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1 Introduction

The technological developments of the last decades have made us able to
generate massive amounts of measurements, enhancing the need for data
exploration. We often understand data more easily through visualization
tools; such as boxplots, histograms and scatter plots, but these univariate
approaches (together with classical statistical analyses) will be impossible
to use, when the number of recorded variables becomes too large. Instead,
we need a reduced representation of all variables, which should exhibit the
typical variation of the whole data set. This is the aim of principal component
analysis: to understand large complex data by identifying the main axes of
variation and explore and analyze the observations along these axes.

Principal component analysis (PCA) was introduced by Hotelling (1933)
as a way of constructing a few highly informative scores representing a larger
data set. All the papers in this thesis are concerned with different aspects of
these scores in a high-dimensional setting: asymptotic consistency, robust-
ness against measurement error and as a tool for clustering.

PCA is the workhorse of variable reduction in applied data analysis (Jol-
liffe, 2002), and the low-dimensional scores are used as a visualization tool
or as input in conventional classification, clustering and regression methods.
Mathematically, the procedure is equivalent to finding the singular value
decomposition of the data matrix, i.e. the eigendecompostion of the sam-
ple covariance matrix, giving PCA a clear foundation within linear algebra.
Hotelling (1933) interpreted the principal components (PCs) as the uncorre-
lated combination of variables expressing the most variance, and introduced
the difference between the population and sample components. Later, Gir-
shick (1939) and Anderson (1963) established the consistency of the proce-
dure, when the number of variables is fixed and the sample size increases.

With the rapid technological development the last decade, especially in
genetics, a new framework has entered, where the number of variables is
larger than the number of observations. In this high-dimensional setting,
Paul (2007) and Johnstone and Lu (2009) have shown that PCA is in fact
not consistent. However, it is used extensively with great success in a range
of genetic applications (Wall et al., 2003; Price et al., 2006; Patterson et al.,
2006), for instance in identifying ethnic populations or discriminating be-
tween cancer subtypes. A paradox therefore exists between the theoretical
inconsistency and the applied success of the method, and an aim of this thesis
has been to explain this situations, in particular in Paper I.

Another important, but often overlooked aspect of modern genomics is
the inherent measurement error. Genetic variables, be it gene activity, base
pairs or methylation differences, are difficult to measure accurately, but these
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difficulties are seldom taken into account from a statistical point of view.
However, overlooking such measurement error can lead to biased parame-
ter estimates and loss of power to detect significant differences (Buonac-
corsi, 2010; Carroll et al., 2012). In the modeling of genetic measurement
error, most work has been on microarrays and Rocke and Durbin (2001);
Karakach and Wentzell (2007) concluded that a model combining additive
and multiplicative errors is well-suited. Paper II examines the robustness
of PCA under the influence of classical additive measurement error in a high-
dimensional genetic setting.

The use of the principal component scores in further analyses is an ef-
fective way of reducing the data dimension, and has been used with success
in clustering. Chang (1983); De Soete and Carroll (1994); Arabie and Hu-
bert (1996) suggested to use a subset of PC scores for different clustering
algorithms, while Ding and He (2004) later proved that PCA can be con-
sidered as a relaxation of the k-means clustering scheme; the scores are the
continuous equivalent to the discrete cluster membership matrix. With this
useful formulation, k-means clustering can accommodate several data types
in an integrative fashion. Paper III uses the component scores to construct
both common and specific clusters for multiple data types simultaneously,
by utilizing the JIVE framework (Lock et al., 2013).

The general topic of this thesis is the use of principal component analysis
in genomic applications. A specific aim of the thesis has been to explain the
paradoxical situation between the theoretical inconsistency and the practical
success of the method. Further aims have been to evaluate the robustness of
the principal components under measurement error and explore the role of
PCA in integrative methods and clustering.

The outline of the thesis is the following: In section 2, we introduce the
methodology of PCA and the common interpretations of the method, to-
gether with the standard asymptotic theory. Section 3 gives an introduction
to genetics and an overview of the data analytic challenges facing PCA in
genomics: high-dimensional asymptotic theory, the measurement error in
genetic technologies and the link between PCA and integrative clustering.
Section 4 states the aims of the thesis and in Section 5 and 6, we give a
summary of the three papers constituting the thesis and discuss their con-
tributions, strengths and weaknesses, especially covering the role of sparsity
and selection of the number of clusters.
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2 Principal component analysis

2.1 Population and sample PCA

Principal component analysis is the go-to method for reducing data dimen-
sion in many fields of applied data analysis, e.g. meteorology, genomics and
finance. PCA is used to construct a small number of highly informative scores
or surrogate variables for each observation. These scores are further used to
visualize the structure of the original data or to carry out classification, clus-
tering or regression analyses. The definition of the principal components for
a population is as follows:

Definition (Population PCA). Let X = [x1, . . . , xp]
T ∈ Rp be a p-dimensional

random variable with expectation zero, E (X) = 0, and covariance matrix
Cov (X) = Σ. The eigendecompostion of the covariance matrix of X is given
by

Σ = VΛVT , (1)

where Λ is a diagonal matrix of descending population eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λp and V is the corresponding matrix of population eigenvectors
v1, . . . ,vp.

Then, the population principal component are defined by the eigenvectors
as

STj = vTj X, j = 1, . . . , p, (2)

and standardized population principal component are defined as

ZT
j =

vTj X√
λj
, j = 1, . . . , p. (3)

Sj and Zj are referred to as the jth principal component score and standard-
ized score, respectively, and are the low-dimensional representative of the
original data. The construction of the principal components is equivalent in
a sample setting. Suppose X = [x1,x2, . . . ,xn] is a p × n data matrix with
n independent observations of a p-dimensional random variable with expec-
tation zero. Then the sample estimate of the covariance matrix Σ is given
by

Σ̂ =
1

n

n∑

i=1

xix
T
i .

If E (xi) = 0 is not assumed, the observed data is centered by the estimated
mean

Σ̂ =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)T ,
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where x̄ = [x̄1, . . . , x̄p] is the vector of all variable means. For simplicity, we
will further assume the expectation to be zero, E (xi) = 0. Then the eigen-
decomposition of the sample covariance matrix defines the sample principal
components:

Definition (Sample PCA). Let X = [x1,x2, . . . ,xn] be a p× n data matrix
with n independent observations of a p-dimensional random variable with
expectation zero. The eigendecompostion of the sample covariance matrix is
given as

Σ̂ = V̂DV̂T ,

where D is a diagonal matrix of the sample eigenvalues d1 > · · · > dp and

V̂ is the matrix of sample eigenvectors v̂1, . . . , v̂p. The sample principal
component scores are then defined

Ŝij = v̂Tj xi, j = 1, . . . , p, i = 1, . . . , n, (4)

and the standardized sample component scores are defined as

Ẑij =
v̂Tj xi√
dj

j = 1, . . . , p, i = 1, . . . , n. (5)

X1

X2

v1v̂1

Figure 1: Visualization of the first population eigenvector (in blue), and first
sample eigenvector (in red). The population covariance matrix is shown by
the normal distribution ellipse.
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Figure 2: A plot of the first and second component scores of the genetic
activity in 100 tumor samples, colored according to the Estrogen Receptor
status, either positive (blue) or negative (red).

In Figure 1, we visualize the difference between the population and sam-
ple principal components. The dashed line shows the probability contour of a
bivariate normal distribution, representing the population covariance matrix
and the scattered dots show the observations, representing the sample covari-
ance. The first population eigenvector (in blue) is given by the direction of
the major axis of the distribution ellipse, while the first sample eigenvector
(in red) fits to the observed data scatter.

In genomic applications, principal component analysis is widely used to
visualize data through two-dimensional plots of the component scores. This
can identify the main patterns of variability and help explore relationships
between high-dimensional genetic variables, disease variables and other clin-
ical covariates. A score plot of microarray gene expression data from the
Metabric breast cancer study (Curtis et al., 2012) is displayed in Figure 2,
showing the first and second component scores of 100 tumor samples. Each
observation is colored according to the Estrogen Receptor (ER) status of the
tumor, revealing this to be a main axis of variation in the genetic activity
(Perou et al., 2000).
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2.2 Interpretation of components

The principal components can be interpreted in three distinct frameworks:

• maximum explained variance

• optimal geometry with minimal reconstruction error

• factor model with homogeneous error

Earlier, there were clear lines between these different interpretations, but
with the renewed interest in PCA in the high-dimensional setting, these
boundaries have become blurred.

Explained variance

The most common interpretation of the principal components is in terms of
maximum explained variance, as established by Hotelling (1933). Given p
random variables X = [x1, . . . , xp]

T , the principal component scores can be
defined as weighted linear combinations of the variables:

Sj = αT
j X = αj1x1 + αj2x2 + · · ·+ αjpxp,

where αj = [αj1, . . . , αjp]
T is a set of coefficients. In each component, these

coefficients will up-weight or down-weight the original variables, and αT
j is

therefore referred to as loadings: the weight each original variable contributes
within the component score. Hotelling (1933) sought the linear combination
αT

1X with the maximum variance:

max
αT

1 α1=1
Var

(
αT

1X
)

= max
αT

1 α1=1
αT

1 Σα1, (6)

and termed this the first principal component. To achieve an identifiable
α1, a normalization constraint, αT

1α1 = 1, is imposed. The solution can be
found by using the Lagrange multiplier λ, maximizing the expression

αT
1 Σα1 − λ(αT

1α1 − 1).

By setting the derivative of the expression with respect to α1 to zero, we
obtain the eigenequation of Σ

Σα1 − λα1 = 0,

Then α1 is given by the eigenvector, v1, corresponding to the largest eigen-
value:

arg max
αT

1 α1=1
Var

(
αT

1X
)

= v1.
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In conclusion, the principal component based on the first eigenvector is there-
fore the linear combination of variables which explains the most variance.

Further, the second principal component αT
2X is the linear combination

explaining the most variance, orthogonal to αT
1X. This means the two com-

ponents are uncorrelated

αT
2α1 = 0, Cov(αT

1X,α
T
2X) = 0.

The second principal component is then given by the eigenvector correspond-
ing to the second largest eigenvalue. All consecutive principal components
are defined in the same way: find the component αT

j X which maximizes the
variance, being orthogonal to αT

j−1, . . . ,α
T
1 . Damon and Marron (2013) refer

to this as the “forward” approach and shows the contrast with a “backwards”
approach, generalizing the concept of PCA.

The principal component scores can therefore be interpreted as a repre-
sentation of the original data explaining the most variance, the second-most
variance and so on, such that they can be regarded as highly informative
about the data structure.

Geometric interpretation

The principal components can also be interpreted purely in terms of their
geometric properties, as first done by Pearson (1901). He posed the fol-
lowing question: For a set of p-dimensional observations x1, . . . ,xn, which
line or q-dimensional subspace will best fit the data? This low-dimensional
reconstruction, approximating the original data, gives a geometric and non-
statistical interpretation of PCA. Figure 3 shows a simplified visualization
of the situation, where observations in a two-dimensional plane (p = 2) are
approximated by observations on one-dimensional line (q = 1). Each obser-
vation xi is projected onto the line, where mi denotes the position of the
projection in the two-dimensional space and ri = xi −mi denotes the or-
thogonal projection, the perpendicular distance from the observation to the
subspace.

As defined by Pearson (1901), the optimal q-dimensional subspace mini-
mizes the norm of the orthogonal projection, the sum of the squared perpen-
dicular distances,

n∑

i=1

rTi ri =
n∑

i=1

‖ri‖22.

The optimal subspace is then given by the first q eigenvectors of the sample
covariance matrix, as shown by Jolliffe (2002, p. 34).

7



-2 2 4 6

-2

2

4

6

v1
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Figure 3: Geometric properties of eigenvectors and principal component
scores.

The projection within the q-dimensional subspace, or along the line given
by v1 in Figure 3, is then given by the corresponding sample score Ŝ1j, and
the position of the projection in the p-dimensional space is given by

mi =

q∑

j=1

Ŝijvj,

the q first eigenvectors and component scores corresponding to the ith obser-
vation. The sum of the squared orthogonal projections is therefore equivalent
to the reconstruction error :

n∑

i=1

‖ri‖2 =
n∑

i=1

‖xi −mi‖2 =
n∑

i=1

∥∥∥xi −
∑q

j=1 Ŝijvj

∥∥∥
2

. (7)

A geometric interpretation of the sample principal components is there-
fore given: the first q components express the optimal low-dimensional ap-
proximation of the original data. Given a set of observations, the q first eigen-
vectors and component scores will minimize the q-dimensional reconstruction
error of the data matrix X. The score plot of the first and second PC scores
is therefore the best two-dimensional projection of the p-dimensional point
cloud, in terms of minimal reconstruction error.

Latent variables

The third interpretation of PCA connects the component scores to latent
variable estimation. PCA and factor analysis are closely linked, but the
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exact relationship is somewhat confusing. In factor analysis (Bartholomew
et al., 2011), the observations are assumed to follow a latent variable model,
illustrated in Figure 4, with m latent variables zij for j = 1, . . . ,m given as

xi =
m∑

j=1

vjzij + εi, i = 1, . . . , n

where vj is a vector of factor coefficients and εi denotes a general noise term,
for instance normally distributed, εi ∼ N(0,Σ).

Tipping and Bishop (1999) showed that if the noise is assumed to be
normally distributed with homogeneous variance, εi ∼ N(0, σ2I), the max-
imum likelihood estimates of the latent variables and the factor coefficients
are equivalent to the principal component scores and the loadings. They
further defined a model-based version of PCA, probabilistic PCA, where the
principal components are equivalent to the latent variables found by an EM-
algorithm. When the error is assumed homogeneous, the data are distributed
as

xi | zi ∼ N

(
m∑

j=1

vjzij, σ
2I

)
,

where the maximum likelihood estimate of the noise parameter is given by

σ2
ML =

1

p−m

p∑

j=m+1

λj,

the mean of the p−m remaining eigenvalues.
To simplify the theoretical machinery of the high-dimensional sample

PCA, several authors (Johnstone and Lu, 2009; Paul, 2007; Nadler, 2008;
Jung and Marron, 2009; Lee et al., 2010) assume the population eigenval-
ues and eigenvectors to follow from a model defined by m latent variables
homogeneous and normally distributed noise:

xi =
m∑

j=1

vjzij + εi, εi ∼ N(0, σ2I), i = 1, . . . , n,

called the spiked covariance model, as introduced by Johnstone (2001).
This development contradicts the view of Jolliffe (2002, ch. 7), who

stated: “PCA has often been dealt with in textbooks as a special case of
factor analysis. This view is misguided since PCA and factor analysis are
really quite distinct techniques.” For Jolliffe (2002), the main difference be-
tween the techniques was that factor analysis invoked a model relating the
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Figure 4: A latent unobserved variable j affects the observed variables x.

observations to a set of latent variables, while PCA had no explicit model.
However, for Tipping and Bishop (1999) and most authors dealing with PCA
today, especially in the high-dimensional setting, the boundary between the
two procedures is blurred.

The interpretation of the component scores as latent variables is utilized
in Paper I to connect the asymptotic behavior of the population eigenvalues
to the structure of the population eigenvector. Particularly, we utilized the
fact that the eigenvector coefficients can be interpreted as an effect of the
latent variable upon the observed variables. This is used to show that if the
effect could be characterized as pervasive, the corresponding eigenvalue must
scale linearly with the dimension.

2.3 Large sample asymptotics

From a theoretical perspective, we consider the large sample properties of
PCA in terms of the consistency and asymptotic distribution of the sample
components. Girshick (1939) and Anderson (1963) proved that, if p is fixed,
the observations are normally distributed and the population eigenvalues are
of multiplicity one

λ1 > · · · > λp,

all sample eigenvalues and -vectors converge to the population eigenvalues
and -vectors as the sample size increases:

dj
p→ λj, v̂j

p→ vj, j = 1, . . . , p, as n→∞. (8)

The sample eigenvalues and eigenvectors are therefore consistent estimators,
which for Figure 1 means that v̂1 converges to v1 as the sample size increases.
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For the purpose of statistical inference, Anderson (1963) further estab-
lished the asymptotic distribution of the sample eigenvalues and eigenvec-
tors, d1, . . . , dp and v̂1, . . . , v̂p, when the distribution of the observations xi
are multivariate normal. Then the sample eigenvectors and -values are also
asymptotically normally distributed, and all sample eigenvalues are asymp-
totically independent of each other and independent of all eigenvectors.

Specifically, if all population eigenvalues are of multiplicity one, the sam-
ple eigenvector converge to

√
n (v̂j − vj)

d→ N(0, C);

a normal distribution with zero mean and covariance matrix

C =

p∑

l=1,l 6=j

λjλl
(λj − λl)2

vlv
T
l .

The asymptotic covariance between two sample eigenvectors, v̂j and v̂k, is
given by

− λjλk
(λk − λj)2

vjv
T
k .

Conversely for the sample eigenvalues: If all population eigenvalues are of
multiplicity one, the sample eigenvalues converge to

√
n (dj − λj) d→ N(0, 2λj), n→∞,

and each pair of sample eigenvalues dj and dk are asymptotically indepen-
dent. Anderson (1963) also derived the general distribution of the sample
eigenvalues and -vectors in the case of any eigenvalue multiplicity, where
some of the population eigenvalues can be equal.

3 Challenges for PCA in genomics

The last decades have seen remarkable advances in high-throughput genetic
technology, enabling the exploration of the whole genome. The challenge for
statistical genomics is therefore a vast amount of genetic variables combined
with few observations, a situation where PCA has shown to be highly useful.
The ability of PCA to reduce dimension and identify the axes of variation has
made it popular in the analysis of many types of high-dimensional genetic
data.

This section gives a brief introduction to genomics and the most impor-
tant genetic examples where PCA is used. The section will also introduces
the three analytic challenges investigated in this thesis; high-dimensionality,
measurement error and integrative clustering.
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Figure 5: Example of principal component scores being used to visualize
microarray expression levels in different mammalian tissues (Brawand et al.,
2011).

3.1 Genetic data and use of PCA

Genomics is the field of studying all genomes, the complete set of chromo-
somes and genes, consisting of DNA. The DNA molecule is built up of four
nucleotides or amino acids (denoted A, C, G and T), which form a double
stranded helix of base pairs. The genetic information in the DNA is expressed
by ribonucleic acid (RNA) through the process of transcription. Depending
on the function of a gene, the transcribed RNA can form rRNA, tRNA or
miRNA or an intermediate product called messengerRNA (mRNA), which
creates protein. Although definitions vary, genes are often defined as a func-
tional segment of the DNA that encodes a product, usually a protein. The
longest genes are up to 10 000 base pairs and the human genome contains
about 20 000 to 25 000 genes, making up about 1% of the total DNA (Ziegler
et al., 2010).

The 3.3 billion base pairs in the human DNA sequence is about 99.9%
identical across individuals, but the base pairs that do differ are highly im-
portant for understanding disease. A single nucleotide polymorphism (SNP)
is a DNA sequence variation occurring commonly within a population (e.g.
1%) in which a single nucleotide differs between members.. A recent estimate
of the total number of such genetic markers includes 17.8 million SNPs, in
total 0.54% of the DNA, where 9.5 million have been validated (Ziegler et al.,
2010).
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Due the large number of genetic variables, dimension reduction is an
important part of the analysis of genetic data. An early example is Cavalli-
Sforza et al. (1994), who used PCA to infer human migration patterns by
coupling component loadings of genetic markers with maps over sampled
populations. Currently PCA is utilized in many different genomic measure-
ments, and we will highlight its use in microarray data and genome-wide
association studies (GWAS).

Microarray technology measures the quantity of mRNA, which can be
interpreted as the activity of the corresponding genes. As all genes are mea-
sured simultaneously, microarray data give a snapshot of the genome-wide
expression levels at a given time, and is therefore an important tool for
identifying gene expression patterns in disease tissue. This has aided the
understanding of the genetic influences in cancer (Perou et al., 2000), par-
ticularly by discovering novel subtypes, for instance in breast cancer (Sørlie
et al., 2001) and confirming established histological differences (Golub et al.,
1999). In data sets with the expression of ten-thousands of genes, PCA is
highly useful for visualizing or identifying clusters in the main structures.
The method was early adopted for the analysis of microarray data (Yeung
and Ruzzo, 2001), and principal component scores are now commonly used to
identify the patterns of variability in gene expression data, as seen in Figure
5. We have used microarray gene expression data as example data in both
Paper II and Paper III.

Variant data, such as SNP markers, is another important way of identi-
fying the genetic impact on disease. Genome-wide association studies have
for identified numerous genetic loci linked to disease susceptibility. In the
setting of identifying disease-related SNPs, PCA can be used to correct for
confounding (Price et al., 2006; Patterson et al., 2006). Population stratifica-
tion is a common issue in genome-wide association studies, because ethnicity
can act as a confounder of the association between disease and the genetic
markers. However, principal component scores have been shown to identify
population strata (Yang et al., 2014) and can therefore express difference
between ethnic subpopulations. This is seen in Figure 6, displaying the
component scores derived from SNP markers recorded in different European
populations. Component scores are therefore commonly used to correct for
ethnicity confounding in genome-wide association studies.

Many other genetic data types are now possible to measure genome-wide;
methylation data and copy number aberrations being two important exam-
ples. Diseases are often associated with several genetic and epigenetic layers,
and an integrative approach to analysis can therefore be highly beneficial.
With the fast technological development, an increasing number of genetic
data types are be available. Integrative genomics is based on the principle
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Figure 6: Example of principal component scores being used to visualize dif-
ferent patterns in SNP markers (Valente et al., 2012), where the components
express ethnic difference.

that any biological mechanism builds upon multiple molecular phenomena,
and a disease such as cancer can only be fully understood when considering
the interplay between and within the different genomic layers (Kristensen
et al., 2014). As the information content is higher in an integrative frame-
work compared to the individual analyses, it is possible for such an approach
to gain statistical power to detect relevant signals.

3.2 High-dimensional asymptotics

The emergence of high-dimensional data in genetics and other areas renewed
the interest in asymptotic properties of PCA. It was initially proven by Lu
(2002), then followed up by Paul (2007); Nadler (2008); Johnstone and Lu
(2009), that principal component analysis in fact becomes inconsistent in the
high-dimensional setting. Paul (2007) and Johnstone and Lu (2009) proved
their results by using the asymptotic framework of random matrix theory,
which allows p > n under the assumption

p/n→ γ ≥ 0,

as both the number of variables and observations increase, p → ∞ and
n → ∞. The papers also introduced the spiked covariance model for the
population eigenvalues, Λ = diag(λ1, . . . , λp), where the m first eigenvalues
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are substantially larger than the rest

λ1 ≥ λ2 ≥ · · · ≥ λm︸ ︷︷ ︸
Signal

� λm+1 = · · · = λp︸ ︷︷ ︸
Noise

. (9)

The remaining eigenvalues are often assumed to be 1, for simplicity. Early
results (Bai and Silverman, 2010) showed that the sample eigenvalues only
converge to the population eigenvalues if γ = 0. In the high-dimensional
setting where γ > 0, the sample eigenvalues are not consistent, and instead
converge to

dj
a.s.→ λj

(
1 +

γ

λj − 1

)
, j =, 1 . . . ,m, if λj > 1 +

√
γ.

Paul (2007) and Johnstone and Lu (2009) also showed that the sample eigen-
vectors are inconsistent. Lee et al. (2010) further developed the result to be
valid for all γ, and showed that the inner product between the sample and
population eigenvector converges to a constant, depending on λj and γ

|〈v̂j,vj〉| P→
√(

1− γ

(λj − 1)2

)
/

(
1 +

γ

λj − 1

)
, j =, 1 . . . ,m,

when λj > 1 +
√
γ, assuming all eigenvalues to be of multiplicity one and

the data to be normally distributed. When γ > 0 in the high-dimensional
setting, the inner product cannot converge to 1 and the sample eigenvectors
will be inconsistent.

Sparse PCA

Based on these results, Johnstone and Lu (2009) concluded:

“The inconsistency asserts that ordinary PCA becomes con-
fused in the presence of too many variables each with equal in-
dependent noise. If the principal components have a sparse rep-
resentation, then selection of an appropriate subset of variables
should overcome the inconsistency problem.”

The inconsistency of the eigenvectors sparked an intensive research into
sparse PCA, where penalization schemes are used to estimate sparse eigen-
vectors. Earlier attempts at finding sparse eigenvectors had been motivated
by simplified interpretation, as the important variables are easier to identify
when some loadings are exactly zero.
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The first sparse PCA procedure, simplified component technique LASSO
(SCoTLASS), was suggested by Jolliffe et al. (2003) and used the maximum-
variance property of PCA in Equation (6) combined with an L1 penalization
of the eigenvectors:

max
vT
1 v1=1

vT1 Σ̂v1, subject to

p∑

k=1

|v1k| ≤ t.

The absolute-value constraint will force some of the loadings to be exactly
zero, depending on the value of t, and hence the estimated v1 will be sparse.
Further components are found by requiring orthogonality between the kth
component and the k − 1 previous components. However, as the problem is
not convex, computations become troublesome.

The next version of sparse PCA was given by Zou et al. (2006), using the
reconstruction error property in Equation (7). Zou et al. (2006) defined the
first sparse principal component to be given by the following minimization
problem:

min
z,v1

{
n∑

i=1

‖xi − v1zi1‖22 + λ1‖v1‖1 + λ2‖v1‖22

}
, ‖z1‖2 = 1,

where z1 = [z11, . . . , z1n]. The first penalty on v1 will force the component
loadings to be sparse. The criterion is not jointly convex in both v1 and
z1, but it is convex in each parameter with the others fixed. The minimiza-
tion over v1 can be efficiently solved as an elastic net problem, when z1 is
fixed, and reversely, the minimization over z1 is solved by the singular value
decomposition, when v1 is fixed. A set of sparse principal components can
therefore be obtained by alternating these two steps until some convergence
criterion is reached.

Other more sophisticated procedures for estimating sparse principal com-
ponents have further been developed by d’Aspremont et al. (2008); Shen and
Huang (2008); Witten et al. (2009); Journée et al. (2010); Ma et al. (2013)
and several others.

Asymptotic behavior of component scores

The papers documenting the PCA inconsistency did however not prove any
asymptotic results regarding the principal component scores. Lee et al.
(2010) were the first to note that:

“...inconsistency of the sample eigenvectors does not necessarily
imply poor performance of PCA.”
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Principal component scores have in fact been applied with success in a num-
ber of high-dimensional genetic settings, e.g. genome-wide association stud-
ies or microarray studies (Price et al., 2006; Ma et al., 2006). This suggests
that the component scores can be considered suitable for analysis, despite
the inconsistency of the eigenvectors.

Lee et al. (2010) showed that the standardized sample principal compo-
nent scores behave better than the eigenvectors, asymptotically. The inner
product between the population standardized scores, zTj = vTj X/

√
λj, and

the sample standardized scores, ẑTj = v̂Tj X/
√
dj, converges to

|〈zj, ẑj〉| P→
√

1− γ

(λj − 1)2
, λj > 1 +

√
γ,

under the spiked covariance model defined in (9). The result shows that
the asymptotic inner product of the scores is closer to 1 than that of the
corresponding eigenvector. In conclusion, the principal component scores
are not consistent, but the inconsistency for the corresponding eigenvectors
is worse.

Later, Shen et al. (2012, 2013) proved an asymptotic result enlightening
the paradoxical situation regarding the PC scores. Their result were in a dif-
ferent asymptotic framework (Jung and Marron, 2009; Ahn et al., 2007; Jung
et al., 2012), where n is fixed and the population eigenvalues are assumed
to grow with the dimension p. Jung and Marron (2009); Jung et al. (2012)
defined the spiked covariance model with m fixed components as follows:

λ1 = σ2
1p
α, . . . λm = σ2

mp
α,

with the growth rate parameter α > 0. They showed that the behavior of
the sample eigenvector depends on the value of α with distinct differences
when α is smaller, larger or exactly equal to 1.

If α < 1, the eigenvectors are strongly inconsistent and the sample and
population eigenvector become asymptotically orthogonal. If α > 1, the
situation reverses as the eigenvectors are asymptotically consistent even for
a single observation. The interesting case of α = 1, covering the gap between
the consistency and strong inconsistency, was explored by Jung et al. (2012).
For α = 1, the inner product between the sample and population eigenvectors
will not degenerate, but converge to a random quantity depending on the
sample size and the signal-to-noise ratio. We illustrate the situation for a
single spike model with one important signal, where the first eigenvalue is
given by λ1 = σ2

1p
α, while the rest are given λ2 = · · · = λp = τ 2. For normally

distributed data, the asymptotic limit of the inner product between the first
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sample and population eigenvector depends on α:

|〈v̂1,v1〉| P→





1, α > 1,

(
1 + τ2

σ2χ2
n

)−1/2
, α = 1,

0, α < 1,

where χ2
n is a chi-squared distributed variable with n degrees of freedom.

In the case of α > 1, Shen et al. (2012) further showed that the ratio
between the individual sample and population scores converges to a random
variable independent of the observation index k:

∣∣∣∣
ẑij
zij

∣∣∣∣
P→Rj, j = 1, . . . ,m, i = 1, . . . , n,

such that Rj is common for all scores within the same component. Rj is

distributed as
√
n/χ2

n based on the chi-squared distribution with n degrees
of freedom (Shen et al., 2012, Theorem 1).

In terms of visualization, this means that the relative positions of the pop-
ulation scores are preserved in the sample scores, and the visual information
conveyed by the score plot will be the same in the sample and population.
In Paper I, we prove a corresponding result for the case of α = 1, and
show how this situation which can be interpreted as a pervasive signal, rel-
evant in several genetic situations. The result can explain the paradoxical
situation between the usefulness and theoretical inconsistency of PCA, as it
demonstrates that the visual information is close to consistent even though
the eigenvectors and scores are not.

3.3 Measurement error

An important, but often overlooked, aspect of genomic data is the inherent
measurement error. Due to the nature of the genome, any genetic vari-
able will be difficult to measure and technical errors will therefore always be
present in the data. It is well-known that measurement error in covariates
leads to biased parameter estimates and loss of power to detect significant
differences in regression (Carroll et al., 2012; Buonaccorsi, 2010). Such prob-
lems can also be present in other multivariate techniques such as PCA, and
they highlight the importance of considering measurement error in genetic
data.
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In the classical measurement error model, we observe an error-prone co-
variate W instead of the true covariate X. The error U is usually mod-
eled to follow an additive or multiplicative model. The effect of additive
measurement error on parameter estimation is easily described in univariate
regression. If the true model is

Yi = αX + βXXi + εj, εi ∼ N(0, σ2
X),

but instead of X, we observe

Wi = Xi + Ui, Ui ∼ N(0, σ2
U),

the näıve approach is to calculate the regression coefficients using the error-
prone data W , instead of the original data X. The relationship between the
observed slope βW and the true slope βX is given by

βW =
σ2
X

σ2
X + σ2

U

βX ,

where the ratio between the two parameters, given by the error and data
variances, is called the attenuation coefficient. Due to the attenuation coeffi-
cient, the slope for the error-prone data will be smaller in absolute value than
the true slope, resulting in a bias or attenuation towards zero. In multivari-
ate regression, the bias is not necessarily towards zero, but instead depends
on the covariance between explanatory variables.

The effect of measurement error on multivariate linear and logistic regres-
sion is well-established (Thoresen and Laake, 2000; Buonaccorsi, 2010), but
this is not the case for PCA. Some attempts have been made by Sanguinetti
et al. (2005) and Wentzell and Hou (2012), both suggesting new versions
of PCA incorporating information about the measurement error. Wentzell
and Hou (2012) assumed the covariance matrix of the measurement error
to be known and incorporated this into the framework of probabilistic PCA
(Tipping and Bishop, 1999). In chemometrics, where PCA is a widely used
technique, several authors (Faber et al., 1995a,b; Wentzell and Lohnes, 1999;
Narasimhan and Shah, 2008) have investigated the situation, but with a focus
on eigenvalues and component selection and only in the case of homogeneous
errors.

In Paper II, we theoretically characterize and explore the effect of general
additive errors on principal component analysis, particularly the impact on
loadings, component scores and the component selection.

3.4 Clustering

The aim of clustering is to divide a sample into K classes, where the ob-
servations are more similar within one class than between classes (Hastie
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et al., 2009). A classic procedure is the k-means clustering, where clusters
are found by minimizing distances between the observations and the obtained
set of cluster centroids in an iterative fashion (Hartigan and Wong, 1979).
To aid the k-means procedure in the high-dimensional setting, it was early
suggested to consider a low-dimensional projection of the data: first obtain a
few principal components and then use k-means clustering on the component
scores. This two-step procedure, termed “tandem clustering” by Arabie and
Hubert (1996), was discouraged (Chang, 1983; De Soete and Carroll, 1994;
Arabie and Hubert, 1996) due to the possibility that the chosen scores do
not reflect the cluster structures of the entire data set.

However, in the machine learning literature, where tandem clustering is
commonly used, Zha et al. (2001) and Ding and He (2004) explored the
theoretical link between k-means clustering and PCA. Ding and He (2004)
reformulated the cluster membership vectors with the observation indices
Ck for k = 1, . . . K, as an n × K membership matrix Z∗, where each row
represents an observation and each column a cluster:

Z∗ = [n
−1/2
1 z∗1, . . . , n

−1/2
K z∗K ], z∗k = [0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

nk

, 0, . . . , 0]T . (10)

The single 1 in each row dictates which cluster the observation belongs to,
as each column corresponds to a cluster. For simplicity, observations in the
same cluster can be grouped together and each column is normalized by the
square root of the cluster size. The k-means clustering criterion (Hartigan
and Wong, 1979) is given as

arg min
Ck

K∑

k=1

∑

i∈Ck

‖xi − µk‖2,

where µk is the kth cluster centroid vector. With the cluster representation
Z∗, this minimization problem can be reformulated as an equivalent maxi-
mization problem

max
Z∗in(10)

trace

(
1

n
Z∗TXXTZ∗

)
.

The key observation is that if the structure of Z∗ is continuous, thus relaxing
the discrete structure in (10), the maximization problem will be equivalent
to the definition of PCA:

max
ZTZ=IK

trace

(
1

n
ZTXXTZ

)
.

The continuous relaxation of Z∗ is therefore given by the K first principal
component scores. In consequence, the K first component scores will span
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the subspace of the K centroids, such that the scores are optimal for find-
ing K clusters. The discrete Z∗ can then be reconstructed using k-means,
thus reducing the dimensions handled by the algorithm from thousands to
a handful. This property can explain the natural connection between PCA
and clustering.

With the connection between k-means clustering, PCA and the latent
factor modeling in Section 2.2, it is possible to construct integrative clustering
procedures handling several data types. When PCA used on a single data
type can be formulated as finding a latent variable j, this can be extended
to several data types X1, . . . , Xm by assuming the j to be shared between all
data types:

X1 = wT
1 Z + ε1,

...

XM = wT
MZ + εM ,

This approach is used in the iCluster methodology (Shen et al., 2009, 2013),
where the noise terms are assumed heterogeneous, εm ∼ N(0,Ψm),Ψm =
diag(σ2

1, . . . , σ
2
pm). The parameter estimates are obtained by maximum like-

lihood estimation using the EM-algorithm. If εm was homogeneous, the so-
lution is analytically given by the singular value decomposition. In iCluster,
one can also enforce sparsity on the loading matrices by penalizing the data
log-likelihood (Shen et al., 2013). After convergence of the EM-algorithm,
the rows of j are clustered by the k-means algorithm to obtain the group
membership of each observation.

This approach is further developed in Paper III, where both joint and
individual latent variables are introduced. This results in both common
and data type-specific clusterings, which can give further biological insights
into the different data layers. The latent variable model is assumed to have
homogeneous noise, such that the JIVE methodology (Lock et al., 2013) is
easily applicable.

4 Aims

The overall topic of this thesis is the use of principal component analysis in
high-dimensional data, particularly in genomics. Specifically, the aims have
been:

• to offer an explanation of the paradox of the theoretical inconsistency
results and practical results of PCA in genomics.
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• to characterize impact of the genetic measurement error on principal
component analysis and evaluate the robustness of loadings and scores
in the high-dimensional setting.

• to construct and expand high-dimensional integrative clustering for sev-
eral genomic data types, utilizing the framework of PCA.

5 Summary

In this section, we will give a brief summary of the three papers comprising
this thesis, highlighting the main contributions.

5.1 Paper I

Hellton, K. H. and Thoresen, M. (2014). Asymptotic distribution of princi-
pal component scores connected to pervasive, high-dimensional eigenvectors.
Submitted to Journal of Multivariate Analysis.

The aim of this paper is to give a possible explanation to the paradox of
PCA in the high-dimensional setting, where the method shows great success
in certain genetic applications, despite being inconsistent. Theoretical results
by Johnstone and Lu (2009) and Paul (2007) have shown that both eigen-
vectors and component scores are not asymptotically consistent when p > n.
The initial response to these results was to introduce sparsity constraints on
the eigenvectors to obtain consistency.

Our contribution has been to investigate the asymptotic behavior of the
component scores, in a setting mimicking the structure of genetic data. Re-
sults are derived in a specific asymptotic framework, where relevant popu-
lation eigenvalues scale linearly with the dimension. This is shown to cor-
respond to a pervasive signal structure, where asymptotically a non-zero
proportion of the variables are informative regarding the latent structure.
Pervasive signal structures are reasonable in several genetic examples, for
instance in recovering ethnic population stratification in SNP markers or in
identifying gene expression patterns in different types or subtypes of cancer.
In both these settings, PCA have shown to be successful.

We prove that under a pervasive signal structure, the ratio between sam-
ple and population PC scores converges asymptotically to a random vari-
able approximately equal within each component. For reasonable values of
the sample size and signal strength, the deviation from an identical scaling
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within each component is negligible. As a consequence, the visual informa-
tion present in the population component scores will be preserved asymptot-
ically in the sample scores. If the signal in the data is pervasive, classical
PC scores will be a good way of visualizing the population differences, even
though the eigenvectors and the scores are not consistent.

This is particularly relevant when discussing the use of sparsity con-
straints and sparse modeling in PCA, as it demonstrates that in the case
of non-sparse structures, information can still be extracted.

5.2 Paper II

Hellton, K. H. and Thoresen, M. (2014). The Impact of Measurement Error
on Principal Component Analysis. Published in Scandinavian Journal of
Statistics.

The aim of this paper is to characterize the effect of measurement error on
PCA. We describe the difference between the eigenvalues and -vectors derived
from the original error-free data matrix and the eigenvalues and -vectors
based on the data with error. The measurement error is assumed to follow
a classical additive and normally distributed stochastic model, such that the
expectation and variance of the difference in eigenvalues and eigenvectors are
characterized by the covariance structure of the error. These expressions are
obtained by conditioning on the original data and assuming the ratio between
the error variance and the data eigenvalues to be small, thus allowing the
difference to be approximated by a Taylor expansion of the eigenvalues and
-vectors.

The expectation and variance of the differences in eigenvalues and -vectors
are used to interpret the effect of independent, homogenous and heteroge-
neous measurement error. For both cases, we observed that the loadings,
or eigenvector coefficients, are not robust against measurement error as the
induced variance is substantial compared to loading values themselves. The
situation is different for the scores, where the robustness depends heavily on
the eigenvalues. In genomics, where the largest eigenvalues are usually very
large, the component scores corresponding to the largest eigenvalues will be
robust against independent measurement error.

5.3 Paper III

Hellton, K. H. and Thoresen, M. (2014). Integrative clustering of high-
dimensional data with joint and individual clusters, with an application to
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the Metabric study. Submitted to Biostatistics.

The aim of this paper is to extend the framework of integrative cluster-
ing utilizing the principal component scores. Earlier methodologies, such as
iCluster (Shen et al., 2009, 2013), cluster patient samples of several genetic
data types using latent variables or factor scores, but under the assumption
that joint clustering is identical for each data type. Our contribution is a
cluster scheme taking into account both joint and data type-specific cluster
structures by using the JIVE methodology (Lock et al., 2013). JIVE de-
composes the data matrix into an additive set of latent variables with joint
and individual components by an iterative procedure. The ranks of the la-
tent structures are directly connected to the number of clusters, as proven
by Ding and He (2004). For K clusters, our method uses the K − 1 rank
singular value decomposition.

The selection of the numbers of clusters, in total M+1 for M data types,
are fixed before iteratively calculating the latent components. Our proposed
method evaluates the presence of cluster structures in each component sep-
arately by comparing the distribution of scores to the normal distribution.
If the score distribution in a component, either joint or individual, does not
deviate significantly from the normal distribution (as evaluated by a normal
quantile-quantile plot), there is no evidence of any cluster structure.

To evaluate the total numbers of clusters, we first find the total number
of relevant components in all data types jointly, when not allowing for any
individual structures. Then, the total number of relevant components is
assessed individually in each data-type. The ranks of the joint and individual
structures are then calculated using these estimates.

6 Discussion

In this thesis, we have explored different issues regarding PCA in the high-
dimensional setting: consistency, robustness and clustering. We will first
briefly discuss the practical impact of our results, and then go more deeply
into two issues important in Paper I and Paper III.

In Paper I, we proved asymptotic results enlightening why classical prin-
cipal component scores can be used to visually explore pervasive signal struc-
tures. The consequences are two-fold: firstly it highlights the need for a
conscious use of the sparsity assumption and secondly it shows that the use
of classical PCA in certain genetic data examples is not flawed, despite the
theoretical shortcomings. The former is important when considering the mo-
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tivations behind sparse PCA and this will be discussed further in Section 6.1.
The latter can reassure data analysts and geneticists using PCA, that the
several papers highlighting the eigenvector inconsistency do not doom PCA
in every situation. An issue is, however, the applicability of our asymp-
totic framework. Asymptotic results are not automatically transferable to
the finite sample situation, as the number of variables cannot be infinite in
practice. But the distributional expressions for finite p and n will in our case
be too complicated, such that asymptotic result in Paper I will be a useful
approximation and simplification. This is analogous to the use of the central
limit theorem.

Further in Paper II, we investigated the impact of measurement error on
PCA. The results suggest that independent, additive measurement error is
not a problem for component scores connected to the largest eigenvalues. The
loadings are however highly affected, such that we discourage the interpre-
tation of loadings in situations with large measurement errors. A remaining
question is, however, if we can correct for error in practice. To be able to do
so, one will need an estimate of the error covariance matrix Σe. To estimate
a high-dimensional error covariance matrix using replicates, will be very dif-
ficult due to the large number of parameters. High-dimensional covariance
matrix estimation is challenging even in the error-free case, and must utilize
penalization schemes (Pourahmadi, 2013). The proper estimation of the er-
ror covariance matrix has therefore been avoided in earlier works, either by
alternative statistical procedures (Sørensen et al., 2014) or by using external
information, such as technical probe statistics in microarrays, as an proxy
for the correct measurement error (Sanguinetti et al., 2005; Sørensen et al.,
2012). The latter approach was used in Paper II, in addition to assum-
ing independent errors, a strong assumption often not properly fulfilled in
genetic examples.

Finally in Paper III, we proposed a joint and individual integrative
procedure for clustering patient samples based on several genomic data types.
This approach can be highly useful in situations with heterogeneous data
types, where a cluster structure only present in a single data layer might
confound the joint structure. However, a disadvantage is that the joint and
individual clusterings have to be orthogonal in terms of the estimated latent
variables, meaning that the clusterings must be completely uninformative
about each other. The realism of this restriction is difficult to assess. The
current version of the method can also only handle homogeneous noise, but a
future extension could allow for heterogeneous noise using an EM-algorithm.
The approach to the integrative analysis used in Paper III does not assume
any specific relationships between the data layers, such that the integration
of the different data types can be said to be unstructured. In an exploratory
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or hypotheses-generating setting, such as clustering, this may be seen as an
advantage. However, if the goal is to perform integrative inference, further
assumptions about the structure and relationships between the data layers
could strengthen the statistical analysis.

In the following, we will go more deeply into two issues important for
Paper I and Paper III.

6.1 The role of sparsity

Within the statistical community, there is currently an enormous interest
in sparse modeling and penalized regression, an interest also influencing the
methodological development of PCA. This has especially been the case after
Johnstone and Lu (2009) concluded that the eigenvector inconsistency made
it necessary to sparsify PCA. Paper I adjusts this view, as it shows that
classical PCA can extract visual information about the population structure,
if the signal is pervasive. Yang et al. (2014) substantiated this conclusion
by showing that the classical component scores can be used to discover pop-
ulation strata. Thus, if the component scores are the main aim of PCA, a
conscious attitude towards sparsity is needed. This discussion will present
the main motivations behind the sparsity assumption in PCA and regression.
The aim is to understand how the motivations relate to each other and how
one could conclude about the validity of the assumption.

The sparsity assumption expresses the idea that only few variables are
relevant for analysis. From a theoretical perspective, sparsity is most com-
monly defined as a small number of non-zero coefficients (Bühlmann and Van
De Geer, 2011). The different motivations behind the sparsity assumption
can in general be divided in two; either based on the belief that the real
world is in fact sparse or as a way of improving the analysis.

In examples from signal processing, image analysis or astronomy, it is
well-established that the signal is sparse. This might also be argued in ge-
nomics; either as an exact description of the genetic mechanisms or as an
appropriate approximation. On the other hand, sparsity can be motivated
by a wish for optimal prediction and parameter consistency or by simplified
interpretation. In high-dimensional regression, the sparsity assumption will
aid in ensuring optimal prediction and consistency of the estimated regres-
sion coefficients. Bühlmann et al. (2014) state that “Reasonable prediction
and estimation can be achieved if the underlying truth is sparse. If the true
underlying model is not sparse, then high-dimensional statistical inference is
ill posed and uninformative.” Their argument also applies to PCA, where
assuming sparsity will ensure consistent estimation of eigenvectors. However,
this should not be the most important motivation, if the component scores
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are the main output of the analysis. In addition, sparsity can simplify the
interpretation of parameters, as many variable effects are estimated to be ex-
actly zero. Such parsimonious estimates were the main motivation of Jolliffe
et al. (2003), when introducing sparse PCA.

We find the divide between these two types of justifications, the aim of
describing the true world versus ensuring optimal methodological proper-
ties, also in the nature of modeling. Cox (1990) differentiated between the
substantive and empirical role of a statistical model. A substantive model ex-
plains observations through detailed mechanisms (e.g. the Poisson process),
while the empirical model represents dependencies in an idealized form (e.g.
regression or ANOVA). The wish for simple interpretation and parsimony
fits within the empirical role, while a correct reflection of the real world is
the ideal of the substantive role. It can be argue that within the empirical
role one can assume sparsity, even though the world is not sparse. Instead it
is seen as an appropriate idealization. This view was expressed by Box and
Draper (1987, p. 424), when formulating the quintessential nature of the
empirical model: “Essentially, all models are wrong, but some are useful.”
The sparsity assumption is in practice untestable and the usefulness of the
assumption, in terms of simplified interpretation, can be a valid argument in
its own right.

Another fault line in the discussion, particularly relevant for regression,
exists between describing the true world and achieving optimal prediction
properties: the contrast between a predictive and explanatory framework.
According to Breiman (2001), the statistical mind set can be divided into
two worlds: When prediction is the main aim, optimality of a method is
measured by the predictive accuracy, while if explanation is the main aim,
optimality is measured by the goodness-of-fit of a specified model. The for-
mer does not utilize external information, while the latter utterly rely on
expert knowledge about the phenomenon. The role of model assumptions
is therefore inherently different in the two frameworks: in prediction, an as-
sumption should improve accuracy, while for explanation, the assumptions
need to reflect expert knowledge or be a correct interpretation or approxi-
mation of the real world.

From a predictive point of view, sparsity is needed to achieve optimal
prediction, as stated by Bühlmann et al. (2014). When the true world is
not sparse, utilizing a few of the largest effects may be better for prediction.
From an explanatory point of view, one needs to consider if the true signal
is sparse. If the true structure is in fact non-sparse, correct estimation of
the individual effects might be impossible. But through classical PCA one
can still extract information about the population structure and overall dif-
ferences, as shown in Paper I. External knowledge is therefore needed to
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determine the appropriate assumptions. If explanation is the aim, sparsity
should be assumed when knowledge dictates this to be appropriate.

6.2 Selection of the number of clusters

A key point in clustering is the selection of the number of clusters, and
during the work with Paper III, this arose as a particularly difficult and
troublesome factor. Both because several established procedures did not
yield good results within the proposed method, but also because the novel
solutions did not comply perfectly with the data examples. In the following,
we discuss some the problems and solutions found in Paper III.

The classical approach to cluster selection (Kaufman and Rousseeuw,
2009) is to evaluate a measure of the distances between the clusters for dif-
ferent numbers of clusters K, and choose the cluster arrangement with the
optimal value. There exists a range of different distance measures; based
on the mean of distances, the distances between means or different combina-
tion of maximum and minimum distances. Milligan and Cooper (1987, 1985)
compared a range of criteria and concluded that, for well-separated clusters
the Calinski-Harabasz criterion (Caliński and Harabasz, 1974) or the Dunn
index Dunn (1974) seem to preform best in a low-dimensional setting. Dif-
ferent criteria will emphasize different aspects of the data and give different
conclusions, making it difficult to objectively decide on an optimal criterion.

Beyer et al. (1999) showed that the difference between the minimum and
maximum distance between an observation and its neighbors converges to
zero as the dimensions increase. The ability of Euclidean distances to dis-
criminate between clusters will therefore decrease in high-dimensional data.
The results of Beyer et al. (1999) are, however, asymptotic in nature and one
could still try to compare distances in the finite sample situation. From the
initial simulations and data analyses in Paper III, we observed that the lack
of stable distance measures was a challenge, regardless of the criterion. All
distance measures were highly dependent on the data, such that removing
a small (random) subset of the data had a substantial impact on the opti-
mal number of clusters. This prompted the search for alternative selection
procedures.

Shen et al. (2012) and Newell et al. (2013) used an approach related to the
prediction strength criteria of Tibshirani and Walther (2005), where cluster
reproducibility is used to define clusters. The connection between k-means
clustering and PCA enables easy cluster prediction in new data, and Shen
et al. (2012) therefore evaluated the predictive power for different K by ran-
domly splitting the data in discovery and validation sets and measuring the
similarity between the prediction and validation clusterings. This approach
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utilizes the same concepts as cross-validation, evaluating how clusters can
be reproduced in subsets of the data. However, as the procedure chooses
the number of clusters to give good cluster reproducibility, the cluster sep-
aration is not necessarily taken into account. In the Metabric analysis in
Paper III, it was observed that the predicted scores are very stable in the
high-dimensional setting, resulting in perfect reproducibility regardless of
sub-sampling. This has the unintended consequence that good reproducibil-
ity does not ensure any cluster separation, and the implicit assumption that
good prediction equals cluster differences is not necessarily true. If we opti-
mize K for reproducibility, we can only ensure that the clusters are stable,
not separated.

To avoid this problem in Paper III, we instead used a procedure based
on the work of Hamerly and Elkan (2003). Here, deviations from normality
in the score distribution are interpreted as an indication of a cluster struc-
ture. This introduces a factor of subjectivity into the selection, as normality
is best evaluated with normal quantile-quantile-plots or with a critical use
of normality tests. A subjective choice of clusters seems to contradict the
usual approach to selection, where an optimal value is chosen in an objective
fashion. However, in practice the optimal choice is never straight forward.
For instance, in the original Metabric analysis (Curtis et al., 2012), several
cluster combinations were explored before a final choice was made. In this re-
gard, our procedure can give a more transparent framework for the selection
of the number of clusters.

Another objection to our choice is that the approach of Hamerly and
Elkan (2003) requires the noise to be continuous, normally distributed, a
difficult assumption in applied genomics. The Metabric study analyzes copy
number aberrations, which are inherently not continuous and therefore not
properly normally distributed. The procedure still worked, but made the
choices particularly difficult and ambiguous. A possible future direction is to
model the copy number aberrations as specifically tailored random variables,
and evaluate deviations from the resulting distribution.
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Abstract

Principal component analysis (PCA) is a widely used technique for dimension reduction,

also for high-dimensional data. In the high-dimensional framework, PCA is not asymptotically

consistent, as sample eigenvectors do not converge to the population eigenvectors. However,

in this paper it is shown that for a pervasive signal, the visual content of the sample principal

component (PC) scores will be the same as for the population PC scores. The asymptotic dis-

tribution of the ratio between the individual sample and population scores is derived, assuming

that eigenvalues scale linearly with the dimension. The distribution of the ratio consists of a

main shift and a noise part, where the main shift does not depend on the individual scores.

As a consequence, all sample scores are affected by an approximate common scaling, such that

the relative positions of the population scores are kept. Simulations show that the noise part

is negligible for the purpose of visualization, for small to moderate sample sizes depending on

the signal strength. The realism of the eigenvalue assumption is supported by introducing the

pervasive signal structure, where the number of non-zero effects is a non-vanishing proportion

of the total number of variables. If an eigenvector is pervasive with fixed values, we show that

the corresponding eigenvalue will scale linearly with the dimension. Two data examples from

genomics, where pervasiveness is reasonable, are discussed.

Keywords: Consistency, Asymptotic distribution, High-dimensional data, Principal component

analysis, Principal component scores, Visualization.
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1 Introduction

Principal component analysis (PCA) is the workhorse of variable reduction in applied data analysis.

It is used to construct a small number of informative scores from the original data, and these scores

are then used further in visualization or in conventional classification, clustering or regression

methods. This is highly useful in the context of modern high-dimensional data analysis, where

the number of measured variables p exceeds the sample size n. Genomics is an application area

are where the first step in exploring data is often to visually investigate the first few principal

component (PC) scores.

The asymptotic behavior of high-dimensional PCA has attracted a substantial amount of at-

tention the last few years. It has been shown, by Paul (2007) and Johnstone and Lu (2009), that

the population eigenvalues and -vectors in PCA are not consistently estimated by the sample eigen-

values and -vectors under the finite γ regime, where p/n = γ as p, n → ∞. The inconsistency of

the eigenvectors is quantified in terms of the inner product between the sample and the population

eigenvectors, which then does not converge to 1. In view of this, Johnstone and Lu (2009) suggest

that one could either conduct an initial dimension reduction, from the original number of variables

to a value less than n, before applying PCA, or introduce a sparse penalty on the eigenvectors,

giving rise to the sparse PCA methodology (Witten et al., 2009; Zou et al., 2006). However, in an

applied setting, the behavior of the principal component scores is also of interest, in addition to

the eigenvectors and eigenvalues.

Until now, only few papers have focused on the asymptotic behavior of the principal component

scores. An exception is Lee et al. (2010), who note that: “Inconsistency of the sample eigenvectors

does not necessarily imply poor performance of PCA”. The success of applied PC scores in genomics

suggests that they can be considered suitable for an analysis, in spite of the inconsistency of the

eigenvectors. In this paper, we explore this somewhat paradoxical situation further, and try to

bridge the gap between the theoretical problems of PCA and the practical usefulness of the method.

We first review the main structure of high-dimensional PCA and earlier asymptotic results.

Next, we introduce the concept of pervasive effects and demonstrate that this leads to population

eigenvalues scaling linearly with the data dimension. Under this assumption about the eigenvalues,

we derive the asymptotic limiting distribution of the ratio between the estimated and the true

principal component scores. The implications of our findings are explored theoretically and by

simulations. We show that all sample PC scores are subject to a common scaling and a small noise

term, such that the relative positions of the sample and population scores are essentially unchanged
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by the scaling.

2 Principal component analysis

2.1 Methods and notation

PCA reduces the data dimension by constructing orthogonal linear combinations of variables, which

explain their variability. The first component is the normalized linear combination of variables with

the highest variance, while the second component will be the linear combination, orthogonal to the

first, with the highest variance, and so on. The mathematical basis of PCA is the eigendecompo-

sition of the sample covariance matrix.

Let X = [x1, . . . ,xn] be a p × n data matrix, where xi = [xi1, . . . , xip]
T are independent and

identically distributed with E xi = 0 and var xi = Σ. The eigendecomposition of the covariance

matrix is given by

Σ = VΛVT ,

where Λ is the diagonal matrix of the eigenvalues λ1 ≥ · · · ≥ λp and V = [v1, . . . ,vp] is the matrix

of eigenvectors. The weights of the orthogonal linear combinations are given by the eigenvectors,

usually referred to as loadings. We denote the vector of the resulting population component scores

by

sTj = vTj X = [vTj x1, . . . ,v
T
j xn]. (1)

The eigenvalues express the variance of the component scores, such that the vector of standardized

population component scores is given by

zTj =
vTj X
√
λj
,

where the jth vector of scores is zTj = [zj1, . . . , zjn] and Z = [z1, . . . , zp]
T .

An applied data analysis is based on the sample covariance matrix denoted by Σ̂ = 1
nXXT ,

with the eigendecomposition

Σ̂ = V̂DV̂T ,

Here, D = diag(d1, . . . , dp) contains the sample eigenvalues and V̂ = [v̂1, . . . , v̂p] the corresponding

sample eigenvectors. Following the earlier notation, we construct the sample component scores as

ŝTj = v̂Tj X,
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and the sample standardized scores as

ẑTj =
v̂Tj X
√
dj
.

We further assume that the population eigenvalues follow the spiked eigenvalue model introduced

by Johnstone (2001), where the first m population eigenvalues are substantially larger than the

remaining non-spiked eigenvalues.

2.2 Brief summary of earlier results

The question of consistency is central in statistics, as the sample estimates should converge to the

population parameters when the sample size increases. Anderson (1963) showed that the sample

eigenvectors and -values, v̂ and d, will consistently estimate the population eigenvectors and -values,

v and λ, when p is fixed and n→∞.

However, this is not true in the high-dimensional setting, where p > n. Starting with Paul (2007)

and Johnstone and Lu (2009), it has been shown that the sample eigenvalues and -vectors are not

asymptotically consistent when p, n → ∞ at a constant ratio p/n = γ > 0 and the population

eigenvalues are fixed. Paul (2007) showed that the inner product between the sample and the

population eigenvector converges, when λj > 1 +
√
γ, to

|〈v̂j ,vj〉| →
√(

1− γ

(λj − 1)2

)
/

(
1 +

γ

λj − 1

)
j = 1, . . . ,m.

A different asymptotic setting starts from the geometrical structure of the data in a high-

dimensional space (Ahn et al., 2007; Hall et al., 2005). Jung and Marron (2009) introduced the

high dimension, low sample size (HDLSS) setting, where n is fixed and the spiked eigenvalues

grow with the dimension p, according to λi = σ2i p
α, i = 1, . . . ,m. In this asymptotic setting,

the consistency of PCA depends on α, as p → ∞. Eigenvectors are estimated consistently when

α > 1, while the estimates are strongly inconsistent when α < 1. In the boundary case α = 1, a

situation explored by Jung et al. (2012), the sample eigenvectors are neither consistent nor strongly

inconsistent, but reach a limiting distribution depending on n. In the case m = 1, where there is a

single spiked eigenvalue, we have the following:

|〈v̂1,v1〉| d→





1 α > 1,
(

1 + τ2

σ2χ2
n

)−1/2
α = 1,

0 α < 1.
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The main focus of the above-mentioned papers has been on the eigenvector inconsistency, and

few results are concerned with principal component scores. On exception is Lee et al. (2010), which

established the asymptotic limit of the inner product between the sample and the population

scores. They extended the result to prediction and found a theoretical asymptotic shrinkage factor

for predicted scores. This can be applied as a bias adjustment, which turns out to be useful in

the context of genetic population stratification problems. Also Yata and Aoshima (2009, 2012)

explore the consistency of scores as p → ∞ and n → ∞. Leek (2011) showed that the estimated

right singular vectors, which corresponds to the PC scores, in a low-dimensional conditional factor

model converge (fixed n and p→∞) to a set of vectors which span the same column space as the

true factors.

Further, Shen et al. (2013, 2012) investigated the ratio between the individual sample and

the population scores ẑi/zi, i = 1, . . . , n, instead of the inner product between the score vectors.

Following the regime of Jung and Marron (2009), they showed that for α > 1 the ratio converges

to a random variable independent of i. This implies that a two-dimensional plot of the sample

scores is asymptotically only a scaled version of the population score plot. The visual information

contained in the samples scores will therefore remain the same as in the population scores. In this

paper, we investigate the same problem as Shen et al. (2012), but in the situation where α = 1.

We first motivate why this is an interesting assumption to make, and then prove the asymptotic

behavior of the sample scores under this assumption.

3 Data structure and eigenvalues

The initial results concerning the consistency of sample eigenvalues and -vectors were derived on

the basis of random matrix theory (Bai and Silverman, 2010). This requires the ratio p/n to

remain constant as p, n→∞ and the population eigenvalues to be fixed. In contrast, the HDLSS

regime of Jung and Marron (2009) considers situations where the population eigenvalues depend

asymptotically on the dimension p, according to λi ∼ pα, α > 0.

Which of these two settings is the more appropriate remains an open question. As Lee et al.

(2010) conclude:

“It may be argued that for real data where p/n is “large,” we should follow the paradigm

of [the HDLSS regime]. However, for any real study, it is unclear how to test whether p

increases at a faster rate than λi or vice versa, making the application of [the HDLSS

regime] difficult in practice.”
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Establishing a natural connection between the eigenvalue model and real data problems is not

an easy task. We believe it is appropriate to assume the eigenvalues to scale linearly with the

dimension p, corresponding to the case of Jung et al. (2012) where α = 1. We argue in favor of this

by introducing an assumption on the eigenvector coefficients. Our aim is to translate the assumption

about the eigenvalues into an assumption regarding the latent structure and the data-generating

mechanism, as this is generally easier to relate to.

First, let the observations xi be generated by a Gaussian latent variable model with an additive,

isotropic error and a single factor:

xi = vzi + εi, i = 1, . . . , n,

where the scalar zi ∼ N(0, 1) and the noise vector εi ∼ N(0, σ2I). Tipping and Bishop (1999)

established the connection between the Gaussian latent variable model under isotropic noise and

PCA. The population covariance matrix of xi is then given by

Σ = vvT + σ2I.

As v is an eigenvector of vvT when normalized, it is also an eigenvector of Σ, such that the

corresponding eigenvalue of vvT is given by the normalizing constant λ1(vvT ) =
∑p

j=1 v
2
j . Thus

the largest eigenvalue of Σ is given by

λ1 =

p∑

j=1

v2j + σ2.

The relationship between the largest population eigenvalue of Σ and the dimension can therefore

be determined by the structure of v. For instance will the following three structures set
∑p

j=1 v
2
j

and the eigenvalue to scale linearly with p, as p→∞:

i) the values of the vj are fixed, and the number of non-zero effects scales with p

ii) the number of non-zero effects is fixed, and some values of the vj scale linearly in p

iii) a combination of i) and ii), where the combined rate is linear

It can be difficult to find realistic examples which would fulfill the settings ii) or iii). However the

first situation can be interpreted in terms of pervasiveness (Fan et al., 2011):

Definition 1 (Pervasiveness). A sequence of p-dimensional vectors v = [v1, . . . , vp]
T is pervasive,

if the proportion of non-zero entries rp = 1
p

∑p
i=1 I{v2i>0} fulfills:

lim
p→∞

rp > 0,
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In the field of high-dimensional approximated factor models, Fan et al. (2011) refer to Definition

1 as the pervasiveness assumption. Here, the number of non-zero entries in v is a non-vanishing

proportion of the dimension p, as p increases. This stands in contrast to a sparse signal, where the

number of non-zero effects is fixed, such that the proportion converges to zero.

If we assume the vector v to be pervasive with fixed values, meaning that the latent factor zi

will have a pervasive effect on the observed variable xi, we have the following:

Result 1. If xi = vzi + εi, where zi ∼ N(0, 1), εi ∼ N(0, σ2I) and v is assumed pervasive with

fixed values, the largest population eigenvalue λ1 of the population covariance matrix Σ fulfills the

bound

c1p+ σ2 ≤ λ1 ≤ c2p+ σ2.

The remaining population eigenvalues are given by λi = σ2 for i = 2, . . . , p.

The result follows from the existence of two constants 0 < c1 ≤ c2 < ∞, depending on rp and

the minimum and maximum of the non-zero square loadings v2j respectively, such that the following

bound is satisfied

c1p ≤
p∑

j=1

v2j ≤ c2p.

If the observations are given by m components

xi =
m∑

k=1

vkzik + σui,

where the vk, k = 1, . . . ,m are orthogonal and pervasive with fixed values and
∑p

j=1 v
2
1j ≥ · · · ≥∑p

j=1 v
2
mj , the covariance matrix of xi will have m eigenvalues, which scale linearly with the di-

mension

λi ∼ p, i = 1, . . . ,m.

It is also possible to interpret the pervasiveness in terms of the covariance matrix

Σ = vvT + σ2I =




v21 + σ2 v1v2 · · · v1vp

v1v2 v22 + σ2

...
. . .


 .

We can group the non-zero vi together into blocks, where the dimension of the blocks depends on

the proportion r. We illustrate the situation in Example 1, where all effects are equal and the

population covariance matrix consists of separate clusters, where all variables within each cluster
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are equally correlated, while the different clusters are independent. Each cluster corresponds to an

eigenvector proportional to vj = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0] with ones for the variables within the

cluster and zeros for others. If the cluster sizes are not fixed, but a proportion of the total number

of variables, the eigenvectors will be pervasive.

Example 1. Assume Σ to be divided into different independent sub-matrices

Σ =




Σ1 0 . . . 0

0 Σ2 0
...

... 0 Σ3 0

0 . . . 0 σ2I



, where Σj = σ2




1 ρj . . . ρj

ρj 1
...

. . . ρj

ρj ρj 1



,

and ρ1 > ρ2 > ρ3. The dimension of Σ is p× p and the size of Σj is rjp with 1 ≥ r1 + r2 + r3 > 0.

Then there will be three top eigenvalues of Σ:

λ1 = σ2ρ1r1 p+ σ2(1− ρ1),

λ2 = σ2ρ2r2 p+ σ2(1− ρ2),

λ3 = σ2ρ3r3 p+ σ2(1− ρ3),

where all scale linearly with the dimension, λi ∼ p. The other eigenvalues λ4, . . . , λp are constant,

where there are p(1− r1 − r2 − r3) eigenvalues equal to

λi = σ2,

while the remaining eigenvalues λi = σ2(1− ρj) have multiplicity prj − 1 for j = 1, 2, 3.

Each of the three largest eigenvalues represents one cluster and the importance of the cluster

is determined by the proportion rj , how many variables that are represented, and the degree of

correlation within the cluster ρj . More strongly correlated variables will exhibit a clearer signal,

while the remaining eigenvalues represent the noise. The pervasive eigenvectors can therefore

be interpreted as variable clusters, where the cluster size is a percentage of the total number of

variables.

3.1 Realistic examples from genomics

We present two situations in genomics, an area with several types of high-dimensional data, where

the biological processes suggest the pervasiveness assumption to be reasonable. One example is

8



genetic markers such as SNPs, single-basepair polymorphic genetic loci, i.e. having at least two

alleles with an associate allelic frequency in a population. The neutral theory of molecular evolution

states that allele frequencies at most loci (SNPs) change due to two stochastic processes; mutation

and random drift.

If the main variation in the data sample stems from differences between ethnic populations,

random allelic drift is the main driver behind changes in the genetic markers. This will give many

and randomly distributed differences and when new markers are included, we expect a certain

proportion to be informative with respect to the ethnicity. This corresponds to our notion of

pervasive effects, and if the effects are fixed, the corresponding eigenvalue will scale linearly with

total number of included variables. The longer two populations have been separated, the larger

degree of SNPs expressing differences we expect, as observed by Yamaguchi-Kabata et al. (2008)

when comparing Europeans and Japanese to subgroups within the Japanese population.

Another example is microarray expression data, which quantify the amount of a gene product

called mRNA, whose expression is necessary for making proteins. Cancer is a relevant disease in this

respect, as it can be considered to have a systemic effect on gene expression (Perou et al., 2000). We

therefore expect to observe many differentially expressed genes between groups of cancer patients

and healthy individuals. The meta-analysis of Kondrakhin et al. (2008) showed that around 5% of

24726 genes are differentially expressed between cases of breast cancer and controls. This situation

also corresponds to our notion of pervasive effects.

4 Asymptotic results

In the following, we present two results regarding the consistency of PC scores of high-dimensional

data. The asymptotic framework follows the high-dimension low sample size regime for the case

where α = 1 as considered by Jung et al. (2012), and we state the same general conditions for the

distribution of the component scores and for the structure of the population eigenvalues.

Firstly, the assumption of independent and normally distributed zij can be relaxed, as xi has

zero mean and covariance matrix Σ, to the following distributional condition:

Condition 1. The standardized principal component scores zi have finite fourth moments and are

uncorrelated but possibly dependent fulfilling the ρ-mixing condition.

The ρ-mixing condition is satisfied if the maximal correlation coefficient approach zero, ρ(m)→

9



0, as m→∞, where

ρ(m) = sup
j,f,g
| cor(f, g)|, f ∈ L2(F j−∞), g ∈ L2(F∞j+m),

and FLK is the σ-field of events generated by the variables zi,K ≤ i ≤ L.

Secondly, the structure of the non-spiked eigenvalues λm+1, . . . , λp in the spiked covariance

model can be generalized by the following condition:

Condition 2. For the eigenvalues λm+1, . . . , λp, it must hold that

∑p
i=m+1 λ

2
i(∑p

i=m+1 λi
)2 → 0,

1

p

p∑

i=m+1

λi → τ2, as p→∞.

Condition 2 insures that the non-spiked eigenvalues do not decrease too fast and that the mean

converges to τ2. The constant non-spiked eigenvalues λm+1 = · · · = λp = τ2 in the spiked covariance

model is the simplest situation which fulfils condition 2.

Finally, we assume the spiked eigenvalues to scale linearly with the dimension:

Assumption 1 (Linearity). For the m spiked components, the eigenvalues depend on the dimension

p according to

λ1 = σ21p, λ2 = σ22p · · · λm = σ2mp,

where σ21 ≥ · · · ≥ σ2m > 0 represent the signal strength.

Theorem 1 determines the asymptotic limiting distributions of the ratio between the sample

and the population principal component scores under the Conditions 1 and 2, and Assumption 1.

The results depend on the stochastic behavior of the eigenvalues and the eigenvectors of an m×m
matrix W = Z̃T1:mZ̃1:m, where Z̃1:m = [σ1z1, . . . , σmzm]. We denote the jth eigenvalue of W by

φj(W) and the jth eigenvector by vj(W).

Theorem 1. Under Conditions 1 and 2, and Assumption 1 for m ≥ 1, the ratio between the sample

and the population principal component scores converges in distribution to the following limit, as

p→∞: ∣∣∣∣
ẑij
zij

∣∣∣∣
d→Rj + εij i = 1, . . . , n; j = 1, . . . ,m,

where the ratio Rj is distributed as

Rj ∼
√

n

φj(W)
σjvjj(W),

10



and εij is distributed as

εij ∼
√

n

φj(W)

m∑

k=1,k 6=j
σk
zik
zij

vjk(W).

Remark 1. If the standardized component scores are assumed to be iid normally distributed

zij ∼ N (0, 1), i = 1, . . . , n, j = 1, . . . , p,

W will be an m×m Wishart distributed matrix

W ∼Wm

(
diag(σ21, . . . , σ

2
m), n− 1

)
,

and φj(W) and vj(W) will be asymptotically (as n → ∞) independent and normally distributed

(Jolliffe, 2002).

Proof of Theorem 1. Theorem 1 follows from Lemmas 1 and 2, which are given by the results of

Jung et al. (2012).

Lemma 1 (Jung et al. (2012)). Under Conditions 1 and 2, and Assumption 1, the sample eigen-

values converge in distribution

p−1dj
d→





φj(W)/n+ τ2/n, j = 1, . . . ,m,

τ2/n, j = m+ 1, . . . , p,

and for all k = 1, . . . , p, the sample eigenvectors satisfy

v̂Tj vk =

√
λk
ndj

zTk ûj , j = 1, . . . ,m. (2)

Here, the ûj are the sample eigenvectors of p−1XTX = p−1
∑p

k=1 λkzkz
T
k which converge in distri-

bution to

ûj
d→ Z̃1:mvj(W)√

φj(W)
, , p→∞.

Lemma 2 (Jung et al. (2012)). Under Condition 1 and Condition 2, it follows that

1

p

p∑

i=m+1

λiziz
T
i

P→ τ2In,

in probability.

The normalized sample principal component scores can be decomposed by the expression ẑij =

d
−1/2
j v̂Tj

∑p
k=1 λ

1/2
k vkzik. By using the expression in (2), the ratio between the sample PC scores

11



and the population PC scores can be decomposed and we can insert the m spiked population

eigenvalues to give:

ẑij
zij

= d
−1/2
j

p∑

k=1

λ
1/2
k

zik
zij

v̂Tj vk =
1√

ndjzij

(
m∑

k=1

λkzikz
T
k +

p∑

k=m+1

λkzikz
T
k

)
ûj

=
1√

np−1djzij

(
m∑

k=1

σ2kzik zTk +
1

p

p∑

k=m+1

λkzikz
T
k

)
ûj

for i = 1, . . . , n and j = 1, . . . ,m.

When p→∞, the scaled sample eigenvalue converges according to Lemma 1 to p−1di
d→φi(W)/n+

τ2/n, while the term consisting of the non-spiked eigenvalues can be rewritten as the vector

1

p

p∑

k=m+1

λkzikz
T
k =

[
1

p

p∑

k=m+1

λkzikz1k, . . . ,
1

p

p∑

k=m+1

λkz
2
ik, . . . ,

1

p

p∑

k=m+1

λkzikznk

]T
.

By Lemma 2, a version of the law of large numbers, we have for a fixed m that 1
p

∑p
k=m+1 λkzikzlk →

0 for l 6= i and 1
p

∑p
k=m+1 λkz

2
ik → τ2. Therefore this vector converges to the unit vector ei

multiplied by τ2 at position i and zero everywhere else:

1

p

p∑

k=m+1

λkzikz
T
k → τ2eTi .

Then, according to Jung et al. (2012), the results in Lemma 1, the ratio between the sample and

population scores converges to

ẑij
zij

d→
√
n

(φj(W) + τ2)zij

(
m∑

k=1

σ2kzikz
T
k + τ2eTi

)
Z̃1:mvj(W)√

φj(W)

=

√
n

(φj(W) + τ2)
√
φj(W)zij

(
m∑

k=1

zikσ
2
kz
T
k Z̃1:mvj(W) + τ2eTi Z̃1:mvj(W)

)
. (3)

The expression σ2zTk Z̃1:mvj(W) in the first term corresponds to the kth row of W, and due to the

eigen-equation Wvj(W) = φj(W)vj(W), this term can be rewritten as

σkz
T
k Z̃1:mvj(W) = φj(W)vjk(W),

while the unit vector in the second term gives

eTi Z̃1:mvj(W) = [σ1zi1, . . . , σmzim]vj(W) =
m∑

k=1

σkzikvjk(W).
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This simplifies expression (3) to
√
n
(
φj(W) + τ2

)

(φj(W) + τ2)
√
φj(W)zij

m∑

k=1

σkzikvjk(W) =

√
n

φj(W)

m∑

k=1

σk
zik
zij
vjk(W)

By splitting the sum, we get the result

ẑij
zij

d→
√

n

φj(W)
σjvjj(W) +

√
n

φj(W)

m∑

k=1,k 6=j
σk
zik
zij

vik(W) = Rj + εij ,

and we have used the simple notations

Rj ∼
√

n

φj(W)
σjvjj(W),

and

εij ∼
√

n

φj(W)

m∑

k=1,k 6=j
σk
zik
zij

vjk(W).

5 Implications for the visualization of scores

In the application of PCA, the first few sample scores are used for visualization and in conven-

tional classification and regression methods. Besides the in itself valuable ability to visualize high-

dimensional data in a two-dimensional (or 3D) fashion, the score plot can be useful for comparing

observations, detecting subgroups, and for identifying outliers and bad data quality. PCA is often

viewed as the canonical first step in an applied high-dimensional analysis. However, when it is

known that eigenvectors are inconsistently estimated, will a plot of the sample scores give valid

information about the population scores? We use Theorem 1 to answer this question in two steps.

Firstly, we show by simulation and by providing a supporting theoretical argument, that εij is

considerably smaller than Rj . Therefore we refer to εij as noise. Secondly, we highlight the fact

that the Rj are independent of i. As the Rj express ratios, the relative positions of the sample

scores will be more or less the same as for the population scores. To illustrate these two points, we

take a detailed look at the situation with two components, m = 2, in Example 3.

Example 2. If there is only one component, m = 1, W is a scalar such that the estimated

eigenvalue is given by φ1(W) = σ21z
T
1 z1 and the eigenvector is constant v1(W) = 1. Therefore,

as εi1 is zero, the limiting distribution of the ratio between the normalized sample and population

scores is according to Theorem 1 given as

R1 ∼ σ1
√

n

φ1(W)
.
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σ22/σ
2
1 = 0.5 σ22/σ

2
1 = 0.3 σ22/σ

2
1 = 0.1

n R1 SD εi1 SD R1 SD εi1 SD R1 SD εi1 SD

40 0.97 (0.17) 0.02 (0.2) 1.02 (0.12) 0.00 (0.08) 1.029 (0.12) 0.00 (0.02)

80 0.99 (0.09) 0.00 (0.13) 1.01 (0.08) 0.00 (0.05) 1.015 (0.08) 0.00 (0.01)

150 1.00 (0.06) 0.00 (0.09) 1.01 (0.06) 0.00 (0.04) 1.008 (0.06) 0.00 (0.01)

300 1.00 (0.04) 0.00 (0.06) 1.00 (0.04) 0.00 (0.02) 1.004 (0.04) 0.00 (0.01)

Table 1: Mean and standard deviation from 5000 realizations of the distribution of R1 and the

noise εi1 with p = 6000 and σ21 = 1 for different sample size n and values of σ22. For the εi1, the

ratio zi1/zi2 = 1 is fixed.

σ22/σ
2
1 = 0.5 σ22/σ

2
1 = 0.3 σ22/σ

2
1 = 0.1

n R2 SD εi2 SD R2 SD εi2 SD R2 SD εi2 SD

40 1.01 (0.21) 0.00 (0.38) 1.04 (0.12) 0.00 (0.25) 1.04 (0.12) 0.00 (0.19)

80 1.02 (0.09) 0.00 (0.24) 1.02 (0.08) 0.00 (0.17) 1.02 (0.08) 0.00 (0.13)

150 1.01 (0.06) 0.00 (0.17) 1.01 (0.06) 0.00 (0.12) 1.01 (0.06) 0.00 (0.09)

300 1.00 (0.04) 0.00 (0.12) 1.00 (0.04) 0.00 (0.08) 1.01 (0.04) 0.00 (0.06)

Table 2: Mean and standard deviation from 5000 realizations of the distribution of R2 and the

noise εi2 with p = 6000 and σ21 = 1 for different sample size n and values of σ22. For the εi2, the

ratio zi1/zi2 = 1 is fixed.

If the scores are iid normally distributed, zij ∼ N(0, 1), the eigenvalue φ1(W) is σ2χ2
n-distributed

and R1 ∼
√
n/χ2

n, which is the same distribution as was found by Shen et al. (2012) in the α > 1-

case.

Example 3. For m = 2, the ratios between the normalized sample and population scores converge

to a limiting distribution of the form Rj + εij, where

Rj ∼ σj
√

n

φj(W)
vjj(W) j = 1, 2, (4)

and

εi1 ∼ σ2
√

n

φ1(W)

zi2
zi1

v12(W), εi2 ∼ σ1
√

n

φ2(W)

zi1
zi2

v21(W) (5)

The distributions depend on the two eigenvectors vj(W) =


vj1
vj2


 and eigenvalues φj(W), j = 1, 2,
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of a 2× 2 Wishart distributed matrix

W ∼W2




σ

2
1 0

0 σ22


 , n− 1


 .

First, we illustrate within Example 3 that εij can be considered as noise compared to Rj . This

is done by simulating from the distributions in (4) and (5) when the normalized scores are assumed

to be standard normally distributed zij ∼ N(0, 1). Tables 1 and 2 display the simulated mean and

the standard deviation from the distributions of R1, εi1 and R2, εi2 respectively for different signal

strength ratios θ = σ22/σ
2
1 and sample sizes n. The tables are shown graphically in Figure 1. We

observe from Tables 1 and 2 that the expectation of εij is zero, whereas the Rj are expected to be

one. When taking the variability into account, we see that for moderate sample sizes (from 80 and

upwards), a noise level of two SD is around 15-20 % of R1, still quite small. For larger sample sizes,

the error drops to 2-8 % of R1. The noise also decreases when the separation between the signals

increases. Only when σ21 and σ22 are close to each other and n is small, could εij be comparable to

Rj . The distribution of the noise is also illustrated graphically in Figure 3 by the 90 % probability

contour for each observation.

To better understand the structure of the noise, we explore in Result 2 the distribution of εij

for large n, a different asymptotic setting then considered earlier.

Result 2. If m = 2, the normalized scores are iid normally distributed, zij ∼ N(0, 1), and the

spiked eigenvalues are simple, σ21 > · · · > σ2m, the noise n1/2 εij will be asymptotically normally

distributed as n→∞:

n1/2εi1
d→N

(
0,

θ2

(1− θ)2
)
, n1/2εi2

d→N

(
0,

1

θ2(1− θ)2
)
, θ =

σ21
σ21
.

The proof is given in the Appendix.

Three parameters have an effect on the noise distribution; the sample size n, the signal strength

σ2, and the number of components m. From Result 2, we see the role of these parameters for the

case of m = 2. As the sample size increases, the asymptotic variance of εij will decrease, and if we

use the standard deviation as a measure of magnitude of the noise, it will decrease as n−1/2. This

is observed in Figure 1b), which displays graphically the simulated standard deviation of εij (as

circles) for increasing sample size n together with the asymptotic values (dashed lines). The fit of

the simulated standard deviation to the asymptotic scaling of n−1/2 necessarily becomes better as

n increases.
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Figure 1: a) The simulated standard deviation of εi1 for m = 2 for increasing θ and n = 40 (black),

n = 80 (red), n = 150 (blue) and n = 300 (green). The dashed lines show the theoretical asymptotic

standard deviation. b) The simulated standard deviation of εi1 for m = 2 for increasing n and

θ = 0.5 (black), θ = 0.4 (red), θ = 0.3 (blue) and θ = 0.1 (green). The dashed lines show the

asymptotic standard deviation.

The impact of the two signal strengths σ21 and σ22 is, as shown by Result 2, in terms of the

ratio θ = σ22/σ
2
1. The standard deviation of εij scales with the relative signal strength as θ/(1− θ)

for εi1. This is seen in Figure 1a), which displays the simulated standard deviation (as circles) for

increasing relative signal strength also together with the asymptotic standard deviation (dashed

lines). If σ21 and σ22 are close, the variability of the noise increases sharply, which can be interpreted

as an overlap or interaction between the signals, making them difficult to distinguish. As observed

in Tables 1 and 2, when the strength of the first signal increases relative to the second, the noise

decreases.

Because there are only two components, v21(W) and v12(W) will have the same absolute value,

but with opposite signs; hence they have a perfect negative correlation and this is seen in Figure 3.

The noise for the second component is larger due to the scaling of σ1, which is reflected by greater

extent of the contours in the vertical direction. Also the effect of the score ratios, zi1/zi2, on the
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Figure 2: One simulation of the estimated set of first and second principal component scores (filled

dots) compared to the population scores (circles) with p = 6000, n = 200, σ21 = 8 and σ22 = 1.

noise is seen as the contours are wider closer to the x-axis.

The second key observation is that R1 and R2 are independent of i and thereby common to

all observations. As they are ratios, they express a common scaling for the scores, which can be

seen graphically as a shift, outwards or inwards. The consequence is that the relative positions of

sample scores, and thereby most of the visual information, will be consistent with the population

scores. We observe this in Figure 2, which displays the sample and population first and second PC

scores for one simulated sample. A radial shift, which is not exact due to the noise, is evident when

comparing the sample and population scores. Also the fact that R2 will be generally larger than

R1 can be observed in Figure 2. The score plot will therefore be an appropriate tool to explore the

population features, even though eigenvectors and absolute score values are not correctly estimated,

asymptotically.
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Figure 3: The 90 % probability contour of the distribution of εij for the first and second principal

component score with p = 6000, n = 200, σ21 = 0.1 and σ22 = 0.03.

6 Conclusion

The use of high-dimensional PCA suffers from the somewhat paradoxical situation that theoreti-

cally, the eigenvectors and -values are not correctly estimated, but the method is highly successful

in practice. The results in this paper attempt to bridge this gap by showing that the relative

positions, and thereby the visual content, in a PC score plot are more or less the same for the true

and the estimated scores. The assumption is that the leading eigenvalues scale linearly with the

dimension. This assumption is fulfilled if the variability is caused by a latent factor with perva-

sive effects on the variables. This situation is reasonable in genetic markers from different ethnic

populations and in microarray expression data from cancer cases and controls.

Future work should consider the implication of these results, when using principal component

scores in further analyzes. The same asymptotic framework can be considered for regression, clus-

tering and classification. Especially the effect of the limiting distribution on regression coefficients
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and misclassification rates would be of interest.
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Appendix

The proof of Result 2. If zij ∼ N(0, 1) and σ21 > · · · > σ2m, then W is Wishart distributed

W ∼Wm

(
diag(σ21, . . . , σ

2
m), n− 1

)
,

where diag(σ21, . . . , σ
2
m) have the simple eigenvalues σ2j and the eigenvectors, ej , the jth unit vectors.

Then the result follows from the properties of the sample eigenvalues and eigenvectors given by

Muirhead (2009, Corollary 9.4.1):

When n→∞, the vj(W) and φj(W) are asymptotically independent and

n1/2 (vj(W)− ej)

is asymptotically normally distributed with mean 0 and covariance matrix

m∑

i=1,i 6=j

σ2i σ
2
j

(σ2j − σ2i )
eie

T
i = diag

(
σ2jσ

2
1

(σ2j − σ21)2
, . . . , 0, . . . ,

σ2jσ
2
m

(σ2j − σ2m)

)
.

The jth entry is zero due to not summing over eje
T
j .

For the sample eigenvalues, the n1/2(φj(W)/n − σ2j ) are asymptotically independently dis-

tributed as N(0, 2σ4j ). For m = 2, the multivariate Delta method gives that the n1/2 εij are

asymptotically normally distributed as

n1/2 εi1
d→N

(
0,

σ42
(σ21 − σ22)2

)
, n1/2 εi2

d→N

(
0,

σ41
(σ21 − σ22)2

)
.
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Principal Component Analysis
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ABSTRACT. We investigate the effect of measurement error on principal component analysis
in the high-dimensional setting. The effects of random, additive errors are characterized by the
expectation and variance of the changes in the eigenvalues and eigenvectors. The results show that
the impact of uncorrelated measurement error on the principal component scores is mainly in terms
of increased variability and not bias. In practice, the error-induced increase in variability is small
compared with the original variability for the components corresponding to the largest eigenvalues.
This suggests that the impact will be negligible when these component scores are used in classifi-
cation and regression or for visualizing data. However, the measurement error will contribute to
a large variability in component loadings, relative to the loading values, such that interpretation
based on the loadings can be difficult. The results are illustrated by simulating additive Gaussian
measurement error in microarray expression data from cancer tumours and control tissues.

Key words: eigenvalues, eigenvectors, high-dimensional data, measurement error, microarray
data, perturbation theory, principal component analysis

1. Introduction

The last decades have seen an exploding production of complex, high-dimensional data in
different fields, from genetics (Li & Xu, 2008) to finance (Fan et al., 2011). Often in these
examples the sample size can be quite small compared with the number of measured variables,
thus an efficient strategy for dimension reduction is required. Principal component analysis
(PCA) is a widely used technique, which reduces the high-dimensional data to a small set of
component scores. The component scores can be used for visualization and as input in con-
ventional methods, such as classification, clustering and regression. In practice, the principal
components are often thought to represent underlying processes, accounting for the variability
in the data, and the component loadings could be interpreted as the relative importance of the
different variables in the unobserved processes.

In various high-dimensional data, we find that measurement error in the observed variables
can be a severe problem. Examples include measurements of chemical spectra in chemometrics,
functional magnetic resonance imaging brain scans or microarray expression data in genomics.
In regression models, the presence of measurement error in covariates is known to cause bias
in parameter estimates and loss of power to detect significant effects (Carroll et al., 2006;
Buonaccorsi, 2009).

To deal with the issue of measurement error in PCA within the setting of microarrays
and chemometrics, Sanguinetti et al. (2005) and Wentzell & Hou (2012) constructed different
variations of PCA where information about the measurement error is incorporated. Wentzell &
Hou (2012) (based on Wentzell et al. (1997)) constructed a framework for maximum likelihood
PCA, which incorporates an assumed known covariance matrix for the measurement error.
Sanguinetti et al. (2005) extended the probabilistic PCA, which is solved by an expectation–
maximization algorithm, to incorporate the technical precision connected to a microarray as a
proxy for the measurement error in the data.
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However, in practice, it is difficult to estimate the covariance matrix of the measurement
error in a high-dimensional situation, and the PCA versions accounting for measurement error
are not in common use. Analyses are often carried out naively, running standard PCA on
the observed data without any correction for measurement error, and therefore, it will be use-
ful to understand the impact of error on component loadings, scores and selection. In the
framework of chemometrics, the effect of measurement error on eigenvalues was investigated
by Faber et al. (1993, 1995), but only for homogeneous error and not considering the high-
dimensional situation.

In this paper, we will derive the bias and variability in loadings and scores caused by a
general, additive measurement error. This is performed by considering perturbations of the
eigen decomposition, such that the bias and variability of the change in eigenvectors and values
are given by the distribution of the errors.

2. Principal component analysis

Principal component analysis reduces the dimensionality of data by finding the low-
dimensional linear subspaces where the projections of the data have the largest possible
variability. Specifically, given a p-dimensional vector x, the first principal component is
a unit-length vector v1 2 Rp , such that vT

1
x has maximal variance. Because Var vT

1
x D vT

1
†v1,

where † is the population covariance matrix, the first principal component is the eigenvector
corresponding to the largest eigenvalue. The second principal component v2 is the unit-length
vector with the largest variance orthogonal to v1 and is given by the eigenvector corresponding
to the second largest eigenvalue and so on.

In practice, the principal components are given by the sample covariance matrix. Let
X1; : : : ;Xn be n iid p-dimensional vectors and X D ŒX1; : : : ;Xn� a p � n data matrix. When
assuming for simplicity that Xr ; r D 1; : : : ; n has a known zero expectation, the sample
covariance matrix is SX D 1

n
XXT . The principal components are then given by the eigen

decomposition of SX given by

SX D VƒVT ;

with eigenvalues ƒ D diag.�1; : : : ; �p/ and eigenvectors V D Œv1; : : : ; vp�. The projections,
denoted by Zi D vT

i
X for i D 1; : : : ; p, are referred to as the i th component scores and

represent the new data, which can be used in further analyses. As this linear projection can
be seen as a weighted sum of the original variables, where the eigenvector gives the weight of
each variable, the coefficients of the eigenvector are usually referred to as the loadings of the
component. The dimensionality can be reduced by choosing the components corresponding to
the largest eigenvalues to represent the data.

In a situation with measurement error, an error contaminated version of the data, W, is
observed instead of the original data X. For the classical, additive measurement error model,
X is observed by W with the errors �U, such that

W D XC �U:

The scaling � controls the magnitude of the error matrix U. Both the data X and the error U are
for simplicity assumed to have known zero expectation; hence, the same is true for W. Then the
estimator for the population covariance matrix is SW D 1

n
WWT , and when the error model is

additive, the covariance matrix is given by

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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1

n
WWT D

1

n
.XC �U/.XC �U/T D

1

n
XXT C

�

n
XUT C

�

n
UXT C

�2

n
UUT :

The covariance matrix SW is decomposed into the covariance matrix SX and the additive
change depending on the scaling � :

SW D SX C ��S1 C �2�S2; (1)

where �S1 D 1
n

XUT C 1
n

UXT and �S2 D 1
n

UUT .
Our aim is to assess the change in loadings, scores and component selection, when the PCA

is carried out on SW instead of SX . The eigenstructure of SX is further assumed to be known
in the sense that X is fixed. Then there will be p fixed eigenvectors V D Œv1; : : : ; vp� and
eigenvalues ƒ D diag.�1; : : : ; �p/.

The spiked covariance model introduced by Johnstone (2001) considers the eigenvalues on a
population level, where them first eigenvalues are substantially larger than the remaining p�m
eigenvalues, which are all equal to some constant. We assume the eigenvalues to originate from
a spiked covariance model on a population level, but fix them as a sample such that the non-
zero eigenvalues are necessarily different from each other (Rao et al., 2008). When p > n, there
must also be at least p � n zero eigenvalues, and we assume for simplicity that exactly p � n
eigenvalues are equal to zero, such that the eigenvalues of ƒ fulfill the following:

�1 > � � � > �m � �mC1 > � � � > �n > �nC1 D � � � D �p D 0:

2.1. Perturbation problem

Perturbation theory has been applied in several statistical settings, for instance by Kadane
(1970) to investigate the effect of small errors on different estimators and restrictions for
overidentification. Nadler (2008) used matrix perturbation theory to develop finite sample
approximations for estimates of the leading eigenvalue and eigenvector in a single-spike model.
As the sample estimation error in PCA can be modelled as an independent homogeneous mea-
surement error, the results of the current paper will in this special case be similar to the results
of Nadler (2008).

Our results have the following outline: First, the Taylor expansion of the eigenvalues and
the eigenvectors of SW are derived, giving the Taylor expansion of the principal component
scores of SW . Then the expectation and variance of the difference between the eigenvectors and
eigenvalues of SW and SX are derived on the basis of the Taylor expansions. For these results,
we condition on the original data matrix X, such that X represents n fixed realizations from
a population distribution. The Taylor expansions of eigenvalues and eigenvectors have earlier
been investigated by Wilkinson (1965) and Stewart & Sun (1990) for deterministic matrices in
numerical perturbation analysis, whereas Stewart (1990) introduced a stochastic norm, which
also allows random error matrices. We denote the i th eigenvalue and vector of SX by �i and
vi , and the i th eigenvalue and eigenvector of SW by �W;i and vW;i .

Lemma 1. Assuming fixed p � n matrices X and U, the Taylor expansion for the i th eigenvalue
of SW as � ! 0 is given by

�W;i D �i C �vTi �S1vi C �2vTi �S2vi C �2
X
j¤i

vT
i
�S1vj vT

j
�S1vi

�i � �j
CO.�3/; (2)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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and the Taylor expansion for the i th eigenvector of SW up to a scaling constant as � ! 0 is
given by

vW;i D vi C �
X
j¤i

vT
j
�S1vi

�i � �j
vj C �2

X
j¤i

vT
j
�S2vi

�i � �j
vj

C �2
X
j¤i

X
k¤i

vT
j
�S1vivTj �S1vk

.�i � �j /.�i � �k/
vj � �2

X
j¤i

vT
j
�S1vivTi �S1vi
.�i � �j /2

vj CO.�3/;

(3)

where i D 1; : : : ; p when p � n and i D 1; : : : ; n when p > n. The proof is found in Appendix
A.1 of the Supporting Information.

The first theorem establishes the Taylor expansion of the principal component scores. We
denote the i th scores of SX by Zi and the i th scores of SW by ZW;i . As the scores are given
by ZW;i D vT

W;i
W, the result follows from the Taylor expansion of the eigenvectors combined

with the observed data matrix W.

Theorem 1. Assuming fixed p �n matrices X and U, the Taylor expansion for the i th component
scores of SW as � ! 0 is given by

ZW;i D Zi C �
X
j¤i

vT
j
�S1vi

�i � �j
vTj XC �vTi U

C �2
X
j¤i

vT
j
�S1vi

�i � �j
vTj UC �2

X
j¤i

vT
j
�S2vi

�i � �j
vTj X

C �2
X
j¤i

X
k¤i

vT
j
�S1vivTj �S1vk

.�i � �j /.�i � �k/
vTj X

� �2
X
j¤i

vT
j
�S1vivTi �S1vi
.�i � �j /2

vTj XCO.�3/; (4)

where i D 1; : : : ; p when p � n and i D 1; : : : ; n when p > n. The proof is found in Appendix
A.2 of the Supporting Information.

The change induced by the measurement error can be quantified by the difference between
the eigenvalues and eigenvectors of SW and SX , denoted by ��i and �vi :

��i D �W;i � �i ; �vi D vW;i � vi : (5)

We use the results from Theorem 1 and Lemma 1 to derive the expectation and variability
of ��i and �vi under the assumption that �U is normally distributed, and X and U are
independent. Then the multivariate additive measurement error model for n samples W D

ŒW1; � � � ;Wn� is given by

Wr D Xr C �Ur ; Ur � N .0; †U /; r D 1; : : : ; n:

The covariance matrix of the error �Ur is given as Var .�Ur / D �2†U , such that �2 controls
the scaling of the variance. The expectation of ��i and �vi is the bias in �W;i and vW;i .

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 2 (Eigenvalues and eigenvectors). Assume U D ŒU1; : : : ;Un� to be independent and
identically, normally distributed, Ur � N .0; †U / for r D 1; : : : ; n. Then the expectation and
variance of ��i as � ! 0, conditional on X, are given by

E .��i j X/ D �2vTi †U vi C
�2

n

X
j¤i

�ivTj †U vj C �j vT
i
†U vi

�i � �j
CO.�3/; (6)

Var .��i j X/ D
4�i�

2

n
vTi †U vi CO.�3/: (7)

The expectation of �vi as � ! 0, conditional on X, is given by

E .�vi j X/ D �2
X
j¤i

vT
j
†U vi

�i � �j
vj �

�2

n

X
j¤i

2vT
j
†U vi

�i � �j
vj

C
�2

n

X
j¤i

X
k¤i;j

�j vT
k
†U vi

.�i � �j /.�i � �k/
vj CO.�3/; (8)

and the variance of the kth coefficient of �vi is given by

Var .�vik j X/ D
�2

n

X
j¤i

�j vT
i
†U vi C �ivTj †U vj
.�i � �j /2

v2jk

C
�2

n

X
j;l¤i;j<l

2�ivTj †U vl
.�i � �j /.�i � �l /

vjkvlk CO.�3/; (9)

where i D 1; : : : ; p when p � n and i D 1; : : : ; n when p > n. The proof is found in Appendix
B.2 of the Supporting Information.

The variance of �vik is, to leading order, a weighted sum over the kth coordinate of all
other eigenvectors, where the weights depend on the data and the error structure through the
eigenvalues and the covariance matrix of the error.

Theorem 3 (Scores). Assume U D ŒU1; : : : ;Un� be independent and identically, normally dis-
tributed, Ur � N .0; †U / for r D 1; : : : ; n. Then the expectation of�Zi D ZW;i �Zi as � ! 0,
conditional on X, is given by

E .�Zi j X/ D �2
X
j¤i

vT
j
†U vi

�i � �j
vTj XC

�2

n

X
j¤i

X
k¤i;j

�j vT
k
†U vi

.�i � �j /.�i � �k/
vTj X

�
�2

n

X
j¤i

2vT
j
†U vi

�i � �j
vTj XC

�2

n

X
j¤i

vT
j
†U vivTj XC vT

j
†U vivTi X

�i � �j

CO.�3/: (10)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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The variance of the kth coefficient of �Zi as � ! 0, conditional on X, is given by

Var .�Zik j X/ D
�2

n

X
j¤i

�j vT
i
†U vi C �ivTj †U vj
.�i � �j /2

�
vTj Xk

�2

C
�2

n

X
j;l¤i;j<l

2�ivTj †U vlvTj XkvT
l

Xk
.�i � �j /.�i � �l /

C �2vTi †U vi

C
2�2

n

X
j¤i

vT
j
†U vivTi Xk C vT

i
†U vivTj Xk

�i � �j
vjXk CO.�3/; (11)

where i D 1; : : : ; p when p � n and i D 1; : : : ; n when p > n. The proof is found in Appendix
B.3 of the Supporting Information.

Remark 1. If the measurement error is uncorrelated and homogeneous, such that Ur �
N.0; �2I / for r D 1; : : : ; n, the bias in the eigenvalues and eigenvectors simplifies. Because

E .SW j X/ D SX C �2I;

the expectation of the eigenvalues and eigenvectors of SW are given as E .�W;i j X/ D �i C �2

and E .vW;i j X/ D vi , such that the bias is given exactly as

E .��i j X/ D �2; E .�vi j X/ D 0:

3. Implications

We will now explore the implications of Theorems 2 and 3 for the loadings, scores and
component selection, when the measurement error is assumed to be uncorrelated and either
homogeneous or heterogeneous. In the case of uncorrelated, homogeneous measurement error,
the variance of Ur is equal for all variables, such that †U D I . Then the covariance matrix
of the error is given as Var .�Ur / D �2I . In the case of uncorrelated, heterogeneous measure-
ment error, the variance of Ur is different in each variable, such that †U D diag.c1; : : : ; cp/,
where the constants ck give the relative size of the variances. Then the covariance matrix of the
error is Var .�Ur / D diag.�2c1; : : : ; �2cp/, where �2 controls the scaling.

A key element in the bias and variance expressions of Theorems 2 and 3 is the quantity
vT
j
†U vi , which captures the relationship between the error and the original data. For j D i ,

this corresponds to a projection of the error covariance matrix †U onto the eigenvector
space spanned by vi . For uncorrelated, homogeneous error, the projection of †U is either
vT
i
†U vi D 1 or vT

j
†U vi D 0 for j ¤ i , which simplify the bias and variance expressions. For

uncorrelated, heterogeneous error with covariance matrix †U D diag.c1; : : : ; cp/, the projec-
tions are given as weighted sums, vT

i
†U vi D

Pp

kD1
ckv2

ik
and vT

j
†U vi D

Pp

kD1
ckvjkvik ,

where the variances are weighted by the corresponding loadings. Because the sum of the weights
v2
ik

are normalized to 1, the vT
i
†U vi will be a weighted average of the error variances in the

heterogeneous case.

3.1. Loadings

The impact of measurement error on the principal component loadings can be assessed through
the bias and variance in the eigenvectors. If the measurement error structure is uncorrelated and
homogeneous, the bias in the loadings will be zero due to the orthogonality of the eigenvectors.
However, heterogeneous error or error structures with dependencies will introduce a bias.
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We can illustrate this effect through a simple heterogeneous structure with measurement
error in only one variable, †U D diag.1; 0; : : : ; 0/. The bias in the first loading of the i th
component is given by

E .�vi1 jX/ D �2vi1

�
1 �

2

n

�X
j¤i

v2
ij

�i � �j
C
�2vi1
n

X
j¤i

X
k¤i;j

�j vij vik
.�i��j /.�i��k/

CO.�3/:

(12)

As p > n, we have assumed the fixed eigenvalues to be zero for j D n C 1; : : : ; p. If p is
much larger than n, the first two sums in (12) are approximated by .1=�i /

P
j¤i v2

ij
and due

to the unit length of the eigenvectors, we have
P
j¤i v2

ij
' 1, such that expression (12) is

approximated by

E .�vi1 j X/ '
�2

�i
vi1:

The bias in the first loading in this simplified model depends, to leading order, on the load-
ing value itself, thus the larger loadings have larger bias. It also depends on �2=�i , the ratio
between the variance of the error �U and the i th eigenvalue of SX . This ratio expresses an
inverse signal-to-noise relationship, as the eigenvalues represent the overall structure or sig-
nal in the data. When the eigenvalues are large compared with the error variance, the inverse
signal-to-noise ratio is close to zero, resulting in a very small bias in the eigenvector coefficients.
The ratio �2=�i is always positive, such that the loading is overestimated in absolute value and
thereby also the importance of the variable in question. This is natural as PCA is constructed
to interpret high variability as important structure. As errors increase variability, the variables
affected by error will erroneously be assigned an increased importance. For a general uncor-
related, heterogeneous error structure, that is, †U D diag.c1; : : : ; cp/, the bias will depend
on whether the corresponding error variance �2ck is smaller or larger than the average error
variance over all variables:

E .�vik j X/ '
�2.ck � Nc/

�i
vik :

where Nc D .1=p/
Pp

iD1
cp is the mean of individual variances.

The induced variation in a loading is characterized by Var .�vik j X/ in (9). If the error is
uncorrelated and homogeneous, the variance is given by

Var .�vik j X/ D
�2

n

X
j¤i

�i C �j

.�i � �j /2
v2jk CO.�

3/: (13)

The variance is, to leading order, a weighted sum of the eigenvalues, where the weights v2
jk

are the kth square coefficients of all other eigenvectors, and this makes it difficult to assess
the magnitude of the variance. But due to the unit length of vi , the mean value of v2

jk

over the j th component is 1=p, such that we have approximately
Pp

jD1;j¤i
v2
jk
' 1 for

large p. When p � n and most eigenvalues are zero, the sum in (13) can be approximatedP
j¤i

�iC�j

.�i��j /
2 v2
jk
' .1=�i /

P
j¤i v2

jk
. We can therefore approximate the variability in each

loading of the i th component by

Var .�vik j X/ '
�2

�i

1

n
:
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The variability in the loadings within the same component will therefore be of the same magni-
tude, and the variation should be seen relative to the loading value. From the example presented
in Section 4, we will see that the variation will be small compared with the largest loadings,
but large enough to be problematic for the average or small loadings. The large variability
around the true value induced by the error may cause an interpretation based on the loadings to
be incorrect.

3.2. Scores

The projections of the original data onto the eigenvector space, the component scores, are often
used in other types of analyses, such that the measurement error is propagated further. In the
case of uncorrelated and homogeneous error, †U D I , the bias in the scores will, to leading
order, be 0,

E .�Zik j X/ D O.�3/;

whereas the variance in the kth score of the i th component is given by

Var .�Zik j X/ D �2 C
�2

n

X
j¤i

3�i � �j

.�i � �j /2

�
vTj Xk

�2
CO.�3/;

by collecting the second and last term in (11). The first term in the variance expression is the
largest, such that the variance in the scores is mainly given by the error term �U. It is however
difficult to assess the contribution of the second term without the specified scores. The induced
variability in the scores can be compared with the error-induced variability in the observed data
W, which is given by Var .Urk j X/ D �2. We see that the error variance in the scores is larger,
due to the erroneously estimated eigenvectors.

It is also possible to quantify the impact of the error in terms of the overall variance of
the scores, as this is given by the eigenvalues Var .Z/ D ƒ. The difference in the overall score
variability is given by the bias in the eigenvalues, which for a homogeneous error is given by

E .��i j X/ D �2 C
�2

n

X
j¤i

�i C �j

�i � �j
CO.�3/:

This expression can, when p � n, by approximated by E .��i j X/ ' �2
�
1C p

n

�
, in the case

of uncorrelated and homogeneous error. To assess the relative increase in the variance of the
component scores, we compare the bias in the eigenvalues to the original eigenvalues, �i . If the
eigenvalues are large, the relative increase in variability introduced by the error will be small.

3.3. Component selection

Dimension reduction can be achieved by selecting a subset of the components with the largest
eigenvalues. Ferré (1995) performed an extensive comparison of different selection methods
and concluded that there is no ideal selection criterion. However, the criteria most often used
in practice, the percentage rule, the Kaiser rule and Scree plot, all specify a cut-off based on the
eigenvalues, where only the components corresponding to the eigenvalues previously the cut-off
value are kept. Our aim is to look into the effects of measurement error on these commonly used
criteria. It should be mentioned that more recent work on component selection in situations
with p � n exits (Kritchman & Nadler, 2008).

According to the percentage rule, the chosen components will explain a specified proportion
of the total data variability. Because the eigenvalues give the variance of the components, the
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proportion is given by the sum of the eigenvalues of the chosen components divided by the sum
of all eigenvalues. As the bias in the eigenvalues is approximately equal when p � n, the relative
difference between the large and the small eigenvalues becomes smaller, such that additional
components are needed to explain the same proportion of the variability. The eigenvalues of the
additional components must outweigh the difference between the sum of the bias in the chosen
eigenvalues and the sum of the bias in all eigenvalues. The fact that additional components
must be chosen is a result of the error obscuring the original data structure.

With the Kaiser rule, the cut-off is the mean of the eigenvalues N� (Jolliffe, 2002). Simulations
show that too few variables will be selected under this rule, and Jolliffe (2002) suggested a modi-
fied Kaiser rule with 0:7 N� as the cut-off. The Kaiser rule will, as opposed to the percentage rule,
adapt to the introduced bias. If the bias is approximately equal in all eigenvalues, the increase
in N� will be the same as in the individual eigenvalues, such that the number of components over
the cut-off value remains the same.

A Scree plot is a graphical procedure to determine a cut-off value, where the eigenvalues are
plotted in decreasing order. The cut-off is set where the slope of the eigenvalues shifts from
steep to shallow (Jolliffe, 2002), and the components above this break point are retained. As
the bias in the eigenvalues is approximately equal, the break point should not appear to move,
but a graphical procedure can be difficult to assess.

4. Example – microarray expression data

We illustrate our results with microarray expression data from lung cancer patients available
in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-GEOD-
10072. The data set consists of 107 samples in total with 58 adenocarcinoma tumor tissue
samples and 49 non-tumor samples. In all samples, 22,284 genes are analysed using a HG-
U133A Affymetrix GeneChip (Affymetrix, Santa Clara, CA, USA).

Research into measurement error in microarray expression data has suggested a combination
of additive and multiplicative errors (Rocke & Durbin, 2001; Karakach & Wentzell, 2007).
For the purpose of illustration, we will only assume an additive measurement error. With the
Affymetrix chip technology, it is possible to use probe information to estimate the technical
uncertainty in expression values, for instance by the Bayesian Gene Expression (BGX) method-
ology (Hein et al., 2005; Turro et al., 2007). BGX uses Bayesian hierarchical models to produce
a posteriori distributions of the gene expressions by utilizing probe information. The probe set
in an Affymetrix GeneChip consists of 11–20 probe pairs of perfect match probes and mis-
match probes, which accounts for different sources of noise (Hein et al., 2005). The method
supplies a posteriori distributions for two parameters, the gene expression �k and the technical
variability �2

k
for each sample.

We use the mean of the a posteriori distribution of �k as an estimate of the kth gene
expression, and we use the mean of the distribution of �2

k
as an estimate of the gene-specific

and sample-specific technical variance. However, we assume the technical variability to be
equal for each sample and use the mean over all samples as our estimate of the measurement
error.

The R package for BGX is highly labor-intensive, and our analysis is restricted to the 3000
genes with the highest variance. The estimated gene expression is seen as the original data, and
the measurement error structure is assumed to be uncorrelated and heterogeneous with vari-
ance equal to the mean of the estimated technical variability over samples. To illustrate the
effects of measurement error, we add a simulated Gaussian error to the data, and the prin-
cipal components of the original and the error-prone data are compared. The robustness of
the component loadings against error is explored with the aim of biological interpretation,
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whereas the robustness of component scores is explored with the aim of classification and
logistic regression.

The simulated additive measurement error is assumed to be normally distributed, with an
uncorrelated and heterogeneous variance structure given by

W D XCU; Urk
iid
� N

�
0; �2k

�
; r D 1; : : : ; n; k D 1; : : : ; p;

where the error variance �2
k

is the estimate supplied by the BGX methodology.
Table 1 displays the 15 genes corresponding to the largest loadings (in absolute value) in the

first principal component. The second column displays the original loadings, and the third col-
umn displays the difference in the loadings, when the simulated error is added to the data. The
fourth and fifth columns display the theoretical bias and standard deviation in each loading.
The last two columns display the genetic variance in the original data, and the ratio between the
measurement variance estimated by BGX and the genetic variance. The last column therefore
shows the degree of uncertainty in the measurements.

We observe that changes in the loadings in Table 1 are much larger than the theoretical
bias, and this is due to the variability in the scores. The theoretical variability, in terms of the
standard deviation, is substantially larger than the theoretical bias, as seen in Table 1. This illus-
trates that, when focusing on the loadings, the main impact of uncorrelated errors is increased
variability and not bias. Biologically, the loadings can be interpreted as the relative impor-
tance of each gene in the underlying processes represented by the component, and the random
fluctuations in the loading values can undermine the biological interpretation.

The impact of measurement error on the scores is illustrated graphically in Fig. 1, which
displays the first and second principal component of the original data and the data with a
simulated, additive error. An arrow indicates the change in scores, when the simulated error
is introduced. We observe that the changes are very small compared with the overall posi-
tions of the scores, and this is due to the large first and second eigenvalues, �1 D 1255:01 and
�2 D 969:95. The variance of the error ranges from 0.03 to 1.90 with a mean of 0.86. Even
though the error variance can be substantial compared with the genetic variability, it is very

Table 1. The 15 genes corresponding to the largest coefficients in absolute value in the first
eigenvector in decreasing order, together with the difference induced by the simulated error,
the theoretical bias, the theoretical standard deviations, the variance in the variable and the
ratio between the variance of measurement error and variable variance

Gene annotation v1k �v1k Bias St. dev. �2X �2U =�
2
X

214387_x_at �0.0545 0.0008 0.000011 0.0026 8.361 0.05
205982_x_at �0.0539 �0.0001 0.000012 0.0025 7.830 0.05
211735_x_at �0.0531 0.0038 0.000013 0.0026 8.030 0.04
209612_s_at �0.0528 0.0026 0.000001 0.0026 4.839 0.15
219230_at �0.0502 0.0048 �0.000010 0.0026 4.912 0.19
209074_s_at �0.0501 0.0064 �0.000013 0.0025 5.276 0.18
209613_s_at �0.0498 �0.0029 �0.000006 0.0026 4.757 0.18
203980_at �0.0496 0.0043 �0.000013 0.0026 5.397 0.18
205200_at �0.0490 0.0006 �0.000007 0.0025 4.715 0.18
213317_at �0.0477 0.0048 �0.000004 0.0026 4.420 0.18
204719_at �0.0476 0.0012 �0.000011 0.0025 3.755 0.26
215454_x_at �0.0474 �0.0009 �0.000001 0.0026 5.463 0.12
209763_at �0.0469 0.0029 �0.000001 0.0025 3.659 0.22
212713_at �0.0468 0.0012 �0.000008 0.0025 3.905 0.23
206488_s_at �0.0463 �0.0002 �0.000012 0.0025 3.773 0.27
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Fig. 1. Plot of first and second component scores from original data and data with simulated error based
on the estimated error structure. An arrow indicates the change in scores from the original value. Black
dots indicate adenocarcinoma tumour tissue, and open circles indicate non-tumour tissues.

small compared with the first two eigenvalues, and the relative impact of the error on the scores
is determined by the ratio between the error variance and the eigenvalue. The plot of the first
two components can be used to classify the tissues by cancer status, adenocarcinoma tumour or
non-tumour, which are indicated by black and open circles, respectively. The arrows illustrate
that both groups experience a slightly increased variability. This is only a problem for classifi-
cation if the change causes the groups to overlap, but this does not occur in our example. The
key point is the small relative change in the overall positions of the scores.

The classification can also be performed by logistic regression, where measurement error will
often cause attenuation in estimated regression coefficients (Carroll et al., 2006; Buonaccorsi,
2009). We illustrate this effect by using the first component scores Z1 without and with error
in a logistic regression. For logistic regression, we assume

yi � Bernoulli.pi /; logit.pi / D ˇ0 C ˇ1Z1:

The binary outcome yi is the cancer status, lung cancer or normal tissue. The estimated
coefficients from the logistic regression based on the scores from the original data are
Ǒ
0;Z1 D �0:292 and Ǒ1;Z1 D �7:224� 10

�2, whereas the coefficients based on the scores from
the data with error are Ǒ0;ZW;1 D �0:287 and Ǒ1;ZW;1 D �7:161 � 10

�2. There is a slight
underestimation of the slope coefficient, consistent with the well-known attenuation effect. The
increased variability in the component scores causes the estimated slope ˇ1;ZW;1 to decrease in
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absolute value. The attenuation factor gives the expected decrease as ˇ1;ZW;1 D  ˇ1;Z1 with
 D Var Z1=Var ZW;1, (Carroll et al., 2006). As the variances of the scores are the eigenval-
ues, the factor is approximately �1=�1;W D 0:981 in our data, consistent with the effect seen
in ˇ1;Z1;W .

5. Discussion

Our aim is to understand the effect of measurement error on PCA, motivated by applications
in high-dimensional error-prone data. The impact of the error is characterized by the bias and
variance of eigenvalues and eigenvectors based on second-order Taylor approximations. The
results are given for additive errors with a general covariance matrix, such that also measure-
ment error with a correlation structure beyond the uncorrelated case can be explored. It has
been shown that the impact of uncorrelated errors on component scores will mainly be in
terms of an increased variability. We have quantified the impact of the additive measurement
error based on a small error assumption. In practice, what we need for the theory to work is
that �2 is small relative to the eigenvalues. As shown in the example, this will often be the
case, even if there is substantial measurement error relative to the variation in the data them-
selves. In the setting of microarray data, where the first eigenvalues can be substantially larger
than the error variance, the relative impact of the error variability will be negligible. This sug-
gests that the additive measurement error might be unproblematic in microarrays, when dealing
only with the components corresponding to the largest eigenvalues, for instance, in the case
of data visualization. However, the measurement error will also cause an increased variabil-
ity in the loadings, which can be large relative to the loading values and thereby undermine
their interpretation.

For the specific application of microarray data, the effects of multiplicative error should
also be investigated, as Rocke & Durbin (2001) and Karakach & Wentzell (2007) suggest that
the appropriate measurement error model for microarrays is a combination of additive and
multiplicative errors.

Because our aim is to understand the direct impact of measurement error, we condition on
the data X, fixing the model error. However, recent results raise issues regarding the consistent
estimation of the population structure by PCA in the high-dimensional setting. Johnstone &
Lu (2009), among others have shown that eigenvalue and eigenvector estimates are not asymp-
totically consistent when p � n, and they have introduced the asymptotically consistent sparse
PCA methodology. Therefore, it remains an open question if the inconsistency may be a more
severe problem than measurement error.
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A Appendix

A.1 Proof of Lemma 1

Proof. From the representation of the empirical covariance matrix in (1), it follows from standard
results in perturbation theory of linear operators (Kato, 1995) that λW,i and vW,i are analytic in
σ for eigenvalues of multiplicity one. Therefore, as σ → 0, we can expand the eigenvalue λW,i

around λi and the eigenvector vW,i, up to a scaling, around vi

λW,i = λi + σ λ1,i + σ2 λ2,i +O(σ3),

vW,i = vi + σ v1,i + σ2 v2,i +O(σ3).

The first- and second-order coefficient in the Taylor expansion of the eigenvectors are denoted by
v1,i and v2,i. By inserting these two expressions and SW in expression (1) into the eigenequation
SWvW = λWvW and collecting the terms with the same power in σ, the following system of
equations is specified

SXvi = λivi,

SXv1,i + ∆S1vi = λiv1,i + λ1,ivi, (1)

SXv2,i + ∆S1v1,i + ∆S2vi = λiv2,i + λ1,iv1,i + λ2,ivi. (2)

The terms in the Taylor expansion of vW,i must be orthogonal to the eigenvector vi; vT
1,ivi = 0

and vT
2,ivi = 0. Thus the terms can be written as linear combinations of all the other eigenvectors,

such that v1,i =
∑

j 6=i α1,jvj and v2,i =
∑

j 6=i α2,jvj . First, λ1,i is found by premultiplying
equation (1) by vT

i , using the fact that vT
i v1,i = 0 and vT

i vi = 1

vT
i SXv1,i + vT

i ∆S1vi = vT
i λiv1,i + vT

i λ1,ivi,

λiv
T
i v1,i + vT

i ∆S1vi = vT
i λ1,ivi,

λ1,i = vT
i ∆S1vi.

Then v1,i is found by inserting the linear combination v1,i =
∑

j 6=i α1,jvj and premultiplying
equation (1) by vT

j

vT
j SXv1,i + vT

j ∆S1vi = vT
j λiv1,i + vT

j λ1,ivi,

λjα1,j + vT
j ∆S1vi = λ1,iα1,j ,

α1,j =
vT
j ∆S1vi

λi − λj
.

1



Secondly, λ2,i is found by premultiplying equation (2) by vT
i :

vT
i SXv2,i + vT

i ∆S1v1,i + vT
i ∆S2vi = vT

i λiv2,i + vT
i λ1,iv1,i + vT

i λ2,ivi,

λiv
T
i v2,i + vT

i ∆S1v1,i + vT
i ∆S2vi = vT

i λ2,ivi,

λ2,i = vT
i ∆S2vi +

∑

j 6=i

vT
i ∆S1vjv

T
j ∆S1vi

λi − λj
.

Lastly, the second-order Taylor expansion coefficient for the eigenvector is found by premultiplying
equation (2) by vT

j :

vT
j SXv2,i + vT

j ∆S1v1,i + vT
j ∆S2vi = vT

j λiv2,i + vT
j λ1,iv1,i + vT

j λ2,ivi,

vT
j ∆S1v1,i + vT

j ∆S2vi − λ1,ivT
j v1,i = λiv

T
j v2,i − λjvT

j v2,i,

vT
j ∆S1v1,i + vT

j ∆S2vi − λ1,iα1,j = (λi − λj)α2,j ,

which, when inserting the expressions for λ1,i and v1,i, results in

α2,j =
vT
j ∆S2vi

λi − λj
+
∑

k 6=i

vT
j ∆S1viv

T
j ∆S1vk

(λi − λj)(λi − λk)
−

vT
j ∆S1viv

T
i ∆S1vi

(λi − λj)2
.

A.2 Proof of Theorem 1

Proof. Since the scores are given by ZW,i = vT
W,iW, the Taylor expansion of ZW,i around Zi =

vT
i X is found by combining the Taylor expansion of the eigenvector in expression (3) together

with W = X + σU. By using the notation of proof A.1, we obtain

ZW =
(
vi + σ v1,i + σ2 v2,i +O(σ3)

)T
(X + σU) ,

= vT
i X + σ

(
vT
1,iX + vT

i U
)

+ σ2
(
vT
1,iU + vT

2,iX
)

+O(σ3).

B Appendix

B.1 Second-order moments of random matrices

For the second-order moments of random matrices, we have the following lemma:

Lemma 1. (Ghazal & Neudecker, 2000, p.81) For a p × n matrix U = [U1, . . . ,Un] where
Ur ∼ N(0,Σ) for r = 1, . . . , n, the following is given

E(UAUT ) = tr(A)Σ, (3)

E(UTAU) = tr(AΣ)In, (4)

E(UTAUT ) = AT Σ. (5)
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Second-order moments of ∆S1 = 1
nXUT + 1

nUXT are found by using Lemma 1.

E([vT
i ∆S1vi]

2 | X) =
1

n2
E
(
vT
i UXTvi(v

T
i UXTvi)

T
)

+
1

n2
E
(
vT
i XUTvi(v

T
i XUTvi)

T | X
)

+
2

n2
E
(
vT
i UXTvi(v

T
i XUTvi)

T | X
)
. (6)

By using formula (3), the first term yields

E
(
vT
i UXTvi(v

T
i UXTvi)

T | X
)

= vT
i E

(
U
[
XTviv

T
i X
]
UT
)
vi = vT

i tr
(
XTviv

T
i X
)

ΣUvi,

= nvT
i tr

(
vT
i

1

n
XXTvi

)
ΣUvi = nλiv

T
i ΣUvi,

by formula (4), the second term yields

E(vT
i XUTvi(v

T
i XUTvi)

T | X) = vT
i XE

(
UT

[
viv

T
i

]
U
)
XTvi = vT

i X tr
(
viv

T
i ΣU

)
InX

Tvi,

= n tr
(
vT
i ΣUvi

)
vT
i

1

n
XXTvi = nλiv

T
i ΣUvi,

and by formula (5), the third term yields

E(vT
i XUTvi(v

T
i UXTvi)

T | X) = vT
i XE

(
UT

[
viv

T
i X

T
]
UT
)
vi = vT

i XΣU

[
viv

T
i X

T
]T

vi,

= nvT
i

1

n
XXTviv

T ΣUvi = nλiv
T
i ΣUvi,

such that
E([vT

i ∆S1vi]
2 | X) =

4λi
n

vT ΣUv. (7)

When the eigenvector indexes are different, the second-order moment is given by

E([vT
j ∆S1vi]

2 | X) =
1

n2
E
(
vT
j UXTvi(v

T
j UXTvi)

T | X
)

+
1

n2
E
(
vT
j XUTvi(v

T
j XUTvi)

T | X
)

+
2

n2
E
(
vT
j XUTvi(v

T
j UXTvi)

T | X
)
.

The first term yields

E
(
vT
j UXTvi(v

T
j UXTvi)

T | X
)

= vT
j E

(
U
[
XTviv

T
i X
]
UT
)
vj = vT

j tr
(
XTviv

T
i X
)

ΣUvj ,

= n tr

(
vT
i

1

n
XXTvi

)
vT
j ΣUvj = nλiv

T
j ΣUvj ,

the second term yields

E
(
vT
j XUTvi(v

T
j UXTvi)

T | X
)

= vT
j XE

(
UT

[
viv

T
i

]
U
)
XTvj = vT

j X tr
(
viv

T
i ΣU

)
InX

Tvj ,

= n tr
(
vT
i ΣUvi

)
vT
j

1

n
XXTvj = nλjv

T
i ΣUvi,

and the third term yields

E(vT
j UXTviv

T
i UXTvj | X) = vT

j E
(
U
[
XTviv

T
i U
])

XTvj ,

= vT
j ΣU

[
XTviv

T
i

]T
XTvj ,= vT

j ΣUvi v
T
i XXTvj = 0,

due to the fact that the ith and jth score vectors are uncorrelated by definition, Cov(vT
i X,v

T
j X) =

0. Thus, the second-order moment is given by

E([vT
j ∆S1vi]

2 | X) =
λj
n

vT
i ΣUvi +

λi
n

vT
j ΣUvj . (8)
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For E(vT
j ∆S1viv

T
j ∆S1vk) for k 6= j, we obtain

E
(
vT
j UXTvi(v

T
j UXTvk)T | X

)
=
λj
n
vT
k ΣUvi,

while all other combinations yield zero, such that

E(vT
j ∆S1viv

T
j ∆S1vk | X) =

λj
n
vT
k ΣUvi, k 6= j. (9)

To calculate the moment E(vT
j ∆S1viv

T
i ∆S1vi | X), we first obtain

E(vT
j UXTviv

T
i XUTvi) = nλiv

T
j ΣUvi,

E(vT
j UXTviv

T
i UXTvi) = nλiv

T
j ΣUvi,

while the two other combinations yield zero, such that

E(vT
j ∆S1viv

T
i ∆S1vi | X) =

2λi
n

vT
j ΣUvi. (10)

In addition, the formulas in Lemma 1 give

E(vT
j ∆S1viv

T
j U | X) = vT

j ΣUviv
T
j X + vT

j ΣUvjv
T
i X, (11)

E(vT
j ∆S1viv

T
i U | X) = vT

j ΣUviv
T
i X + vT

i ΣUviv
T
j X. (12)

B.2 Proof of Theorem 2

Proof. The bias in the ith eigenvalue is found by moving λi in expression (2) to the other side and
take the expectation

E(∆λi | X) = σ vT
i E(∆S1)vi + σ2 vT

i E(∆S2)vi + σ2
∑

j 6=i

E(vT
i ∆S1vjv

T
j ∆S1vi)

λi − λj
+O(σ3).

When the error Ur is iid, Ur ∼ N(0,ΣU ), it follows that E(∆S1) = 0 and E(∆S2) = ΣU . By
inserting these expectations together with expression (8), derived in B.1, we obtain the result.

The bias in the ith eigenvector is found by moving vi in expression (3) to the other side and
take the expectation

E(∆vi | X) = σ
∑

j 6=i

vT
j E(∆S1)vi

λi − λj
vj + σ2

∑

j 6=i

vT
j E(∆S2)vi

λi − λj
vj

+ σ2
∑

j 6=i

∑

k 6=i

E(vT
j ∆S1viv

T
j ∆S1vk)

(λi − λj)(λi − λk)
vj − σ2

∑

j 6=i

E(vT
j ∆S1viv

T
i ∆S1vi)

(λi − λj)2
vj +O(σ3).

We insert E(∆S1) = 0 and E(∆S2) = ΣU and the expressions (9) and (10) derived in B.1 and get
the result by rearranging the last two terms.

The variance of the change in the ith eigenvalue is given by

Var(∆λi | X) = σ2 Var(vT
i ∆S1vi) +O(σ3) = σ2 E([vT

i ∆S1vi]
2)− σ2(vT

i E∆S1vi)
2 +O(σ3).

As E(∆S1) = 0, the variance is equal to the second-order moment in equation (7), such that

Var(∆λi | X) =
4σ2λi
n

vT
i ΣUvi +O(σ3).
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The variance of the change in the kth coordinate of the ith eigenvector is given by

Var(∆vik | X) = σ2 Var


∑

j 6=i

vT
j ∆S1vi

λi − λj
vjk


+O(σ3),

= σ2
∑

j 6=i

Var(vT
j ∆S1vi)

(λi − λj)2
v2
jk + 2σ2

∑

j,l 6=i,j<l

Cov(vT
j ∆S1vi,v

T
l ∆S1vi)

(λi − λj)(λi − λl)
vjkvlk +O(σ3).

As E(∆S1) = 0, the variance and covariance expressions are given by the second-order moments

Var(vT
j ∆S1vi) = E([vT

j ∆S1vi]
2)

Cov(vT
j ∆S1vi,v

T
l ∆S1vi) = E(vT

j ∆S1viv
T
l ∆S1vi)

which are given by expressions (8) and (9).

B.3 Proof of Theorem 3

Proof. The bias in the scores is found by moving Zi in expression (4) to the other side and take
the expectation

E(∆Zi | X) = σ
∑

j 6=i

E(vT
j ∆S1vi)

λi − λj
vT
j X + σ vT

i EU + σ2
∑

j 6=i

E(vT
j ∆S1viv

T
j U)

λi − λj
+ σ2

∑

j 6=i

E(vT
j ∆S2vi)

λi − λj
vT
j X

+ σ2
∑

j 6=i

∑

k 6=i

E(vT
j ∆S1viv

T
j ∆S1vk)

(λi − λj)(λi − λk)
vT
j X− σ2

∑

j 6=i

E(vT
j ∆S1viv

T
i ∆S1vi)

(λi − λj)2
vT
j X +O(σ3).

Apart from E(∆S1) = 0, E(∆S2) = ΣU and E(U) = 0, the expectations are given by the
expressions in (9), (10) and (11). The result is obtained by inserting all expectations.

The variance of the change in the kth score of the ith component is given by

Var(∆Zik | X) = σ2 Var


∑

j 6=i

vT
j ∆S1vi

λi − λj
vT
j Xk + vT

i Uk | X


+O(σ3)

= σ2 Var


∑

j 6=i

vT
j ∆S1vi

λi − λj
vT
j Xk | X


+ σ2 Var(vT

i Uk | X)

+ 2σ2 Cov


∑

j 6=i

vT
j ∆S1vi

λi − λj
vT
j Xk,v

T
i Uk | X


+O(σ3).

The first term is directly given by the variance of the eigenvector

Var


∑

j 6=i

vT
j ∆S1vi

λi − λj
vT
j Xk | X


 =

∑

j 6=i

Var(vT
j ∆S1vi)

(λi − λj)2
(vT

j Xk)2 + 2
∑

j,l 6=i,j<l

Cov(vT
j ∆S1vi,v

T
l ∆S1vi)

(λi − λj)(λi − λl)
vT
j Xkv

T
l Xk,

=
∑

j 6=i

λjv
T
i ΣUvi + λiv

T
j ΣUvj

n(λi − λj)2
(vT

j Xk)2 +
∑

j,l 6=i,j<l

2λiv
T
j ΣUvl

n(λi − λj)(λi − λl)
vT
j Xkv

T
l Xk.

The second term, the direct contribution from the error, is given by

Var(vT
i Uk | X) = vT

i ΣUvi.
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The last term is given by the interaction between the error and the eigenvector, as E(U) = 0

Cov


∑

j 6=i

vT
j ∆S1vi

λi − λj
vT
j Xk,v

T
i Uk | X


 =

∑

j 6=i

E(vT
j ∆S1viv

T
i Uk)

λi − λj
vjXk,

where the expectation is given by the kth coefficient in expression (12):

E(vT
j ∆S1viv

T
i Uk | X) =

1

n
vT
j ΣUviv

T
i Xk +

1

n
vT
i ΣUviv

T
j Xk.

The result is given by combining the three terms.
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Abstract

When measuring a range of different genomic, epigenomic, transcriptomic and other vari-

ables, an integrative approach to analysis can strengthen inference and give new insights. This

is also the case when clustering patient samples, and several integrative cluster procedures have

been proposed. Common for these methodologies is the restriction of a joint cluster structure,

which is equal for all data layers. We instead present Joint and Individual Clustering (JIC),

which estimates both joint and data type-specific clusters simultaneously, as an extension of the

JIVE algorithm (Lock et al., 2013). The method is compared to iCluster, another integrative

clustering method, and simulations show that JIC is clearly advantageous when both individual

and joint clusters are present. The method is used to cluster patients in the Metabric study,

integrating gene expression data and copy number aberrations (CNA). The analysis suggests a

division into three joint clusters common for both data types and seven independent clusters

specific for CNA. Both the joint and CNA-specific clusters are significantly different with respect

to survival, also when adjusting for age and treatment.

Keywords: Breast cancer; Clustering; Integrative genomics; Latent variable estimation; Singular

value decomposition.

1 Introduction

The rapid development in genomic technologies has enabled the analysis of an increasing range of

data layers or data types. This increases the need for integrative procedures that can handle several
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data types. When studying diseases that build on several molecular processes, we need to consider

the interplay between the genomic layers to fully understand the phenotypic traits. We should

therefore attempt to integrate different data types in a single joint analysis, and this is the core

principle of integrative genomics. As the information content is higher in an integrative framework

compared to individual analyses, it is possible to gain statistical power to detect relevant signals.

This is especially relevant for genetically driven diseases such as cancer in general or breast cancer,

as studied in this paper.

An integrative approach is especially relevant in the exploratory field of unsupervised clustering,

and such procedures have been suggested earlier (Shen et al., 2009, 2013; Lock and Dunson, 2013).

The aim of clustering is to discover novel disease subtypes, which can aid the understanding of sur-

vival and mortality risk differences or enable personalized treatments. Earlier integrative clustering

approaches include the iCluster methodology (Shen et al., 2009, 2013) and the Bayesian consensus

clustering (Lock and Dunson, 2013). The iCluster method clusters observations based on joint

latent variables, utilizing the connection between k-means clustering and latent factor modeling.

In Bayesian consensus clustering, observations are clustered for each data type separately with a

last step of combining the different groupings into a consensus solution.

However, when several highly heterogeneous genomic data types are integrated, some cluster

structures are typically not shared between all the data layers. If there are clear clusters present in

some of the data types, but not in others, these can confound or obscure the joint clusters shared

by all data types. Data type-specific cluster structures can be caused by biological confounders,

such as ethnicity, or technical and measurement-related differences, such as samples processed at

different labs or changes in techniques over time, affecting only a single data type. But more

importantly from a biomedical point of view, there could exist disease-related patient clusters that

are independent of the joint subtypes, but still relevant and interesting for treatment and disease-

understanding.

Our aim is to take into account the presence of data type-specific clusters together with joint

clusters in an integrative framework. We will therefore present a clustering extension of the JIVE

algorithm (Lock et al., 2013), which decomposes several data sets into joint and individual latent

structures in an iterative procedure. In our extension, termed Joint and Individual Clustering (JIC),

the joint cluster structure is estimated simultaneously with the individual or data type-specific

clustering. JIC will be compared to the iCluster methodology in different simulation settings and

will be used to find joint and data type-specific clusters of patients in the Metabric study (Curtis

et al., 2012).
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2 Integrative clustering

The iCluster method (Shen et al., 2009, 2013) has become an established method for integrative

clustering of multiple genomic data types. We extend the JIVE methodology (Lock et al., 2013)

to accommodate clustering of observations, as done by iCluster. Both approaches are based on

estimating latent variables as continuous representations of the cluster assignment vectors. An

important difference between JIC or JIVE and iCluster is the assumed noise structure in the latent

variable model. iCluster allows the factor residuals to have different variances for each variable,

while JIC, assuming equal variance, allows for additional latent variables specific for each data

type. Both approaches can incorporate sparsity in the loadings matrices.

Integrative clustering aims to cluster observations simultaneously in different data types. Let

X1, . . . , XM be M different genome-scale data types (typically expression, copy number variation,

methylation) or genome-related data types (such as miRNA, proteins, transcription factors) that

are all measured on the same n patients, indexed j = 1, . . . , n. Then each Xm is a pm × n data

matrix for m = 1, . . . ,M with pm variables, indexed by i = 1, . . . , pm. The data types can be highly

heterogeneous with respect to scale, unit or variation.

The M data matrices can be combined into a single concatenated matrix

X =




X1

...

XM


 ,

of dimension p × n where p = p1 + · · · + pM . A scaled version of the concatenated matrix can be

constructed by first scaling each data matrix Xi by some norm ‖Xi‖. Then each data type will

contribute equally to the integrative solution.

2.1 Clustering and dimension reduction

Both iCluster and JIC are closely linked to k-means clustering, where clusters are defined by min-

imizing the distance between each observation and the cluster centroid. To simplify the procedure

of k-means clustering, one can use principal component analysis (PCA) as an initial step to reduce

the dimension of the data matrix. This two-step procedure, called “tandem clustering” (Arabie

and Hubert, 1996; Terada, 2014), clusters the reduced subset of PC scores, but have been criticized

in the statistics literature.

However, in machine learning, Zha et al. (2001); Ding and He (2004) have shown that principal

components are the continuous solution to the k-means optimization problem, such that the PC
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scores correspond to a continuous version of the discrete cluster indicators. Specifically, if the

k-means clustering solution is denoted ZT = [z1, . . . , zK−1], a matrix of K − 1 indicator vectors

zTk = n
−1/2
k [0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

nk

, 0, . . . , 0],

where nk is the number of observations in each cluster, the K − 1 first principal component scores

will minimize the k-means objective function. Therefore, k-means clustering (into K groups) can

be solved in two steps: first find the K − 1 (standardized) principal component scores, and then

reconstruct the discrete cluster assignments from the continuous scores, for instance with k-means

clustering. In a high-dimensional setting, this is highly efficient as the data matrix is reduced from

p× n to (K − 1)× n.

The estimation of the continuous matrix Z can also be done through Gaussian latent variable

modeling, where the data matrix Xm is modeled as

Xm = W T
mZ + εm, εm ∼ N(0,Σ),

where Wm is a loading coefficient matrix and εm is a set of independently distributed errors. Tipping

and Bishop (1999) connected the latent factor model and PCA, showing that under homogeneous

and normally distributed errors, Σ = σ2Ipm , the maximum likelihood estimates of Wm yield the

same solution as classical principal component analysis. The use of latent variable modeling as

a part of the k-means clustering is motivated by the natural extension of the latent variables to

multiple data types.

2.2 iCluster

The iCluster method extends k-means clustering to an integrative clustering procedure, following

the same approach as Deun et al. (2009, 2011). The latent variables Z, representing the clusters,

are assumed to be common for all the data types. iCluster assumes the following model for M data

types:

X1 = W T
1 Z + ε1,

...

XM = W T
MZ + εM ,

where the noise terms are heterogeneous, εm ∼ N(0,Ψm),Ψm = diag(σ21, . . . , σ
2
pm). The parameter

estimates are obtained by maximum likelihood estimation using the EM algorithm. If εm was
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homogeneous, the solution is analytically given by the singular value decomposition. In iCluster,

one can also enforce sparsity on the loading matrices by penalizing the data log-likelihood. After

convergence of the EM algorithm, the rows of Z are clustered by the k-means algorithm to obtain

the group membership of each observation. In this way, the latent variable Z corresponds to a

cluster indicator matrix shared between all data sets.

2.3 Joint and Individual Clustering (JIC)

Clustering based on estimated latent variables can also include other noise structures. We present

a novel clustering extension of JIVE, the Joint and Individual Clustering (JIC), where clustering

is carried out on both joint and data type-specific latent variables. The JIVE scheme proposed by

Lock et al. (2013) decomposes multiple data matrices into joint and individual structures. Both

the shared and the data type-specific latent variables can be used to obtain a clustering of patients

in a finale reduced k-means step.

In JIC, the data types are assumed to be realizations of a combination of common and data

type-specific latent variables

X1 = W T
1 Z + V T

1 Z1 + ε1,

...

XM = W T
MZ + V T

MZM + εM ,

where εm ∼ N(0, σ2mI),m = 1, . . . ,M and the joint loading matrices form a concatenated matrix

W =




W T
1
...

W T
M


 .

When each individual latent clustering matrix Zm, is orthogonal to the joint latent matrix, such that

ZZT
m = 0(K−1)×(Km−1), there exists a unique decomposition of X (Lock et al., 2013, Supplementary

material). The decomposition can be found by minimizing the reconstruction error

‖R‖2 =

M∑

m=1

‖Rm‖2 =

M∑

m=1

‖Xm −W T
mZ − V T

mZm‖2.

If the rank of W TZ, r, and the rank of V T
mZm, rm, for m = 1, . . .M are fixed, the decomposition can

be found by iteratively estimating the joint and individual structures: First fix W TZ and estimate
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each V T
mZm by minimizing ‖Rm‖. Then fix V T

1 Z1, . . . , V
T
MZM and estimate W T

mZ by minimizing

‖R‖. This procedure is repeated until a suitable convergence criterion is reached.

When errors are assumed homogenous across variables (of same type), the solution minimizing

the reconstruction error is given by the singular value decomposition and the latent variables

corresponds to the left singular vectors or standardized principal component scores estimated as

follows:

• Calculate W TZ by the r rank singular value decomposition of X, and subtract W TZ from

X,

• Calculate V T
mZm by the rm rank singular value decomposition of the sub-matrix Xm−W T

mZ,

for m = 1, . . .M

• Form the concatenated matrix of X
(l+1)
m = X

(l)
m −V T

mZm for m = 1, . . .M and repeat all steps

until convergence.

At convergence, the rows of ZT are clustered into r + 1 groups and the rows of ZT
m are clustered

into rm + 1 groups for m = 1, . . .M , respectively, using k-means clustering.

2.4 Procedure for selection number of clusters

To choose the number of clusters is a difficult task, and in general there is no optimal procedure.

However, the selection procedure can be tailored to the method and relevant data, and we will use

a procedure enlightening the subjective choices always present in such analyses.

Firstly, we exploit the subspace structure in JIC. The number of dimensions present in the

clustering step is directly given by the number of clusters we aim to find; for K clusters, we use

K − 1 component scores. As these are given by the singular value decomposition, the variables

are by construction uncorrelated with each other, ZZT = IK−1, such that each dimension contains

independent information regarding the clustering. As shown by Ding and He (2004), a new cluster

should be separated out in each dimension specified by a component. We exploit this property, and

check if a new cluster is present in each added dimension. When no new cluster separates out, the

total number of relevant dimensions is found. We use the following procedure:

1. For the ith component, check if the k-means clustering into two clusters is better than one

cluster by a chosen procedure.

2. If two clusters are better, proceed to the next component. If instead only one cluster is

supported, stop and set the number of clusters to the current component number.
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Instead of checking K clusters in a K − 1 dimensional space, we will check two clusters in a

one-dimensional space, until we find the first component where no new cluster is present.

How to check the presences of a new cluster should depend on the application and data char-

acteristics. Some possible choices of procedures are:

• Prediction strength (Tibshirani and Walther, 2005; Shen et al., 2013): evaluates clusters

based on reproducibility between random splits of the data into discovery and validation sets.

A predicted and validation clustering are evaluated by a similarity index, and the K with

the highest index is chosen. However, in the p � n setting, the component scores are very

stable (Lee et al., 2014; Hellton and Thoresen, 2014), such that the sub-sampling induces

little variability. Therefore component scores representing noise can exhibit very good cluster

reproducibility, a property which is not desirable.

• Cluster separation: clusters can be evaluated by a separation criterion, such as the Calinski-

Harabasz, the Dunn criterion or within group sum-of-squares. This requires the index value

for a single cluster, which can be difficult to assess. The approach seems to work best in

low-dimensional settings with well-separated clusters (Milligan and Cooper, 1987).

• Approach of G-means (Hamerly and Elkan, 2003): evaluates the normality of the continuous

scores. When no clusters are present, the component scores should behave as noise and follow

a normal distribution, instead of a mixing distribution. We can evaluate this normality by

qq-plots or normality tests. If the scores deviate significantly from normality, they do not

resemble pure noise and clusters are present in the data. If the test is not significant, there is

no evidence of clusters beyond the normally distributed noise. This approach seems to work

well when clusters are not well-separated, and instead resemble a continuum.

2.5 Cluster procedure for JIC

As genetic data usually do not exhibit well-separated clusters, we will utilize the idea behind

the G-means method together with the notion of the independent subspaces. We use qq-plots,

complemented by the Anderson-Darling test, to evaluate the normality of each component.

To identify the number of joint and individual clusters, we use the fact that the total rank of

the cluster structure in the concatenated matrix, X, is given by

E = r + r1 + · · ·+ rM ,
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iCluster JIC: joint X1 X2 X3

Setting I: Precision 0.998 0.985 - - -

Correctly estimated K 97% 96% 95% 98%

Setting II: Precision 0.415 0.933 0.950 0.791 0.874

Correctly estimated K 89% 90% 88% 88%

Table 1: Mean precision of estimated cluster assignment (over 100 simulations), when the numbers

of clusters are known. Percentage of times the numbers of clusters are correctly estimated.

and the rank of the cluster structure in the original data Xm is Em = r+ rm for m = 1, . . . ,M . As

the number of clusters is given by r+1 and rm+1 respectively, we can determine E and E1, . . . , EM

in the data and use them to calculate K and K1, . . . ,KM . We follow the two step procedure:

1. Estimate the number of relevant subspaces E in X, when the ranks of the individual structures

are fixed to zero: test the normality of the ith joint component scores for increasing i, until

the last non-normally distributed component is found and set E to the component number.

2. Estimate the number of relevant subspaces Em in Xm: For each m = 1, . . . ,M , test the

normality of the ith component scores for increasing i, until the last non-normally distributed

component is found and set Em to the component number.

Now, the number of joint clusters is given as

K =
E1 + · · ·+ EM − E

M − 1
+ 1, (1)

while the number of individual clusters is given as Km = Em −K + 2 for m = 1, . . . ,M .

3 Simulations

We compare JIC to the iCluster procedure by simulating two different settings; only joint clusters

and both joint and data type-specific clusters. In both settings, three different data types are

integrated, M = 3, and the number of clusters is first assumed known, then estimated by the

procedure described in Section 2.5.

3.1 Setting I: Joint cluster structure

First, we simulate 5 joint clusters, present in all three data sets. Specifically, n = 150, where

j = 1, . . . , 30 belongs to the first cluster, j = 31, . . . , 60 belongs to the second cluster and so on,
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giving 30 observations in each cluster. The joint latent variable ZT
J , with the indicator vectors as

columns, is an n× 4 matrix

ZT
J =




1 0 · · ·
...

...

0 1 · · ·
...

...

0 0 · · ·




.

Each row contains a single ’1’ indicating the assignment of the observation to the cluster corre-

sponding to the column number. The last cluster is, however, specified by only zeros. The loading

matrices W1,W2 and W3 are of the same dimension 200 × 4 (p1 = p2 = p3 = 200). We generate

the loadings according to a standard normal distribution and normalize the matrices, such that

W T
mWm = I for m = 1, 2, 3. Within each Wi, the columns are also made orthogonal to each other.

The three data sets are generated by

X1 = cW T
1 ZJ + ε1,

X2 = cW T
2 ZJ + ε2,

X3 = cW T
3 ZJ + ε3,

with standard normally distributed errors, εm ∼ N(0, I), and c = 80.

In the simulation, we first assume K = 5 known and compare the estimated cluster assignments

to the true clusters in terms of the precision. Secondly, we assume K unknown and estimate it

by the procedure in Section 2.5. Under Setting I in Table 1, the precision of JIC compared to the

iCluster methodology is shown. We see that iCluster and JIC perform equally well in the situation

with only joint clusters. In the case of unknown number of clusters, K was correctly estimated in

97% of the simulated cases, as seen in Table 1.

3.2 Setting II: Joint and individual clusters

In the second setting, two data type-specific clusters are added in each of the three data sets. The

observations are randomly assigned to one of two clusters, such that the data type-specific latent

variables Z1, Z2 and Z3 are vectors with random ones and zeros. For the loadings matrices V1, V2

and V3 of dimension 200× 1, the loadings are randomly generated according to a standard normal

distribution and normalized, such that V T
mVm = 1 for m = 1, 2, 3.
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To obtain an identifiable decomposition, each Zm is made orthogonal to the columns of ZJ .

The three data sets are generated by the model

X1 = cW T
1 ZJ + c1V

T
1 Z1 + ε1,

X2 = cW T
2 ZJ + c2V

T
2 Z2 + ε2,

X3 = cW T
3 ZJ + c3V

T
3 Z3 + ε3,

with standard normally distributed noise, εm ∼ N(0, I), c = 80 and c1 = c2 = c3 = 30. First, the

correct numbers of clusters, K = 5 and K1 = K2 = K3 = 2, are assumed known and the joint and

individual clustering are compared to the true cluster memberships. The precisions are shown in

Table 1 under Setting II. For iCluster, only the precision of the joint clustering is displayed.

We see that JIC is highly superior to the iCluster method in recovering the joint cluster as the

individual clusters clearly obscure the joint signal. We also see that JIC performs well with a high

precision for both the joint and individual clusters. Table 1 shows that when K,K1,K2 and K3

are assumed unknown, they can be correctly estimated by the procedure in Section 2.5.

4 Example: the Metabric study

To illustrate JIC, we will analyze the data from the Metabric study (Curtis et al., 2012) with a

discovery set consisting of the gene expression and somatic copy number aberrations (CNAs) of 997

breast cancer tumor samples. For the analysis, we select the 1000 genes and CNA locations with the

largest variability. The CNAs are considered gene locations with tumor-specific differences in copy

number compared to a healthy control, and are recorded as the count of gene copies, transformed

to a log2 scale. Also recorded is disease-specific survival, together with the clinical variables: age,

estrogen status, treatment and PAM50 classification. The outline of the analysis is as follows:

First, the number of joint and individual clusters is chosen. Then, both clusterings are tested for

differences in survival time and explored with regard to the available clinical variables.

We determine the number of joint, expression-specific and CNA-specific clusters, K,K1,K2

according to the procedure described in Section 2.5. Figure 1 displays the qq-plots of the first

9 joint component scores, not allowing for individual structures. Generally, it is seen that the

component scores are closer to being normally distributed as the component number increases.

The first, second, third and fourth joint components are clearly not normally distributed, while the

5th and 6th are borderline cases. Then, again the 7th and 8th component scores clearly deviate from

normality, while the 9th component does not seem to deviate significantly. This is confirmed by the
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Figure 1: Normal quantile-quantile plots for the first 9 joint component scores. The 5th and 9th

do not exhibit clear deviations from normality.
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Figure 2: a) The 1. and 2. joint component scores with the three joint clusters in different coloring.

b) The 3. and 5. CNA-specific component scores with the seven CNA clusters in different coloring.

Anderson-Darling test, and we therefore determine the rank of the complete joint and individual

cluster structure to be E = 8. It would also be possible stop at the fifth component, but with an

exploratory aim of the analysis and the clear signs of structure in the 7th and 8th component in

mind, we choose to include more components.

We examine the qq-plots of the first three component scores of the original expression data. This

shows that the first component is clearly non-normal, while the second component is a borderline

case and the third component does not deviate significantly from normality. We therefore determine

the number of relevant subspaces in the expression data to be E1 = 2. We also examine the qq-

plots of the first 8 component scores of the original CNA data. However, when analyzing the CNA

data individually, the assumption of normally distributed noise is not properly fulfilled due to the

discrete nature of the copy number counts . All of the qq-plots therefore show a clear deviation

from normality, and as the total rank of the original data cannot exceed E, we set E2 = 8.

With E = 8, E1 = 2, E2 = 8, we calculate the number of clusters using (1):

K = 3, K1 = 1, K2 = 7,

meaning we use three joint clusters, no expression-specific clusters and seven CNA-specific clusters.
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Figure 3: The first and second principal component of the original expression data and the copy

number aberrations data, colored with the three joint clusters.

Figure 2a) displays the first and second joint component scores, and we see that the first component

discriminates between the ’purple’ and ’green’ cluster, while the second component separates out

the ’red’ cluster. Comparing the clusters in terms of clinical covariates, reveals that the ’red’ cluster

coincide with the Estrogen Receptor (ER) status of the patients, as most ER-negative patient cases

are present in the ’red’ cluster. Within the PAM50 classification, ER-negative cases are mainly of

Basal or HER2-type, meaning the ’red’ cluster mainly consists of these two cancer subtypes, as

observed in Table 2.

To investigate the relationship between the joint clusters and the original data, Figure 3 displays

the first and second principal component scores of the original expression and CNA data with the

coloring of the joint clusters. For the expression data, it is clear that the main differences are

between the ’red’ cluster and the two other clusters. In the CNA data, on the other hand, the

observations in the ’red’ cluster are randomly scattered, while the two other clusters are quite

distinct.

To visualize the seven CNA-specific clusters, we look at the 3rd and 5th component scores,

as seen in Figure 2b). For the Figure, it is seen that the 3rd component distinguish between the
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Risk Basal Her2 LumA LumB Normal

High 115 63 37

Low 390 100

Intermediate 63 152

Total 118 86 456 268 58

Table 2: The distribution of patients from the PAM classification in the three joint clusters. For

clarity, entries constituting less than 10% row-wise are not shown.

’yellow’ and ’red’ cluster, while the 5th shows the difference between the ’light blue’ and ’purple’

group. It is also observed that the remaining three clusters, especially the ’green’ and ’lilac’, are

neutral groups situated at the origin.

4.1 Connections with survival, Metabric- and PAM50 classification

The joint and CNA-specific clusters are independently evaluated with regard to survival through

Kaplan-Meier estimates. When comparing the three joint clusters against each other and the seven

CNA-specific clusters against each other, both clusterings were shown to give significant differences

by the logrank test (p = 8.7 · 10−7 and p = 1.8 · 10−7 for joint and CNA clusters, respectively).

Also, when adjusting for age and treatment in a Cox proportional hazards model, both the joint

and CNA-specific clusters are significant (p = 0.02 and p = 0.0004, respectively) by the likelihood

ratio test.

Figure 4a) displays the Kaplan-Meier plot of the three joint clusters, revealing the ’red’ cluster to

be a high mortality risk group, the ’purple’ cluster to be an intermediate risk group and the ’green’

cluster to be a low risk group. Figure 4b) displays the Kaplan-Meier plot for the seven clusters only

present in the CNA data. Interestingly, the two neutral ’dark green’ and ’lilac’ clusters, situated at

the origin of Figure 2b), are low-risk mortality groups. These exhibit few somatic changes in the

overall copy number patterns compared to healthy tissue. Conversely, the ’red’,’blue’, ’purple’ and

’yellow’ groups with quite specific aberration patterns, all exhibit an increased risk of mortality.

Especially, the copy number aberrations associated with a negative 3rd component in CNA structure

results in highly increased risk, compared to the other groups.

The clusters found by JIC are related to the PAM50 classification (Perou et al., 2000) and the

10 breast cancer subgroups identified by the initial Metabric study Curtis et al. (2012). The Tables

2-5 display the distribution of patients according to the different clusterings.
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Figure 4: a) A Kaplan-Meier survival plot of the 3 joint clusters. b) A Kaplan-Meier survival plot

of the 7 CNA clusters.

Risk Basal Her2 LumA LumB Normal

Very high (red) 31 13 29

High (yellow) 6 7 35

High (light blue) 31 25

High (purple) 23 26

High (lime) 19 56 37

Low (green) 51 184 69

Low (pink) 36 151 47

Total 118 86 456 268 58

Table 3: The distribution of patients from the PAM classification in the seven individual clusters.

For clarity, entries constituting less than 10% row-wise are not shown.
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Risk 1 2 3 4 5 6 7 8 9 10

High 68 50 87

Low 150 95 68 127

Intermediate 64 32 38 44

Total 75 45 155 167 94 44 109 143 67 96

Table 4: The distribution of patients from the ten Metabric clusters (Curtis et al., 2012) in the

three joint clusters. For clarity, entries constituting less than 10% row-wise are not shown.

Risk 1 2 3 4 5 6 7 8 9 10

Very high (red) 69

High (yellow) 38

High (light blue) 40

High (purple) 34

High (lime) 33 19 29 18

Low (green) 76 81 66 39

Low (pink) 61 64 37 49 31

Total 75 45 155 167 94 44 109 143 67 96

Table 5: The distribution of patients from the ten Metabric clusters (Curtis et al., 2012) in the

seven individual clusters. For clarity, entries constituting less than 10% row-wise are not shown.

Table 2 displays the agreement between the three joint clusters and five subtypes in the PAM50

classification, and it is clear that the high risk cluster consists of Basal, Her2 and Normal-type

tumors, while the low and intermediate are dominated by Luminal A and B. The low risk group

has a majority of Luminal A cases, while the intermediate group has a majority of Luminal B cases.

Table 3 displays the agreement between the seven CNA clusters and PAM50, but we observe no

clear patterns here. An interesting observation is that the Basal and Her2 cases do not belong to

the same cluster, indicating that the two classes differ in specific copy number alterations as also

suggested by the Metabric study (Curtis et al., 2012). The Her2 group is mainly found in the very

high risk ’red’ group. The Luminal A and B cases are evenly distributed among all the clusters,

but with a pivot in the two low risk groups.

Table 4 shows the distribution of patients between the 10 integrative Metabric clusters found

by Curtis et al. (2012) and the three joint clusters. Here we observe that the high risk group mainly
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consists of the Metabric cluster 10, 4 and 5, where the 10th subgroup largely corresponds to the

Basal subtype in the PAM50 classification. Further the low risk group consists mainly of Metabric

clusters 3 and 8, together with 4 and 7. The intermediate risk group is less clear, but corresponds

largely to Metabric clusters 1, 6 and 9.

Table 5 displays the distinct pattern of the correspondence between the ten Metabric clusters

and the seven CNA-specific clusters found by JIC. The four groups with the highest risk profile

corresponds uniquely to four Metabric clusters: The very high risk ’red’ group corresponds to the

5th cluster, the high risk ’yellow’ group to the 1st cluster, the high risk ’light blue’ group to the

2nd cluster and the high risk ’purple’ group to the 6th Metabric cluster. The 9th Metabric cluster

is only found as a part of the high risk ’lime’ group, while the remaining Metabric clusters 3,4,7,8

and 10 are evenly distributed between the high risk ’lime’ group and the two low risk groups.

In conclusion, these observations suggest that there are two independent mechanisms influencing

patient survival. From the PAM50 classification, there is a substantial mortality risk difference

between the Basal and Her2 on one side and the Luminal A and B on the other. This seems to be

the main driver of survival differences, but specific copy number alterations will in addition have

an effect. This is seen from the highest risk CNA-specific cluster, which contains a large degree of

Luminal A and B (Table 3), but only the 5th Metabric cluster (Table 5). There exist certain copy

number aberrations, which override the overall group differences between the Basal/Her2 and the

Luminal subtypes. The same reasoning also applies to the other high risk CNA-specific clusters.

5 Discussion

The Joint and Individual Clustering (JIC) contributes to the increased need for integrative proce-

dures within genomics, by decomposing patient samples into joint and individual clusters simultane-

ously. This improves the understanding of cancer subtypes across genetic data types, as completely

independent clusterings can both explain significant differences in survival. This suggests that in

addition to clusters of cancer subtypes, found jointly in different data types, there exists, in for

instance CNA data, independent groups related to other clinical variables, possibly age, smoking or

other environmental influences. The results also agree with earlier analysis of the Metabric data by

Curtis et al. (2012), where the iCluster method was used to identify 10 joint clusters. Specifically,

four of the seven CNA-specific clusters correspond exactly to four of the joint clusters found by

Curtis et al. (2012), suggesting that these are not joint clusters, but instead specific for the CNA

data.

17



The crucial step of how to select the number of clusters proved to be difficult in our setting

due to the high-dimensionality of the data. The use of cluster separation measures or cluster

reproducibility by sub-sampling did not yield good results within JIC and therefore the more

subjective normality-based approach was used. The selection of the number of clusters will always

contain subjective aspects, and our selection procedure makes these choices particularly transparent.
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