
RESEARCH ARTICLE

Scoutknife: A naïve, whole genome informed phylogenetic 

robusticity metric [version 1; peer review: 1 approved with 

reservations]

James Fleming , Pia Merete Eriksen , Torsten Hugo Struck
Natural History Museum, Universitetet i Oslo, Oslo, Oslo, 0562, Norway 

First published: 07 Aug 2023, 12:945  
https://doi.org/10.12688/f1000research.139356.1
Latest published: 07 Aug 2023, 12:945  
https://doi.org/10.12688/f1000research.139356.1

v1

 
Abstract 
Background: The phylogenetic bootstrap, first proposed by 
Felsenstein in 1985, is a critically important statistical method in 
assessing the robusticity of phylogenetic datasets. Core to its concept 
was the use of pseudo sampling - assessing the data by generating 
new replicates derived from the initial dataset that was used to 
generate the phylogeny. In this way, phylogenetic support metrics 
could overcome the lack of perfect, infinite data. With infinite data, 
however, it is possible to sample smaller replicates directly from the 
data to obtain both the phylogeny and its statistical robusticity in the 
same analysis. Due to the growth of whole genome sequencing, the 
depth and breadth of our datasets have greatly expanded and are set 
to only expand further. With genome-scale datasets comprising 
thousands of genes, we can now obtain a proxy for infinite data. 
Accordingly, we can potentially abandon the notion of pseudo 
sampling and instead randomly sample small subsets of genes from 
the thousands of genes in our analyses. 
Methods: We introduce Scoutknife, a jackknife-style subsampling 
implementation that generates 100 datasets by randomly sampling a 
small number of genes from an initial large-gene dataset to jointly 
establish both a phylogenetic hypothesis and assess its robusticity. We 
assess its effectiveness by using 18 previously published datasets and 
100 simulation studies. 
Results: We show that Scoutknife is conservative and informative as 
to conflicts and incongruence across the whole genome, without the 
need for subsampling based on traditional model selection criteria. 
Conclusions: Scoutknife reliably achieves comparable results to 
selecting the best genes on both real and simulation datasets, while 
being resistant to the potential biases caused by selecting for model 
fit. As the amount of genome data grows, it becomes an even more 
exciting option to assess the robusticity of phylogenetic hypotheses.
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Introduction
The genomics revolution completely altered our understanding of phylogeny - the study of the relationships between
organismal groups. By combining molecular and morphological data, our picture of the evolution of life has become
clearer than ever before.1,2 We are now in the process of entering the next phase of the genomics revolution, however,
where beyond single or multi-gene datasets, researchers are now able to accurately sequence whole genomes from
multiple species with relative ease.3–5 This new era of “big data”, properly leveraged, promises to revolutionise our
understanding of phylogenetics in the sameway our prior understandingwas revolutionised by the discovery of genomics
itself. However, appropriately handling this new data is key to unlocking its potential. First, the robustness or statistical
significance of these new results must be appropriately assessed. Second, assurances must be provided that the
phylogenies reflect the actual biological processes and are not being misled by reconstructive biases.1,6,7

The robustness and reliability of a phylogenetic topology and its branches can be quantified in a number of ways, such as
through Bayesian posterior probabilities8 or the Likelihood Ratio Test family of support values.9,10 One of the most
common, however, is the bootstrap support value.11 Ameasure of statistical robustness, the bootstrap was first applied to
phylogenetics by Felsenstein in 1985. In its implementation, the phylogeny is reconstructed from the limited source
dataset and the bootstrap creates multiple pseudo replicates of the source datasets – effectively multiplying the signal of
some sites in the datasets and removing the signal of others (Figure 1A). A variation of this approach is the generation of
pseudo samples by jackknifing – resampling only a fraction of the sites (e.g., 60% or 80%) from the source dataset.12 This
measures robustness, assessing how many of the sites in the source dataset support the final phylogeny – or more
specifically its branches – and thereby whether there is a broader consensus for the proposedmost likely topology – or for
a particular branch – amongst the source dataset’s component sites.13 This method is particularly useful where data is
limited, such as in single or limited gene datasets, where pseudo replicates can greatly proportionally increase the
effective size, and thereby statistical power, of the analysis.11 It was originally implemented as a surrogate for a robust
statistical sampling procedure from theoretically unlimited data.14 In the case of unlimited data, one could generate
random samples from these data, then generate the tree of each sample and determine the overall phylogeny by including
measurements of the robustness across all generated trees (Figure 1B).

In the modern era, genome-scale data is being generated for a rapidly increasing number of species across the tree of
life.4,15–17 When data is plentiful, the reliance on pseudo samples becomes less necessary. With thousands of genes and
millions to billions of base pairs on the horizon for phylogenetic analyses, one can safely assume that the theoretical
assumption of unlimited data is not violated. Accordingly, the data can be repeatedly sampled directly, trees reconstructed
and the phylogeny and statistical support determined (Figure 1C) as outlined directly from the aforementioned
unlimited data.

At the same time, however, the reconstruction of the species history can be challenging due to either methodological
incongruence (i.e., not all genes contain information about the species history that we can correctly decipher) or biological
incongruence (i.e., not all genes follow the species history).1,6,7 Making use of large amounts of genome data comes
with both an important caveat and an important boon: while methodologically incongruent genes can be removed by a
number of tools to identify branch length heterogeneity, compositional heterogeneity and site saturation, genes that are
excluded due to biological incongruence may contain real biological information that alters our understanding of species
relationships.1

Currently, phylogenetics has adopted a conservative stance,1,18 selecting genes that fit well within our models of
evolution19,20 – this has the benefit of evading artifactual topologies, but may well be presenting us with hypotheses
of evolution that are preselected according to our own biases, or incorrectly causing us to adopt great confidence in
hypotheses that are not as well supported by the data as it first appears.21 In this respect, an approach that is conservative
towards the models may not be conservative towards confidence in our phylogenetic hypotheses. Scoutknife presents
an alternative.11,22 By randomly sampling data across the genome, the key hurdle for this methodology is assessing
whether methodological incongruence significantly negatively influences the final hypothesis, or whether the false signal
supplied by thesemodel violations is outweighed by the addition of the real biological signal supplied by the sheer density
of big data. If the latter is true, Scoutknife may represent a better way forward for generating phylogenetic topologies –
one that is robust to methodological incongruence whilst expressing the biological incongruence that is present in
the data.

Here we present Scoutknife, a new method for assessing topological support. In contrast to the traditional bootstrap
approach, Scoutknife discards the creation of artificial pseudo replicates to instead use large multi-gene inputs to create
true replicate samples from the larger pool of genes. Scoutknife is a naive and unbiased way to measure support with
genome-scale data. It does this by generating a sample number of datasets, each consisting of a user-specified number of
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randomly selected genes and forming a consensus tree from the results (Figure 1). Alternatively, Scoutknife support
values can be attached to nodes of a maximum likelihood tree, similar to conventional bootstrap support. Across 18 real
and 100 simulation datasets, Scoutknife consensus trees produce comparable topological results to selecting the best
genes within the dataset using GeneSortR,19 and is robust to poor data occupancy. In addition, Scoutknife proves to be
more granular in its assessment of topological reliability than traditional bootstrap values, allowing researchers to bemore
cautious and informed about their topological hypotheses than ever before.

Figure 1. A figure showing a bootstrap pseudosampling process (Panel A) and a Scoutknife sampling process
(Panel C), with the theoretical unlimited data jackknife sample in the middle (Panel B). Note that Scoutknife
bears more similarity to unlimited data sampling than a traditional bootstrap. Scoutknife may not take the same
gene twice within the same sample but may take the same gene multiple times between samples – see Scoutknife
replicate #1 and #2, which both sample gene #97. The structure of this figure is based upon Hillis et al. (1996),
Chapter 11, page 508, Figure 33.18
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Approach
Scoutknife takes a “brute force” approach to assessing phylogenetic robusticity, simply asking the question -
“how robust is the most likely tree to topological signal across the entire dataset?”. Rather than generating pseudo
samples by randomly sampling sites, as in a traditional bootstrap,11 Scoutknife generates real data samples by randomly
sampling genes to create randomly assembled concatenated multi-gene datasets (Figure 1C). In theory, though some of
these genes contain low signal and others contain signal not consistent with the species phylogeny – either by
methodological or biological incongruence1,7 – the majority should contain at least some signal of the overall species
tree, thereby allowing us tomore robustly quantify not only the degree of support for a given taxonomic topology, but also
the degree of discordance within the constituent genomes themselves. This naïve method may further allow us to resolve
new phylogenetic hypotheses that have previously been neglected due to a focus on data selection.

First, the multi-gene dataset is divided into individual gene alignments. These alignments are then randomly selected to
form 100 multi-gene partitioned datasets of a size equal to that selected by the user. The same gene cannot be selected
twice by the same dataset (Figure 1C) – a key difference from a traditional bootstrap11 – but may appear multiple times
across different datasets. Within our real dataset analyses, this sampling comprised 100 100-gene datasets selected from
multi-gene datasets ranging from 1049 to 5105 genes (Table 1). Our simulated datasets comprised 100 replicates of a
1049 gene dataset, from which 100 100-gene datasets were then sampled.

Materials & Methods
Dataset construction and analysis
For both real and simulation analyses (for details see below), 100 geneswere randomly selected 100 times from the source
datasets, generating 100 100-gene concatenated sample datasets using the Scoutknife Package (https://github.com/
JFFleming/Scoutknife). The Scoutknife script package requires catsequences23 to be installed as a prerequisite, available
at (https://github.com/ChrisCreevey/catsequences).

Phylogenies for each Scoutknife dataset were constructed under IQ-Tree v1.6.1224 usingModelFinder,25 with a separate
model applied to each gene and no partition merging. As a data density-based technique, Scoutknife might be expected to
perform better in high data density scenarios where partitions can be comfortably merged. As such, this was intended to
limit the efficacy of Scoutknife further and test its performance under a scenario with more highly variable best fit models
than might be expected under normal conditions, whilst conserving computational effort considering the large number of
test datasets and simulations. To further facilitate parallelization of the analyses, the phylogenetic analyses of the datasets
were submitted using Scoutknifette (https://github.com/Togtja/scoutknifette). Scoutknifette is a custom high perfor-
mance computing (HPC)webhook for the groupmessaging service Discord that can be easilymodified for anyHPC tasks
that require multiple submission batches and queue tracking.

The trees produced by each Scoutknife sample dataset were then concatenated into a single treelist file (see Underlying
Data in our Data Availability Statement), and a consensus tree was constructed using bpcomp, available in Phylobayes,26

by using a burnin of 0 and a sampling rate of 1, sampling each tree in the treelist. Trees were constructed as both 70% strict
consensus and 50% majority consensus trees, and the results were compared. In two cases (Araneae and Lepidoptera),
30% plurality consensus trees were constructed using the same method, to further explore the data, as explained in the
results and discussion section. In a single case (Actinopterygii), the low occupancy of two species in particular
(Muraenesox cinerus with 1 gene and Scomber scombrus with 15 genes across the entire dataset of 1105) meant that
many of the Scoutknife samples did not contain representatives from these taxa. To address this, we used sumtrees.py
v 4.5.2, part of the DendroPy package,27 as it is capable of building consensus trees from tree lists containing a variable
number of taxa.

The Quartet Similarity, Quartet Divergence, Node Conflict, Node Agreement, Strict Joint Assertions, Semi-Strict
Joint Assertions, Symmetric Difference, Marczewski-Steinhaus, Steel-Penny and Overall Similarity were measured
with reference to the previously published topology of the 250 most informative genes of that dataset, as selected by
GeneSortR.19 In the case of the simulated datasets, the topology of the 250 most informative genes of the original source
dataset, Milla et al., (2020), as selected by GeneSortR,19,28 was used. These similarity metrics were calculated using the
‘Quartet’ Library available in R.29

Real test datasets
To assess the efficacy of Scoutknife, we examined 18 real data datasets,28,30–46 those used in a similar benchmarking
study by GeneSortR.19 These datasets range from 1049 to 5105 genes and from 30 to 332 taxa in size, comprising
studies of animals, plants and fungi (Table 1). In contrast to the prior study, genes with less than 50% occupancy were not
removed: Scoutknife should show decreased performance at low occupancy levels, as it relies on data density, and so this
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should give a clearer picture of how the methodology performs across a variety of real datasets. The resultant tree
topologies were then compared to the topology recovered by analysing the most informative 250 genes, as determined by
GeneSortR,19 to assess whether the same topological hypothesis was resolved by the Scoutknife Consensus Tree.

Simulation datasets
To further assess the efficacy of Scoutknife, we generated 100 simulation datasets using theAlignmentMimic function of
AliSim, as implemented in IQTree v2.2.0.47,48 For this, 100 simulations were independently created for each gene in the
Milla et al., (2020)28 Heliozelidae dataset, as it represented a small-sized dataset of those within our real data study, at
1049 genes, and as such should have presented a challenge for Scoutknife. Furthermore, AliSim’s alignment mimic47

allows us to generate alignment datasets that mimic real genes, complete with low occupancy and reasonable variations in
alignment length. Alisim was implemented with the following command:

iqtree2–alisim<Output>�s<Gene>��num� alignments 100

For each set of 1049 simulated genes, 100 100-gene Scoutknife datasets were constructed, and then analysed using IQ
Tree as with the real datasets. The Quartet Similarity, Quartet Divergence, Node Conflict, Node Agreement, Strict
Joint Assertions, Semi-Strict Joint Assertions, Symmetric Difference, Marczewski-Steinhaus, Steel-Penny and Overall
Similarity were then measured with reference to the previously published topology generated by analysing the
250 most informative genes of the Milla et al. (2020) dataset as selected by GeneSortR.19 As each gene was simulated
independently, it should in theory retain the topology of that initial single gene dataset, thereby replicating the
discordance present in the original dataset. Furthermore, by directly comparing our random samples of simulated
datasets to themost informative genes of the source dataset, this should disadvantage Scoutknife, as some of the simulated
data may support a separate alternative topology to either the single gene or the real informative gene topology.

Assessing the efficacy of Scoutknife
For each dataset, we calculated a variety of quartet-based similarity metrics: the Quartet Divergence,49 the proportion
of nodes that did not conflict between trees, the proportion of nodes that explicitly agreed between trees, the
proportion of strict and semi-strict joint assertions,50 the symmetric difference between trees51 and the Steel-Penny52

Table 1. A table listing the real data datasets used to benchmark the performance of Scoutknife. The first
column names the taxa that form the ingroup of the phylogeny. The second names the original publication
(although all source datasets are the same as those evaluated by Koch et al. (2021).19 The third and fourth columns
detail the number of taxa and the number of genes in the original alignment respectively.

Taxa Study Number of taxa Number of genes

Actinopterygii Hughes et al. (2018)30 306 1105

Araneae Fernández et al. (2018)31 168 2365

Aspergillacea Steenwyk et al. (2019)32 93 1668

Blattodea Evangelista et al. (2019)33 66 3235

Echinoidea Mongiardino Koch & Thompson (2021)34 37 2356

Gnathostomata Irisarri et al. (2017)35 100 4593

Heliozelidae Milla et al. (2020)28 46 1049

Hemipteroids Johnson et al. (2018)36 193 2395

Hexapoda Misof et al. (2014)37 144 1478

Hymenoptera Peters et al. (2017)38 174 3256

Lepidoptera Kawahara et al. (2019)39 203 2098

Monilophytes Shen, Jin et al. (2018)40 73 2391

Myriapoda Fernández et al. (2016)41 51 2131

Opiliones Fernández et al. (2017)42 67 1550

Phasmatodea Simon et al. (2019)43 61 1097

Pseudoscorpiones Benavides et al. (2019)44 48 2473

Saccharomycotina Shen, Opulente et al. (2018)45 343 5105

Scorpiones Sharma et al. (2018)46 43 1464
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and Marczewski-Steinhaus similarity metrics.51 Concordance with the initial study’s topology was first measured by
assessing the proportion of nodes that explicitly agreed between topologies and then the proportion of nodes that did not
conflict with the recovered topology. This could then be further scrutinized using the Quartet Divergence and then the
Marczewski-Steinhaus (MS) measurement, which compares the distinctly resolved quartets in common between both
trees. The remaining quartet measurements are present in our UnderlyingData, available at DataDryad. Robinson-Foulds
(RF) distances were not used due to Scoutknife’s propensity to recover nodes with conservatively low amounts of
support. Polytomies are known to bias RF distances as they rely on a completely resolved tree, and this would be
incompatible with the Scoutknife approach, which explicitly favours polytomies as representations of incongruent signal
in the genome.53

Results & Discussion
Real datasets
Across our 18 real test datasets, on a majority consensus tree, Scoutknife only struggles to recover the topology initially
recovered by the original study in two cases (indicated by an explicit agreement of nodes below 90%, Quartet Divergence
greater than 5% or a Marczewski-Steinhaus below 0.9) (Figure 2). In the Araneae, Scoutknife achieved an “explicit
agreement” value of 81.10%, Marczewski-Steinhaus of 0.80, and quartet divergence of 9.87%, which prompted us to
further examine the dataset. The average occupancy of the dataset, when including genes with below 50% occupancy,
is 46%. Furthermore, only 97 of the 2366 genes in the dataset had an occupancy greater than 80% (Figure 3). In this case,
it appears that Scoutknife struggles with lower resolution data, and that large amounts of missing data may be a genuine
challenge to the efficacy of the method. However, when assessed using the more liberal criteria of measuring the
proportion of nodes that do not conflict with the published tree (which is a measure that accounts for the uncertainty
expressed by polytomies), 99.17% of recovered nodes were found to not be in explicit conflict (Figure 2). This suggests
that 18% of this discordance is caused by a conservative assessment of support in the data considering its low occupancy,
not by disagreement in inference.

The second dataset that appeared to struggle under the Scoutknife approach was the Lepidoptera dataset. Here, only
81.66% of nodes were found to explicitly agree with the published topology, and it produced an MS value of 0.82 and
quartet divergence of 9.19%. As in the Araneae, we find that 99.95% of the nodes did not conflict with the published
topology. However, the reasons for this discordance within the Lepidoptera is less clear. This dataset had the sixth highest
occupancy of the real datasets (88.8%), many of which produced more well-resolved Scoutknife consensus trees.
Furthermore, GeneSortR measured the “Usefulness” of the dataset as the third highest of the selected study sets (0.33,
on a range from 0.14-0.48).19 Changing the minimum consensus value to produce a Scoutknife tree from a majority
consensus tree to a 30% plurality support tree increases the Marczewski-Steinhaus value to 0.93, decreases quartet
divergence to 3.63% and increases the number of nodes found to explicitly agree with the published topology to 92.83%

Figure 2. A dual bar chart showing proportion of non-conflicting nodes (in blue) and explicitly agreeing nodes
(in orange) for each dataset. The two datasets discussed further in the text, Araneae and Lepidoptera, are
highlighted in light blue (for non-conflict) and red (for explicit agreement) respectively.
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(Underlying Data). This suggests that the discordance within the Lepidoptera dataset may be a true biological property of
the history of the group, and that the difference between the Scoutknife result and prior published results may be
indicative of gene selection and analysis methods strongly favouring one of a series of genuine alternative hypotheses that
Scoutknife prefers to represent as a polytomy. This assertion is particularly supported when contrasted against the
Araneae dataset – there, changing the minimum consensus value to produce a 30% plurality support tree increases the
Marczewski-Steinhaus value from 0.80 to only 0.87 (0.07 increase Araneae vs. 0.11 in Lepidoptera), decreases quarter
divergence from 9.87% to 6.77% (3.1% decrease vs 5.56% in Lepidoptera), and increases the number of nodes that
“explicitly agree” from 81.10% to 87.59% (6.49% increase vs. 11.17% in Lepidoptera), a much smaller overall change in
comparison.

In the opposite direction, on a stricter 70% consensus tree, Scoutknife achieves an average of 99.85% nodes not
conflicting with the tress produced by GeneSortR, ranging from 100% to 99.16%. At this higher value, however, explicit
agreement varies between 56.91% (in the Araneae) and 99.90%,with an average of 94.35% (or 96.56% if theAraneae are
excluded). This is due to the innate conservatism of Scoutknife – as the consensus guideline is increased, it is more likely
to favour collapsing more nodes into polytomies – the average decrease in Explicit Agreement with the GeneSortR tree
between the majority consensus trees and the 0.7 consensus tree is 2.91%, with values ranging from 0% (Echinoidea) to
24.18% (Araneae).

Simulation datasets
Within our simulation datasets, Scoutknife consistently recovers topologies that are consistent with the GeneSortR tree –
the 70% strict consensus simulation trees recover no conflicting nodeswith theGeneSortR topology.However, across the
100 simulation consensus trees, not all explicitly agree with the nodes resolved by GeneSortR (Figure 4). At 70% strict
consensus, explicit agreement varied between 97.81% and 88.64%with an average of 92.85%. This represents the greater
conservatism of Scoutknife as a method – across all analyses, it prefers to resolve as polytomies, rather than bifurcations,
representing the discordance across the genes in the dataset. This is further confirmed by the Marczewski-Steinhaus
similarity index, which is consistent with the explicit agreement values (varying from 0.89 to 0.98 with an average of
0.93), suggesting that the only difference between the Scoutknife and GeneSortR topologies is in the existence of
polytomies.

Examining the simple majority consensus trees, requiring a consensus of only 50% of resolved gene trees to resolve the
node and not 70%, two bifurcating topologies were produced that conflicted with the GeneSortR topology (Simulation
20 and Simulation 98), reducing the average nodal “DoNot Conflict” value from 100% to 99.92%.While the Simulation
98 topology was very similar to the GeneSortR topology (Quartet Divergence 0.010), Simulation 20 showed significant
divergence from the GeneSortR topology (Quarter Divergence 0.082).

Figure 3. A violin plot showing the distribution of gene occupancy across the Araneae dataset by Fernández
et al. (2018).31 A large proportion of low occupancy genes may cause issues for Scoutknife resolution.
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The discordance in Simulation 20 is caused by a single node distinguishing the Pseliastis group,Hoplophanes group and
the Heliozela/Antispila/Antispilina/Holocacista/Coptodisca group. The Scoutknife analysis of Simulation 20 recovers
this node with a support of 0.51 for (Pseliastis+Hoplophanes), the topology that is not favoured by GeneSortR or the
remaining 99 Scoutknife simulations. GeneSortR recovered the alternative topology (Pseliastis+ Heliozela/Antispila/
Antispilina/Holocacista/Coptodisca) with a boostrap support of 83, the second least supported node in the entire
Heliozelidae dataset, suggesting that there is considerable conflict at this node. The GeneSortR topology was also
recovered by the Scoutknife analysis of the original dataset with a support of 0.62 and by the original study28 with a UF
bootstrap support of 65.1 and an SH-aLRT result of 72. Across our other Scoutknife simulations (Pseliastis+ Heliozela/
Antispila/Antispilina/Holocacista/Coptodisca), was recovered with support ranging from 0.57 to 0.86. As a particularly
short branch in all analyses, this could suggest that Scoutknife struggles to discern the topology when fewer genes have
the capacity to resolve a node, or when incomplete lineage sorting increases substantially due to short branch lengths.

Across all 100 Simulation datasets, when the consensus value was lowered to a majority consensus tree, explicit
agreement with the GeneSortR topology increased from an average of 92.85% to 98.62%, with explicit agreement
values varying from 91.19% to 100%. This shows that, on average, in 5.77% of the nodes in the tree where GeneSortR
displayed high confidence, Scoutknife instead assigned these nodes between 50 and 69% support. In accordance with
this, Marczewski-Steinhaus similarity scores increased from an average of 0.93 to 0.99, with a variance from 0.85 – the
aforementioned Simulation 20 – to 1 (Figure 4). Discounting the outlying Simulation 20, Marczewski-Steinhaus
similarity scores vary from only 0.97 to 1. This further showcases the benefits of Scoutknife’s more conservative
approach, making use of the diversity of data to give a more informed approximation of support from the gene trees
without necessarily losing resolution at these key nodes.

Scoutknife and per-taxon gene occupancy: A hypergeometric distribution
Our expectation was that as datasets became larger, they would become easier for Scoutknife to assess. However, instead,
in both the Araneae and the simulation datasets, we found that Scoutknife was far more severely affected by per taxa
dataset occupancy, rather than dataset size. In the simulation datasets, this takes the form of the simulation genes derived
from Nothofagus, which is present in only 98 of the 1049 genes in each dataset. A consequence of this is that, in a truly
representative 100-gene Scoutknife sample, a gene containing Nothofagus should be selected 9.3 times.

As an individual Scoutknife sample cannot select the same gene twice (although the same gene can be selected
multiple times between samples), the probability of selecting any given gene can be modeled as a Hypergeometric
distribution. This presents us with an understanding that only 60.52% of 100-gene Scoutknife samples will comprise at

Figure 4. A violin plot showing the distribution of Marczewski-Steinhaus values between Scoutknife Consen-
sus trees and the GeneSortR Most Informative 250 Genes Tree at both a 0.7 strict consensus and 0.5 majority
consensus. Note the long tail on the Majority Marczewkski-Steinhaus violin, representing Simulation 20.
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least 9 Nothofagus genes. On the other hand, there is a 99.99% chance that a 100-gene dataset contains at least one
Nothofagus gene among the one hundred. However, in a 50-gene Scoutknife sample, there would be a 0.66% chance that
0 genes containing this taxon would be selected across the 1049. That means that across 100 50-gene Scoutknife samples,
1 sample of the 100 is likely to contain no representation of this taxon.

In this way, taxa with low gene occupancy have a far more notable effect on Scoutknife than reducing the number of
genes, which evenly reduces the number of genes for all taxa in the dataset. This is not surprising as the principal
assumption of the ScoutKnife procedure (Figure 1C) is that given genome-scale data works as a surrogate for unlimited
data (Figure 1B). Accordingly, the power of ScoutKnife is driven by the availability of genome-scale data across the
entire dataset and not just parts of it. The taxa with the lowest genomic representation set the ceiling for Scoutknife’s
effectiveness, rather than those with reference genomes. All the 18 datasets used for this study were compiled before the
reference genome revolution, which is still very recent16,17 and still restricted to only certain sections of the tree of life.
Hence, for many taxa, genome-scale data at EBP minimum standards54 are still lacking. However, in the near future, the
full potential of ScoutKnife can be brought to bear on these data. Our analyses already strongly indicate the potential of
these methods in comparison to others through their conservativism in tree resolution and support values due to a higher
susceptibility to the biological and methodological incongruence in the data.

In the meantime, the reduced power of ScoutKnife due to taxa with reduced genomic representation can be addressed by
increasing the number of genes selected by a Scoutknife sample relative to poor taxon occupancy. This increases the
absolute number of genes containing the low occupancy taxa in the dataset, though it will not affect the proportional
representation of the low occupancy taxa. For example, to consider theNothofagus earlier, a 200-gene Scoutknife dataset
would increase the chance of observing 9Nothofagus genes in any given Scoutknife sample from 60.52% to 99.84%. By
doubling the size of the Scoutknife sample, a representative number of genes would be 18. However, simply increasing
the raw representation of genes may aid Scoutknife resolution. This approach deviates from the naïve sampling strategy
and introduces missingness as a selection parameter. On the other hand, this is often already done explicitly or implicitly
as some genes can only be found in certain ingroups, for example, due to a gene duplication event, and so are generally
excluded from these analyses in the dataset compilation step.

Among the tools available at the Scoutknife Github is a Hypergeometric distribution calculator designed with Scoutknife
in mind, to help researchers understand the composition of their Scoutknife samples prior to analysis.

Conclusions
Selection-basedmetrics have rightly dominated phylogenetic discussions for a great number of years, but in the era of big
data, transitioning towards methods that make best use of the increased analytical power of whole genomes may be more
prudent. Our results, and the Scoutknife methodology, show that, contrary to accepted wisdom, model violations and
incongruence can be overcome by sheer density of data.What results is a more neutral look at phylogenetic relationships,
rather than one biased by our own notions of what makes genes suitable for phylogenetics. A helpful side effect of
this is an increase in computational efficiency: rather than assessing individual gene trees prior to multi-gene analysis,
100 smaller Scoutknife datasets assess the robusticity of a total dataset analysis or form the basis of a consensus tree.
In many cases across our datasets, Scoutknife appears to recover the same relationships as before, but is also able to
quantify our confidence in hypotheses of shared evolution efficiently and conservatively. In the future, thismay be critical
to a more holistic view of phylogeny. In addition, as models improve, and model incongruence becomes less and less of a
concern, as a model-neutral methodology, Scoutknife’s ability to assess true biological incongruence will only improve,
making it not only an exciting option for the present, but an even more effective one in the future.

Data availability
Source data

• Source Data sets,28,30–46 and their analysis within GeneSortR19 were used to assess the efficacy of Scoutknife.
All files used to assess the efficacy of Scoutknife can be found reproduced in our underlying data link (below).
Further information on the Source datasets can also be found in the supplemental data for Koch et al. (2021).19

Underlying data
• Both our real and simulated data analyses are available at DataDryad, along with copies of individual gene

fasta files from Source Data sets28,30–46 and the 250 most informative gene trees from Koch et al. (2021)19 that
were used to benchmark Scoutknife’s performance (https://datadryad.org/stash/dataset/doi:10.5061/dryad.
sxksn0383).
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Software availability
• Scoutknife is available at GitHub https://github.com/JFFleming/Scoutknife.

• Archived Scoutknife code is available at: 10.5281/zenodo.8160834

Data is available under the terms of a GNU General Public License v2.0 only
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This article introduces “Scoutknife”, a software designed for gene jackknifing in phylogenomic 
datasets. The authors evaluate their approach with numerous empirical and simulated datasets 
and using a range of similarity metrics. They conclude that Scoutknife is a reliable estimator of the 
robustness of phylogenetic hypotheses. 
I find the article well-written and easy to follow, and that “Scoutknife” could be a useful user-
friendly software for phylogenomists. I only have two major comments, followed by some minor 
comments hereafter. 
First, the method is not new (contrarily to what can be read in the Introduction, paragraph 6); the 
procedure of gene jackknifing exists since at least 15 years ago [1,2]. As such, I would like to see in 
the Introduction a paragraph which would be a summary of the literature on the use of gene 
jackknifing, its assessed qualities, and drawbacks. This is however, the first time (to my 
knowledge) that a user-friendly software is suggested, and that there is a proper benchmarking of 
it, and the authors should emphasize on those aspects. 
Second, as the author point out in the discussion, one drawback of gene jackknifing (as it is with 
site-based jackknifing) is the problem of poor taxon occupancy, unfortunately a common problem 
in phylogenomic datasets. To address that, the authors wrote a “Hypergeometric distribution 
calculator” script to help the users better understand the taxon occupancy composition prior to 
analysis. I think this script should be automated and included as an option in the main “Scoutknife” 
approach as follow:

The Scoutknife script automatically detects the number of genes in the folder and also 
automatically detects how many of those genes contain the least represented taxa.

○

Then, Scoutknife calculates how many genes should be sampled at least so that there is 
>99.9% chances that the least represented taxon appears in at least one gene. This value 
could be considered the default minimal value of gene sampling for the user to guarantee 
the presence of all taxa in the subsets.

○

Making the use of this “Taxon Probability Calculator" more visible and user-friendly would be a 
great plus and a great input to the more arbitrary “100 genes” strategy fixed by the authors and 
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would show an adaptiveness of the approach to each dataset. 
 
Some minor comments: 
Everywhere: “Pseudosampling” in Fig.1 caption is not spelled the same way as other places in the 
text (“Pseudo sampling”). Might I suggest as well to add a hyphen after all “pseudo” as in “pseudo-
sampling”, “pseudo-samples” and “pseudo-replicates”? 
Discussion, penultimate paragraph: please expand EBP to Earth BioGenome Project 
Last comment, which is more of a curiosity : is there any particular reason you chose the synonym 
"robusticity' instead of the more traditional "robustness" present in the literature ? 
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