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1 Lévy theory

Our primary goal is to find analytic expressions for delta of option prices, where
the underlying asset’s price is modeled with an exponential normal inverse
Gaussian(NIG) process. In section (3) we will use the density method, starting
with a Black-Scholes style price, then delta is the derivative with respect to
the initial price. We will move the derivative into the expectation used in the
pricing by Leibniz’ rule. We will also do this with Brownian price processes in
section (2), where we also consider spread options. We will end with numerical
implementations in section (4) of both price and delta for NIG and Brownian
models, and compare these with each other and a Black-Scholes style solution.
Both Brownian motion and NIG processes are Lévy processes, hence we start
by looking at some general theory for Lévy processes in this section, which
primarily will help with finding an integrability and a martingale conditon for
the exponential NIG process.

1.1 Infinitely divisible distributions

Before anything else we will define convolution of measures, as this will be used
in results in a later subsection.

Definition 1 (Convolution of measures[App09]). Let µ1 and µ2 be probability
Borel measures on Rd and A a measurable set, then the convolution of the
measures is defined as

(µ1 ∗ µ2)(A) :=
∫
Rd

∫
Rd

1A(x+ y)µ1(dx)µ2(dy).

Before getting to Lévy processes, we will define infinitely divisible distribu-
tions, as we will see later they are closely linked to Lévy processes.

Definition 2 (Infinite divisibility[App09]). Let X be a random variable. We
say that X is infinitely divisible if for each n ∈ N there exists X(n)

1 , . . . , X
(n)
n

such that

X
d= X

(n)
1 , . . . , X(n)

n .

We have some equivalent characterizations of infinitely divisible distributions.

Proposition 3 ([App09]). The following are equivalent:

• X is infinitely divisible,

• µX has a convolution n-th root (something that convoluted with itself n
times equals µX), for each n ∈ N,

• the characteristic function ϕX has an n-th root which is itself the charac-
teristic function of some random variable, for each n ∈ N.

Before considering the next theorem, we require another concept.
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Definition 4 (Lévy measure[App09]). Let ν be a Borel measures on Rd \ {0}.
We say that it is a Lévy measure if∫

Rd\{0}
min(|x|2, 1)ν(dx) < ∞.

We can now look at one of the most useful results for working with infinitely
divisible distributions. We will employ this later to find both integrability and
martingale conditions.

Theorem 5 (Lévy-Khintchine formula[App09]). Let µ be probability Borel
measures on Rd, it is infinitely divisible if there exists b ∈ Rd, a positive definite
symmetric d× d matrix A, and a Lévy measure ν on Rd \ {0} such that for all
u ∈ Rd

ϕµ(u) = exp
{
i(b, u) − 1

2(u,Au) +
∫
Rd\{0}

ei(u,y) − 1 − i(u, y)1B1(0)(y)ν(dy)
}
,

(1)

where ϕµ(u) is the characteristic function of µ, and B1(0) the ball of radius
1 centered at 0. Conversely any mapping of the form (1) is the characteristic
function of an infinitely divisible probability measure on Rd.

We may refer to infinitely divisible distributions by the parameters in the
Lévy-Khintchine formula.

Definition 6 (Characteristic triplet[App09]). If µ is infinitely divisible, and
we find the Lévy-Khintchine formula of the form (1), then we call (b, A, ν) the
characterisitc triplet of X.

As the Lévy-Khintchine formula linked the characteristic function to an
exponential, we may sometimes want to talk about the exponent.

Definition 7 (Lévy symbol[App09]). If µ is infinitely divisible, and we find
the Lévy-Khintchine formula of the form (1), we write

ϕµ(u) = eη(u), (2)

where

η(u) = i(b, u) − 1
2(u,Au) +

∫
Rd\{0}

ei(u,y) − 1 − i(u, y)1B1(0)(y)ν(dy),

and we call η : Rd → C the Lévy symbol of µ.

Let us now consider some examples, which includes some very well known
distributions. We will show that they are infinitely divisible and find their
characteristic triplets, this is simply done with Lévy-Khintchine formula.

Example 8. If X ∼ N (µ, σ2) then its known that

E[eiuX ] = eiµu− 1
2σ

2u2
,

then by (1) it has an infinitely divisible distribution, which has characteristic
triplet (µ, σ2, 0).
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Example 9. Consider X to be Poisson distributed with density

λke−λ

k! .

It has characteristic function

E[eiuX ] =
∞∑
k=0

eiuk
λke−λ

k! ,

=e−λ
∞∑
k=0

(λeiu)k
k! .

Using the Taylor series of ex

=e−λeλe
iu

,

=eλ(eiu−1),

= exp
( ∫

R\{0}
(eiux − 1)λδ1(dx)

)
,

where δ1 is the Dirac delta centered in 1. We recognize this as a Lévy-Khintchine
formula, thus X is infinitely distributed with characteristic triplet (0, 0, λδ1(dx)).

Example 10. Let N ∼ Poi(λ), and let Zi, i ∈ N be i.i.d. and independent of
N . Then a compound Poisson distribution can be defined as

X =
N∑
i=0

Zi.

We consider the characteristic function

E[eiuX ] = E
[

exp
(
iu

N∑
i=0

Zi

)]
,

by the law of total expectation we get

=
n∑
k=0

E
[

exp
(
iu

N∑
i=0

Zi

)
|N = k

]λke−λ

k! ,

since Zi’s are i.i.d.

=
n∑
k=0

E
[

exp
(
iuZ

)]k λke−λ

k! ,

=e−λ
n∑
k=0

(λE
[

exp
(
iuZ

)]
)k

k! ,

=eλ(E[exp(iuZ)]−1),

= exp
( ∫

Rd

(eiux − 1)λµZ(dx)
)
,

thus is infinitely divisible with characteristic triplet (0, 0, λµZ(dx)).
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1.2 Lévy processes

We are now ready for Lévy processes. One could keep in mind the definition of
Brownian motion when looking through the next definition, as we will see in a
later subsection that Brownian motion turns out to be a Lévy process, and the
definitions have similarities.

Definition 11 (Lévy process[App09]). Let X = Xt, t ≥ 0 be a stochastic
process of a probability space (Ω,F , P ). We say that it has independent
increments if for any 0 < t1 < t2 < · · · < tn < ∞ the random variables
Xtj+1 −Xtj , 1 ≤ j ≤ n−1 are independent, and that it has stationary increments
if each Xtj+1 −Xtj

d= Xtj+1−tj −X0. We say that X is a Lévy process if:

1. X(0) = 0,

2. X has independent and stationary increments,

3. X is stochastically continuous,

where by stochastic continuity we mean that for all a > 0 and for all s ≥ 0

lim
t→s

P (|Xt −Xs| > a) = 0.

We have one of many results which shows a link between Lévy processes.

Proposition 12 ([App09]). If X is a Lévy process, then X(t) is infinitely
divisible for each t ≥ 0.

The following gives a relationship between the characteristic functions of
Lévy processes and corresponding infinitely divisible distributions.

Theorem 13 ([App09]). If X is a Lévy process, then

ϕX(t)(u) = etη(u)

for u ∈ Rd, t ≥ 0, where η is the Lévy symbol of X(1). We may write ηX , and
define the Lévy symbol of a Lévy process to be the Lévy symbol of X(1).

From this we see that if X is a Lévy process, then Xt is infinitely divisible
with characteristic triplet (tb, tA, tν(dx)). An important intuition for Lévy
processes is that b represents drift, A a continuous movement (like in a Brownian
motion), and ν(dx) counts jumps (like in a Poisson or compound Poisson
process). We will introduce some notation for the exponent in the previous
theorem.

Definition 14 (Lévy symbol of a Lévy process[App09]). We define the Lévy
symbol of a Lévy process X to be the Lévy symbol of X(1), and may write it
as ηX .
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1.3 Subordination

In this subsection we will see one way to construct new Lévy processes from
existing ones, by subordination.

Definition 15 (Subordinator[App09]). A subordinator is a non decreasing one
dimensional Lévy process.

The intuition about subordinators is that they are random models of time.
If Tt, t ≥ 0 is a subordinator then

Tt ≥ 0, (3)

for t > 0, and

Tt1 ≤ Tt2 ,

for t1 ≤ t2.

Theorem 16 ([App09]). Let T be a subordinator, then it has Lévy symbol of
the form

η(u) = ibu+
∫ ∞

0
(eiuy − 1)λ(dy), (4)

where b ≥ 0, and λ is a Lévy measure that satisfies

λ((−∞, 0)) = 0,

and ∫ ∞

0
min(y, 1)λ < ∞.

Conversely if we have a symbol of the form (4) it is the Lévy symbol of a
subordinator.

The following example presents the inverse Gaussian process, which is a
subordinator, which is used to construct the normal inverse Gaussian process
which we are interested in.

Example 17 ([App09]). Let Wt be the standard Brownian motion, and let
Bt = γt+Wt. Then the inverse Gaussian process is

Tt = inf{s > 0|Bt = δt},

where δ > 0. We have that

E[e−uTt ] = exp
(

− tδ(
√

2u+ γ2 − γ)
)
,

and Tt has density

fTt
(s) = δt√

2π
eδtγs−3/2 exp

(
− 1

2(t2δ2s−1 + γ2s)
)
,

for each t, s ≥ 0. A function that has the density of T1 is said to be inverse
Gaussian distributed, which we write IG(δ, γ).
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We have a name for the exponent we found in the previous example, as we
will see later it becomes useful to state some properties of subordinators.

Definition 18 (Laplace exponent of subordinator[App09]). Let T be a subor-
dinator, and let

E[e−uTt ] = e−tψ(u),

then we call ψ the Laplace exponent of T .

We have

ψ(u) = −ηT (iu) = bu+
∫ ∞

0
(1 − e−uy)λ(dy),

for each u > 0.
The following theorem shows how we can use subordination to change the

time of Lévy processes.

Theorem 19 ([App09]). Let X be a Lévy process, and T a subordinator on
the same probability space as X, such that X and T are independent. We can
define a new process

Zt = X(Tt)

for each t ≥ 0, such that for each ω ∈ Ω, Zt(ω) = XTt(ω)(ω). Then Z = Zt, t ≥ 0
is a Lévy process.

If we know the Laplace exponent and the subordinator and the Lévy symbol
of the subordinated process we can quickly find the Lévy symbol of the new
process with the following result.

Proposition 20 ([App09]). Let X,T, Z be as in (19), then

ηZ = −ψT ◦ (−ηX).

We demonstrate the previous result in this example, where we also get a
first look at the NIG process we will work with in later sections.

Example 21 ([App09]). For each t ≥ 0 let Zt = BTt
+µt, where Bt = βt+Wt,

where Wt is the standard Brownian motion, and β ∈ R. Let T be a subordinator
independent of B, such that T1 is IG(δ,

√
α2 − β2), where α ∈ R and α2 ≥ β2.

Then from (19) Z is a Lévy process. Further, using 4 we have

ηZ(u) = − ψT (u) ◦ (−ηB(u)) + iuµt,

using (17) and (8)

= − (tδ(
√

2u+ α2 − β2 −
√
α2 − β2) ◦ (−iuβ + 1

2u
2) + iuµt,

=iuµt+ δt(
√
α2 − β2 −

√
α2 − β2 + u2 − 2iuβ),

=iuµt+ δt(
√
α2 − β2 −

√
α2 − (β + iu)2).

We will see more of this in section 3.
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1.4 Convolution semigroups and canonical Lévy processes

We had a result that says that given a Lévy process we have an infinitely
divisible distribution for each t ≥ 0, and singled out the one for t = 1. In this
subsection we will see a way we can start with an infinitely divisible distribution
and find a Lévy process. We will first need some concepts defined.

Definition 22 ([App09]). We write Cb(Rd) to denote the continuous bounded
functions from Rd to R. Let pt, t ≥ 0 be a family of probability measures. We
say that it converge weakly to δ0 (the dirac delta function) if

lim
t→0+

∫
Rd

f(y)pt(dy) = f(0),

for all f ∈ Cb(Rd).

In the definition of Lévy processes we had stochastic continuity, the following
result links this to the previous definition.

Proposition 23 ([App09]). If X is a stochastic process such that X(t) has law
pt for each t ≥ 0 and X(0) = 0, then pt, t ≥ 0 is weakly convergent to δ0 if and
only if X is stochastically continuous at 0.

The following definition is for the objects we will turn into Lévy processes.

Definition 24 ([App09]). We call a family of probability measures pt, t ≥ 0
with p0 = 0 a convolution semigroup if

pt+s = pt ∗ ps

for all t, s ≥ 0. We say that it is weakly continuous if it is weakly convergent to
δ0

Let us look at an example of such a weakly continuous semigroup.

Proposition 25. Let

µt(dx) = 1√
2πt

e− x2
2t dx,

then µt, t ≥ 0 forms a weakly continuous semigroup. This is the Gauss semigroup,
and we recognize it as the law of the standard Brownian motion.

Proof. We start by checking directly that (µt ∗ µs)(A) = µt+s(A).∫ ∞

−∞

∫ ∞

−∞

1A(x+ y)
2π

√
ts

e− 1
2

x2
t − 1

2
y2
t dxdy,

we make the substitution x = z − y with dx = dz

=
∫ ∞

−∞

∫ ∞

−∞

1A(z)
2π

√
ts
e− 1

2
(z−y)2

t − 1
2

y2
t dzdy,

=
∫ ∞

−∞
1A(z)

∫ ∞

−∞

1
2π

√
ts
e− 1

2
(z−y)2

t − 1
2

y2
t dydz.
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We examine the exponent

− 1
2t (z

2 − 2zy + y2) − 1
2sy

2,

= − 1
2ts (sz2 − 2szy + sy2 + ty2),

= − 1
2ts ((t+ s)y2 − 2szy + sz2),

= − 1
2ts ((t+ s)y2 − 2szy + s(t+ s)z2

t+ s
),

= − 1
2ts ((t+ s)y2 − 2szy + s2z2

t+ s
+ tsz2

t+ s
),

= − 1
2ts (

√
t+ sy − sz√

t+ s
)2 − 1

2(t+ s)z
2,

= − 1
2 ts
t+s

(y − sz

t+ s
)2 − 1

2(t+ s)z
2.

We return to the integral

∫ ∞

−∞
1A(z)

∫ ∞

−∞

1
2π

√
ts
e

− 1
2 ts

t+s

(y− sz
t+s )2− 1

2(t+s) z
2

dydz,

=
∫ ∞

−∞
1A(z)e− 1

2(t+s) z
2

∫ ∞

−∞

1
2π

√
ts
e

− 1
2 ts

t+s

(y− sz
t+s )2

dydz,

the integral in y is a Gaussian integral

=
∫ ∞

−∞
1A(z)e− 1

2(t+s) z
2

√
2π

√
ts
t+s

2π
√
ts

dz,

=
∫ ∞

−∞

1√
2π

√
t+ s

1A(z)e− 1
2(t+s) z

2
dz,

= µt+s(A).

Hence µt is closed under convolution. We need that µt is weakly convergent
to δ0. Let f : R → R be continuous and bounded, i.e. f ∈ Cb(R). Let |f | be
bounded by C. Fix an arbitrary ϵ > 0, and pick ϵ1 > 0 and ϵ2 > 0 such that
ϵ1 + Cϵ2 < ϵ. We have

|
∫
R
f(y)µt(dy) − f(0)| = |

∫
R
f(y) 1√

2πt
e− y2

2t dy − f(0)
∫
R

1√
2πt

e− y2
2t dy|.

≤
∫
R

|f(y) − f(0)| 1√
2πt

e− y2
2t dy
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From continuity we have that ∃δ1 > 0 such that |f(0)−f(x)| < ϵ1 when |x| < δ1.
We also have that ∃δ2 > 0 such that if t < δ2 then

∫
R\(−δ1,δ1) µt(dy) < ϵ2(see

appendix 6). Let 0 ≤ t < δ2 then

|
∫
R
f(y)µt(dy) − f(0)| ≤

∫
(−δ1,δ1)

|f(y) − f(0)| 1√
2πt

e− y2
2t dy

+
∫
R\(−δ1,δ1)

|f(y) − f(0)| 1√
2πt

e− y2
2t dy,

≤
∫

(−δ1,δ1)
|f(y) − f(0)| 1√

2πt
e− y2

2t dy + Cϵ2,

≤ϵ1
∫

(−δ1,δ1)

1√
2πt

e− y2
2t dy + Cϵ2,

≤ϵ1 + Cϵ2,

<ϵ.

Thus we have that for all ϵ > 0 then there exists δ > 0 such that if 0 ≤ t < δ
then

|
∫
R
f(y)µt(dy) − f(0)| < ϵ,

hence

lim
t→0+

∫
R
f(y)µt(dy) = f(0),

and we are done. ■

And another example of a convolution semigroup.

Proposition 26. Let

µt(x, y) = 1
2πσXσY t

√
1 − ρ2

exp
(

− 1
2(1 − ρ2)

[( x

σX
√
t

)2
− 2ρ xy

σXσY
+

( y

σY
√
t

)2])
dxdy,

where ρ = corr(X,Y ), then µt, t ≥ 0 is a convolution semigroup. This is the
law of a two dimensional Brownian motion with correlation.

Proof. We start by checking directly that (µt ∗ µs)(A) = µt+s(A).

(µt ∗ µs)(A) =
∫
R4

1A(x+ u, y + v)
(2πσXσY

√
1 − ρ2)2ts

exp
(

− 1
2(1 − ρ2)

[ x2

σ2
Xt

− 2ρ xy

σXσY
+ y2

σ2
Y t

+ u2

σ2
Xs

− 2ρ uv

σXσY
+ v2

σ2
Y s

])
(dxdy)(dudv),

We substitute x = z − u, y = w − v and examine the exponent

− 1
2(1 − ρ2)ts

[s(z − u)2

σ2
X

− 2ρs(z − u)(w − v)
σXσY

+ s(w − v)2

σ2
Y

+ tu2

σ2
X

− 2ρ tuv

σXσY
+ tv2

σ2
Y

]
,
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we treat the mixed terms

s(z − u)(w − v) + t(uv),
=s(zw − zv − uw + uv) + tuv,

=(t+ s)uv − s(zv + uw) + s(t+ s)zw
t+ s

,

=(t+ s)uv − s(zv + uw) + s2zw

t+ s
+ tszw

t+ s
,

=(t+ s)
(
uv − s

zv

t+ s
− s

uw

t+ s
+ s2 zw

(t+ s)2

)
+ tszw

t+ s
,

=(t+ s)
(
u− sz

t+ s

)(
v − sw

t+ s

)
+ tszw

t+ s
,

which combined with the proof in (25) for the non mixed terms of the exponent,
the exponent becomes

− 1
2(1 − ρ2)ts

[ (t+ s)
σ2
X

(
u− sz

t+ s

)2
+ st

σ2
X(t+ s)z

2

− 2ρ t+ s

σXσY

(
u− sz

t+ s

)(
v − sw

t+ s

)
− 2ρ 1

σXσY

tszw

t+ s

+ (t+ s)
σ2
Y

(
v − sw

t+ s

)2
+ st

σ2
Y (t+ s)w

2
]
,

we split out the pure z, w part and define

E1 := − 1
2(1 − ρ2)

[ z2

σ2
X(t+ s) − 2ρ zw

σXσY (t+ s) + w2

σ2
Y (t+ s)

]
,

and

E2 := − 1
2(1 − ρ2) ts

t+s

[(
u− sz

t+s

)2

σ2
X

− 2ρ

(
u− sz

t+s

)(
v − sw

t+s

)
σXσY

+

(
v − sw

t+s

)2

σ2
Y

]
.

Then the original expression becomes

(µt ∗ µs)(A) =
∫
R2

1A(z, w)eE1

∫
R2

1
(2πσXσY

√
1 − ρ2)2ts

eE2(dudv)(dzdw),

we recognize E2 as the exponent of a binormal distribution, we know that∫
R2 e

E2 = 2π
√

1 − ρ2 ts
t+s

=
∫
R2

1A(z, w) eE1

2πσXσY
√

1 − ρ2(t+ s)
dzdw,

=µt+s(A)

Hence µt is closed under convolution. ■

Given a Lévy process the following result finds a weakly convergent semig-
roup.
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Proposition 27 ([App09]). If X is a Lévy process such that Xt has law pt for
each t ≥ 0, then pt, t ≥ 0 is a weakly convergent semigroup.

Finally we see a converse result that lets us find a Lévy process given a
weakly convergent semigroup.

Theorem 28 (Canonical Lévy process[App09]). If pt, t ≥ 0 is a weakly con-
tinuous semigroup of measures, then there exists a Lévy process X such that Xt

has law pt for each t ≥ 0. We call this the canonical Lévy process.

The previous result implies that the weakly convergent semigroup we found
in (25) can give such a canonical Lévy process, which is the Brownian motion.
There are other ways to show that Brownian motion is Lévy, for example just
using the definition, but it is a good illustration of turning a family of measures
into a Lévy process. Next we finally have the result that guarantees a Lévy
process from an infinitely divisible distribution.

Corollary 29 ([App09]). If µ is an infinitely divisible probability measure on
Rd, then there exists a Lévy process X such that µ is the law of X(1).

1.5 Exponential moments and Martingality

Since it is common to consider exponential processes in financial maths results
that guarantee integrability and Martingality of such exponentiated Lévy pro-
cesses are desirable. We give such results, under somewhat strict assumptions.

Proposition 30. Let (Lt)t≥0 be a Lévy process. Fix any t ≥ 0. If∫
R\(−1,1)

exν(dx) < ∞,

then

E[eLt ] < ∞.

Proof. Let ϕ be the characteristic function as in (1) for Lt. Then we have

E[eLt ] =etψ(−i),

=e
t

(
1
2A+γ+

∫ ∞

−∞
ex−1−x1|x|≤1ν(dx)

)
,

using the Taylor series of ex with error term of second degree, we have ex−1−x =
Cx2 on (−1, 1), for some constant C (dependent on the interval, in this case
(−1, 1)), we also have ex − 1 ≤ ex, then

≤e
t

(
1
2A+γ+

∫
R\(−1,1)

exν(dx)+
∫ 1

−1
Cx2ν(dx)

)
,

=Det
∫
R\(−1,1)

exν(dx)
e
Ct

∫ 1

−1
x2ν(dx)

,

<∞,

where D > 0 is a constant (dependent on t). ■
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And for Martingality we have the following result that utilizes the integ-
rability.

Proposition 31. Let (Lt)t≥0 be a Lévy process, and assume that∫
R\(−1,1)

exν(dx) < ∞,

and
1
2A+ γ +

∫ ∞

−∞
ex − 1 − 1|x|≤1ν(dx) = r,

then e−rteLt is a martingale.

Proof. Using the previous proposition we have that

E[e−rteLt ] = e−rt E[eLt ] < ∞,

for all t ≥ 0. Further, for t ≥ s,

E[e−rteLt |Fs] =e−steLSe−r(t−s) E[eLt−Ls |Fs],
=e−steLSe−r(t−s) E[eLt−Ls ],
=e−steLSe−r(t−s) E[eLt−s ],

=e−steLSe−r(t−s)e
(t−s)

(
1
2A+γ+

∫ ∞

−∞
ex−1−1|x|≤1ν(dx)

)
,

by using the independence and stationarity of increments for Lévy processes,
and the Lèvy-Khinchin representation. We need that

e−r(t−s) E[eLt−s ] = 1,

which happens when
1
2A+ γ +

∫ ∞

−∞
ex − 1 − 1|x|≤1ν(dx) = r.

■

When considering option pricing, we will take the expectation of our price
process after applying a payoff function. hence we would also like to guarantee
integrability of such compositions.

Proposition 32. Fix t ≥ 0, and let ϕ : R → R be continuous. If E[eLt ] < ∞,
and |ϕ(x)| ≤ a|x| + b for some constants a, b ≥ 0, then

E[|ϕ(eLt)|] < ∞.

Proof.

E[|ϕ(eLt)|] =
∫ ∞

−∞
|ϕ(x)|PeLt (x)dx,

≤a
∫ ∞

−∞
|x|PeLt (x)dx+ b

∫ ∞

−∞
PeLt (x)dx,

=aE[eLt ] + b,

<∞,
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using that since eLt ≥ 0, we have∫ ∞

−∞
|x|PeLt (x)dx =

∫ ∞

0
xPeLt (x)dx−

∫ 0

−∞
xPeLt (x)dx,

=
∫ ∞

0
xPeLt (x)dx,

= E[eLt ].

■
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2 Brownian Market

Our goal is to apply the density method to NIG market options, but we will first
look at the same process for Brownian models. The basic idea of the density
method is to move a differentiation into an expectation, hence we will first look
at a classic result, Leibniz’ rule.

2.1 Leibniz’ rule

Leibniz’ rule is exactly what we need to differentiate an integral. There are
different formulations depending on whether one is doing real analysis, mul-
tivariable analysis, etc. , while we will state it as a general measure theoretic
result.

Lemma 33. Let f(ω, x) : (Ω,R) → R be continuous in the x-variable, differen-
tiable in the x-variable, and integrable over Ω, and let

| ∂
∂x
f(ω, x)| ≤ g(ω),

for some integrable function g(ω), for all x, then

d

dx

∫
Ω
f(ω, x)dω =

∫
Ω

∂

∂x
f(ω, x)dω.

Proof.

d

dx

∫
Ω
f(ω, x)dω = lim

h→0

∫
Ω f(ω, x+ h)dω −

∫
Ω f(ω, x)dω

h
,

= lim
h→0

∫
Ω

f(ω, x+ h) − f(ω, x)
h

dω,

= lim
h→0

∫
Ω

∂

∂x
f(ω, x)|x=ch

dω,

using the mean value theorem to get ch ∈ (x, x+h). Now since ∂
∂xf(ω, x)|x=ch

→
∂
∂xf(ω, x) as h → 0 we may use Lebesgue dominated convergence to get

d

dx

∫
Ω
f(ω, x)dω =

∫
Ω

∂

∂x
f(ω, x)dω.

■

2.2 Delta of options in Brownian markets

We will say that the price of an option with strike time T will be of the form

C(Sxt , t, x) = e−rT E[ϕ(SxT )],

where ϕ is a payoff function, x the initial stock price, and SxT the price process.
We will use this form of the price even in the case that the discounted price
process is not a Martingale. For now we will consider the price process

Sxt = xeσWt+θt,
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where Wt is a standard Brownian motion, and r > 0 is the risk free interest
rate. We are interested in delta, which is the derivative of the price w.r.t. initial
price, as well as gamma, which is the second derivative w.r.t. initial price.

Theorem 34. Let C(SxT , T, x) be the premium of an option with strike time
T > 0, with a continuous payoff function ϕ : R → R, assume that ϕ(SXT ) has
finite expectation, and assume that

|ϕ(ey) ∂
∂x
fN (y − ln(x); θT, σ

√
T )| ≤ g1(y),

for all x > 0, for some integrable function g1 : R → R, where fN (y; θ, σ) is the
normal density

fN (y; θ, σ) = 1√
2πσ2

e− (y−θ)2

2σ2 .

Then

C ′(Sxt , t, x) = e−rT E[ϕ(SxT )ρ1(SxT , x)],

where

ρ1(SxT , x) = ln(SxT ) − (ln(x) + θT )
xσ2T

.

Further if we also have that

|ϕ(ey) ∂
2

∂x2 fN (y − ln(x); θT, σ
√
T )| ≤ g2(y),

for all x > 0, for some integrable function g2 : R → R, then

C ′′(Sxt , t, x) = e−rT E[ϕ(SxT )ρ2(SxT , x)],

where

ρ2(SxT , x) =
( ln(SxT ) − (ln(x) + θT )

xσ2T

)2

− ln(SxT ) − (ln(x) + θT )
x2σ2T

− 1
x2σ2T

.

Proof. We will start by differentiating the density once

∂

∂x
fN (y − ln(x); θT, σ

√
T ) = ∂

∂x

1√
2πσ2T

e− (y−(ln(x)+θT ))2

2σ2T ,

=fN (y − ln(x); θT, σ
√
T ) −1

2σ2T

∂

∂x
(y − (ln(x) + θT ))2,

=fN (y − ln(x); θT, σ
√
T )−y + (ln(x) + θT )

σ2T

−1
x
,

=fN (y − ln(x); θT, σ
√
T )y − (ln(x) + θT )

xσ2T
,
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and twice

∂2

∂x2 fN (y − ln(x); θT, σ
√
T ) = ∂

∂x
fN (y − ln(x); θT, σ

√
T )y − (ln(x) + θT )

xσ2T
,

=y − (ln(x) + θT )
xσ2T

∂

∂x
fN (y − ln(x); θT, σ

√
T )

+ fN (y − ln(x); θT, σ
√
T ) ∂
∂x

y − (ln(x) + θT )
xσ2T

,

=fN (y − ln(x); θT, σ
√
T )

((y − (ln(x) + θT )
xσ2T

)2

+ ∂

∂x

y − (ln(x) + θT )
xσ2T

)
,

=fN (y − ln(x); θT, σ
√
T )

((y − (ln(x) + θT )
xσ2T

)2

+ −1
x2

y − (ln(x) + θT )
σ2T

+ 1
x

∂

∂x

y − (ln(x) + θT )
σ2T

)
,

=fN (y − ln(x); θT, σ
√
T )

((y − (ln(x) + θT )
xσ2T

)2

− y − (ln(x) + θT )
x2σ2T

− 1
x2σ2T

)
.

The price is

C(Sxt , t, x) = e−rT E[ϕ(SxT )],

= e−rT
∫

Ω
ϕ(SxT )dω,

= e−rT
∫ ∞

−∞
ϕ(ey)fN (y − ln(x); θT, σ

√
T )dy.

Then we have, using (33), that

C ′(Sxt , t, x) = d

dx
e−rT

∫ ∞

−∞
ϕ(ey)fN (y − ln(x); θT, σ

√
T )dy,

= e−rT
∫ ∞

−∞
ϕ(ey) ∂

∂x
fN (y − ln(x); θT, σ

√
T )dy,

= e−rT
∫ ∞

−∞
ϕ(ey) (y − (ln(x) + θT ))

xσ2T
fN (y − ln(x); θT, σ

√
T )dy,

= e−rT E[ϕ(SxT ) σWT

xσ2T
].
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Further we also have

C ′′(Sxt , t, x) = d2

dx2 e
−rT

∫ ∞

−∞
ϕ(ey)fN (y − ln(x); θT, σ

√
T )dy,

=e−rT
∫ ∞

−∞
ϕ(ey) ∂

2

∂x2 fN (y − ln(x); θT, σ
√
T )dy,

=e−rT
∫ ∞

−∞
ϕ(ey) ∂

∂x

(y − (ln(x) + θT ))
xσ2T

fN (y − ln(x); θT, σ
√
T )dy,

=e−rT
∫ ∞

−∞
ϕ(ey)

(( (y − (ln(x) + θT ))
xσ2T

)2

− (y − (ln(x) + θT ))
x2σ2T

− 1
x2σ2T

)
fN (y − ln(x); θT, σ

√
T )dy,

=e−rT E
[
ϕ(SxT )

(( σWT

xσ2T

)2
− σWT

x2σ2T
− 1
x2σ2T

)]
.

We finish up by noting that

σWT = ln(SxT ) − (ln(x) + (r − 1
2σ

2)T ).

■

As an example we may consider a long position for a European call option,
for which the payoff is max(SxT −K).

Proposition 35. Let C(SxT , t, x) be the premium of an option, with the payoff
function max(SxT − K), where K is the strike price, and the initial price
x ∈ (0,∞). Then

C ′(C(SxT , t, x) = E[max(SxT −K)ρ(SxT , x)],

where

ρ(SxT , x) =
ln(SxT ) − (ln(x) + (r − 1

2σ
2)T )

xσ2T
.

Proof. We need that

f(x, y) := max{ey −K, 0} ∂

∂x
Pln(Sx

T
)(y)

is integrable over y and continuous in x. We know, using some calculations from
the proof of (34), that for fixed x, and after some translation, f(x, y) behaves
like

max(c1ye
c2y−c3y

2
, 0),

with c1 > 0, which is integrable since∫ ∞

0
c1ye

c2y−c3y
2
dy =

∫ ∞

0
c1ye

c2y−c3y
2

− c1c2

2c3
ec2y−c3y

2
dy + c1c2

2c3

∫ ∞

0
ec2y−c3y

2
dy,

= − c1

2c3
e2y−y2

∣∣∣∞

y=0
+ c1c2

2c3

∫ ∞

0
e2y−y2

dy,

=0 + c1

2c3
+ c1c2

2√
c3
e

c2
2

4c3

∫ ∞

0
e−z2

dz,

<∞.



2. BROWNIAN MARKET 19

Now for fixed y, f(x, y) behaves like

c1
1
x
e−c2 ln(x)−c3(ln(x))2+c4 ln(x),

=c1e
−(1+c2−c4) ln(x)−c3(ln(x))2

,

which is continuous for x ∈ (0,∞), and moves continuously to 0 as x → 0+.
Then the result follows by applying 34. ■

We will remind ourselves of the Martingale condition for a Brownian price
process, as this will be used in a later section.
Proposition 36. Assume that

θ = r − 1
2σ

2,

then e−rteσWt+θt is a Martingale.

Proof. Let t > s ≥ 0, we check the Martingale condition
E[e−rteσWt+θt|Fs] =e−rt E[eσ(Wt−Ws)+θ(t−s)eσWs+θs|Fs],

now since Ws is Fs measurable
=e−rteσWs+θseθ(t−s) E[eσ(Wt−Ws)|Fs],

and since Wt −Ws is independent of Ws, and thus of Fs, we have
=e−rteσWs+θseθ(t−s) E[eσ(Wt−Ws)],

=e−rteσWs+θseθ(t−s) E[eσ
√
t−sZ ],

where Z is standard normal, then using what is known about the moment
generating function for the normal distribution we get

=e−rteσWs+θseθ(t−s)e
σ2√

t−s
2

2 ,

=e−rseσWs+θse−r(t+s)+θ(t−s)+ 1
2σ

2(t−s),

which we want to equal e−rseσWs+θs, hence we require

−r(t− s) + θ(t− s) + 1
2σ

2(t− s) = 0,

or

θ = r − 1
2σ

2,

as desired. Lastly we consider integrability
E[e−rteσWt+θt] =e(θ−r)t E[eσWt ],

=e(θ−r)t E[eσ
√
tZ ],

where Z is standard normal, then again using what is known about the moment
generating function for the normal distribution we get

=e(θ−r)te
σ2t

2 ,

<∞.

■
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2.3 Margrabe’s formula

We will now consider a spread option.

Proposition 37. Let

Sx1
1,t = x1e

σ1W1,t+θ1t,

and

Sx2
2,t = x2e

σ2W2,t+θ2t,

be price processes where Wi,t are Brownian motions with ρ = corr(ln(Sx1
1,t), ln(Sx1

1,t)).
The logarithms of the price processes have joint probability density

Pt(y1, y2) = 1
2πσ1σ2

√
1 − ρ2t

e
− 1

2(1−ρ2)

(
(y1−µ1)2

2σ2
1t

− 2ρ(y1−µ1)(y2−µ2)
σ1σ2t + (y2−µ2)2

2σ2
2t

)
,

where µi = ln(xi) + θit. We let

C(x1, x2) =e−rT E[max(Sx1
1,T − Sx2

2,T −K, 0)]

be the premium of a spread with strike time T , and K = K1 −K2 where K1 and
K2 are strike prices of the two options the spread consists of. Then we have

∂

∂xi
C(x1, x2) = e−rT E[max(Sx1

1,t − Sx2
2,t −K, 0)ρ1(Sx1

1,t, S
x2
2,t)],

∂2

∂xixj
C(x1, x2) = e−rT E[max(Sx1

1,t − Sx2
2,t −K, 0)ρ2(Sx1

1,t, S
x2
2,t)],

∂2

∂x2
i

C(x1, x2) = e−rT E[max(Sx1
1,t − Sx2

2,t −K, 0)ρ3(Sx1
1,t, S

x2
2,t)],

where

ρ1(Sx1
1,t, S

x2
2,t) = 1

(1 − ρ2)xi

( ln(Sxi
i,t) − µi

σ2
i T

−
ρ(ln(Sxj

j,t) − µj)
σ1σ2T

)
,

ρ2(Sx1
1,t, S

x2
2,t) = 1

(1 − ρ2)2x1x2

(( ln(Sx1
1,t) − µ1

σ2
1T

−
ρ(ln(Sx2

2,t) − µ2)
σ1σ2T

)
·
( ln(Sx2

2,t) − µ2

σ2
2T

−
ρ(ln(Sx1

1,t) − µ1)
σ1σ2T

)
+ ρ

σ1σ2T

)
,

ρ3(Sx1
1,t, S

x2
2,t) = 1

(1 − ρ2)x2
i

( 1
(1 − ρ2)

( ln(Sxi
i,t

σ2
i T

−
ρ(ln(Sxj

j,t)
σ1σ2T

)2

−
( ln(Sxi

i,t

σ2
i T

−
ρ(ln(Sxj

j,t)
σ1σ2T

)
− 1
σ2
i T

)
.

Proof. We will assume that we can always move derivatives into integrals. We
start by differentiating the density

∂

∂xi
Pt(y1, y2) =Pt(y1, y2)

(
− 1

2(1 − ρ2)

)((2(yi − µi)
σ2
i t

)(
− 1
xi

)
− 2ρ
σ1σ2t

(yj − µj)
(

− 1
xi

))
,

=Pt(y1, y2) 1
(1 − ρ2)xi

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)
,
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then proceeding as we did in the proof of (34)

∂

∂xi
C(x1, x2) = ∂

∂xi
e−rT E[max(Sx1

1,T − Sx2
2,T −K, 0)],

= ∂

∂xi
e−rT

∫∫
R2
max(ey1 − ey2 −K, 0)PT (y1, y2)dy1dy2,

=e−rT
∫∫

R2
max(ey1 − ey2 −K, 0) ∂

∂xi
PT (y1, y2)dy1dy2,

=e−rT
∫∫

R2
max(ey1 − ey2 −K, 0) 1

(1 − ρ2)xi

( (yi − µi)
σ2
i T

− ρ(yj − µj)
σ1σ2T

)
PT (y1, y2)dy1dy2,

=e−rT E[max(Sx1
1,T − Sx2

2,T −K, 0) 1
(1 − ρ2)xi

(σiWi,T

σ2
i T

− ρσjWj,T

σ1σ2T

)
].

We then find the mixed second derivative of the density

∂2

∂x1x2
Pt(y1, y2) = ∂

∂xj
Pt(y1, y2) 1

(1 − ρ2)xi

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)
,

=Pt(y1, y2)
( 1

(1 − ρ2)2x1x2

( (y1 − µ1)
σ2

1t
− ρ(y2 − µ2)

σ1σ2t

)( (y2 − µ2)
σ2

2t
− ρ(y1 − µ1)

σ1σ2t

)
+ 1

(1 − ρ2)xi

( ρ

σ1σ2t

1
xj

))
,

= Pt(y1, y2) 1
(1 − ρ2)2x1x2

(( (y1 − µ1)
σ2

1t
− ρ(y2 − µ2)

σ1σ2t

)( (y2 − µ2)
σ2

2t
− ρ(y1 − µ1)

σ1σ2t

)
+ ρ

σ1σ2t

)
,

then, proceeding as earlier while skipping some steps, the mixed second derivat-
ive of the permium is

∂2

∂xixj
C(x1, x2) = ∂2

∂xixj
e−rT E[max(Sx1

1,T − Sx2
2,T −K, 0)],

=e−rT E[max(Sx1
1,T − Sx2

2,T −K, 0) 1
(1 − ρ2)2x1x2

·
((σ1W1,T

σ2
1T

− ρσ2W2,T

σ1σ2T

)(σ2W2,T

σ2
2T

− ρσ1W1,T

σ1σ2T

)
+ ρ

σ1σ2T

)
].
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Lastly we differentiate the density twice in the same initial value

∂2

∂x2
i

Pt(y1, y2) = ∂

∂xi
Pt(y1, y2) 1

(1 − ρ2)xi

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)
,

=Pt(y1, y2)
( 1

(1 − ρ2)2x2
i

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)2

+ ∂

∂xi

1
(1 − ρ2)xi

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

))
,

=Pt(y1, y2)
( 1

(1 − ρ2)2x2
i

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)2

+ −1
(1 − ρ2)x2

i

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)
+ 1

(1 − ρ2)xi
−1
σ2
i txi

)
,

= Pt(y1, y2) 1
(1 − ρ2)x2

i

( 1
(1 − ρ2)

( (yi − µi)
σ2
i t

− ρ(yj − µj)
σ1σ2t

)2

−
( (yi − µi)

σ2
i t

− ρ(yj − µj)
σ1σ2t

)
− 1
σ2
i t

)
,

and the second derivative of the premium is

∂2

∂x2
i

C(x1, x2) = ∂2

∂x2
i

e−rT E[max(Sx1
1,T − Sx2

2,T −K, 0)],

=e−rT E[max(Sx1
1,T − Sx2

2,T −K, 0) 1
(1 − ρ2)x2

i

·
( 1

(1 − ρ2)

(σiWi,T

σ2
i T

− ρσjWj,T

σ1σ2T

)2
−

(σiWi,T

σ2
i T

− ρσjWj,T

σ1σ2T

)
− 1
σ2
i T

)
].

■
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3 NIG Market

We will now consider option pricing using NIG price processes, but first we will
look at the distribution of such processes, which starts by learning a bit about
Bessel functions.

3.1 Some Bessel function theory

We consider some theory for the modified Bessel function. We follow the use in
the appendix of [TC03]. The modified Bessel function of the first kind is the
function that solves

z2 d
2w

dz2 + z
dw

dz
− (z2 + ν2)w = 0, (5)

while being bounded as z → 0, for z ≥ 0 and ν ≥ 0. The modified Bessel
function of the second kind solves (5) while being bounded when z → ∞, for
z ≥ 0 and ν ≥ 0. We will Write Kν(z) for the Bessel function of the second
kind, of order ν. Note that some literature, like [BN97], and [Ben03] refer to
this as the modified Bessel function of the third kind instead. In MATLAB this
function is implemented as "besselk" and is documented under modified Bessel
function of the second kind. We have some useful properties

Proposition 38. 1. For all orders ν we have K−ν(z) = Kν(z).

2. The Sommerfeld integral representation:

Kν(z) = 1
2

(z
2

)ν ∫ ∞

0
e−t− z2

4t t−ν−1dt.

3. Useful computation result

2
(α
β

)ν
Kν(βα) =

∫ ∞

0
e− α2t

2 − β2
2t

dt

t1+ν .

4. Derivative for z > 0:

K ′
ν(z) = νKν(z)

z
−Kν+1(z),

and

K ′
ν(z) = −νKν(z)

z
−Kν−1(z).

Proof. The results 1., 2., and 3. are taken from the appendix of [TC03]. Using
2. we get

K ′
ν(z) =ν 1

2

(z
2

)ν−1 ∫ ∞

0
e−t− z2

4t t−ν−1dt

+ 1
2

(z
2

)ν d
dz

∫ ∞

0
e−t− z2

4t t−ν−1dt,
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we move the differential in by (33), since the new integrand is integrable as we
will see by the end

=νKν(z)
z

+ 1
2

(z
2

)ν ∫ ∞

0

d

dz
e−t− z2

4t t−ν−1dt,

=νKν(z)
z

+ 1
2

(z
2

)ν ∫ ∞

0

−z
2t

d

dz
e−t− z2

4t t−ν−1dt,

=νKν(z)
z

− 1
2

(z
2

)ν+1 ∫ ∞

0

d

dz
e−t− z2

4t t−ν−2dt,

=νKν(z)
z

−Kν+1(z),

which also justified our use of Leibniz’ rule. Next we use property 1.

K ′
ν(z) =K ′

−ν(z),

=(−ν)K−ν(z)
z

−K−ν+1(z),

=−νKν(z)
z

−Kν−1(z),

and we are done. ■

The appendix of [TC03] contains some more results for both functions of
the first and second kind, but we will not make use of these.

3.2 The normal inverse Gaussian distribution

Before looking at NIG markets we will first reproduce an expression for the
NIG distribution. Following [BN97] we may parametrize the inverse Gaussian
distribution IG(δ, γ) by

fIG(x; δ, γ) = δ√
2π
x− 3

2 eδγe− 1
2 (δ2 1

x +γ2x),

with mean δ/γ and variance δ/γ3. Then

Proposition 39. If Z ∼ IG(δ,
√
α2 − β2), and X|Z ∼ N(µ + βz, z), with

0 ≤ |β| ≤ α, µ ∈ R, and 0 < δ, then X is normal inverse Gaussian distributed,
with density

fNIG(x;α, β, µ, δ) = keβ(x−µ)K1(α
√

(x− µ)2 + δ2)√
(x− µ)2 + δ2

,

where

k = δα

π
eδ

√
α2−β2

,

and K1 is the modified Bessel function of the second kind of order 1.
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Proof. We consider the moment generating function of X

E[euX ] =
∫ ∞

−∞
E[euX |Z = z]fIG(z; δ,

√
α2 − β2)dz,

=
∫ ∞

−∞

∫ ∞

0
eux

1√
2πz

e
− 1

2

(
(x−µ−βz)2

z

)
· δ√

2π
z− 3

2 eδ
√
α2−β2

e− 1
2 (δ2 1

z +(α2−β2)z)dzdx,

=
∫ ∞

−∞
eux

eδ
√
α2−β2

2π

∫ ∞

0
e− 1

2z (x−µ−βz)2− 1
2 ((α2−β2)z+ δ2

z ) dz

z2 dx,

=
∫ ∞

−∞
eux

eδ
√
α2−β2

2π

∫ ∞

0
e

− 1
2

(
(x−µ)2

z −2(x−µ)β+β2z+(α2−β2)z+ δ2
z

)
dz

z2 dx,

=
∫ ∞

−∞
eux

eδ
√
α2−β2

2π e(x−µ)β
∫ ∞

0
e− (x−µ)2+δ2

2z − α2z
2
dz

z2 dx,

now using result 3 of (38) with ν = 1 we get

=
∫ ∞

−∞
eux

eδ
√
α2−β2

2π e(x−µ)β2 α√
(x− µ)2 + δ2

K1(α
√

(x− µ)2 + δ2)dx,

=
∫ ∞

−∞
eux

δα

π
eδ

√
α2−β2

e(x−µ)βK1(α
√

(x− µ)2 + δ2)√
(x− µ)2 + δ2

dx.

Now since the moment generating function uniquely determines a distribution
we conclude that X must have distribution

fNIG(x;α, β, µ, δ) = δα

π
eδ

√
α2−β2

eβ(x−µ)K1(α
√

(x− µ)2 + δ2)√
(x− µ)2 + δ2

,

as desired. ■

According to [Ben03] we have that if X is NIG distributed as above then
we have that

E[X] = µ+ δβ√
α2 − β2

, (6)

and

V [X] = δα2

(α2 − β2)3/2 , (7)

which agrees with [BN97] after rewriting. According to [BN97] we have that if
β = 0, α → ∞, and δ/α = σ2, then X ∼ N (µ, σ2). Also according to [Ben03] if
beta > 0 the distribution will skew to the right, if beta < 0 the distribution will
skew to the left, and we see from (6) that it will be centered around µ. [Ben03]
also says that δ plays a similar role to the standard deviation for the normal
distribution, and that α models tail heaviness. In [Ben03] it is also stated that
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if X ∼ NIG(α, β, µX , δX), and Y ∼ NIG(α, β, µY , δY ) independent of X, then
X + Y ∼ NIG(α, β, µX + µY , δX + δY ). This implies that pt(dx), t ≥ 0, where
pt(dx) = fNIG(x;α, β, µt, δt)dx, is a convolution semigroup, since it is easy to
see that p0 = 0, and since the measure of X + Y is the convolution of the
measures of X and Y .

3.3 Normal inverse Gaussian market

We are now ready to consider option prices of NIG distributed markets, and
reach our main result. We consider the price process

Sxt = xeLt

with initial value x, where Lt is normal inverse Gaussian with density

fNIG(y;α, β, µt, δt),

where fNIG is as in (39).

Proposition 40. Let C(x) be the premium of an option, with a continuous
payoff function ϕ, assume that ϕ(SxT ) has finite expectation,and assume that

|ϕ(ey) ∂
∂x
fNIG(y − ln(x);α, β, µT, δT )| ≤ g(y),

for all x, for some integrable function g : R → R. Then

C ′(x) = e−rT E[ϕ(SxT ) 1
x

(
− β + α(Lt − µ)√

(LT − µ)2 + δ2T 2

K2(B
√

(LT − µ)2 + δ2T 2)
K1(B

√
(LT − µ)2 + δ2T 2)

)
].

Alternatively we have

C ′(x) =e−rT E[ϕ(SxT ) 1
x

(
− β + 2(Lt − µ)

(Lt − µ)2 + δ2T 2

+ α(Lt − µ)√
(LT − µ)2 + δ2T 2

K2(B
√

(LT − µ)2 + δ2T 2)
K1(B

√
(LT − µ)2 + δ2T 2)

)
]

Proof. We will start by finding the derivative of the distribution with respect to
the initial price x. We define p(z) = d

dz fNIG(z + µ;α, β, µ, δ) and differentiate
this

p(z) =βp(z) + keβz
d

dz

K1(α
√
z2 + δ2)√

z2 + δ2
,

=βp(z) + keβz
( ddzK1(α

√
z2 + δ2))

√
z2 + δ2

z2 + δ2

− keβz
K1(α

√
z2 + δ2) ddz

√
z2 + δ2

z2 + δ2 ,
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we apply result 4 of (38), and d
dz

√
z2 + δ2 = z√

z2+δ2 to get

=βp(z) + keβz

(
K1(α

√
z2+δ2)

α
√
z2+δ2 −K2(α

√
z2 + δ2)

)(
d
dzα

√
z2 + δ2

)√
z2 + δ2

z2 + δ2

− keβz
K1(α

√
z2 + δ2)z

(z2 + δ2)
√
z2 + δ2

,

=βp(z) + z

z2 + δ2 p(z) − keβz
αzK2(α

√
z2 + δ2)

z2 + δ2 − z

z2 + δ2 p(z),

=p(z)
(
β − αz√

z2 + δ2
K2(α

√
z2 + δ2)

K1(α
√
z2 + δ2)

)
Alternatively we could have used the second form of 4 of (38) to get

p(z)
(
β − 2 z

z2 + δ2 − αz√
z2 + δ2

K2(α
√
z2 + δ2)

K1(α
√
z2 + δ2)

)
instead. Further

d

dz
fNIG(z;α, β, µ, δ) = d

dz
p(z − µ),

= p′(z − µ),

and for the process we may simply replace µ and δ with µT and δT . Next we
evaluate

∂

∂x
E[ϕ(SxT )] = ∂

∂x
e−rT

∫ ∞

−∞
ϕ(eln(x)+y)fNIG(y;α, β, µT, δT )dy,

= ∂

∂x
e−rT

∫ ∞

−∞
ϕ(ez)fNIG(z − ln(x);α, β, µT, δT )dz,

we use (33)

=e−rT
∫ ∞

−∞
ϕ(ez) ∂

∂x
fNIG(z − ln(x);α, β, µT, δT )dz,

=e−rT
∫ ∞

−∞
ϕ(ez)−1

x

(
β − α(z − ln(x) − µ)√

(z − ln(x) − µ)2 + δ2T 2

K2(B
√

(z − ln(x) − µ)2 + δ2T 2)
K1(B

√
(z − ln(x) − µ)2 + δ2T 2))

fNIG(z − ln(x);α, β, µT, δT )dz,

=e−rT
∫ ∞

−∞
ϕ(eln(x)+y)

(
− β + α(y − µ)√

(y − µ)2 + δ2T 2

K2(B
√

(y − µ)2 + σ2T 2)
K1(B

√
(y − µ)2 + δ2T 2))fNIG(y;α, β, µT, δT )

x
dy,

=e−rT E[ϕ(xeLT ) 1
x

(
− β + α(Lt − µ)√

(LT − µ)2 + δ2T 2

K2(B
√

(LT − µ)2 + δ2T 2)
K1(B

√
(LT − µ)2 + δ2T 2)

)
],
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and the alternative from

∂

∂x
E[ϕ(SxT )] =e−rT E[ϕ(xeLT ) 1

x

(
− β + 2(Lt − µ)

(Lt − µ)2 + δ2T 2

+ α(Lt − µ)√
(LT − µ)2 + δ2T 2

K2(B
√

(LT − µ)2 + δ2T 2)
K1(B

√
(LT − µ)2 + δ2T 2)

)
],

is reached in the same manner, and we are done. ■

In [TC03] they use an alternative parametrization of the NIG distribution.
If we instead consider L̄t to have the parametrization

PL̄t
(y) = CeAy

K1(B
√
y2 + t2σ2/κ)√

y2 + t2σ2/κ
,

where

A = θ

σ2 ,

B =
√
θ2 + σ2/κ

σ2 ,

C = t

π
et/κ

√
θ2

κσ2 + 1
κ2 ,

where σ is volatility and θ drift of the Brownian motion, and κ the variance of
the inverse Gaussian subordinator, we have the same result.

Proposition 41. Let C(x) be the premium of an option, with a continuous
payoff function ϕ, assume that ϕ(S̄xt ) has finite expectation,and assume that

|ϕ(ey) ∂
∂x
PL̄t

(y − ln(x))| ≤ g(y),

for all x, for some integrable function g : R → R, where PL̄t
is the density

PL̄t
(y) = CeAy

K1(B
√
y2 + t2σ2/κ)√

y2 + t2σ2/κ
.

Then

C ′(x) = e−rT E[ϕ(S̄xt ) 1
x

(
−A+ BL̄T√

L̄2
T + T 2σ2/κ

K2(B
√
L̄2
T + T 2σ2/κ)

K1(B
√
L̄2
T + T 2σ2/κ)

)
].

Alternatively we have

C ′(x) =e−rT E[ϕ(S̄xt ) 1
x

(
−A+ 2 L̄T

L̄2
T + σ2T/κ

+ BL̄T√
L̄2
T + t2σ2/κ

K2(B
√
L̄2
T + T 2σ2/κ)

K1(B
√
L̄2
T + T 2σ2/κ)

)
].
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From [TC03] we know the first three cumulants for this parametrization to
be

E[L̄t] = θt,

V ar[L̄t] = σ2t+ θ2κt,

c3 = 3σ2θκt+ 3θ3κ2t,

but for the distribution to be symmetric we need

c3 = 0,

but then

3σ2θκt+ 3θ3κ2t = 0,
3θκ(σ2t+ θ2κt) = 0,

3θκV ar[L̄t] = 0.

This gives three cases

• κ = 0

• V ar[Lt] = 0

• θ = 0

We divide by κ in this parametrization, and besides it is the variance of the
inverse Gaussian used to construct the process, so it should not be 0. Next, the
variance of our process being 0 is another degenerate case. That leaves θ = 0
as the special case where we may have a symmetric process. Because of this we
favor the parametrization we found in (39).

We now consider the price process

Sxt = xeLt

with initial value x and where Lt has distribution

fNIG(x;α, β, µt, δt).

We would like a specific Martingale condition for implementations.

Proposition 42. Assume that E[St] < ∞ for all t ≥ 0, and that α ≥ |β+1|. If

µ = r − δ(
√
α2 − β2 −

√
α2 − (β + 1)2),

then e−rtSxt is a Martingale.

Proof. For E[eLt ] to be a Martingale, based on the proof of (31), we require

e−r(t−s) E[eLt−s ] = 1 (8)

for all t ≥ s ≥ 0. From [BN97] we know that with the parametrization used,
the moment generating function of Lt is

M(u;α, β, µt, δt) = eδt(
√
α2−β2−

√
α2−(β+u)2)+µtu,
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which equals ϕ(−iu), where ϕ is the characteristic function of the NIG process
found in 21. Combining this with (8) we see that for t > s we require

δ(t− s)(
√
α2 − β2 −

√
α2 − (β + 1)2) + µ(t− s) − r(t− s) = 0,

δ(
√
α2 − β2 −

√
α2 − (β + 1)2) + µ− r = 0,

hence to achieve Martingality we may choose

µ = r − δ(
√
α2 − β2 −

√
α2 − (β + 1)2).

In the case t = s, Martingality is trivially true. Now scaling by the initial value
is just multiplication by a constant, which preserves Martingality, hence we are
done. ■

Notice that we now assume α ≥ |β + 1| rather than α ≥ |β| as we did for an
arbitrary NIG distribution. We see from the proof that we could have other
Martingale conditions

µ = r − δ(
√
α2 − β2 −

√
α2 − (β + 1)2)

u
,

where u ̸= 0 and α ≥ |β + u|. Next we have a result that guarantees the
integrability.

Proposition 43. If α ≥ |1 + β| then∫
R\(−1,1)

exν(dx) < ∞,

where ν is the Lévy measure for a NIG process with fNIG(x;α, β, µt, δt) as its
distribution.

Proof. According to [BN97] the Lévy measure of the NIG process parametrized
as in (39) is

ν(dx) = δα

π|x|
eβxK1(α|x|)ν(dx). (9)

Further according to [BN97] the asymptotic behaviour as z → ∞ of the modified
Bessel function is

K1(z) ∼
√

2π√
z
e−z,

that is

lim
z→∞

K1(z)
√

2π√
z
e−z

= 1.

Then multiplying by 1 =
δα

π|x| e
βx

δα
π|x| e

βx we also have

lim
x→∞

δα
π|x|e

(1+β)xK1(α|x|)

e(1+β)x δ
√

2√
π|x|

√
x
e−α|x|

= 1. (10)
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From the result (2) of (38) we see that the modified Bessel is always positive,
combined with the second form of (4) we conclude that K ′

1(z) < 0 for z > 0,
i.e. it is positive and monotonically decreasing. Then the enumerators and
denominators of (10) are also positive an monotonically decreasing for x ≥ 0.
Then we may use the integral test for convergence, which gives that∫ ∞

1

δα

π|x|
e(1+β)xK1(α|x|)dx,

is finite if and only if

∞∑
n=1

δα

π|n|
e(1+β)nK1(α|n|) (11)

converges. We also have that∫ ∞

1
e(1+β)x−α|x| δ

√
2√

π|x|
√
x
dx

is finite if and only if

∞∑
n=1

e(1+β)n δ
√

2√
π|n|

√
n
e−α|n| (12)

converges. Now both of these two series’ consists of positive elements, thus we
may apply the limit comparison test for (11) and (12), which gives that both
either converge or diverge if

lim
n→∞

δα
π|n|e

(1+β)nK1(α|n|)

e(1+β)n δ
√

2√
π|n|

√
n
e−α|n|

(13)

exists, is finite, and non zero, but we know this to equal 1 from (10). Thus∫ ∞

1

δα

π|x|
e(1+β)xK1(α|x|)dx,

is finite if and only if ∫ ∞

1
e(1+β)x−α|x| δ

√
2√

π|x|
√
x
dx

is finite. We have ∫ ∞

1
e(1+β)x−α|x| δ

√
2√

π|x|
√
x
dx

which is finite if (1 + β)x− α|x| ≤ 0. Hence we have that∫ ∞

1

δα

π|x|
e(1+β)xK1(α|x|)dx < ∞,
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if α|x| ≥ (1 + β)x, where x > 0. Next we consider∫ −1

−∞

δα

π|x|
e(1+β)xK1(α|x|)dx ≤

∫ −1

−∞

δα

π|x|
e|1+β||x|K1(α|x|)dx,

=
∫ ∞

1

δα

π|x|
e|1+β||x|K1(α|x|)dx < ∞,

if α|x| ≥ |1 + β||x|, by replacing (1 + β) with |1 + β| in the previous case. All
together we have ∫

R\(−1,1)

δα

π|x|
e(1+β)xK1(α|x|)dx < ∞,

if α ≥ |1 + β|, but since (9)∫
R\(−1,1)

exν(dx) < ∞,

if α ≥ |1 + β|. ■

We may combine the two previous results.

Theorem 44. Let Lt, t ≥ 0 be a NIG process with distribution fNIG(x;α, β, µt, δt),
as defined in (39). If α ≥ |1 + β|, and

µ = r − δ(
√
α2 − β2 −

√
α2 − (β + 1)2),

then E[eLt ] < ∞, and e−rteLt is a Martingale.

Proof. From (43) we get that∫
R\(−1,1)

exν(dx) < ∞,

then from (30) we get that E[eLt ] < ∞. Then we may apply (42) with x = 1 in
Sxt , and we have that e−rteLt is a Martingale. ■
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4 Numerical implementation

We have expressions for option prices as well as the related delta in NIG markets,
as well as a Martingality condition. The next step is to test out numerical
implementation and compare these with the Brownian market case. We have
expressions for the Brownian market case from earlier sections, but we would
also like to implement a Black-Scholes solution, and its finite differences to
compare with as well. Hence we start by finding a Black-Scholes style solution,
although we do this for a non Martingale price process to be more general.

4.1 Black Scholes style solution

Proposition 45. Let Sxt = xeθT+σWt be a price process, where Wt is the
standard Brownian motion. Then for an option with strike price K at time T is

CBSs = e−rTSxTΦ(L− σ
√
T ) −KΦ(L),

where

L = ln(K) − ln(x) − θT

σ
√
T

.

Proof.
CBSs =e−rT E[max(SxT −K, 0)],

=e−rT E[max(eln(x)+θT+σWT −K, 0)],
Let Z be a standard normal random variable

=e−rT E[max(eln(x)+θT+σ
√
TZ −K, 0)],

=e−rT
∫ ∞

−∞
max(eln(x)+θT+σ

√
Ty −K, 0)e− 1

2y
2 dy

2π ,

Let L be such thatmax(eln(x)+θT+σ
√
TL−K, 0)>0, then sincemax(eln(x)+θT+σ

√
Ty−

K, 0) is increasing

=e−rT
∫ ∞

L

eln(x)+θT+σ
√
Ty− 1

2y
2 dy

2π −Ke−rT
∫ ∞

L

e− 1
2y

2 dy

2π ,

=eln(x)+θT−rT
∫ ∞

L

e− 1
2 (y−σ

√
T )2+ 1

2σ
2T dy

2π −Ke−rT
∫ ∞

L

e− 1
2y

2 dy

2π ,

make the substitution z = y − σ
√
T , we get dz = dy and a new lower limit of

L− σ
√

(T )

=eln(x)+θT+ 1
2σ

2T−rT
∫ ∞

L−σ
√
T

e− 1
2 z

2 dz

2π −Ke−rT
∫ ∞

L

e− 1
2y

2 dy

2π ,

=e−rTSxTΦ(L− σ
√
T ) −KΦ(L),

where Φ is the cumulative function for the standard normal distribution. Now
to determine L. We have

eln(x)+θT+σ
√
TL −K = 0,

ln(x) + θT + σ
√
TL = ln(K),

L = ln(K) − ln(x) − θT

σ
√
T

.
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■

Note that when we use the Martingale condition θ = (r − 1
2σ

2)T we get the
familiar Black-Scholes solution

CBS = xΦ(L−) −KΦ(L+),

where

L− = ln(K) − ln(x) − rT

σ
√
T

− 1
2σ

√
T ,

and

L+ = ln(K) − ln(x) − rT

σ
√
T

+ 1
2σ

√
T .

4.2 NIG vs Gaussian distribution

For numerical implementation we will consider three cases, the Brownian model,
the NIG model, and at times the Black-Scholes style solution from (45). We
will implement the densities

f(y;x, θt, σ2t) = 1√
2πt

e− (y−ln(x)−θt)2

2σ2 ,

for the Brownian case, and

f(y;x, α, β, µ, δ) = δα

π
eδ

√
α2−β2

eβ(y−ln(x)−µ)K1(α
√

(y − ln(x) − µ)2 + δ2)√
(y − ln(x) − µ)2 + δ2

,

for the NIG model. We will use (6) and (7) to set the mean variance to be
equal for the two models. We need

θ = µ+ δβ√
α2 − β2

,

and

σ2 = δα2

(α2 − β2)3/2 .

We start by comparing the two distributions at various times. We will use
the values in table (4.2) for the NIG distribution, and then use the conditions
above for the Brownian distribution so they have equal mean and variance.
The implementation can be found in appendix (7) In figure (1) we can see the
densities when the time is 0.1, 1, 10, and 100. We see that the differences in

α β µ δ

150 0 0 0.015

Table 1: Test parameters.
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Figure 1: Comparing the NIG and Gaussian densities for different strike times.

the distribution vanish as time increases. Note that this is for a symmetrical
NIG process, and neither process has drift, since β = 0 and µ = 0.
Next we will implement the values found in table (4.2), these are from [Ben03],
and are fitted for daily change in the FTSE index. We will start by calculating
option premium and delta in a Martingale case, this time with strike price
of K = 50, and strike time T = 50, for initial prices ranging from 1 to 100,
with zero interest rate. The implementation is simply using built in numerical
integrators in MATLAB on the densities found in (34) and (39) with payoff
function ϕ(y) = max(ey −K, 0), we also calculate the Black-Scholes solution
and use finite difference on these, the implementation can be found in appendix
(8). The result can be seen in figure (2) and figure (3). To achieve Martingality

α β µ δ

105 3.0 −0.0005 0.012

Table 2: FTSE daily parameters from [Ben03].

we first apply the parameters in table (4.2), then override µ by

µ = r − δ(
√
α2 − β2 −

√
α2 − (β + 1)2),
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Figure 2: Option premium, comparing NIG and Brownian models with a Black-
Scholes style solution.

the condition found in (42) (we fullfill the condition α ≥ |β + 1|), then set
the parameters for the Brownian model such that they have equal mean and
variance, then apply the condition

θ = r − 1
2σ

2,

to override θ. We observe little difference between the Brownian and NIG
models. We proceed by calculating the same at different times. This can be
seen in figure (4), where we have zoomed in on the area near the strike price,
since this is where the difference is most noticeable. We see that the difference
seems to shrink as time increases, which fits well with what we saw in figure (1).
We can also see that the range where the function changes growth rate grows
with time, this is more clearly seen in (5), since this is simply the derivative.
When T = 0.1 Delta goes from 0 to 1 for x ∈ [49, 51], while at T = 100 it takes
a wider range than x ∈ [40, 60].
To be a bit more precise we should also calculate the relative error, this time
excluding a Black-Scholes type solution, and at T = 10, the result can found
in figure (6), and the implementation is appendix (8) modified with appendix
(9). We see that the natural log of the ratio between the premium from the two
models is greatest when x is near 1. This is the results from the values of the
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Figure 3: Option delta, comparing NIG and Brownain models with finite
difference of a Black-Scholes style solution.

functions being near zero, but slightly different, in fact we need about x ≥ 40
for the absolute value of the two price functions to reach 0.01 (one cent if we
wanted to apply it to a real market). Thus we have also plotted the ratio (not
log ratio) for the two price functions for x ∈ [40, 60] as well. We see the same
pattern, where the error is greater for lower x values, where the price is still
quite small, while by x = 45 the ratio is almost 1, which it reaches and remains
at.
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5 Conclusions and outlook

We have managed to find analytic expressions for the delta of option prices, for
NIG and Brownian price processes, as well as for Brownian spread options. We
also found analytic expressions for the gamma (second derivative with respect
to initial price) for the Brownian cases (normal options and spreads). We found
an exponential integrability condition for NIG processes, as well as a Martingale
condition for the corresponding discounted price process. We did numerical
implementation of the price and delta, and compared these for the Brownian
and NIG models, using "reasonable" parameters for real markets, yielding that
the difference, in both price and delta, was small except for options with very
short strike times. Further study could look at more extreme option cases,
to see if there is greater difference when using Brownian versus NIG models.
Another extension could be to find analytic expressions for different greeks for
options using NIG price processes.
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6 Appendix A

Proposition 46. For ϵ > 0 and δ1 > 0, ∃δ2 > 0 such that if t < δ2 then∫
R\(−δ1,δ1)

1√
2πte

− x2
2t dx < ϵ.

Proof. The proof follows a classic proof of the Gaussian integral using polar
coordinates. Define

I(t) :=
∫
R\(−δ1,δ1)

1√
2πt

e− x2
2t dx,

then

I(t)2 =
∫
R\(−δ1,δ1)

1√
2πt

e− x2
2t dx

∫
R\(−δ1,δ1)

1√
2πt

e− y2
2t dy,

=
∫∫

(R\(−δ1,δ1))2

1
2πte

− x2+y2
2t dxdy,

since the integrand is positive we have

≤
∫∫

R2\Bδ1 (0)

1
2πte

− x2+y2
2t dxdy,

where Bδ1(0) is the open ball centered at 0 with radius δ1. Then we make a
change to polar coordinates

=
∫ 2π

0

∫ ∞

δ1

1
2πte

− r2
2t drdθ,

=
∫ ∞

δ1

1
2πt2πe

− r2
2t dr,

we make the substitution s = −r2

=1
t

∫ −δ2
1

−∞
e

s
2t
ds

2 ,

= 1
2t [2te

s
2t ]−δ

2
1

s=−∞,

=e−
δ2

1
2t ,

then

I(t) ≤
√
e−

δ2
1

2t = e−
δ2

1
4t ,

which goes to 0 as t → 0+. ■
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7 Appendix B

%Values for T and x-axis for plot
A = [0.1,1,10,100];
B = [0.008,0.04,0.1,0.35];

%Set up for multiple plots in one figure
tiledlayout(’flow’)

for i = 1:4

%Interest rate
r = 0;
%Time
T = A(i);
%Strike price
K = 50;

%NIG parameters
delta = 0.015;
mu = 0;
alpha = 150;
beta = 0;

%Gaussian paramateres equal NIG mean and variance
theta = mu+delta*beta/sqrt(alpha^2-beta^2);
sigma = alpha*sqrt(delta)/((alpha^2-beta^2)^(3/4));

%NIG parameters must be scaled by time
mu = mu*T;
delta = delta*T;

k = delta*alpha/pi*exp(delta*sqrt(alpha^2-beta^2));

%Gaussian density
f = @(y) 1./sqrt(2.*pi.*(sigma.^2).*T)...
.*exp(-(((y-theta.*T)./(sigma.*sqrt(T))).^2)./2);

%NIG density
g = @(y) k.*exp(beta.*(y-mu))...
.*besselk(1,alpha.*sqrt(delta.^2+(y-mu).^2))./sqrt(delta.^2+(y-mu).^2);

Y = linspace(-B(i),B(i),100);

%Advance panel in figure
nexttile
plot(Y,f(Y),Y,g(Y))
VarTitle = sprintf(’T=%.1f’,A(i));
title(VarTitle);
labels = {’G’,’N’};
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legend(labels)

end
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8 Appendix C

%Interest rate
r = 0;
%Strike time
T = 50;
%Strike price
K = 50;

%Set parameters based on Benth, daily
alpha = 42.3;
beta = 3.8;
mu = -0.0021;
delta = 0.018;

%Set the same variance and mean for the Brownian model
theta = mu+delta*beta/sqrt(alpha^2-beta^2);
sigma = alpha*sqrt(delta)/((alpha^2-beta^2)^(3/4));

%Set for Martingality
mu = r-delta*((alpha^2-beta^2)^(1/2)-(alpha^2-(1+beta)^2)^(1/2));
theta = r-(1/2)*sigma^2;

%NIG parameteres must be scaled with time
mu = mu*T;
delta = delta*T;

k = delta*alpha/pi*exp(delta*sqrt(alpha^2-beta^2));

%Density for delta and premium respectively, for Brownian
f1 = @(y,x) (y-log(x)-theta.*T)/(x.*(sigma.^2).*T).*max(exp(y)-K,0)...
./sqrt(2.*pi.*(sigma.^2).*T).*exp(-(((y-log(x)-theta.*T)...
./(sigma.*sqrt(T))).^2)./2);
f2 = @(y,x) max(exp(y)-K,0)./sqrt(2.*pi.*(sigma.^2).*T)...
.*exp(-(((y-log(x)-theta.*T)./(sigma.*sqrt(T))).^2)./2);

%Density for delta and premium respectively, for NIG
g1 = @(y,x) max(exp(y)-K,0).*k.*exp(beta.*(y-log(x)-mu))...
.*besselk(1,alpha.*sqrt(delta.^2+(y-log(x)-mu).^2))...
./sqrt(delta.^2+(y-log(x)-mu).^2)./x...
.*(-beta+alpha.*(y-log(x)-mu)./sqrt(delta.^2+(y-log(x)-mu).^2)...
.*besselk(2,alpha.*sqrt(delta.^2+(y-log(x)-mu).^2))...
./besselk(1,alpha.*sqrt(delta.^2+(y-log(x)-mu).^2)));
g2 = @(y,x) max(exp(y)-K,0).*k.*exp(beta.*(y-log(x)-mu))...
.*besselk(1,alpha.*sqrt(delta.^2+(y-log(x)-mu).^2))...
./sqrt(delta.^2+(y-log(x)-mu).^2);

maxPrice = 100;
X = linspace(1,maxPrice,maxPrice);
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I1 = zeros(1,maxPrice);
I2 = zeros(1,maxPrice);
I3 = zeros(1,maxPrice);
I4 = zeros(1,maxPrice);
I5 = zeros(1,maxPrice-1);
I6 = zeros(1,maxPrice);
for i = 1:maxPrice
I1(i) = integral(@(y) g1(y,X(i)),-10,10);
I2(i) = integral(@(y) g2(y,X(i)),-10,10);
I3(i) = integral(@(y) f1(y,X(i)),-10,10);
I4(i) = integral(@(y) f2(y,X(i)),-10,10);

%Black-Scholes C
Lplus = (log(K)-log(X(i))-theta*T)/(sigma*sqrt(T));
Lminus = (log(K)-log(X(i))-theta*T)/(sigma*sqrt(T))-sigma*sqrt(T);
I6(i) = exp(log(X(i))+theta*T ...
+1/2*T*sigma^2)*normcdf(-Lminus)-K*normcdf(-Lplus);
end
for i = 1:maxPrice-1
%Black-Scholes C’, simply finite difference, step length is 1
I5(i) = I6(i+1)-I6(i);
end
X2 = linspace(1,maxPrice,maxPrice-1);

%{
plot(X,I2,X,I4,X,I6)
VarTitle = sprintf(’T=%.0f’,T);
title(VarTitle);
labels = {’NIG’,’Brownian’,’B-S’};
legend(labels)
xlabel(’Initial stock price’)
ylabel(’Option premium’)
%}

%%{
plot(X,I1,X,I3,X2,I5)
VarTitle = sprintf(’T=%.0f’,T);
title(VarTitle);
labels = {’NIG’,’Brownian’,’B-S’};
legend(labels)
xlabel(’Initial stock price’)
ylabel(’Delta’)
%%}
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9 Appendix D

%Plot log relative error/relative error
t = tiledlayout(1,2,’TileSpacing’,’Compact’);
offset = 400;
Y = linspace(offset*1/N*100,100*0.6,N-offset+1-0.4*N);
rel1 = I2(offset:N-0.4*N);
rel2 = I4(offset:N-0.4*N);
nexttile
plot(Y,rel1./rel2)
title1 = sprintf(’NIG/Brownian, T=%.f’,T);
title(title1);

offset = 1;
Y = linspace(offset*1/N*100,100*0.6,N-offset+1-0.4*N);
rel1 = I2(offset:N-0.4*N);
rel2 = I4(offset:N-0.4*N);
nexttile
plot(Y,log(rel1./rel2))
title2 = sprintf(’Log(NIG/Brownian), T=%.f’,T);
title(title2);

xlabel(t, ’Initial stock price’)
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