
UNIVERSITY OF OSLO
Department of Physics

An Attitude
Detumbling
System for the
CubeSTAR Nano
Satellite

Master thesis

Kjetil Rensel

August 15, 2011

Abstract

This thesis describes the first hardware implementation of the Attitude Determination
and Control System (ADCS) of the CubeSTAR satellite. CubeSTAR is a student satel-
lite under development at the University of Oslo. A module card has been designed,
consisting a magnetometer, gyro sensors, magnetorquer control, and a microcontroller.
The complete hardware developed, is the necessary hardware to perform detumbling of
the satellite, and will be a part of the complete ADCS. Two different MEMS gyro sensors
models have been compared to each other, and a calibration process has been developed.
The magnetometer has also been calibrated, utilizing an ellipsoid fitting method. A pro-
duction method for magnetorquers has been developed, by making a custom made coil
winding machine.

i

ii

Acknowledgments

This master thesis is the fulfilling work of the Master of Science in Electronics and
Computer Technology at the Department of Physics, Faculty of Mathematics and Natural
Sciences, University of Oslo, Norway. The thesis is written in the period during August
2010 to August 2011, under the supervision of Associate professor Torfinn Lindem.

The digital PDF version of this document includes a lot of nice features, which is not
possible to achieve on paper. All cross references and content lists in the document can
be clicked on to go to the referred object. The Bibliography contains back-references, and
all references freely available on the Internet are accessible by clicking on the reference
title. Since there are many active objects, the links is not marked, but is visible by
placing the cursor on them. Many of the figures, included C Block Diagrams, Schematics
PCB and Part List are vector graphics which can be zoomed in to get all details without
loss of quality. All figures without a reference are created by the author, and can freely
be utilized.

I would like to thank Torfinn Lindem for his support during the work, and for his work
on the CubeSTAR project. I also want to thank all the guys at the mechanical workshop
and the electronic workshop for supporting with all kind of questions. Especially I want
to thank Daniel Bakke Randby, Thor Arne Agnalt and Steinar Skaug Nilsen at the
mechanical workshop for the great cooperation in designing the mechanical components
for my thesis. Together we made a good team. Thanks to Sensonor which was kind and
supported me with three high precision gyro sensors. As a nice start of the master thesis
period, I got the opportunity of participate on the annual Small Satellite Conference
in Logan, USA. I want to thank Tore Andre Bekkeng and Jørn Inge Aasen for a great
trip, and NAROM for supporting it economically. At last I want to thank my beautiful
girlfriend Helen Jarnes and my fantastic family for all support.

Oslo, August 2011

Kjetil Rensel

iii

iv

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introductions 1
1.1 CubeSat Standard . 1
1.2 CubeSTAR Project . 2

1.2.1 Mission . 3
1.2.2 Scientific Payload . 3

1.3 Attitude Determination and Control . 3
1.4 Previous Work . 4

1.4.1 Relevant Work on the CubeSTAR Project 4
1.5 Goals of the Thesis . 4
1.6 Outline of the Thesis . 5

2 Attitude Determination and Control System 7
2.1 Attitude Representation . 7

2.1.1 Reference Frames . 7
2.1.2 Rotation Matrix (Directing cosine matrix) 8

2.2 Sensors . 9
2.2.1 Magnetometer . 9
2.2.2 Gyroscopic Sensor . 10
2.2.3 Sun Sensors . 13
2.2.4 Star Sensor . 13
2.2.5 Earth Sensor . 14
2.2.6 GPS . 14

2.3 Actuators and Passive Stabilization Methods 14
2.3.1 Gravity Gradient Stabilization . 14
2.3.2 Permanent Magnet and Hysteresis Rod 15
2.3.3 Magnetorquers . 15
2.3.4 Momentum Wheels . 15
2.3.5 Thrusters . 15

2.4 CubeSTAR ADCS . 17
2.4.1 Sensors and Actuators Chosen . 17
2.4.2 Attitude Determination and Control Mode 17
2.4.3 Detumbling Mode . 18

v

vi CONTENTS

3 Magnetorquers 19
3.1 Magnetic Force in a Current Carrying loop 19
3.2 Design . 21

3.2.1 Specifications . 21
3.2.2 Dimensions . 22
3.2.3 Design Considerations . 22

3.3 Magnetorquer Production . 23
3.3.1 Coil Winder . 23

3.4 Design Results and Future Work . 28

4 Electronic Design 31
4.1 Electronics on the CubeSTAR . 31
4.2 Hardware System Architecture . 33

4.2.1 Microcontroller Circuitry . 33
4.2.2 Inter Communication . 34
4.2.3 Sensonor SAR150 Gyro Circuitry 36
4.2.4 3-Axis Single Chip Gyro Sensor . 38
4.2.5 Magnetometer Circuitry . 39
4.2.6 Magnetorquer Driver H-bridge . 39
4.2.7 Magnetorquer Current Sensing . 41
4.2.8 PCB Design . 44

4.3 Mini Backplane Card . 45
4.4 Microcontroller Firmware . 46

4.4.1 Firmware Development for the AVR Platform 46
4.4.2 Program Flow and State Machine 47
4.4.3 Sensor Drivers . 48
4.4.4 UART / RS-232 Control . 49
4.4.5 Response Messages . 50

4.5 LabView Interface VI . 52

5 Sensor Calibrating 55
5.1 Gyro . 55

5.1.1 Error Characterization . 55
5.1.2 Temperature Bias Calibration . 56
5.1.3 Reference Data Acquisition . 57
5.1.4 Kalman Filtering . 57
5.1.5 Matlab implementation . 61
5.1.6 Results . 62

5.2 Magnetometer . 68
5.2.1 Error Characterization . 68
5.2.2 Calibration test . 70
5.2.3 Results . 70

6 Discussion 75
6.1 Future Work . 75

Bibliography 77

CONTENTS vii

A Coil Winder User Manual 81
A.1 Overview of Functionality . 81
A.2 Understanding the Controller . 81
A.3 Adhesive and Safety Considerations . 83
A.4 Step by Step Guide . 83
A.5 Adjusting Coil Thickness above 3mm . 86

B Schematics PCB and Part List 87
B.1 ADCS Card . 89
B.2 Mini Backplane Card . 99
B.3 Coil Winder Card . 103

C LabView Source Code 107

D Microcontroller Source Code 113
D.1 ADCS Card . 113
D.2 Coil Winder Card . 138

E Matlab Source Code 155
E.1 Gyro Calibration . 155
E.2 Magnetometer Calibration . 160

F CD 165

viii CONTENTS

List of Figures

1.1 CubeSTAR CAD drawing . 2

2.1 Earth Centered Inertial Frame (ECI) . 8
2.2 Magnetic domains inside a Permalloy Magneto-Resistive Element 9
2.3 Magnetoresistive sensor properties . 10
2.4 MEMS structure of a ButterflyGyro . 11
2.5 Die photo of an InvenSense MEMS Gyro 12
2.6 Principle drawing of InvenSense MEMS Gyro. 12
2.7 Three axis, two axis and single axis sun sensor 13
2.8 ADCS modes differences. Flow chart. 17

3.1 Magnetic forces on a current carrying loop 20
3.2 The Coil Winder . 24
3.3 Coil Reel Components . 25
3.4 Coil winder card, with the AVR Butterfly stacked on top. 26
3.5 The Coil Winder wire guiding mechanics 27
3.6 Details of suggested future work for the magnetorquer frame 29
3.7 Magnetorquer, the first one produced . 29

4.1 The ADS card. 32
4.2 Three SAR150 mounted in a three axis setup on the ADS card 36
4.3 SAR150 Schematics . 37
4.4 InvenSense ITG-3200 3-axis gyro sensor mounted on a breakout board. . . 38
4.5 ITG-3200 internal block schematic . 38
4.6 Schematic diagram of HMC5883L and its necessary circuitry. 39
4.7 Schematic diagram of ROHM Semiconductor BD6210 40
4.8 The four basic modes of the H-bridge. 41
4.9 Shunt monitors: INA138 compared to INA21x-series 43
4.10 Current sensing differential amplifier and ADC 44
4.11 The Mini Backplane Card . 46
4.12 State diagram of the microcontrollers Finite State Machine. 48
4.13 Screenshot of the Front Panel of the LabView VI 53

5.1 Illustrating of the definition of the small misalignmentδ. 56
5.3 Adapter cable for the ADCS card and Rate Table 57
5.2 Two plots illustrating the temperature dependent bias, ITG-3200 and

SAR150 . 58
5.4 Reference rate at Spin Table Test . 59

ix

x LIST OF FIGURES

5.5 Spin Table with the satellite structure mounted on top 60
5.6 Matlab GUI developed for Gyro Calibration 61
5.7 Rate table test error after pre processing 64
5.8 Kalman filter state parameters . 65
5.9 Rate table test error after calibration . 66
5.10 1800

◦
/s Rate table test, ITG-3200 . 67

5.11 Ellipsoid Fitting of Magnetometer Data 70
5.12 Absolute values measured in the HMC5883 magnetometer test. 71
5.13 Uncalibrated HMC5883L turned in arbitrarily directions inside a building,

have generated this data set. We can see that it is weakly elliptical. . . . 72
5.14 Calibrated HMC5883L . 73

A.1 Coil winder navigation flowchart. 82
A.2 Coil winder servo with plastic dish explained. 85

B.1 Schematic ADCS Card, Top Level . 89
B.2 Schematic ADCS Card, Microcontroller 90
B.3 Schematic ADCS Card, Magnetometer . 91
B.4 Schematic ADCS Card, SAR gyros . 92
B.5 Schematic ADCS Card, L3G4200D 3-axis gyro 93
B.6 Schematic ADCS Card, 5V charge pump regulator 94
B.7 Schematic ADCS Card, Coil driver . 95
B.8 PCB ADCS card . 96
B.9 Part List ADCS card . 97
B.10 Schematic Mini Backplane Card . 99
B.11 PCB Mini Backplane Card . 100
B.12 Part List Mini Backplane Card . 101
B.13 Schematic Coil Winder Card . 103
B.14 PCB Coil Winder Card . 104
B.15 Part List Coil Winder Card . 105

C.1 Front Panel of the LabView VI ADCSmate.vi 108
C.2 Block Diagram, Complete with rate table controller 109
C.3 Block Diagram, main left of the LabView VI ADCSmate.vi 110
C.4 Block Diagram, main right of the LabView VI ADCSmate.vi 111

List of Tables

2.1 Listing of a selection of previous CubeSat projects 16

3.1 Copper properties . 21
3.2 Placement of magnetorquers, arguments pros and cons. 22
3.3 Magnetorquer Calculator Spreadsheet with produced magnetorquer data . 30

4.1 XMEGA port description . 34
4.2 Input and output in the different operation modes 41
4.3 Command set for ADCS microcontroller. 50
4.4 Description of response messages from the ADCS card. 51

5.1 Gyro sensor parameters calculated from test data 63

xi

xii LIST OF TABLES

Nomenclature

ADC Analog to Digital Converter

ADCS Attitude Determination and Control System

AMR Anisotropic Magnetoresistance

ASCII American Standard Code for Information Interchange

ASIC Application-specific integrated circuit

CCD Charge-coupled device

CMOS Complementary metal–oxide–semiconductor

CoCom Coordinating Committee for Multilateral Export Controls

ECEF Earth Centered, Earth Fixed

ECI Earth Centered Inertial

emf Electromotive force

EPS Electrical Power System

ESTEC European Space Research and Technology Centre

FOV Field of View

FSM Finite State Machine

GCC GNU Compiler Collection

GPS Global Positioning System

GUI Graphical User Interface

I2C Inter-Integrated Circuit

IC Integrated Circuit

IGRF International Geomagnetic Reference Field

LCC Leadless Ceramic Carrier

LCD Liquid Crystal Display

xiii

xiv LIST OF TABLES

LEO Low Earth Orbit

m-NLP Multi-Needle Langmuir Probe

MEMS Microelectromechanical Systems

NAROM Norwegian Centre for Space-related Education

NTNU Norwegian University of Science and Technology

OBDH On-Board Data Handling

P-POD Poly-PicoSatellite Orbital Deployer

PCB Printed circuit board

PDI Program and Debug Interface

PWM PulseWith Modulation

SCL Serial Clock

SDA Serial Data Line

SPI Serial Peripheral Interface Bus

SVD Singular value decomposition

TWI Two-Wire Interface

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VI Virtual Instrument

Chapter 1

Introductions

The CubeSTAR satellite is a 2kg nano sized satellite, complying with the CubeSat stan-
dard. CubeSTAR is being fully developed at the Department of Physics, University of
Oslo (UiO). A Multi-Needle Langimur Probe for detecting electron density in ionospheric
plasma has been developed, and is the payload of the satellite. The main goals of the
CubeSTAR project is additional to testing and receiving data from the Langimur Probe,
to provide interesting master thesis for the students. Several thesis have already been
completed, and several are yet to come.

When the satellite is being deployed from the launch rocket, it will possess an unde-
sired angular velocity, referred to as spin. The spin has to be reduced, and control of
the satellite’s attitude has to be achieved. This thesis will be focusing on implementing
sensors and actuators, and implement a spin reducing algorithm. The system will be a
part of the total Attitude Control and Determination System (ADCS) which is going to
be further developed in the ongoing CubeSTAR project.

1.1 CubeSat Standard

The CubeSat project was initiated in collaboration between California Polytechnic State
University (Cal Poly) and Stanford University’s Space System Development Laboratory
in 1999. It was initiated to provide a standard platform for nano satellites, including
mechanical and electrical specifications. A Poly-PicoSatellite Orbital Deployer (P-POD)
for CubeSats was also developed. The P-POD is a device carrying the satellites onboard
the launch rocket, and taking care of the deployment of the satellite. It is designed
to make it easy and secure for launch providers to include several CubeSat satellites
as addition to the main payload on a rocket. The standardization makes launch of a
CubeSat satellite relatively cheap, compared to a non-standard launch. Today more than
100 universities, high schools and private firms are collaborating and sharing information
in the CubeSat community. The complete set of CubeSat specifications are found in [1].
A one unit (1U) CubeSTAR satellite is a 10cm cube, with a maximum weight of 1.33kg.
Bigger CubeSat satellites can be achieved by adding up units in the height direction. The
dimensions of a 2U CubeSat is 10cm ∗ 10cm ∗ 20cm. The standard also states that the
center of gravity have to be located within a sphere of 2cm from the geometric center.
A common understanding of the naming scheme is that a satellite weighing 1kg-10kg is
classified as a nano satellite, and a 0.1kg − 1kg pico satellite. A 1U CubeSat may then
fit either of these classifications, while CubeSTAR is a nano satellite. As a result of the

1

2 CHAPTER 1. INTRODUCTIONS

Figure 1.1: CAD drawing of the CubeSTAR satellite with Langimur Probes (upper) and
antennas deployed. Each of the four long-sides contains solar cell panels. In this illustra-
tion, two magnetorquers are surrounding the solar cell panels. Credit: The Mechanical
Workshop, Dpt. of Phy.

popularity of CubeSat, several companies have specialized on developing subsystems and
satellites for the CubeSat standard. Most components for building a CubeSat can be
purchased on web shops on the Internet.

1.2 CubeSTAR Project
The CubeSTAR project was initiated in collaboration between UiO and the Norwegian
Center for Space-related Education (NAROM). Since one of the main goals of the project
are the development of the satellite in itself, it is desired to develop as much as possible
of the satellite locally at the University.

CubeSTAR is a 2U CubeSat with fixed solar panels on each of the four long sides,
communication antennas in one end, and Langimur Probes in the other end. Inside the
satellite, a backplane card is connecting together several module cards, solar panel cards
and the battery pack. Figure 1.1 shows a preliminary CAD drawing of the satellite, the
way we think it is going to look like. The CubeSTAR project is considered as being built
up of the following subsystems:

• Payload [2]

• Electrical Power System (EPS)[3]

• Attitude Determination and Control System (ADCS)[4]

• On-Board Data Handling (OBDH)

• Communication [5], [6]

1.3. ATTITUDE DETERMINATION AND CONTROL 3

In addition to the subsystems of the satellite, a ground station [7] for communication
is developed. Five thesis referred to in the text above is, as of August 2011, completed
on the CubeSTAR project, while the payload thesis was originally a part of the ISI-
2 rocket project. In addition to the student thesis, the structure has been developed
by the mechanical workshop and a backplane by the electronic workshop, both at the
Department of Physics.

1.2.1 Mission
The satellite will be deployed in an orbit altitude at 300− 800km, decided by the main
payload of the launch rocket. Orbits in the altitude range up to 2000km are classified as
a Low Earth Orbit (LEO). A satellites in LEO typically makes one revolution around the
Earth in about 90min. After the satellite has been deployed, it will be observable from
the Earth with radar. Based on radar observations, we can calculate the position of the
satellite at any given time. The parameters describing the orbit can also be transmitted
to the satellite. Since a satellite in LEO is close to the earth, it will encounter an
atmospheric drag. The drag is due to gases colliding with the satellite, slowly decreasing
its velocity, which again leads to a change in the altitude of the satellite. Eventually the
satellite will enter the atmosphere and burn up. Because of this, the altitude of the initial
deployment will greatly impact the satellites length of life. The time from deployment
until it burns up is expected to be several years. CubeSTAR is going to obtain a polar
orbit, the satellite will be crossing close to each pole and has an inclination close to 90◦

to the equator. The polar orbit makes it possible to do measurements in the north areas
of the earth on every revolution, which is the area of interest for our payload.

1.2.2 Scientific Payload
The payload of the CubeSTAR satellite is a Multi-Needle Langmuir Probe (m-NLP),
design to measure electron density in the ionospheric plasma [2]. The m-NLP developed,
measures the density at a resolution down to meter-scale, which is an improvement of.
The information about the ionospheric plasma density over the polar cusps is of interests
for space weather monitoring and to improve communication and navigation. The m-
NLP is developed at the University of Oslo, and has been tested at ESTECs Plasma Lab
and flown on the ICI-2 sounding rocket. It is of great interest for the m-NLP project to
verify the system on a satellite. Experiences from flying on CubeSTAR will increase the
interest for using the system to other projects.

1.3 Attitude Determination and Control
When the satellite is deployed from the rocket, an unwanted angular velocity is likely
to be present. The forces acting on the uncontrolled satellite are not able to stop this
rotation. For our main payload to success, the Langimur Probes have to be in front
relative to the direction of velocity. If the probes are not in front, the measurement will
be in electron turbulence from the satellite body moving through the ionosphere. It is
thereby clear that we need to control the attitude of the satellite. The ADCS will be
realized with sensors, actuators and computational power. The ADCS are planned to
function in of two different modes, detumbling mode and Attitude Determination and
Control mode (ADC-mode). The detumbling mode is a simple algorithm which only
task is to reduce angular velocity. The detumbler mode will only be active when angular

4 CHAPTER 1. INTRODUCTIONS

velocity is exceeding a given limit. Attitude determination and control is a more advanced
control method, not active when in detumbler mode. A 10◦ attitude accuracy is set as a
desired accuracy goal for the total control system.

1.4 Previous Work

CubeSat satellites have been launched around the world for nearly 10 years, which some
of them have been developed in Norway. NCUBE1 (also named Rudolf) and NCUBE2
was designed at the Norwegian University of Science and Technology, NTNU, in collabo-
ration with other educational institutions including UiO[8]. Unfortunately neither of the
satellites became operational, because of problems during launch (NCUBE1) and proba-
bly deploying problems (NCUBE2). Even if some CubeSats fails, many have been several
years in successful operation, like the Japanese CubeSat XI-V, which currently have been
active in six years, and in a period were sending pictures of the Earth automatically to
its own Twitter account. Since many Universities are basing their CubeSat development
on student thesis, a lot of master theses are available on the subject. Aalborg University
in Denmark did early develop a CubeSat, and their first launch, AAU-Cubesat 1 [9, 10]
was performed in 2003.

In Wertz (1978) [11], many of the basic principles of Attitude Determination and Con-
trol in Space are thoroughly explained. The book is probably the most cited source when
it comes to this particular subject. A more practical overview of physical subsystems of
a spacecraft is presented in [12], while [13] describes control systems and spacecraft dy-
namics. An excellent beginner’s guide in Spacecraft Dynamics and Control[14] is written
as a compendium for a course at Virginia Tech, and have to be mentioned, despite the
fact that the guide is not officially published.

1.4.1 Relevant Work on the CubeSTAR Project

At this time, one Master’s thesis is being completed on the ADCS subsystem of the
CubeSTAR. In the thesis [4], simulations of a purposed control system is performed. Sim-
ulation includes comparison between a Proportional-Derivative and a Linear-Quadratic
Regulator, verification of the b-dot detumbler controller, and simulation of the uncon-
trolled satellite. A proposal of design parameters for magnetorquers is also presented. In
this work, no work on the attitude determination is performed, and a given, error free
attitude is assumed. The representation of the b-dot controller and the magnetorquer
calculations is a basis for the further work on these subjects in this thesis.

Additional to the work being done on the ADCS, the electrical backplane, the module
card standard and the mechanical structure, is relevant for this thesis. The electronic
being produced in this thesis must comply with these components. The detumbling
b-Dot control law

1.5 Goals of the Thesis

This thesis is a part of a ongoing project, and it is important for the project that the
thesis is bringing the project forward. It is necessary for future work on the ADCS
system to have a hardware basis with sensors and actuators. This thesis goal is to make
all the necessary hardware available for detumbling, but also keep in mind the purpose the

1.6. OUTLINE OF THE THESIS 5

hardware is going to serve in the Attitude Determination and Control System. Generally,
the following tasks should be performed:

• Design a module card for the satellite, wich is going to be the first version of the
ADCS card.

• Implement the necessary hardware for a detumbling process.

• Provide good measurement data to the rest of the subsystems.

Summarized, the most important is to maintain a good progression of the CubeSTAR
project, by developing the ADCS system.

1.6 Outline of the Thesis
Chapter 2 Attitude Determination and Control System A short introduction
to attitude representation. Common sensors and actuators are presented, included those
utilized in this thesis.

Chapter 3 Magnetorquers A fully overview of the theory, design and production of
the Magnetorquer. The design of a coil winder is also a part of this chapter.

Chapter 4 Electronic Design Description of the electronics designed. This includes
hardware, firmware and its accompanying PC-software.

Chapter 5 Sensor Calibrating Calibration methods is presented for the gyro sensors
and the magnetometer.

Chapter 6 Discussion A conclusion of the work done, along with a proposal of future
work.

Appendix A Coil Winder User Manual A step-by-step user manual of how to use
the coil winder, and how to modify it to do other dimensions of a coil.

Appendix B Schematics PCB and Part List Printout of all schematics and PCBs
for the ADCS card, the Mini Backplane card and the coil winder card.

Appendix C LabView Source Code Printouts of the Front Panel and the Block
Diagram of the LabView VI designed.

Appendix D Microcontroller Source Code Printouts of all source code developed
for the microcontrollers.

Appendix E Matlab Source Code Printouts of matlab source code utilized in cal-
ibration process

Appendix F CD A CD is attaced in the paper version of the thesis

6 CHAPTER 1. INTRODUCTIONS

Chapter 2

Attitude Determination and
Control System

The orientation of a spacecraft in space is called its attitude. Most spacecrafts have some
instruments or antennas which have to be pointed in a specific direction. To achieve this,
control of the attitude is desired. Control of the spacecraft can be implemented by
passive methods or an active Attitude Determination and Control System (ADCS). In
this chapter the attitude is defined, and a method of representing it is described. Common
methods, sensors and actuators earlier utilized on CubeSat projects are presented.

2.1 Attitude Representation

2.1.1 Reference Frames

A reference frame is a three dimensional Cartesian coordinate system, normally fixed to
an object, like a spacecraft or a planet. The axes of a reference frame fixed to a rigid
object, are normally defined to the logical directions of the object itself. A representation
of the attitude between two reference frames (or objects) is achieved by the rotation ma-
trix between them 2.1.2 . A reference frame is a three dimensional Cartesian coordinate
system denoted by Fb. Its triad of unit vectors is denoted b̂ =

{
b̂1 b̂2 b̂3

}T
, where

b is a suitable letter of the reference frame represented. Theˆdenotes unit vectors. In
order to describe and analyze attitude dynamics, several reference frames have to be
defined.

Satellite Body Frame

The satellite body frame, Fb, has it origin in the mass center of the satellite. The
respective body frame axis is aligned in the same directions as the satellites mechanical
axis. Where the xb axis is pointing in the forward direction, the zb axis is pointing in
what is defined as down direction on the satellite, and yb axis completes the Cartesian
right-hand rule. The rotation of a spacecraft about the axis xb, yb and zbare respectively
named roll, pitch and yaw.

7

8 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

Satellite Orbit Frame

The satellite orbit frame, Fo, shares its origin with the body frame. The xo axis points
in the velocity direction of the orbit, while the zo axis points nadir (towards the Earths
center). The yo axis completes the Cartesian right-hand rule. The satellite orbit frame
is considered as the attitude reference for the body frame. The attitude of the satellite
is defined as the orientation of the satellite body frame in reference to the orbit frame.

Earth Centered Inertial frame

y

x

z

23° inclination

Earth’s Equator plane

Solar orbit

Figure 2.1: In the ECI frame, the earth is
fixed at origin, and the sun is orbiting the
Earth. The ECI frame axis are illustrated.

The Earth Centered Inertial (ECI) frame
, denoted Fi, has its origin in center of the
Earth. The zi axis points toward the ge-
ographic north pole. The xi axis points
toward the vernal point in the ecliptic co-
ordinate system., which is the point where
the sun is at on March equinox. The yi
axis completes the right hand rule. For
Newton’s laws to be valid, a non acceler-
ating (inertial) frame is required. The ECI
frame possesses this property.

Earth Centered, Earth Fixed frame

The Earth Centered, Earth Fixed (ECEF)
frame, denoted Fe, shares ze-axis with

ECI, pointing toward the geographic North Pole. The xe-axis points toward the
0◦latitude and 0◦ longitude point. As the name states, ECEF is fixed to the Earth,
and its surface.

2.1.2 Rotation Matrix (Directing cosine matrix)
A rotation matrix R, is a 3× 3 transformation matrix, able to rotate a vector or express
the rotation between two vectors. If the two vectors are reference unit vectors, R is the
rotation between the reference frames. A vector represented in a reference frame Fa,
denoted −→v a,is represented in another reference frame Fb by

−→v b = Rba−→v a

The superscript of Rbadenotes the rotation from Fa to Fb. Each superscript letter is
close to the corresponding vector in an equation. Recall the satellite attitude definition
as Fb represented in Fi , hence the attitude is the rotation matrix Rib. The rotation
matrix is a rotation matrix if, and only if

R = ∈SO(3)

where SO(3)is defined as

SO(3) =
R | R∈R3×3,

RTR = I,
detR = 1

Because R is in SO(3), we have that

Rba = RabT = Rab−1

2.2. SENSORS 9

2.2 Sensors

A variety of sensors have been used on spacecrafts through the years. Some common
sensors are presented here. Since most of the sensor output have to be compared to
corresponding mathematical model, some considerations of the model is also included.

2.2.1 Magnetometer

A magnetometer is a sensor measuring the magnetic field vector. Magnetic sensors in
different variations are the most common navigation sensors utilized. The Earths mag-
netic field is well defined and relatively strong in the altitude of Low Earth Orbit. This
makes it well suited for attitude purposes, and is present on all CubeSat projects known
to the author. A three-axis measurement is required, and was traditionally implemented
by combining several one- or two-axis analog sensors, with additional necessary circuitry.
The development of consumer navigation units, including smartphones, have led to small,
power effective and cheap three-axis magnetometers. These magnetometers include most
of the circuitry on the chip, including the ADC.

The Earth’s magnetic field, which the magnetic measurement must be compared to for
an attitude to be determined, is close to a magnetic dipole. A mathematical dipole model
is normally not accurate enough, and a more accurate model named the International
Geomagnetic Reference Field (IGRF) is common to implement. IGRF is a standardized
mathematical model of the Earth’s magnetic field, with a precision of one tenth of an
nT . The model is a 13th order formula, with a disadvantage in its high requirements in
computational power, compared to the dipole model.

2.2.1.1 Honeywell HMC5883L

Permalloy (NiFe) Magneto-Resistive Element

Random Magnetic

Domain Orientations

Easy Axis

After a

Set Pulse

Set Magnetization

Sensitive

Axis

After a

Reset Pulse

Reset Magnetization
Easy Axis

Sensitive

Axis

Permalloy (NiFe) Magneto-Resistive Element

Random Magnetic

Domain Orientations

Permalloy (NiFe) Magneto-Resistive Element

Random Magnetic

Domain Orientations

Easy Axis

After a

Set Pulse

Set Magnetization

Sensitive

Axis

Easy Axis

After a

Set Pulse

Set Magnetization

Sensitive

Axis

After a

Reset Pulse

Reset Magnetization
Easy Axis

Sensitive

Axis
After a

Reset Pulse

Reset Magnetization
Easy Axis

Sensitive

Axis

Figure 2.2: Magnetic domains in-
side a Permalloy (NiFe) Magneto-
Resistive Element [18]

In this thesis, a Honeywell HMC5883L magnetome-
ter is being used. The magnetometer is based upon
an Anisotropic Magnetoresistance (AMR). AMR
occurs in ferrous materials, which changes its re-
sistance when a magnetic field is applied perpen-
dicular to the current flow. The resistive strips are
connected together as a Whetstone Bridge with the
strips as the four variable resistors. The resistors
are all placed in the same direction, but connected
so that the current is flowing in different directions.
In that way, the same applied magnetic field will
cause the resistance to increase in two of the resis-
tors, and decrease in the other two. When applying
a voltage, Vb, over the Whetstone bridge, an out-
put voltage linear to the applied magnetic field is
present. The changes in output voltage is given by

∆Vout =

(
∆R

R

)
Vb

∆V = SHVb

where

10 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

S = 3
mV

V/Oe

The magnetoresistive sensors in HMC5883L are fabricated with Permalloy (NiFe) thin
films. The sensor elements consist of small magnetic domains, each with a magnetic ori-
entation. Similar to a magnetic tape for storage, the orientations could be permanently
changed by a magnetic field of sufficient strength. A smaller magnetic field will only
temporarily change the magnetic domains. When the magnetic domains are aligned in
the same direction, the change in resistance is following the angle between the direction
of magnetization and the current flow. In operation, the current is constantly flowing
in the same direction, but the external magnetic field is changing in strength and direc-
tion affecting the resistance. The external measured field is normally only temporarily
changing the magnetic domains. It is important that the permanent magnetization is all
the same direction, perpendicular to the current flow. To achieve the correct permanent
magnetization, it is required to be able to set this before operation. Magnetization is
achieved by a set/reset circuit. A set/reset circuit is able to apply a strong magnetic field
of above 4mT . A reset is when an inverted magnetic field is applied. Reset orientates
the magnetization in the opposite direction of a set, which leads to an inverted output
response from the sensor. In HMC5883L the complete set/reset circuit is embedded in
the chip, and automatically performed.

Current
Flow

Permalloy Thin
Film

(NiFe)

Metal Contact

M

Applied Field

(a) The magnetoresistive element’s resistance varies
with the magnetic field applied to it.

R
-
∆R

R
+
∆R

R
+
∆R

R
-
∆R

Vb

-

+

Vout

Bias field

Applied field

∆Vout = () V
bR

∆R

hH

(b) Magnetometer Wheatstone bridge

Figure 2.3: Magnetoresistive sensor properties [17]

2.2.2 Gyroscopic Sensor
Gyroscope, commonly shortened gyro, is a device maintaining or measuring orientation.
Gyroscopes are based on the principles of conservation of angular momentum. A classical
mechanical gyro, is a rotating mass, mounted free to move in all directions. If the base of
the gyro is being tilted, the rotating axis will tend to maintain its orientation. Because
of this, gyroscopes are said to be a “keeper of direction”. Another property of a gyro,
is the ability to get an output torque proportional to an angular velocity. The rotating
mass must be mounted with only one axis free to rotate, perpendicular to the spinning
axis. This axis is considered as the output axis, where a torque proportional to the
angular input velocity could be observed. The input axis is perpendicular to both the
spinning axis and the output axis. This effect is called the precession of a gyro, and can

2.2. SENSORS 11

be explained by Newton’s law of motion for rotation: The time rate of change of angular
momentum about any given axis is equal to the torque applied about the given axis.[19]

The classical gyro are big mechanical constructions, and inappropriate for a CubeSat.
Fortunately the principle of a gyro is implemented in various mechanical constructions,
including microelectromechanical systems (MEMS). MEMS is the technology of electric-
ity driven mechanical constructions in scale of µm. A MEMS gyro has a vibrating mass
instead of a rotating one. The last couple of years, MEMS gyros have been cheaper and
smaller, and like magnetometers, the development have been driven by consumer elec-
tronics. A three-axis magnetometer with digital output is available in small IC packages.

Since a gyro only gives us the angular velocity, integration must be done in order to
obtain the attitude. A drawback with the integration is that a bias on the gyro will add
up. Because of this, the gyro is not suited for obtaining an absolute attitude, but just
to add additional accuracy to the rest of the sensors in an ADCS. The complexity, price
and size just a few years back, made gyros a rare sight in CubeSats. This is about to
change.

2.2.2.1 Sensonor ButterflyGyro

Figure 2.4: MEMS structure of a Butter-
flyGyro. The two butterfly spade masses
are mounted in a thin asymmetric bearing,
which makes the masses to also oscillate in
the plane of the structure, even if the exci-
tation forces are directly under the masses.

In this thesis Sensonor SAR sensors are
being used. The sensor chip contains
a ButterflyGyro MEMS single axis gy-
roscope and a mixed mode Application-
specific integrated circuit (ASIC) circuit.
The MEMS construction principle consists
of two butterfly shaped masses mounted
together to each other and to the main
structure via a structural beam. The sur-
rounding structure, the beams and the
butterfly masses are all fabricated as one
single-crystal silicon part, with the flex-
ibility for the butterfly masses to ro-
tate slightly in all directions. Excitation
and detection electrodes are placed under-
neath the butterfly structure. The excita-
tion probes are forcing the masses to oscil-
late, but due to an asymmetric design of
the bearing beams, most of the mass rota-
tion is in the plane of the structure, and not in the direction of the force produced by the
excitation probes. The horizontal mass oscillation applied by the excitation probes are
called excitation motion. The excitation motion of the two butterfly masses are a small
back and forth rotation, always in opposite direction to each other. When an angular rate
around the input axis, horizontal and perpendicular to the beam, is present, the Coriolis
forces are oscillating the masses around the detection axis in phase to the excitation
motion. The outer butterfly “wings” are then oscillating up and down, changing the ca-
pacitance in the sensing probes in phase with the excitation motion, but with amplitude
following the angular rate. The ASIC is measuring the angular rate via the capacitance.
Because of the symmetry and double-side excitation and detection, the sensor has a low
sensitivity to shock and vibrations. More detailed information about the principles of a
Sensonor ButterflyGyro can be found in [25].

12 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

2.2.2.2 InvenSense ITG-3200

Figure 2.5: A photo of a three axis In-
venSense gyro. The MEMS part is big com-
pared to the surrounding ASIC circuitry.
[15]

Additional to the Sensonor gyro sensors,
the InvenSense ITG-3200 is utilized in this
thesis. The sensor is a small three-axis
gyro sensor developed for the consumer
market. The ITG-3200 has a different
structure of the moving MEMS masses
compared to the SAR sensor. To be able
to produce a z-axis gyroscope on the same
die as the x- and y-axis gyros, the z-axis
gyro also have to have a bit different work-
ing principle than the other two. For all of
the three axis, there are a two mass system
mounted so the forced mass movement is
opposite to each other. When an angular
velocity is present on the corresponding
input axis, the Coriolis effect forces the
mounting frame to twist in the plane of
the frame and die. The mounting frame
has a capacitive sensing structure outside
of the frame, measuring the twisting of the
frame. For the x- and y-axis, the masses

are moving up and down, relatively to the die plane. In the z-direction, the masses are
moving in the die plane apart and against each other. More detail information can be
found in .

Ω

Fcoriolis

v

v

Fcoriolis

(a) 3D view of x- and y-axis

 Fcoriolis

Fcoriolis

v v

Ω

(b) Z-axis seen from directly above

Figure 2.6: Drawing of the MEMS structure inside the InvenSense ITG-3200 gyro sensor.
To create all sensor axies on the same die, the Z-axis sensor has a slightly different
principle than the x- and y-axis. [15]

2.2. SENSORS 13

(a) Single axis (b) Two axis (c) Three axis

Figure 2.7: Three axis, two axis and single axis sun sensor [9]

2.2.3 Sun Sensors

Sun sensors are measuring the direction to the sun, relative to the spacecraft body. The
sensor is not operative in eclipse, which can be a significant time of every orbit. The sun
sensor is commonly used because of its accuracy compared to its simplicity. The sensor
can be analog or digital, measuring one, two or three axis. One axis analog sensors are
normally based on photocells whose output current is proportional to cosine of the angle
between the direction to the sun and the normal of the photocell. The output is given
by

I(α) = I(0)cos(α) (2.1)

From which α can be determined. To fully get the three dimensional vector pointing to
the sun sb, at least three sensors needs to see the sun. A common setup is placing a
one-axis sensor 2.7a on each of the six sides on the satellite. It is possible to achieve the
same effect only utilizing the solar cells, which is often placed on each side of the satellite
anyway. Unfortunately, using the solar cells as sensor is not very accurate. The current
produced by the solar cells is varying with temperature, and may also change with time.
The one axis sensor setup suffers from inaccuracy in 2.1 when α → 90◦ and the Earth
albedo error. Earth albedo is the Sun light reflected from the Earth, and is near 30% of
the solar flux, which is a big disturbance source[20]. It is possible to model the Earth
albedo, but this is complicated and hard to get precisely. A two or three axis sensor
can be achieved by having two or more sensors covered by a slot 2.7bor hole 2.7c. The
two and three axis sensors are more unaffected to temperature variations, and are less
exposed to the Earth albedo. Digital three axis sun sensors have been constructed by
replacing the sun detectors in the three axis version by a CMOS image sensor. A digital
CMOS sun sensor achieves high accuracy, but is advanced to implement.

A sun sensor is measuring the sun vector sb, which have to be compared to the
mathematical sun-model describing si. The calculation of si is described by[14].

2.2.4 Star Sensor

Stars are the most accurate optical source for attitude determination. Stars are small and
defined in size, and maintain a fixed position. A star sensor can determine the attitude
with very high accuracy, but is fairly complicated to implement. A star sensor system
have to be able to distinguish stars apart from each other, which can be performed by
considering their magnitude, light spectra and position relatively to each other. Before
digital image sensors were available, image dissector tube sensors were utilized, but re-

14 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

quired much bigger spacecrafts than a CubeSat. In image dissector tube sensors, the field
of view (FOV) were narrow, and down to one star alone was identified by the magnitude
and light spectra. Modern star sensors based on CCD or CMOS image sensors and ef-
fective on board computers are making it possible for CubeSats to carry a star sensor.
These star sensors have a wider FOV and base their star identifying upon the positions
of the stars relatively to each other. All star sensors must have an onboard computer
carrying characteristics of a big selection of stars.

2.2.5 Earth Sensor

Normally an Earth sensor is designed to detect the horizon, often named horizon sensor.
An earth sensor has high accuracy, but does not determine the attitude alone, and must
be used in combination. The sensor can be an infrared sensitive photo detector, since
The Earth emits like a uniform blackbody at a temperature about 290 K. Such a sensor
works during eclipse, but has a low signal to noise ratio. Some earth sensors are utilizing
the Earths albedo, which produces a large optical output. The classical horizon sensor
basically generates a signal when sight of line of the sensor passes the horizon. Like for
the star sensor, an earth sensor can be realized by an image sensor system. If a camera
is not present on the satellite anyway, it is a normally not worth the effort to implement
an earth sensor.

2.2.6 GPS

A GPS sensor can achieve the position of the satellite. An orbital position is necessary
for the attitude determination, but is also achieved by observing the satellite from the
ground. It is also possible to determine an attitude by measuring the phase variations in
the GPS carrying signal at two antennas. Utilizing the GPS system in LEO is theoreti-
cally no problem, and can be fit into a CubeSTAR. A big challenge may be the restriction
set by the Coordinating Committee for Multilateral Export Controls (CoCom). The GPS
CoCom limit disables GPS devices to work when moving faster than 1852km/h or an al-
titude higher than 18km, the limit is set to limit use of GPS in Intercontinental ballistic
missiles. The limit is possible to overcome, and GPS receivers have been implemented
in CubeSats. We do not consider a GPS receiver as useful enough for the CubeSTAR,
compared to the complexity, power consumption and size.

2.3 Actuators and Passive Stabilization Methods

2.3.1 Gravity Gradient Stabilization

The gravity gradient stabilization method utilizes the Earths gravity. The gravity field
is following the inverse-square law, which states that the strength of the gravity field
is inversely proportional to the square of the distance from center of the Earth. A
spacecraft with an uneven mass distribution, will tend to align its long axis to the field
of gravity. For this method to be effective, a gravity gradient boom is applied. A gravity
gradient boom is a relatively long boom which is will tend to align toward the earth.
The boom is normally deployed from the main body of the satellite after deployment
from the rocket. The gravity gradient stabilization is passive, which implies no power
consumption, no software which can fail, and no dependency to sensors or determination.

2.3. ACTUATORS AND PASSIVE STABILIZATION METHODS 15

In the other hand, a boom mechanism can be space and weight consuming. Additionally
the stabilization is fixed and only in two dimensions.

2.3.2 Permanent Magnet and Hysteresis Rod
A permanent magnet mounted on the satellite will try to align to the Earths magnet
field. This is an easy and reliable stabilization method, which is commonly utilized.
Unfortunately, when passing the poles, the direction of the magnetic field is changing
fast, and introduces tumble. Like on the gravity gradient method, the permanent magnet
stabilization only works in two dimensions. The permanent magnet method is often
combined with hysteresis rods. A hysteresis rod is made of soft magnetic material, which
damps the rotation.

2.3.3 Magnetorquers
The most common attitude actuator on CubeSats, are magnetorquers. A magnetorquer
is an electromagnetic coil, creating a dipole magnetic moment. The magnetic dipole,
which is created perpendicular to the face area of a coil, will try to align to the Earths
magnetic field. Normally three magnetorquers are placed perpendicular to each other,
with the ability to set up a magnetic field in both directions. Such a configuration is
able to fully control the attitude in all three dimensions. However, the torque created
by each of the magnetorquer depends on the angle between the magnetic field and the
magnetorquer. When the magnetic field is perpendicular to a coil, it does not create a
torque at all. In such situations, the spacecraft is only controllable in two dimensions. A
magnetorquer are being realized with or without a metal core, which again have influence
on the size. It is also possible to realize a magnetorquer as traces on a multilayerPrinted
Circuit Board (PCB). Magnetorquers are non-moving, easy to control, pretty small and
the driving force is not being used up like on thrusters. The disadvantages are low
accuracy and the control limitation when the magnetic field is perpendicular to a coil.

2.3.4 Momentum Wheels
A momentum wheel is a mass which can store angular momentum by rotating. The
spacecraft body, including momentum wheels when implemented, is conserving angular
momentum. To control the attitude of the spacecraft, the angular momentum is trans-
ferred to momentum wheels, by increasing rotation velocity. Momentum wheel are able
to control the attitude with a very high accuracy. Since the angular momentum is still
conserved in the spacecraft body, momentum wheels are implemented in combination
with a momentum dumping actuator, like magnetorquers. Momentum dumping is also
important, since the rotation is driven by an electric motor, which consumes power. Mo-
mentum wheels are implemented when high precision attitude control is necessary, but
does require a lot of space and weight in a CubeSat.

2.3.5 Thrusters
Thrusters are utilizing Newton’s third law, “The mutual forces of action and reaction
between two bodies are equal, opposite and collinear”. Thrusters are expelling propellant
in the opposite direction of the generated force. To control attitude in three axes, at least
six pairs of thrusters are required. The thrusters are placed in pairs canceling each others
effect on the direction of movement. Thrusters have been tested on CubSats, but are not

16 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

Project name University Year

P
er
m
an
en
t
m
ag
ne
t

an
d
hy
st
er
es
is
 r
od

M
om
en
tu
m
 w
he
el

R
ea
ct
io
n
w
he
el

T
hr
us
te
rs

G
ra
vi
ty
 g
ra
di
en
t
bo
om

M
ag
ne
to
rq
ue
r

G
P
S

St
ar
 t
ra
ck
er

H
or
iz
on
 s
en
so
r

G
yr
o

A
cc
el
er
om
et
er

Su
n
se
ns
or

M
ag
ne
to
m
et
er

Cute-I Tokyo Institute of Technology 2003 x x x
CanX-1 University of Toronto 2003 x x x x x
DTUsat Technical University of Denmark 2003 x x x x
AAU Cubesat Alborg University 2003 x x x
NCube2 NTNU 2005 x x
XI-V University of Tokyo 2005
CUTE 1.7 + APD Tokyo Institute of Technology 2006 x x x x x
ION University of Illionis 2006 x x x x
KUTEsat-1 Pathfinder University of Kansas 2006 x x x
KuteSat 2 University of Kansas x x
ICE Cube Cornell University (New York state) 2006 x x x x
SEEDS Nihon University 2006 x x
HAUSAT Hankuk Aviation University 2006 x x
Ncube 1 NTNU 2006 x x
CP2 California Polutechnic Institute 2006 x x
CP1 California Polutechnic Institute 2006 x x
ICE Cube 2 Cornell University (New York state) 2006 x x x x
Mea Huaka (Voyager) University of Hawaii x
GeneSat-1 Center for Robotic Exploration and

Space Technologies
x

CP4 California Polutechnic Institute 2007 x x
CSTB-1 The Boeing Company 2007 x x x
MAST Tethers Unlimited 2007 x
CP3 California Polutechnic Institute 2007 x x
CAPE-1 University of Louisiana 2007 x
Libertad-1 University of Sergio Arboleda 2007 x
CanX-2 University of Toronto 2008 x x x x x
CUTE 1.7 + APD II Tokyo Institute of Technology 2008
Delfi-C3 Delfi University of Technology 2008 x x
AAUsat-2 Alborg University 2008 x x
Compass One Fachhochschule Aachen 2008 x x x
Seeds 2 Nihon University 2008 x x
Polysat CP6 California Polutechnic Institute 2009 x x
AeroCube-3 Aerospace Corporation 2009 x x x
Hermes Colorado Space Grant Consortium 2009 x x
BeeSat-1 Technical University of Berlin 2009 x x x x x
UWE-2 University of Würzburg 2009 x x x x
ITUpSAT1 Istanbul Technical University 2009 x x x x
AtmoCube University of Trieste 2010 x x
Goliat University of Bucharest 2010 x x x
OUFTI-1 University of Liège 2010 x
PW-Sat Warsaw University of Technology 2010 x x x x
SwissCube Polytechnical School of Lausanne 2010 x x x x

Table 2.1: Listing of a selection of previous CubeSat projects, an its Attitude Deter-
mination and Control components. The table is based on a web page [16] with partly
inadequate source listings, but the information presented is as good as possible verified
by further search on the Internet. The list should be considered on basis of its origin,
but is still a good indication on how popular the different solutions are.

2.4. CUBESTAR ADCS 17

very suited for attitude control on such small spacecrafts. In addition to the thrusters
itself, the propellant is taking up space and weight on the spacecraft. The propellant is a
limited source, and the thrusters are only usable as long as propellant is left. Thrusters
are better suited for bigger spacecrafts, and to change the direction of movement.

2.4 CubeSTAR ADCS

2.4.1 Sensors and Actuators Chosen

We decided to design an ADCS based on only magnetorquers as actuators. A magnetor-
quer based system is an obvious choice when we need control, but not with the accuracy
a combination with momentum wheel would have given. The magnetorquers are simple
to control, and does not have any moving parts.

As sensors for the system, we will in this thesis implement magnetometer and gyro
sensors. Those are sufficient for the detumbling process, but do probably not give the
desired accuracy for an attitude determination. An additional reference sensor, like a
sun sensor, will probably be implemented in the future work of the project.

2.4.2 Attitude Determination and Control Mode

A complete magnetorquer based ADCS system, normally consists of two possible active
modes, Attitude Determination and Control mode and Detumbling mode. The Attitude
and Determination mode is active when the satellite is in operation, and does exactly
what the name says. An attitude determination algorithm finds the optimal estimate of
the attitude, based on all of the data available. The determination is often based on a
Kalman filter, some times in combination with simpler sensor fusion algorithm of refer-
ence sensors like magnetometer and sun sensors. Determine the attitude is necessary to
perform the control the satellite. The attitude controller algorithm controls the signal to
the magnetorquers based on the estimated attitude, magnetic field and desired direction.
An extra challenge for the controller is, as we are going to see in chapter 3, the satellite
can never be turned around the axis parallel with the magnetic field. A great work on
the CubeSTAR project have been performed on the control part by Stray.[4]

Sensors

Models

Determination Control Actuators

Sensors Detumble ActuatorsDetumble mode

Control mode

Figure 2.8: In Control mode the attitude is estimated and controlled. In detumble-mode,
the attitude is unknown, but the angular velocity is lowered.

18 CHAPTER 2. ATTITUDE DETERMINATION AND CONTROL SYSTEM

2.4.3 Detumbling Mode
The spacecraft is said to be tumbling when the angular velocity is exceeding a given
value. The satellite is expected to tumble right after deployment from the P-POD,
but can also enter a tumbling phase due to external disturbances and deployment of
antennas. When the satellite is tumbling, a simple detumble controller is desired to
reduce the angular velocity. A detumble controller is supposed to be simple and stable.
A detumbler controller is preferably able to be implemented in a microcontroller. The
simplicity of the controller is crucial, as it also works as a fallback system for the rest
of the ADC mode. In some satellites, the attitude system must be fully operational for
the payload to be useful, but in this project, a detumbled satellite not able to control is
better than an uncontrolled one, since measurements probably still can be taken when
the Langmuir probes is not in turbulence areas.

In [4] the common detumbler B-Dot was described and simulated for the CubeSTAR
project. The B-Dot algorithm sets up a magnetic field on the magnetorquers, propor-
tional to the derivative of the measured magnetic field. Since the B-Dot controller use the
geomagnetic field as reference, the theoretical lowest angular velocity equals the change
in the measured magnetic field.

The B-Dot controller is
m = −Kḃb

where m is the magnetic output moment, K is a positive constant gain and ḃb is the
derivative of the measured magnetic field in the body frame

ḃb = bb × ωibb + ḃi

which can be simplified to
ḃb ≈ bb × ωibb

Simulations in [4] showed the ability to reduce angular velocity from 0.1rad/s to 0.002rad/s
within 3 orbits with detumbling gain K set to 10000.

Chapter 3

Magnetorquers

In this chapter we are going to see how we can utilize magnetorquers to generate the
desired control forces. The design process of the magnetorquers, and the coil winder
machine, custom designed for production of the magnetorquers.

3.1 Magnetic Force in a Current Carrying loop

According to [21], a force F works on an electric conducting wire in a magnetic field B
like

F = is×B (3.1)

where i is the current, and s is the length and direction of the wire. 3.1 can also be
written in a non vector form representing the magnitude of F,

F = iBs sin θ (3.2)

where θ is the angle between s and B.
We are now going to see how the magnetic forces work on a current-carrying loop.

Figure 3.1 shows a l ∗ h sized rectangular loop with a current i flowing through it. We
can not see the power source, but assume that there is one, and for now that it is just
one single turn. The i arrow defines the current direction, opposite to the actual electron
movement. The loop is lying in the x-z plane centered over origin, with a uniform
magnetic field B parallel to the x-axis. Side 1 and 3 are also parallel to the magnetic
field, and therefore does not have any magnetic forces working on them. Side 2 and 4
are perpendicular to the magnetic field, and the forces F2and F4 will be present. Since
the amount of current and magnetic field is the same on both sides, the magnetic forces
are equal in magnitude. According to 3.2, the magnitude of the forces are

F2 = F4 = ihB

The direction is according to the right hand rule, as in the figure.
The magnetic forces create a torque trying to rotate the coil around the z-axis. The

magnitude of a torque generated by a pair of forces working perpendicular to a moment
arm is given by [21]

T = |rF |

19

20 CHAPTER 3. MAGNETORQUERS

B

B

F4

F2

x

z

y

Side 1

Side 3

Side 4

Side 2

l

h

i

i

i

i

A

Figure 3.1: The magnetic forces, F, working on a current carrying loop in a uniform
magnetic field.

where T is the torque and r is the distance between the forces. The torque created in
our current can then be written

T = lihB

T = AiB

where A is the area. We have now removed the specific sides from the equation, and
instead considering the area of our loop. If we make several turns of the wire in our loop,
we can easily multiply the forces or the torque with the number of turns. By adding the
turn number n, and represent the direction of the coil face with the area vector A, we
have for a air coil that

T =niA×B

The magnetic fields tends to direct the face of a current-carrying loop toward the plane
normal to the magnetic field.

The coil properties n, I, and A are defined as the magnetic dipole momentum µ,

µ ≡ niA (3.3)

The magnetic dipole momentum is a measure of the strength of an equivalent magnet,
and is an important property when designing the coils for the CubeSTAR.Theory

The magnetic moment of a coil with air core is given by

µ = nIA (3.4)

where µ is the magnetic moment, I is the electric current through the coil and A is the
face area of the coil.

3.2. DESIGN 21

We know that ohm’s law states that I = U/R, where U is the voltage and R is the
resistance of the coil. Since we do not want a voltage regulator for the magnetorquer, the
voltage is not one of the variables we can control. In opposite, the resistance is affected
as

R =
nlσ(T)

aw
(3.5)

where l is the circumference, aw is the area of the cross sectional wire and σ is the
material resistivity of the conductor, which is dependent of the temperature T . The
material resistivity is approximately linear in our temperature range, and can be found
by

σ(T) = σ0[1 + α(T − T0)] (3.6)

where σ0is the resistivity at temperature T0 and αis the temperature coefficient of resis-
tivity.

Combining 3.4and3.5 gives us

µ = n

(
U

nlσ(T)
aw

)
A

µ =
Uaw
lσ(T)

A (3.7)

This shows that the magnetic moment is not affected of the total number of turns.
When designing the coil, we will have to calculate the weight, given by

m = nlawρ

where mis the total mass of the coil and ρis the material density.
The power P consumed in the coil is given by

P = UI = I2R

3.2 Design

3.2.1 Specifications
From [4] we have that a magnetic moment of between 60mAm2and 100mAm2is desired.
A higher magnetic moment is not useful, since applying this can lead to instability. It
is highly desired to use as little power as possible, since this is a valuable resource. An
upper limit of the power consumption for each coil is set to 100mA, but generally as low
as possible. The material of the coil wire is going to be copper, which is the obvious
choice because of its low resistivity and availability in thin dimensions. The properties
of copper is listed in table 3.1

Parameter Symbol Value Unit
Density ρ 8.92 · 103 kg/m3

Resistivity at 20◦C σ0 1.7 · 10−8 Ωm
Temperature coefficient of resistivity α 3.9 · 10−3 1/◦C

Table 3.1: Copper properties

22 CHAPTER 3. MAGNETORQUERS

Considerations Inside placement Outside placement
Physical
protection

Well protected Vulnerable to physical damage

Design mod-
ifications

Big structural and electrical design
modifications necessary to fit

Few design modifications necessary

Space Takes up place which could
potentially be used to other
components

Probably no other components
desired to be placed here

Other Cleaner design May interfere physically with the
Langmuir probes while not deployed.
This is not yet designed.

Table 3.2: Considerations regarding placement of the long coils. Emphasized text is
considered as the preferred argument.

3.2.2 Dimensions

For three axial control, three magnetorquers mounted orthogonal to each other is going
to be implemented. The magnetorquers are also referred to as coils throughout the thesis.
One coil will be placed on the short side, and two on the long sides. To get the most
effective coils, we want them to follow the outer border of the sides, but of cause inside
the deployment rails. There will be two different designs, one for the short side and one
for the long side, from now of referred to as short coil and long coil. To find the exact
space available for the coil, closely cooperation with the mechanical and electrical team
was necessary.

The long coils had to be mounted close to two of the solar cells PCB cards. It was
considered whether the coils should be mounted on the outside (solar cells side) or the
inside.

It was decided to place the coils outside. The outside mounting disadvantages were
considered as not likely to be any problem, and we did not want to do the necessary
design modifications to place them inside.

The short coils is not designed in this thesis, because it is not decided how much
available space there is for it.

3.2.3 Design Considerations

To find the right design parameters of the coils, we have to look at how different parame-
ters affect the power consumption and magnetic moment. We already know that number
of turns does not affect the magnetic moment, but it does affect resistance and hence the
power consumption. The face area of the coil (A) is also affecting the magnetic moment
and power consumption in a way that a bigger area gives a more effective coil. From this,
it is clear that we want the coils as big as possible regarding power consumption and
magnetic moment. If we consider the available space as constant, we only have a limited
numbers of parameters left to adjust. Since we do not want a voltage regulator for the
coils, the voltage is fixed. Since the temperature is not controllable, all parameters on
the right side of 3.7 can be seen as fixed except for aw.This gives us that the only way to
adjust the magnetic moment is through the wire dimension aw. Since the space available
still is fixed, we are forced to reduce number of turns if we increase wire dimension. This
again leads to less effective coil, and the power consumption is increasing. Actually aw

3.3. MAGNETORQUER PRODUCTION 23

affects the resistance in 3.5 both directly and through n.
To do the coil calculations, a spreadsheet was developed. The spreadsheet includes

the fill factor for different wire dimensions provided by the supplier, with an option to
scale this factor in case the supplier is a bit optimistic. The fill factor states how many
wires that fits in 1cm2. A screenshot of the Magnetorquer Calculator Spreadsheet is
shown table3.3.

3.3 Magnetorquer Production
A production method for the magnetorquers had to be developed. In cooperation with
the mechanical workshop, a coil winding machine have been designed and produced. The
design goals for the coil and coil winder was

1. Effectively placement of each wire turn, to achieve high turn count.

2. Mechanical stiff coil to maintain its shape.

3. Mounting to PCB must be taken into account.

4. Adhesive must be low outgassing, space qualified.

5. Coil wires must be connected to thicker cables, and the splice must be mechanical
robust.

6. The coil winder must be adjustable to different coil parameters.

7. The coil winder must count turns while winding.

3.3.1 Coil Winder
The coil winder was produced as showed in figure 3.2. The coil winders functionality is
a motor winding a wire on to a custom reel, in the size of the desired coil. The wire is
guided on to the reel with a servo. The reel is filled with wire and adhesive, and the result
is a coil bonded together as one part. Each component of the coil winder is described in
the following sections.

Coil Reel

A rectangular reel with the dimensions of the desired coil is fabricated in plastic. The
coil reel was first made as a Teflon reel, but before a suitable adhesive was obtained, a
3D-printed version was produced. It turned out that this method was very successful,
and a magnetorquer was never produced in the Teflon reel. A description of both of them
follows:

The Teflon reel is a five layer reel, where the outer two layers are made of plastic
while the inner three are made of Teflon. The Teflon layers are creating a reel in itself,
but needs the outer plastic layers to obtain stiffness. All the layers are mounted together
with 3mm screws, able to disassemble when the coil is ready to be removed. The inner
reel is made of Teflon because of it low friction, this makes it easier to remove from the
adhesive utilized to bond the coil wires together. The resulting coil is only wire and
adhesive, and the reel layers can be used to make more coils.

The 3D printed reel is a three layer reel, where the outer two layers are the same
parts as in the Teflon reel. The middle layer is instead of Teflon, plastic fabricated using

24 CHAPTER 3. MAGNETORQUERS

Figure 3.2: The Coil Winder, fully developed to make the CubeSTAR magnetorquer.

a 3D printer. The middle layer is made up of two parts, a core and a coil frame. The
idea is that the printed coil frame will be a part of the final coil. One coil frame must
be printed for each coil produced. The advantages of this method are that the frame
protects the coil wire well. Mounting holes can easily be added, and design changes can
easily be performed. The disadvantage is the extra space consumed.

Mechanical

A copper wire reel is placed on a shaft in the back of the coil winder. The wire is led
forward through a wire break. The principle of the brake is a plastic plate which is
pushed to the bottom plate of the coil winder. The wire is passing through between the
two plates and protected by felt on both sides. The tension of the break is adjustable
with two wing nuts adjusting the space between the plates. The wire is further passing
through an aluminum guiding wheel. The guiding wheel is controlling the placement of
the coil wire on the coil reel. The coil winder construction is made up of Plexiglas, metal
shafts and Teflon bearings.

Motor

The motor utilized is a Micro Motors RH158-12-200 controlled by a potentiometer. The
DC motor includes a hall-effect encoder and 200:1 gearing, which makes it suitable for
the coil winder. The low output speed from the gearing enables the motor to be mounted
directly to the coil reel shaft. The hall-effect encoder internal circuitry has an open drain
MOSFET as output, and can be connected directly to a microcontroller with a suited
pull up resistor.

3.3. MAGNETORQUER PRODUCTION 25

Figure 3.3: The Coil reel components. The components above is mounted together as
a sandwich, with the two outer parts holding the two middle parts in between them.
The two middle parts are made with a 3D-printer, fits into each other, and can easily be
adjusted in the CAD model. The second part from left is the wire frame, which will be
the visual part of the final magnetorquer.

26 CHAPTER 3. MAGNETORQUERS

Figure 3.4: Coil winder card, with the AVR Butterfly stacked on top.

Coil Winder Card

It was crucial to the coil winder project to design the electronics as fast as possible. An
Atmel AVR Butterfly was desired to be utilized, from now of referred to as the Butterfly.
The Butterfly is a demonstrating kit from Atmel, including an ATmega169 microcon-
troller, a six characters Liquid Crystal Display (LCD) and a four-direction joystick with
center push. The LCD and the joystick made it suited to make a menu system adjusting
parameters on the coil winder. The Butterfly is originally a battery powered device, with-
out any external connectors, but most of the pins from the microcontroller are routed to
holes on the PCB, so pin row connectors can be added. To wire up all the electrical parts
of the coil winder, an electric circuit was designed, and a PCB card produced. The PCB
card is from now of referred to as the coil winder card. The coil winder card is a simple
two layer card, etched at the electronic workshop. The coil winder card was designed
for the Butterfly to be stacked on top of it. The pin row connectors are both electric
connectivity and mechanical bearing. The coil winder card has a 12V input. The motor
is supplied with the unregulated 12V , while the Butterfly and the servo have a voltage
regulator delivering3.3V . The coil winder card is interconnecting all of the components,
and makes the whole setup to only require a 12V source.

Guiding Wheel and Servo

The magnetorquer thickness is a few millimeters, and the wire thickness is more than
one magnitude less. It was desired to wind the coil as effective as possible. In one coil
reel turn, the wire guider has to move one wire thickness sideways. The movement of the
guiding wheel must be controlled with accuracy at approximately 0.1mm. A Parallax

3.3. MAGNETORQUER PRODUCTION 27

Figure 3.5: The wire guiding part of the Coil Winder. In this picture, we can see the servo
with the plastic dish pushing at the guiding wheel. In the upper left, the potentiometer
controlling the motor is pictured.

900-00005 servo was utilized. The servo has a 180◦ range, and is controlled by a Pulse
With Modulated (PWM) signal (see section 4.2.2). To achieve the best possible accuracy
of the guidance it is important that a big part of the servo range is utilized to move the
wheel a short distance, just slightly longer than the thickness of the coil. A gearing
functionality was achieved by mounting a circular plastic dish off center on the servos
rotation axis. When rotating, the dish is pushing at the guiding wheel. A spring is
making the guiding wheel follow the dish all the time. If d is the distance from the
rotation axis of the dish to the edge touching the guiding wheel, and the dish is mounted
so that d is at its lowest value at rotation α = 0◦,

d = r + o · cos(α)

Where r is the radius of the dish and o is the offset between center of the dish and the
rotation axis.

A servo is built up of a DC motor, a potentiometer, gearing and control circuitry. The
PWM signal controlling the servo is a pulse once every 20ms with a duration of 1ms to
2ms. The length of the pulses represents the desired rotation, from correspondingly 0◦

to 180◦ rotation. Additional to the PWM signal, the servo requires power, in total three
wires. The servo was chosen as actuator just because of its simple control. Alternatively
a stepper motor or a motor with an encoder could have been used, but would have
required a more complex design.

28 CHAPTER 3. MAGNETORQUERS

Coil Winder Microcontroller Code

The AVR Butterfly is well suited for menu system navigation. The firmware developed
for the microcontroller includes a menu system based on a Finite-state machine. The
functions implemented is

• Setup

– Set with of coil between 0− 4mm

– Set wire cross-sectional dimension

– Set the outer positions of the servo range

– Reset counter

• Run

– Turn counter on the display

– Servo controller with cosine correction

– Override possibility

The firmware was developed as described in section 4.4.1, except that the microcontroller
was not a XMEGA. The menu system and state machine is based upon Atmel AVR
Butterfly Rev07 application, but have been rewritten to fit this purpose and the avr-gcc
compiler. A library special written for the LCD display on the AVR butterfly was also
utilized, the library is written by Dean Camera and freely published on the Internet. A
fully overview of the firmwares functionality and use are given in table A.1 in appendix
A.

3.4 Design Results and Future Work

It is produced one magnetorquer containing 269 turns of 0.15mm copper wire. It was
measured to a self inductance of 33.8mH, with 149.5Ω resistance at room temperature.A
user manual describing the whole process of making a coil is available in appendix A. In
figure 3.3, a new coil frame is produced, with mounting ears. The coils are planned to
be placed upon two of the solar cell PCB cards, surrounding the solar cells. It should
however be considered to make the PCB fit inside the main part of the coil frame, like
in figure 3.6. This will make the coil frame’s upper side to be flush with the structural
corner beams. The coil will then be unexposed and well protected. It is however very
important that there is proper isolation between the wires and the conducting aluminum.
It may be necessary to reduce the coil turn some. A short side coil is not considered in
this thesis, since the place available is not able to determine at this time. By using the
same methods as developed for the long side coil, it should be fairly easy to produce a
short side coil.

3.4. DESIGN RESULTS AND FUTURE WORK 29

Cavity for the wires to be terminated,
and filled with adhesive

PCB should fit inside coil

Mounting ears shoud
fit over PCB

A screw can go through
both holes

Figure 3.6: A picture describing the improvements performed or planned, compared to
the magnetorquer produced, pictured in figure 3.7.

Figure 3.7: The first magnetorquer produced. This version does not have inner mounting
ears, as the frame in figure 3.3.

30 CHAPTER 3. MAGNETORQUERS

Magnetorquer Calculator

Constraints

Maximum width b max 82 mm

Maximum height h max 240 mm

Maximum coil cross-sectional width b_c max 2 mm

Maximum coil cross-sectional height h_c max 5 mm

Voltage at full load U_c 3,6 V

Maximum allowed current I_max 100 mA

Minimum temperature T_min -60 C°

Nominal temperature T_norm 25 C°

Maximum temperature T_max 100 C°

Copper properties

Density ρ 8,92E+03 kg/m3

Resistivity at 20 degrees σ_0 1,68E-08 Ωm

Temperature coefficient of resistivity α 3,90E-03 1/C°

Calculated sizes

Maximum face area a_s max 19680 mm2

Maximum coil cross-sectional area a_c max 10 mm2

Mean width b mean 80 mm

Mean height h mean 238 mm

Mean face area a mean 19040 mm2

Mean circumference l mean 636 mm

Choosed values

Wire diameter d_w 0,15 mm

Manually inserted turns 269 turns

Coil fill estimation

Scale fill factor 0,75

Mass M_s 27,67 g

Wire cross sectional area a_w 1,77E-02 mm2

Coil cross sectional area a_s c 4,88 mm2

Fill factor 2764 Wires/cm^2

Calculated turns N_s 276 turns

Calculated coil properties

Turns used in furthure calculations 269 turnsTurns used in furthure calculations 269 turns

Mass M_s 26,97 g

Wire cross sectional area a_w 1,77E-02 mm2

Coil cross sectional area a_s c 4,75 mm2

Fill factor 3686 Wires/cm^2

Calculations for above stated specifications min nom max unit

Resistivity (σ) σ 1,16E-08 1,71E-08 2,20E-08 Ωm

Resistance Ω 111,90 165,82 213,39 Ω

Maximum Current at I_s 32,17 21,71 16,87 mA

Maximum Power at P_s 115,82 78,16 60,73 mW

Produceable magnetic moment m_s 164,77 111,20 86,41 mAm^2

Produced magnetic moment per current 5,12176 5,12176 5,12176 m^2

Table 3.3: A Magnetorquer Calculator Spreadsheet was developed, to easily calculate
desired magnetorquer parameters. The values in this table are the resulting size, wire
diameter and turn count of the produced magnetorquer, and calculated properties.

Chapter 4

Electronic Design

This chapter is presenting the design process of the ADCS card and the mini-backplane
card. Despite the name of the ADCS card, it was never intended to do any determination
during this thesis, but is the first parts of the complete ADCS system. The rest of the
ADCS components are planned to be added to this card in later revisions.

4.1 Electronics on the CubeSTAR
The electronics made to the CubeSTAR have to be designed so it fits into what is already
developed on the project. Both electrically and mechanical, the ADS card have to comply
with the module requirements for CubeSTAR. CubeSTAR has a backplane placed at one
of the long sides of the satellite, which is connecting module cards, solar cells cards and
the battery pack together. For each module slot, the backplane has a 26-pin connector.
The backplane is designed by the Electronic workshop at the institute, and is at this
time at engineering version 1. The main functionality of the card is:

• Interconnection between module cards, solar cell cards and the battery pack

• Provide and control power to each module card

• Communicate and receive information of each module card. (On Board Data Han-
dling)

Each slot has a corresponding mechanical slit in the structure which fits the thickness
of a PCB card. The slit is the main bearing for the card. The ADCS card is going to
be located in one of the module slots, and have to comply with the specifications. Refer
to B for drawing of the card, keep attention to the keep out areas at each side, which is
where the card is going to fit into the slits.

The backplane connector contains several communication lines. It is not fully decided
how those are going to be utilized by the different module cards. To be sure the ADS
card is designed to support future implementations by connecting all lines to the micro-
controller. Since the on board data handling does not have been implemented yet, only
the UART communication lines are utilized in this thesis.

The power provided to the module cards is 3V , able to deliver a current up to 1A.
Current sensors on the backplane will disconnect power if this limit is exceeded. Since all
of the defined pins on the backplane connector are utilized by the ADCS card, the pinout
for the backplane connector is equal to the pinout found in the ADCS card schematic.

31

32 CHAPTER 4. ELECTRONIC DESIGN

(a) The ADCS card connected to the Mini Backplane card

Y

X

Z

Coil drivers

Single axis
gyro sensors

PDI connector

Reset button

LEDs

Designed for gyro
sensor not available

Microcontroller

3-axis gyro sensor

Voltage converters
with jumper

Magnetometer

Connector for extra
I2C peripheral

Backplane
connector

(b) Description of the logical blocks, with its defined directions in the bottom left.

Figure 4.1: The ADS card. Following the module card specification to fit in the satellite.

4.2. HARDWARE SYSTEM ARCHITECTURE 33

4.2 Hardware System Architecture
The ADCS card is mainly designed to be able to detumble the satellite without any
other requirements than power. We decided early to implement a gyro, even if this is
not strictly necessary to perform detumbling. However is it desired for the rest of the
ADCS. The hardware is designed to fulfill the following tasks:

• Measure magnetic field

• Measure angular velocity

• Control three magnetorquers

• Perform a detumbling algorithm

• Deliver measurement data to other sub systems

• Give control of the magnetorquer to other sub systems

• Communicate with a computer for testing and verification

An Atmel ATXMEGA128A1 microcontroller is implemented as interfacing between sen-
sors, magnetorquer control and the communication lines on the backplane. Pre-processing
of sensor data and detumbling are also being implemented into the same microcontroller.
A gyro and magnetometer is implemented using small form factor consumer sensors. The
components and its circuitry is explained in detail in the next sections

4.2.1 Microcontroller Circuitry
The Atmel AVR ATXMEGA128A1 microcontroller was implemented as the interfacing
and controlling unit of the ADS card. The ATXMEGA128A1 is a low power micro-
controller with a variety of internal peripherals. The unit has a 100-pin package, able
to connect the backplane and the different sensors on separate communication buses.
ATXMEGA128A1 units are also utilized on the backplane card and on the communica-
tion card. Those properties made it an easy choice to utilize this specific model.

The ATXMEGA128A1 pins are divided into 11 different ports. A port is a collection
of pins on the unit, where 9 of the ports consist of 8 pins. While all of the pins which
are member of a port can be used as general input or output, most pins also can have
special functions like interconnection bus,PWM and analog interfacing. On the ADS
card, the microcontroller is wired to communicate to several on-board ICs, additionally
to the backplane. The communication is using several different bus standards, and as far
as possible, a separate bus is utilized for each unit. Separate buses is used to avoid an
eventual dysfunctional unit to block the communication line for functional units. In the
case of too few pins or peripherals on the microcontroller in later revisions, several units
can be connected to the same bus. In table 4.1, an overview of which purpose each of the
pins contains. The table displays what is connected after some modifications compared
to the schematic. The table complies to the source code.

4.2.1.1 XMEGA Clock System

According to the application note [29], the ATXMEGA128A1 contains several inter-
nal clocks utilized by the system processor and many of the internal peripherals, like
timer/counters and communication interfaces. It is possible to run the microcontroller

34 CHAPTER 4. ELECTRONIC DESIGN

PIN
PORT 0 1 2 3 4 5 6 7

ITG3200
CS1 CS2 Data Ready

X coil Y coil Z coil

SDA1 SCLK1 UART RxD UART TxD Forward Z Reverse Z MISO SPI CLK

Forward X Forward Y Reverse X Reverse Y LOAD MOSI MISO SPI CLK

SDA SCLK LOAD MOSI MISO SPI CLK

SDA SCLK Data Ready LOAD MOSI MISO SPI CLK

A

B

BP Connector

Current monitor

C
BP Connector I2C-1 BP Connector UART

D

E

PB Connector SPIH-Bridge PWM

H-Bridge PWM

H

X-axis SAR150

ITG3200-I2C Y-axis SAR150

Z-axis SAR150
F

HMC5883 - I2C

LED0 LED1 LED2 LED3

Table 4.1: XMEGA port description, as they are utilized on the modified ADS card.
Grayed out text is not implemented in source code.

completely on any of these but one. An external clock is still implemented, to make sure
a reliable and stable clock source is present, and to freely choose the clock frequency.
The microcontroller’s power consumption is strongly dependent of the clock speed. The
clock stability is also crucial to maintain the right timing on UART communication. In
this thesis, a 3.6864Mhz crystal oscillator is utilized. It is a fairly low speed, which also
is fits many standard UART baud rates.

4.2.2 Inter Communication

The different communication standards utilized on the ADCS project is briefly explained.

I2C

Inter-Integrated Circuit (I2C) is a bus standard able to connect several units together
by only two wires. I2C is also referred to as Two-Wire Interface (TWI) among other
by Atmel. Electrically, the two lines Serial Data Line (SDA) and Serial Clock (SCL)
are pulled high by resistors. For devices to communicate, a master must initiate the
transaction, and supply clock to the SCL. Every slave has its own address, and only
utilizes the line when requested by the master.

SPI

Serial Peripheral Interface Bus (SPI) is a synchronous bidirectional serial bus. SPI utilizes
four wires to operate between two devices. Data is always sent both ways at the same
time on two separate wires, while clock and Slave Select is used to respectively clock
the communication and enable the slave. Several slaves can be connected to the bus by
either daisy-chain or parallel connect the data lines. The slave select line is shared when
daisy-chained, but must be separated to enable one slave at a time when connected in
parallel.

4.2. HARDWARE SYSTEM ARCHITECTURE 35

UART

Universal Asynchronous Receiver/Transmitter is a hardware peripheral able to serially
send and receive data. The transmission lines connecting UART devices together do
also commonly share the same name. A serial link is asynchronous when a clock is not
present as a separate signal, like on standards such as SPI and I2C. A byte transmitted
over an UART link starts and some times ends with bits defining start and/or end of
a byte. An UART link varies in structure, and several options must be chosen for two
units to communicate. Options include transmission speed (baud rate), stop bits, and
error correction bits. The microcontroller utilized in this thesis has a Universal Syn-
chronous/Asynchronous Receiver/Transmitter (USART) port, which makes it possible
to configure it for a synchronous data link. When a UART communication is desired
between electronic devices, the logical signal is normally converted to a standard defin-
ing electrical property. Standards include RS-232, RS-422 or EIA-485. A RS-232 port is
present in most desktop PCs, known as COM-port in Microsoft operating systems.

In this thesis, a UART baud rate of 115200 is utilized, which is a fairly high speed
for a RS-232 link. The relatively high speed is chosen, so that the microcontroller and
the PC client software do not have to wait a needlessly long time for the data to be sent.
A higher sample rate is also achievable due to the baud rate. The baud rate calculation
is performed by the spreadsheet included in [33].

PDI

Program and Debug Interface (PDI) is an Atmel proprietary protocol for programming
and debugging of devices like the ATXMEGA MCU. In the physical layer, the PDI uses
a half-duplex USART, containing one line for data and one for clock[24]. In this thesis,
the PDI is utilized in favor of JTAG, which would fulfill the same tasks with the same
equipment. The PDI was chosen mainly because the connector has a smaller footprint
than the JTAG connector.

PWM

Pulse-with modulation (PWM) is a technique for controlling or representing an analog
value. The value is only represented by the duration (with) of the signal fully on and
fully off. The PWM signal is used in a wide variety of applications, and is in this thesis
utilized on the ADCS card and on the coil winder card. On the two cards, PWM is
utilized in different ways, explained in the corresponding sections.

36 CHAPTER 4. ELECTRONIC DESIGN

4.2.3 Sensonor SAR150 Gyro Circuitry

Figure 4.2: Three SAR150 mounted in a three axis setup on the ADS card. The SAR
package is designed to be mounted both in normal and upward position. In the lower right
corner it is possible to see the HMC5883 magnetometer, which is significantly smaller.

In an early stage of the project, it was desired to test a MEMS Gyro sensor from Sensonor.
In [25], a master thesis written at the Institute, MEMS Gyro sensors from Sensonor is
tested. We contacted Sensonor, which supplied us with three SAR150-100 high precision
sensors for free. The SAR150-100 is a one axis high precision MEMS gyro sensor with
ASIC providing digital circuitry including Serial Peripheral Interface (SPI). The SAR
sensors are coming in two models, with several different input ranges for each model.
The two models are named SAR100 and SAR150, where SAR150 is the high precision
unit of the two. The number after the dash, indicates the input range in unit of ◦

/s.
The SAR sensor has a Leadless Ceramic Carrier (LCC) package containing terminals on
two perpendicular sides. This enables the chip to be mounted in both horizontal and
vertical position, and unlike most one-axis gyros on the market, these feature makes three
identical sensors able to measure all axes, even if they are mounted on the same PCB.

The SAR sensor is built for 5V operation, while our system is 3V . A 3V to 5V
voltage pump regulator was applied to provide the SAR sensors with correct voltage.
MAX682ESA from Maxim was chosen due to its availability and ease of use. The reg-
ulator is fixed at 3V to 5V regulation and does not require any loopback or reference
voltages. In addition to the regulator, level voltage shifter for the SPI lines was necessary.
A TXB0104 bidirectional voltage-level translator for each sensor was chosen. This chip
works as a signal bridge between the two voltage domains. The TXB0104 is present on
Sensonor’s own evaluation board for the SAR sensor, which made it a safe choice. The
TXB0104 is also easy to implement, with no extra circuitry except bypass capacitors.

The devices communicate to the microcontroller via SPI. Each of the sensors is con-
nected to separate SPI ports on the microcontroller, even if daisy chaining is possible. It
is designed this way, to guarantee that a malfunction in one device would not block the
communication line to the rest of the sensors.

4.2. HARDWARE SYSTEM ARCHITECTURE 37

(a) SAR150 internal block schematic. [26]

M
ic

ro
c
o

n
tro

lle
r

Voltage

converter

5V 3.6V

SAR150

SPI

5V

(b) SAR150 external circuit. Based on [26]

Figure 4.3: SAR150 Schematics

38 CHAPTER 4. ELECTRONIC DESIGN

4.2.4 3-Axis Single Chip Gyro Sensor

Figure 4.4: InvenSense ITG-3200 3-axis gyro
sensor mounted on a breakout board.

Three axis gyro sensors have been cheaper
and more easily available lately, due im-
plementation in consumer products like
gaming consoles and smart phones. We
wanted to compare the high precision sen-
sors from Sensonor with one of those.
When the ADS card was designed, it
was decided to test STMicroelectronics
L3G44200D. Units was ordered, and de-
signed to fit on the ADS card. Unfortu-
nately, the supplier was unable to deliver
the L3G44200D, and another solution had
to be made. An InvenSense ITG-3200 sen-
sor mounted on a breakout card was or-
dered. Necessary test could still be per-
formed without any delays. The break-
out card is med by SparkFun Electronics,
which also was its supplier. The ADS card

was already designed with the ability to connect separate I2C units. The sensor breakout
card was taped to the ADS card by double-sided tape, and power, I2C and data ready
was soldered on. In figure 4.5, a block schematic of the sensor is illustrated. The unit is
fully controlled by setting values in the Config Register through I2C.

Figure 4.5: ITG-3200 internal block schematic. [27]

4.2. HARDWARE SYSTEM ARCHITECTURE 39

4.2.5 Magnetometer Circuitry
Honeywell is one of the market leaders producing magnetic sensors. In the design phase of
the ADS card, The HMC5843 3-axis magnetoresistive sensor from Honeywell was tested
on an evaluation board. The HMC5843 got a successor right before the ADS card was
produced, and we decided to implement the new HMC5883L instead. The HMC5883L
is slightly better at most parameters, and is a safer choice regarding availability. The
HMC5883L comes in a 3 × 3 × 0.9mm 16-pins LCC package, and requires only addi-
tional capacitors to work properly. The sensor communicates via I2C line acting as a
slave. The I2C lines and data ready interrupt output pin (DRDY) are connected to the
microcontroller. DRDY enables activation of an interrupt on the microcontroller when
sample data is ready to read. Use of a data ready line prevents the microcontroller from
waiting and polling on the magnetometer. In 4.6 the internal functions of the sensor is
presented together with its external requirements. Internally, the device has two different
power domains, one for the internal functions, VDD, and one for IO interface, VDDIO.
VDDIO accepts lover voltage than VDD, allowing the chip to communicate with low
voltage external units. We do not need this feature, and connects both of the voltage
inputs together. Ironically, if this feature had been present on the SAR150 gyroscope,
we would not have needed the bidirectional voltage-level translators on the SAR150 SPI
bus.

AMR

AMR

AMR

ANALOG CONTROL

SET/RESET

STRAP

DRIVER

M
U

X

ASIC

OFFSET STRAP

DRIVER

HMC5883L HOST CPU

I
2
C SLAVE I

2
C MASTER

DRDY

SDA
SCL

S1

GND

GND

C1

VDDIO

C3

0.1µF

C4

0.1µF

C2

0.22µF

C1

4.7µF

10K 10K

(OPT)

I
2
C_DATA

I
2
C_CLK

VDD

VSS
SETCSETP

SET/RESET

OFFSET

9

VDD

12

10

13

11

9

2

4

1

15

16

CONTROL

2.16V to 3.6V

1.71V to VDD

Figure 4.6: Schematic diagram of HMC5883L and its necessary circuitry. [28]

4.2.6 Magnetorquer Driver H-bridge
It is necessary to control the direction and amount of current flowing through the magne-
torquers. Control circuitry is implemented on the ADCS card by utilizing three H-bridge
ICs. An H-bridge consists of four transistors, two transistors connected to each output.

40 CHAPTER 4. ELECTRONIC DESIGN

2

71

4

5

CTRL

PROTECT

FIN

RIN

VCC

VCC

OUT1 OUT2

GND

VREF
DUTY6

3

8

VCC

PWM

ROHM BD6210 H-bridge IC

Magnetorquer

VCC

ADC

M
ic

ro
c
o

n
tr

o
lle

r

Figure 4.7: Schematic diagram of ROHM Semiconductor BD6210. Based on[30]

One of the two transistors connected to an output is connected to VCC, and the other
one to GND. In that way, an H-bridge is able to connect both outputs individually to
either VCC or GND, and thus control the direction. The amount of current is regulated
by the PWM principle, fast switching on and off. H-bridges are commonly used cir-
cuits to control motors, and many IC versions are available. The BD6210F from ROHM
Semiconductor was implemented on the ADCS card. The BD6210F is a single channel
H-bridge with maximum current output at 0.45A. In 4.7 a schematic view of the inter-
nal functions of the BD6210F is shown together with its external logical circuit. The
H-bridge is built up of MOSFET transistors controlled by the control unit. In 4.2 the
various control states are listed. The unit can additionally to the PWM also be controlled
with an analog signal on the VREF input, this is not further discussed. As indicated
in table 4.2, the PWM signal maintains its timing on the output port, but the signal is
inverted.

4.2.6.1 Controlling the Magnetorquer

The magnetorquers are inductors including all its inherent properties. They will try
to resist changes in current, and some care must be taken. In inductor with a current
running constantly through it, energy is stored as a magnetic field in the coil. When the
external source is turned off, the magnetic field will induce a back emf (electromotive
force) trying to maintain the current flow. In a situation where the inductor is discon-
nected when the magnetic field is present, the induced current does not have anywhere
to go, and high voltages can be present. In the H-bridge IC, diodes are placed in parallel
with each transistor. In that way, the current has a way to pass even if all transistors are
switched off. Theoretically, the current will go back the power source path, and charge

4.2. HARDWARE SYSTEM ARCHITECTURE 41

a capacitor or eventually the battery.
In figure 4.8, the four basic modes of the H-bridge are illustrated. Mode d, Brake

mode, are utilized to break a motor in rotation. The back emf generated is opposite the
direction which is needed for the motor to run forward, and hence it is breaking. For
our purpose, we want the magnetorquer to be in any of the three former modes. In table
4.2, we can see that mode e to j, lets you alter between two of the four basic modes a,
b, c and d. The modes we want to utilize are e and f when running, and d when idle.

FIN RIN VREF OUT1 OUT2 Operation

a L L X Hi-Z* Hi-Z* Stand-by (idling)

b H L VCC H L Forward (OUT1 > OUT2)

c L H VCC L H Reverse (OUT1 < OUT2)

d H H X L L Brake (stop)

e PWM L VCC H PWM

Forward (PWM control mode A)

f L PWM VCC PWM

H Reverse (PWM control mode A)

g H PWM VCC PWM

L Forward (PWM control mode B)

h PWM H VCC L PWM

Reverse (PWM control mode B)

i H L Option H PWM

Forward (VREF control)

j L H Option PWM

H Reverse (VREF control)

* Hi-Z is the off state of all output transistors. Please note that this is the state of the connected diodes, which differs from that of the mechanical relay.
X : Don’t care

Table 4.2: Input and output in the different operation modes. [30]

OFF

OFF

OFF

OFF

M

(a) Stand-by mode

M

ON

OFF

OFF

ON

(b) Forward mode

M

OFF

ON

ON

OFF

(c) Reverse mode

M

OFF

ON

OFF

ON

(d) Brake mode

Figure 4.8: The four basic modes of the H-bridge. [30]

4.2.7 Magnetorquer Current Sensing

4.2.7.1 Temperature Dependency

The magnetic moment generated in the magnetorquers is proportional to the current
flowing through them. The current is proportional to the resistance, and the resistance
varies with the temperature of the coil. In [23], a temperature analysis of the Cube-
Sat CP3 Satellite was performed. Temperatures in the range of−27◦C to+73◦C was
observed. These observations are not reported as extreme, and temperature differences
of approximately 120◦C must be expected. The Copper temperature coefficient αCu of
electrical resistivity ρ is 0.00391/K. The resistivity after a temperature change is given
by

ρ = ρ0(α∆T + 1)

42 CHAPTER 4. ELECTRONIC DESIGN

The scale factor of a 120◦C change is then given by

α∆T + 1 = 0.00391/K ∗ 120◦C + 1 = 1.468 (4.1)

The resistance R is proportional to the resistivity given by

R = ρ
l

A

,where l is the length, and A is the cross sectional area of a wire. As a result of this
proportionality, the factor given in 4.1 is also applicable as a resistance scale factor in
the same temperature range.

4.2.7.2 Implemented Current Measurement

To regulate the magnetic moment unaffected by the big differences in the resistance, we
implemented a current sensor in the magnetorquer loop. A low resistance resistor (shunt
resistor) is inserted between the magnetorquer and the H-bridge. The differential voltage
across the resistor is amplified, and measured with the microcontroller’s analog to digital
converter (ADC). A Texas Instruments INA138 Current Shunt Monitor was utilized as
the amplifier. The INA138 IC has an internal op-amp and a transistor which converts
the differential input voltage to a current on the output of the chip. An external resistor
RL converts the current back to a voltage, with a gain proportional to RL. The voltage
is given by

Vout = ISRsRL ·G (4.2)

where Is is current through the shunt resistor with the resistance Rs. With the chosen
values inserted, included an estimated max value for IS , we get

VoutMAX
= 40mA · 0.2Ω · 604KΩ · 200µA/V = 0.97V

The INA138 is also utilized on the backplane card, and was chosen on the ADCS
card to keep a coherent design. At the time chosen, we did not realize that the INA138
is a high-side monitor, only functional when placed on the VCC side in the current loop
(high side). Since the H-bridge also connects the sensor to the low side in the loop, the
INA138 is not a suited shunt monitor when placed on the output of the H-bridge. This
has to be corrected for the next revision of the ADCS card. In the following sections,
considerations of how this can be done are presented.

4.2.7.3 Differential Amplifier Improved Solution

A common solution is to measure the current through an H-bridge, is to place the shunt
resistor outside of the H-bridge. If the shunt resistor is implemented on the low side
of the driver IC, it will cause the IC not to be directly connected to GND. This is not
a good practice, and should be avoided. An additional bi-effects of placing the shunt
resistor outside the driver IC, is an error corresponding to the driver IC’s total power
consumption and the inability to measure the direction of the current. A better solution is
to implement a current sensing circuitry where we already have placed the shunt resistor,
on the output of the H-bridge. A differential amplifier circuit is easy to design of discrete
components, but even easier with one of the many compact IC versions. In figure 4.9b,
a logic schematic of an suited INA21x series monitor is illustrated. The internal op-
amp and its four surrounding resistors create the classic differential amplifier. In these

4.2. HARDWARE SYSTEM ARCHITECTURE 43

RS

2

1

OUT
GND

RL

VO = ISRSRL/5kΩ

Load

5kΩ 5kΩ

VIN+

Up To 60V

VIN+ VIN–

3 4

IS

V+
5

(a) TI INA138 High-Side Measurement Cur-
rent Shunt Monitor

+2.7V to

+26V

Reference

Voltage

Supply RS Load

OutputOUT

IN-

IN+

INA21x

V+

GND

REF

R1 R3

R2 R4

(b) TI INA21x Voltage Output, High or Low Side
Measurement, Bi-Directional Zerø-Drift Series Cur-
rent Shunt Monitor

Figure 4.9: Schematic drawings of two Texas Instruments Current Shunt Monitors. The
design of the INA138 is not suitable when connected on the low side of a current loop.
However, a differential amplifier is well suited, here represented by schematic of an
INA21x.

units, R1 = R2 and R3 = R4, we define these pairs respectively R1 = R2 = RA and
R3 = R4 = RB . The output VOUT is then given by

VOUT = (IN+ − IN−)
RA
RB

+ VREF

Since the sensor cannot output negative voltage values, a reference voltage has to be
applied on the VREF , to fulfill its purpose of amplify also negative values. A negative
value on the input will now be converted to a output value between VREF and GND.

4.2.7.4 XMEGA ADC

The internal Analog to Digital Converter in the ATXMEGA128A1 is a 12-bit differential
ADC, in principle able to measure the differential signal from the shunt resistor directly,
it even has an option of a 64x internal gain. Unfortunately, this does not work as long
as the shunt resistor is placed high-side. The maximum input voltage to the ADC is
VRefAD, where VRefAD maximum value is VCC/1.6V . In figure 4.10, a setup for a
bi-directional current sensing is suggested. A differential amplifier circuit offsets and
amplifies the voltage over the shunt resistor. The reference voltage of the differential
amplifier is connected to the negative input of the ADC. The gain of the amplifier circuit,
the internal ADC reference voltage and the shunt resistor must be fitted to each other, in
order to get the best accuracy. Since we have to provide a reference voltage according to
figure 4.10, it should be considered to also feed the ADC with its reference VRefAD, which
have to be at least the double of the differential amplifier reference. We choose a 1.5V
reference voltage to the ADC, and hence a reference voltage of 0.75V to the differential
amplifier and the negative input of the ADC. We use a similar version of equation 4.2,
but now without the external resistor, and with an offset part.

Vout = ISRs ·G+ VREF

44 CHAPTER 4. ELECTRONIC DESIGN

Reference

Voltage

Supply RS Load

OUT

IN-

IN+

INA21x
REF

R1 R3

R2 R4

XMEGA differential mode

AD IN+

AD IN-

Figure 4.10: An illustration of the internal and external circuitry of an INA21x series
shunt monitor connected to an Atmel XMEGA microcontroller’s ADC, configured to
single ended unsigned sampling.

A desired maximum Vout is close to 1.5V , and the following values is proposed

VoutMax = 0.04mA · 0.1Ω · 200 V/V + 0.75V

A gain value available in the INA21x series was chosen, the gain of INA210 is 200 V/V.
Unlike on the INA168 circuitry, there are no external components to adjust the gain.

4.2.8 PCB Design

The ADCS card is made on a four layer Printed Circuit Board (PCB). The board is
made of FR-4 glass reinforced epoxy, copper lanes and gold plated connectors. The four
electrical layers are from top to bottom, top signal layer, ground layer, power layer and
bottom signal layer. Components are only mounted on the top side. The PCB is fully
designed using the software Zuken CADSTAR and manufactured by Elprint AS. The
component assembly is performed by the author at the electronics workshop.

Ground Plane

The ground plane is covering the whole area of the card in the ground layer. A ground
plane design is a common way to provide a low-noise, stable ground reference throughout
the card. Since all of the electrical circuitry is sharing the ground as a common 0V
reference, it is important to have uniform ground. The ground plane design always
provides a low-impedance path for return current, which is important since the ground
noise will increase proportionally with the impedance. Digital circuits are a major source
to noise, with its fast switching which also can occur clocked. At the same time, analog
circuits are the most vulnerable to noise. The circuitry should be designed to affect the
ground as little as possible, for example by adding decoupling capacitors, and minimizing
the loop area of the return path. In [31], it is stated that the returning current path

4.3. MINI BACKPLANE CARD 45

from digital and analog circuitry should not be crossed or shared. Several methods to
split up the ground plane are presented, additional to a method which maintains the
ground plane. Separation of analog and digital return paths are maintained by placing
the circuitry on different parts of the card.

On the ADS card, analog components vulnerable to noise is only present inside mixed
mode ICs, which makes a normal ground plane a proper design.

Decoupling Capacitors

Active components, and in particular digital components, are drawing power unevenly
and in pulses. This leads to big transient currents, voltage drops and noise. Decoupling
capacitors, also named bypass capacitors, are placed as local buffers for the power supply
or to suppress high frequency noise. A typical high frequency capacitor has a capacitance
of 100nF , and a low frequency capacitor to maintain the supply voltage is normally 1−
100uF . Bypass capacitors must be positioned with care, to achieve the best performance.
The capacitor must be located close to the ICs power pins, the transient currents will now
flow the short distance between the ICs power and ground pin, through the capacitor.
Since a clean ground is important, it should be prioritized to place the capacitor close to
the ground pin rather than the power pin. Ideally, the capacitor is placed closer to the
IC pins than the connection to the power and ground planes[32].

On the ADS card, 100nF high frequency ceramic capacitors are placed close to IC
pins, while 100uF low frequency tantal capacitors are working as a buffer for groups of
components, logically and physically close to each other.

Power Plane

On the ADS card, the power layer is separated into three different power planes. One
regular power plane covering most of the card (3.6V), and a spitted field over the SAR
gyros area. The splitted field consists of a 3.6V area and a 5V area. The 5V area is
connected to the output of the voltage converter, and is the power for the SAR sensors
and the 5V part of the voltage-level translators. The 3.6V area is connected to the main
power plane through a jumper, and is supplying the voltage converter and the 3.6V part
of the voltage-level translators. The reason for separating the power from the rest of
the card by a jumper is the ability to disconnect or measure the power consumption
of the SAR sensor part. This design is adversely due to the extra length of the signal
return path, and should not be present in a final version. The jumper was intentionally
implemented since the card was designed among other to evaluate the SAR sensors, and
its power consumption.

4.3 Mini Backplane Card
The ADCS card is designed to be connected to the Back Plane Card in the satellite.
Hence, the card is not suited for operation alone. The ADCS card does not have power
connector/regulator nor a PC interface connector, such as RS-232 or Universal Serial Bus
(USB). To achieve these properties, a Mini Backplane Card was developed. The Mini
Backplane Card is a small 67mm ∗ 25mm four layer PCB-card, designed to fulfill the
lacking futures of the ADCS card. The card is designed to be reused on any module card
designed for the satellite. The Mini Backplane Card includes the following components:

• Power management including.

46 CHAPTER 4. ELECTRONIC DESIGN

Figure 4.11: The Mini Backplane Card. The connection of a CubeSTAR Module Card
to a power source and a PC is made easy and reliable

– Standard DC socket, 2.1/5.5mm.

– Power regulation.

– Power switch.

– Jumper to connect a multimeter for power consumption measurements.

• RS-232 interfacing including.

– 9-pin D-sub female connector.

– UART to RS-232 level converter.

• Pins to connect to the unused communication lines on the backplane connector.

The power regulator and connector makes a regulated power supply needless, and a
cheap small “power adapter” is sufficient as a power source. The Mini Backplane Card
also protects the ADCS card against destructive voltages to the card caused by incorrect
use or connection.

4.4 Microcontroller Firmware

4.4.1 Firmware Development for the AVR Platform
The firmware developed for the microcontroller is written in C code language. The
AVR Libc C library is utilized, which is a library developed for the GNU Compiler
Collection (GCC) compiler and AVR microcontrollers. The WinAVR package contains

4.4. MICROCONTROLLER FIRMWARE 47

the library, compiler (avr-gcc) and definition files for Atmel microcontrollers including the
ATXMEGA128A1. For several of the microcontroller peripherals, like UART, SPI and
TWI, the device drivers provided in Atmels Application Notes for UART[33], SPI[34]and
TWI[35] are utilized. The Atmel AVR Studio 4 is used as programming and debugging
platform together with the Atmel AVR JTAGICE mkII. The mkII is a USB connected
device for connecting the PC to the microcontroller via JTAG or Program and Debug
Interface (PDI). In this thesis PDI is utilized in favor JTAG.

4.4.2 Program Flow and State Machine

The main part of the microcontroller firmware is based upon a Finite State Machine
(FSM), which provides a clear overview of the program flow. In total eight states are
defined, each state having a corresponding function in the code. The logic deciding the
next state is located in the end of each function. A state diagram 4.12 illustrates the
eight states and its possible transitions. As seen in the diagram, the microcontroller can
be in one of four different modes, idle, sample, bDot or External Control. The mode is
determined by external control, either by UART, or in future revision from the satellites
OBDH. A sample timer is initialized and running on the microcontroller. Except a
manual single sample, the timer has to make an interrupted before the Sample state can
be entered. The Idle and External Control state functionality are not implemented in
this thesis. The Idle state can be used to put the microcontroller and external sensors
in sleep to save power, and the External Control state can send sensor data and receive
magnetorquer control data. Since the rest of the ADCS and OBDH are not yet developed,
the functionality of this state is a subject of change.

Additional to the functions which represents each state, several interrupt handler
functions and initialization functions are present. In 4.1, the initialization function calls
in main() is listed. The listing shows the initialization process when the microcontroller
starts or have been reset. Each of the init_ functions is specific to the hardware internally
in the microcontroller or to the external components. After initialization, a short while-
loop listed in 4.2 executes the corresponding function for the current state, this is the
core of the state machine. To fully understand the function call, the main.h should be
examined, which shows an array of all corresponding states and functions.

Listing 4.1: Initialization function call in main() function.

396 init_clk (); // System clock
397 _delay_ms (50);
398 init_RTC32 (); // Real time clock
399 init_uart (); // UART ports
400 init_hmc5883 (); // Magnetometer HMC5883
401 init_itg3200 (); // Gyro sensor ITG -3200
402 init_sar150 (); // Gyro sensors SAR150
403 init_adc (); // Analog -Digital Converter
404 init_coils (); // PWM output for coil control
405 // Sample timer , def.: 500 ms *3.6=1800
406 init_SampleTimer(SAMPLE_TIMER , 1800);

48 CHAPTER 4. ELECTRONIC DESIGN

Execute

Command

Activate

Magne-

torquer

External

Control

B-dot

Print

Sample

TimerInterrupt ||

Manual Run
commandReceived

&& ~TimerInterrupt

Idle

mode = idle ||

Long time until sample
Woke up

Initial

mode = sample

mode = bDot

mode =

externalControl

Figure 4.12: State diagram of the microcontrollers Finite State Machine.

Listing 4.2: While(1) loop in main function. The loop is the core of the State Machine,
calling the right state function.

417 while (1) {
418 //As long as a function is defined , loop
419 for(uint8_t i=0; menu_state[i].pFunc ;i++) {
420 //Find state array number of right state
421 if (state == menu_state[i]. state) {
422 //Run function with corresponding array number.
423 state = (menu_state[i]. pFunc)();
424 break;
425 }
426 }
427 } // while end

4.4.3 Sensor Drivers
For each of the three sensor models utilized in this thesis, a hardware driver library is de-
veloped from scratch. Each of the libraries consists of a code file (.c) and header file (.h).
The header files defines all registers and parameters of the chips, additional to creating
proper data types for further object oriented programming. The sensors data bus SPI

4.4. MICROCONTROLLER FIRMWARE 49

or I2C are implemented utilizing the device drivers from Atmel. The creation of a driver
library for each sensor enables reuse, and ensures a firmware which is easy to modify in
the future. In all of the sensors, two separate 8-bit registers internally on the sensors
contained a 16-bit signed measurement value. A data type reflecting this was created by
combining a union and a struct as showed in 4.3. Each of the sensor drivers contains func-
tions which reads and writes registers to the sensor, which is the essential purpose of these
drivers.

Listing 4.3: Data structure from the SAR150 h-file. By utilizing union, the int16_t is
allocated to the same memory location as the two uint8_t msb and lsb.

27 typedef union sar_rate
28 {
29 struct
30 {
31 uint8_t lsb;
32 uint8_t msb;
33 } b2;
34 int16_t i16;
35 } sar_rate_t;

4.4.4 UART / RS-232 Control

Control and monitoring of the microcontroller is performed via the UART/RS-232 inter-
face. The microcontroller is sending and receiving characters on the UART port, which
is level converted on the Mini Backplane Card. A 9-pin D-sub cable is connected to the
PC, and control is available through terminal programs like Microsoft HyperTerminal,
or the custom control software explained in 4.5. The communication protocol is im-
plemented on the microcontroller using the interrupt based USART device driver from
Atmels Application Note 1307 combined with the libc implementation of stdio (Standard
input/output), a part of the C standard library. The implementation of the stdio library,
enables an easy and powerful print functionality in the code.

The communication is performed by sending ASCII words, optionally followed by
a value also expressed in ASCII. Echo is implemented on the microcontroller, so that
HyperTerminal easily can be utilized, without having to turn on local echo, which is
not a default setting. A control command sent to the microcontroller must be in the
following ASCII format: <command> <optional value><CR>. The Carriage Return
(CR) is sent from HyperTerminal by pressing the return key. Return messages from the
microcontroller are sent in the following format: <message><CR><LF>, which makes
HyperTerminal start from the beginning of a new line after the message is written. In
4.3, all commands are listed. The coil<axis> command is adjusting the direction and
percentage on, out of the h-bridge circuit. According to the formula in the referred table,
coilx 0 will set the the coil to −100%, or in words, fully on, in reverse direction.

50 CHAPTER 4. ELECTRONIC DESIGN

Command Description

reset Full reset of the microcontroller.

magstart Sets sample flag on HMC5883 magnetometer

magstop Clears sample flag on HMC5883 magnetometer

sarstart Sets sample flag on SAR150 gyro

sarstop Clears sample flag on SAR150 gyro

itgstart Sets sample flag on ITG-3200 gyro

itgstop Clears sample flag on ITG-3200 gyro

idle Set microcontroller mode to Idle

sample Set microcontroller mode to Sample

bdot Set microcontroller mode to B-Dot

extcont Set microcontroller mode to External Control

rate <value > Time between samples
Range: 0− 1000
Unit: ms

coilx <value > Percentage PWM signal, x-axis coil
Range: 0− 254

Unit: (x−127)
127 ∗ 100%

coily <value > Percentage PWM signal, y-axis coil
Range: 0− 254

Unit: (y−127)
127 ∗ 100%

coilz <value > Percentage PWM signal, z-axis coil
Range: 0− 254

Unit: (z−127)
127 ∗ 100%

status Returns mode, sample rate and sensor sample flags

Table 4.3: Command set for the ADCS microcontroller. All commands are case sensitive.

4.4.5 Response Messages

Some actions in the microcontroller is sending a message to the UART port. The mes-
sages sent include status, measured data and response to some of the control commands.
Some of the messages are easy to interpret by humans, while some are designed to be
read by a software on the PC. All strings sent by the microcontroller are followed by
a Carriage return (0x0D) and Line feed (0x0A) ASCII characters, which performs a
line shift on HyperTerminal. In 4.4 all response messages which can be sent by the mi-
crocontroller are listed. The variables in the messages are denoted by the C-languages
printf syntax scheme. A variable starts with a “%” and ends with a letter describing
representation method, in our case x for hexadecimal representation and d for decimal
representation. The number in between, sets how many characters to be utilized, and
if zero padding should be enabled. The common representation mode %04x describes a
hexadecimal four character number, such as 00A4.

4.4. MICROCONTROLLER FIRMWARE 51

Scale factor / variable information Unit
Printf syntax
Described syntax
X-axis data 0.1 deg/s
Y-axis data 0.1 deg/s
Z-axis data 0.1 deg/s
Temperature 1 °C
RTC minutes 1 minutes
RTC ms 1 milliseconds
Printf syntax
Described syntax
X-axis data 1/14.375 deg/s
Y-axis data 1/14.375 deg/s
Z-axis data 1/14.375 deg/s
Temperature 1/280 °C
RTC minutes 1 minutes
RTC ms 1 milliseconds
Printf syntax
Described syntax
X-axis data 1/13000000 Tesla

HMC data

Name Description

SAR data

SAR:<X-axis><Y-axis><Z-axis><temp X><min><ms>

SAR:%04x%04x%04x0000%04x%04x%04X

SAR:<X-axis><Y-axis><Z-axis><temp X><min><ms>

ITG data

Message

SAR:%04x%04x%04x%04x%04x%04x%04x

SAR:<X-axis><Y-axis><Z-axis><temp X><min><ms>

ITG:%04x%04x%04x%04x%04x%04x%04x

X-axis data 1/13000000 Tesla
Y-axis data 1/13000000 Tesla
Z-axis data 1/13000000 Tesla
RTC minutes 1 minutes
RTC ms 1 milliseconds
Printf syntax
Described syntax
Sample rate 1/3.6 milliseconds

Mode [0-4] 0: idle 1: sample
2: bDot 3: externalControl Enum

hmcSample [0-1] 1: true 0: false Bool
itgSample [0-1] 1: true 0: false Bool
sarSample [0-1] 1: true 0: false Bool
Printf syntax
Described syntax
Rate 1 milliseconds

Startup Message

Rate error Message

Syntax error Message

Welcome!

Rate must be set between 0 and 1000

Syntax error

Rate set

Status
STA:<Smpl rate>-<mode>-<hmcSmpl>-<itgSmpl>-<sarSmpl>

STA:%04d-%1d-%1d-%1d-%1d

Time between sample is: %d ms

Time between sample is: <rate> ms

All values described %04x are ascii/hex represented 16-bits, two's complement values
All values described %__d are ascii represented decimal values

Table 4.4: Description of response messages from the ADCS card.

52 CHAPTER 4. ELECTRONIC DESIGN

4.5 LabView Interface VI
To be able to perform calibration procedures, and for measurement data validation, it
was important to create a PC side application as a companion to the ADCS card. A
Graphical User Interface (GUI) was desired, since it have the benefit of being easier to
learn and faster to use for new users. A program, or Virtual Instrument (VI) which is the
equivalent name in the LabView domain, was developed. The VI communicates through
a serial interface to the microcontroller utilizing the same command set and response
messages as described in 4.3 and 4.4. LabView is a visual programming language, well
suited for data acquisition and representation. Developing the logic of a program is
performed by drawing a Block Diagram, and a GUI by drawing the desired elements in
a LabView Front Panel.

The VI developed, named “ADCS interface.vi” is found in appendix C, but should
preferably be examined and tested digitally. The most important features of the VI
developed are the following:

• Control and status polling of mode, sample rate and sensor sample flag of the
microcontroller.

• Graphical representation of measurement values from all of sensors

• Ability to store measured value

• Sensor calibration functions

• 3D-representation of magnetometer data

• Control of the rate table for gyro calibration process

The VI is utilizing two serial ports. For both to work, the right PC serial port on the
computer must be chosen in the GUI of the VI.

4.5.
LA

B
V

IE
W

IN
T

E
R

FA
C

E
V

I
53

STOP

COM1 PC serial port

3E-5

-5E-5

-4E-5

-3E-5

-2E-5

-1E-5

0

1E-5

2E-5

Time (s)

971868

Z-axis

X-axis

Y-axis

Magnetic field HMC

4,8E-5

2,2E-5

2,4E-5

2,6E-5

2,8E-5

3E-5

3,2E-5

3,4E-5

3,6E-5

3,8E-5

4E-5

4,2E-5

4,4E-5

4,6E-5

Time

971868

Magnetic field0,000Magnetic field strengt

Bane til kalibreringsfil

0

z

0

y

0

x

Offset HMC

1

z

1

y

1

x

Gain HMC

150

-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

Time (s)

970869

Reference

X-axis

Y-axis

Z-axis

Angular velocity ITG

150

-200

-150

-100

-50

0

50

100

Time (s)

969869

X-axis

Y-axis

Z-axis

Reference

Angular velocity SAR

ITG:006100e2fe252096000e32f4

ITG

SAR:00d3ffeffea2001c000e32f4001a001b

SAR

HMC:010800d8ff910000000e32f4

Last Magnetometer HMC message

HMC:010800d8ff910000000e32f4

Received ascii from microcontroller

1000
0

200

400 600

800

Sample rate (ms)

ON 3-axis triple sensor gyros SAR

ON 3-axis single sensor gyro ITG

ON Magnetometer HMC

Choose sensor

0

z

0

y

0

x

Average value

AVZ neg

Z pos

Y neg

Y pos

X neg

X pos

Kalibrering

0

z

0

y

0

x

Offset SAR

1

z

1

y

1

x

Gain SAR

0

z

0

y

0

x

Offset ITG

1

z

1

y

1

x

Gain ITG

29,7929

ITG temp

12738

ms

14

Minutt

852738

RTms

Store ITGStore HMCBane til filmappe Store SAR

7E-5

-5E-5

-4E-5

-3E-5

-2E-5

-1E-5

0

1E-5

2E-5

3E-5

4E-5

5E-5

6E-5

Time

7,5E-5-5E-5 -2,5E-5 0 2,5E-5 5E-5

Plot 0XY Graph

6,29

0

2

4

phi
6,29

0

2

4

theta
6,29

0

2

4

psi

Euler Angles

Enabled

2000

Max input velocity (deg/sec)

50

ACL(deg/sec^2)

Rate Enable

Disabled

Rate table status

Microcontroller control Rate table

Magnetometer HMC Single chip gyro ITG Triple chip gyros SAR

Magnetometer

calibration

Averaging

0

Reference velocity (deg/s)

PC serial port

Magnetometer HMC extras

5 10

0

10

5

0

Sar data

0

ITG data

6

HMC data

Sample

Idle bDot

External control

Mode

Test ramp timing

28

SAR temp x

26

SAR temp y

27

SAR temp z

F
igure

4.13:
Screenshot

ofthe
Front

P
anelofthe

LabV
iew

V
I
developed

to
test

the
A
D
S

card

54 CHAPTER 4. ELECTRONIC DESIGN

Chapter 5

Sensor Calibrating

We want to determine how good our sensors performs, and try to correct error sources
as good as possible. Even if the errors can not be corrected, it is desired to know the
performance of each sensor. An error model of a sensor gives us knowledge to determine
if the sensor is suitable for its purpose, and can be very useful in simulation of the
system. Many error sources can easily be corrected for, when known. In this chapter, we
are characterizing the error of the sensors utilized in the thesis, and establish practical
methods for calibration of the sensors.

5.1 Gyro

Two different gyro sensor setups are tested in this thesis, a single chip three-axis ITG-
3200 gyro sensor, and the SAR150 setup consisting three one-axis high precision gyros.
It is interesting to see how the sensor setups perform compared to each other. The
orthogonal setup of the SAR150 ICs are mounted by hand, and it is also interesting to
measure the accuracy of this mounting. The gyro calibration methods in this thesis are
based on the methods presented in [36] and [37] by Bekkeng, J. K.

5.1.1 Error Characterization

The most significant errors of a gyro sensor are:

• Scale factor (λ)

• Misalignment (δ)

• Random bias (η)

• Temperature dependent bias (O(T))

Where the denoting letters are listed in brackets. We are defining a misalignment and
scale factor error matrix M , where δij is representing the projection of the sensitive axis
i on the body axis j, given in radians. The sensitive axis x, y and z of the gyro are
intended to be in the same directions as the corresponding body frame axes, hence the

55

56 CHAPTER 5. SENSOR CALIBRATING

misalignment angle is assumed small. M is defined as

M =

 λx δxy δxz
δyx λy δyz
δZx δzy λz


We also defines a misalignment and scale factor matrix S as

S = I +M =

 1 + λx δxy δxz
δyx 1 + λy δyz
δzx δzy 1 + λz


We assume a linear temperature dependency of the bias, which gives

O(T) = O0 + aTT (5.1)

which makesaT the temperature coefficient. O0 is the offset at 0◦C.
As a result of the above definitions, we have that the true angular rate ωb in the body

frame has the following relations to the measured angular rate ωs

ωb = S(ωs −O(T))− ηv

where the v in ηv denotes that the noise is zero-mean Gaussian white noise.

δyz

δyx

Xb

Zb

Yb
Ys

Y axis of the

body frame

Y axis of the

sensor

Figure 5.1: Illustrating of the definition of the small misalignmentδ.

5.1.2 Temperature Bias Calibration
We are later going to determine M in a calibration process explained in section 5.1.3,
but first we want to find the temperature dependent biasO(T). The bias is measured
by measuring the sensors when not in motion. To get the temperature dependency, we
measured the bias in a wide temperature range, wile logging the temperature from the
internal temperature sensors of the chips. Two experiments were performed:

5.1. GYRO 57

5.1.2.1 Freezer Test

The ADS card was placed inside a regular freezer with a temperature of approximately
−20◦C. The card was connected to computer outside of the freezer, running the LabView
VI as described in section 4.5. The sampling was started immediately after placed inside
the freezer, at a sampling rate of 0.5Hz. When the temperature sensors inside the
gyros was close to the freezer temperature, the sensors was taken out and sampling was
continued as the chip altered room temperature.

5.1.2.2 Oven Test

In the same way as the freezer test, the ADS card was placed inside a regulated oven.
The temperature was raised to 80◦C, wile sampling at the same frequency, 0.5Hz.When
the sensors reached the temperature of the oven they where placed in room temperature,
while the measurement still was ongoing. Because of a fan inside the oven, making
disturbing vibrations, only the sampled data of the cooling from 80◦C down to room
temperature was usable.

5.1.3 Reference Data Acquisition

Figure 5.3: Adapter cable for the ADCS card
and Rate Table

To be able to determine M , we need ap-
propriate reference data. A controlled ro-
tation in one axis at a time is desired,
and an experiment on a reference rate ta-
ble was performed. The reference table
utilized was an Ideal Aerosmith 1291BR
Single-Axis Positioning and Rate Table,
ideal for this test. The reference table
is controlled by an accompanying control
unit, which again is controlled through a
RS-232 interface. The control unit returns the actual angular velocity of the rate table
throughout the process. The ADCS LabView VI was programmed to also control the
rate table. The VI makes a coherent interface for the whole experiment, and makes sure
reference data from the rate table are acquired at the same time as from the sensors.

Physically, a method for mounting the card in all three orthogonal directions had
to be developed. Since the satellite structure already existed, and is constructed to
hold the card, a mounting bracket to attach the satellite structure to the spin table was
manufactured at the mechanical workshop. The bracket is constructed so the structure
can be mounted horizontal and vertical, in that way, we can spin the card around all
three axes. The spin table has two 37 pin D-sub connectors located on the rotating table,
which is connected to corresponding connectors on the fixed base. Two adapter cables
were made to send power and RS-232 signal through the D-sub connectors.

5.1.4 Kalman Filtering

In this section, a Kalman filter is utilized. A good introduction is found in [39], while
a comprehensive review is given in [38]. A simple Kalman filter was utilized to find the
optimal parameters based on the reference test. To use the Kalman filter, we first have
to model the parameters we want to estimate in a way that suits the Kalman filter. We

58 CHAPTER 5. SENSOR CALIBRATING

−20 −10 0 10 20 30 40 50 60 70 80
−3

−2

−1

0

1

2

3
SAR150-100 Temperature Dependent Bias

B
ia
s
(d
eg
/
se
c)

Temperature (deg/C)

X-axis

Y-axis

Z-axis

(a) The SAR150-100 sensors have a low bias, with a low temperature dependency. The graph consists only
of dots, which is caused by the resolution of the data from the sensor. By visually examine the shape of
the plot, a second order fit would probably made an improvement, but is not performed in this thesis.

−40 −20 0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20
ITG-3200 Temperature Dependent Bias

B
ia
s
(d
eg
/
se
c)

Temperature (deg/C)

X-axis

Y-axis

Z-axis

(b) The ITG-3200 have a high bias, but it is highly linear. Note that the z-axis temperature coefficient
is opposite signed than the two others. This is probably an effect of the slightly different design, as
described in section 2.2.2.2.

Figure 5.2: The plots shows the bias on the three sensor axes at temperatures ranging
from −20◦C to 80◦C. There is a visible gap between the freezer test (left) and the oven
test (right). No measurements are done in this small temperature range.

5.1. GYRO 59

0 100 200 300 400 500 600
−150

−100

−50

0

50

100

150

Time (s)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

Reference Rate at Spin Test

X-axis

Y-axis

Z-axis

Figure 5.4: Reference Rate in the Spin Test. Three separate single axis test cycles are
merged together after each other as one continuous test. This is how we work with the
data after the test.

60 CHAPTER 5. SENSOR CALIBRATING

Figure 5.5: The ADCS card mounted and connected on the rate table. The mounting
frame and the satellite structure enables the card to be mounted right. The many-colored
cable are made custom for the ADCS card and rate table.

assume that we already have utilized equation 5.1 in a pre-processing, so the data is
temperature compensated.

We defines ω̃ as the per-processed measurement data in the sensor frame. The true
angular body frame rate is then given by

ωb = Sω̃ − β − ηv
= (I + M)ω̃ − β − ηv
= ω̃ + Ωm− β − ηv (5.2)

where
Ωm = Mω̃

with

Ω =

 ω̃y ω̃z 0 0 0 0 ω̃x 0 0
0 0 ω̃x ω̃z 0 0 0 ω̃x 0
0 0 0 0 ω̃x ω̃y 0 0 ω̃z


and

m =
[
δxy δxz δyx δyz δzx δzy λx λy λz

]T
The state vector of the Kalman filter is defined as

x =

[
m
βb

]

5.1. GYRO 61

so the Kalman state function can be modeled as

xk+1 = xk

where the k denotes the state. The fact that the values of the state actually not change,
makes the Kalman filter fairly simple. The measurement z is defined as the difference
from ωb, given by the rate table, to the measured value:

z = ωb − ω̃ = ∆ω

Since z is the difference, we can remove the ω̃from 5.2, and define the Kalman measure-
ment equation as

zk = Hkxk + vk

where H is a 3×12 element matrix given by H =
[

Ω −I3×3
]
, and v is the zero-mean

Gaussian noise vector.

5.1.5 Matlab implementation

The pre-process filter and the Kalman filter were implemented in Matlab, as GUI soft-
ware. The program utilizes the data from the static temperature test and the spin table
test. The whole process is performed only by choosing the right data sources. The Mat-
lab program is designed to fulfill the calibration chain developed, and have been designed
to read the automatically generated LabView data files directly. The only “manual” pro-
cess for the user is to create a single variable of both the freezer test and the oven test.
This is performed manually, since experiences showed that there can be some parts of
the data which should be rejected.

Figure 5.6: A Matlab software with a GUI was developed, to easily perform gyro cali-
bration. All of the calibration values are listed in a table.

62 CHAPTER 5. SENSOR CALIBRATING

5.1.6 Results
Our version of the SAR sensor, can measure a maximum angular rate of 100

◦
/s, while the

ITG-3200 are able to measure up to 2000
◦
/s. The spin table test was performed at both

100
◦
/s and 1800

◦
/s as maximum speed. A selection of the results are presented as figures

and tables in this section. Initially, the ITG-3200 sensor provided poor results, compared
to the SAR sensors. A high bias was present, and as we observed at the temperature
test, it was also highly temperature dependent. However, after a calibration process,
the two different sensor setups performed very close to each other, almost unable to
distinguish from each other. It was not tested to use a second order temperature fit on
the SAR sensor, but the result would probably not change much. In table 5.1 the standard
deviation of the resulting error plot is listed for the different axis. It is not tested how the
sensors behave over time, but based on the knowledge from the calibration process, the
ITG-3200 sensor is preferable in the future work of the project. The recommendation is a
based on the price, physical space on the ADCS card, complexity and power consumption
of the two sensor setups.

5.1.
G

Y
R

O
63

SAR, 100
◦
/sec ITG 100

◦
/sec ITG1800

◦
/sec

Parameter Symbol X Y Z X Y Z X Y Z
Temperature coefficient aT 0.0187 -0.0107 -0.017 -0.1926 -0.1043 0.1708
Pre calibration offset O0 0.1244 0.2299 0.1064 -0.3331 12.5697 -7.5246

Misalignment X δx_ -0.0423 -0.0255 -0.009 -0.0259 -0.0092 -0.0264
Misalignment Y δy_ 0.0101 0.0042 0.0151 0.0018 0.0151 0.002
Misalignment Z δz_ -0.0211 -0.0288 -0.0353 0.0041 -0.0352 0.0044

Scale S 0.0002 0.0083 0.0021 0.006 0.0087 0.0067 0.0057 0.0077 0.0073
Bias β 0.3153 -0.3222 -0.4121 -0.1689 -0.0395 0.5258 -0.1898 -0.0537 0.5195

Standard deviation 0.5847 0.5297 0.5513 0.5076 0.5244 0.4915 2.2453 2.1648 2.2520

Table 5.1: Gyro sensor parameters calculated from test data. The calibration results of the temperature calibration and spin test. The
values are automatic calculated by the Matlab software developed, all values in ◦

/sec.

64 CHAPTER 5. SENSOR CALIBRATING

0 1000 2000 3000 4000 5000 6000
−5

−4

−3

−2

−1

0

1

2

3

4

5
Rate Table Test Error After Preprocessing

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(a) ITG-3200

0 1000 2000 3000 4000 5000 6000
−6

−4

−2

0

2

4

6
Rate Table Test Error After Preprocessing

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(b) SAR150-100

Figure 5.7: Rate table test error after pre-processing. The measured data from the rate
table test is subtracted from the reference and pre-processed. We can clearly see the
offset. Remember that the reference is given in figure 5.4. Results of 100

◦
/s test.

5.1. GYRO 65

0 1000 2000 3000 4000 5000 6000

−1

−0.5

0

0.5

1

Kalman State Parameters

Iterations

S
ta
te

V
a
lu
es

δxy

δxy

δyx

δyz

δzx

δzy

λx

λy

λz

βx

βy

βz

(a) ITG-3200

0 1000 2000 3000 4000 5000 6000

−1

−0.5

0

0.5

1

Kalman State Parameters

Iterations

S
ta
te

V
a
lu
es

δxy

δxy

δyx

δyz

δzx

δzy

λx

λy

λz

βx

βy

βz

(b) SAR150-100

Figure 5.8: The Kalman filter state parameters during the 6000 iterations. Results of
100

◦
/s test.

66 CHAPTER 5. SENSOR CALIBRATING

0 1000 2000 3000 4000 5000 6000
−4

−3

−2

−1

0

1

2

3

4

5
Rate Table Test Errors After Calibration

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(a) ITG-3200

0 1000 2000 3000 4000 5000 6000
−4

−3

−2

−1

0

1

2

3

4
Rate Table Test Errors After Calibration

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(b) SAR150-100

Figure 5.9: Rate table test error after calibration. The error after pre-processing and
calibration is a big improvement from the uncalibrated data set. The performance looks
pretty similar on these tables, which is confirmed by the standard deviation values.
Results of 100

◦
/s test.

5.1. GYRO 67

0 1000 2000 3000 4000 5000 6000
−80

−60

−40

−20

0

20

40

60

80
Rate Table Test Error After Preprocessing

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(a) Before calibration

0 1000 2000 3000 4000 5000 6000
−10

−8

−6

−4

−2

0

2

4

6

8
Rate Table Test Errors After Calibration

Time (samples)

A
n
g
u
la
r
V
el
o
ci
ty

(d
eg
/
se
c)

X-axis

Y-axis

Z-axis

(b) After calibration

Figure 5.10: The ITG-3200 was also tested at a max rate of 1800
◦
/s. The calibration

process makes the data way better. An extra bias linear to the acceleration can be
observed, and is approximately one tenth of the acceleration.

68 CHAPTER 5. SENSOR CALIBRATING

5.2 Magnetometer

5.2.1 Error Characterization

The magnetometer reading can be distorted by several sources. It is important to know
how they affect readings, to avoid and/or compensate for them. The most important
error sources for a general magnetometer are characterized and parameterized in this
section.

Hard Iron and Soft Iron

Hard iron and soft iron disturbances are changes in the magnetic field applied to the
sensor. Hard iron sources are permanent magnets fixed in the frame of the sensor. The
disturbing magnetic field from a hard iron source is constant, and creates a magnetic
bias. Soft iron sources are ferromagnetic materials, which are being magnetized by the
magnetic field applied to it. The magnetic field created is dependent on the direction
and magnitude of the applied field. We denotes the hard iron error as bHI , and the more
complex soft iron as

hSI = CSIR
behe

Where he is the magnetic field in earth (ECEF) frame, Rbe is the rotational matrix
from body to earth, and CSI is the 3× 3 soft iron transformation matrix.

Scaling and Bias

As on most sensors, a scaling error and a bias must be taken account for. We represents
the scale error by the 3× 3 matrix SM , and the bias as by the vector bM ∈ R3

Noise

A disturbing white uncorrelated noise for each sample is present, and denoted nmi.

Non-orthogonality and alignment error

The non-orthogonality of the three axis of a sensor can also be described by a transfor-
mation matrix. We defines

CNO =

 1 0 0
sin(ψ) cos(ψ) 0
−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)


where (ψ, θ, φ)are the Euler angles Yaw, Pitch and Roll, respectively. The non-orthogonality
is seen with the body frame as reference.

All the above errors combined yields

hri = SMCNO(CSIR
be
i he + bHI) + bM

where hri is the non orthogonal magnetic reading. By setting C = SMCNOCSI ,
b = SMCNObHI + bM and hei = Rbe

i he, we have a more general function

hri = Chbi + b + nmi

5.2. MAGNETOMETER 69

In [40], it is shown that a Singular Value Decomposition (SVD) performed on C, gives

C = RLSLV′L

where the L denotes that they are parameters of an ellipsoid, RL is a rotation matrix,
SL is a 3× 3 diagonal scale matrix, and VL is a orthogonal transformation matrix. This
describes that measurements of arbitrary directed magnetometer in a uniform magnetic
field, but with the errors described, will distribute along the surface of a biased, scaled,
skewed and rotated ellipsoid. A perfect sensor without error would have distributed
its measurement points along the surface of a sphere. Our goal is to find the ellipsoid
parameters, to correct back to a sphere. In [40], an optimization problem is defined, to
find those parameters. It is shown that by minimizing the unconstrained problem

min
T

n∑
i=1

(‖T(hri − bT ‖ − 1)
2 (5.3)

Where T is a 3×3 matrix of real values. When the optimal values T∗ and b∗T is achieved,
a SVD decomposition gives

T∗ = VLS−1L R′L

which makes that the calibrated value is given by

hci = S−1L R′L(hri − b)

There are several elegant methods to solve this minimization problem, and several are
mentioned in [40]. For our, not time critical calibration process, and evenly distributed
measurements, a numerical brute force method was developed in matlab, and presented
in the source code appendix E. The method described by words, like this:

1. Find the best possible values for T and b, so the process wont take to long. This
is performed by looking at the uncalibrated data plot 5.13.

2. Determine the partial derivative for T and b in turns, based on the derived formula
given in [40]:

∇
ˆ
| T =

n∑
i=1

2cT · ui ⊗Tui

∇
ˆ
|b=

n∑
i=1

−2cT ·T′Tui

where ui ≡ hri − b, and cT = 1− ‖Tui‖−1.

3. Correct T and b by a small fraction of the corresponding partial derivative.

4. Calculate the error by equation 5.3.

5. Check if the step was successful (less error than last time), and adjust the fraction
from 3, up if the error was decreasing and down if not.

If the initial values are not good enough, the process will take very long time, and several
hundreds of thousand iterations are necessary. In our case, the optimal parameters was
found after approximately 500 iterations, as illustrated in figure 5.11

70 CHAPTER 5. SENSOR CALIBRATING

0 500 1000 1500

0.16

0.18

0.2

0.22

0.24

0.26

0.28
Total error of the minimization function

Iterations

S
u
m

o
f
E
rr
o
rs

Figure 5.11: The minimization of equation5.3, trying to fit our measurement data to an
ellipsoid. The optimization problem was solved fast, due to good initial values.

5.2.2 Calibration test
Measurement data as it is plotted in figure 5.13 was obtained by acquiring data through
the LabView VI. The ADCS card was simply turned in all arbitrary directions, while the
3D-plot in matlab continuously displayed which areas was measured. In that way, we
obtained fairly evenly distributed measurements. In such a test, it is important to be far
from any disturbing sources.

5.2.3 Results
The calibration process is simple to perform, and gives a good correction for uneven
scaling of the different the axes, bias and misalignment. As long as the sensor is not
calibrated to a reference, the accuracy of the magnetic field strength and the rotation
between the sensor and the body frame is unknown. Both of these corrections are easily
performed by having a good reference. A fluxgate magnetometer is available at the
University, and may be a good reference for those corrections.

5.2. MAGNETOMETER 71

0 500 1000 1500 2000 2500 3000
0.25

0.3

0.35

0.4

0.45

0.5
Absolute

Samples

A
b
so
lu
te

M
a
g
n
et
ic

F
ie
ld

(G
a
u
ss
)

(a) Uncalibrated

0 500 1000 1500 2000 2500 3000
0.33

0.335

0.34

0.345

0.35

0.355

0.36
Absolute

Samples

A
b
so
lu
te

M
a
g
n
et
ic

F
ie
ld

(G
a
u
ss
)

(b) Calibrated

Figure 5.12: Absolute values measured in the HMC5883 magnetometer test.

72 CHAPTER 5. SENSOR CALIBRATING

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
XZ-plot

X-sensor (Gauss)

Z
-s
en
so
r
(G

a
u
ss
)

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

X-sensor (Gauss)

3D-plot

Y-sensor (Gauss)

Z
-s
en
so
r
(G

a
u
ss
)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
XY-plot

X-sensor (Gauss)

Y
-s
en
so
r
(G

a
u
ss
)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
ZY-plot

Z-sensor (Gauss)

Y
-s
en
so
r
(G

a
u
ss
)

Figure 5.13: Uncalibrated HMC5883L turned in arbitrarily directions inside a building,
have generated this data set. We can see that it is weakly elliptical.

5.2. MAGNETOMETER 73

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
XZ-plot

X-sensor (Gauss)

Z
-s
en
so
r
(G

a
u
ss
)

−0.4
−0.2

0
0.2

−0.4
−0.2

0
0.2

−0.4

−0.2

0

0.2

0.4

X-sensor (Gauss)

3D-plot

Y-sensor (Gauss)

Z
-s
en
so
r
(G

a
u
ss
)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
XY-plot

X-sensor (Gauss)

Y
-s
en
so
r
(G

a
u
ss
)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
ZY-plot

Z-sensor (Gauss)

Y
-s
en
so
r
(G

a
u
ss
)

Figure 5.14: Calibrated HMC5883L. The data is corrected after finding the ellipsoid
parameters.

74 CHAPTER 5. SENSOR CALIBRATING

Chapter 6

Discussion

The work of this thesis have spanned widely, from mechanical problems, to mathematics
and electronics. The following main goals are achieved:

• A first version of the ADCS has been designed, and detumbling is implemented.
The ADCS card will be the basis for future work on the ADCS system.

• The firmware for the microcontroller has been programmed, fulfilling its task for a
detumbling system, except from the measurement of the magnetorquer current.

• Magnetorquers have been designed, included a method to reproduce new ones, and
in different sizes. The Coil winder is successfully tested.

• A LabView VI has been developed in order to perform calibration procedures, and
generally control the microcontroller on the ADCS card.

• Two different Gyro sensor setups have been tested, and a calibration method was
developed, which should be easy to do again in a later phase of the project. The
ITG-3200 was considered as an adequate performance after the calibration.

• A HMC5883L magnetometer is tested, and a calibration method is demonstrated.

6.1 Future Work
The following subjects should be goals for the future work of the

• A current sensing circuit should be implemented for the magnetorquers.

• The magnetometer should be calibrated with an accurate reference.

• The mechanical properties of the satellite should be determined, and the last mag-
netorquer be produced.

• The hardware platform for the Determination and Control part should be selected,
so the next version of an ADCS card can include all the necessary computational
power.

• A third sensor should be implemented, this would most likely be a solar sensor,
since it is fairly simple, and it has a well defined reference.

75

76 CHAPTER 6. DISCUSSION

• Attitude determination should be developed after, or in the same time as the solar
sensor and the hardware is implemented.

• The whole system should be tested thorough, and simulation with hardware in the
loop should be performed.

Bibliography

[1] Cal Poly SLO, The CubeSat Program (2009) CubeSat Design Spec-
ification Rev. 12 http://www.cubesat.org/index.php/documents/
developers1. 1.1

[2] Bekkeng, T. A. (2009) Prototype Development of a Multi-Needle Lang-
muir Probe System, Master’s thesis, UIO 1.2, 1.2.2

[3] Oredsson, M. (2010) Electrical power system for the CubeSTAR
nanosatellite, Master’s thesis, UIO 1.2

[4] Stray, F. (2010) Attitude Control of a Nano Satellite, Master’s thesis,
UIO 1.2, 1.4.1, 2.4.2, 2.4.3, 3.2.1

[5] Tresvig, J. L. (2010) Design of a Prototype Communication System for
the CubeSTAR Nano-satellite, Master’s thesis, UIO 1.2

[6] Grønstad, M. A. (2010) Implementation of a communication protocol for
CubeSTAR, Master’s thesis, UIO. 1.2

[7] Vangli, H. (2010) Construction of a remotely operated satellite ground
station for low earth orbit communication, Master’s thesis, UIO. 1.2

[8] Svartveit, K. (2003) Attitude determination of the NCUBE satellite, Mas-
ter’s thesis, NTNU. 1.4

[9] Krogh, K. and Schreder, Elmo (2002) Attitude Determination for AAU
CubeSat, Master’s thesis, Aalborg University. 1.4, 2.7

[10] Graversen, T., Frederiksen, M. K. and Vedstesen, S. V. (2002) Attitude
Control system for AAU CubeSat, Master’s thesis, Aalborg University.
1.4

[11] Wertz, R (1978) Spacecraft Attitude Determination and Control, Kluwer,
ISBN 90-277-0959-9. 1.4

[12] Cruise, A. M., Bowles, J. A., Patrick, T. J. and Goodall, C. V. (1998)
Principles of Space Instrument Design, Cambridge, ISBN 0-521-45164-7.
1.4

[13] Sidi, M. J. (1997) Spacecraft Dynamics & Control, Cambridge, ISBN
0-521-55072-6. 1.4

1Accessed August 2011

77

http://www.cubesat.org/images/developers/cds_rev12.pdf
http://www.cubesat.org/images/developers/cds_rev12.pdf
http://www.cubesat.org/index.php/documents/developers
http://www.cubesat.org/index.php/documents/developers
http://www.duo.uio.no/sok/work.html?WORKID=92317
http://www.duo.uio.no/sok/work.html?WORKID=92317
http://www.duo.uio.no/sok/work.html?WORKID=109295
http://www.duo.uio.no/sok/work.html?WORKID=109295
http://www.duo.uio.no/sok/work.html?WORKID=107090
http://www.duo.uio.no/sok/work.html?WORKID=105072
http://www.duo.uio.no/sok/work.html?WORKID=105072
http://www.duo.uio.no/sok/work.html?WORKID=104870
http://www.duo.uio.no/sok/work.html?WORKID=104870
http://www.duo.uio.no/sok/work.html?WORKID=98994
http://www.duo.uio.no/sok/work.html?WORKID=98994
http://folk.ntnu.no/svartvei/svartveit03.pdf
http://www.space.aau.dk/cubesat/dokumenter/ADC-report.pdf
http://www.space.aau.dk/cubesat/dokumenter/ADC-report.pdf
http://www.space.aau.dk/cubesat/dokumenter/acs_report.pdf
http://www.space.aau.dk/cubesat/dokumenter/acs_report.pdf

78 BIBLIOGRAPHY

[14] Hall, C. D (2003) Spacecraft Attitude Dynamics and Control, www.dept.
aoe.vt.edu/~cdhall/courses/aoe4140/

1
. 1.4, 2.2.3

[15] Seeger, J., Lim, M. and Nasiri, Development of High-Performance, High-
Volume Consumer Mems Gyroscopes, InvenSense, www.invensense.com/
mems/gyro/documents/whitepapers 1. 2.5, 2.6

[16] Michael’s List of CubeSat Satellite Missions, www.mtech.dk/thomsen/
space/cubesat.php 1. 2.1

[17] Honeywell, Magnetic Sensor Overview, www.magneticsensors.com 1. 2.3

[18] Honeywell, Application Note AN213, www.magneticsensors.com 1. 2.2

[19] Fraden, J. (2003) Handbook of Modern Sensors: Physics, Designs, and
Applications. 2.2.2

[20] Larson,W. J. and Wertz, J. R., editors (1992) Space Mission Analysis
and Design. Microcosm, Inc. and Kluwer Academic Publishers, second
edition. 2.2.3

[21] Lerner, L. S. (1995) Physics for scientists and engineers. 3.1, 3.1

[22] Atmel (2007) AVR Butterfly Application Rev07, http://www.atmel.com
1.

[23] Friedel, Jonas and McKibbon, Sean (2011) Thermal Analysis of the Cube-
Sat CP3 Satellite, California Polytechnic State University. 4.2.7.1

[24] Atmel, AN1612 PDI programming driver, www.atmel.com 1. 4.2.2

[25] Øye, H. K. (2006) Implementering og test av MEMS gyroskop i romfart-
sapplikasjoner, Master’s thesis, UIO. 2.2.2.1, 4.2.3

[26] Sensonor, SAR150 Gyro Sensor Datasheet, www.sensonor.no 1. 4.3a,
4.3b

[27] InvenSense, ITG-3200 Product Specification, www.invensense.com 1. 4.5

[28] Honeywell, 3-Axis Digital Compass IC HMC5883L Data Sheet, www.
magneticsensors.com 1. 4.6

[29] Atmel, AVR1003: Using the XMEGA Clock System, www.atmel.com 1.
4.2.1.1

[30] ROHM, H-bridge drivers Technical Note, www.rohm.com 1. 4.7, 4.2, 4.8

[31] Kester, W., Bryant, J. and Byrne, M (2008) Grounding Data Converters
and Solving the Mystery of "AGND" and "DGND", Tutorial, Analog
Devices. 4.2.8

[32] Grødal, A. (1997) Elektromagnetisk kompatibilitet. Tapir forlag. 4.2.8

[33] Atmel, AVR1307: Using the XMEGA USART, www.atmel.com 1. 4.2.2,
4.4.1

www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/
www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/
http://invensense.com/mems/gyro/documents/whitepapers/Development-of-High-Performance-High-Volume-Consumer-MEMS-Gyroscopes.pdf
http://invensense.com/mems/gyro/documents/whitepapers/Development-of-High-Performance-High-Volume-Consumer-MEMS-Gyroscopes.pdf
www.invensense.com/mems/gyro/documents/whitepapers
www.invensense.com/mems/gyro/documents/whitepapers
www.mtech.dk/thomsen/space/cubesat.php
www.mtech.dk/thomsen/space/cubesat.php
www.magneticsensors.com
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN213_Set_Reset_Function_of_Magnetic_Sensors.pdf
www.magneticsensors.com
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3146
http://www.atmel.com
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1054&context=aerosp
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1054&context=aerosp
http://www.atmel.com/dyn/resources/prod_documents/doc8282.pdf
www.atmel.com
http://www.sensonor.com/media/49871/datasheet_sar150_high_precision_gyro_sensor_ts1514_r1.pdf
www.sensonor.no
http://invensense.com/mems/gyro/documents/PS-ITG-3200A-00-01-6.pdf
www.invensense.com
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/HMC5883L_3-Axis_Digital_Compass_IC.pdf
www.magneticsensors.com
www.magneticsensors.com
http://www.atmel.com/dyn/resources/prod_documents/doc8072.pdf
www.atmel.com
http://www.rohm.com/products/databook/motor/pdf/bd621x-e.pdf
www.rohm.com
http://www.analog.com/static/imported-files/tutorials/MT-031.pdf
http://www.analog.com/static/imported-files/tutorials/MT-031.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8049.pdf
www.atmel.com

BIBLIOGRAPHY 79

[34] Atmel, AVR1309: Using the XMEGA SPI, www.atmel.com 1. 4.4.1

[35] Atmel, AVR1308: Using the XMEGA TWI , www.atmel.com 1. 4.4.1

[36] Bekkeng, J. K. (2007) Prototype Development of a Low-Cost Sounding
Rocket Attitude Determination System and an Electric Field Instrument,
Article, UiO. 5.1

[37] Bekkeng, J.K (2007) Prototype Development of a Low-Cost Sounding
Rocket Attitude Determination System and an Electric Field Instrument,
PhD thesis, UiO 5.1

[38] Welch, G. and Bishop, G (2006) An Introduction to the Kalman Filter,
University of North Carolina 5.1.4

[39] Brown, R. G. and Hwang, P. Y. C. (1992) Introduction to random sig-
nals and applied Kalman filtering 2nd edition, Wiley, ISBN 0-471-52573-1
5.1.4

[40] Vasconcelos, J. F., Elkaim, G., Silvestre, C., Oliveira, P. and Cardeira,
B., A Geometric Approach to Strapdown Magnetometer Calibration in
Sensor Frame 5.2.1, 5.2.1, 2

http://www.atmel.com/dyn/resources/prod_documents/doc8057.pdf
www.atmel.com
http://www.atmel.com/dyn/resources/prod_documents/doc8054.pdf
www.atmel.com
http://tid.uio.no/~jankbe/Filer/PhD_JKB_200207.pdf
http://tid.uio.no/~jankbe/Filer/PhD_JKB_200207.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.soe.ucsc.edu/~elkaim/Documents/ReimmanTAES08.pdf
http://www.soe.ucsc.edu/~elkaim/Documents/ReimmanTAES08.pdf

80 BIBLIOGRAPHY

Appendix A

Coil Winder User Manual

This appendix is a user guide for the coil winder created in this thesis.

A.1 Overview of Functionality

The coil winder is designed to produce coils in sizes common on CubeSats. The coil
core must be printed by a 3D-printer to fit the size and shape desired for the coil. The
maximum distance from center of the coil to outer edge (normally corner) of the coil is
120mm. The maximum thickness is 4mm, while maximum recommended thickness is
3mm. The maximum thickness is easily adjusted.

A.2 Understanding the Controller

Control of the coil winder is performed through the potentiometer and the joystick. The
potentiometer is used to adjust the rotation speed of the motor, while the joystick is the
controller for the rest of the electronics. In A.1, a schematic representation of the menu
system is presented. The square boxes represent states the system can be in, while the
rounded boxes shows actions which can be performed. The direction of the lines out of
each box represents the direction to push the joystick. All values displayed when using
the coil winder, is in hundreds of mm. The values describing the position of the guiding
wheel, ranging from 0 to 400, is counting from most left position. In other words, 0 to
400 represents the distance 0mm to 4mm which the servo is pushing the guiding wheel.

81

82 APPENDIX A. COIL WINDER USER MANUAL

CUBESTAR COIL

WINDER BY KJETIL

MANUAL

LEFT

RIGHT

WIRE

COIL

RUN

RESET

COUNTER
CONFIRM

FREERUN

Step right

Step left

Goto 0

LEFT POINT

Center push to restore

Step right

Step right

Restore

RIGHT POINT

Center push to restore

Step left

Step right

Restore

WIRE THICKNESS

Center push to restore

Step left

Step right

Restore

COIL WITH

Center push to restore

Step left

Step right

Restore

RUNNING

Center push to return

COUNTER

RESET

Force left* Force right*

*When in run mode, forcing to left or right will update left point or right point the following way:

When used to switch direction, the position where it turned will be the new outer point.

When used to pass the edge position, the passed edge position is updated.

Center push

Figure A.1: Flowchart showing the menu system of the coil winder. The direction of the
lines and arrows are illustrating the four different directions on the controlling joystick.

A.3. ADHESIVE AND SAFETY CONSIDERATIONS 83

A.3 Adhesive and Safety Considerations
Adhesive binding the cobber wires together in the coil frame is required. A low viscosity
adhesive is recommended to get the thin wires close to each other. For space applications,
low outgassing adhesive is required. A suitable low outgassing epoxy for space purposes
are Epoxy Technology U300-2, available from Micro Joining KB in Sweden. U300-2 is
a two component low outgassing high viscosity epoxy. Curing time is according to the
data sheet90min at 120◦C.

When using EPO-TEK U300-2, the following safety actions should be performed:

• Avoid inhalation. Make sure good ventilation is present when the product is not
yet cured.

• The product should not be in contact with human skin.

• Use nitrile protection gloves to avoid contact, do not use latex gloves.

• Use eye protection.

A.4 Step by Step Guide
1. Make sure you have a coil frame with a small hole where you want the ends of the

wire to pass through for termination. Remember:

(a) Two holes can be made, if you want the wire to pass through at different
locations.

(b) The second wire shall be passed through the wire when winded; the winded
wires are tighter at the corners and less tight at the middle of the sides. This
makes it easier to have the hole close to the middle.

(c) The holes must be placed in the area of the opening of the plates holding the
coil frame.

2. Make sure power is disconnected, so that the servo can be freely rotated.

3. Assemble the coil frame included the shaft holders.

4. By hand, turn the servo wheel in mid position.

5. Mount the assembled coil frame onto the spinning shaft. Try to align it so center
of coil frame is directly above the center of the wire guiding wheel.

6. Loosen the wing nuts on the wire break, so you are able to insert a wire.

7. Mount your wire reel at the back shaft.

8. Pass the thread under the back lower shaft, through the wire break, under the front
lower shaft, and around the guiding wheel.

9. Put the wire onto the coil frame and passing it through the hole referred to in pt.
1. To temporarily fasten the wire, twist it onto a screw outside the coil frame.

10. A wire working as a “fish tape” should be inserted into the same hole (or the other
one, if two separate holes are made). This wire can be twisted into itself on the
outside of the coil frame, until the coil is winded up. (Refer to pt. 18 for use).

84 APPENDIX A. COIL WINDER USER MANUAL

11. Connect motor, servo and speed controller onto the coil winder card. Connect 12V
power.

12. Set coil with and wire thickness in the menu system. Refer to A.2.

13. Adjust the setup, by setting left and right edges for where the wire guider should
move, and get the right tension of the wire by tighten the wire break. Some notes
for adjusting follows:

(a) To be able to find the right left and right position it might be a good practice
to wind the some turns of wire into the coil frame while finding the right
values.

(b) Since the servo are able to push the wire guiding wheel at most 4mm, the
coil frame must be placed directly above, inside these 4mm. This is best seen
while testing, and may be adjusted at this point.

(c) The left and right point should match the thickness of the coil (right point -
left point = coil thickness).

(d) Wire winded up while testing should be removed, when ready to make the
coil. This due to sub-optimal winding while testing.

14. Put the coil frame in upright position with no wire on it, this is the “0 turn” position
which the counting starts from.

15. Reset counter.

16. Enter RUN mode. Note: The counter is only counting in RUN mode.

17. Start the winding process. In the winding process you should do the following:

(a) Stop winding and add adhesive when necessary. It should always be a layer
of liquid adhesive above the wire.

(b) If the wire stacks up skewed on one of the sides, adjust it with the controller
as described in A.2.

(c) Control the speed, and always keep an eye on the winding.
(d) Keep an eye on when the coil is full. The wires should not be seen from the

side of the coil frame.

18. Remember the start position in pt. 14, and note the stop position. Remember that
the counter does not count the last round if you have not fully completed it.

19. Cut the wire.

20. Solder the wire onto the “fish tape” wire, and gently drag it through the hole.

21. Cut, terminate and glue the ends as desired.

22. Disassemble the coil frame.

23. Cure the adhesive as specified in the data sheet1. To avoid the coil from bending,
cure it under pressure of a flat surface.

24. Inspect and test the coil.

25. Mark the coil with its turn number so you won’t forget it.

1http://www.epotek.com/sscdocs/datasheets/U300-2.PDF

http://www.epotek.com/sscdocs/datasheets/U300-2.PDF

A.4. STEP BY STEP GUIDE 85

37mm 33mm

70mm

35mm

2 mm offset from center

Center

Figure A.2: Circular plastic dish mounted on servo. The distance from rotation axis
to left edge in this position is 37mm. After a 180◦ rotation, the distance is decreased
to 33mm. The total walk of 4mm is changed by applying a new plastic dish with the
rotation hole offset changed. The total walk is equal to offset∗2.

86 APPENDIX A. COIL WINDER USER MANUAL

A.5 Adjusting Coil Thickness above 3mm

The maximum coil thickness producible by the coil winder is adjustable by changing the
plastic dish mounted on the servo. The present dish with a recommended limit of 3mm
is actually able to create a 4mm thick coil, but some headroom is recommended. It
is harder to adjust, and higher uncertainty while using the whole range of a dish. For
creating thicker coils than 3mm, new mounting holes should be made in the plastic dish,
or a new dish should be produced. The determining parameter of how thick coil it is
possible to wind, is the distance between the center of the plastic dish, and the rotating
hole. In figure A.2, the dish which is mounted on the coil winder now, it has a 2mm
offset, which enables the 4mm walk.

Appendix B

Schematics PCB and Part List

87

88 APPENDIX B. SCHEMATICS PCB AND PART LIST

B
.1.

A
D

C
S

C
A

R
D

89

B
.1

A
D

C
S

C
ard

F
igure

B
.1:

Schem
atic

A
D
C
S
C
ard,T

op
Level

90
A

P
P

E
N

D
IX

B
.

SC
H

E
M

A
T

IC
S

P
C

B
A

N
D

PA
R
T

LIST

F
igure

B
.2:

Schem
atic

A
D
C
S
C
ard,M

icrocontroller

B
.1.

A
D

C
S

C
A

R
D

91

F
igure

B
.3:

Schem
atic

A
D
C
S
C
ard,M

agnetom
eter

92
A

P
P

E
N

D
IX

B
.

SC
H

E
M

A
T

IC
S

P
C

B
A

N
D

PA
R
T

LIST

F
igure

B
.4:

Schem
atic

A
D
C
S
C
ard,SA

R
gyros

B
.1.

A
D

C
S

C
A

R
D

93

F
igure

B
.5:

Schem
atic

A
D
C
S
C
ard,L3G

4200D
3-axis

gyro

94
A

P
P

E
N

D
IX

B
.

SC
H

E
M

A
T

IC
S

P
C

B
A

N
D

PA
R
T

LIST

F
igure

B
.6:

Schem
atic

A
D
C
S
C
ard,5V

charge
pum

p
regulator

B
.1.

A
D

C
S

C
A

R
D

95

F
igure

B
.7:

Schem
atic

A
D
C
S
C
ard,C

oildriver

96 APPENDIX B. SCHEMATICS PCB AND PART LIST

(a) Top Electric (b) GND

(c) Power (d) Bottom Electric

Figure B.8: PCB ADCS card

B.1. ADCS CARD 97

--
 Parts List

 CADSTAR Design Editor Version 12.1

Design: M:\Master\Cadstar\ADCS-card\ADCS.pcb

Design Title:

Date: 15. august 2011
Time: 11:03

--
Part Name Part Number Description Qty. Comps.
--------- ----------- ----------- ---- ------

ATMEL/ATXMEGA128/TQFP X-XX-XXX-XX ATMEL AVR MICROCONTROLLER 1 U201
BB/INA138/SMD F-1564888 BURR BROWN CURRENT SHUNT MONITOR 3 X601-603
CAP/100NF/0603R E-65-759-63 10% 16V 0603 X7R 9 C105
 C201-202
 C503-504
 C506
 C602
 C604
 C606
CAP/10NF/0603R E-65-758-49 10% 50V 0603 X7R 4 C402
 C501-502
 C505
CAP/10UF/0805R X-XX-XXX-XX 0805 (Y5V / 10V / E-65-540-67 REEL! 3000) 1 C401
CAP/1U0F/0603R E-65-202-17 10% 25V 0603 X5R 2 C101-102
CAP/220NF/1206R E-65-777-04 20% 50V 1206 X7R 1 C301
CAP/4U7F/0603R F-1833806 AVX 10% 10V 0603 X5R 1 C303
CAP/BYPASS/0603R E-65-759-63 10% 16V 0603 X7R 20 CB201-210
 CB301-302
 CB401-402
 CB501-506
CON/PR13X2PIN/HORIZ E-43-714-31 13X2 TYCO PINROW ANGELED 1 CN001
CON/PR2 E-43-702-19 2 SCOTT ELEC. PINROW 4 CN101
 CN601-603
CON/PR3X2 E-43-704-33 3X2 SCOTT ELEC. PINROW 1 CN201
CON/PR4 E-43-702-19 4 SCOTT ELEC. PINROW 2 CN301
 CN401
LED/19-21SDRC/SMD E-75-308-01 SMD LED RED 4 D201-204
LED/19-21SYGC/SMD E-75-312-47 SMD LED GREEN 2 D101-102
MAXIM/MAX682ESA F-1380017 3.3V-INPUT TO REGULATED 5V-OUTPUT, CHARGE PUMPS 1 X101
RES/0R00/0603R E-60-440-02 RESISTOR KOA 0603 1% 0.1W 1 R209
RES/0R025/1206R F-1703806 CURRENT SENSE RESISTOR 1206 1% 0.25W 3 R601-603
RES/100K/0603R E-60-452-64 RESISTOR KOA 0603 1% 0.1W 1 R101
RES/100R/0603R E-60-445-49 RESISTOR KOA 0603 1% 0.1W 1 R202
RES/10K0/0603R E-60-450-25 RESISTOR KOA 0603 1% 0.1W 6 R201
 R203-206
 R401
RES/150R/0603R E-60-445-80 RESISTOR KOA 0603 1% 0.1W 1 R103
RES/39R0/0603R E-60-444-40 RESISTOR KOA 0603 1% 0.1W 1 R102
RES/470K/0603R E-60-454-21 RESISTOR KOA 0603 1% 0.1W 3 R604-606
RES/62R0/0603R E-60-444-99 RESISTOR KOA 0603 1% 0.1W 4 R207-208
 R210-211
SPES/BD6210 F-1716258 H-BRIDGE DRIVER 3 U601-603
SPES/HMC5883L/SMD X-XX-XXX-XX 3-AXIS DIGITAL COMPASS IC 1 X301
SPES/L3G4200D X-XX-XXX-XX MEMS MOTION SENSOR: 3-AXIS DIGITAL OUTPUT GYROSCOPE 1 U401
SPES/SAR150-100/HOR X-XX-XXX-XX SENSONOR GYRO SENSOR. HIGH PREC. HORISONTAL MOUNT. RATE UP TO 100dg/s 2 U501-502
SPES/SAR150-100/VER X-XX-XXX-XX SENSONOR GYRO SENSOR. HIGH PREC. VERTICAL MOUNT. RATE UP TO 100dg/s 1 U503
SPES/TXB0104PWR F-1607891 4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR 3 X501-503
SW/SKHUAF/SMD E-35-790-18 ALPS-SMD PUSH BUTTON 1 SW201
TANT/0U47F/25V/SMD E-67-737-41 KEMET T491 TANTAL ELECTROLYTIC CAP 1 C403
TANT/100UF/6V3/SMD F-1135257 AVX TANTAL ELECTROLYTIC CAP 9 C103-104
 C302
 C601
 C603
 C605
 C607-609
TANT/10UF/16V/SMD-A E-67-702-83 KEMET T491 SERIES 20% 1 C203
XTAL/3M6864HZ/CFPS-69 F-1276668 IQD CFPS-69 +/- 50PPM SMD L.P OSC 1 XTAL201
--
 End of report
--

Figure B.9: Part List ADCS card

98 APPENDIX B. SCHEMATICS PCB AND PART LIST

B
.2.

M
IN

I
B

A
C

K
P

LA
N

E
C

A
R

D
99

B
.2

M
ini

B
ackplane

C
ard

F
igure

B
.10:

Schem
atic

M
iniB

ackplane
C
ard

100 APPENDIX B. SCHEMATICS PCB AND PART LIST

(a) Top Electric (b) GND

(c) Power (d) Bottom Electric

Figure B.11: PCB Mini Backplane Card

B.2. MINI BACKPLANE CARD 101

--
 Parts List

 CADSTAR Design Editor Version 12.1

Design: M:\Master\Cadstar\MiniBackplane\MiniBackplane.pcb

Design Title:

Date: 15. august 2011
Time: 11:01

--
Part Name Part Number Description Qty. Comps.
--------- ----------- ----------- ---- ------

CAP/100NF/0603R E-65-759-63 10% 16V 0603 X7R 5 C2-6
CON/DSUB9PF_GND/MM E-44-057-00 9PIN ANGLED DSUB-CON FEMALE (2.84mm) 1 CN4
CON/ELMCH2/ E-42-051-59 BAT.ELEM.CONNECTOR 2.1 MM 1 CN1
CON/PR13X2SOCKET/VER E-43-782-12 13X2 TYCO SOCKET 1 CN2
CON/PR2 E-43-702-19 2 SCOTT ELEC. PINROW 1 CN5
CON/PR6X2 E-43-704-33 6X2 SCOTT ELEC. PINROW 1 CN3
DIO/10BQ015 E-70-217-02 IR. SMD -VERY LOW DROP SCHOTTKY DIODE 15V/1A 1 D2
LED/19-21SDRC/SMD E-75-308-01 SMD LED RED 1 D4
POW/LM317AMDT E-73-266-56 ADJ. POS. REGULATOR TO-252 1 X1
RES/200R/0603R E-60-446-14 RESISTOR KOA 0603 1% 0.1W 1 R3
RES/330R/0603R E-60-446-63 RESISTOR KOA 0603 1% 0.1W 1 R2
RES/470R/0603R E-60-447-05 RESISTOR KOA 0603 1% 0.1W 1 R1
RES/820R/0603R E-60-447-62 RESISTOR KOA 0603 1% 0.1W 1 R5
ST/ST3232CD/SMD-S E-73-217-48 DUAL RS-232 TX/RX 3.0V - 5.5V 1 IC1
SW/SSSS922000 E-35-111-36 ALPS SLIDE SW. 1 SW1
TANT/100UF/6V3/SMD F-1135257 AVX TANTAL ELECTROLYTIC CAP 1 C608
TANT/1U0F/25V/A E-67-713-64 TANTAL ELECTROLYTIC CAP 1 C1
TRAN/BC817/SMD E-71-006-39 NPN TRANSISTOR SOT23 45V/0.5A 0.25W. 1 Q4
--
 End of report
--

Figure B.12: Part List Mini Backplane Card

102 APPENDIX B. SCHEMATICS PCB AND PART LIST

B
.3.

C
O

IL
W

IN
D

E
R

C
A

R
D

103

B
.3

C
oil

W
inder

C
ard

F
igure

B
.13:

Schem
atic

C
oilW

inder
C
ard

104 APPENDIX B. SCHEMATICS PCB AND PART LIST

(a) Top Electric

(b) Bottom Electric

Figure B.14: PCB Coil Winder Card

B.3. COIL WINDER CARD 105

--
 Parts List

 CADSTAR Design Editor Version 12.1

Design: M:\Master\Cadstar\CoilCard\Coil.pcb

Design Title:
ELAB-2011

Date: 15. august 2011
Time: 11:02

--
Part Name Part Number Description Qty. Comps.
--------- ----------- ----------- ---- ------

CAP/100NF/0603R E-65-759-63 CERAMIC CAP X7R +/-10% 16V 1 C1
CAP/100NF/CER E-65-736-87 KEMET CK05BX 50V (5mm SP) 2 C3
 C6
CAP/22NF/CER E-65-735-88 KEMET CK05BX 50V (5mm SP) 1 C2
CON/ELMCH2/ E-42-051-59 BAT.ELEM.CONNECTOR 2.1 MM 1 CN1
CON/PR2 E-43-702-19 2 SCOTT ELEC. PINROW 2 CN4
 CN7
CON/PR3 E-43-702-19 3 SCOTT ELEC. PINROW 2 CN3
 CN11
CON/PR4 E-43-702-19 4 SCOTT ELEC. PINROW 1 CN8
CON/PR5 E-43-702-19 5 SCOTT ELEC. PINROW 1 CN5
CON/PR5X2 E-43-704-33 5X2 SCOTT ELEC. PINROW 3 CN2
 CN9-10
DIO/10BQ015 E-70-217-02 IR. SMD -VERY LOW DROP SCHOTTKY DIODE 15V/1A 1 D2
POW/LM317T/TO220 E-73-120-77 ADJ. POS. REGULATOR TO-220 1 X1
RES/240R/0603R E-60-446-22 RESISTOR KOA 0603 1% 0.1W 1 R1
RES/2K00/0603R E-60-448-53 RESISTOR KOA 0603 1% 0.1W 1 R4
RES/2K00/0W6 E-60-726-07 FIRSTRONICS RM0207S 1% 0.6W 1 R3
RES/560R/0603R E-60-447-21 RESISTOR KOA 0603 1% 0.1W 1 R2
TANT/100UF/16V/C F-1793885 TANTAL ELECTROLYTIC CAP 1 C4
TANT/100UF/20V/RAD E-67-200-64 SANYO SA/SC 20% ELYT 1 C5
--
 End of report
--

Figure B.15: Part List Coil Winder Card

106 APPENDIX B. SCHEMATICS PCB AND PART LIST

Appendix C

LabView Source Code

107

108 APPENDIX C. LABVIEW SOURCE CODE

STOP

COM1 PC serial port

3E-5

-5E-5

-4E-5

-3E-5

-2E-5

-1E-5

0

1E-5

2E-5

Time (s)

971868

Z-axis

X-axis

Y-axis

Magnetic field HMC

4,8E-5

2,2E-5

2,4E-5

2,6E-5

2,8E-5

3E-5

3,2E-5

3,4E-5

3,6E-5

3,8E-5

4E-5

4,2E-5

4,4E-5

4,6E-5

Time

971868

Magnetic field0,000Magnetic field strengt

Bane til kalibreringsfil

0

z

0

y

0

x

Offset HMC

1

z

1

y

1

x

Gain HMC

150

-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

Time (s)

970869

Reference

X-axis

Y-axis

Z-axis

Angular velocity ITG

150

-200

-150

-100

-50

0

50

100

Time (s)

969869

X-axis

Y-axis

Z-axis

Reference

Angular velocity SAR

ITG:006100e2fe252096000e32f4

ITG

SAR:00d3ffeffea2001c000e32f4001a001b

SAR

HMC:010800d8ff910000000e32f4

Last Magnetometer HMC message

HMC:010800d8ff910000000e32f4

Received ascii from microcontroller

1000
0

200

400 600

800

Sample rate (ms)

ON 3-axis triple sensor gyros SAR

ON 3-axis single sensor gyro ITG

ON Magnetometer HMC

Choose sensor

0

z

0

y

0

x

Average value

AVZ neg

Z pos

Y neg

Y pos

X neg

X pos

Kalibrering

0

z

0

y

0

x

Offset SAR

1

z

1

y

1

x

Gain SAR

0

z

0

y

0

x

Offset ITG

1

z

1

y

1

x

Gain ITG

29,7929

ITG temp

12738

ms

14

Minutt

852738

RTms

Store ITGStore HMCBane til filmappe Store SAR

7E-5

-5E-5

-4E-5

-3E-5

-2E-5

-1E-5

0

1E-5

2E-5

3E-5

4E-5

5E-5

6E-5

Time

7,5E-5-5E-5 -2,5E-5 0 2,5E-5 5E-5

Plot 0XY Graph

6,29

0

2

4

phi
6,29

0

2

4

theta
6,29

0

2

4

psi

Euler Angles

Enabled

2000

Max input velocity (deg/sec)

50

ACL(deg/sec^2)

Rate Enable

Disabled

Rate table status

Microcontroller control Rate table

Magnetometer HMC Single chip gyro ITG Triple chip gyros SAR

Magnetometer

calibration

Averaging

0

Reference velocity (deg/s)

PC serial port

Magnetometer HMC extras

5 10

0

10

5

0

Sar data

0

ITG data

6

HMC data

Sample

Idle bDot

External control

Mode

Test ramp timing

28

SAR temp x

26

SAR temp y

27

SAR temp z

Figure C.1: Front Panel of the LabView VI ADCSmate.vi

109

Max input velocity (deg/sec)

ACL(deg/sec^2)

Rate error

Rate port

PC serial port

 0 [0..18]

 True

Rate Enable

Rate table status

PC serial port

115200

Magnetic field HMC

Magnetic field strengt

Offset HMC Gain HMC

Last Magnetometer HMC message

Kalibrering

ms

Minutt

RTms

Store HMC

z

y

x

0

0

0
0

XY Graph

Euler Angles

8E-51

01

Three dimensional plotting of measurement

 True

Enabled

0

Result

i

X

Y

Z

ms

Build Text30

z

y

x

HMC data

Logging of HMC data

 True
13000000

 True

 "HMC:"

4 0

4

4

4

4

z

y

x

0

x

0

y

0

z

Program

Instr

Bytes at Port

40
Received ascii from microcontroller

 True

0

 True

5

CtlRef

Time

Type

Source

Sample rate
rate

 [2] "Sample rate": Mouse Up; "Sample rate": Mouse Leave 1

Average value

0

0

0

0

 True

Choose sensor

4

4

0,9765625

60000

Sending command if button pressed or value changed Getting values out of string

Sensor name

X axis

Z axis

Temperature

Y axis

Minutes

ms

 False

0 0

Store SAR

Store ITG

HMC data

HMC.txt

 True

Store HMC

Bane til kalibreringsfil

X offset

Y offset

Z offset

X gain

Y gain

Z gain

Result

Build Text

Store calibration values

 True

Bane til filmappe

ITG data

ITG.txt

 True

Sar data

SAR.txt

 True

_

%x_%H%M
\

Rate table control

F
igure

C
.2:

B
lock

D
iagram

,C
om

plete
w
ith

rate
table

controller

110
A

P
P

E
N

D
IX

C
.

LA
B

V
IE

W
SO

U
R

C
E

C
O

D
E

Max input velocity (deg/sec)

ACL(deg/sec^2)

Rate error

Rate port

PC serial port

 0 [0..18]

 True

Rate Enable

Rate table status

PC serial port

115200

Magnetic field HMC

Magnetic field strengt

Offset HMC Gain HMC

Last Magnetometer HMC message

Kalibrering

ms

Minutt

RTms

Store HMC

z

y

x

0

0

0
0

XY Graph

Euler Angles

8E-51

01

Three dimensional plotting of measurement

 True

Enabled

0

Result

i

X

Y

Z

ms

Build Text30

z

y

x

HMC data

Logging of HMC data

 True
13000000

 True

 "HMC:"

4 0

4

4

4

4

z

y

x

0

x

0

y

0

z

Program

Instr

Bytes at Port

40
Received ascii from microcontroller

 True

0

 True

5

CtlRef

Time

Type

Source

Sample rate
rate

 [2] "Sample rate": Mouse Up; "Sample rate": Mouse Leave 1

Average value

0

0

0

0

 True

Choose sensor

4

4

0,9765625

60000

Sending command if button pressed or value changed Getting values out of string

Sensor name

X axis

Z axis

Temperature

Y axis

Minutes

ms

 False

0 0

Store SAR

Store ITG

HMC data

HMC.txt

 True

Store HMC

Bane til kalibreringsfil

X offset

Y offset

Z offset

X gain

Y gain

Z gain

Result

Build Text

Store calibration values

 True

Bane til filmappe

ITG data

ITG.txt

 True

Sar data

SAR.txt

 True

_

%x_%H%M
\

Rate table control

F
igure

C
.3:

B
lock

D
iagram

,m
ain

left
of

the
LabV

iew
V
I
A
D
C
Sm

ate.vi

111

Max input velocity (deg/sec)

ACL(deg/sec^2)

Rate error

Rate port

PC serial port

 0 [0..18]

 True

Rate Enable

Rate table status

PC serial port

115200

Magnetic field HMC

Magnetic field strengt

Offset HMC Gain HMC

Last Magnetometer HMC message

Kalibrering

ms

Minutt

RTms

Store HMC

z

y

x

0

0

0
0

XY Graph

Euler Angles

8E-51

01

Three dimensional plotting of measurement

 True

Enabled

0

Result

i

X

Y

Z

ms

Build Text30

z

y

x

HMC data

Logging of HMC data

 True
13000000

 True

 "HMC:"

4 0

4

4

4

4

z

y

x

0

x

0

y

0

z

Program

Instr

Bytes at Port

40
Received ascii from microcontroller

 True

0

 True

5

CtlRef

Time

Type

Source

Sample rate
rate

 [2] "Sample rate": Mouse Up; "Sample rate": Mouse Leave 1

Average value

0

0

0

0

 True

Choose sensor

4

4

0,9765625

60000

Sending command if button pressed or value changed Getting values out of string

Sensor name

X axis

Z axis

Temperature

Y axis

Minutes

ms

 False

0 0

Store SAR

Store ITG

HMC data

HMC.txt

 True

Store HMC

Bane til kalibreringsfil

X offset

Y offset

Z offset

X gain

Y gain

Z gain

Result

Build Text

Store calibration values

 True

Bane til filmappe

ITG data

ITG.txt

 True

Sar data

SAR.txt

 True

_

%x_%H%M
\

Rate table control

F
igure

C
.4:

B
lock

D
iagram

,m
ain

right
of

the
LabV

iew
V
I
A
D
C
Sm

ate.vi

112 APPENDIX C. LABVIEW SOURCE CODE

Appendix D

Microcontroller Source Code

D.1 ADCS Card

Listing D.1: main.h

1 #define arraysize(ar) (sizeof(ar) / sizeof(ar[0]))
2
3 /*! Selects the Usart */
4 #define USART USARTC0
5
6 /*! Defining number of bytes in buffer. */
7 #define NUM_BYTES 16
8
9 /*! BAUDRATE 100kHz and Baudrate Register Settings */

10 #define BAUDRATE 100000
11 #define TWI_BAUDSETTING TWI_BAUD(F_CPU , BAUDRATE)
12
13 typedef struct magnetorquer {
14 int16_t desiredValue;
15 int16_t actualCurrent;
16 uint8_t temperatureFactor;
17 volatile uint16_t *forwardOutput;
18 volatile uint16_t *reverseOutput;
19 bool direction;
20 } magnetorquer_t;
21
22 typedef struct realTimeClock {
23 uint8_t minute;
24 uint8_t hour;
25 uint8_t day;
26 uint8_t year;
27 } realTimeClock_t;
28
29 typedef enum stateMachine {
30 st_start ,
31 st_executeCommand ,
32 st_sleep ,
33 st_sample ,
34 st_externalControl ,
35 st_print ,
36 st_bDot ,
37 st_activateMagnetorquer
38 } state_t;

113

114 APPENDIX D. MICROCONTROLLER SOURCE CODE

39
40 typedef struct
41 {
42 state_t state;
43 state_t (*pFunc)(void);
44 } menu_state_t;
45
46
47 static int uart_putchar (char c, FILE *stream);
48 void init_clk ();
49 void init_uart ();
50 void init_hmc5883 ();
51 void init_itg3200 ();
52 void init_sar150 ();
53 void init_SampleTimer(TC1_t * timer , uint16_t compare);
54 void init_RTC32 ();
55 void init_coils ();
56 void init_adc ();
57
58 state_t f_start(void);
59 state_t f_executeCommand(void);
60 state_t f_sleep(void);
61 state_t f_sample(void);
62 state_t f_externalControl(void);
63 state_t f_print(void);
64 state_t f_bDot(void);
65 state_t f_activateMagnetorquer(void);
66
67
68
69 menu_state_t menu_state [] = {
70 // STATE STATE_FUNC
71
72 {st_start , f_start },
73 {st_executeCommand , f_executeCommand },
74 {st_sleep , f_sleep },
75 {st_sample , f_sample },
76 {st_externalControl , f_externalControl },
77 {st_print , f_print },
78 {st_bDot , f_bDot },
79 {st_activateMagnetorquer , f_activateMagnetorquer },
80
81 {0 , NULL}
82 };

Listing D.2: main.c

1 /* **
2 *
3 * File: main.c
4 * Project: CubeSTAR ADCS card version 1
5 * Author: Kjetil Rensel
6 * Revised: August 2011
7 *
8 *** */
9

10 #define F_CPU 3.6864 E6
11
12 /* ********************** INCLUDES *********************** */
13 #include <avr/io.h>
14 #include <stdlib.h>

D.1. ADCS CARD 115

15 #include <stdio.h>
16 #include <string.h>
17 #include <avr/interrupt.h>
18 #include <avr/pgmspace.h>
19 #include <util/delay.h>
20 #include <float.h>
21
22 #include "spi_driver.h"
23 #include "twi_master_driver.h"
24 #include "usart_driver.h"
25 #include "HMC5883.h"
26 #include "SAR150.h"
27 #include "itg3200.h"
28 #include "main.h"
29
30 /* ********************* DEFINITIONS ********************* */
31 //Coil control PWM period: 3686400 Hz/0x7F =29026 Hz => OK
32 #define pwmPeriod 0x007F
33 #define adcMuxNeg0AndPos4_gc 0x00;
34 #define adcMuxNeg1AndPos5_gc 0x09;
35 #define adcMuxNeg2AndPos6_gc 0x12;
36 #define SAMPLE_TIMER &TCE1
37
38 #define coilCurrent 30
39
40 #define xAxis 0
41 #define yAxis 1
42 #define zAxis 2
43 #define threeAxis 3
44
45 /* *********************** MACROS ************************ */
46 #define TC_SetPeriod(_tc , _period) ((_tc)->PER = (_period))
47 #define TC_Reset(_tc) ((_tc)->CNT = 0)
48 #define getTimerMs(_tc) ((uint16_t)(((_tc)->CNT)/3.6))
49 #define CounterPeriod 3600 //F_CPU/prescaler = 3.6864 E6 /1024
50 #define crossProduct1(_a, _b) ((float)(_a)[1]*(float)(_b)[2] - (float)(_a←↩

)[2]*(float)(_b)[1])
51 #define crossProduct2(_a, _b) ((float)(_a)[2]*(float)(_b)[0] - (float)(_a←↩

)[0]*(float)(_b)[2])
52 #define crossProduct3(_a, _b) ((float)(_a)[0]*(float)(_b)[1] - (float)(_a←↩

)[1]*(float)(_b)[0])
53 #define sendStatus () printf("STA :%05d-%1d-%1d-%1d-%1d\r\n", *SAMPLE_TIMER←↩

.PER , mode , sampleHmc , sampleItg , sampleSar)
54
55 /* ********************** VARIABLES ********************** */
56 // Sensor calibration values
57 // Negative scale value to correct for mounting the sensors
58 // the opposite way in that particular axis.
59
60 typedef struct sensorCalibrationParameters
61 {
62 int16_t bias [3];
63 float scale [3];
64 float misalignment [3][3];
65 } sensorCalibrationParameters_t;
66
67
68 sensorCalibrationParameters_t hmcCalibtationParameter =
69 {{ 0, 0, 0}, //bias {x, y, z}
70 { 1, 1, 1}, // scale {x, y, z}
71 { //misal. x y z
72 { 0, 0, 0}, // x { 0 , xy , xz}

116 APPENDIX D. MICROCONTROLLER SOURCE CODE

73 { 0, 0, 0}, // y { yx, 0 , yz}
74 { 0, 0, 0}}}; // z { zx, zy, 0 }
75
76 sensorCalibrationParameters_t itgCalibtationParameter =
77 // {{-102, 129, 23},// bias {x, y, z}
78 {{ 0, 0, 0}, //bias {x, y, z}
79 { -1, -1, 1}, // scale {x, y, z}
80 { //misal. x y z
81 { 0, 0, 0}, // x { 0 , xy , xz}
82 { 0, 0, 0}, // y { yx, 0 , yz}
83 { 0, 0, 0}}}; // z { zx, zy, 0 }
84
85 sensorCalibrationParameters_t sarCalibtationParameter =
86 {{ 0, 0, 0}, //bias {x, y, z}
87 { 1, -1, -1}, // scale {x, y, z}
88 { //misal. x y z
89 { 0, 0, 0}, // x { 0 , xy , xz}
90 { 0, 0, 0}, // y { yx, 0 , yz}
91 { 0, 0, 0}}}; // z { zx, zy, 0 }
92
93
94 // Hardware variables , data structure definition found
95 // in corresponding driver file
96 realTimeClock_t realTimeClock;
97 USART_data_t USART_data;
98 TWI_Master_t twiHmc;
99 hmc_Measurement_t hmcMeasurement[threeAxis];

100 TWI_Master_t twiItg;
101 itgMeasurement_t itgMeasurement;
102 SPI_Master_t spiSar[threeAxis];
103 SPI_DataPacket_t spiDataPacketSar[threeAxis];
104 sarMeasurement_t sarMeasurement[threeAxis];
105 magnetorquer_t magnetorquer[threeAxis];
106
107 /* bDotFactor is:
108 * Magnetic Moment / mA: 3.69
109 * itgScale (1/14.375)
110 * hmcScale (1/1300)
111 * sarScale 0.1 (Not in use)
112 * bDotGain -1 (Tesla: -10000, Gauss: -1) */
113
114 static float bDotFactor = - 3.69 * pwmPeriod / 14.375 / 1300;
115
116 // Definition of state variables
117 state_t state;
118
119 bool sampleTimerCompareMatch = false;
120 bool sampleItg = false;
121 bool sampleHmc = false;
122 bool sampleSar =false;
123 bool bDotSample = false;
124 bool commandReceived = false;
125
126 enum modes {
127 idle ,
128 sample ,
129 bDot ,
130 externalControl
131 } mode = idle;
132
133 //Set up UART stdout

D.1. ADCS CARD 117

134 static FILE mystdout = FDEV_SETUP_STREAM (uart_putchar , NULL , ←↩
_FDEV_SETUP_WRITE);

135
136 /* ********************** FUNCTIONS ********************** */
137
138 static int uart_putchar (char c, FILE *stream) {
139 /*A link between stdout and USART driver.
140 *
141 * Sends a char if software buffer is not full.
142 * The function must have this exact argumets and return values
143 * to work with stdout. Only char c is utilized.
144 */
145
146
147
148 // whaits for free space in buffer;
149 while (USART_data.buffer.TX_Tail - USART_data.buffer.TX_Head == 1);
150 //Sends byte to software buffer.
151 USART_TXBuffer_PutByte (& USART_data , c);
152 return 0;
153 }
154
155
156 // *** Initialization functions ***
157
158 void init_clk () {
159 // Processor clock initialization
160
161 /* To activate external clock , the following must be done:
162 1. Select external clock as source in XOSCCTRL (External osc ctrl ←↩

register)
163 2. Enable with XOSCEN (External osc enable) in OSC.CTRL
164 3. Whait for external clock to be stable.
165 4. Enable change in CLK.CTRL by write right value to CCP
166 5. Select external clock as main clock source
167 */
168
169 OSC.XOSCCTRL |= OSC_XOSCSEL_EXTCLK_gc; // 1
170 OSC.CTRL |= OSC_XOSCEN_bm; // 2
171 while ((OSC.STATUS & OSC_XOSCRDY_bm) == 0); // 3
172 CCP = CCP_IOREG_gc; // 4
173 CLK.CTRL = CLK_SCLKSEL_XOSC_gc; // 5
174 }
175
176 void init_uart () {
177 // UART initialization
178
179 /* Setting up UART using atmels device drivers:
180 1. Set output and input pin
181 2. Use USART defined and initialize buffers. Sets interruptlevel
182 3. Use USART defined , set 8 Data bits , No Parity , 1 Stop bit.
183 4. Enable RXC interrupt.
184 5. Set Baudrate to 115200 bps , values calculated by ATMELs ←↩

Baudrate_calculations.xls spreadsheet
185 6. Whait for baudrate to take effect (strange character is outputted ←↩

if not performed)
186 7. Enable both RX and TX.
187 */
188
189 PORTC.DIRSET = PIN3_bm; // 1 TX
190 PORTC.DIRCLR = PIN2_bm; // 1 RX

118 APPENDIX D. MICROCONTROLLER SOURCE CODE

191 USART_InterruptDriver_Initialize (&USART_data , &USART , ←↩
USART_DREINTLVL_LO_gc); // 2

192 USART_Format_Set(USART_data.usart , USART_CHSIZE_8BIT_gc , ←↩
USART_PMODE_DISABLED_gc , false); // 3

193 USART_RxdInterruptLevel_Set(USART_data.usart , USART_RXCINTLVL_LO_gc); ←↩
// 4

194 USART_Baudrate_Set (&USART , 1 , 0); // 5
195 _delay_ms (10); // 6
196 USART_Tx_Enable(USART_data.usart); // 7
197 USART_Rx_Enable(USART_data.usart); // 7
198 }
199
200 void init_hmc5883 () {
201 // HMC5883 magnetometer and TWI PORTF initialization
202
203 //TWIF
204 // Initiate TWI F, utilizing library.
205 // Setting up F0 and F1 as output with internal pullup
206 TWI_MasterInit (&twiHmc , &TWIF , TWI_MASTER_INTLVL_MED_gc , ←↩

TWI_BAUDSETTING);
207 PORTF.PIN0CTRL = (PORTF.PIN0CTRL & ~PORT_OPC_gm) | ←↩

PORT_OPC_WIREDANDPULL_gc;
208 PORTF.PIN1CTRL = (PORTF.PIN1CTRL & ~PORT_OPC_gm) | ←↩

PORT_OPC_WIREDANDPULL_gc;
209
210 // HMC5883 and Data ready interrupt
211 // Set up HMC by writing to conf. registers on chip
212 hmc_SetRegister (&twiHmc , CONF_REG_A_adr , (measurement_normal_gc | ←↩

rate_0_75_gc | average_8_gc));
213 hmc_SetRegister (&twiHmc , CONF_REG_B_adr , gain_0_88_gc);
214
215 // Enable data ready interrupt on PIN2.
216 PORTF.PIN2CTRL = PORT_ISC_FALLING_gc;
217 PORTF.INT0MASK = PIN2_bm;
218 PORTF.INTCTRL = PORT_INT0LVL_LO_gc;
219 }
220
221 void init_itg3200 () {
222 // 3-axis ITG3200 gyro sensor and TWI PORTE initialization
223
224 //TWIE
225 // Initiate TWI E, utilizing library.
226 // Setting up E0 and E1 as output with internal pullup
227 TWI_MasterInit (&twiItg , &TWIE , TWI_MASTER_INTLVL_MED_gc , ←↩

TWI_BAUDSETTING);
228 PORTE.PIN0CTRL = (PORTE.PIN0CTRL & ~PORT_OPC_gm) | ←↩

PORT_OPC_WIREDANDPULL_gc;
229 PORTE.PIN1CTRL = (PORTE.PIN1CTRL & ~PORT_OPC_gm) | ←↩

PORT_OPC_WIREDANDPULL_gc;
230
231 // ITG3200
232 // Write configuration settings to registers
233 itg_SetRegister (&twiItg , SMPLRT_DIV , 1); // Divider = (F_i/F_s) -1 = ←↩

1000/5 -1
234 itg_SetRegister (&twiItg , DLPF_FS , (Filter_42Hz | FullScale));
235 itg_SetRegister (&twiItg , INT_CFG ,
236 ((IntConf_LogicLevel_bm & ActiveLevelHigh) |
237 (IntConf_DriveType_bm & PushPull) |
238 (IntConf_LatchMode_bm & LatchUntilIntIsCleard) |
239 (IntConf_LatchClearMethod_bm & AnyRegisterRead) |
240 (IntConf_EnableIntDeviceReady_bm & false) |
241 (IntConf_EnableIntDataAvailable_bm & false)));

D.1. ADCS CARD 119

242 itg_SetRegister (&twiItg , PWR_MGM , ClockSelect_PllWithXGyroReference);
243
244 // Enable data ready interrupt on PIN2.
245 PORTA.PIN2CTRL = PORT_ISC_RISING_gc;
246 PORTA.INT0MASK = PIN2_bm;
247 PORTA.INTCTRL = PORT_INT0LVL_LO_gc;
248 }
249
250 void init_sar150 () {
251 // 3x 1-axis gyro sensor initialization with separate SPI ports
252
253 // Initiate SAR sensors on SPI ports
254 sar_Init (& PORTD ,&spiSar[xAxis]); //X-axis PORT D
255 sar_Init (& PORTF ,&spiSar[yAxis]); //Z-axis PORT F
256 sar_Init (& PORTE ,&spiSar[zAxis]); //Y-axis PORT E
257
258 // Disables SafeGuard on all three sensors.
259 sar_SafeGuardDisable (& spiSar[xAxis], &spiDataPacketSar[xAxis]);
260 sar_SafeGuardDisable (& spiSar[yAxis], &spiDataPacketSar[yAxis]);
261 sar_SafeGuardDisable (& spiSar[zAxis], &spiDataPacketSar[zAxis]);
262 }
263
264 void init_SampleTimer(TC1_t * timer , uint16_t per) {
265 // Sample clock initialization
266 // Input: Clock to be set up
267 // Period in ticks (3.6 ticks is 1 ms)
268
269 // Sample clock is set up with 3.6 ticks per ms.
270 timer ->PER = per -1; // Removing 1, since it starts on 0
271 timer ->CTRLA = TC_CLKSEL_DIV1024_gc; //Clock is CPU /1024
272 timer ->CTRLB = TC_WGMODE_SS_gc; // Single slope mode
273 timer ->INTCTRLA = TC_OVFINTLVL_LO_gc; // Overflow interrupt
274 timer ->CTRLFSET = 0; //set direction , 1-down 0-up
275 }
276
277 void init_RTC32 () {
278 // Real time clock initialization
279 //
280 // The real time clock is set up utilizing the internal
281 // 1024 Hz divided signal of the internal 32.768 kHz RC osc.
282
283 // Set periode to 1024*60 sec =61440=1 min.
284 do {
285 RTC.PER = 61440; //One minute
286 } while ((RTC.STATUS & RTC_SYNCBUSY_bm) == RTC_SYNCBUSY_bm);
287
288 //1kHz internal RC oscillator.
289 CLK.RTCCTRL = CLK_RTCSRC_RCOSC_gc | CLK_RTCEN_bm;
290
291 // Prescale: 1. No effect.
292 RTC.CTRL = RTC_PRESCALER_DIV1_gc;
293
294 // Interrupt level HI
295 RTC.INTCTRL = RTC_OVFINTLVL_HI_gc;
296
297 // Sets time counters to 0
298 realTimeClock.minute = 0;
299 realTimeClock.hour = 0;
300 realTimeClock.day = 0;
301 }
302
303 void init_coils () {

120 APPENDIX D. MICROCONTROLLER SOURCE CODE

304 /****** About the PWM:
305 The PWM outputs consists of 3 pairs of outputs , one pair for each
306 axis. Each pair of outputs are connected to each separate
307 h-bridge ic. A pair is connected to the forward and reverse input
308 (FIN and BIN)on the h-bridge ic. Only one output in each pair is
309 active at a time , determed by the desired direction of the
310 magnet field created. The output wich is not active should be put
311 to low. The xAxis and yAxis outputs are controlled by the same
312 counter , TCD0. The zAxis outputs are controlled by the TCC1
313 */
314
315 //Store pointer to the compare register into corresponding object
316 magnetorquer[xAxis]. forwardOutput = &TCD0.CCA; //x Forward
317 magnetorquer[xAxis]. reverseOutput = &TCD0.CCC; //x Reverse
318
319 magnetorquer[yAxis]. forwardOutput = &TCD0.CCB; //y Forward
320 magnetorquer[yAxis]. reverseOutput = &TCD0.CCD; //y Reverse
321
322 magnetorquer[zAxis]. forwardOutput = &TCC1.CCB; //z Reverse
323 magnetorquer[zAxis]. reverseOutput = &TCC1.CCA; //z Forward
324
325
326 // Configure Ports as output by setting corresponding bits in PORTx.←↩

DIRSET , also making shure output = 0
327 PORTD.DIRSET = PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm; // x+y
328 PORTD.OUTCLR = PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm;
329
330 PORTC.DIRSET = PIN4_bm | PIN5_bm; // # z
331 PORTC.OUTCLR = PIN4_bm | PIN5_bm;
332
333 // Setting the period wich should make an update rate of 20kHz -100 kHz.
334 TCD0.PER = pwmPeriod; //#2
335 TCC1.PER = pwmPeriod;
336
337 //In CTRLB , the waveform is selected , and each compare channel is ←↩

activated.
338 TCD0.CTRLB = TC_WGMODE_SS_gc | TC0_CCAEN_bm | TC0_CCBEN_bm | TC0_CCCEN_bm←↩

| TC0_CCDEN_bm; // x+y
339 TCC1.CTRLB = TC_WGMODE_SS_gc | TC1_CCAEN_bm | TC1_CCBEN_bm; // z
340
341 //Timer counter is started by setting a clocksource. System clock is ←↩

choosed
342 TCD0.CTRLA = TC_CLKSEL_DIV1_gc; //#5 x+y
343 TCC1.CTRLA = TC_CLKSEL_DIV1_gc; //#5 z
344
345 //A start value of desiredValue is set.
346 magnetorquer[xAxis]. desiredValue = 50;
347 magnetorquer[yAxis]. desiredValue = 50;
348 magnetorquer[zAxis]. desiredValue = 50;
349
350 //Make shure direction ports wich is not in use are disabled.
351 //THIS LINE CAN BE REMOVED WHEN NEXT HARDWARE VERSION DOES NOT CONNECT ←↩

ANNYTHING TO PA3 -PA5
352 //PORTA P3-P5 is connected to FIN on BD6210 , but not in use!
353 PORTA.DIRCLR = PIN3_bm | PIN4_bm | PIN5_bm;
354 }
355
356 void init_adc (){
357 /* About the ADC
358
359 */
360

D.1. ADCS CARD 121

361 //Make shure the portB is set to input..
362 PORTB.DIRCLR = 0xFF;
363
364 ADCB.CH0.MUXCTRL = (PIN0_bm <<3);
365 ADCB.CH1.MUXCTRL = (PIN1_bm <<3);
366 ADCB.CH2.MUXCTRL = (PIN2_bm <<3);
367
368
369 ADCB.CH0.CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc;
370 ADCB.CH1.CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc;
371 ADCB.CH2.CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc;
372
373 ADCB.CTRLA = ADC_ENABLE_bm;
374 ADCB.CTRLB = ADC_RESOLUTION_12BIT_gc;
375 ADCB.REFCTRL = ADC_REFSEL_INT1V_gc;
376 ADCB.PRESCALER = ADC_PRESCALER_DIV4_gc;
377
378
379 }
380
381 // ******************* MAIN **********************
382 int main (void) {
383 // Main function initiates and stars the state machine loop
384
385 // *** INITIALIZATION ***
386
387 //Sets my stream as stdout
388 stdout = &mystdout;
389
390 // Enable all interrupt levels.
391 PMIC.CTRL |= PMIC_LOLVLEX_bm | PMIC_MEDLVLEX_bm | PMIC_HILVLEX_bm;
392
393 // Enable global interrupts.
394 sei();
395
396 init_clk (); // System clock
397 _delay_ms (50);
398 init_RTC32 (); // Real time clock
399 init_uart (); // UART ports
400 init_hmc5883 (); // Magnetometer HMC5883
401 init_itg3200 (); // Gyro sensor ITG -3200
402 init_sar150 (); // Gyro sensors SAR150
403 init_adc (); // Analog -Digital Converter
404 init_coils (); // PWM output for coil control
405 // Sample timer , def.: 500 ms *3.6=1800
406 init_SampleTimer(SAMPLE_TIMER , 1800);
407
408 // Prints a welcome message to nice human hyperterminal users
409 printf("Welcome !\r\n"); //Sends start message to UART
410
411 // Prints a status message to PC -client
412 sendStatus (); // Sends status to UART
413
414 // *** STATE MACHINE ***
415 state = st_start; // Initial state
416
417 while (1) {
418 //As long as a function is defined , loop
419 for(uint8_t i=0; menu_state[i]. pFunc ;i++) {
420 //Find state array number of right state
421 if (state == menu_state[i]. state) {
422 //Run function with corresponding array number.

122 APPENDIX D. MICROCONTROLLER SOURCE CODE

423 state = (menu_state[i].pFunc)();
424 break;
425 }
426 }
427 } // while end
428 } //Main end!
429
430
431 // *** State Functions ***
432 /*
433 * All state functions:
434 * -starts with "f_"
435 * -have logic to determ next state (if needed)
436 * -returns next state
437 * -does not have any input variables
438 */
439
440
441 state_t f_start(void) {
442 // Initial state , see flow chart
443
444 // State machine logic
445 if (sampleTimerCompareMatch) return st_sample;
446 else if (commandReceived) return st_executeCommand;
447 else if(1) return st_sleep;
448 else return st_start;
449 }
450
451 state_t f_executeCommand(void) {
452 // This state is called when a terminate character is received on UART
453 // The received message is checked against command register
454
455 // Available commands are stored here. The order of them
456 // are important for the case structure.
457 static char * commands [] =
458 {"reset", "magstart", "magstop", "sarstart", "sarstop",
459 "itgstart", "itgstop", "idle", "sample", "bdot", "extcont",
460 "rate", "coilx", "coily", "coilz", "status"};
461 bool valueReceived = false; // Is number value received?
462
463 uint8_t i;
464 uint16_t cmdValue; // Number value are stored here if present.
465 char receiveCmd[USART_RX_BUFFER_SIZE]; // Received COMMAND are put ←↩

here
466 char * receivePointer = receiveCmd; // Pointer to receiveCmd
467 char receiveValue[USART_RX_BUFFER_SIZE]; // Received VALUE are put here
468
469
470 // Analyzing input string
471
472 //1. Loop is saving one byte at a time to initially receiveCmd.
473 //2. If "Line end" is received , array is ended and loop exits
474 //3. If "space" is received , pointer is changed to value array
475 //4. Exits with receiveCmd and if present receivedValue filled up
476 for (i = 0; (i < USART_RX_BUFFER_SIZE) && (USART_RXBufferData_Available←↩

(& USART_data)); i++) {
477 *receivePointer = USART_RXBuffer_GetByte (& USART_data); //1
478 if (* receivePointer == 0x0D) { //2. If line end
479 *receivePointer = 0x00; //
480 break;
481 }
482 else if (* receivePointer == 0x20){ //3. If space

D.1. ADCS CARD 123

483 *receivePointer = 0x00;
484 receivePointer = receiveValue;
485 valueReceived = true;
486 }
487 else {
488 receivePointer ++;
489 }
490 } //4. for loop end. Normally exitted because of break in if (2).
491
492 // Translate string value to uint16_t value
493 if (valueReceived) {
494 cmdValue = atoi(receiveValue);
495 }
496 else {
497 cmdValue = 0;
498 }
499
500 // Find the number in commands [] that match received command.
501 for (i = arraysize(commands); i > 0; i--) {
502 if (strcmp(receiveCmd , commands[i-1]) == 0) {
503 break;
504 }
505 }
506
507 // Utilize the recent found number to take action
508 switch (i) {
509 case 0: //no match
510 printf("Syntax␣error\r\n");
511 break;
512 case 1: //reset
513 CPU_CCP=CCP_IOREG_gc;
514 RST.CTRL=RST_SWRST_bm;
515 break;
516 case 2: // magstart
517 sampleHmc = true;
518 break;
519 case 3: // magstop
520 sampleHmc = false;
521 break;
522 case 4: // sarstart
523 sampleSar = true;
524 break;
525 case 5: // sarstop
526 sampleSar = false;
527 break;
528 case 6: // itgstart
529 sampleItg = true;
530 break;
531 case 7: // itgstop
532 sampleItg = false;
533 break;
534 case 8: //idle
535 mode = idle;
536 break;
537 case 9: // sample
538 mode = sample;
539 break;
540 case 10: //bdot
541 mode = bDot;
542 break;
543 case 11: // extcont
544 mode = externalControl;

124 APPENDIX D. MICROCONTROLLER SOURCE CODE

545 break;
546 case 12: //rate
547 // Set sample rate if it is a legal value
548 if ((cmdValue > 0) && (cmdValue < 1001)) {
549 printf("Time␣between␣sample␣is:␣%d␣ms\r\n",cmdValue);
550 TC_SetPeriod(SAMPLE_TIMER , (uint16_t)(3.6 * cmdValue));
551 TC_Reset(SAMPLE_TIMER);
552 }
553 else {
554 printf("Rate␣must␣be␣set␣between␣0␣and␣1000\r\n");
555 }
556 break;
557 case 13: //coilx
558 if ((cmdValue >= 0) && (cmdValue <= (pwmPeriod *2))) {
559 magnetorquer[xAxis]. desiredValue = cmdValue - pwmPeriod;
560 mode = externalControl;
561 }
562 break;
563 case 14: //coily
564 if ((cmdValue >= 0) && (cmdValue <= (pwmPeriod *2))) {
565 magnetorquer[yAxis]. desiredValue = cmdValue - pwmPeriod;
566 mode = externalControl;
567 }
568 break;
569 case 15: //coilz
570 if ((cmdValue >= 0) && (cmdValue <= (pwmPeriod *2))) {
571 magnetorquer[zAxis]. desiredValue = cmdValue - pwmPeriod;
572 mode = externalControl;
573 }
574 break;
575 case 16: // status
576 sendStatus ();
577 break;
578 default:
579 break;
580 }
581 commandReceived = false;
582 return st_start;
583 }
584
585 state_t f_sleep(void){
586
587 return st_start;
588 }
589
590 state_t f_sample(void) {
591 // Performing sample on the sensors wich flag is enabled.
592 // Is also doing preprocessing of aquired data.
593
594 // Clear flag
595 sampleTimerCompareMatch = false;
596
597 // SAMPLE
598 // SAR150 sample:
599 if (sampleSar) {
600 sar_DoThreeAxisMeasurement(spiSar , spiDataPacketSar , sarMeasurement);
601 sarMeasurement[xAxis].rate.i16 =
602 sarMeasurement[yAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[xAxis][yAxis] +
603 sarMeasurement[zAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[xAxis][zAxis] +

D.1. ADCS CARD 125

604 sarMeasurement[xAxis].rate.i16 * sarCalibtationParameter.scale[xAxis]←↩
+

605 sarCalibtationParameter.bias[xAxis];
606
607 sarMeasurement[yAxis].rate.i16 =
608 sarMeasurement[xAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[yAxis][xAxis] +
609 sarMeasurement[zAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[yAxis][zAxis] +
610 sarMeasurement[yAxis].rate.i16 * sarCalibtationParameter.scale[yAxis]←↩

+
611 sarCalibtationParameter.bias[yAxis];
612
613 sarMeasurement[zAxis].rate.i16 =
614 sarMeasurement[xAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[zAxis][xAxis] +
615 sarMeasurement[yAxis].rate.i16 * sarCalibtationParameter.misalignment←↩

[zAxis][yAxis] +
616 sarMeasurement[zAxis].rate.i16 * sarCalibtationParameter.scale[zAxis]←↩

+
617 sarCalibtationParameter.bias[zAxis];
618 }
619
620 // ITG3200 sample:
621 if (sampleItg) {
622 itg_ReadSingleMeasurement (&twiItg , &itgMeasurement);
623 itgMeasurement.rate[xAxis].i16 =
624 itgMeasurement.rate[yAxis].i16 * itgCalibtationParameter.misalignment←↩

[xAxis][yAxis] +
625 itgMeasurement.rate[zAxis].i16 * itgCalibtationParameter.misalignment←↩

[xAxis][zAxis] +
626 itgMeasurement.rate[xAxis].i16 * itgCalibtationParameter.scale[xAxis]←↩

+
627 itgCalibtationParameter.bias[xAxis];
628
629 itgMeasurement.rate[yAxis].i16 =
630 itgMeasurement.rate[xAxis].i16 * itgCalibtationParameter.misalignment←↩

[yAxis][xAxis] +
631 itgMeasurement.rate[zAxis].i16 * itgCalibtationParameter.misalignment←↩

[yAxis][zAxis] +
632 itgMeasurement.rate[yAxis].i16 * itgCalibtationParameter.scale[yAxis]←↩

+
633 itgCalibtationParameter.bias[yAxis];
634
635 itgMeasurement.rate[zAxis].i16 =
636 itgMeasurement.rate[xAxis].i16 * itgCalibtationParameter.misalignment←↩

[zAxis][xAxis] +
637 itgMeasurement.rate[yAxis].i16 * itgCalibtationParameter.misalignment←↩

[zAxis][yAxis] +
638 itgMeasurement.rate[zAxis].i16 * itgCalibtationParameter.scale[zAxis]←↩

+
639 itgCalibtationParameter.bias[zAxis];
640 }
641
642 // HMC5883 sample:
643 if (sampleHmc) {
644 hmc_SetRegister (&twiHmc , MODE_REG_adr , mode_single_measurement);
645 }
646
647 // State machine logic
648 if (mode == bDot) return st_bDot;
649 else if (mode == externalControl) return st_externalControl;

126 APPENDIX D. MICROCONTROLLER SOURCE CODE

650 else if (mode == sample) return st_print;
651
652 else return st_start;
653 }
654
655 state_t f_externalControl(void) {
656 // This state does nothing , but is made as a suggestion for
657 // furthure implementation to other sub -systems.
658 // Functions performed in this state could be:
659 // -Send sample values to external controller
660 // -Receive coil control values from external controller
661
662 return st_activateMagnetorquer;
663 }
664
665 state_t f_print(void) {
666 // Prints sample values to UART. This is not performed in bDot mode
667
668 static uint16_t sampleRealTime;
669
670 /* Gets real time clock.
671 * This functionality may be subject to change.
672 * It may be considered to store a sample time
673 * in data ready interrupt.
674 * As of now , no requirements for the clock exists.
675 */
676 sampleRealTime = RTC.CNT;
677
678 // Prints SAR150 sensor measurements
679 if (sampleSar) {
680 printf("SAR :%04x%04x%04x%04x%04x%04x%04x%04x\r\n",
681 sarMeasurement[xAxis].rate.i16 ,
682 sarMeasurement[yAxis].rate.i16 ,
683 sarMeasurement[zAxis].rate.i16 ,
684 sarMeasurement[xAxis]. Temperature ,
685 realTimeClock.minute ,
686 sampleRealTime ,
687 sarMeasurement[yAxis]. Temperature ,
688 sarMeasurement[zAxis]. Temperature);
689
690 }
691
692 // Prints ITG -3200 sensor measurements
693 if (sampleItg) {
694 printf("ITG :%04x%04x%04x%04x%04x%04x\r\n",
695 itgMeasurement.rate[xAxis].i16 ,
696 itgMeasurement.rate[yAxis].i16 ,
697 itgMeasurement.rate[zAxis].i16 ,
698 itgMeasurement.temperature.i16 ,
699 realTimeClock.minute ,
700 sampleRealTime);
701 }
702
703 // Prints HMC5883L sensor measurements
704 if (sampleHmc) {
705 printf("HMC :%04x%04x%04 x0000 %04x%04x\r\n",
706 hmcMeasurement[xAxis].i16 ,
707 hmcMeasurement[yAxis].i16 ,
708 hmcMeasurement[zAxis].i16 ,
709 realTimeClock.minute ,
710 sampleRealTime);
711 }

D.1. ADCS CARD 127

712
713 return st_start;
714 }
715
716 state_t f_bDot(void) {
717 // B-Dot calculates control signal for the coils
718
719 magnetorquer[xAxis]. desiredValue = (int16_t)((bDotFactor/coilCurrent) *←↩

crossProduct1 ((int16_t *)&hmcMeasurement , (int16_t *)&itgMeasurement←↩
.rate));

720 magnetorquer[yAxis]. desiredValue = (int16_t)((bDotFactor/coilCurrent) *←↩
crossProduct2 ((int16_t *)&hmcMeasurement , (int16_t *)&itgMeasurement←↩

.rate));
721 magnetorquer[zAxis]. desiredValue = (int16_t)((bDotFactor/coilCurrent) *←↩

crossProduct3 ((int16_t *)&hmcMeasurement , (int16_t *)&itgMeasurement←↩
.rate));

722
723 // printf ("x:%d y:%d z:%d\r\n",magnetorquer[xAxis]. desiredValue ,←↩

magnetorquer[yAxis]. desiredValue ,magnetorquer[zAxis]. desiredValue);
724
725 return st_activateMagnetorquer;
726 }
727
728 state_t f_activateMagnetorquer(void) {
729 /*
730 1. Set wanted value
731 2. read current
732 3. calculate temperature compensation
733 4. correct
734 5. read new current value , store factor
735
736 data contains
737 magnetorquer [3]
738 */
739
740
741 for (uint8_t i = 0; i < 3; i++) { // Updating PWM on all three axis
742 if (magnetorquer[i]. desiredValue >= 0) { // FORWARD
743 if (magnetorquer[i]. desiredValue > pwmPeriod) {
744 magnetorquer[i]. desiredValue = pwmPeriod;
745 }
746 *magnetorquer[i]. forwardOutput = (uint16_t)magnetorquer[i].←↩

desiredValue;
747 *magnetorquer[i]. reverseOutput = 0;
748 }
749
750 else { // BACKWARD
751 if (magnetorquer[i]. desiredValue < -pwmPeriod) {
752 magnetorquer[i]. desiredValue = -pwmPeriod;
753 }
754 *magnetorquer[i]. forwardOutput = 0;
755 *magnetorquer[i]. reverseOutput = (uint16_t)-magnetorquer[i].←↩

desiredValue;
756 }
757 }
758
759 return st_start;
760 }
761
762
763 /* ***************** INTERRUPT HANDLERS ****************** */
764

128 APPENDIX D. MICROCONTROLLER SOURCE CODE

765
766 ISR(USARTC0_RXC_vect) {
767 /* UART Receive complete interrupt
768 *
769 * Calls the receive complete handler from USART library.
770 * Sending pointer to correct USART as argument
771 */
772
773 USART_RXComplete (& USART_data);
774
775 // Adding echo to the UART. Also adding carriage return to linefeed
776 uint8_t temp = USART_data.buffer.RX[(USART_data.buffer.RX_Head -1) & ←↩

USART_TX_BUFFER_MASK];
777 USART_TXBuffer_PutByte (&USART_data , temp);
778
779 if (temp == 0x0D) { //0x0D = Carriage return (\r)
780 USART_TXBuffer_PutByte (& USART_data , 0x0A); //0x0A = Line feed (\n)
781 commandReceived = true;
782 }
783 }
784
785 ISR(USARTC0_DRE_vect) {
786 /* Data register empty interrupt
787 * Calls the data register empty complete handler from USART library.
788 * Sending pointer to correct USART as argument.
789 */
790
791 USART_DataRegEmpty (& USART_data);
792 }
793
794 ISR(TWIF_TWIM_vect) {
795 /* TWIF HMC5883 Master interrupt
796 *
797 * Calls the master interrupt handler from TWI library
798 * Sending pointer to sensor twi as argument
799 */
800
801 TWI_MasterInterruptHandler (& twiHmc);
802 }
803
804 ISR(TWIE_TWIM_vect) {
805 /* TWIE ITG -3200 Master interrupt
806 *
807 * Calls the master interrupt handler from TWI library
808 * Sending pointer to sensor twi as argument
809 */
810
811 TWI_MasterInterruptHandler (& twiItg);
812 }
813
814 ISR(PORTF_INT0_vect) {
815 /* Data Ready HMC5883 interrupt
816 *
817 * INT0 PORTF interrupt when data is ready on sensor
818 * Calls Read measurement function from sensor library
819 */
820
821 hmc_ReadSingleMeasurement (&twiHmc , hmcMeasurement);
822 }
823
824 ISR(PORTA_INT0_vect) {
825 /* Data Ready ITG -3200 interrupt

D.1. ADCS CARD 129

826 *
827 * INT0 PORTA interrupt when data is ready on sensor
828 * Calls Read measurement function from sensor library
829 */
830
831 itg_ReadSingleMeasurement (&twiItg , &itgMeasurement);
832 }
833
834 ISR(SPID_INT_vect) {
835 /* SPID SAR150 X-axis Master interrupt
836 *
837 * Calls the master interrupt handler from SPI library
838 * Sending pointer to sensor SPI as argument
839 */
840
841 SPI_MasterInterruptHandler (& spiSar[xAxis]);
842 }
843
844 ISR(SPIF_INT_vect) {
845 /* SPIF SAR150 Y-axis Master interrupt
846 *
847 * Calls the master interrupt handler from SPI library
848 * Sending pointer to sensor SPI as argument
849 */
850
851 SPI_MasterInterruptHandler (& spiSar[yAxis]);
852 }
853
854 ISR(SPIE_INT_vect) {
855 /* SPIE SAR150 Z-axis Master interrupt
856 *
857 * Calls the master interrupt handler from SPI library
858 * Sending pointer to sensor SPI as argument
859 */
860
861 SPI_MasterInterruptHandler (& spiSar[zAxis]);
862 }
863
864 ISR(TCE1_OVF_vect) {
865 /* Sample clock interrupt
866 *
867 * Set sample flag. State machine will find out.
868 */
869 sampleTimerCompareMatch = true;
870 }
871
872 ISR(RTC_OVF_vect) {
873 /* Real time clock minute interrupt
874 *
875 * Run once every minute.
876 * Counts up minutes , hours and days.
877 * Unfortunately there is currently no way to set this watch.
878 * Should be implemented with ODBC and other subsystems.
879 */
880
881 if(++ realTimeClock.minute == 60) {
882 realTimeClock.minute = 0;
883 if (++ realTimeClock.hour == 24) {
884 realTimeClock.hour = 0;
885 if (++ realTimeClock.day == 366) {
886 realTimeClock.day = 1;
887 }

130 APPENDIX D. MICROCONTROLLER SOURCE CODE

888 }
889 }
890 }
891
892 ISR(TCC1_CCA_vect) { //coil z Forward
893 ADCB.CTRLA |= ADC_CH2START_bm;
894 TCC1.INTCTRLB = TC_CCAINTLVL_OFF_gc | TC_CCBINTLVL_OFF_gc;
895 }
896
897 ISR(TCC1_CCB_vect) { //coil z Reverse
898 ADCB.CTRLA |= ADC_CH2START_bm;
899 TCC1.INTCTRLB = TC_CCAINTLVL_OFF_gc | TC_CCBINTLVL_OFF_gc;
900 }
901 ISR(TCD0_CCA_vect) { //coil x Forward
902 ADCB.CTRLA |= ADC_CH0START_bm;
903 TCD0.INTCTRLB = TC_CCAINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc;
904 }
905 ISR(TCD0_CCB_vect) { //coil y Forward
906 ADCB.CTRLA |= ADC_CH1START_bm;
907 TCD0.INTCTRLB = TC_CCBINTLVL_OFF_gc | TC_CCDINTLVL_OFF_gc;
908 }
909 ISR(TCD0_CCC_vect) { //coil x Reverse
910 ADCB.CTRLA |= ADC_CH0START_bm;
911 TCD0.INTCTRLB = TC_CCAINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc;
912 }
913
914 ISR(TCD0_CCD_vect) { //coil y Reverse
915 ADCB.CTRLA |= ADC_CH1START_bm;
916 TCD0.INTCTRLB = TC_CCBINTLVL_OFF_gc | TC_CCDINTLVL_OFF_gc;
917 }

Listing D.3: sar150.h

1 #include <avr/io.h>
2 #include "spi_driver.h"
3
4 //SPI -commands SAR150
5 #define RARH 0b10000000
6 #define RARLX 0b10001110
7 #define RTMP 0b10110000
8 #define RSR 0b10110100
9 #define SGDIS1 0b01001110

10 #define SGDIS2 0b01100011
11 #define SGDIS3 0b00010010
12 #define SGEN 0b01010101
13 #define PRCEN 0b10101010
14
15 #define SGDIS1_adr 0b11010111
16 #define SGDIS2_adr 0b01010000
17 #define SGDIS3_adr 0b10101000
18
19 #define xAxis 0
20 #define yAxis 1
21 #define zAxis 2
22 #define threeAxis 3
23
24 #define hasAddressByte true
25 #define noAddressByte false
26
27 typedef union sar_rate
28 {

D.1. ADCS CARD 131

29 struct
30 {
31 uint8_t lsb;
32 uint8_t msb;
33 } b2;
34 int16_t i16;
35 } sar_rate_t;
36
37 typedef union sar_StatusRegister
38 {
39 struct
40 {
41 bool UNUSED :1;
42 bool EXC_OK :1;
43 bool DET_OK :1;
44 bool PRNG_OK :1;
45 bool ATEST_INACTIVE :1;
46 bool OTPPAR_OK :1;
47 bool SIG_OK :1;
48 bool ADC_OK :1;
49 } bools;
50 uint8_t byte;
51 } sar_StatusRegister_t;
52
53 typedef struct sarMeasurement
54 {
55 sar_rate_t rate;
56 uint8_t Temperature;
57 sar_StatusRegister_t Status;
58 } sarMeasurement_t;
59
60 bool sar_DoThreeAxisMeasurement(SPI_Master_t * SPI_master , ←↩

SPI_DataPacket_t * dataPacket , sarMeasurement_t * measurement);
61 void sar_ReadRegister(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket , sarMeasurement_t * measurement);
62 void sar_Init(PORT_t * port , SPI_Master_t * SPI_master);
63 void sar_SafeGuardDisable(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket);
64 void sar_SafeGuardEnable(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket);

Listing D.4: sar150c

1 #include <avr/io.h>
2
3 #include "SAR150.h"
4 #include "spi_driver.h"
5 bool sar_DoThreeAxisMeasurement(SPI_Master_t * SPI_master , ←↩

SPI_DataPacket_t * dataPacket , sarMeasurement_t * measurement) {
6 sar_ReadRegister (& SPI_master[xAxis], &dataPacket[xAxis], &measurement[←↩

xAxis]);
7 sar_ReadRegister (& SPI_master[yAxis], &dataPacket[yAxis], &measurement[←↩

yAxis]);
8 sar_ReadRegister (& SPI_master[zAxis], &dataPacket[zAxis], &measurement[←↩

zAxis]);
9 if (((measurement + xAxis)->Status.byte == 0xFF) &&

10 ((measurement + xAxis)->Status.byte == 0xFF) &&
11 ((measurement + xAxis)->Status.byte == 0xFF)) {
12 return true;
13 }
14 else {

132 APPENDIX D. MICROCONTROLLER SOURCE CODE

15 return false;
16 }
17 }
18
19 void sar_ReadRegister(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket , sarMeasurement_t * measurement) {
20 const uint8_t sar_CmdReadString [] = {RARH , RARLX , RTMP , RSR , 0x00};
21 uint8_t receivedData [5];
22
23 SPI_MasterCreateDataPacket(dataPacket , noAddressByte , sar_CmdReadString←↩

,
24 receivedData , 5, SPI_master ->port , PIN4_bm);
25
26 /* Transmit and receive first data byte. */
27 uint8_t status;
28 do {
29 status = SPI_MasterInterruptTransceivePacket(SPI_master , dataPacket);
30 } while (status != SPI_OK);
31
32 /* Wait for transmission to complete. */
33 while (dataPacket ->complete == false) {
34 }
35
36 if ((receivedData [1] == 0x80) && (receivedData [2] == 0x80)) { //ERROR
37 measurement ->rate.b2.msb = 0x5F;
38 }
39 else if ((receivedData [1] & 0x80) == 0x00) { //Value is >0
40 measurement ->rate.b2.msb = (receivedData [1]>>4) & 0x0F;
41 }
42 else { //Value is <0
43 measurement ->rate.b2.msb = (receivedData [1]>>4) | 0xF0;
44 }
45 measurement ->rate.b2.lsb = (receivedData [1]<<4 & 0xF0) | (receivedData←↩

[2] & 0x0F);
46 measurement ->Temperature = receivedData [3];
47 measurement ->Status.byte = receivedData [4];
48 };
49
50 void sar_Init(PORT_t * port , SPI_Master_t * SPI_master) {
51 SPI_t * SPI;
52 if (port == &PORTC) SPI = &SPIC;
53 else if (port == &PORTD) SPI = &SPID;
54 else if (port == &PORTE) SPI = &SPIE;
55 else SPI = &SPIF;
56
57 port ->DIRSET = PIN4_bm;
58 port ->PIN4CTRL = PORT_OPC_TOTEM_gc;
59 port ->OUTSET = PIN4_bm;
60
61 SPI_MasterInit(SPI_master , SPI , port , false , SPI_MODE_0_gc ,
62 SPI_INTLVL_MED_gc , false , SPI_PRESCALER_DIV4_gc);
63 };
64
65 void sar_SafeGuardDisable(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket) {
66 uint8_t sar_ErrorHandling [] = {SGDIS1_adr , SGDIS1 , SGDIS2_adr , SGDIS2 , ←↩

SGDIS3_adr , SGDIS3 };
67 uint8_t receivedData [6];
68
69 SPI_MasterCreateDataPacket(dataPacket , hasAddressByte , ←↩

sar_ErrorHandling ,
70 receivedData , 6, SPI_master ->port , PIN4_bm);

D.1. ADCS CARD 133

71
72 /* Transmit and receive first data byte. */
73 uint8_t status;
74 do {
75 status = SPI_MasterInterruptTransceivePacket(SPI_master , dataPacket);
76 } while (status != SPI_OK);
77
78 /* Wait for transmission to complete. */
79 while (dataPacket ->complete == false) {
80 }
81 };
82
83 void sar_SafeGuardEnable(SPI_Master_t * SPI_master , SPI_DataPacket_t * ←↩

dataPacket) {
84 uint8_t sar_ErrorHandling [] = {PRCEN};
85 uint8_t receivedData [1];
86
87 SPI_MasterCreateDataPacket(dataPacket , noAddressByte , sar_ErrorHandling←↩

,
88 receivedData , 1, SPI_master ->port , PIN4_bm);
89
90 /* Transmit and receive first data byte. */
91 uint8_t status;
92 do {
93 status = SPI_MasterInterruptTransceivePacket(SPI_master , dataPacket);
94 } while (status != SPI_OK);
95
96 /* Wait for transmission to complete. */
97 while (dataPacket ->complete == false) {
98 }
99 };

Listing D.5: itg3200h

1 #include <avr/io.h>
2 #include "twi_master_driver.h"
3
4 #define Address_itg3200 0x69
5
6 #define xAxis 0
7 #define yAxis 1
8 #define zAxis 2
9 #define threeAxis 3

10
11
12 typedef union itg3200_16bitRegister
13 {
14 int16_t i16;
15 struct
16 {
17 uint8_t lsb;
18 uint8_t msb;
19 } b2;
20 } itg3200_16bitRegister_t;
21
22
23 typedef struct itgMeasurement
24 {
25 itg3200_16bitRegister_t rate [3];
26 itg3200_16bitRegister_t temperature;
27 } itgMeasurement_t;

134 APPENDIX D. MICROCONTROLLER SOURCE CODE

28
29
30 typedef enum itg3200_adr_enum
31 {
32 WHO_AM_I = 0x00 ,
33 SMPLRT_DIV = 0x15 ,
34 DLPF_FS = 0x16 ,
35 INT_CFG = 0x17 ,
36 INT_STATUS = 0x1A ,
37 TEMP_OUT_H = 0x1B ,
38 TEMP_OUT_L = 0x1C ,
39 GYRO_XOUT_H = 0x1D ,
40 GYRO_XOUT_L = 0x1E ,
41 GYRO_YOUT_H = 0x1F ,
42 GYRO_YOUT_L = 0x20 ,
43 GYRO_ZOUT_H = 0x21 ,
44 GYRO_ZOUT_L = 0x22 ,
45 PWR_MGM = 0x3E
46 } itg3200_adr_enum_t;
47
48
49 // Defining DLPF_FS configuration register
50 #define DlpfFs_digitalLowPassFilter_gm 0x07
51 #define Filter_256Hz (0x00 <<0)
52 #define Filter_188Hz (0x01 <<0)
53 #define Filter_98Hz (0x02 <<0)
54 #define Filter_42Hz (0x03 <<0)
55 #define Filter_20Hz (0x04 <<0)
56 #define Filter_10Hz (0x05 <<0)
57 #define Filter_5Hz (0x06 <<0)
58
59 #define DlpfFs_fullScaleSelection_gm 0x18
60 #define FullScale (0x03 <<3)
61
62
63 // Defining interrupt configuration register
64 #define IntConf_LogicLevel_bm 0x80
65 #define IntConf_LogicLevel_bp 0x08
66 #define ActiveLevelLow 0xFF
67 #define ActiveLevelHigh 0x00
68
69 #define IntConf_DriveType_bm 0x40
70 #define IntConf_DriveType_bp 0x07
71 #define OpenDrain 0xFF
72 #define PushPull 0x00
73
74 #define IntConf_LatchMode_bm 0x20
75 #define IntConf_LatchMode_bp 0x06
76 #define LatchUntilIntIsCleard 0xFF
77 #define Pulse50us 0x00
78
79 #define IntConf_LatchClearMethod_bm 0x10
80 #define IntConf_LatchClearMethod_bp 0x05
81 #define AnyRegisterRead 0xFF
82 #define StatusRegisterReadOnly 0x00
83
84 #define IntConf_EnableIntDeviceReady_bm 0x04
85
86 #define IntConf_EnableIntDataAvailable_bm 0x01
87
88
89

D.1. ADCS CARD 135

90 // Defining interrupt status register
91 #define IntStatus_PllReady 0x01
92 #define IntStatus_RawDataIsReady 0x04
93
94 // Defining Power management register
95 #define PwrMgm_Reset_bm 0x80
96 #define PwrMgm_Reset_bp 8
97
98 #define PwrMgm_Sleep_bm 0x60
99 #define PwrMgm_Sleep_bp 7

100
101 #define PwrMgm_GyroXStandby_bm 0x40
102 #define PwrMgm_GyroXStandby_bp 6
103
104 #define PwrMgm_GyroYStandby_bm 0x20
105 #define PwrMgm_GyroYStandby_bp 5
106
107 #define PwrMgm_GyroZStandby_bm 0x08
108 #define PwrMgm_GyroZStandby_bp 4
109
110 #define ClockSelect_InternalOscillator (0x00 <<0)
111 #define ClockSelect_PllWithXGyroReference (0x01 <<0)
112 #define ClockSelect_PllWithYGyroReference (0x02 <<0)
113 #define ClockSelect_PllWithZGyroReference (0x03 <<0)
114 #define ClockSelect_PllWithExternal32k768 (0x04 <<0)
115 #define ClockSelect_PllWithExternal19M2 (0x05 <<0)
116
117 uint8_t itg_ReadRegister(TWI_Master_t *twi , itg3200_adr_enum_t ←↩

registerAdr);
118 void itg_ReadSingleMeasurement(TWI_Master_t *twi , itgMeasurement_t *←↩

measurementData);
119 void itg_SetRegister(TWI_Master_t *twi , itg3200_adr_enum_t register_adr , ←↩

uint8_t value);

Listing D.6: itg3200c

1 #include <avr/io.h>
2 #include "twi_master_driver.h"
3 #include "itg3200.h"
4
5
6 uint8_t itg_ReadRegister(TWI_Master_t *twi , itg3200_adr_enum_t ←↩

registerAdr) {
7
8 uint8_t SendBuffer = registerAdr;
9 TWI_MasterWriteRead(twi , Address_itg3200 , &SendBuffer , 1, 1);

10 while (twi ->status != TWIM_STATUS_READY) {
11 // Wait until transaction is complete.
12 }
13 return twi ->readData [0];
14 }
15
16
17 void itg_ReadSingleMeasurement(TWI_Master_t *twi , itgMeasurement_t *←↩

measurementData) {
18
19 uint8_t sendBuffer = TEMP_OUT_H;
20 TWI_MasterWriteRead(twi , Address_itg3200 , &sendBuffer , 1, 8);
21 while (twi ->status != TWIM_STATUS_READY) {
22 // Wait until transaction is complete.
23 }

136 APPENDIX D. MICROCONTROLLER SOURCE CODE

24 measurementData ->temperature.b2.msb = twi ->readData [0];
25 measurementData ->temperature.b2.lsb = twi ->readData [1];
26 // Datasheet: tmp = -13200 at 35*C, Sensitivity 280 LSB/*C
27 // Offset calculation: -13200 -(35*280) =23000
28 //New value scale factor = 280
29 measurementData ->temperature.i16 += 23000; //Fix offset
30 measurementData ->rate[xAxis].b2.msb = twi ->readData [2];
31 measurementData ->rate[xAxis].b2.lsb = twi ->readData [3];
32 measurementData ->rate[yAxis].b2.msb = twi ->readData [4];
33 measurementData ->rate[yAxis].b2.lsb = twi ->readData [5];
34 measurementData ->rate[zAxis].b2.msb = twi ->readData [6];
35 measurementData ->rate[zAxis].b2.lsb = twi ->readData [7];
36
37 }
38
39
40 void itg_SetRegister(TWI_Master_t *twi , itg3200_adr_enum_t register_adr , ←↩

uint8_t value) {
41
42 uint8_t sendBuffer [] = {register_adr , value};
43 TWI_MasterWriteRead(twi , Address_itg3200 , sendBuffer , 2, 0);
44 while (twi ->status != TWIM_STATUS_READY) {
45 // Wait until transaction is complete.
46 }
47 }

Listing D.7: hmc5883.h

1 #include <avr/io.h>
2 #include "twi_master_driver.h"
3
4 #define ADDRESS_5883 0x1E
5
6 #define xAxis 0
7 #define yAxis 1
8 #define zAxis 2
9 #define threeAxis 3

10
11 typedef enum HMC5883_adr_enum
12 {
13 CONF_REG_A_adr ,
14 CONF_REG_B_adr ,
15 MODE_REG_adr ,
16 DATA_OUT_X_MSB_REG_adr ,
17 DATA_OUT_X_LSB_REG_adr ,
18 DATA_OUT_Z_MSB_REG_adr ,
19 DATA_OUT_Z_LSB_REG_adr ,
20 DATA_OUT_Y_MSB_REG_adr ,
21 DATA_OUT_Y_LSB_REG_adr ,
22 STATUS_REG_adr ,
23 ID_REG_A_adr ,
24 ID_REG_B_adr ,
25 ID_REG_C_adr
26 } HMC5883_adr_enum_t;
27
28
29 /* Configuration Register A start*/
30 typedef enum hmc5883_measurement_mode
31 {
32 measurement_normal_gc = (0x00 << 0),
33 measurement_positive_bias_gc = (0x01 << 0),

D.1. ADCS CARD 137

34 measurement_negative_bias_gc = (0x02 << 0)
35 } hmc5883_measurement_mode_t;
36
37 typedef enum hmc5883_typical_data_output_rate
38 {
39 rate_0_75_gc = (0x00 << 2),
40 rate_1_5_gc = (0x01 << 2),
41 rate_3_gc = (0x02 << 2),
42 rate_7_5_gc = (0x03 << 2),
43 rate_15_gc = (0x04 << 2),
44 rate_30_gc = (0x05 << 2),
45 rate_75_gc = (0x06 << 2)
46 } hmc5883_typical_data_output_rate_t;
47
48 typedef enum hmc5883_number_of_averaged_samples
49 {
50 average_1_gc = (0x00 << 5),
51 average_2_gc = (0x01 << 5),
52 average_4_gc = (0x02 << 5),
53 average_8_gc = (0x03 << 5)
54 } hmc5883_number_of_averaged_samples_t;
55 /* Configuration Register A stop*/
56
57 /* Configuration Register B start*/
58 typedef enum hmc5883_gain
59 {
60 gain_0_88_gc = (0x00 << 5),
61 gain_1_3_gc = (0x01 << 5),
62 gain_1_9_gc = (0x02 << 5),
63 gain_2_5_gc = (0x03 << 5),
64 gain_4_0_gc = (0x04 << 5),
65 gain_4_7_gc = (0x05 << 5),
66 gain_5_6_gc = (0x06 << 5),
67 gain_8_1_gc = (0x07 << 5)
68 } hmc5883_gain_t;
69 /* Configuration Register B stop*/
70
71 /* Mode register start*/
72 typedef enum hmc5883_operating_mode
73 {
74 mode_continuous_measurement = (0x00 << 0),
75 mode_single_measurement = (0x01 << 0),
76 mode_idle = (0x02 << 0)
77 } hmc5883_operating_mode_t;
78 /* Mode register stop*/
79
80
81
82 typedef union hmc_Measurement
83 {
84 int16_t i16;
85 struct
86 {
87 uint8_t lsb;
88 uint8_t msb;
89 } b2;
90 } hmc_Measurement_t;
91
92
93 uint8_t hmc_ReadRegister(TWI_Master_t *twi ,
94 HMC5883_adr_enum_t register_adr);
95

138 APPENDIX D. MICROCONTROLLER SOURCE CODE

96 void hmc_ReadSingleMeasurement(TWI_Master_t *twi ,
97 hmc_Measurement_t *measurement_data);
98
99

100 void hmc_SetRegister(TWI_Master_t *twi ,
101 HMC5883_adr_enum_t register_adr ,
102 uint8_t value);

Listing D.8: hmc5883c

1 #include "HMC5883.h"
2
3
4 uint8_t hmc_ReadRegister(TWI_Master_t *twi , HMC5883_adr_enum_t ←↩

register_adr) {
5 uint8_t sendBuffer = register_adr;
6 TWI_MasterWriteRead(twi , ADDRESS_5883 , &sendBuffer , 1, 1);
7 while (twi ->status != TWIM_STATUS_READY) {
8 /* Wait until transaction is complete. */
9 }

10 return twi ->readData [0];
11 }
12
13
14 void hmc_ReadSingleMeasurement(TWI_Master_t *twi , hmc_Measurement_t *←↩

measurement_data) {
15 uint8_t sendBuffer = DATA_OUT_X_MSB_REG_adr;
16 TWI_MasterWriteRead(twi , ADDRESS_5883 , &sendBuffer , 1, 6);
17 while (twi ->status != TWIM_STATUS_READY) {
18 /* Wait until transaction is complete. */
19 }
20 measurement_data[xAxis].b2.msb = twi ->readData [0];
21 measurement_data[xAxis].b2.lsb = twi ->readData [1];
22 measurement_data[yAxis].b2.msb = twi ->readData [2];
23 measurement_data[yAxis].b2.lsb = twi ->readData [3];
24 measurement_data[zAxis].b2.msb = twi ->readData [4];
25 measurement_data[zAxis].b2.lsb = twi ->readData [5];
26 }
27
28
29 void hmc_SetRegister(TWI_Master_t *twi , HMC5883_adr_enum_t register_adr , ←↩

uint8_t value) {
30 uint8_t sendBuffer [] = {register_adr , value};
31 TWI_MasterWriteRead(twi , ADDRESS_5883 , sendBuffer , 2, 0);
32 while (twi ->status != TWIM_STATUS_READY) {
33 /* Wait until transaction is complete. */
34 }
35 }

D.2 Coil Winder Card

Listing D.9: main.c

1 /* **
2 *
3 * File: main.c
4 * Description: Measure turns , control servo and provides menu -system
5 * Project: CubeSTAR Coil Winder Card
6 * Target ATmega169 on AVR Butterfly
7 * Author: Kjetil Rensel

D.2. COIL WINDER CARD 139

8 * Revised: August 2011
9 *

10 *** */
11
12 #define F_CPU 1E6 //8MHz internal clock/8
13
14 #include <avr/io.h>
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <string.h>
18 #include <avr/interrupt.h>
19 #include <avr/pgmspace.h>
20 #include <util/delay.h>
21 #include <math.h>
22 #include <avr/eeprom.h>
23
24 #include "main.h"
25 #include "button.h"
26 #include "menu.h"
27 #include "LCD_Driver.h"
28
29 #define servoStepSetPoint 10
30 #define servoMmStep 10 // hundreds of mm
31 #define servoMin 500
32 #define servoMax 2200
33 #define servoRange (servoMax -servoMin)
34 #define motorTicksPerTurn 594
35
36 #define radius 2320 // hundreds of mm
37 #define offset 215 // hundreds of mm
38 #define servoMmMax (offset *2)
39 #define servoMmMin 0
40
41 // Values in hundreds of mm
42 //Wire between 0.01 and 5 mm
43 #define wireStep 1
44 #define wireMax 500
45 #define wireMin 1
46
47 //Coil between 1 and 60 mm
48 #define coilStep 10
49 #define coilMax 6000
50 #define coilMin 100
51
52
53 #define toServo(_value) OCR1A = _value;
54 #define counter0OverflowStatus ((TIFR0 & (1 << TOV0)) == (1 << TOV0))
55 #define rightIsPushed ((PINE & PIN3_MASK) == 0x00)
56 #define leftIsPushed ((PINE & PIN2_MASK) == 0x00)
57 #define mmToEncodedPosition(_value) (_value / settings.wireThickness) * ←↩

motorTicksPerTurn;
58 #define encodedPositionToServo () OCR1A = (acos((double)encodedPosition * ←↩

radianMovePerTick)* servoRange);
59 #define servoMmToTicks(_value) (uint16_t)((double)(acos((offset - (double←↩

)_value) / offset) / M_PI * servoRange + servoMin))
60 #define servoTicksToMm(_value) (uint16_t)(offset -cos ((((double)_value -←↩

servoMin)/servoRange)*M_PI)*offset)
61 #define encodedPositionToMm(_value) (_value / (motorTicksPerTurn /←↩

settings.wireThickness) + servoMmToTicks(settings.leftPoint))
62
63 uint8_t nextstate;
64 static char *statetext;

140 APPENDIX D. MICROCONTROLLER SOURCE CODE

65 uint8_t (* pStateFunc)(uint8_t);
66 uint8_t state , nextstate;
67 uint8_t input;
68
69 const settings_t settingsDefault = {
70 // leftPoint rightPoint wireThickness coilWith
71 50, 350, 15, 200};
72 settings_t settings;
73 settings_t EEMEM settingsEeprom;
74 char printbuffer [20];
75 int16_t encodedPosition;
76 uint16_t totalTurns = 0;
77 uint16_t turnEncoderCounter = 0;
78 float radianMovePerTick; // (movePerTick/servoRange)*pi
79 uint32_t encoderCounter = 0;
80 uint32_t encoderLastServoUpdate = 0;
81 uint16_t temp;
82 uint16_t position;
83
84 enum servoDirection {
85 left ,
86 right
87 }servoDirection = right;
88
89 enum lastValidPulse {
90 high ,
91 low
92 }lastValidPulse = low;
93
94 enum display {
95 servo ,
96 turns
97 }display = servo;
98
99

100 int main(void) {
101 uint8_t i;
102
103 eeprom_read_block (&settings , &settingsEeprom , settingsByteLength);
104 if ((settings.rightPoint == 0x0000) || (settings.leftPoint == 0x0000) ←↩

|| (settings.wireThickness == 0x0000) || (settings.coilWith == 0←↩
x0000)) {

105 settings = settingsDefault;
106 }
107 updateRadianMovePerTick ();
108
109 sei();
110 LCD_Init ();
111
112 DDRB |= (1 << DDB5);
113
114 //Init clock
115 CLKPR = 0x80; // enable write to register
116 CLKPR = 0x03; //sets prescaler to div8
117
118 //Init pwm
119 TCCR1A = 0x82; // Clear OC1A on Compare Match , set OC1A at BOTTOM (non -←↩

inverting mode), WGM#14
120 TCCR1B = 0x19; // Fast PWM , No prescaler
121
122 ICR1 = 20000; //Sets top to 20000 (20ms) makes pulse to be sendt 50 ←↩

times/s

D.2. COIL WINDER CARD 141

123 toServo (1500);
124
125 //Init buttons as input
126 PORTB = 0xFF;
127 PORTE = 0xFF;
128
129 Button_Init ();
130
131 // Initial state variables
132 state = nextstate = st_welcome;
133 statetext = mt_welcome;
134 pStateFunc = NULL;
135
136
137 while (1) {
138 if (statetext) //Print text
139 {
140 LCD_puts_f(statetext);
141 statetext = NULL;
142 }
143
144 input = getkey (); // Read buttons
145
146 if (pStateFunc)
147 {
148 // When in this state , we must call the state function
149 nextstate = pStateFunc(input);
150 }
151
152 else if (input != KEY_NULL)
153 {
154 // Plain menu , clock the state machine
155 nextstate = StateMachine(state , input);
156 }
157
158 if (nextstate != state)
159 {
160 state = nextstate;
161 for (i=0; menu_state[i].state; i++)
162 {
163 if (menu_state[i].state == state)
164 {
165 statetext = menu_state[i].pText;
166 pStateFunc = menu_state[i]. pFunc;
167 break;
168 }
169 }
170 }
171 }
172
173 return 0;
174 }
175
176
177 /* Function name : StateMachine
178 * Returns : nextstate
179 * Parameters : state , stimuli
180 * Purpose : Shifts between the different states
181 */
182 uint8_t StateMachine(uint8_t state , uint8_t stimuli) {
183 uint8_t nextstate = state; // Default stay in same state
184 uint8_t i;

142 APPENDIX D. MICROCONTROLLER SOURCE CODE

185
186 for (i=0; menu_nextstate[i].state; i++)
187 {
188 if (menu_nextstate[i].state == state && menu_nextstate[i]. input ←↩

== stimuli)
189 {
190 // This is the one!
191 nextstate = menu_nextstate[i]. nextstate;
192 break;
193 }
194 }
195
196 return nextstate;
197 }
198
199 /*
200 * The next seven functions , is run when in its corresponding state
201 *
202 */
203
204
205 uint8_t f_Freerun(uint8_t input) {
206 static bool enter = 1;
207
208 if(enter) { // Entering
209 position = servoTicksToMm(OCR1A);
210 LCD_puts_f(mt_doFreerun);
211 enter = 0;
212 }
213
214 else if(input == KEY_LEFT) { // Exiting
215 enter = 1;
216 return st_freerun;
217 }
218
219 else { // Everytime else
220 if (input == KEY_RIGHT) {
221 position = 0;
222 }
223 f_step (&position , servoMmMax , servoMmMin , servoMmStep , &input);
224 toServo(servoMmToTicks(position));
225 }
226
227 return st_doFreerun;
228 }
229
230 uint8_t f_SetLeftPoint(uint8_t input) {
231 static bool enter = 1;
232
233 if(enter) {
234 position = servoTicksToMm(settings.leftPoint);
235 LCD_puts_f(mt_doSetLeftPoint);
236 enter = 0;
237 }
238
239 else if(input == KEY_LEFT) { // Exiting
240 settings.leftPoint = servoMmToTicks(position);
241 eeprom_write_word (& settingsEeprom.leftPoint , settings.leftPoint);
242 updateRadianMovePerTick ();
243 enter = 1;
244 return st_setLeftPoint;
245 }

D.2. COIL WINDER CARD 143

246
247 else { // Everytime else
248 if (input == KEY_RIGHT) {
249 position = servoTicksToMm(settings.leftPoint);
250 }
251 f_step (&position , servoMmMax , servoMmMin , servoMmStep , &input);
252 toServo(servoMmToTicks(position));
253 }
254
255 return st_doSetLeftPoint;
256 }
257
258 uint8_t f_SetRightPoint(uint8_t input) {
259 static bool enter = 1;
260
261 if(enter) {
262 position = servoTicksToMm(settings.rightPoint);
263 LCD_puts_f(mt_doSetRightPoint);
264 enter = 0;
265 }
266
267 else if(input == KEY_LEFT) { // Exiting
268 settings.rightPoint = servoMmToTicks(position);
269 eeprom_write_word (& settingsEeprom.rightPoint , settings.rightPoint);
270 updateRadianMovePerTick ();
271 enter = 1;
272 return st_setRightPoint;
273 }
274
275 else { // Everytime else
276 if (input == KEY_RIGHT) {
277 position = servoTicksToMm(settings.rightPoint);
278 }
279 f_step (&position , servoMmMax , servoMmMin , servoMmStep , &input);
280 toServo(servoMmToTicks(position));
281 }
282
283 return st_doSetRightPoint;
284 }
285
286 uint8_t f_SetWireThickness(uint8_t input) {
287 static bool enter = 1;
288
289 if(enter) { // Entering
290 LCD_puts_f(mt_doSetWireThickness);
291 enter = 0;
292 }
293
294
295 else if(input == KEY_LEFT) { // Exiting
296 eeprom_write_word (& settingsEeprom.rightPoint , settings.rightPoint);
297 updateRadianMovePerTick ();
298 enter = 1;
299 return st_setWireThickness;
300 }
301
302 else { // Everytime else
303 if (input == KEY_RIGHT) {
304 position = 0;
305 }
306 f_step (& settings.wireThickness , wireMax , wireMin , wireStep , &input);
307 }

144 APPENDIX D. MICROCONTROLLER SOURCE CODE

308
309 return st_doSetWireThickness;
310 }
311
312 uint8_t f_SetCoilWith(uint8_t input) {
313 static bool enter = 1;
314
315 if(enter) { // Entering
316 LCD_puts_f(mt_doSetCoilWith);
317 enter = 0;
318 }
319
320 else if(input == KEY_LEFT) { // Exiting
321 eeprom_write_word (& settingsEeprom.coilWith , settings.coilWith);
322 updateRadianMovePerTick ();
323 enter = 1;
324 return st_setCoilWith;
325 }
326
327 else { // Everytime else
328 if (input == KEY_RIGHT) {
329 position = 0;
330 }
331 f_step (& settings.coilWith , coilMax , coilMin , coilStep , &input);
332 }
333
334 return st_doSetCoilWith;
335 }
336
337 uint8_t f_Run(uint8_t input) {
338 static bool enter = 1;
339 static uint16_t encodedPositionMax = 0;
340
341
342
343 if(enter) {
344 LCD_puts_f(mt_doRun);
345 _delay_ms (500);
346 TCCR0A = 0x03; // Prescaler 64
347 PCMSK0 = 0x10; //Pin Change Mask Register 1, PC10 enable
348 encodedPosition = mmToEncodedPosition(position);
349 enter = 0;
350 encodedPositionMax = servoTicksToMm(servoMax) * (motorTicksPerTurn / ←↩

settings.wireThickness);
351 }
352
353 else if(input == KEY_PUSH) {
354 PCMSK0 = PINE_MASK;
355 TCCR0A = 0x00;
356 enter = 1;
357 return st_run;
358 }
359
360 if (encoderLastServoUpdate == encoderCounter) { //No motion since last←↩

time -> MANUAL DRIVE
361 if(rightIsPushed) {
362 encoderLastServoUpdate -= 100;
363 servoDirection = right;
364 }
365 else if(leftIsPushed){
366 encoderLastServoUpdate -= 100;
367 servoDirection = left;

D.2. COIL WINDER CARD 145

368 }
369 }
370
371
372 // Updating servo position
373 if (servoDirection == right) {
374 encodedPosition += encoderCounter - encoderLastServoUpdate;
375
376 if (leftIsPushed) { // Update RIGH point
377 servoDirection = left;
378 settings.rightPoint = OCR1A;
379 }
380 }
381 else { // servoDirection == left
382 encodedPosition -= encoderCounter - encoderLastServoUpdate;
383
384 if (rightIsPushed){ // Update LEFT point
385 servoDirection = right;
386 settings.leftPoint = OCR1A;
387 }
388 }
389
390 encoderLastServoUpdate = encoderCounter;
391
392 if (encodedPosition < 0) encodedPosition = 0;
393 else if (encodedPosition > encodedPositionMax) encodedPosition = ←↩

encodedPositionMax;
394 position = encodedPositionToMm(encodedPosition);
395
396 toServo(servoMmToTicks(position))
397
398
399 // Updating servo right and left point
400 if (position > servoTicksToMm(settings.rightPoint)) { // servo←↩

passed right point
401 if (rightIsPushed == false) { // right is not pushed
402 servoDirection = left;
403 }
404 else { //right point is being overrided
405 settings.rightPoint = OCR1A;
406
407 }
408 }
409 else if (position < servoTicksToMm(settings.leftPoint)) { //servo←↩

passed left poin
410 if (leftIsPushed == false) { // left is not pushed
411 servoDirection = right;
412 }
413 else { //left point is being overrided
414 settings.leftPoint = OCR1A;
415 }
416 }
417
418 ultoa (((uint32_t)position) * 1000 + (uint32_t)totalTurns , printbuffer , ←↩

10);
419 LCD_puts(printbuffer);
420
421
422 return st_doRun;
423 }
424
425 uint8_t f_CounterReset(uint8_t input) {

146 APPENDIX D. MICROCONTROLLER SOURCE CODE

426 static bool enter = 1;
427
428 if(enter) {
429 totalTurns = 0;
430 LCD_puts_f(mt_doCounterReset);
431 enter = 0;
432 }
433
434 else if(input == KEY_LEFT) {
435 enter = 1;
436 return st_counterReset;
437 }
438
439 return st_doCounterReset;
440 }
441
442 void toLCD(uint16_t *value) {
443 itoa(*value , printbuffer , 10);
444 LCD_puts(printbuffer);
445 }
446
447 void updateRadianMovePerTick(void) {
448 radianMovePerTick = (((settings.rightPoint -settings.leftPoint)*settings←↩

.wireThickness*M_PI)/(settings.coilWith*motorTicksPerTurn*←↩
servoRange));

449 }
450
451 uint8_t f_step(uint16_t *variableToBeStepped , uint16_t max , uint16_t min ,←↩

uint16_t step , uint8_t *input) {
452 if(* input == KEY_UP) {
453 if ((* variableToBeStepped + step) < max) {
454 *variableToBeStepped += step;
455 }
456 else{
457 *variableToBeStepped = max;
458 }
459 }
460
461 else if(* input == KEY_DOWN) {
462 if (* variableToBeStepped > (min + step)) {
463 *variableToBeStepped -= step;
464 }
465 else{
466 *variableToBeStepped = min;
467 }
468 }
469
470 else if(* input == KEY_RIGHT) {
471 }
472
473 else if(* input == KEY_PUSH) {
474 }
475
476 else {
477 return 0; //Did nothing
478 }
479 toLCD(variableToBeStepped);
480 return 1; //Did something
481
482 }
483
484 // Interrupt run once every pulse from the motor. The

D.2. COIL WINDER CARD 147

485 ISR(PCINT0_vect) {
486 if(PCMSK0 == 0x10) {
487 if(lastValidPulse == low){ //HIGH
488 for(uint8_t i = 50; i > 0 ; i--) {
489 }
490 if ((PINE & PIN4_MASK) == PIN4_MASK) {
491 PINB = PIN2_MASK;
492 lastValidPulse = high;
493 encoderCounter ++;
494 turnEncoderCounter ++;
495 if(turnEncoderCounter > motorTicksPerTurn){
496 turnEncoderCounter = turnEncoderCounter - motorTicksPerTurn;
497 totalTurns ++;
498 }
499 }
500 }
501
502 else {
503 for(uint8_t i = 50; i > 0 ; i--) {
504 }
505 if ((PINE & PIN4_MASK) == 0x00) {
506 lastValidPulse = low;
507 }
508 }
509 }
510 else {
511 PinChangeInterrupt ();
512 }
513 }
514
515 ISR(PCINT1_vect) {
516 PinChangeInterrupt ();
517 }

Listing D.10: main.h

1 /* **
2 *
3 * File: main.h
4 * Description:
5 * Project: CubeSTAR Coil Winder Card
6 * Target ATmega169 on AVR Butterfly
7 * Author: Kjetil Rensel
8 * Revised: August 2011
9 *

10 *** */
11
12 // Button definitions
13
14 #define KEY_NULL 0
15 #define KEY_PUSH 1
16 #define KEY_LEFT 2
17 #define KEY_RIGHT 3
18 #define KEY_UP 4
19 #define KEY_DOWN 5
20
21
22 #define PIN0_MASK (1 << 0)
23 #define PIN1_MASK (1 << 1)
24 #define PIN2_MASK (1 << 2)
25 #define PIN3_MASK (1 << 3)

148 APPENDIX D. MICROCONTROLLER SOURCE CODE

26 #define PIN4_MASK (1 << 4)
27 #define PIN5_MASK (1 << 5)
28 #define PIN6_MASK (1 << 6)
29
30 #define settingsByteLength 8
31
32 typedef struct settings
33 {
34 uint16_t leftPoint;
35 uint16_t rightPoint;
36 uint16_t wireThickness;
37 uint16_t coilWith;
38 } settings_t;
39
40 uint8_t StateMachine(uint8_t state , uint8_t stimuli);
41 uint8_t f_Freerun(uint8_t input);
42 uint8_t f_SetLeftPoint(uint8_t input);
43 uint8_t f_SetRightPoint(uint8_t input);
44 uint8_t f_SetWireThickness(uint8_t input);
45 uint8_t f_SetCoilWith(uint8_t input);
46 uint8_t f_Run(uint8_t input);
47 uint8_t f_CounterReset(uint8_t input);
48 void toLCD(uint16_t *value);
49 void updateRadianMovePerTick(void);
50 uint8_t f_step(uint16_t *variable , uint16_t max , uint16_t min , uint16_t ←↩

step , uint8_t *input);

Listing D.11: menu.h

1 /* **
2 *
3 * File: menu.h
4 * Description: Defines the states , state functions and menu texts
5 * Project: CubeSTAR Coil Winder Card
6 * Target ATmega169 on AVR Butterfly
7 * Author: Kjetil Rensel
8 * Revised: August 2011
9 *

10 *** */
11
12 #include <avr/io.h>
13 #include <avr/pgmspace.h>
14
15 //Menu states
16 #define st_welcome 1
17 #define st_freerun 2
18 #define st_setLeftPoint 3
19 #define st_setRightPoint 4
20 #define st_setWireThickness 5
21 #define st_setCoilWith 6
22 #define st_run 7
23 #define st_counterResetConfirm 8
24 #define st_counterReset 9
25
26 #define st_doFreerun 20
27 #define st_doSetLeftPoint 21
28 #define st_doSetRightPoint 22
29 #define st_doSetWireThickness 23
30 #define st_doSetCoilWith 24
31 #define st_doRun 25
32 #define st_doCounterReset 26

D.2. COIL WINDER CARD 149

33
34 typedef struct
35 {
36 uint8_t state;
37 uint8_t input;
38 uint8_t nextstate;
39 } menu_nextstate_t;
40
41
42 typedef struct
43 {
44 uint8_t state;
45 char *pText;
46 uint8_t (*pFunc)(uint8_t input);
47 } menu_state_t;
48
49 //Menu text
50 char PROGMEM mt_welcome [] = "Cubestar␣Coil␣winder␣by␣kjetil";
51 char PROGMEM mt_freerun [] = "MANUAL";
52 char PROGMEM mt_setLeftPoint [] = "LEFT␣␣␣␣";
53 char PROGMEM mt_setRightPoint [] = "RIGHT␣␣␣";
54 char PROGMEM mt_setWireThickness [] = "WIRE␣␣␣␣";
55 char PROGMEM mt_setCoilWith [] = "COIL␣␣␣␣";
56 char PROGMEM mt_run [] = "RUN";
57 char PROGMEM mt_counterReset [] = "RESET␣COUNTER";
58 char PROGMEM mt_counterResetConfirm []= "ARE␣YOU␣SHURE ,␣LEFT␣TO␣CANCEL";
59 char PROGMEM mt_doFreerun [] = "UP/DWN";
60 char PROGMEM mt_doSetLeftPoint [] = "UP/DWN";
61 char PROGMEM mt_doSetRightPoint [] = "UP/DWN";
62 char PROGMEM mt_doSetWireThickness [] = "UP/DWN";
63 char PROGMEM mt_doSetCoilWith [] = "UP/DWN";
64 char PROGMEM mt_doRun [] = "POSCNT";
65 char PROGMEM mt_doCounterDisplay [] = "UP/DWN";
66 char PROGMEM mt_doCounterReset [] = "CONTER␣RESETTED ,␣LEFT␣TO␣GO␣BACK"←↩

;
67
68
69 menu_nextstate_t menu_nextstate [] = {
70 // STATE INPUT NEXT STATE
71 {st_welcome , KEY_UP , st_freerun},
72 {st_welcome , KEY_DOWN , st_freerun},
73 {st_welcome , KEY_RIGHT , st_freerun},
74 {st_welcome , KEY_LEFT , st_freerun},
75
76 {st_freerun , KEY_UP , st_counterReset},
77 {st_freerun , KEY_DOWN , st_setLeftPoint},
78 {st_freerun , KEY_RIGHT , st_doFreerun},
79 {st_freerun , KEY_LEFT , st_freerun},
80
81 {st_setLeftPoint , KEY_UP , st_freerun},
82 {st_setLeftPoint , KEY_DOWN , st_setRightPoint},
83 {st_setLeftPoint , KEY_RIGHT , st_doSetLeftPoint},
84 {st_setLeftPoint , KEY_LEFT , st_setLeftPoint},
85
86 {st_setRightPoint , KEY_UP , st_setLeftPoint},
87 {st_setRightPoint , KEY_DOWN , st_setWireThickness},
88 {st_setRightPoint , KEY_RIGHT , st_doSetRightPoint},
89 {st_setRightPoint , KEY_LEFT , st_setRightPoint},
90
91 {st_setWireThickness , KEY_UP , st_setRightPoint},
92 {st_setWireThickness , KEY_DOWN , st_setCoilWith},
93 {st_setWireThickness , KEY_RIGHT , st_doSetWireThickness},

150 APPENDIX D. MICROCONTROLLER SOURCE CODE

94 {st_setWireThickness , KEY_LEFT , st_setWireThickness},
95
96 {st_setCoilWith , KEY_UP , st_setWireThickness},
97 {st_setCoilWith , KEY_DOWN , st_run},
98 {st_setCoilWith , KEY_RIGHT , st_doSetCoilWith},
99 {st_setCoilWith , KEY_LEFT , st_setCoilWith},

100
101 {st_run , KEY_UP , st_setCoilWith},
102 {st_run , KEY_DOWN , st_counterReset},
103 {st_run , KEY_RIGHT , st_doRun},
104 {st_run , KEY_LEFT , st_run},
105
106
107 {st_counterReset , KEY_UP , st_run},
108 {st_counterReset , KEY_DOWN , st_freerun},
109 {st_counterReset , KEY_RIGHT , st_counterResetConfirm},
110 {st_counterReset , KEY_LEFT , st_counterReset},
111
112
113 {st_counterResetConfirm , KEY_UP , st_counterResetConfirm},
114 {st_counterResetConfirm , KEY_DOWN , st_counterResetConfirm},
115 {st_counterResetConfirm , KEY_RIGHT , st_doCounterReset},
116 {st_counterResetConfirm , KEY_LEFT , st_counterReset},
117
118
119 {0, 0, 0}
120 };
121
122 menu_state_t menu_state [] = {
123 // STATE STATE TEXT STATE_FUNC
124 {st_welcome , mt_welcome , NULL},
125 {st_freerun , mt_freerun , NULL},
126 {st_setLeftPoint , mt_setLeftPoint , NULL},
127 {st_setRightPoint , mt_setRightPoint , NULL},
128 {st_setWireThickness , mt_setWireThickness , NULL},
129 {st_setCoilWith , mt_setCoilWith , NULL},
130 {st_run , mt_run , NULL},
131 {st_counterResetConfirm , mt_counterResetConfirm , NULL},
132 {st_counterReset , mt_counterReset , NULL},
133 {st_doFreerun , NULL , f_Freerun},
134 {st_doSetLeftPoint , NULL , f_SetLeftPoint},
135 {st_doSetRightPoint , NULL , f_SetRightPoint},
136 {st_doSetWireThickness , NULL , f_SetWireThickness←↩

},
137 {st_doSetCoilWith , NULL , f_SetCoilWith},
138 {st_doRun , NULL , f_Run},
139 {st_doCounterReset , NULL , f_CounterReset},
140
141 {0 , NULL , NULL}
142 };

Listing D.12: button.c

1 /* **
2 *
3 * File: button.c
4 * Description: Reads the button input
5 * Project: CubeSTAR Coil Winder Card
6 * Target ATmega169 on AVR Butterfly
7 * Author: ATMEL
8 * Rewritten: Kjetil Rensel

D.2. COIL WINDER CARD 151

9 * Revised: August 2011
10 *
11 *** */
12
13 #include <avr/io.h>
14 #include <stdlib.h>
15 #include <stdio.h>
16 #include <stdbool.h>
17 #include <avr/interrupt.h>
18
19 #include "button.h"
20
21 uint8_t KEY;
22 bool KEY_VALID = false;
23
24
25
26 // Initializes the five button pin
27 void Button_Init(void)
28 {
29 // Enable pin change interrupt on PORTB and PORTE
30 PCMSK0 = PINE_MASK;
31 PCMSK1 = PINB_MASK;
32 EIFR = (1<<PCIF0)|(1<<PCIF1);
33 EIMSK = (1<<PCIE0)|(1<<PCIE1);
34
35 }
36
37
38
39 //Check status on the joystick
40 void PinChangeInterrupt(void)
41 {
42 uint8_t buttons;
43 uint8_t key;
44
45 /*
46 Read the buttons:
47
48 Bit 7 6 5 4 3 2 1 0
49 ---
50 PORTB B A O
51 PORTE D C
52 ---
53 PORTB | PORTE B A O D C
54 ===
55 */
56
57
58 buttons = (~PINB) & PINB_MASK;
59 buttons |= (~PINE) & PINE_MASK;
60
61 // Output virtual keys
62 if (buttons & (1<<BUTTON_UP))
63 key = KEY_UP;
64 else if (buttons & (1<<BUTTON_DOWN))
65 key = KEY_DOWN;
66 else if (buttons & (1<<BUTTON_LEFT))
67 key = KEY_LEFT;
68 else if (buttons & (1<<BUTTON_RIGHT))
69 key = KEY_RIGHT;
70 else if (buttons & (1<<BUTTON_PUSH))

152 APPENDIX D. MICROCONTROLLER SOURCE CODE

71 key = KEY_PUSH;
72 else
73 key = KEY_NULL;
74
75
76 if((key != KEY_NULL) && !KEY_VALID)
77 {
78 KEY = key; // Store key in global key buffer
79 KEY_VALID = true;
80 }
81
82 EIFR = (1<<PCIF1) | (1<<PCIF0); // Delete pin change interrupt flags
83 }
84
85
86 //Get the valid key and returns it
87 uint8_t getkey(void)
88 {
89 uint8_t k;
90
91 cli();
92
93 if (KEY_VALID) // Check for unread key in buffer
94 {
95 k = KEY;
96 KEY_VALID = false;
97 }
98 else
99 k = KEY_NULL; // No key stroke available

100
101 sei();
102
103 return k;
104 }

Listing D.13: button.h

1 /* **
2 *
3 * File: button.h
4 * Description: Defines the propertis of buttons connected
5 * Project: CubeSTAR Coil Winder Card
6 * Target ATmega169 on AVR Butterfly
7 * Author: Kjetil Rensel
8 * Revised: August 2011
9 *

10 *** */
11
12
13 #define PINB_MASK ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))
14 #define PINE_MASK ((1<<PINE2)|(1<<PINE3))
15
16 #define BUTTON_UP 6 // UP
17 #define BUTTON_DOWN 7 // DOWN
18 #define BUTTON_LEFT 2 // LEFT
19 #define BUTTON_RIGHT 3 // RIGHT
20 #define BUTTON_PUSH 4 // PUSH
21
22 // Button definitions
23
24 #define KEY_NULL 0

D.2. COIL WINDER CARD 153

25 #define KEY_PUSH 1
26 #define KEY_LEFT 2
27 #define KEY_RIGHT 3
28 #define KEY_UP 4
29 #define KEY_DOWN 5
30
31 void PinChangeInterrupt(void);
32 void Button_Init(void);
33 uint8_t getkey(void);

154 APPENDIX D. MICROCONTROLLER SOURCE CODE

Appendix E

Matlab Source Code

E.1 Gyro Calibration

Listing E.1: Gyro_calibration.m Code file for the GUI gyro calibrating software

1 %Matlab Gyro_calibration code
2 %Written By: Kjetil Rensel
3 %2011
4
5 %Button: Reads the path and file name of X-axis spin file
6 function pushbutton1_Callback(hObject , ~, handles)
7 global fileNameX;
8 global pathX;
9 [fileNameX pathX] = uigetfile(’*.txt’);

10 set(handles.textMeasX , ’String ’, fileNameX);
11 guidata(hObject , handles);
12 %set(handles.editFileName1 , ’string ’, fileName);
13
14 %Button: Reads the path and file name of Y-axis spin file
15 function pushbutton2_Callback(hObject , ~, handles)
16 global fileNameY;
17 global pathY;
18 [fileNameY pathY] = uigetfile(’*.txt’);
19 set(handles.textMeasY , ’String ’, fileNameY);
20 guidata(hObject , handles);
21
22 %Button: Reads the path and file name of Z-axis spin file
23 function pushbutton3_Callback(hObject , ~, handles)
24 global fileNameZ;
25 global pathZ;
26 [fileNameZ pathZ] = uigetfile(’*.txt’);
27 set(handles.textMeasZ , ’String ’, fileNameZ);
28 guidata(hObject , handles);
29
30 % Button: Latex plots , sets plot properties to latex design.
31 function pushbutton5_Callback(hObject , ~, handles)
32 set(0,’DefaultTextInterpreter ’,’latex’);
33 set(0,’DefaultTextFontSize ’ ,16);
34 set(0,’DefaultFigurePosition ’, [500 300 800 500]);
35 guidata(hObject , handles);
36
37
38 % Button: Default plots , sets plot properties to default.

155

156 APPENDIX E. MATLAB SOURCE CODE

39 function pushbutton6_Callback(hObject , ~, handles)
40 set(0,’DefaultTextInterpreter ’,’none’);
41 set(0,’DefaultTextFontSize ’ ,12);
42 guidata(hObject , handles);
43
44 %Button: Open figure "Temperature" in separate window
45 function pushbutton9_Callback (~, ~, ~)
46 figure ();
47 temperaturePlot ();
48
49 %Button: Run Kalman filtering , and plots the error plot.
50 function pushbutton11_Callback (~, ~, handles)
51
52 global fileNameX;
53 global fileNameY;
54 global fileNameZ;
55 global pathX;
56 global pathY;
57 global pathZ;
58 global tempDep %%tempDep ([x y z],[TemperatureCoefficient Offset])
59 global meas_cal_e;
60 global meas_e;
61 global s;
62 global x_store;
63
64 raw_x = importdata(strcat(pathX ,fileNameX));
65 raw_y = importdata(strcat(pathY ,fileNameY));
66 raw_z = importdata(strcat(pathZ ,fileNameZ));
67
68 s(1) = size(raw_x ,1);
69 s(2) = s(1) + size(raw_y ,1);
70 s(3) = s(2) + size(raw_z ,1);
71
72 %%% Convert to common format from chip specific
73 if (size(raw_x ,2) == 7) %ITG
74 %Format is: <X><Y><Z><tempX ><reference >
75 meas = [raw_x (: ,2:4), raw_x (:,5)
76 raw_y (: ,2:4), raw_y (:,5)
77 raw_z (: ,2:4), raw_z (:,5)];
78 meas = [meas (: ,1:3) /14.375 meas (:,4) /280];%%ITG specific scale factor
79
80 ref =7;
81
82 else %SAR
83 meas = [raw_x (: ,2:4), (raw_x (:,5)+raw_x (:,6)+raw_x (:,7))/3, raw_x (:,9)
84 raw_y (: ,2:4), (raw_y (:,5)+raw_y (:,6)+raw_y (:,7))/3, raw_y (:,9)
85 raw_z (: ,2:4), (raw_z (:,5)+raw_z (:,6)+raw_z (:,7))/3, raw_z (:,9)];
86 meas (: ,1:3) = meas (: ,1:3) /10;%%SAR specific scale factor
87 ref =9;
88 end
89
90 %Creating spintable reference variable
91 reference = zeros(s(3) ,3);
92 reference (1:s(1) ,1) = raw_x(:,ref);
93 reference(s(1) +1:s(2) ,2) = raw_y(:,ref);
94 reference(s(2) +1:s(3) ,3) = raw_z(:,ref);
95
96 %%%Pre -Processing (temperature/offset compensating)
97 meas_pp=zeros(s(3) ,3);
98
99 for i=1:s(3)

E.1. GYRO CALIBRATION 157

100 meas_pp(i,:) = (meas(i,1:3) ’ + (-tempDep (:,1) .* meas(i,4)) - tempDep←↩
(:,2)) ’;

101 end
102
103 %%% Calculates error
104 meas_e = zeros(s(3) ,3);
105 meas_e = reference - meas_pp;
106
107 axes(handles.axesError);
108 errorPlot (0);
109
110 %%%%%%%%%%%%%%%%%%%%%%%%% KALMAN
111 Omega=zeros(3,9,s(3)); %Empty omega
112
113 %Fill up Omega with pre processed measurement
114 Omega (1,1,:)=meas_pp (:,2);
115 Omega (1,2,:)=meas_pp (:,3);
116 Omega (2,3,:)=meas_pp (:,1);
117 Omega (2,4,:)=meas_pp (:,3);
118 Omega (3,5,:)=meas_pp (:,1);
119 Omega (3,6,:)=meas_pp (:,2);
120 Omega (1,7,:)=meas_pp (:,1);
121 Omega (2,8,:)=meas_pp (:,2);
122 Omega (3,9,:)=meas_pp (:,3);
123
124 H=zeros(3,12,s(3));
125
126 for i=1:s(3)
127 H(:,:,i)=[Omega(:,:,i) -eye(3)];
128 end
129
130 x=ones (12 ,1);
131 R=eye (3);
132 P=diag(x)^2;
133 x_store=zeros(s(3) ,12);
134
135 %The Kalman Loop starts here:
136 for i=1:s(3)
137 x_store(i,:)=x;
138 %%Time Update -PREDICT -
139 %x=x and p=p
140
141 %%Measurement Update -CORRECT -
142 K = P * H(:,:,i)’ / (H(:,:,i) * P * H(:,:,i)’ + R);
143 x = x + K * (meas_e(i,:) ’-H(:,:,i) * x);
144 P = P - K * H(:,:,i) * P;
145 end
146
147 %%Plot kalman:
148 axes(handles.axesKalman);
149 kalmanPlot ();
150
151 %%%%%%%%%%%%%%%%%%%%%%%%% KALMAN END
152
153 %Write parameters to table
154 tablData=get(handles.uitableParameters ,’Data’);
155 tablData =[tablData (1:2 ,:); 0 x(1:2) ’; x(3) 0 x(4); x(5:6)’ 0; x(7:9) ’; x←↩

(10:12) ’];
156 set(handles.uitableParameters ,’Data’,tablData);
157
158 %%% Correcting data , and make a meas_cal variable
159 S = (eye (3) + diag(x(7:9)) + [0 x(1) x(2) ;...

158 APPENDIX E. MATLAB SOURCE CODE

160 x(3) 0 x(4) ;...
161 x(5) x(6) 0]);
162 meas_cal = zeros (s(3) ,3);
163 for i=1:s(3)
164 meas_cal(i,:) = (S*meas_pp(i,:)’ - x(10:12))’;
165 end
166
167 meas_cal_e = reference - meas_cal;
168
169 %Plot the error after correction
170 axes(handles.axesError);
171 errorPlot (1);
172
173 %%Wrinting variables to workspace
174 assignin(’base’, ’x_store ’, x_store);
175 assignin(’base’, ’tempDep ’, tempDep);
176 assignin(’base’, ’meas’, meas);
177 assignin(’base’, ’meas_pp ’, meas_pp);
178 assignin(’base’, ’meas_e ’, meas_e);
179 assignin(’base’, ’meas_cal ’, meas_cal);
180 assignin(’base’, ’reference ’, reference);
181 assignin(’base’, ’x’, x);
182
183 %Button: CHanges the Error plot window to display error before ←↩

calibration
184 function pushbutton12_Callback (~, ~, handles)
185 axes(handles.axesError);
186 errorPlot (0);
187
188 %Button: CHanges the Error plot window to display error after calibration
189 function pushbutton13_Callback (~, ~, handles)
190 axes(handles.axesError);
191 errorPlot (1);
192
193
194 %Variable list: When a variable is choosen , the
195 %Temperature test data is plotted , and a linear fit is performed.
196 function popupmenu1_Callback(hObject , ~, handles)
197
198 update_popup(handles);
199 global tempMeas;
200 global tempDep; %%tempDep ([x y z],[TemperatureCoefficient Offset])
201
202 vars = get(hObject ,’String ’);
203 %tempMeas = evalin(’base ’,strcat(vars(get(hObject ,’Value ’))));
204
205 tempMeas = evalin(’base’,vars{get(hObject ,’Value ’)});
206 if(size(tempMeas ,2) ==6)
207 tempDep (1,:) = polyfit(tempMeas (:,4), tempMeas (:,1) ,1);
208 tempDep (2,:) = polyfit(tempMeas (:,5), tempMeas (:,2) ,1);
209 tempDep (3,:) = polyfit(tempMeas (:,6), tempMeas (:,3) ,1);
210 elseif(size(tempMeas ,2) ==4)
211 tempDep (1,:) = polyfit(tempMeas (:,4), tempMeas (:,1) ,1);
212 tempDep (2,:) = polyfit(tempMeas (:,4), tempMeas (:,2) ,1);
213 tempDep (3,:) = polyfit(tempMeas (:,4), tempMeas (:,3) ,1);
214 end
215
216 set(handles.uitableParameters ,’Data’,tempDep ’);
217
218 axes(handles.axesTmp);
219 cla;
220 temperaturePlot ();

E.1. GYRO CALIBRATION 159

221
222 %Button: Performs a update of the variable list.
223 %This must be done when a new variable is made
224 %in the workspace after GUI is opened
225 function pushbutton17_Callback (~, ~, handles)
226 update_popup(handles)
227
228 function update_popup(handles)
229 vars = evalin(’base’,’who’);
230 set(handles.popupmenu1 ,’String ’,vars)
231
232
233
234 %Button: Open figure "Kalman" in separate window
235 function pushbutton19_Callback (~, ~, ~)
236 figure ();
237 kalmanPlot ();
238
239 %Button: Open figure "Error" in separate window
240 function pushbutton20_Callback (~, ~, ~)
241 global errorplotnr;
242 figure ();
243 errorPlot(errorplotnr);
244
245 %Function: plots "temperature" figure
246 function temperaturePlot (~)
247 global tempMeas;
248 global tempDep;
249 title(’SAR150 -100␣Temperature␣Dependent␣Bias’,’FontSize ’ ,14);
250 ylabel(’Bias␣(deg/sec)’,’FontSize ’ ,14);
251 xlabel(’Temperature␣(deg/C)’,’FontSize ’ ,14);
252 hold on;
253 if(size(tempMeas ,2) ==6) %%SAR
254 scatter(tempMeas (:,4), tempMeas (:,1),’.’);
255 scatter(tempMeas (:,5), tempMeas (:,2),’.’);
256 scatter(tempMeas (:,6), tempMeas (:,3),’.’);
257 elseif(size(tempMeas ,2) ==4) %%ITG
258 scatter(tempMeas (:,4), tempMeas (:,1),’.’);
259 scatter(tempMeas (:,4), tempMeas (:,2),’.’);
260 scatter(tempMeas (:,4), tempMeas (:,3),’.’);
261 end
262 set(legend(’X-axis’,’Y-axis’,’Z-axis’),’Interpreter ’,’latex ’,’FontSize ’←↩

,14)
263 a=axis;
264 line([a(1) a(2)],[a(1)*tempDep (1,1)+tempDep (1,2) a(2)*tempDep (1,1)+←↩

tempDep (1,2)],’Color ’ ,[.5 .5 .5],’LineWidth ’ ,2);
265 line([a(1) a(2)],[a(1)*tempDep (2,1)+tempDep (2,2) a(2)*tempDep (2,1)+←↩

tempDep (2,2)],’Color ’ ,[.5 .5 .5],’LineWidth ’ ,2);
266 line([a(1) a(2)],[a(1)*tempDep (3,1)+tempDep (3,2) a(2)*tempDep (3,1)+←↩

tempDep (3,2)],’Color ’ ,[.5 .5 .5],’LineWidth ’ ,2);
267 axis(a); clear a;
268
269 %Function: plots "Error" figure
270 function errorPlot(calibrated)
271 global meas_cal_e;
272 global meas_e;
273 global s;
274 global errorplotnr;
275
276 errorplotnr = calibrated;
277
278 if calibrated == 1

160 APPENDIX E. MATLAB SOURCE CODE

279 plot(meas_cal_e);
280 title(’Rate␣Table␣Test␣Errors␣After␣Calibration ’,’FontSize ’ ,14);
281 else
282 plot(meas_e);
283 title(’Rate␣Table␣Test␣Error␣After␣Preprocessing ’,’FontSize ’ ,14);
284 end;
285
286 line ([0 s(3)],[0 0], ’Color ’, ’k’);
287 xlabel(’Time␣(samples)’,’FontSize ’ ,14);
288 ylabel(’Angular␣Velocity␣(deg/sec)’,’FontSize ’ ,14);
289 set(legend(’X-axis’,’Y-axis’,’Z-axis’),’Interpreter ’,’latex ’,’FontSize ’←↩

,14)
290
291 %Function: Plots "Kalman" function
292 function kalmanPlot ()
293 global x_store;
294 global s;
295 plot(x_store);
296 title(’Kalman␣State␣Parameters ’,’FontSize ’ ,14);
297 set(legend(’δ_{xy}’, ’δ_{xy}’, ’δ_{yx}’ ,...
298 ’δ_{yz}’, ’δ_{zx}’, ’δ_{zy}’ ,...
299 ’λ_{x}’, ’λ_{y}’, ’λ_{z}’ ,...
300 ’β_{x}’, ’β_{y}’, ’β_{z}’),’Interpreter ’ ,...
301 ’latex ’,’FontSize ’ ,14);
302 xlabel(’Iterations ’,’FontSize ’ ,14);
303 ylabel(’State␣Values ’,’FontSize ’ ,14);

E.2 Magnetometer Calibration

Listing E.2: calibrate.m Runs the calibration process based on the measurement data

1 %%%%%%%%% MagnetometerCalibration
2 % Runs the optimalization process as many times as defined below
3 % If executed again , it continues to minimize the function.
4 %
5 % Written by Kjetil Rensel
6 % Based on the paper "A Geometric Approach to Strapdown Magnetometer
7 % Calibration in Sensor Frame"
8 s = size(h,2);
9 it =1500; %NUMBER OF ITERATIONS <---

10
11 mini = [min(h(1,:)) min(h(2,:)) min(h(3,:))];%finding min on each axis
12 maxi = [max(h(1,:)) max(h(2,:)) max(h(3,:))];%finding max on each axis
13
14 %%If b, T, g_b and g_T not exists , make a good guess:
15 if ((exist(’b’)+exist(’T’)+exist(’g_b’)+exist(’g_T’)) ~= 4)
16 b = [(maxi (1)+mini (1))/2 (maxi (2)+mini (2))/2 (maxi (3)+mini (3))/2]’;
17 T = inv(diag ([(maxi (1)-mini (1)) (maxi (2)-mini (2)) (maxi (3)-mini (3))←↩

]/2));
18 g_b = 0.000001;
19 g_T = 0.000001;
20 end
21
22 d_T = zeros(9,s);
23 d_b = zeros(3,s);
24 c_T = zeros(1,s);
25 d_T_sum = zeros(3,3,it);
26 d_b_sum = zeros(3,1,it);
27
28 err=zeros(1,it);

E.2. MAGNETOMETER CALIBRATION 161

29
30 for i=1:it;
31
32 u = h - repmat(b,1,s); %%Creating u with b and measurement
33
34 TT=(T’*T);
35 for j=1:s %%Gradient of T loop
36 c_T(j) = 1-1/norm(T*u(:,j));
37 d_T(:,j) = (2 * c_T(j)) * (kron(u(:,j), T*u(:,j)));
38 d_T_sum(:,:,i) = d_T_sum (:,:,i) + reshape(d_T(:,j) ,3,3);
39 end
40 T_old=T;
41 T = T - d_T_sum(:,:,i) .* g_T; %Determ new T
42
43 for j=1:s
44 err(i) = err(i) + (norm(T*(h(:,j)-b)) -1)^2; %Calculate error
45 end
46
47
48 if ((i > 1) && (err(i-1) < err(i)))%Decide whether new or old T is ←↩

best
49 T=T_old;
50 g_T=g_T *0.9;
51 else
52 g_T=g_T *1.01;
53 end
54
55 for j=1:s %%Gradient of b loop
56 c_T(j) = 1-1/norm(T*u(:,j));
57 d_b(:,j) = (-2 * c_T(j)) * TT * u(:,j);
58 d_b_sum(:,:,i) = d_b_sum (:,:,i) + reshape(d_b(:,j) ,3,1);
59 end
60
61 b_old=b;
62 b = b - d_b_sum(:,:,i) .* g_b;%Determ new B
63
64 err(i) = 0;
65 for j=1:s
66 err(i) = err(i)+ (norm(T*(h(:,j)-b)) -1)^2; %Calculate error
67 end
68
69
70 if ((i > 1) && (err(i-1) < err(i)))%Decide whether new or old b is ←↩

best
71 b=b_old;
72 g_b=g_b *0.9;
73 else
74 g_b=g_b *1.01;
75 end
76 end
77
78 [U,S,R]=svd(T); %SVD decomposition
79
80 S=(S/(norm([S(1,1) S(2,2) S(3,3)]))); %%Keep the absolute value
81 h_calib=zeros(3,size(h,2));
82 for i=1: size(h,2)
83 h_calib(:,i)=S*R’*(h(:,i)-b); %%Correct data!
84 end
85
86 set(figure (), ’Position ’, [500 300 800 500]);
87 plot(err);

162 APPENDIX E. MATLAB SOURCE CODE

88 title(’Total␣error␣of␣the␣minimization␣function ’,’interpreter ’,’latex’,’←↩
fontsize ’ ,14)

89 xlabel(’Iterations ’,’interpreter ’,’latex ’,’fontsize ’ ,14)
90 ylabel(’Sum␣of␣Errors ’,’interpreter ’,’latex ’,’fontsize ’ ,14)

Listing E.3: plot_abs.m Plots absolute value of magnetometer measurement data

1 function mag_abs = plot_abs(meas)
2 mag_abs=zeros(size(meas ,2) ,1);
3 for i=1: size(meas ,2)
4 mag_abs(i)=norm(meas(:,i));
5 end
6
7 set(figure (), ’Position ’, [500 300 800 500]);
8 plot(mag_abs ,’k’);
9 title(’Absolute ’,’Interpreter ’,’latex ’,’fontsize ’ ,14)

10 xlabel(’Samples ’,’Interpreter ’,’latex’,’fontsize ’ ,14);
11 ylabel(’Absolute␣Magnetic␣Field␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’←↩

,14);

Listing E.4: scat.m Plots the magnetometer data

1 function scat(h)
2 full=max(max(abs(h)))*1.05;
3 full=round(full *10) /10;
4 set(figure (), ’Position ’, [100 100 860 800]);
5
6 subplot (2,2,1);
7 scatter(h(1,:),h(3,:),’.k’);
8 title(’XZ -plot’,’Interpreter ’,’latex’,’fontsize ’ ,10)
9 xlabel(’X-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);

10 ylabel(’Z-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
11 grid on;
12 axis([-full full -full full]);
13 set(gca ,’XTickMode ’,’manual ’);
14 set(gca ,’XTick ’,(-full :.1: full),’YTick ’,(-full :.1: full));
15
16 subplot (2,2,2)
17 scatter3(h(1,:),h(2,:),h(3,:),’.k’);
18 title(’3D-plot’,’Interpreter ’,’latex’,’fontsize ’ ,10)
19 xlabel(’X-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
20 ylabel(’Y-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
21 zlabel(’Z-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
22 axis([-1 1 -1 1 -1 1]* full);
23
24 subplot (2,2,3);
25 scatter(h(1,:),h(2,:),’.k’);
26 title(’XY-plot’,’Interpreter ’,’latex’,’fontsize ’ ,10)
27 xlabel(’X-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
28 ylabel(’Y-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
29 grid on;
30 set(gca ,’XTickMode ’,’manual ’);
31 set(gca ,’XTick ’,(-full :.1: full),’YTick ’,(-full :.1: full));
32 axis([-full full -full full]);
33
34 subplot (2,2,4);
35 scatter(h(3,:),h(2,:),’.k’);
36 title(’ZY-plot’,’Interpreter ’,’latex’,’fontsize ’ ,10)
37 xlabel(’Z-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
38 ylabel(’Y-sensor␣(Gauss)’,’Interpreter ’,’latex’,’fontsize ’ ,10);
39 grid on;

E.2. MAGNETOMETER CALIBRATION 163

40 axis([-full full -full full]);
41 set(gca ,’XTickMode ’,’manual ’);
42 set(gca ,’XTick ’,(-full :.1: full),’YTick ’,(-full :.1: full));

164 APPENDIX E. MATLAB SOURCE CODE

Appendix F

CD

The attached CD contains all software, firmware, figures, measurement data and the
thesis in PDF format.

165

	Contents
	List of Figures
	List of Tables
	1 Introductions
	1.1 CubeSat Standard
	1.2 CubeSTAR Project
	1.2.1 Mission
	1.2.2 Scientific Payload

	1.3 Attitude Determination and Control
	1.4 Previous Work
	1.4.1 Relevant Work on the CubeSTAR Project

	1.5 Goals of the Thesis
	1.6 Outline of the Thesis

	2 Attitude Determination and Control System
	2.1 Attitude Representation
	2.1.1 Reference Frames
	2.1.2 Rotation Matrix (Directing cosine matrix)

	2.2 Sensors
	2.2.1 Magnetometer
	2.2.2 Gyroscopic Sensor
	2.2.3 Sun Sensors
	2.2.4 Star Sensor
	2.2.5 Earth Sensor
	2.2.6 GPS

	2.3 Actuators and Passive Stabilization Methods
	2.3.1 Gravity Gradient Stabilization
	2.3.2 Permanent Magnet and Hysteresis Rod
	2.3.3 Magnetorquers
	2.3.4 Momentum Wheels
	2.3.5 Thrusters

	2.4 CubeSTAR ADCS
	2.4.1 Sensors and Actuators Chosen
	2.4.2 Attitude Determination and Control Mode
	2.4.3 Detumbling Mode

	3 Magnetorquers
	3.1 Magnetic Force in a Current Carrying loop
	3.2 Design
	3.2.1 Specifications
	3.2.2 Dimensions
	3.2.3 Design Considerations

	3.3 Magnetorquer Production
	3.3.1 Coil Winder

	3.4 Design Results and Future Work

	4 Electronic Design
	4.1 Electronics on the CubeSTAR
	4.2 Hardware System Architecture
	4.2.1 Microcontroller Circuitry
	4.2.2 Inter Communication
	4.2.3 Sensonor SAR150 Gyro Circuitry
	4.2.4 3-Axis Single Chip Gyro Sensor
	4.2.5 Magnetometer Circuitry
	4.2.6 Magnetorquer Driver H-bridge
	4.2.7 Magnetorquer Current Sensing
	4.2.8 PCB Design

	4.3 Mini Backplane Card
	4.4 Microcontroller Firmware
	4.4.1 Firmware Development for the AVR Platform
	4.4.2 Program Flow and State Machine
	4.4.3 Sensor Drivers
	4.4.4 UART / RS-232 Control
	4.4.5 Response Messages

	4.5 LabView Interface VI

	5 Sensor Calibrating
	5.1 Gyro
	5.1.1 Error Characterization
	5.1.2 Temperature Bias Calibration
	5.1.3 Reference Data Acquisition
	5.1.4 Kalman Filtering
	5.1.5 Matlab implementation
	5.1.6 Results

	5.2 Magnetometer
	5.2.1 Error Characterization
	5.2.2 Calibration test
	5.2.3 Results

	6 Discussion
	6.1 Future Work

	Bibliography
	A Coil Winder User Manual
	A.1 Overview of Functionality
	A.2 Understanding the Controller
	A.3 Adhesive and Safety Considerations
	A.4 Step by Step Guide
	A.5 Adjusting Coil Thickness above 3mm

	B Schematics PCB and Part List
	B.1 ADCS Card
	B.2 Mini Backplane Card
	B.3 Coil Winder Card

	C LabView Source Code
	D Microcontroller Source Code
	D.1 ADCS Card
	D.2 Coil Winder Card

	E Matlab Source Code
	E.1 Gyro Calibration
	E.2 Magnetometer Calibration

	F CD

