arrangedin a periodi lattie. The material may be doped with impurity atoms tomodify the eletroni properties of the material. In this proess, some of thehost atoms are replaed by impurity atoms. If arseni atoms, whih have�ve valene eletrons, are implanted into a silion lattie, four of the valeneeletrons of eah arseni atom will form ovalent bonds with the neighbour-ing silion atoms. The �fth eletron ends up being loosely bound to its hostatom and is therefore easily exited to the ondution band, leaving behindan ionised impurity entre. While donors ontribute eletrons to the on-dution band forming n-type semiondutors, aeptors ontribute holes tothe valene band that partiipate in eletrial ondution in p-type semi-ondutors. In this thesis both n- and p-type materials will be onsidered.The material is assumed to be fully ionised at room temperature, thus thedensity of ondution band eletrons is set equal to the density of donorsand likewise the hole density is assumed equal to the aeptor density.2.2 CdxHg1−xTe

CdxHg1−xTe, abbreviated CMT, is a ompound ternary alloy semiondutorwhih rystallises in the zin blende lattie struture. It is omposed ofthe semimetal HgTe and the semiondutor CdTe; the x denotes the molefration of HgTe in the alloy. CMT has a diret bandgap whih inreasesapproximately linearly with x until reahing the bandgap of CdTe whih is
1.5 eV at room temperature. The band gap is also temperature dependent,an experimentally obtained formula for the bandgap whih is valid up to
T = 500 K is given in [1℄:

Eg = Eg0 +
6.3 · (1− x)− 3.25 · x− 5.92 · x · (1− x)

11 · (1− x) + 78.7 · x+ T
× 10−4T 2,where Eg0 = −0.303 · (1− x) + 1.606 · x− 0.132 · x · (1− x). Eg is in eV and

T in K.The variable bandgap and the high absorption oe�ient makes CMT a veryuseful material for appliations. It an be tuned to absorb wavelengths in10



the interval 0.7 − 25 µm, thus overing most of the infrared region of theeletromagneti spetrum. CMT is an important material to the industryof infrared detetors and photodiodes, and espeially useful for fabriatinghighly sensitive avalanhe photodiodes whih are low in noise.The simulations whih has been performed during the work with this thesisare done with an alloy fration of x = 0.28 and, unless otherwise stated, atroom temperature. These onditions orrespond to a bandgap Eg = 0.27 eV.2.3 Quantum mehanial treatment of rystalsThe quantum mehanial desription of a perfet rystal is thoroughly givenin many textbooks, among them [2℄. The full desription of a perfet rystalis given by the Shrodinger equation with the many partile rystal Hamil-tonian
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.Here, the two �rst term represents respetively the kineti energy of the ele-trons, having masses mi, and the nulei of masses Mj . The three last termsrepresent the potential energies between the ions and the eletrons. Thesymbols pi and Pj represent the momentum operators of the i'th eletronand the j'th nuleus, ri and Rj denote their respetive positions. Zj denotesthe atomi number of the j'th nuleus and ε0 the eletrial permittivity ofvauum.To be able to solve this system, we introdue several approximations. First,the nulei and the strongly bound ore eletrons are lumped together redu-ing the system to ion ores and loosely bound ondution eletrons. This doesnot hange the appearane of the equation above, but hanges the meaningof the indies; i now labels only valene eletrons instead of all eletrons,and j now labels ion ores.Next, the Born-Oppenheimer approximation an be applied sine the ionores are heavier and slower than the valene eletrons. As a onsequene,11



the eletrons sees only the potential of the stationary ion ores, while the ionores sees only the time-averaged adiabati potential of the valene eletrons.The Hamiltonian is thereby redued to a sum of three terms,
H = Hions(Rj) +He(ri,Rj0) +He−ion(ri, δRj).The �rst term desribes the ioni motion in the averaged potential; theseond term is denoted the eletroni term, it desribes the motion of theeletrons in the lattie where the ions are frozen in their equilibrium po-sitions, Rj0, and the last term desribes the hange in eletroni energiesdue to displaements, δRj , of the ions from their equilibrium positions, alsoalled phonons.Further, the mean �eld approximation, whih is derived in [3℄, is applied.The purpose of this approximation is to redue the many-body problemabove to an e�etive one-body problem where all eletrons are onsideredto experiene the same averaged potential V (r). The result is the familiarone-eletron Shrödinger equation:

(

p2

2m
+ V (r)

)

ψn(r) = Enψn(r). (2.1)Here, ψn denotes the one-eletron wave funtion and En the one-eletronenergy of the eigenstate labelled n. Even though they are aurate solutionsto 2.1, they are approximate in the sense that the equation is subjet to theabove mentioned approximations.The Bloh theorem states that when V (r) is a periodi funtion, the solutionsto 2.1 are Bloh waves,
ψnk(r) = eik · runk(r),where unk(r) have the periodiity of the lattie, with orresponding energies

En = En(k).The solutions arries the index k whih is the wave vetor. The allowedeletroni states are thus de�ned by the two indies k and n. The k-vetortakes values within the �rst Brillouin zone of the reiproal lattie. Theindex n ∈ [1,∞) represents the available bands. The bands with the lowestindies are valene bands oupied by valene eletrons, while the eletrons inthe ondution band partiipate in onduting urrent. The band struture12



En(k), originating from the periodi nature of the rystal de�nes the allowedeletroni energy states of the rystal.There are several methods of alulating the band struture of a rystal.Symmetry often aids the alulations, and hene band struture alulationsprodue E(k)-relations along rystal diretions of high symmetry, see �g2.1, within the Brillouin zone. The basis for the band model used with oursimulations is the k ·p-method, whih is a perturbative method; thus theauray of the energy dereases as k inreases.

Figure 2.1: First Brillouin zone of the f rystal lattie with symmetry labels.Figure from [4℄.2.4 Boltzmann's transport equationThe transport properties of a material is desribed by the Boltzmann trans-port equation. Applied to our system, whih is a slab of semiondutormaterial, the solution to the Boltzmann equation is the statistial distri-bution funtion of the ondution band eletrons in the material. Whenthe probability of eah available phase spae state being oupied is known,all transport properties may be evaluated taking averages over a statistialensemble of arriers.The Boltzmann transport equation is an equation for the rate of hange of13



the distribution funtion. The distribution funtion, f = f(r,k, t), of theeletrons is in general a funtion of position, r; momentum, k and time, t.It desribes the probability of a phase spae state being oupied at a giventime. In equilibrium, the distribution funtion is the familiar Fermi-Dirafuntion,
f(E) =

1

e(E−EF )/kBT + 1
,whih is here stated in terms of energy, E. EF denotes the Fermi level, whihmay be onsidered the highest energy level oupied by the eletrons at 0 K;T the temperature and kB is Boltzmann's onstant.Boltzmann identi�ed three possible reasons for hanges in the distributionfuntion, namely di�usion, in�uene by external �elds and ollisions betweeneletrons and lattie imperfetions. The mathematial statement of thesethree assumptions give rise to the Boltzmann transport theory,
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.Substituting for the partial derivatives due to di�usion and �elds, the Boltz-mann transport equation reads
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.where k̇ is determined by the external eletri and magneti �elds, E and
B, by the relation

h̄k̇ = −e(E +
1

c
v ×B)and the partile veloity is

v =
1

h̄
∇kE.The ollision term of the equation is expressed in terms of quantum me-hanial sattering probabilities. How sattering probabilities are alulatedwill be elaborated in the next setion. For now, we'll assume that the rateof transition per unit time from a state k to another state k′ is given by

W (k,k′). This partiular sattering event an only happen if the state kis oupied and the state k′ is free. The probability of k being oupied is14



f(k) and the probability that it is free is (1 − f(k)). The total hange in
f(k) is given by the di�erene between the inrease due to sattering intothe k-state and the derease due to sattering out of the k-state. These twoterms should be integrated over all k′-states, the resulting ollision term isthus expressed:
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]

d3k′.2.5 Sattering eventsIn semi-lassial transport models, the eletron is onsidered to be of wavenature during the ollisions with the lattie or interations with other parti-les, these interations are therefore referred to as satterings. A satteringis a transition between two eletroni states, the wave piture indiates ade�etion of the wave.In quantum mehani theory, the transitions between eletroni states areaused by imperfetions in an otherwise perfet periodi lattie potential.Assuming that the deviations from the original potential are small, we mayuse perturbation theory , and the hamiltonian of the system may be written
H = H0 +Hj,where H0 is the Hamiltonian of the unperturbed system and Hj is the per-turbation ausing the transition.A general result derived using time dependent perturbation theory is theFermi Golden rule. It states that the transition rate per unit time from aninitial state k in band n to a state k′ in band m is given by [5℄:
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δ(Em(k′)− En(k) ± h̄ω),where h̄ω is the energy emitted (upper) or absorbed (lower) during the pro-ess. The Delta funtion ensures onservation of energy during the proess.The total sattering rate per unit time for transitions out of the state k ofband n is found by performing the summation over all states the system antransition into:
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To obtain the sattering rates to be used in a Monte Carlo simulator, 2.2 isevaluated for spei� sattering potentials, Hj . This is explained in [6℄.2.6 Applying the theory to the partile simulatorSo far this hapter has summed up some relevant topis found in text booktheory of solid state physis and quantum mehanis. It is time to look athow this theory is applied in a Monte Carlo partile simulator.The Monte Carlo method is based on the assumption that the Shrödingerequation has already been solved, and a model of the band struture isavailable either as an analytial expression or as a look-up table. This makesit is possible to assign an energy to a given momentum state. Full-bandMonte Carlo models inlude aurate representations of the band struture,but are omputationally more ostly than simpler analytial models.It is also assumed that the sattering rates of all the sattering proesseswhih are onsidered relevant have been obtained in advane using the TheFermi Golden Rule. The rates are funtion of partile energy and should beavailable to the simulator as tables.Summing up the Monte Carlo method in brief, we initialise eah partilewith a state onsisting of its k-vetor, position and valley or band. We thenfollow the trajetory of eah partile by integrating up its momentum in timeduring the free �ights. The partiles are sattered at ertain times aordingto the sattering rates; the sattering rates assure that a partile high inenergy will have a high probability loosing energy in a sattering event whilethe opposite is true for a partile low in energy. After the simulation has runfor some time, we end up with a statistial distribution of partiles whihis independent of the initial states. It an be shown that the distributionfuntion obtained using this tehnique satis�es the Boltzmann's transportequation in he long time limit [5℄.The energy bands and sattering rates are obtained from quantum mehaniswhere the wave piture of eletrons is used, but in the Monte Carlo model,the eletrons and holes are viewed as partiles. This is the reason whythe Monte Carlo method belongs to the ategory of semi-lassial transporttheories. The fat that the partiles are simultaneously sharp in positionand momentum poses a limit to the validity of the model beause aordingto the unertainty priniple of quantum mehanis, these quantities annot16



be preisely determined at the same time. If we require the unertainty inmomentum to be muh smaller than the average partile momentum and atthe same time the unertainty in position to be muh smaller than the meanfree path, Jaoboni [7℄ shows that the validity of the semi-lassial theory isensured when ollisions are less frequent than 1014 s. Thus in ase of highsattering rates, quantum transport theories should be employed rather thanthe Monte Carlo method.
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Chapter 3
The Monte Carlo simulator
This hapter starts out with a brief desription of the Monte Carlo simulatordeveloped during the work with this thesis. The intention of setion 3.1 isto give an overview of the simulator as a whole, inluding the parts thathas not been hanged during the work with this thesis. The following se-tions throughout this hapter will fous on the algorithms implemented inorder to extend the Monte Carlo simulator from a bulk simulator to a deviesimulator. Setion 3.2 skethes a the devie geometries whih has been im-plemented during the work with this thesis. Some hanges have been madeto the equations governing the eletron dynamis within the devie, theseare presented in setion 3.3. In order to solve Poisson's equation and ob-tain the eletri �eld within the devie, the positions of the mobile arriersneeds to be onverted to the format of a harge density matrix. The loud inell algorithm whih has been implemented is desribed in setion 3.4. Thedevie has been made apable of exhanging partiles with its surround-ings through the implementation of ohmi ontats. The ontat model andprogram implementation is desribed in setion 3.5. Setion 3.6 desribeshow the urrent running through the devie is measured. A desription ofthe partile boundary onditions at the edges of the devie is given in se-tion 3.7. Finally, setions 3.8 and 3.9 disuss the physial interpretation ofsuperpartile harge and harge density when a 3D devie is modelled in 2D.19



3.1 Desription of the programThe Monte Carlo simulator developed during the work with this thesis hasbeen in development by students at the Norwegian Defene Researh Estab-lishment (FFI) sine 2007. Earlier versions of the program are desribed inthe Master's theses of Norum [8℄, Olsen [9℄ and Skåring [10℄. The purpose ofthe student projet at FFI is to develop a versatile tool for modelling mate-rials and devies using both types of arriers. In addition to the simulationspresented in the student theses referred to above, the program has beenemployed in simulations of laser pulse exitations in bulk material [11, 12℄.The desription of the program whih will be given in the rest of this setionfollows the sequene elements in the program as they are presented in thepseudo ode of �gure 3.1.The �rst task of the program is to present the user with a menu for settingsimulation parameters. It allows the user to ustomise the simulation, se-leting devie or bulk simulation, devie geometry, turning sattering meh-anisms on and o�, allowing the Pauli priniple to be in ation et. Thesimulation parameters set by the user de�ne whih hunks of ode will beexeuted during a simulation.The next step is initialisation of the position and momenta of the eletronand hole ensemble. The partiles are initialised with randomised momentadrawn from a Maxwellian distribution. The initialisation of partile posi-tions depends on the devie to be simulated. The initial positions are drawnfrom a uniform distribution suh that the devie is initially harge neutral.When a simulation has run for a su�iently long time, the partile distri-bution will be independent of the initial distribution [7℄; however guessingan initial distribution lose to the equilibrium distribution may shorten thesimulation time required to reah equilibrium. The possibility of startinga simulation with the position and k distribution obtained at the end of aprevious simulation has been implemented.The sattering rates and energy band models determine when the satteringevents will our and the new partile states after sattering. The level ofsophistiation of a spei� Monte Carlo simulator therefore relies heavilyon the implementation of these two ingredients. The following satteringmehanisms are urrently implemented in our model:Carrier-arrier satteringCoupled modes sattering 20



< Read user input from menu >< Initialize simulation parameters >< Initialize position and k-states of partiles >< Calulate sattering rates and energy tables>for all timesteps< Perform arrier-arrier sattering >< Update harge density matrix >< Calulate eletri field matrix >for all eletrons< flight >< satter >endfor all holes< flight >< satter >end< Injet / ejet partiles at ontats >< Measure urrent at the ontats >< Update hot phonons >< Update sreening length >< Collet statistis >end Figure 3.1: Overview of the Monte Carlo simulator.
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Polar optial satteringAousti satteringIonised impurity satteringPlasmon satteringNon-polar satteringInter-valley satteringAlloy satteringImpat ionisation satteringThe sattering rates for most of these mehanisms have not been hangedduring the work with thesis. For a more thorough desription of the rates,see [8, 9, 10℄ for desriptions and plots. The soures for most of the rates usedwith our simulator is [13, 14℄. The impat ionisation sattering mehanismhas been developed as part of this thesis, and will be desribed in setion7.4.The program assumes a three-valley model for the ondution band. Theeletrons inhabit the Γ, L or X-valley. The ondution band model usedis an analytial, isotropi and non-paraboli model. The program inludestwo hole bands, the heavy hole band and the light hole band whih in theprogram are represented as tables [10℄.The sattering rates and energy bands are fundamental elements of theMonte Carlo model. Details and plots of of the energy band of the Γ valleyand the hole bands as well as the inter-valley and inter-band sattering ratesare presented in the appendies A and B.During simulation, the harge density matrix is updated using the loud inell algorithm and the eletri �eld is alulated using the suessive over-relaxation method every �eld adjusting time step.Within the partile ensemble loops, the �ight subroutine updates the parti-le positions. This routine �rst updates the partile momentum due to theeletri �eld, then the new positions is found using time integration. Thesatter subroutine determines the sattering rates for a partiular partiledepending on it's energy. The duration of the free �ight is determined usingrandom numbers; if a su�ient amount of time has passed sine partile ex-periened its last sattering event, a new sattering will our. A satteringmehanism is then hosen from the rates, whih also inludes self-sattering.The �nal k-state after sattering is omputed in the loal oordinate systemwhere the z-axis is along the diretion of the initial k-vetor, and then trans-22



formed to the global oordinate system of the devie. If the Pauli prinipleis turned on, the partile will make a transition into the new state only ifthe state is unoupied.After the partile states have been updated, new partiles may enter thesimulation and existing partiles may be evited at the ontat regions ofthe devie. The sreening length routine is desribed in [10℄ and the hotphonon routine in [8, 10℄.At seleted time steps, partile positions and k-vetors are among the simu-lation data whih is written to �le. Average partile energy, partile numberand urrent measurement at the ontats are among the data written to �leevery simulation step.3.2 Devie geometryThree di�erent devie strutures have been simulated during the develop-ment and testing of the program. The n+ n n+ shown in �gure 5.1 has beenused for benhmarking the Monte Carlo program with respet to arrier mo-bilities and resistane. The pn-diode shown in �gure 6.1 and the APD in�gure 7.1 are simple omponents in whih the pn-juntion is the prominentfeature.We have hosen simple devie geometries and fairly light doping densities inorder to avoid ompliations during interpretation of the simulation results.The devies are easily modi�ed in the user menu of the program.3.3 Carrier dynamisIn the Monte Carlo simulator, the arrier dynamis is handled during thefree �ights. The existing �ight routine in the Monte Carlo simulator hasbeen updated to �t the CdxHg1−xTe material. Time integration of the par-tile momenta is used to ompute the displaement of the partiles duringa simulation step, thus it is neessary to obtain the group veloity of thepartiles from the k-vetor.In general, the group veloity is related to the derivative of the energy:
vg =

1

h̄
∇kE.23



Models of the heavy and light hole bands and their derivatives were alreadyinorporated into the program and are desribed in detail in [10℄. The bandmodel is isotropi, thus it depends on the modulus, k, rather than the k-vetor and thus the vetorial vg annot be obtained by di�erentiating thedispersion relation. In order to obtain the group veloity for the holes,we must introdue some approximations; inspired by [15℄, we hoose theapproximation
vg =

1

h̄

dE

dk
,thus the derivative of the isotropi band is diretly interpreted as the mag-nitude of the veloity. The hole veloity vetor is then onstruted usingthis quantity for the magnitude and the diretion of the partile's k-vetoris diretly adopted as the diretion of the group veloity vetor. Using thisapproah, the omponents of the group veloity of the holes are given by:

vg,i =
vg
k
ki,where i ∈ (x, y, z).The group veloity for eletrons is found taking the derivative of the bandstruture, whih is given in equation A.1, the result is:

vg,i =
h̄ki

m∗

√

1 + 4α h̄2k2

2m∗

(3.1)Here, i ∈ (x, y, z), m∗ is the e�etive mass at the bottom of the ondutionband and α is the non-paraboliity parameter.One the veloity vetor is obtained, the approximate displaement is foundby [16℄:
∆r =

∫ t1

t0
vg(t

′)dt′ ≈
1

2
(vg(t1)− vg(t0))∆t,where t0 is the time at the beginning of the �ight, t1 the time at the endand ∆t the di�erene between these. The arrier dynamis for holes havenot been hanged during the work with this thesis.24



3.4 Partile-mesh ouplingPartile-mesh oupling algorithms are designed to attribute the harge ofstationary and mobile harges loated at arbitrary positions, suh as (xk, yk),in �gure 3.2 to the nodes of a disrete harge density mesh.

xi, yj xi+1, yj

xi+1, yj+1xi, yj+1

xk, ykFigure 3.2: A partile positioned at (xk, yk), between the nodes of the omputa-tional mesh.The simplest harge assignment method is the nearest grid point method(NGP). The harge of an eletron at (xk, yk) in �gure 3.2 is ontributed tothe nearest grid point, (xi, yj), suh that the harge density it ontributesto grid point (i, j) is:
ρi,j = ρ(xi, yj) =

enLxLy

Nshxhy
= ρsup.In this expression, e is the elementary harge, n the eletron density, Lx and

Ly the devie lengths in the x and y-diretion, hx and hy are the mesh spaingin the x and y-diretion and Ns the number of superpartiles partiipatingin the simulation. ρsup is alulated at the beginning of a simulation, usingthe initial partile number in the devie. The superpartile harge remainsonstant during simulation. The nearest grid point approximation is rudeand results in a oarse and noisy approximation to the eletrial potential.A better method is the loud in ell (CIC) method [17℄, whih has beenimplemented in the Monte Carlo simulator during this work. This algorithmsmears the harge density of the superpartile over its four nearest grid25



points. The harge density in the mesh point with oordinates (xi, yj) dueto the harge with oordinates (xk, yk) in the �gure 3.3 is given by
ρi,j = ρsup

(

1−
|xk − xi|

hx

)(

1−
|yk − yj|

hy

) (3.2)for |xk − xi| < hx and |yk − yj| < hy where hx and hy is the spaingbetween grid points. An important property of 3.2 is that the total hargeontributed by the superpartiles are onserved from the NGP sheme. Thisis easily veri�ed; by adding the harge ontributed by one partile to all ofits four nearest nodes gives ρsup.Instead of representing a point harge, as in the NGP sheme, the super-partile now represents a loud of harge. This has a smoothing e�et onthe eletrial potential omputed in the Poisson solver. The loud shape andthe orresponding assignment funtion is visualised in �gure 3.3.
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xi−1 xi xk xi+1(b) Assignment funtionFigure 3.3: The loud shape and the assignment funtion for the Cloud in Cellalgorithm. These �gures are from Kim [14℄.When Poisson's equation is solved, the potential and the eletri �eld isobtained only in the nodes of the omputational mesh. To evaluate the26



eletri �eld at the partile positions, a fore interpolation sheme is needed.In this thesis, the NGP method has been used for this purpose while theCIC method has been employed to assign harges to the mesh.3.5 Ohmi ontatsThe ontats of a semiondutor devie are semiondutor-metal interfaeswhere arriers an pass into or out of the devie. There are two types ofontats, Shottky and ohmi ontats. In general, the metal and the semi-ondutor material have di�erent work funtions whih reates a potentialbarrier for the arriers to surmount if they are to enter the devie througha Shottky ontat. An ohmi ontat is a juntion with no suh barrier; itrepresents an ideal soure or sink of arriers. The gate ontat of a transistoris usually a Shottky ontat while the soure and drain ontats are ohmi.The modelling of ohmi ontats poses one of the great hallenges for deviesimulations. One reason is the omplexity of the physis of the ontat re-gion where metal and semiondutor moleules form pokets of di�erent alloyompositions [18℄. Another reason is the fat that the ontat implementa-tion diretly governs the number of partiles entering and exiting the devie,it thus diretly ontrols the urrent through the devie. Studying ontats isa researh �eld of its own, and will not be the topi for this thesis. We willtherefore be ontent with getting an overview of the most important ontatmodels found in the literature, and hoose one of the models that has beentested to yield reliable results and use it for our simulator.There is a variety of ontat models suggested in the literature, a lassi�a-tion of the di�erent models an be found in [5℄, in whih three main lasses ofmodels are identi�ed. The �rst lass is haraterised by the two onditions ofharge neutrality and thermal equilibrium in a small region adjaent to theontats [19, 20, 18℄. The harge neutrality ondition is imposed to meet thezero voltage drop riterion. The model implemented in our simulator belongsto this lass of models and it will be desribed in more detail below. Anotherlass of models for two-terminal devies use periodi boundary onditions. Apartile whih is absorbed at one of the ontats gets re-injeted at the op-posite ontat, either with the same wavevetor that it was absorbed with orwith a new wavevetor randomly drawn from a thermal distribution. Thesemodels are onsidered unphysial [5℄. This is due to the fat that the modelsimply does not re�et the real physis of the ontats. Yet another type of27



model involves simulating the dynamis of the arriers in a reservoir adja-ent to the devie. An appropriate arrier distribution is obtained within thereservoir, and the dynamis of the reservoir determines the arrier injetioninto the devie. This method is desribed in more detail in [20℄.The �rst and the third lass both agree with the understanding we have ofthe omplex physis of the ontats. We have hosen to implement a modelbelonging to the �rst lass beause it is simple and presumably gives resultswhih are easily interpreted. The ontat model employed in our MonteCarlo simulator losely follows the approah of Fishetti and Laux whih isdesribed in [19℄.The ondition for injetion is the harge neutrality ondition of the ontatregion; if there is a net de�it of majority arriers, injetion will happenuntil harge neutrality is maintained. The extension of the ontat regioninto the devie should be small, typially a few mesh ells [21, 16℄, as thenumber of injeted partiles may be a�eted by the hoie. We have hosen
Lycr = 0.02 µm for all devies and simulations. The ontat region of thedevies we have used for our simulations are shaded in the �gures 5.1, 6.1and 7.1.The net harge in the ontat region is alulated by ounting free and im-mobile harges within the region, alternatively, it ould have been alulatedusing the harge density matrix. If there is a net positive harge in the re-gion, as many eletrons needed to maintain harge neutrality are injeted.The injeted eletrons are given a position vetor drawn from a uniform dis-tribution within the ontat region. The thermal equilibrium ondition ismet by giving the injeted partiles a k-vetor drawn from a thermal distri-bution. The half Maxwellian veloity distribution is used to ensure that themomenta of the injeted partiles are direted into the devie. To improvethe model, the displaed Maxwellian veloity distribution, whih also takesinto aount the fat that the injeted arriers are expeted to have a driftveloity, should be implemented.Absorption of a partile at the ontat happens if the partile will hit theontat surfae during the oming time step. Based on the urrent positionand the group veloity, the estimated partile position at the next time stepis alulated. If the new position falls at the ontat surfae or beyond it,the partile is absorbed and disarded from the simulation.When simulating the pn juntion and the APD struture, both eletrons andholes are simulated at the same time. In this ase, the ontat on the p-side28



injets only holes and the ontat on the n-side injets only eletrons. Bothtypes of arriers are absorbed at both eletrodes.It should be noted that the harge per superpartile, whih is disussed inmore detail in setion 3.9, is kept onstant throughout the simulation, thusa devie in operation is allowed to be eletrially harged.Contat regions are usually heavily doped, this has been taken into aountin our model by introduing suh zones beneath the ontats. Doing thissmooths the transition between the metal ontat and semiondutor devie.However, the simulation of heavy doped ontat region poses a problem tothe Monte Carlo method beause it requires the simulation of a relative largenumber of superpartiles at the ontat regions ompared to the more lightlydoped regions of the devie. The arriers in the ontat regions are far fromthe juntion where arrier properties are most interesting, and they are oftennear thermal equilibrium. Simulating ontat regions is omputationallyine�ient beause a large number of superpartiles needs to be simulated inorder to obtain good statistis in the regions of low arrier density. A solutionto this problem whih may be implemented into our model in the future iso�ered by Mills et al. [22℄. A harge enhanement fator is assigned tothe superpartiles in the low density regions suh that one a partile entersthis region, it is repliated a number of times orresponding to the hargeenhanement fator. As a result, the same number of superpartiles may besimulated, but with improved statistis at the regions of low arrier density.An apparent weakness of the ontat model implemented at present is thatthe soure and drain ontats behave as separate sinks and soures of ar-riers, thus the model allows the harge ontinuity in the imagined iruitsurrounding the devie to be violated. The ontat model should thereforebe subjet to further development; as a �rst approah, we suggest imple-menting the Ramo-Shokley partile boundary onditions [23℄.Future development of the ontat model should be �tted to the materialproperties of CMT, a detailed study of arrier transport and ontat resis-tane in metal ontats of CdxHg1−xTe is presented in [24℄.3.6 Measuring urrentThe urrent passing through the devie is measured as the rate of arrierspassing through the ontats of the devie. The urrent is in general given29



by
I(t) =

dQ(t)

dt
,for our devies, Q(t) is the harge that has passed through an eletrode upuntil the time t. It is given by

Q = qs(Na −Ni) + εsε0

∫

E · n̂dσ.In this relation, Ni and Na represents the number of partiles injeted orabsorbed at the eletrode up until the time t. The seond term representsthe displaement urrent; εsε0 is the eletrial permittivity, n̂ is a normalvetor to the ontat surfae and dσ a surfae element. The integral isto be taken over the surfae of the eletrode. The ontribution from thedisplaement term is negligible when the applied voltage bias is onstant intime, but neessary when doing transient simulations.We have de�ned the positive diretion of the urrent into the devie.This method of measuring urrent is the most ommonly employed methodin Monte Carlo devie simulations [5℄, but other methods exist. A method formeasuring urrent at arbitrary rossetions through the devie is proposedin [25℄.3.7 Boundary onditionsBoundary onditions enter the simulation at two stages, in the arrier dy-namis and when solving Poisson's equation. The partile boundary ondi-tions implemented in our simulator requires that when a arrier hits one ofthe edges of the devie, it is speularly re�eted. The boundary onditionsof the Poisson solver are onstant potential, known as Dirihlet boundaryonditions, at the ontats, re�eting that external voltages are applied tothe devie under operating onditions. On the remaining edges, the equa-tion is solved with von Neumann boundary onditions. The von Neumannonditions imply that no eletri �eld an exist perpendiular to the edgesof the devie.Aording to Jaoboni and Lugli [7℄, the soure and drain voltages may bediretly applied to the Dirihlet boundaries. Our simulation results indiatethat this might not apply to non-symmetrial devies, this is disussed insetion 6.2. 30



3.8 Modelling 3D devies in 2DIn the Monte Carlo simulator, a devie is modelled in 2D by traking thesuperpartiles in all three dimensions of real spae and momentum spae, butPoisson's equation is solved only in 2D. This approah saves a onsiderableamount of omputation time. A 2D model may su�iently represent a real3D devie if the devie has little variation in the diretion perpendiular tothe rossetion we are simulating.The physial interpretation of the superpartile harge and harge densityin 2D is important to understand, and therefore deserves a disussion here.Poisson's equation in a 3D material reads
∇

(

εs
dϕ

dr

)

= −
ρ(r)

ε0
,where ϕ is the eletrial potential. Assuming a onstant relative permittivity,

εs and no hange in the z-diretion, i.e. ∂ϕ
∂z = 0, we are left with the 2Dversion of Poisson's equation,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= −

ρ(x, y)

εε0The unit of the harge density, ρ, remains the same in the two and threedimensional equation, namely Cm−3. As a onsequene, the harge of asuperpartile in 2D should be interpreted as a harge per unit length in theperpendiular diretion, and the orresponding harge density of two dimen-sional superpartiles in an area should be interpreted as harge density perunit length in the perpendiular diretion. The orresponding geometrialinterpretation is that a superpartile represents a rod of harge [7℄.3.9 Superpartiles in 2D and 3DIn a devie of typial size, the number of real ondution band eletrons isfar too large that every partile an be simulated. Instead, we employ theonept of superpartiles. A superpartile may be interpreted as a statistialrepresentation of a number of partiles. The superpartile behaves as a singleeletron during the sattering events and is attributed the harge of a singleeletron moving in the eletri during the free �ights. However, when theharge density matrix is onstruted for solving Poisson's equation, or when31



the urrent through the devie is measured, the harge of the superpartileis equal to the harge of the real partiles that it represents.The harge per superpartile is found by the priniple that the total harge ofall the superpartiles should equal the total harge of all the real ondutionband eletrons in the devie, thus the superpartile harge is
qs =

Qdevice

Ns
=

enV

Ns,initialwhere Qdevice is the total harge of the ondution band eletrons in a devieand V is the three dimensional volume of the devie. Ns,initial represents thenumber of superpartiles at the beginning of a simulation.The use of superpartiles makes the Monte Carlo devie simulation feasible,but there are some disadvantages. The large harge of the superpartilesmagnify the natural �utuations in the loal eletron density of the devie,and thus ausing larger �utuations in the omputed eletri �eld than whatis atually the ase [21℄. A partile that is aelerated in an arti�ially large�eld will ahieve too high energy and thus the probability of sattering willbe a�eted. It is therefore important for the validity of the simulation to useenough superpartiles. Aording to our experiene, the number of partilessimulated with our devies should be at least ∼ 50000 to avoid this e�et.
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Chapter 4Poisson's equation
Using the Monte Carlo method is an e�ient way to obtain the simultaneoussolution of Boltzmann's transport equation and Poisson's equation. Thisapproah is known as the self-onsistent Monte Carlo model; it involvesthat Poisson's equation is solved every �eld adjusting time step during thesimulation. A �eld adjusting time step orresponds to a few basi timesteps of the Monte Carlo simulator. A single simulation requires Poisson'sequation to be solved several thousand times, thus it is lear that a quiksolver is needed.In this hapter, we will �rst present Poisson's equation in setion 4.1, thedisrete formulation for our model problem is presented in setions 4.2 andthe orresponding boundary onditions are presented in setion 4.3. Tnsetion 4.4, we will have a brief look at some di�erent numeri shemeswhih solve this problem and argue why our hoie fell on the suessiveoverrelaxation method. Finally, the Poisson solver implemented in our MonteCarlo simulator will be desribed in setion 4.5.4.1 Poisson's equation in a materialPoisson's equation is a stationary equation to obtain the eletri potential,
ϕ(r), due to a given harge distribution ρ(r). In a material, Poisson's equa-tion is

∇

(

εs
dϕ

dr

)

= −
ρ

ε0
, (4.1)33



where εs is the dieletri onstant for the material. In general εs is not aonstant, but varies spatially, implying that the equation is non-linear. Inour ase, the linear approximation has been made. A thorough mathematialdesription and proof of existene of a unique solution an be found in [26℄.4.2 The �nite di�erene formulationThe �nite di�erene formulation of the 2D Poisson's equation is obtained bydisretising the equation on a uniform grid with N = Nx×Ny nodes, where
Nx and Ny are the number of nodes in the x- and y-diretion respetively.In prinipal, the spaing in x- and y-diretion may be di�erent. Here we'llassume equal spaing, h, implying that the oordinates of the nodes are
xi = i · (h− 1), i ∈ [1, Nx] and yj = j · (h− 1), j ∈ [1, Ny] .The disretised Poisson's equation is obtained by approximating the seondorder partial derivatives using Taylor expansion. This is done in many textbooks, see for instane [26, 27℄. The �nite di�erene formulation of 4.1 onthe uniform grid is

ϕi+1,j − 2ϕi,j + ϕi−1,j

h2
+
ϕi,j+1 − 2ϕi,j + ϕi,j−1

h2
= −

ρi,j
εsε0

, (4.2)where ϕi,j denotes the potential in the mesh point (i, j). This approximationis alled the �ve point di�erene approximation, it has an error O(h2) beausethe Taylor expansions are trunated after the h2-term. The omputationalstenil for this approximation is illustrated in �gure 4.2a.The disretised Poisson's equation onstitute a system of linear equations,one equation for eah node in the grid. Re-indexing the nodes, ϕi,j → xkwhere k ∈ [1, N ], the system of equations may be formulated as a matrixequation, Ax = b. In this equation, the unknown potential in the nodes isontained in the x -vetor, A is the oe�ient matrix and b ontains thesoure term and the boundary onditions.The oe�ient matrix of the �ve point stenil is the blok diagonal matrix
A =
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, (4.3)
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. (4.4)
After having solved the system of linear equations and obtained the eletripotential, the eletri �eld is found using entred di�erene:

Exi,j = −
ϕi+1,j − ϕi−1,j

2h

Eyi,j = −
ϕi,j+1 − ϕi,j−1

2h4.3 Boundary onditionsThe �nite di�erene formulation of equation 4.2 desribed in the previoussetion is valid only for the interior nodes of the omputational mesh. Atthe nodes representing the ontats, a onstant eletrial potential is imposedand thus the equations representing these nodes are simply eliminated fromthe system of equations. At the remaining edges, von Neumann boundaryonditions are applied.In order to apply the von Neumann boundary onditions, Taylor expansionis used to approximate the normal omponents of the �rst derivatives. At35



the top and bottom edges of the devie in �gure 4.1, the normal omponentof the derivative is
∂ϕi,j

∂y
≈
ϕi,j+1 − ϕi,j−1

2h
, (4.5)where j = 1 for the lower edge and j = Ny for the upper edge. A orre-sponding equation is needed for the left and right edges. Foring zero �uxin equation 4.5 at the lower edge where j = 1, we get

ϕi,0 = ϕi,2. (4.6)The point mesh node (i, 0) lies outside the grid we have de�ned for our modelproblem; thus the von Neumann boundary onditions makes it neessaryto introdue what is alled ghost nodes. In these nodes, the value of thepotential is known and given by equations similar to 4.6. The equationvalid at the lower von Neumann edge of our problem is illustrated by theomputational moleule in the seond panel of �gure 4.2.The orner nodes requires speial treatment beause the normal diretion to aorner is not well de�ned. The retangular grid allows two normal diretionsat the orner nodes, the x- and the y-diretion. Only one ondition in eahboundary node an be presribed if the system is not to be overdetermined.Aording to [28℄, the analyti requirement
∫

c

∂ϕ

∂n
ds = 0 (4.7)where c is the boundary urve and n the normal diretion, must hold toensure a unique solution. The stenil used for the orner nodes is shown inthe third panel of �gure 4.2 has been implemented to ensure that 4.7 willnot be violated.4.4 Overview of numerial methodsIn the researh �eld of Monte Carlo devie simulation, a variety of di�erentmethods are in use for solving Poisson's equation. This re�ets the fatthat eah method has its own strength whih may be partiularly usefulwhen solving a spei� problem. Future development of the Monte Carlosimulator should therefore inlude the inorporation of a set of solvers basedon di�erent solution methods. 36
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ane. The simplest of the relaxation methods is the Jaobi method whih isdesribed in detail in [27, 30℄. The basi idea behind this algorithm and itssuessors; the Gauss-Seidel and the suessive over-relaxation method withChebyshev aeleration will be desribed in this setion.The relaxation methods are obtained by iterating equation 4.2. In the aseof the Jaobi method, this is done straight forward:
ϕ
(n)
i,j =

1

4

[

ϕ
(n−1)
i+1,j + ϕ

(n−1)
i−1,j + ϕ

(n−1)
i,j+1 + ϕ

(n−1)
i,j−1

]

+
h2

4
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. (4.8)Here, n denotes the iteration number.The �rst step of the Jaobi algorithm is to make an initial guess at thesolution, ϕ(0)
i,j , whih is used as input on the right hand side of 4.8 to alulatea better guess ϕ(1)

i,j . This proedure is repeated until the solution satis�esthe riterion of onvergene.To have a loser look at the onvergene of the Jaobi method, it is usefulto go bak to the matrix formulation of Poisson's problem. Splitting the
A-matrix of 4.3 in two matries, A = D+R, where D ontains the diagonalelements of A and R ontains all the o�-diagonal elements, the equation anbe rewritten:

(D +R)x = b

x = −(D−1R)x+D−1b.The matrix D−1R is alled the iteration matrix. The last equation is animpliit equation in x that an be iterated:
x(n) = −(D−1R)x(n−1) +D−1b.The onvergene of the Jaobi method depends on the properties of theiteration matrix. The iterative methods are guaranteed to onverge if thespetral radius of the iteration matrix satis�es

ρs(D
−1R) < 1.The proof of this is given in [31℄. The spetral radius of a matrix is themodulus of the largest eigenvalue of the matrix. For the oe�ient matrixof the Poisson problem, it an be shown [30℄ that
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for quadrati mesh ells. Eah eigenvalue of the iteration matrix re�etsthe fator by whih the amplitude of a partiular eigenmode of undesiredresidual is suppressed during one iteration [30℄. Proof is given in [32℄ that adiagonal dominant A-matrix ensures onvergene of the Jaobi method.The onvergene rate for the Jaobi algorithm is slow, making it unsuitablefor our purposes. However, there are several methods based on the simpleidea of the Jaobi algorithm but with improvements to the onvergene rate.The Gauss-Seidel method uses the latest information on the solution avail-able. Assuming that the ϕi,j-values of an iteration are obtained in sequene,at the time ϕ(n)
i,j is alulated, ϕ(n)

i−1,j and ϕ(n)
i,j−1 are already alulated andare available in the n-th iteration:
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. (4.9)The Gauss-Seidel method onverges faster than the Jaobi method, thoughonly marginally [7℄.The suessive overrelaxation method is an improvement to the Gauss-Seidelmethod. This method introdues an aeleration parameter, ω, to makean over-orretion, antiipating orretions of future iterations. First, theGauss-Seidel iterate, ϕGS(n)
i,j , is alulated using 4.9. The �nal n-th iterateis then alulated as the linear ombination:
ϕ
(n)
i,j = ωϕ
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i,j + (1− ω)ϕ

(n−1)
i,j .The relaxation parameter should take values in the range 1 ≤ ω ≤ 2. Theonvergene rate is optimised when [7℄
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.The onvergene rate may be improved even further with a variable ω. Thisalgorithm is alled the yli Chebyshev method. It is similar to the sues-sive over-relaxation method, but with
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, p ≥ 1.39



4.6 Parallellising the Poisson solverThe suessive overrelaxation method allows odd-even ordering of the meshnodes. Calulating the potential in an odd point of the mesh requires onlyvalues of the potential in even nodes and vie versa. A half-sweep overthe mesh updating all the odd mesh points is arried out before the seondhalf-sweep whih updates the potential in the even mesh points.The possibility of odd-even ordering makes the Jaobi method and its su-essors inherently parallel. Using the hekerboard analogy, the even andodd mesh points may be ompared to the blak and white squares. Thesolution in all the blak nodes may be alulated at the same time from thesolution obtained at the previous iteration. Thereafter, the solution in allthe white nodes may be alulated simultaneously from the knowledge of thesolution in the blak nodes of this iteration. This makes the lass of methodsdesribed in setion 4.5 very well suited for parallelisation.
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Chapter 5Auray and reliability of themodel
In setion 5.1 of this hapter, we present the general stability riteria for aMonte Carlo devie simulation and assure that the simulation parameterswe will use with later simulations obey them. The results of the simulatoris tested in setion 5.2 by studying the eletron and hole mobilities obtainedfrom bulk simulations. Finally, in setion 5.3 we perform a simulation of asimple n+ n n+ struture in order to verify that our model is reliable.5.1 Resolution in time and spaeThere are two types of stability riteria to onsider when doing Monte Carlosimulations. On one hand, there are physial arguments whih de�nes theresolution in time, ∆t, and spae, ∆x. On the other hand there are numer-ial arguments whih limit the oupling between the temporal and spatialresolution. A thorough disussion is presented in [33℄. Here, we will hekthat the mesh ell size we have used for our Poisson solver, h; the basitime step, τ ; and the �eld adjusting time step, τf , in our model satis�es theneessary riteria.The mesh ells of the grid used for solving Poisson's equation should be smallenough to resolve the smallest physial features relevant to the variation inthe potential. The Debye sreening length provides the harateristi lengthsale for variation in the eletrial potential and arrier onentrations in41



the Poisson-Boltzmann problem [34℄. Thus it is natural to require that themesh ell should be smaller than the Debye sreening length, LD. The Debyesreening length is well approximated by the material parameter
LD =

√

εkBT

ne2
,where ε = εsε0. In our model, the donor density of the heaviest doped regionsare 1.0 × 1017 cm−3, thus h < 15 nm. The devies we have simulated havea length of 3 µm, implying that the number of nodes in the x-diretion, Nx,should be at least 200.The physial argument limiting the basi time step, τ , is that we require allsattering events to be resolved. The most frequent sattering mehanismshave rates ∼ 1014 s−1, thus we should have τ ≤ 1 fs.The �eld adjusting time step, τf , determines how often Poisson's equationis solved. Some authors laim that the partiles should not be allowed totravel aross more than a few mesh ells during one �eld adjusting time step[21℄, while other [33℄ demand a mesh ell smaller than the longest distanetravelled during a time step. In any ase, the numerial requirement imposedon the relation between ∆x and ∆t an be expressed on the form:

vmax∆t < lmax, (5.1)where vmax is the maximal veloity omponent a partile an ahieve duringsimulation. We have used τf = 5 fs and measured the maximum veloityobtained during the simulations. By experiene, this has produed stablesimulations. The maximum veloity eletrons reah in semiondutors ingeneral is on the order 108 cm/s [33℄, thus the stritest interpretation of
lmax in equation 5.1 requires a mesh ell 5 nm.Yet another stability riterion for the relation between ∆t and ∆x whih isoften quoted in the ontext of devie simulation is

∆t

2
=

1

ωpwhere ωp is the plasma frequeny. However, in [35℄, it is argued that thisapplies to simulations of ollision-less plasma rather than devie simulationsdue to the stabilising e�et of the satterings.42



5.2 MobilityThe mobility desribes how strongly the partile motion is in�uened by anapplied eletri �eld [36℄. A arrier in an applied eletri �eld will gain mo-mentum and energy from the �eld, but the satterings limit the ahievabledrift veloity. In the Monte Carlo simulator, the mobility provides an im-portant hek on the interation between the band model, from whih thepartile veloity stems, and the frequeny of the satterings. The eletronmobility is de�ned as the proportionality fator between the drift veloityand the eletri �eld,
µe = −

vd
Eext

,and likewise, the hole mobility is the proportionality fator between the driftveloity of the holes and the eletri �eld. In CMT, the hole mobility is afew orders of magnitude lower than than the eletron mobility due to thelarger e�etive mass.The eletron and hole mobilities are extrated in bulk simulations where onlyone type of arrier partiipate in the simulation. Bulk simulations are usedto eliminate undesired ontat e�ets. The mobility is measured by applyinga onstant eletri �eld and then the average drift veloity of the partilesis measured after the Monte Carlo simulator has reahed a stationary state.If the eletri �eld is applied in the x-diretion, the average drift veloityis measured as the average group veloity of the partiles in the x-diretionusing equation 3.1. The drift veloity is averaged over the partile ensembleand over time.The bulk simulations are performed at lattie temperature T = 300 K with abasi time step of 1 fs and an alloy fration x = 0.28. The simulation resultsare presented in table 5.1.
Eext in kVcm−1 µe in cm2V−1s−1 µh in cm2V−1s−1

0.1 1.82 × 104 117
0.3 1.77 × 104 137
0.5 1.78 × 104 148Table 5.1: Eletron and hole mobilities, µe and µh respetively, extrated from theMonte Carlo simulator at di�erent applied eletri �elds, Eext. The results wereobtained at T = 300 K and x = 0.28. 43



There are onsiderable variations in the eperimentally obtained eletron andhole mobilities [37℄. The mobilities obtained by the Monte Carlo simulatorare within range of the mobilities reported by the experimentalists, but theyare in the lower end of it. We onlude that the values produed by thesimulator appear reasonable. It should be noted that the Pauli priniple wasnot taken into aount during these simulations. As a onsequenes, somesatterings may have taken plae that would else have been prevented byPauli prohibition, and thus the extrated mobility may be arti�ially low.5.3 Simulation of an n+ n n+ diodeIn order to test the ode and aquire experiene on devie simulation, theurrent voltage harateristis of a simple n+ n n+-devie has been obtained.As a hek, the resistane of this devie has been ompared to the ohmiresistane in a slab of CMT material whih is similar in size to the simulateddevie.The devie simulated is skethed in �gure 5.1, and the simulation parametersused is given in 5.2. The devie is a symmetri n+ n n+ diode with threeregions of di�erent doping densities, the ND region is relatively lightly dopedompared to N+
D regions. The shaded regions of the devie are the ontatregions desribed in setion 3.5. Only the eletrons were simulated.
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Lx 3.0 µm
Ly 1.0 µm

Lxdr
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R 0.75 µm
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R 0.50 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 500
τ 1 fs
N+

D 1× 1017 cm−3

ND 1× 1016 cm−3

T 300 K
x 0.28Table 5.2: Parameters for the n+ n n+ devie. The symbols are explained in �gure5.1.rent whih runs through the devie after the Monte Carlo simulation hasreahed equilibrium has been extrated averaging over a partile ensembleof ∼ 50000 eletrons and over 30 ps. The resulting IV-urve is shown in �g-ure 5.2. The �gure shows that at zero bias voltage, almost no urrent runsthrough the devie while at higher voltages the urrent saturates, thus theomponent exhibits the behaviour of an n+ n n+-diode.Aording to Ohm's law, the urrent running through a ondutor is pro-portional to the voltage, thus the resistane is given by the slope of a linearIV urve. The n+ n n+-diode is a nonlinear omponent, but an approxi-mation to ohmi resistane in the near linear region of the IV urve may beobtained from �gure 5.2. The slope of region lose to zero bias voltage isapproximately 0.3 kΩ.The formula used to alulate the Ohmi resistane in a slab of CMTmaterialis

R = ρ
L

A
, (5.2)where L is the length of the slab in the diretion of the urrent and A therossetion area. The resistivity, ρ is here onsidered a material parameterobtained via the eletron mobility using the relation

ρ =
1

σ
=

1

e(nµe + pµh)
,45
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Figure 5.2: IV-urve of the n+ n n+ devie.where σ is the ondutivity and p the hole onentration. We assume noontribution from the seond term of the denominator, sine the devie is
n type. We use an eletron mobility value whih is independent from oursimulation results, in [38℄, µe = 3.5× 103 cm2V−1s−1 is reported for CMTwith a free eletron onentration of 2× 1015 cm−3. This gives the resistivity
ρ = 5.49 × 10−4 Ωm, orresponding to the resistane R = 1.647 kΩ for a slabwhih is 3.0 µm long with a rossetion of 1 µm2.The disrepany between the theoretially alulated resistane and the re-sistane measured in our program is within an order of magnitude. Theresistane of the simulated devie is smaller than the resistane through theslab, whih ontradits our understanding that the ontat regions wouldindue extra resistane ompared to the slab. The ontat regions of ourdevie are however large ompared to the devie, the high doping density inthese areas ontribute to a lower resistane.From the results presented in the last two setions, we onlude that thatthe model may need some �ne tuning before it is used for more realistisimulations. 46



Chapter 6PN juntion
The Monte Carlo method is rarely used for studying simple pn-diodes. Thesestrutures may seem too simple to engage advaned simulation tehniquessuh as the Monte Carlo method. Instead, simple analyti theories whihare based on numerous simpli�ations are used. Apart from the studiesMoglestue onduted in the 1980's [18, 39℄, Monte Carlo studies of pn-diodesare sare.Preisely beause the pn-diode is desribed by analyti theory, this strutureserves well as a starting point for disussion of the Monte Carlo method itself.In this hapter, we have simulated a pn-devie under reverse and forwardbias voltage. The simulation parameters are presented in setion 6.1 whilethe simulation results are presented in setion 6.2 and 6.3 respetively. Theresults show that our Monte Carlo model is in qualitative agreement withthe analytial pn-juntion model. The urrent-voltage harateristis, or IVurve, has been obtained and is presented in 6.4 while the swithing timehas been studied in setion 6.5.6.1 Simulation parameters and assumptionsThe pn-juntion simulated has the geometry shown in �gure 6.1, and thesimulation parameters used are listed in table 6.2. The donor and aeptordensities at the juntion, ND and NA have been set to 1016 cm−3 whilethe regions lose to the ontats are more heavily doped, N+

D and N+
A havebeen set to 1017 cm−3. The doping densities have been hosen fairly light47



in order to make the approximation of negleting the Pauli priniple. Thethree simulations di�er only in the Dirihlet boundary onditions imposedat the ontats of the Poisson solver. The voltages set at the left and rightontats are designated VL, and VR respetively; in table 6.1, the Dirihletboundary onditions for the three simulations are given.Type of external bias voltage V L
Poisson V R

PoissonNear unbiased −0.35 0.00Forward bias −0.10 0.00Reverse bias −0.60 0.00Table 6.1: Overview of the boundary onditions used for the stationary pn-diodesimulations.The simulations have been performed assuming no generation or reombina-tion of arriers. In [18℄, it is argued that the arrier lifetimes in GaAs aretoo long for a signi�ant number of reombination events to take plae, thusmodelling reombination will have little e�et on the simulation results. Weonsider the same argument to apply for our CMT diode.It should also be mentioned that the simulations performed here were ini-tialised with partile states onsistent with the steady state of the MonteCarlo simulator at the given voltage. These states were obtained runningtransient simulations, starting from a quali�ed guess at the end states, un-til the Monte Carlo simulator reahed its equilibrium. The Monte Carloequilibrium for the stationary simulations was simulated for 100 ps.
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Lx 3.0 µm
Ly 1.0 µm

Lxdr
L = Lxdr

R 0.75 µm

Lydr
L = Lydr

R 0.50 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 600
τ 1 fs
ND 1× 1016 cm−3

N+
D 1× 1017 cm−3

NA 1× 1016 cm−3

N+
A 1× 1017 cm−3

T 300 K
x 0.28Table 6.2: Simulation parameters used for the pn-diode simulations. The symbolsrefer to �gure 6.1.6.2 Simulation results under reverse biasWe know from standard text book theory, e.g. Tonning [40℄, that when

p-type and n-type semiondutor material are put together to form a pn-juntion, the holes lose to the juntion will di�use from the p-side over tothe n-side and likewise eletrons will di�use from the n to the p-side. Onboth sides of the juntion, regions of unompensated immobile harge areleft, ausing an eletri �eld direted from the n-side towards the p-side.While the onentration gradient drives the di�usion proess pushing thearriers past the juntion, the eletri �eld ats to draw the arriers bak. Inequilibrium, the drift and di�usion proesses perfetly balanes eah other,the resulting eletron and hole urrents are zero separately.Applying a more negative voltage to the p-side reinfores the eletrostatipotential di�erene and hene the eletri �eld aross the juntion, thusenhaning the drift urrent ompared to the di�usion urrent. As a result,the extension of the depletion region will inrease.We have used the Monte Carlo simulator to simulate the arrier distributionand the depletion region of the pn-diode at operating onditions near equi-librium and under reverse bias. The resulting spatial distribution of arriersin the devie in �gures 6.2 and 6.3. The �gures show that in both ases, a49



depletion region arise at the juntion and the depletion region is wider underheavier bias.The width of the depletion region may be alulated analytially for a simple1D juntion. Tonning does this by solving Poisson's equation under theassumption that the depletion region is ompletely free of mobile arriers;the only ontribution to the harge density is the aeptor density at the
p-side and donor density at the n-side. The extension on the n-side is thengiven by

xN,eq =

√

2ε

eND

NA

NA +ND

√

kT

e
ln
NAND

n2i
, (6.1)and a similar expression is given for the extension at the p-side. The alula-tion is based on the assumption of drift-di�usion balane, whih introduesthe intrinsi arrier density, ni. This quantity is not present in our MonteCarlo model, thus in order to do an informal omparison between our re-sult and the analytial model, we have regarded the intrinsi arrier densitya material onstant that an be looked up in a table. In [37℄ a value of

ni = 4.1× 1015 cm−3 is reported, using this with the formula above givesthe dotted lines skethed into the arrier distribution plots. Aording to�gure 6.9, it is lear that there are also two minor built-in voltage barrierson the border of the two heavier doped ontat regions. Their existene maya�et the potential barrier aross the main juntion, and thus there are sev-eral reasons not to take the omparison between the analytial model andour Monte Carlo model too seriously.PSfrag replaements
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Figure 6.2: Spatial distribution of eletron (blue) and hole (red) positions of thenear unbiased pn-diode. The drawn lines orrespond to the theoretial extensionof the depletion region under zero bias voltage as alulated in [40℄.50
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Figure 6.3: Spatial distribution of eletron (blue) and hole (red) positions of thereverse biased pn-diode. The drawn lines orrespond to the analytially alulatedextension of the depletion region when the devie is in equilibrium, i.e. zero biasvoltage is applied.The �gures 6.4 and 6.5 give the quantitative piture of the arrier densitiesalong the x-axis. The �gures are obtained from the arrier positions; dividingthe x-axis into bins of 60 nm and averaging out the y-diretion.
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Figure 6.4: The onentration of holes (red) and eletrons (blue) along the x-axisof the near unbiased pn-diode.Representing the urrent running through the devie as a funtion of timediretly gives a piture whih is dominated by statistial noise. We �nd iteasier for the eye to apture what is atually going on by representing theumulative harge that has passed through the ontats on the p and n-sideduring the simulation time. The �gures 6.6 and 6.7 show this for the diodelose to equilibrium and the diode under reverse bias respetively. The fat51
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Figure 6.5: The onentration of holes (red) and eletrons (blue) along the x-axisof the reverse biased pn-diode.
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Figure 6.6: Cumulative harge that has entered the left ontat and exited theright ontat of the near unbiased pn-diode during the simulation.
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Figure 6.7: Cumulative harge that has entered the left ontat and exited theright ontat of the reverse biased pn-diode during the simulation.52



that the urves are running parallel indiate that there is no aumulation ofharge inside the devie. The sign of the slope of the urve gives the diretionof the urrent; positive slope indiates urrent in the forward diretion of thediode, urrent in the reverse diretion has a negative slope. The steepnessof the slope indiates the amount of urrent running through the devie.Figure 6.6 indiate that almost no urrent runs through the devie underweak reverse bias, while the plot in �gure 6.7 has a very weak negative slopeindiating a small urrent in the reverse diretion. The urrent through areverse biased diode is known to be mainly due to generation of eletron-holepairs in the depletion region. The generated arriers are swept in eah dire-tion by the eletri �eld ausing a small urrent. The generation proess isnot modelled in our partile simulator, thus the observation must orrespondto noise.
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built-in voltage aross the juntion:
Vbi =

√

kT

e
ln
NAND

n2i
, (6.2)whih would orrespond to 0.2 V for a 1D CMT juntion.Figure 6.8 shows the eletri potential, as it is omputed by the Poissonsolver, when the devie is lose to equilibrium. The potential di�ereneaross the devie is approximately 0.35 V, whih is somewhat larger thanthe potential predited by the analytial model.There are signi�ant di�erenes between the 1D juntion and our simulateddevie that ause this di�erene; the simulated devie ontains two ontatregions. Figure 6.9 show that there are three eletri �elds pointing in thesame diretion whih together ontribute to the 0.35 V we observe; thus itis appropriate that we observe a value whih is larger than the analytiallyobtained result.Aording to [7℄, the external bias voltage may be diretly imposed as Dirih-let boundary onditions. We suggest that this may be true for symmetrialdevies, but not neessarily for asymmetri devies suh as the pn-diode. Weobserve that we need to impose a voltage di�erene of 0.2− 0.3 V betweenthe ontats in order to simulate the devie in equilibrium. This is related tothe asymmetry of the pn-devie. Wurfel [41℄ disusses the potentials whiharise at a p-n juntion in detail. There is a hemial potential di�ereneat the juntion due to the large onentration of holes on the p-side andeletrons on the n-side. The hemial potential is exatly balaned by thebuilt-in potential whih is a purely eletrial potential. The eletrial po-tential auses an eletri �eld from the n-side to the p-side; this �eld annotperform any physial work and as a onsequene no urrent an run in airuit onsisting of an unbiased p-n diode. This is evident beause there isno soure of energy in suh a iruit. A voltmeter annot measure a purelyeletrial potential, instead it measures the ombined eletrohemial poten-tial di�erene; there is no de�etion on the voltmeter in the iruit onsistingof a pn-diode with no applied bias.The Poisson solver sees both the built-in potential at the juntion and thevoltage di�erene imposed at the ontats. As a onsequene, there is ano�set between what we think of as an externally applied bias voltage andthe Dirihlet boundary onditions. 54
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Figure 6.9: Eletri �eld in the near unbiased pn-juntion. The p-side is to theleft in the �gure.
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Figure 6.10: Eletri �eld in the x-diretion of the near unbiased pn-juntion. The
p-side is to the left in the �gure.
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The �gures 6.9 and 6.10 show the eletri �eld in the devie when it isin equilibrium. The diretion of the �eld is onsistent with the analytialtheory, it is direted from the n-side towards the p-side. There are also �eldswhih indiate that smaller juntions arise at the ontat region boundaries.The �eld arising at the juntion is large enough that, for future developmentof the simulator, it should be onsidered to take into aount intraollisional�eld e�ets.6.3 Simulation results under forward bias voltageThe devie is forward biased by applying a positive voltage to the p-siderelative to the n-side. This will lower the eletrostati potential aross thejuntion and hene the drift-di�usion balane will be disturbed. The di�u-sion urrent is enhaned ompared to the drift urrent, and thus the widthof the depletion region is redued. The �gures 6.11 and 6.12 shows our simu-lation result of the arrier distribution in a forward biased pn-juntion. The�gures show that, ompared to the unbiased ase, the depletion region isdereased in extension.PSfrag replaements
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Figure 6.11: Spatial distribution of eletron (blue) and hole (red) positions in theforward biased pn-diode. The drawn lines orrespond to the analytially alulatedextension of the depletion region when the devie is in equilibrium.The positive slope of the graph in �gure 6.13 indiate that under forwardbias voltage, there is a urrent running through the devie from the p-sidetowards the n-side. Thus the qualitative result produed by our Monte Carlomodel is onsistent with the analytial model.56
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Figure 6.13: Cumulative harge that has entered the left ontat and exited theright ontat of the forward biased pn-diode during the simulation time of theforward biased pn-juntion.A similar study of a GaAs pn-devie under forward bias has been on-duted by Moglestue [18, 39℄. In this study, Boltzmann's transport equationand Poisson's equation were solved self-onsistently using the Monte Carlomethod. The devie had ohmi ontats in both ends. Moglestue observedthe formation of an eletron hole plasma at both sides of the juntion; andhe refers to experiments in whih the luminesene from suh a plasma hasbeen measured. The density of the plasma reahed four times the aeptor ordonor density at the juntion. Our results indiate that for a Cd0.28Hg0.72Te57



diode under forward bias, there is a small aumulation of eletron plasmaat the p-side of the juntion. This an be seen in both �gure 6.12 and 6.11if studied arefully. The e�et may be due to the small e�etive mass of theeletrons. The plasma e�et observed for the CMT diode is muh weakerthan Moglestue's result indiate for the GaAs juntion.
6.4 IV harateristis of the pn juntionThe IV-harateristis for the pn-juntion has been obtained running station-ary simulations with varying VPoisson while measuring the urrent throughthe diode. The result is presented in �gure 6.14. The �gure shows that the
pn-juntion has the retifying behaviour of a diode.The urrent running through the diode under the three di�erent operatingonditions disussed in the previous setions is presented in table 6.3.The IV urve shows that for our simulation results, there is no reverse leakageurrent in the diode. Reverse leakage urrent, or dark urrent in the ontextof photodiodes, is an undesired e�et ourring in APD detetors whih isdue to generation of arriers in the depletion region of a reverse biased devie.Dark urrent an in priniple be studied using the Monte Carlo method, thisrequires the implementation of arrier generation rates obtained from �rstpriniples of quantum mehanis. However, due to the very low generationrate ompared to the time step of the Monte Carlo method, the tehniqueis ine�ient in this respet. Several studies have been onduted on darkurrent in HgCdTe APDs [42, 43℄, in these studies, the transport equationshave been solved using other methods than the Monte Carlo.Type of external bias voltage Total urrent at p-ontat [ mA/µm]Forward bias 1.0× 10−2Unbiased −1.6× 10−6Reverse bias −3.5× 10−4Table 6.3: Current running through the pn-diode during the three stationarysimulations presented in the two previous setions .58
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Figure 6.14: Current voltage harateristis of the pn-diode. VPoisson refers to thevoltage di�erene at the Dirihlet boundaries of the Poisson solver.
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6.5 Swithing behaviour of a diodeThe simulations desribed above are stationary simulations performed withonstant voltage being applied to the diode. The Monte Carlo simulatoris also suited for studying the transient dynamis. We have studied thebehaviour of a diode whih is swithed from the urrent onduting to thenon-onduting state.Figure 6.15 shows a iruit where a diode is forward biased when the swithis in position 1 and reverse biased when it is in position 2. Assume that theswith was in position 1 at t < 0, and swithed to position 2 at t = 0. Theurrent through the diode and the voltage aross it is skethed shematiallyas a �gure of time in �gure 6.16. Tonning's analysis of the swithing proessis the following: At t < 0, the diode is arrying a urrent in the forwarddiretion. At t = 0 it starts arrying a large urrent in the reverse diretion.This urrent is due to holes being pulled out from the n-side and eletronsbeing pulled from the p-side. We term the time it takes for a diode initially inthe on-state to swith to the o�-state the swithing time. At the time whenthe minority arrier onentrations near the depletion region has fallen o�to the respetive equilibrium levels, the urrent stabilises at the saturationurrent Is, whih runs in the reverse diretion. This urrent is due to thegeneration of eletron hole pairs in the depletion region. When t → ∞, thevoltage has reahed the reverse bias, and thus the diode represents a largeresistane in the iruit.We have simulated the transient behaviour of the swithing proess andmeasured the swithing time of the pn-diode for a reverse bias voltage of
5 V. The simulation was initialised with partile positions and momentaobtained after simulating the diode under forward voltage bias, i.e. VL =
VR = 0.0. We used VL = −5.0 and VR = 0.0 as boundary onditions to thePoisson solver and otherwise the same simulation parameters as presentedabove. Aording to �gure 6.17b there is a small reverse-urrent e�et atthe beginning of the simulation, but it is not as pronouned as Tonning'sanalysis suggest. Figure 6.17a shows that the urrent through the ontatsdrops o� steadily and reahes a stationary level near zero. From �gure 6.17it is lear that after approximately 60− 70 ps, there is no urrent runningthrough the devie, and this is how we determine the swithing time of thediode.Figure 6.17b also re�ets the fat that the harge of the diode hanges underoperation. This may be related to the partile boundary onditions at the60



ontats. Modelling the pn-diode may require that the Ramo-Shokley par-tile boundary onditions [23℄ are implemented in order to better maintainharge ontinuity.
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Figure 6.15: Ciruit used for swithing a diode between the onduting and non-onduting states. The �gure is from [40℄.
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Chapter 7APD model
In this hapter, we will in setion 7.1 brie�y explain how an APD worksbefore we desribe the details of the APD model as we have implemented itin the Monte Carlo simulator. The arhiteture of our model omponent isdesribed in setion 7.2. The physial proess of impat ionisation is skethedin setion 7.3 and the model as we have implemented it to the simulator isdesribed in setion 7.4. Setion 7.5 gives an overview of the model in pseudoode, and the details of the photo exitation models is given in setion 7.5.1.7.1 Priniple of operationAn APD is a photodetetor, a devie whih may transform a light signal toa urrent pulse. An important appliation of APDs are as photodetetorsfor LIDARs (Light Detetion And Ranging). A LIDAR illuminates a targetby laser pulses and detets the bak-satter. Objet imaging and mappingby LIDAR has appliations in a wide range of �elds, ranging from studiesof atmospheri omposition to geologial surveying as well as military ap-pliations [44℄. Another important appliation for APDs is the sintillationounter [45℄. A sintillator is a rystal whih �uoreses when struk by ion-ising radiation, the light from the rystal may be deteted and onverted toan eletrial signal using an APD.Di�erent semiondutors are suited as detetors for di�erent parts of theeletromagneti spetrum determined by the quantum e�ieny of the ma-terial. The de�nition of quantum e�ieny is the fration of photons of65



given wavelength whih are onverted to eletron-hole pairs. CdxHg1−xTehas a high quantum e�ieny in the interval 3− 15 µm depending on thealloy omposition. Thus CdxHg1−xTe is a detetor material overing bothof the atmospheri windows in the infrared spetrum. For x = 0.28, thematerial is suited for mid-wave infrared detetion, i.e. wavelengths in therange 3− 5 µm.The APD that we will study here is in priniple a pn juntion under reversebias. A photon whih is absorbed in the depletion region may generatearriers by the photoeletri e�et. Carrier multipliation is aused by theimpat ionisation proess desribed in the following setion. These arrierswill eventually reah the ontats of the devie, resulting in a measurableurrent gain.
CdxHg1−xTe is a highly sensitive detetor material whih is also low in noise[46℄. The low multipliation noise is due to a large asymmetry betweenthe impat ionisation rates of eletrons and holes in CMT, this redues theexess noise whih stems from the stohasti nature of the multipliationproess. An espeially useful property of APDs is that the exess noise is independant of the gain. As a onsequene, the reverse bias may be inreasedto inrease the signal strength from the APD without inreasing the noise atthe same time. This makes these devies useful detetors for signals of verylow intensity; devies apable of deteting single photons have been reported[47℄.7.2 APD arhitetureThe model APD we will study here is a pin devie operated under reversebias. The i-region of suh a devie should be near intrinsi; in pratise, it isoften weakly doped with donors. The interfae between the p and i regionresembles the pn-juntion studied in the previous hapter, but beause ofthe weak doping, the depletion region extends far into the i-region. Underreverse bias there will be a reinfored eletri �eld aross the depletion region.Our model APD is skethed in �gure 7.1. The aeptor density is 1× 1016 cm−3at the p side and the donor densities are 5× 1014 cm−3 and 1× 1017 cm−3respetively for the i and n+ regions. We believe inluding a heavy dopedontat region at the p-side would help inrease devie performane, andshould be onsidered for future simulations. The same devie has been usedfor the simulations presented in hapter 8. We have kept the doping den-66



sities low in order to avoid degeneray and hene the need for onsideringthe Pauli priniple. Table 7.1 gives an overview of the devie measures andsimulation parameters used with the simulations presented in hapter 8.
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Figure 7.1: The geometry of the APD devie. The shaded regions represent theontat regions.7.3 The Auger and impat ionisation proessesThe Auger and the impat ionisation proesses are non-radiative reombina-tion and generation proesses ourring in semiondutors. The Auger andimpat ionisation proesses are inverse of eah other; the Auger proessesare assoiated with arrier reombination and impat ionisation proesseswith arrier generation. These proesses exists in a few di�erent variants,depending on whether loalised states or phonons are involved. Ridley [48℄desribes �ve basi Auger proesses; here we will fous on the Auger 1 proessbeause it is the dominant proess ourring in narrow gap semiondutors.The impat ionisation proess implemented in the Monte Carlo simulator isthe inverse of the Auger 1 proess.The Auger 1 proess is initiated by a ollision between two eletrons whereone of the eletrons falls down into the valene band; the energy of theannihilated eletron hole pair is absorbed by the other eletron.The inverse impat ionisation proess is initiated with a high energeti ele-tron whih auses an ionising ollision with the lattie, thus generating aneletron hole pair. In this proess, the initial eletron loses energy orre-sponding to the energy gained by the newly generated eletron hole pair.67



Lx 3.0 µm
Ly 1.0 µm

Lxdr
R 0.75 µm

Lydr
R 0.30 µm

Lxcr
L = Lxcr

R 0.75 µm

Lycr
L = Lycr

R 0.02 µm
Nx 600
h 5 nm
τ 1 fs
τf 5 fs
NA 1× 1016 cm−3

ND 5× 1014 cm−3

N+
D 1× 1017 cm−3

T 300 K / 77 K
x 0.28Table 7.1: Simulation parameters for the APD diode. The symbols are explainedin �gure 7.1.The two eletrons of the �nal state are swept to the n-side and the hole tothe p-side. Figure 7.2 illustrates the proess.Carriers in the high eletri �eld of the reverse biased pn-juntion of anAPD are aelerated to high energies, thus impat ionisation beomes animportant sattering mehanism in this region of the devie. One photogenerated eletron hole pair in this region may initiate a sequene of impationisation, resulting in arrier or avalanhe multipliation. If enough arriersare generated, a urrent gain is measurable at the ontats of the devie.

7.4 The impat ionisation modelThis setion desribes the impat ionisation model implemented in our MonteCarlo simulator. We assume that only eletrons may initiate impat ioni-sation events; this is a reasonable assumption for CMT due to the largeasymmetry between the impat ionisation rates of eletron and holes.68



ECEVFigure 7.2: Illustration of arrier generation by the impat ionisation proess. Ahigh energy eletron loses energy to produe an eletron hole pair. The �gure isfrom [49℄.7.4.1 Sattering rateThe impat ionisation proess is modelled as a sattering mehanism follow-ing the approah of [50℄. Thus, we �rst need to obtain the sattering ratefor the impat ionisation sattering mehanism. Several hoies exist, manyauthors uses the Keldysh formula [50, 51℄, but we have deided to use therate obtained by Ridley [48℄ in order to avoid the use of �tting parameters.The alulation of this rate is desribed in great detail; the Fermi GoldenRule is used with the matrix element of sreened Coloumb interation. The�nal expression is:
Wii = 4.139 × 1016
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Figure 7.3: The sattering rate for impat ionisation at 300 K used in the MonteCarlo simulator.
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7.4.2 Determining the energy lossThe next problem is to �nd the energy loss,∆Ei, of the eletron that initiatedthe ionising ollision. Aording to Kinh [52℄, the total probability of impationisation is proportional to the integral
P (Ei) ∝
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where, x = ∆Ei/Eg. From this integral, we have extrated a probabilitydistribution for the energy loss of the eletron ausing the ionising ollisiondepending on its initial energy. The integral runs over all possible energylosses, thus for a given Ei, the integrand is proportional to the probabilitydistribution for the energy loss. A plot of this integrand for a few di�erentvalues of Ei is given in �gure 7.4, the graphs have been normalised with theirmaximum values to ease omparison. For energies larger than a few Eg, theshape of the distribution funtion, inluding the position of the maximum,shows small hanges; we have therefore hosen the three urves in �gure 7.4as approximate distributions to save omputations. One the probabilitydistribution for ∆Ei is known, we sample from it using the aeptane-rejetion method desribed in [27℄.7.4.3 Generation of the new eletron-hole pairOne the energy loss of the eletron initiating the impat ionisation proessis determined, it remains to determine the states of the three arriers afterthe sattering. The energy of the original eletron after the sattering is
Ei −∆Ei, while the loss is divided equally between the generated eletronand the hole. In our model, the new eletron is reated in the Γ-valleywhile the new hole is reated in the heavy hole band. The modulus of themomentum vetors are found using the band struture while the diretionsof the momenta of all three partiles are randomised, adopting the proedureof [51℄.Our model takes into onsideration the onservation of energy, but not on-servation of momentum. The randomisation of the �nal state momentais a rude approximation whih violates an important fundamental law of71
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physis, namely the onservation of momentum. If the number of impat ion-isation events taking plae during a simulation is large, the randomisationwill ensure that there is no bias towards any side; and thus, onsidering thetotal of all the impat ionisation events, one an imagine that the momentumon average is near onserved.An overview of the implementation of the sattering mehanism is given inpseudo ode below:< Determine energy loss:- hoose distribution funtion- sample from hosen distribution funtionusing aept-rejet method >FinalEnergy = InitialEnergy - EnergyLossk = k(FinalEnergy)< randomize diretion of momentum >< Generate eletron-hole pair:k = k(deltaEi/2)position = position of initial eletron< randomize diretions of momenta >valley = Gammaband = heavy hole >7.5 Overview of program implementationSimulation of the APD simulation is onduted in two parts; �rst, the pin-struture is simulated under reverse bias until the stationary Monte Carloequilibrium is reahed. In this part of the simulation, Poisson's equation issolved every �eld adjusting time step. We have used approximately 50 000superpartiles of eah speies and the Dirihlet boundary onditions VL =
−3.0 V and VR = 0.0 V to obtain the arrier distribution shown in �gure 7.6.The �gure shows that most of the partiles partiipating in the simulationare loated in the near harge neutral areas where impat ionisation has alow probability of ourring.To inrease the e�ieny of the simulation, this arrier distribution alongwith with the orresponding eletri �eld will be frozen in the seond part ofthe simulation. One eletron-hole pair is optially generated, and in addition73



to this pair, we trak in time only the arriers generated by the impat ion-isation proess. The arriers are onsidered eletrons and holes arrying theelementary harge. They partiipate in free �ights and satterings, but weassume their ontribution to the eletri �eld within the devie is negligible.The injetion of superpartiles at the ontats is stopped, but the simulatedarriers are allowed to leave the devie through the ontats. The urrentmeasured at the ontats represents the urrent gain. This implies that ifany dark urrent would be running through the diode during the simulation,it would have been arti�ially set to zero.< Perform simulation to obtain (or read) eletri field >for eah simulation< Generate eletron hole pair due to photo-exitation >for all timestepsfor all eletrons< flight >< satter, inluding impat ionization mehanism>endfor all holes< flight >< satter >end< Absorb partiles at ontats >< Measure urrent at the ontats >< Collet statistis >end< Collet statistis >endFigure 7.5: Overview of the program implementation of the APD model.74
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Figure 7.6: Spatial distribution of eletron (blue) and hole (red) positions in thereverse biased pin-struture.7.5.1 Photo exitationThe initial eletron hole pair starting the avalanhe proess in an APD pho-todiode is generated by a photon with energy Eγ impinging on the i-regionof the diode. The photon energy needs to be larger than the band gap to beable to ionise an atom; the remaining energy will be split among the eletronand hole. The photon energy an thus be written
Eγ = Eg + Eh + Ee. (7.1)For the simulations presented in the next hapter, a 4.0 µm photon has beenused to initiate the avalanhe proess. The generated partiles are assumedto be a heavy hole and an eletron in the Γ valley. The resulting eletronenergy, Ee and hole energy, Eh, is found using the band struture. Figure 7.7shows equation 7.1 plotted as a funtion of k = |k|. The eletron-hole pairis given the k found at the intersetion of the two urves while the diretionhosen at random. The hole is given the negative of the eletron k-vetorto preserve the momentum in the ionisation proess. The position of theinitial eletron hole pair is �xed to the depletion region of the i-region of the

pin-struture.
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Chapter 8APD simulation results
In this hapter the simulation results for the reverse biased Cd0.28Hg0.72TeAPD of �gure 7.1 will be presented. We have studied the urrent gain interms of the arrier multipliation in the devie under di�erent onditions,inluding variation in the photon energy and lattie temperature. First, wewill have a peek at the behaviour of the arriers inside devie during themultipliation proess.8.1 Distribution of arriers inside the devieIn �gure 8.1, we have extrated the arrier positions within the devie at afew seleted time steps during the simulation. The simulation was allowedto run until we ould observe that all the arriers had exited the devie,approximately a few hundred pioseonds. The top left plot shows the initialphotogenerated eletron hole pair, it is aelerated in the eletri �eld fora few hundred femtoseonds before the the �rst impat ionisation proessours. The eletrons, whih have small e�etive masses ompared to theholes, drift faster towards the ontat at the n-side than the holes towardsthe p-side. As the impat ionisation events ontinue to happen, more andmore holes appear near the n-side of the omponent. As the eletrons reahthe n ontat, they exit the simulation. In a real devie whih obeys hargeontinuity, the eletrons would not be allowed to esape the devie while theholes are still on their way to the ontat. They would have to wait for theholes to reah the opposite ontat and then reombination would take plae.In our simulations, depending on the bias voltage, the holes either sueed at77



exiting the omponent or they aumulate at the p-side of the devie, whihis a sign of poor performane of this partiular omponent. This e�et mighteither be due to unphysial large �utuations in the eletri �eld due to thelarge superpartile harge, or it might be due to poor arhiteture design. Inthe latter ase, inluding a p+ region lose to the p-ontat would give riseto an eletri �eld whih ould pull the holes faster towards the ontat.As the eletrons move out of the high eletri �eld, they lose energy and theprobability of impat ionisation events dereases. Consequently, new eletronhole pairs are generated at a lower rate and eventually the generation proessdies out. One light pulse may thus be assoiated with one urrent pulse.8.2 Swithing timeThe swithing time for the APD diode has been measured when swithingfrom forward bias voltage orresponding to Dirihlet boundary onditions
VL = VR = 0.0 V to reverse bias orresponding to Dirihlet boundary ondi-tions VL = 0.0 V and VL = −8.0 V. Figure 8.2 shows the urrent droppingo� during the transition. The �gure indiates a swithing time just above
∼ 500 ps.8.3 Multipliation and noiseThe multipliation fator is the total number of eletron hole pairs generatedfrom the initial photogenerated pair of arriers. We have measured the aver-age multipliation fator and its standard deviation for two di�erent lattietemperatures and two di�erent photon wavelengths. The multipliation fa-tor is a measure of the urrent gain and hene the performane of the APD,while the standard deviation is related to the noise.The simulation results presented in table 8.1 are averages over 5000 simu-lations performed at a reverse bias of −3.0 V, meaning that the Dirihletboundary onditions to the Poisson solver was set to −3.0 V at the p-sideand 0.0 V at the n-side.Aording to table 8.1, the multipliation is slightly larger for both wave-lengths when the devie is ooled. The impat ionisation rate is slightlylarger at 300 K than 77 K, but the di�erene is believed to be too small, a78
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fator of the order ∼ 1.1, to be diretly responsible for the deviation. How-ever the other sattering rates, as e.g. the polar optial sattering rate isonsiderably higher at room temperature. When satterings our more of-ten, the eletron mobility is redued. Thus the arriers in the ooled deviereah higher veloities, whih, ombined with a lower threshold energy forimpat ionisation, agrees with a larger multipliation fator.The exess noise fator, F , is estimated using the formula [50℄:
F (M) = 1 +

σM
M

2
,where M is the mean multipliation gain and σM the standard deviation.For our simulations, the exess noise is indeed independent of gain, and thevalues, just above 1, agrees with what has been observed in previous studies[50℄. Photon wavelength M σM Exess noise

T = 300 K 3.0 µm 12.8 6.6 1.27
4.0 µm 10.3 5.3 1.26

T = 77 K 3.0 µm 16.5 7.7 1.22
4.0 µm 13.3 6.2 1.22Table 8.1: Multipliation, M , and standard deviation, σM obtained at areverse bias of −3.0 V. The results are averaged over 5000 simulations.8.4 Current impulse responseThe bandwidth of the devie is related to the time it takes from a photonhits the detetor until the orresponding urrent pulse has faded out. Thebandwidth is of great interest for APDs to be used as the photodetetingomponents of LIDARs, but as far as we know, little researh has been doneon the urrent response CMT diodes so far.In �gure 8.3, the number of arriers exiting at one of the ontats per fem-toseond is plotted as a funtion of time for a simulation performed at areverse bias of 7.0 V. The generating photon had a wavelength 4.0 µm.The plot shows that the bandwidth for this omponent is limited by theholes. At 8 ns, all the holes has exited the devie. The logarithmi x-axis ofthe plot obsures the fat that most of the holes exit the simulation during81



PSfrag replaements

Time [ps ]

Ejetedparti
lesperfs EletronsHoles

10−2 100 102 104
0
1
2

Figure 8.3: Reverse bias voltage: −7 V,photon wavelength 4.0 µmthe time interval between 300 ps and 2 ns, followed by a tail whih is loseto reahing zero at 5 ns.It should be noted that the iruit surrounding the APD is not part ofour Monte Carlo model. As a onsequene, there is no harge ontinuityondition imposed on the ontats in our model, and thus there is reason tobelieve that the time the model predits it would take to exit the holes fromthe devie may be too long.8.5 Gain-voltage harateristisFigure 8.4 shows the multipliation-voltage harateristis of the simulateddiode. As observed in other studies, e.g. Derelle et al. [51℄, the gain urveis exponential. This is a property of HgCdTe APDs related to the highasymmetry of the impat ionisation oe�ients of eletron and holes.Derelle et al. has studied the multipliation gain under variations in whihsattering proesses are inluded in the model [51℄. The authors onludethat alloy sattering has a large e�et on the multipliation and exess noisefator; they observe a steeper multipliation voltage harateristis for thesimulations whih inlude the alloy sattering mehanism. The alloy sat-tering is assumed to be ompletely random and isotropi in this model. Inour model the potential for the alloy sattering is not set for the simulationspresented here, thus alloy sattering does not happen in our simulations.82



PSfrag replaements

Reverse bias voltage
Multipliatio
n

1 2 3 4 5 6 7100

101

102

103

Figure 8.4: T=300K, photon wavelength 4.0 µm.

83



84



Chapter 9Disussion and further work
At the moment, several researh groups work on Monte Carlo simulationof APD-diodes. On the ontrary, only few MC studies exist of the simple
pn-diode, and these are mainly from the 1980s.The reent APD studies fous mainly on modelling and simulating gain andnoise in existing omponents in order to study devie performane. Ourfous has been on the Monte Carlo method itself; to establish the di�ultiesof using the Monte Carlo method. Our model is not tuned to experimentalresults and ontains no �tting parameters. Our model devies are hosenfor simpliity rather than for high performane. Our fous has been to shedsome light on general problems whih arise when using the Monte Carlotehnique for studying devies based on pn-juntions.The researh on APD strutures onduted up until reent operate in thelow photourrent limit [53, 46, 50℄; it is assumed that the harge of theoptially generated loud of eletron hole pairs is small enough that theeletri repulsion between them an be negleted in omparison to the largeapplied bias. This assumption implies that the eletri �eld is alulatedonly at the beginning of the simulation and stays frozen throughout. It isonly sine spring 2011 that simple Fermi-Poisson solvers [53, 50℄ has beenreplaed by self-onsistent solution of the Monte Carlo model and Poisson'sequation [46, 54℄. The low photourrent assumption was relaxed �rst byBertazzi et al. in 2011 [54℄, but it still remains to do this for CMT APDs.Our model is in priniple prepared for doing this at this stage.The APDs urrent response to a light pulse in CMT APDs has been studied85



using the Monte Carlo model [54℄ and a 1D deterministi model based onarrier generation [55℄. The latter study explains that the response time isdue to the large apaitive e�et of the metal ontats. The former explainsthe response time in terms of the gain. A longer tail of the urrent responseurve is observed for larger gains; the inreased number of o�spring arriersneed more time to leave the devie. Our model is in agreement with bothof these models, but in addition, it points at the importane of the largedi�erene in eletron and hole veloities. Based on our simulation results,we suggest to explore the possibility of oupling the Monte Carlo methodwith the solution of Maxwell's equations to study the signi�ane of thedisplaement urrent on the urrent response time.Further development of the Monte Carlo simulator inludes development ofthe Poisson solver. A ylindrial 2D solver will prepare the simulator formodelling a new lass of devies, as will the inlusion of a 3D solver. The2D solver urrently inluded in the simulator onsumes about 50% of thesimulation time, solving the 3D problem strengthens the need for a fastsolver. This an be ahieved within the framework of the suessive overrelaxation method by applying multigrid tehniques. Another alternativewhih may be onsidered is the Fast Multipole Method (FMM) [5℄. Thismethod relies on reduing the omplexity the many-body problem beforesolving it, thus reduing the solution time.9.1 Further workDuring the work with this thesis, we have identi�ed a number of details thatwill improve the Monte Carlo simulator:
• Inlude the full band struture information and provide interoperabilitywith ab-initio eletroni struture odes suh as Wien2k.
• The impat ionisation model should be improved by taking into a-ount onservation of momentum in addition to energy onservation.
• The ohmi ontat model should be �tted for the CMT material. Itis neessary to implement the Ramo-Shokley partile boundary on-ditions. Furthermore, detailed simulation of the ontat region usingthe harge enhanement method should be onsidered.In the disussion setion, a few topis relevant for ongoing researh in the�eld of APDs were mentioned. In addition, we suggest:86



• Use the model to solve Poisson's equation self-onsistently during APDsimulation in order to study larger photourrents or THz swithes.
• The iterative Poisson solver whih has been developed an be ombinedwith the multigrid tehnique prior to parallellisation.
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Chapter 10Conlusions
The Monte Carlo simulator whih has been developed as a student projetat FFI has during this work been made apable of modelling devies. A fastPoisson solver whih relies on the suessive overrelaxation method has beenimplemented and an impat ionisation model has been implemented in orderto make the simulator apable of modelling APDs.During this work, two simple pn-juntion devies has been simulated, a
pn-diode and an APD. The devie harateristis, inluding urrent-voltageharateristis and swithing times have been obtained. Our simulation re-sults of the pn-diode has shown that there may be a small formation ofeletron plasma at the p-side of a CMT pn-diodes. For the APD, we havestudied multipliation and noise and obtained the gain-voltage harateris-tis.We simulated simple devies in order to disuss a few problemati aspetsof the Monte Carlo method whih arise when simulating CMT pn-juntions.Within the framework of the Monte Carlo method, the dark urrent needs tobe negleted for CMT APDs. We have pointed to the fat that the urrent-impulse response may turn out inaurate due to violation of the ontinuityequation in the surrounding iruit. Furthermore, we believe that the self-onsistent solution of the transport equations and Poisson's equation usingthe Monte Carlo method is well suited for studying large photourrents inAPDs beause the frozen �eld assumption is easily relaxed within the MonteCarlo framework. 89
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Appendix AEnergybands and e�etivemasses
The energy bands and sattering rates are orner stones of the Monte Carlomodel. They have not been altered during the work with this thesis, thusthey are presented here in the appendix. More details are presented in thetheses of Norum [8℄, Olsen [9℄ and Skåring [10℄.The eletron band band struture used in the Monte Carlo simulator is theanalytial and isotropi approximation

γ(k) = E(1 + αE) =
h̄2k2

2m∗
, (A.1)where α = (1 −m∗

Γ/me)
2/Eg and Eg is the band gap at the Γ point. Here,

m∗ are the e�etive masses of the three valleys inluded in our model, Γ, Land X.The e�etive mass of the Γ valley at the bottom of the ondution band isin our model m∗

Γ = 3h̄2Eg
(16.56×10−10eC)2

, thus depends on the alloy fration andtemperature via the band gap dependany. The e�etive masses of the L and
X valleys are m∗

L = 0.222me and m∗

X = 0.580me where me is the free eltronmass. These valleys are high in energy, 1.5 eV and 2.5 eV respetively, andtherefore rarely ative in CdxHg1−xTe.The urrent heavy hole the light hole band models are desribed in Skåring'smaster's thesis [10℄. The bands are reprodued together with the eletronband struture of the Γ valley in �gure A.1. The hole bands are isotropi91



with ontinous derivatives. The e�etive hole masses are m∗

HH = 0.530meand m∗

LH = m∗
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Figure A.1: The band struture of the Γ valley, the heavy (HH) and light (LH)hole band at 300 K.
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Appendix BSattering rates
The intravalley and intraband sattering rates inluded in our Monte Carlomodel as funtions of the Γ valley and heavy hole band energy are presentedin �gures B.1 and B.2 respetively. In addition, intervalley and interbandsattering rates are inluded in the model.
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