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Abstract
Learning strategies have been recognized as important predictors of mathematical 
achievement. In recent studies, it has been found that Asian students use combined 
learning strategies, primarily including metacognitive strategies, rather than rote 
memorization. To the best of the authors’ knowledge, there is only one prior study 
including South Korea in investigations of the relationship between learning 
strategies and mathematics achievement in PISA 2012. In that study, students were 
classified into groups using specific learning strategies, and their mathematics 
achievements were compared. There are two research gaps: (1) previous studies 
insufficiently explored how students use learning strategies in the South Korean 
education system, and (2) there is little research applying the nominal response 
model (NRM) to explore the association between learning strategy use and 
mathematics achievement in PISA 2012. Thus, the present study explores to what 
extent the NRM fits the data compared to the generalized partial credit model 
(GPCM). We created a learning strategy score from the NRM for South Korean 
students in PISA 2012 (N = 3,310). Then, using correlation analysis and quadratic 
regression analysis, we identified linear and nonlinear relations between learning 
strategy scores from the NRM and mathematics achievement. The findings indicated 
that (1) NRM was a better fit for creating learning strategy scores than GPCM, (2) the 
average correlation coefficient between the learning strategy score and mathematics 
achievement was 0.18 (p < .05), and (3) for the curvilinear relationship between the 
learning strategy score and mathematics achievement, the standardized quadratic 
coefficient was − 0.090 (p < .001). Overall, the NRM represents an appropriate 
model for explaining the relationship between learning strategy and mathematical 
achievement. Additionally, high-performing South Korean students tend to primarily 
use metacognitive strategies with memorization. The negative quadratic coefficient 
captured the limited effect of the primary use of metacognitive strategies with 
memorization. The implications for the South Korean education system are discussed.

Keywords  Learning strategy, Mathematics achievement, Nominal response model, 
South Korea, PISA 2012

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-1663-7914
http://orcid.org/0000-0002-2290-2705
http://orcid.org/0000-0002-0038-9234
http://crossmark.crossref.org/dialog/?doi=10.1186/s40536-024-00198-8&domain=pdf&date_stamp=2024-4-11


Page 2 of 27Kim et al. Large-scale Assessments in Education           (2024) 12:11 

Introduction
Learning strategies can be defined as behaviors and thoughts in which a learner engages 
or that are intended to influence the learner’s encoding process. Like goal-oriented 
activities, learning strategies are used for acquiring, organizing, or transforming infor-
mation, as well as for reflecting upon and guiding the learning process (Weinstein & 
Mayer, 1986). These strategies have also been recognized as important predictors of aca-
demic achievement (Hong et al., 2006). The Program for International Student Assess-
ment (PISA), an international large-scale assessment developed by the Organization for 
Economic Co-operation and Development (OECD), measures 15-year-old students’ use 
of learning strategies on an ordinal scale (OECD, 2012). The PISA uses three learning 
strategies—memorization, elaboration, and metacognitive strategies—and defines them 
as follows: memorization involves learning key terms and repeated learning of materials; 
elaboration includes making connections to related areas and thinking about alterna-
tive solutions; and metacognition involves planning, monitoring, and regulation (OECD, 
2005; Zimmerman, 2001). After PISA 2012, the ordinal scale of learning strategy items 
was converted into a nominal scale.

By analyzing learning strategy items in PISA, research has demonstrated that these 
mathematics learning strategies are associated with students’ mathematics achieve-
ment (Areepattamannil & Caleon, 2013; Kiliç et al., 2012; Lin & Tai, 2015; Wu et al., 
2020). For instance, Areepattamannil and Caleon (2013) found that in East Asian edu-
cation systems, including Shanghai-China, Hong Kong-China, Korea, and Singapore, 
memorization strategies were negatively associated with mathematics achievement, and 
the magnitude of the negative correlation differed among the countries. Some studies 
have also explored the use of learning strategies without using PISA data. Elaboration 
strategies and metacognitive strategies have been found to be positively correlated with 
learning achievement across 34 countries (Chiu et al., 2007), including Germany (Glog-
ger et al., 2012; Murayama et al., 2013), Hong Kong (McInerney et al., 2012), and Swe-
den (Rosander & Bäckström, 2012). Memorization is generally considered less effective 
than other learning strategies (e.g., elaboration and metacognitive strategies; McInerney, 
2012).

Among studies that have investigated learning strategies for mathematics in the East 
Asian educational system (Lin & Tai, 2015; Liu et al., 2019; Wu et al., 2020), only Wu et 
al. (2020) included South Korea in the East Asian data of PISA 2012. In fact, very limited 
research has examined the relationship between learning strategies and mathematics 
achievement in the South Korean education system (e.g., an exam-driven culture). Fur-
thermore, considering that the magnitude of correlation coefficients between learning 
strategy use and mathematics achievement is different across countries (Areepattaman-
nil & Caleon, 2013; Wu et al., 2020), research is necessary for interpreting and discussing 
a specific education system to better understand learning strategy use and mathematics 
achievement.

Thus, this study focuses on the South Korean education system for two reasons. First, 
due to the feature of an educational system in Korea, Korean students are encouraged to 
use memorization strategies. In South Korea, the College Scholastic Ability Test (CSAT) 
is considered the sole determinant of which university a student can attend (Blazer, 
2012). The CSAT has led students to rely on memorization strategies to learn test-taking 
skills and improve their ability to solve multiple-choice questions in a limited amount of 
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time (Kim, 2004). Second, South Korea consistently shows mathematics performance in 
international large-scale assessments (Choi et al., 2019; Park, 2004). For instance, South 
Koreans ranked 4th in PISA 2009, 5th in PISA 2012, 7th in PISA 2015 and 5th in PISA 
2018.

In the present study, we use the nominal response model (NRM) to score Korean stu-
dents’ learning strategies in PISA 2012 and examine the association between learning 
strategy use and mathematics achievement. The NRM is an item response theory (IRT) 
model for modeling the probability of responses to items with nominal categories (i.e., 
unordered responses; Zu & Kyllonen, 2020) as a type of learning strategy item in PISA 
2012. To explore the extent to which the NRM fits the data, we compare it to the gen-
eralized partial credit model (GPCM), which assumes the order of categories (i.e., the 
ordinal relationship between learning strategies) in IRT modeling. The advantage of 
applying IRT in scoring compared to the sum of scores is that a parametric model can be 
used to estimate the uncertainty of point estimates (i.e., standard errors), which can be 
considered in the subsequent analysis of the relationship between learning strategy and 
mathematics achievement using the plausible values approach.

This study aims to examine and explore the relationship between learning strategy use 
and mathematics achievement in the South Korean education system. We explore (1) 
the extent to which the NRM fits the data and (2) the linear and nonlinear relationship 
between learning strategy use and mathematics achievement in South Korea. To achieve 
the first goal, we compared the NRM to the GPCM and expected that the NRM would 
fit the data better than the GPCM because of the nominal nature of learning strategies. 
The second goal was achieved by conducting a correlation analysis between the Korean 
students’ learning strategy scores from the NRM and mathematics scores, as well as a 
correlation analysis between raw scores of single strategies and mathematics scores in 
PISA 2012. In addition, to examine the nonlinear relationships between these variables, 
we used quadratic regression analysis.

The article is organized as follows. We review the literature on learning strategies 
using self-regulated learning theory, the relationships between learning strategy use 
and mathematics achievement, and learning strategies used in the East Asian and South 
Korean contexts. We briefly introduce two IRT models, the NRM and GPCM, and then 
generate the two research questions according to the research gaps. The methodology 
section describes the South Korean sample and the measures of learning strategies and 
mathematics achievement in PISA 2012. In the statistical analysis, a model comparison 
between NRM and GPCM is performed to answer the first research question. Then, 
correlation analyses and nonlinear regression analysis between learning strategy use 
and mathematics achievement are conducted to answer the second research question. 
Finally, we discuss our findings and elaborate on the reasons for them.

Literature review
Learning strategies in self-regulated learning theory

The self-regulated learning (SRL) process was introduced by Zimmerman (2001) to 
describe how students regulate their own learning processes, including learning strate-
gies, motivation, and behavior. According to SRL, a self-oriented feedback loop occurs 
during learning (Carver & Scheier, 1981; Zimmerman, 1990). In this cyclical loop pro-
cess, students monitor the effectiveness of their learning strategies and respond to this 



Page 4 of 27Kim et al. Large-scale Assessments in Education           (2024) 12:11 

feedback in several ways, such as replacing one learning strategy with another to achieve 
more desirable results (Zimmerman, 2001).

In the SRL process, students are regarded as self-regulated learners to the degree that 
they are metacognitively, motivationally, and behaviorally active participants in their 
own learning processes (Zimmerman, 1986). These students self-generate thoughts, 
feelings, and actions as their learning goals. SRL includes students’ metacognitive strat-
egies for planning, monitoring, and modifying their cognition (Campione et al., 1984; 
Corno, 1986; Zimmerman & Pons, 1986, 1988) and the actual cognitive strategies that 
they use to learn, remember, and understand the material (Corno & Mandinach, 2009; 
Zimmerman & Pons, 1986, 1988). These different cognitive strategies, such as rehearsal, 
elaboration, and organizational strategies, have been found to foster active cognitive 
engagement in learning and to result in higher levels of achievement (Weinstein & 
Mayer, 1986).

Learning strategies and achievement

SRL theory has prompted many empirical studies to define different types of learning 
strategies and demonstrate their efficiency (Dent & Koenka, 2016; Pintrich & Groot, 
1990; Zimmerman & Pons, 1986). Although various classifications of learning strate-
gies have been suggested (Kember et al., 2004; Lee & Shute, 2010; Marton & Säljö, 1976; 
Weinstein & Mayer, 1986; Zimmerman & Pons, 1986), many studies have followed the 
concept of Weinstein and Mayer’s (1986) framework to define cognitive and metacogni-
tive strategies.

Cognitive strategies (e.g., memorization and elaboration) refer to mental proce-
dures that are related to learning, storing, organizing, summarizing, and understand-
ing information by relating it to new and prior knowledge (Weinstein & Mayer, 1986; 
Zimmerman & Pons, 1986). While learning mathematics, students may recall formulas, 
summarize a mathematical concept that they have absorbed, or connect a mathemat-
ics concept to their actual experiences (Wu et al., 2020). Metacognitive strategies (i.e., 
control strategies in PISA) refer to supervising, controlling, and regulating cognitive 
activities (Weinstein & Mayer, 1986; Zimmerman & Pons, 1986). During mathematics 
learning, metacognitively aware students may devise plans to solve the next mathematics 
tasks, review their own understanding of the concepts learned, ask for help, and assess 
their own learning strategies to improve performance (OECD, 2013).

PISA uses self-reported learning strategy items in the mathematics domain (OECD, 
2005), following Weinstein and Mayer’s (1986) concept of learning strategies. We discuss 
memorization, elaboration, and metacognitive strategies in the following subsections.

Memorization strategies and mathematics achievement

Memorizing factual knowledge might be useful in the introductory stage of acquiring 
mathematics knowledge (Dinsmore & Alexander, 2016), but exclusively using memori-
zation as a strategy does not generally lead to improvements in complex problem solving 
or advanced logical skills (Biggs, 1993; Liu et al., 2019; Marton & Säljö, 1976; McInerney 
et al., 2012). For example, Liu et al. (2019) suggested that Chinese students who use the 
memorization strategy in combination with other learning strategies (e.g., elaboration 
and metacognition) perform better in mathematics than those who use only the memo-
rization strategy.
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Educational studies have investigated the impact of memorization strategies on 
mathematics achievement (Areepattamannil & Caleon, 2013; Kiliç et al.,2012; Pintrich 
& Groot, 1990). In general, the exclusive use of memorization is negatively correlated 
with mathematics achievement. Pintrich and Groot (1990) found that the use of memo-
rization without metacognitive strategies was not conducive to academic performance. 
Similarly, Kiliç et al. (2012) found that memorization had a negative effect on learn-
ing in Turkey and its neighboring countries, and Areepattamannil and Caleon (2013) 
concluded that memorization strategies were negatively associated with mathematics 
achievement in four East Asian education systems: Shanghai-China, Korea, Hong Kong-
China, and Singapore. While studies have suggested that the mixed use of learning strat-
egies, including memorization, may lead to better academic performance than the use of 
a single strategy (Dent & Koenka, 2016; Wu et al., 2020), educational researchers tend to 
hold negative views of using only memorization.

Elaboration strategies and mathematics achievement

Elaboration is defined as mental processes and behaviors that involve integrating infor-
mation from different sources to create meaningful interpretations, relate new concepts 
to prior knowledge, and summarize material into one’s own words (Pintrich & Groot, 
1990; Trigwell & Prosser, 1991; Walker et al., 2006; Wolters, 2004). Elaboration can occur 
during self-study, discussions, notetaking, or answering questions (Pires et al., 2020).

Elaboration strategies that deepen understanding of knowledge and skills lead to high-
quality learning outcomes, whereas students who use a surface approach (e.g., rehearsal 
or memorization; Ramsden, 1988) are more likely to achieve lower-quality outcomes 
(Marton & Säljö, 1976; Prosser & Millar, 1989). It has been found in previous studies that 
elaboration strategies lead to a positive effect on student learning, including in math-
ematics (Donker et al., 2014; Murayama et al., 2013). In one meta-analysis study (Donker 
et al., 2014), it was found that elaboration was the only substrategy that demonstrated 
a significantly positive relationship with mathematics achievement among a variety of 
substrategies. A longitudinal study (Murayama et al., 2013) suggested that growth in 
students’ mathematics achievement was positively predicted by deep learning strategies 
from Grades 5 through 10 and was negatively predicted by surface learning strategies 
(Ramsden, 1988).

In contrast, the relationship between elaboration strategy and mathematics achieve-
ment did not demonstrate a consistent pattern of results across different educational 
systems in a study by Chiu et al. (2007), who found that these strategies were not linked 
to achievement in any domain or culture. Liu et al. (2009) indicated that elaboration 
strategy use by Chinese eighth-grade students showed either a positive or negative rela-
tionship with mathematics achievement, depending on unique Chinese demographic 
variables (e.g., only child families and residential locations). Thus, the effect of elabora-
tion strategies varied between countries.

Metacognitive strategies and mathematics achievement

According to SRL theory, self-regulated learners are able to monitor the efficiency of 
their learning strategies and change one learning strategy to another to achieve their 
goals. This is referred to as a metacognitive strategy (Zimmerman, 2001). Several 
researchers have shown that metacognition plays an important role in mathematics 
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success (Borkowski & Thorpe, 1994; De Clercq et al., 2000; Schoenfeld, 2016). Artz and 
Armour-Thomas (2009) found that the main reason for students’ failures in mathemati-
cal problem solving was that they were not able to monitor their own mental procedures.

Many empirical studies have demonstrated the effectiveness of metacognitive strate-
gies for improving students’ mathematics performance (Areepattamannil & Caleon, 
2013; Desoete et al., 2001; Dignath & Büttner, 2008; Perels et al., 2009). Desoete et al. 
(2001) indicated that metacognitive knowledge and skills accounted for 37% of achieve-
ment in mathematical problem solving. Dignath and Büttner (2008) demonstrated a 
stronger relationship of metacognitive strategies with mathematics than with other sub-
jects. Perels et al. (2009) investigated the effects of training metacognitive strategies (i.e., 
self-regulative strategies) on mathematical achievement for Grade 6 students in Ger-
many. The students in the experimental group, whose teachers taught mathematics top-
ics combined with metacognitive strategies (i.e., self-regulative strategies), showed more 
improvement in their mathematics skills in a pre/posttest comparison than the control 
group, whose teachers taught only mathematical topics. Areepattamannil and Caleon 
(2013) found that metacognitive strategies were positively associated with mathematics 
achievement in four East Asian education systems: Shanghai-China, Korea, Hong Kong-
China, and Singapore. In addition, Wu et al.’s (2020) findings showed that the combined 
use of metacognitive and elaboration strategies was the most effective way for mathe-
matics achievement in most East Asian countries, followed by the mixed use of meta-
cognitive and memorization strategies.

East Asian students’ learning strategy use

In recent decades, Western educators have explored the reasons for East Asian students’ 
high mathematics performance. They believed that East Asian students relied on mem-
orization, but these students performed better on international large-scale assessment 
(ILSA) than Western students (Biggs, 1998; Leung, 2014). However, several studies have 
found that East Asian students do not depend on a single strategy, such as memoriza-
tion, but instead use mixed learning strategies (Lin & Tai, 2015; Liu et al., 2019; Wu et 
al., 2020). According to Wu et al. (2020), most East Asian students use multiple learn-
ing strategies for learning mathematics, and students who use both metacognitive and 
elaboration strategies achieve the highest scores on the mathematics exam, followed 
by those who use metacognitive and memorization strategies. Several studies have 
also shown that memorization does not necessarily imply rote learning without under-
standing (Biggs, 1998; Kember, 2016; Leung, 2014). For instance, as an application of a 
memorization strategy, continuous practice with increasing variation could help learners 
understand new material (Hess & Azuma, 1991; Marton & Booth, 1997). Thus, the use 
of a memorization strategy does not always mean rote learning, and East Asian students 
do not rely entirely on a memorization strategy.

Learning strategies in the South Korean context

The South Korean education system introduced the CSAT in 1994 to encourage stu-
dents to develop high-level thinking abilities rather than fragmented short-term memo-
rization. However, CSAT was criticized for triggering a different kind of memorization 
because it had multiple-choice formats and caused repetition of problem-solving exer-
cises in test subjects, including mathematics (Kim, 2004). Students were intent on 
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learning test-taking skills that would ensure their ability to solve these multiple-choice 
questions in a limited amount of time (Kim, 2004). As CSAT has become an essential 
determinant of which university a student can attend, South Koreans have expressed 
concern about whether students rely on rote learning only to obtain high scores on the 
exam (Blazer, 2012; Li, 2011).

A previous study (Wu et al., 2020) explored the relationship between learning strate-
gies and mathematics achievement for South Korean students as well as those in other 
education systems in East Asia (e.g., Hong Kong, Japan, Korea, Shanghai, Singapore, Tai-
wan, and Macau) using latent class analysis. According to Wu et al. (2020), the largest 
percentage (65%) of South Korean students primarily used metacognitive strategies with 
memorization strategies (Class 2). Only 14.2% of South Korean students primarily used 
metacognitive strategies with elaboration (Class 4). Class 4 was found to have the best 
performance among the classes, followed by Class 2. Although Wu et al. (2020) inves-
tigated South Korean students’ learning strategy use, the study lacked discussion about 
the Korean education system.

Nominal response model

The nominal response model (Darrel Bock, 1972) is designed for items with nominal 
categories (Thissen et al., 2010). Nominal categories imply that there is no assumption 
that Category 2 indicates higher ability than Category 1 (Zu & Kyllonen, 2020). In other 
words, the NRM does not assume that using a metacognitive strategy is better than using 
a memorization strategy in response to items in PISA 2012. It enables partial credit for 
different option selections and allows for differential item weights and varying category 
discriminations. The NRM is expressed as:

P (Xi = k|θ) =
eaikθ+cik

∑mi
j=1 eaijθ+cij � (1)

where aik and cik  are the category slope and category intercept parameters, respectively, 
for the kth  category of Item i. In this equation, the expression on the right gives the prob-
ability that a person with trait-level θ  selects response category k  (k = 1, 2, 3, . . .mi ) on 
item i .

Within an item, the order for the response categories with respect to latent ability is 
determined by the value of the aik s. Within item i , response k  indicates higher θ  than 
response q  if and only if aik > aiq  (Thissen et al., 2010). The category intercept param-
eters (cik ) reflect the relative frequency of choosing that category, where a larger cik  
(intercept parameter) represents a greater relative frequency for option k  (Zu & Kyl-
lonen, 2020).

Generalized partial credit model

The GPCM can be seen as a generalization of the dichotomous 2PL model for han-
dling polytomous data and a constrained version of the NRM. In the GPCM, responses 
need to be ordered from best to worst with respect to latent ability, which could be 
accomplished through prior knowledge, expert ratings, in- or out-of-sample response 
popularity, or other means (e.g., the aik  values from the NRM analysis; see Eq. 1; Zu & 
Kyllonen, 2020). In other words, in the GPCM, the options are coded [Memorization = 1, 
Elaboration = 2, Metacognitive = 3] based on prior knowledge (Biggs, 1987; OECD, 2014; 
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Weinstein & Mayer, 1986; Zimmerman & Pons, 1986). This implies that students who 
have high learning strategy scores tend to use metacognitive strategies, and students 
who have low learning strategy scores tend to use memorization strategies. With the 
prior ordering of the response categories, the GPCM is the NRM with the constraint 
that the degree of discrimination between adjacent categories is the same for all adja-
cent categories in an item. Due to these constraints, category slopes within an item can 
be represented by one item slope parameter. An expression of the GPCM is the NRM 
shown in Eq. 2, with constraints:

aik = ai (k − 1)� (2)

where ai  is the slope parameter for item i  (Zu & Kyllonen, 2020). The number of param-
eters for item i  under the GPCM is the number of response categories, mi . In other 
words, within item i , category slopes are all the same (ai1 = ai2 = ai3 = ai ).

Aims of the present study

We summarize two research gaps: (1) Few published studies have applied NRM to exam-
ine learning strategy use and mathematics achievement in PISA 2012; and (2) There is 
little research exploring the relationship between these variables in the South Korean 
education system. This study will address these gaps by first exploring to what extent 
NRM fits learning strategy data in PISA 2012 compared to GPCM and, second, by inves-
tigating how South Korean students’ learning strategies are correlated with mathematics 
achievement.

The present study seeks to answer the following two research questions:

1.	 To what extent does the NRM fit the response data in learning strategies in PISA 2012 
South Korean data compared to the GPCM?

2.	 To what extent is the learning strategy use of South Korean students correlated with 
mathematics achievement linearly and nonlinearly?

Method
PISA 2012 sampling design

PISA is an OECD study of the achievement of 15-year-olds in mathematics, reading, and 
science. PISA 2012, the fifth PISA survey, covered reading, mathematics, science, prob-
lem solving, and financial literacy, with a primary focus on mathematics. In 2012, 65 
countries and economies (all 34 OECD countries and 31 partner countries and econ-
omies) and approximately half a million students, representing 28  million 15-year-old 
students, participated in the PISA assessment. PISA 2012 adopted a two-stage complex 
survey design to select a representative sample of 15-year-old students in each educa-
tional system. In the first stage, approximately 150 schools were sampled, and then at 
least 35 students were selected in each sampled school (OECD, 2014). To acquire suf-
ficiently high response rates, PISA needed each school to have a minimum participation 
rate of 50%.

Sample

In the present study, the South Korean educational system was examined. PISA 2012 
collected data from 5,033 15-year-old South Korean students (female = 47%) who 
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participated (Dong et al., 2012). In PISA 2012, the total sample was 5,201: 6.1% middle 
school students, 73.7% general high school students, and 20.2% vocational high school 
students.

Mathematics learning strategies

PISA 2012 adopted a rotation design for the student questionnaire (OECD, 2014). The 
questionnaire included a common part and two of three rotating parts: set1, set2, and 
set3. Each student randomly received one of three questionnaire booklets. Therefore, 
33% of the data for each item for the learning strategies were missing by design. Listwise 
deletion, which involves deleting all persons with missing data, was employed before the 
analysis was conducted (Newman, 2014). Of 5,033 participating students, 3,310 students 
provided complete responses. Thus, after listwise deletion, the present study examined 
3,310 South Korean students (female = 46%) in the analysis.

In PISA 2012, three types of learning strategies—memorization, elaboration, and 
metacognition—were measured using nominal scales. Four items were used to deter-
mine students’ use of learning strategies in mathematics. Thus, students chose only one 
learning strategy from the three options (see Table 1).

Mathematics achievement

Each student was randomly assigned one of 13 booklets, which means that they tested a 
portion of the items from the entire item pool. PISA 2012 used the item response theory 
(IRT) framework to estimate a latent posterior distribution for each student. As the stu-
dents did not answer all booklets, missing data must be inferred from the observed item 
responses. As one of several alternative approaches for making this inference, PISA uses 
imputation methodologies called plausible values. Five plausible values were drawn from 

Table 1  Mathematics learning strategy
Strategy Statement
Item 1

Metacognitive When I study for a mathematics test, I try to work out what the most impor-
tant parts to learn are.

Elaboration When I study for a mathematics test, I try to understand new concepts by 
relating them to things I already know.

Memorization When I study for a mathematics test, I learn as much as I can off by heart.
Item 2

Metacognitive When I study mathematics, I try to figure out which concepts I still have not 
understood properly.

Elaboration When I study mathematics, I think of new ways to get the answer.
Memorization When I study mathematics, I make myself check to see if I remember the 

work I have already done.
Item 3

Metacognitive When I study mathematics, I start by working out exactly what I need to learn.
Elaboration When I study mathematics, I try to relate the work to things I have learnt in 

other subjects.
Memorization When I study mathematics, I go over some problems so often that I feel as if I 

could solve them in my sleep.
Item 4

Metacognitive When I cannot understand something in mathematics, I always search for 
more information to clarify the problem.

Elaboration I think about how the mathematics I have learnt can be used in everyday life.
Memorization In order to remember the method for solving a mathematics problem, I go 

through examples again and again.
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the posterior distribution with a mean of 500 and a standard deviation of 100 to repre-
sent students’ mathematics scores (OECD, 2014). In this study, we used all five plausible 
values when conducting correlation analysis, as well as quadratic regression analysis, to 
account for measurement errors.

Statistical analysis

To answer the first research question, we compared the NRM to the GPCM in three 
domains: model fit and item fit indices, empirical reliability, and item characteristic 
curve. As learning strategy items in PISA 2012 were measured on a nominal scale, the 
NRM was expected to be a better fit than models for ordinal data (e.g., the GPCM or 
graded response model). The GPCM assumes that the degree of discrimination between 
adjacent categories is the same for all adjacent categories in an item, whereas NRM 
releases these assumptions. If the NRM fits better than the GPCM, we can conclude that 
the nominal relationship among the three strategies is maintained. Then, we are able to 
create learning strategy scores based on their latent ability, considering the posterior dis-
tribution of estimates, and calculate plausible values of learning strategy scores in NRM.

We also used Chalmers and Ng’s (2017) plausible-value variant of the Q1 statistic 
and root mean square error approximation (RMSEA; Maydeu-Olivares, 2015) to exam-
ine the data fit for each item under either NRM or GPCM. A nonsignificant result of 
hypothesis testing for Q1 statistics would indicate that the model fit data are accept-
able for a specific item. The lower the RMSEA, the better the model between NRM 
and GPCM fitted data for a specific item. RMSEAs smaller than 0.0125 were consid-
ered excellent fits (Maydeu-Olivares, 2015). Additionally, using the Thissen et al. (2010) 
conceptualization of the model, we converted the discrimination and location param-
eters estimated under the NRM to category boundary discrimination parameters and 
intersections, respectively. In other words, Preston et al. (2011) rewrote the NRM as 
P(Xi=k|θ) = 1/(1 + exp[− a*

ik θ + c*
ik]), where a*

ik = aik − ai(k−1), that is, the difference of 
the a parameter between adjacent category k and k − 1 in Eq. 1; c*

ik = cik − ci(k−1) is an 
intercept. The boundary discrimination parameters in NRM are the discrimination dif-
ferences between the two adjacent categories that GPCM constrains to be consistent 
within items. We compared the boundary discrimination parameters in NRM with the 
discrimination parameters in GPCM by the Wald test (Preston et al., 2011). When an 
item’s boundary discrimination parameters in NRM significantly differ from each other, 
the discriminations are inconsistent within items. Then, we could conclude that items 
fit better NRM than GPCM. This is helpful for examining whether each item should be 
explained with the ordinal relationship between Memorization, Elaboration, and Meta-
cognitive as the constraints in GPCM.

To answer the second research question, we conducted two correlation analyses and 
a quadratic regression analysis with learning strategy use and mathematics achieve-
ment as three relationships (see Table  2). First, the correlation between the South 
Korean students’ learning strategy scores created by the NRM and mathematical scores 
was obtained with the plausible values approach for taking the measurement error into 
account (OECD, 2009). Second, we examined the correlation between the observed 
raw score of each learning strategy and mathematics achievement to suggest the base-
line value of each learning strategy. Third, we performed a quadratic regression analy-
sis, adding a quadratic component of the learning strategy score to a linear model to 
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investigate the nonlinear relationship between the learning strategy score created by 
NRM and mathematics achievement. Finally, we tested the hypothesis for the coefficient 
of the quadratic term to understand the curvilinear relationship between mathematics 
achievement and learning strategy use.

Model comparison between NRM and GPCM

We used the mirt package in R (Chalmers et al., 2022) by the function of mirt with the 
argument of itemtype = “nominal” or itemtype = “gpcm” to introduce the NRM and 
GPCM models. In this study, under the GPCM, the options were recoded (Memoriza-
tion = 1, Elaboration = 2, Metacognitive = 3) based on prior literature (Biggs, 1987; OECD, 
2014; Weinstein & Mayer, 1986; Zimmerman & Pons, 1986). We compared the model 
data fit index of the NRM to that of the GPCM with the Akaike information crite-
rion (AIC; Bozdogan, 1987) and Bayesian information criterion (BIC; Schwarz, 1978). 
In addition, empirical IRT reliability via sampling variances and empirical variances 
estimated from the expected a posteriori (EAP) method was used to indicate the fea-
tures of these four items and how precise they were. To understand the meaning of the 
scores, we compared the item characteristic curves (ICCs) of the NRM to those of the 
GPCM, which also indicated that the equal discrimination constraint in the GPCM was 
inadequate.

Learning strategy score

We computed the five plausible values of ability estimates in NRM via the fscores func-
tion in the mirt package, which randomly sample five scores from the posterior distri-
bution of θ in Eq. 1. When a model contains latent regression predictors, the plausible 
values approach accounts for latent regression predictor effects and measurement error 
simultaneously (Chalmers et al., 2022). The coefficients of predictor effects with the 
plausible values approach are unbiased compared to other estimators, such as weighted 
likelihood estimates that underestimate coefficients and EAP, which overestimates coef-
ficients (OECD, 2009). The plausible values of the learning strategy score were thus used 
for further correlation analysis and quadratic regression analysis.

We also computed the raw scores of the learning strategies to suggest the baseline 
value of the association between single learning strategies and mathematics achieve-
ment. We created each raw score for memorization, elaboration, and metacognitive 
strategies equal to the frequency of choosing the corresponding strategy in the four 
items. For instance, if a student chose memorization once, elaboration twice, and meta-
cognition once among four items, then the raw score for the student would be 1 for 
memorization, 2 for elaboration, and 1 for metacognition. If a student chose elaboration 
twice and metacognition twice, then the raw score would be 0 for memorization, 2 for 

Table 2  Analysis for research question 2
Purpose Model or Statistics
Linear relationship Correlation (Learning strategy score, Math)
Baseline of the linear relationship Correlation (Memorization strategy, Math)

Correlation (Elaboration strategy, Math)
Correlation (Metacognitive strategy, Math)

Nonlinear relationship Quadratic regression (Math ~ Learning strat-
egy score + (Learning strategy score)2  )

Note. Learning strategy score is created by NRM. Math stands for mathematics achievement score.
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elaboration, and 2 for metacognition. Compared to the NRM scores, which represented 
multiple learning strategies mixed together, the raw scores indicated the frequency of 
using single learning strategies.

Linear relationship (1): correlation between learning strategy score and mathematics scores

The average of plausible value statistics was used for the point estimates of the popu-
lation statistics. Thus, to obtain a correlation coefficient between the learning strategy 
scores and mathematics achievement scores, the five correlation coefficients of plausi-
ble values were computed and then averaged (OECD, 2009). Mathematically, secondary 
analyses with plausible values can be described as follows: The population coefficient ρ  
is the formulation of ρi , which is the coefficient computed on one plausible value, then:

ρ =
1
M

M∑

i=1

ρi � (3)

where M is the number of plausible values.
To compute the uncertainty in the averaged correlation coefficient, the measurement 

variance, usually denoted as imputation variance, is equal to:

BM =
1

M − 1

M∑

i=1

(ρi − ρ)2 � (4)

This corresponds to the variance of the five plausible value statistics of interest. Finally, 
the sampling variance and the imputation variance should be combined as follows:

V = U +
(

1 +
1
M

)
BM � (5)

where U  is the sampling variance and V  is the squared standard error of the correlation 
coefficient between learning strategies and mathematics achievement.

Linear relationship (2): correlation between learning strategy raw score and mathematics 

score

In addition to using the plausible values approach, we conducted correlation analysis 
between the learning strategy raw score and mathematics score to understand the cor-
relation between the use of a single strategy across all items (i.e., across learning situa-
tions) and mathematics achievement. Unlike the NRM scores representing the Korean 
students’ multiple strategies used in learning mathematics, the raw scores of the learn-
ing strategies represented the use of a single strategy (i.e., memorization, elaboration, or 
metacognition). The correlation based on raw scores is the baseline value to understand 
to what extent each learning strategy score was related to mathematics achievement. For 
instance, if the correlation coefficient based on the NRM score is larger than that based 
on each single strategy raw score, we can conclude that the Korean student’s multiple 
learning strategies for various learning situations are more efficient than using a single 
strategy across learning situations.
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Nonlinear relationship: quadratic and cubic relationship between learning strategy score and 

mathematics score

We performed a quadratic regression analysis on the basis of the previously examined 
linear model. The quadratic regression model contains a linear term and a quadratic 
term to capture the linear and quadratic relationships between learning strategies and 
mathematics achievement (Cohen et al., 2002). More specifically, we first specified 
a model assuming a linear relation. In the second step, we added a quadratic compo-
nent to examine whether a curvilinear relationship described the data better. A curvi-
linear (second-order) predictor, such as X2, is added to the linear regression equation 
(Y = B1X + B0 + ε) as follows:

Y = B1X + B2X
2 + B0 + ε � (6)

where X is the learning strategy score from the NRM as a predictor, X2 is the squared 
value of the learning strategy score as a curvilinear (second-order) predictor, Y  is the 
mathematics score as an outcome variable, and ε  is an error term with mean to zero 
and variance to the residual variance. In addition, B0 is the intercept of the equation, 
implying the mean of the mathematics score when the learning strategy score is zero. 
B1 is a regression coefficient of X  (learning strategy score), and B2 is a quadratic coef-
ficient of X2 (the squared value of the learning strategy score). When we were conduct-
ing hypothesis testing, we explored the significance of the quadratic coefficient (B2). If 
a quadratic term B2 is significant (p < .001), this implies that mathematical achievement 
scores did not monotonically increase as learning strategy scores increased.

To explore the further possible nonlinear relationship between learning strategy 
scores and mathematics scores, we compared the quadratic regression model (Eq.  6) 
with a cubic regression model where we added one more predictor of B3X

3 to explain 
the cubic relationship between learning strategies and mathematics performance by 
using the model data fit index of BIC and hypothesis testing for the null hypothesis of 
B3 = 0. When the BIC of the quadratic model is smaller than that of the cubic model 
and the hypothesis of B3 = 0 cannot be rejected, we conclude the quadratic relation-
ship between learning strategy scores and mathematics scores; otherwise, the cubic 
relationship.

In the nonlinear regression analysis, the plausible values of regression coefficients were 
calculated using the same method in the linear relationship (1), and the five plausible 
values of the regression coefficients (e.g., LS1-MATH1, LS2-MATH2, … LS5-MATH5) 
were averaged (OECD, 2009) to account for measurement errors. The predictors in the 
regression analysis were centralized to a mean equal to zero so that B1 can be interpreted 
as the predominant direction of the trend and B2 can be interpreted as concavity (Dalal 
& Zickar, 2012). The sum of weights within the country named SENWGT_STU was 
used to consider the weights within the country.

Results
Frequencies of learning strategy used among South Korean students

The frequencies and percentages of learning strategy use by South Korean students are 
presented in Table 3. The primary learning strategy varied across items, and metacogni-
tive strategy was the most frequent learning strategy overall. For instance, more than 
80% of South Korean students reported using elaboration and metacognition (43.3% and 
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40.0% each), with only 20% using memorization in Item 1. The percentage of metacog-
nitive strategy use was the most noticeable in Items 2 and 3. In Item 2, South Korean 
students reported using metacognition, memorization, and elaboration (51.1%, 29.6%, 
and 19.3%, respectively). In Item 3, they chose metacognition, elaboration, and memo-
rization at 62.5%, 22.9%, and 14.6%, respectively. In Item 4, more than half of the stu-
dents reported the use of memorization (54.9%), followed by metacognition (30.9%) and 
elaboration (14.2%).

Comparison between NRM and GPCM

Model fit

We used the likelihood ratio test to compare the model data fit between the NRM and 
the GPCM. The result of the likelihood ratio test (χ2[4] = 215.008, p < .001) showed that 
the NRM had a significant difference in model data fit from the GPCM. A model with 
better model data fit would have lower AIC and BIC values. Table 4 shows that the NRM 
had lower AIC and BIC values than the GPCM. Thus, the NRM was found to be a better 
fit for the data. BIC and AIC penalize the number of parameters, so the superiority of fit 
for the NRM is not merely due to the increase in the number of parameters.

Item-level comparison between NRM and GPCM

Table 5 shows the Q1 statistics (Chalmers & Ng, 2017) for each item under NRM and 
GPCM. All items in NRM had acceptable item data fit (p values are larger than 0.05), 

Table 3  Frequencies and percentages of students’ responses to learning strategy items
Item1 Item2 Item3 Item4 Total
n % n % n % n % n %

Metacognitive 1,323 40.0 1,693 51.1 2,068 62.5 1,023 30.9 6,107 46.1
Elaboration 1,432 43.3 638 19.3 759 22.9 470 14.2 3,299 24.9
Memorization 555 16.8 979 29.6 483 14.6 1,817 54.9 3,834 29.0
Note. Numbers in bold indicate the highest response probability within an item.

Table 4  Comparison of fit indices in models
Model AIC BIC Log-Likelihood χ2  for LRT df p-value

NRM 25,778.21 25,875.88 -12,873.10
GPCM 25,985.22 26,085.47 -12,980.61 215.008 4 < 0.001
Note. The values in bold represent the smaller value in log likelihood, AIC, and BIC. The LRT indicates the Likelihood Ratio 
Test; the df indicate the degree of freedom for the χ2  distribution.

Table 5  Item fit index of Chalmers and Ng’s Q1 statistics for NRM and GPCM
Q1 degree of freedom RMSEA p-value

NRM
     Item 1 20.173 16 0.009 0.213
     Item 2 18.051 16 0.006 0.321
     Item 3 18.933 16 0.007 0.272
     Item 4 26.132 16 0.014 0.052
GPCM
     Item 1 17.786 17 0.004 0.402
     Item 2 20.233 17 0.008 0.262
     Item 3 20.393 17 0.008 0.255
     Item 4 39.511* 17 0.020 0.002
*p < .01.
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whereas Item 4 under GPCM cannot fit the data well (p < .05). The RMSEA showed that 
for Items 2 and 3, the NRM fit the data better than the GPCM. As the Q1 statistics result 
concluded, the RMSEA for Item 4 showed a worse model data fit in GPCM. However, 
Item 1 had a better item fit in the GPCM than in the NRM. Nevertheless, Item 1 in NRM 
still performed an acceptable item fit of Q1 statistics.

Table 6 shows that the boundary discrimination parameters of Item 1 did not differ 
from each other. Item 1 had a consistent discrimination parameter across categories 
within items. This is consistent with the result in Table 5 that GPCM fit the data bet-
ter than NRM for Item 1. This implied that for Item 1, the ordinal relationship between 
Memorization, Elaboration, and Metacognitive was described by GPCM better than 
the nominal relationship by NRM. For Items 2 and 3, the boundary discrimination 
parameters were significantly different within items. The nominal relationship between 
categories in NRM described responses to Item 2 and Item 3 better than the ordinal 
relationship in GPCM. Although the boundary discrimination parameters for item 4 did 
not differ, Table 5 showed that Item 4 has a misfit in GPCM. Thus, we were cautious of 
stating that GPCM fit better than NRM for item 4. In summary, we decided to accept the 
NRM compared to the GPCM according to the overall model-data fit, item fit for each 
item, and analysis of boundary discrimination parameters. The following sections will 
focus on the item features and the explanation of learning strategy scores under NRM 
more than under GPCM.

Reliability

To estimate the reliability of the learning strategy items, we reported empirical reliabil-
ity. The empirical reliability for the NRM was 0.365, and that for the GPCM was 0.214. 
Considering that there were only four items, it is probable that both models’ empirical 
reliabilities were low. In general, the more information (i.e., more items in the test) we 
have, the more reliably we can measure the underlying trait (Cheng et al., 2012). Never-
theless, the reliability of the NRM was higher than that of the GPCM.

Item characteristic response curve

The NRM redefined each learning strategy regardless of recoded numbers. As cik  indi-
cates the relative frequency of choosing that option (compare Tables  3 and 7), the P1 
curve showed memorization, the P2 curve showed elaboration, and the P3 curve showed 
metacognition (see Fig. 1). Under GPCM, within Item i, the category slopes are all the 
same (ai1 = ai2 = ai3= ai ). These constraints led Item 2, Item 3, and Item 4 response 
curves to be shaped differently from the curves of the NRM.

Overall, the response curve patterns of the GPCM and those of the NRM were differ-
ent in Items 2, 3, and 4, while Item 1 had a similar pattern in both models. This result is 

Table 6  Comparison between boundary discrimination parameters of NRM and discrimination 
parameters of GPCM

NRM
a1

* a2
* aGPCM

Item_1 0.73 (0.11) 0.42 (0.18) 0.567 (0.187)
Item_2 −0.13 (0.12) 0.43 (0.14) 0.333 (0.097)
Item_3 −0.67 (0.41) 0.95 (0.42) 0.303 (0.079)
Item_4 −2.00 (2.01) 2.05 (2.01) −0.059 (0.054)
Note. The item parameters in bold denote significant differences between boundary discriminations.
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consistent with the conclusions from the item fit analysis in Table 5. In Item 2, under the 
GPCM, as the learning strategy score (θ ) increased, the probability of choosing memo-
rization (P1/ blue) decreased with a steeper slope than under the NRM, and the proba-
bility of choosing elaboration (P2/pink) increased for learning strategy scores lower than 
0 and decreased for learning strategy scores higher than 0. Under the NRM, the prob-
ability of choosing elaboration (P2/pink) decreased monotonically as the learning strat-
egy score (θ ) increased. In Item 3, under the GPCM, as the learning strategy score (θ
) increased, the probability of choosing memorization (P1/blue) decreased with a steep 
slope, and the probability of choosing elaboration (P2/pink) increased for learning strat-
egy scores lower than approximately − 2 but decreased for learning strategy scores higher 
than − 2. Under the NRM, the probability of choosing memorization (P1/blue) increased 
for learning strategy scores lower than 0 but decreased for learning strategy scores 
higher than 0, and the probability of choosing elaboration (P2/pink) decreased steeply 
as the learning strategy score (θ ) increased. The Item 4 curves of the GPCM showed 
very different shapes from those of NRM. Under GPCM, as learning strategy scores (θ ) 
increased, the probability of choosing memorization (P1/blue) increased monotonically, 
the probability of choosing elaboration (P2/pink) did not seem to change, and the prob-
ability of choosing metacognition (P3/green) decreased monotonically. Under the NRM, 
as the learning strategy score (θ ) increased, the probability of choosing memorization 
(P1/blue) increased for learning strategy scores lower than 0 but decreased slightly for 
learning strategy scores higher than 0, the probability of choosing elaboration (P2/pink) 
decreased with a steep slope, and the probability of choosing metacognition (P3/green) 
increased gradually with a slope change of approximately 0.

Comparing the NRM to the GPCM, the NRM showed a better model data fit. There-
fore, we used NRM to create South Korean students’ learning strategy scores. To under-
stand the implications of the learning strategy scores, we considered item characteristic 
response curves and parameter estimates of the NRM (aij , cik ) (see Table 7; Fig. 1). In 
general, the a3 values were larger than the other two a1 and a2values in all four items. 
However, a1 and a3 had similar values in Item 4. The NRM curves in Fig. 1 show that 
the memorization strategy (P1/blue) was slightly higher than the metacognitive strategy 
(P3/green) in Item 4 when θ  (learning strategy score) was approximately 6.0. Thus, in 
general, the learning strategy score in the NRM might suggest the use of metacognitive 

Table 7  Item parameters for GPCM and NRM
Model Parameter Item

1 2 3 4
GPCM

a 0.567 0.333 0.303 -0.059
b1 − 2.034 1.066 − 1.775 -23.078
b2 0.272 -2.847 − 3.300 13.240

NRM
a1 − 0.63 -0.055 0.125 0.628
a2 0.106 -0.186 -0.54 -1.322
a3 0.524 0.241 0.415 0.695
c1 − 0.762 -0.03 -0.555 0.989
c2 0.451 -0.482 -0.315 -1.39
c3 0.312 0.512 0.87 0.401

Note. (a) An item discrimination parameter of GPCM and the slope of each category in NRM; (b) A threshold of GPCM; (c) An 
intercept of each category in NRM.
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strategies with memorization strategies. A higher θ  (higher learning strategy score) 
implied more frequent use of metacognitive strategies with memorization strategies, 
depending on the context. For example, the students who had a high learning strategy 
score tended to use memorization in Item 4 but metacognition in Items 2 and 3.

The Relationship between learning strategy and mathematics achievement

To summarize briefly, the correlation analysis showed that the learning strategy score 
from the NRM positively correlated with mathematics achievement. As the result of 
the raw score correlation, we found that using multiple learning strategies depending 
on items was more effective than using a single strategy across items for South Korean 
students. Finally, we explored a curvilinear relationship by adding a quadratic term and a 
cubic term of the learning strategy score from the NRM and found a significant negative 
quadratic term associated with mathematics achievement. More detailed results about 
the findings are presented below.

Linear relationship (1): correlation between learning strategy score and mathematics score

All correlation coefficients between learning strategy scores from the NRM and mathe-
matics scores were significantly larger than zero (p < .05). In other words, the confidence 
intervals of the correlations between the variables did not include zero. The mean of the 
correlation coefficients was 0.18 (SE = 0.00075, Range = 0.17–0.22). The results indicate 
that there was a tendency that the higher the mathematics score was, the higher the 
learning strategy score, and the reverse also applied. Thus, the South Korean students 
who primarily used the metacognitive strategy with memorization, depending on the 
context, obtained high scores on mathematics exams.

Fig. 1  Item Characteristic Response Curve of GPCM and NRM.
Note. X-axis = θ (learning strategy score), Y-axis = Probability of selecting the strategy, P1 = Memorization strategy, 
P2 = Elaboration strategy, and P3 = Metacognitive strategy.
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Linear relationship (2): correlation between learning strategy raw score and mathematics 

score

The second correlation analysis between the raw score of learning strategy and math-
ematics score was conducted. The correlation based on raw scores was the baseline value 
for understanding to what extent the students’ learning strategy scores were related to 
mathematics achievement. The correlation coefficients between the raw score of the sin-
gle learning strategy and the mathematics score were all significantly different from zero 
(p < .05). The mean of correlation coefficient between the raw score of the metacognitive 
strategy and the mathematics score (with five plausible values) was 0.12. In contrast, the 
mean correlation coefficients between the elaboration strategy and mathematics score 
were negative (ρ=−0.04), and the correlation between the memorization strategy and 
mathematics score was − 0.10. These results support the evidence that those students 
who used metacognition exclusively tended to achieve higher mathematics scores than 
those who used elaboration or memorization exclusively. More specifically, the sole use 
of memorization or elaboration learning strategies had a negative impact on mathemat-
ics scores.

The mean correlation coefficient between the raw score of metacognitive strategy and 
mathematics score was 0.12, which was less than 0.18 (i.e., the mean correlation coef-
ficient between the learning strategy score from the NRM and mathematics score). This 
indicates that students using multiple learning strategies depending on learning situa-
tions had higher mathematics achievement scores than those who used only metacogni-
tive strategies across all situations, in line with previous research (Wu et al., 2020).

Nonlinear relationship: quadratic and cubic relationship between learning strategy score and 

mathematics score

The quadratic regression coefficients were significantly different from zero (p < .001). 
The average R-squared difference between the quadratic regression model and the lin-
ear regression model was 0.005812. The quadratic regression model showed a better fit 
than the linear model; the mean value of the BIC for quadratic regression was smaller 
than that of the linear model (BIC = 39,802 and 39,807, respectively). In the compari-
son between the two nonlinear regression models, the quadratic model fit the data bet-
ter than the cubic model, with a BIC = 39,808. The average coefficient of the cubic term 
in the cubic regression model did not significantly differ from zero either (average B3 
=-0.873, average p value = 0.46 among the five plausible values of B3). This finding con-
firmed our expectation that a linear and cubic relationship could not fully capture the 
relationship between students’ learning strategies and mathematics performance.

We presented a significance test for each of the individual regression coefficients with 
95% confidence intervals on the mean of the five regression coefficients (see Table 8). 
We also summarized both linear and quadratic regression models in the scatter plot (see 
Fig. 2).

Table 8 shows that the mean of the standardized quadratic regression coefficients of 
the learning strategy scores (i.e.,LS2) was significantly negative at -0.0667 (p < .001). 
The negative average coefficient of quadratic regression estimates implies that the ini-
tially positive association between the learning strategy score and mathematics achieve-
ment diminished slightly and became negative as the value of the learning strategy score 
increased.
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The scatter plot in Fig. 2 shows both the positive linear relationship and negative qua-
dratic relationship between the learning strategy score in NRM (x-axis) and the math-
ematics score. To simplify the scatter plot, we used the first plausible value of learning 
strategy scores and the first plausible value of mathematics scores as the x-variable and 
y-variable, respectively, rather than five plausible values. The red line and blue curve 
in Fig.  2 are the fitted linear regression line and the fitted quadratic regression curve, 
respectively. The linear regression line (red line) was fitted to Ŷ = 16.601LS1 + 554.241
, where Ŷ  is the predicted mathematics achievement score and LS1 is the first plausible 
value of learning strategy scores in the NRM (i.e., x-variable in Fig. 2). The coefficient 
of LS1 in the linear equation was 16.601 (CI = [13.21, 19.99]), which was significantly 
larger than zero, with t(3307) =9.603 and p < .001. The standardized coefficient of LS1 
was 0.164. The blue curve in Fig. 2 indicates the fitted quadratic regression equation with 

Table 8  Quadratic regression coefficients of the learning strategy score on the mathematics score
Variable B SE 95% CI

[Lower, Upper]
β SE 95% CI

[Lower, Upper]
Intercept 559.2456***

LS 17.296*** 1.789 [15.507, 19.085] 0.1726*** 0.00043 [0.17217, 0.17303]

LS2 -5.168*** 1.496 [-6.664, -3.672] -0.0667*** 0.00061 [-0.06731, -0.06609]

R2 0.03572

Note. N = 3,310. B = coefficient, β  = standardized coefficient, CI = confidence interval. LS is the learning strategy score. The 
mathematics score from PISA 2012 is an outcome variable.

***p < .001.

Fig. 2  Association between Students’ Learning Strategy Score and Mathematics Score
Note. Each dot indicates an individual participant’s first plausible value of mathematics scores and learning strategy 
scores. The green line characterizes the best fit linear regression of the mathematics score on the first learning 
strategy score in the NRM; the blue line represents the best fit quadratic regression of the first mathematics score 
on the first learning strategy score in the NRM; the red line represents the best fit cubic regression of the first math-
ematics score on the first learning strategy score in the NRM. The reason for using only the first plausible values 
instead of five plausible values for the scatterplot is that the five plausible values made the plot too complicated 
to read but did not change the trend of the relationship between learning strategy scores and mathematics scores

 



Page 20 of 27Kim et al. Large-scale Assessments in Education           (2024) 12:11 

predictors of both LS1 and LS12, which was Ŷ = 16.224LS1 + (−3.272)LS12 + 557.374
, where the coefficient of LS12 was −3.272 with the 95% confidence interval not includ-
ing zero (CI = [-5.774, -0.771]), and the hypothesis testing for the coefficient of LS12 
showed a significant negative value with t(3307) = -2.565 and p < .001. Likewise, as 
shown in Table  8, the negative quadratic relationship between the variables took the 
shape of an inverted U-curve rather than a straight line. The implications of the inverted 
U-curve are presented in the discussion section. Please note that the difference in BIC 
between linear and quadratic models and the effect size of the quadratic term were 
small. We might not have strong evidence to reject the linear relationship between the 
learning strategy score and mathematics performance. The higher a student’s learning 
strategy score is, the better mathematics performance she or he has, which is still in our 
conclusion.

Discussion
This study aimed to explore the link between South Korean students’ learning strategy 
use and their achievement in mathematics exams using the NRM. We found that the 
Korean students who primarily used the metacognitive strategy with memorization, 
depending on the context, achieved high scores on mathematics exams with a limited 
effect. Our investigation extended previous research in two ways. First, it created scores 
for learning strategy use with the NRM. Second, it addressed the existence of a curvilin-
ear relationship between learning strategy scores and mathematics achievement, as well 
as the linear relationship between the variables, focusing on one of the top-performing 
East Asian education systems (i.e., South Korea). A more detailed discussion of the find-
ings is presented below.

The curvilinear relationship between learning strategy score and mathematics 

achievement

The strategy score had a positive linear relationship with mathematics achievement. 
Even so, Table 6 shows that a linear relationship may not accurately reflect the nature 
of the association, and Fig. 2 also indicates a curvilinear pattern. The negative curvilin-
ear coefficient indicates the presence of a curvilinear association between the learning 
strategy score and mathematics achievement. The increasing use of metacognitive and 
memorization strategies was correlated with higher achievement in mathematics until 
it reached an optimum value; then, this association decreased slightly as the use of both 
strategies increased. This nonlinear pattern indicates that excessive use of metacogni-
tion and memorization may have diminishing returns for increasing student achieve-
ment and that more use of metacognition and memorization does not necessarily lead to 
better performance. In other words, the learning strategy combination of metacognition 
and memorization might not be the best strategy combination for every high-perform-
ing Korean student. Our finding is also in line with those of a previous study (Wu et 
al., 2020). Wu et al. (2020) suggested that 14.2% of students who primarily used meta-
cognition with elaboration performed slightly better on mathematics exams than 65% of 
students who primarily used metacognition with memorization. Nevertheless, the effect 
size of the curvilinear model is small; Cohen (1992) suggested that 0.02 reflects a small 
effect size.
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In addition, two possible responses to Item 4, memorization and metacognition, would 
lead to a high learning strategy score. This could be a probable reason for the negative 
nonlinear relationship between the learning strategy score and mathematics achieve-
ment. In other words, both the students who used metacognition for all items and those 
who used metacognition for Items 1, 2, and 3 but memorization for Item 4 received a 
high learning strategy score. The former students could get lower mathematics scores 
than the latter because the memorization strategy of Item 4 is more effective than the 
metacognitive strategy of Item 4 according to the item contents (see Table 1). A more 
detailed explanation of the high-frequency use of the memorization strategy in Item 4 is 
suggested in another subsection.

Use of metacognitive strategies with other learning strategies

We found that high-performing students in South Korea reported heavy use of metacog-
nitive strategies with memorization strategies. This implies that the students did not use 
metacognitive strategies or memorization strategies alone, which is in line with previous 
studies (Nathan, 2021; Quigley et al., 2018). Nathan (2021) suggested that metacogni-
tion could only be developed in within-subject or content-based lessons and with other 
learning strategies. Thus, metacognitive strategies rely upon the use of other cognitive 
strategies (e.g., memorization and elaboration) and content that learners can use to plan, 
monitor, and evaluate. For example, if students who are self-regulated learners (Zimmer-
man, 1986) were asked to solve a math question with regard to mathematical formu-
las, they would start with some knowledge of the task and strategies. They could utilize 
one of the formulas that they already knew (i.e., elaboration strategy). In the process of 
recalling possible formulas, it is necessary to understand the formula and practice its 
use repeatedly in advance (i.e., memorization). Students could then evaluate their overall 
success and check whether they were correct. If their answers were wrong, they could 
try other strategies (Quigley et al., 2018). Therefore, the finding that high-achieving stu-
dents in South Korea use mixed learning strategies makes sense.

Variation in the use of memorization learning strategies

More than half of the students reported using the memorization strategy in Item 4 (i.e., 
In order to remember the method for solving a mathematics problem, I go through 
examples again and again). Although memorization is generally regarded as a relatively 
inefficient strategy (e.g., rote learning), the memorization strategy of Item 4 (In order 
to remember the method for solving a mathematics problem, I go through examples 
again and again) is no closer to the rote learning concept than the other memorization 
strategies in Items 1 and 3 (Wu et al., 2020). In fact, “go-through examples” represent a 
common practice method in mathematics learning, especially in the introductory stages 
(Dinsmore & Alexander, 2016).

In South Korea, the most common way to learn mathematics in class is by doing dif-
ferent examples repeatedly, regardless of the students’ level. The variation of examples 
is associated with the students’ mathematics level or step of the mathematics learning 
process. In the beginning stages of learning, most students do examples with minor vari-
ations (e.g., numbers or ±, ×, ?). It is common for low-achieving students to do less var-
ied examples and even the same examples from the textbook repeatedly, which can lead 
to rote learning. When relatively high-achieving students do examples with increasing 
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variation, this can be considered a “route to understanding” (Marton & Booth, 1997; 
Hess & Azuma, 1991). High-performing students even create and solve examples of 
their own.

In South Korea, students are usually encouraged to make their own review notes for 
wrong answers, called Odabnote (i.e., incorrect answer notes or incorrect notes), par-
ticularly in mathematics exams (Moon, 2019). After exams, they take notes to review 
the wrong answers. They report what they did wrong and why it was wrong and even 
develop a new question based on the concepts they got wrong. Then, they review their 
notes by going through not only the same questions but also their own examples before 
exams. Thus, frequent use of the memorization strategy, such as Item 4, does not neces-
sarily mean rote learning. Nevertheless, to examine whether the use of memorization 
strategies causes rote learning, further research with different methods, such as cogni-
tive lab or think-aloud, is needed.

Use of learning strategies in the South Korean education system

The majority of PISA test-taking students in South Korea (79.8%) are from general sec-
ondary schools, which are academically oriented and sometimes called college prepara-
tory schools, where most Korean secondary school students are enrolled (Kim & Byun, 
2014). Most students consider university entrance exams to be very important (Lee, 
2010; Ripley, 2013), prompting them to study mathematics, which is one of the core 
subjects that determines their future college options (Hwang, 2001; Yoon et al., 2021). 
According to the OECD, South Korean high school students study mathematics for 
10.4 h per week on average, which is 3 h more than the OECD country average (7.6 h; 
Lee, 2014). In addition, 50.2% of South Korean students engage in private tutoring (at a 
hagwon or through informal private instruction by a university student) to study math-
ematics, which is more than in other subjects (e.g., English, Korean, and science).

Considering how much time they spent studying mathematics and their reasons for 
doing so, we can understand why the fewest South Korean students reported using elab-
oration strategies (19.3%) in Item 2, while more than half (51.1%) reported using meta-
cognitive strategies. The elaboration strategy in Item 2 (When I study mathematics, I 
think of new ways to get the answer) might not be an efficient way to learn mathemat-
ics, especially for 15-year-olds who learn mathematics in a highly stressful and com-
petitive environment. If they already know how to solve a problem, they do not need 
to find another way. They are more likely to spend time determining what they do not 
understand (i.e., metacognitive learning strategy) to obtain more correct answers on 
their mathematics exams. This may explain why more than half of the students chose the 
metacognitive strategy in Item 2 (When I study mathematics, I try to figure out which 
concepts I still have not understood properly). Likewise, the fewest students reported 
using the elaboration strategy in Items 3 and 4. These items asked if students thought 
about and related their knowledge to other subjects (Item 3) or their lives (Item 4), both 
of which are unnecessary for finding an answer in a mathematics exam. This finding 
is related to why the raw score of elaboration strategies was negatively correlated with 
mathematics achievement. Regardless of whether the use of elaboration strategies deep-
ens leaners’ understanding of knowledge and leads to high-quality learning outcomes 
(Marton & Säljö, 1976; Prosser & Millar, 1989), it does not necessarily mean that they 
will obtain high scores on mathematics exams.
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In contrast, 62.5% of South Korean students reported using metacognitive strategies in 
Item 3 (When I study mathematics, I start by working out exactly what I need to learn). 
As the importance of metacognition is emphasized in education, education stakehold-
ers in South Korea, including private cram schools, are very interested in metacogni-
tive learning strategies (Ji, 2021). Not only has the school curriculum focused on how to 
teach these strategies, but more cram schools are also advertising themselves using the 
slogan “The secret to getting 100% on a mathematics exam: metacognitive learning strat-
egies.” Although metacognition should not be misunderstood as a process of verifying 
true and false, right and wrong, or good and bad (Park, 2021), South Korean education 
stakeholders could misuse metacognitive strategies to verify which mathematical knowl-
edge is helpful for performing well on exams. Thus, it is probable that South Korean 
PISA test-taking students think of Item 3 as “When I study mathematics, I start by work-
ing out exactly what I need to learn for the mathematics exam.” To accept the widely held 
assumption that metacognition is beneficial, it could, at least in part, be understood as a 
result of its close relationship to self-regulation (Efklides, 2011; Norman, 2020; Zimmer-
man, 2008). Therefore, future studies should investigate how South Korean students use 
metacognitive strategies to illustrate that they can produce positive effects.

Limitations
This study has some notable limitations. First, as we focused on the Korean context, the 
degree to which the findings generalize to other populations is uncertain. Thus, to gener-
alize the relationship between learning strategy and mathematics achievement in other 
countries, other factors, such as cultural context, should be considered. Second, this 
study is based on self-reported learning strategy data, which may not mirror students’ 
actual learning strategy use. A follow-up study in which learning strategy is assessed 
using different methodologies (e.g., observational data, think-aloud, and retrospective 
think-aloud) would add to the weight of these findings (Wu et al., 2020). Third, the con-
clusion in this study is based on data with only four items, which PISA 2012 included, so 
the generalization to “metacognitive” and “memorization” might be limited. Develop-
ing a longer learning strategy survey might be desired in future investigations. Fourth, 
the present study focuses on learning strategies and mathematics achievement without 
accounting for other psychological variables (e.g., motivation and behavior), which the 
SRL theoretical framework suggests (Wu et al., 2020), or other test-taking strategies. 
To fully understand South Korean students’ high achievement in mathematics, further 
studies need to consider psychological characteristics and other practical strategies that 
students might use for exams.

Conclusion
This research explored the relationship between learning strategy use and mathematics 
achievement in the South Korean education system using the NRM. The findings show 
that frequent use of metacognitive strategy with memorization is positively related to 
South Korean students’ mathematics achievement until it reaches an optimum value. We 
extended earlier research by creating learning strategy scores via the NRM. Our results 
also provide insight into the multifaceted nature of the association between learning 
strategy use and mathematics achievement by examining the existence of a curvilinear 
relationship. This study also discussed the relationship between the variables based on 
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the South Korean education system. The necessity of further studies on how students 
use each learning strategy based on a specific education system was highlighted. Overall, 
these results are useful for understanding how South Korean students use learning strat-
egies for mathematics achievement.
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